Science.gov

Sample records for magentized weakly collisional

  1. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    SciTech Connect

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  2. Hybrid simulations of weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Xia, Qian; Reville, Brian; Tzoufras, Michail

    2016-10-01

    Laser produced plasma experiments can be exploited to investigate phenomena of astrophysical relevance. The high densities and velocities that can be generated in the laboratory provide ideal conditions to investigate weakly collisional or collisionless plasma shock physics. In addition, the high temperatures permit magnetic and kinetic Reynolds numbers that are difficult to achieve in other plasma experiments, opening the possibility to study plasma dynamo. Many of these experiments are based on a classic plasma physics problem, namely the interpenetration of two plasma flows. To investigate this phenomenon, we are constructing a novel multi-dimensional hybrid numerical scheme, that solves the ion distribution kinetically via a Vlasov-Fokker-Planck equation, with electrons providing a charge neutralizing fluid. This allows us to follow the evolution on hydrodynamic timescales, while permitting inclusion ofcollisionlesseffects on small scales. It also could be used to study the increasing collisional effects due to the stiff gradient and weakly anisotropic velocity distribution. We present some preliminary validation tests for the code, demonstrating its ability to accurately model key processes that are relevant to laboratory and astrophysical plasmas.

  3. Weak turbulence theory for collisional plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  4. Weak turbulence theory for collisional plasmas.

    PubMed

    Yoon, P H; Ziebell, L F; Kontar, E P; Schlickeiser, R

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  5. Ion loss in weakly collisional three ion species plasmas

    NASA Astrophysics Data System (ADS)

    Hershkowitz, Noah; Yip, Chi-Shung; Severn, Greg

    2016-10-01

    Ion velocity distribution functions (ivdfs) at sheath-presheath boundaries are studied with laser-induced fluorescence in weakly collisional Xe-Kr-Ar and Xe-Ar-Ne plasmas using tunable diode lasers for Ar + and Xe + ions. The argon and xenon ivdfs are measured at the sheath-presheath boundary near a negatively biased boundary plate. The plasma potential profiles are measured by an emissive probe throughout the sheath and presheath. Relative ion concentrations resulting from the neutral gas mixtures are calculated using G-H. Kim's loss-production balance method. Ne + and Kr + ions are added to plasmas with approximately equal amounts of Ar + and Xr + ions, where Ar + and Xe + ions are previously observed to reach the sheath edge at nearly the system sound speed. In two ion species plasmas, instability enhanced collisional friction was demonstrated to dictate the escape velocities of the ions. When three ion species are present, it is demonstrated that as the concentration of the third ion species increases, Xe + and Ar + ion velocities at the sheath edge deviates from the common sound speed and approach their individual Bohm velocities. These observations are consistent with the predictions of the instability enhanced collisional friction theory This work was supported by NSF under Grant No. 1464741 and U.S. DOE under Grant No. DE-SC00114226.

  6. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  7. An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot

    2015-09-01

    Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel-Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.

  8. BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM

    SciTech Connect

    Kunz, Matthew W.; Stone, James M.; Bogdanovic, Tamara; Reynolds, Christopher S. E-mail: jstone@astro.princeton.edu E-mail: chris@astro.umd.edu

    2012-08-01

    The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.

  9. Plasma-wall transition in weakly collisional plasmas

    SciTech Connect

    Manfredi, G.; Devaux, S.

    2008-10-15

    This paper reviews some theoretical and computational aspects of plasma-wall interactions, in particular the formation of sheaths. Some fundamental results are derived analytically using a simple fluid model, and are subsequently tested with kinetic simulations. The various regions composing the plasma-wall transition (Debye sheath, collisional and magnetic presheaths) are discussed in details.

  10. Transition in Electron Physics of Magnetic Reconnection in Weakly Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.

    2013-12-01

    Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current sheets. Recent research in collisionless reconnection has shown that electron kinetic physics plays a key role in the evolution. Large-scale electron current sheets may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these electron structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into electrons and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional plasmas are discussed.

  11. Modeling of Weakly Collisional Parallel Electron Transport for Edge Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Dimits, A. M.; Joseph, I.; Omotani, J. T.; Rognlien, T. D.

    2014-10-01

    The parallel electron heat transport in a weakly collisional regime can be represented in the framework of the Landau-fluid (LF) model. Practical implementation of LF-based transport models has become possible due to the recent invention of an efficient non- spectral method for the non-local closure operators. Here the implementation of a LF based model for the parallel plasma transport is described, and the model is tested for different collisionality regimes against a Fokker-Plank code. The new method appears to represent weakly collisional parallel electron transport more accurately than the conventional flux-limiter based models; on the other hand it is computationally efficient enough to be used in tokamak edge plasma simulations. Implementation of an LF-based model for the parallel plasma transport in the UEDGE code is described, and applications to realistic divertor simulations are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  12. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2016-05-01

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  13. THE STABILITY OF WEAKLY COLLISIONAL PLASMAS WITH THERMAL AND COMPOSITION GRADIENTS

    SciTech Connect

    Pessah, Martin E.; Chakraborty, Sagar E-mail: sagarc@iitk.ac.in

    2013-02-10

    Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly collisional, magnetized plasmas which are stratified in temperature. The insights gained via these studies have led to a significant improvement of our understanding of the processes that determine the physical evolution and observational properties of the intracluster medium (ICM) permeating galaxy clusters. These studies have been carried out under the assumption that the ICM is a homogeneous medium. This, however, might not be a good approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject to a wide variety of unstable modes which include modifications to the magnetothermal instability (MTI), the heat-flux-driven buoyancy instability (HBI), and overstable gravity modes previously studied in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular

  14. Vlasov simulations of plasma-wall interactions in a magnetized and weakly collisional plasma

    SciTech Connect

    Devaux, S.; Manfredi, G.

    2006-08-15

    A Vlasov code is used to model the transition region between an equilibrium plasma and an absorbing wall in the presence of a tilted magnetic field, for the case of a weakly collisional plasma ({lambda}{sub mfp}>>{rho}{sub i}, where {lambda}{sub mfp} is the ion-neutral mean-free path and {rho}{sub i} is the ion Larmor radius). The phase space structure of the plasma-wall transition is analyzed in detail and theoretical estimates of the magnetic presheath width are tested numerically. It is shown that the distribution near the wall is far from Maxwellian, so that temperature measurements should be interpreted with care. Particular attention is devoted to the angular distribution of ions impinging on the wall, which is an important parameter to determine the level of wall erosion and sputtering.

  15. Numerical study on the stability of weakly collisional plasma in E×B fields

    SciTech Connect

    Horký, M.

    2015-02-15

    Plasma stability in weakly collisional plasmas in the presence of E×B fields is studied with numerical simulations. Different types of ion-neutral collisions are considered in a fully magnetized regime. We study the influence of ion-neutral collisions and the role of collision types on the stability of plasma. It is found that the stability of plasma depends on the type of ion-neutral collisions, with the plasma being unstable for charge exchange collisions, and stable for the elastic scattering. The analysis focuses on the temporal evolution of the velocity phase space, RMS values of the potential fluctuations, and coherent structures in potential densities. For the unstable case, we observe growth and propagation of electrostatic waves. Simulations are performed with a three-dimensional electrostatic particle in cell code.

  16. Charging of a conducting sphere in a weakly ionized collisional plasma: Temporal dynamics and stationary state

    SciTech Connect

    Grach, V. S. Garasev, M. A.

    2015-07-15

    We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of the stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.

  17. Validity of the Taylor Hypothesis for Linear Kinetic Waves in the Weakly Collisional Solar Wind

    NASA Astrophysics Data System (ADS)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-01

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  18. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    SciTech Connect

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-10

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  19. Hybrid particle-in-cell simulations of weakly collisional shock formation

    NASA Astrophysics Data System (ADS)

    Spisak, Jacob; Valenzuela, Julio; Kim, Joohwan; Beg, Farhat

    2016-10-01

    Recently, we studied shock formation by the head on collision of supersonic plasma jets using a wire configuration on the compact current driver GenASIS (200 kA in 150 ns). We used two wire materials: aluminum, where radiative cooling is not significant, and copper, where radiation is important to shock dynamics. In both cases, when the jets collide a conical structure develops in time and moves towards the cathode at a speed of 20km/s. Radiation effects are apparent in the copper case, as the shock is thinner than in the Aluminum case and when it starts moving a prominent bow shock develops. Furthermore, the estimated inter jet ion mean free path is larger than the shock width, indicating a magnetic field may help mediate the shock. To investigate the physics of weakly collisional shock formation, we perform two dimensional simulations of two merging, counter-propagating jets using the initial conditions from the experiment. Electrons are treated as a fluid and ions are treated as kinetic particles using the hybrid particle in cell code LSP. We explore how shock formation is affected by radiative cooling and the presence of an external magnetic field. We also carried out simulations where both ions and electrons were treated as fluids. This work was partially financed by Department of Energy Grant Number DE-SC0014493.

  20. A collisional-radiative model for low-pressure weakly magnetized Ar plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr

    2016-09-01

    Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.

  1. Charging of a conducting sphere in a weakly ionized collisional plasma: Temporal dynamics and stationary state

    NASA Astrophysics Data System (ADS)

    Grach, V. S.; Garasev, M. A.

    2015-07-01

    We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of the stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.

  2. How LIF has helped to understand ion loss at the boundaries of weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Hershkowitz, N.; Ko, E.; Wang, X.; Oksuza, L.; Halab, A.; Servern, G.

    2003-10-01

    Recent experiments in weakly collisional multi-dipole plasmas with one and two positive ion species have provided a much better understanding of ion motion in presheaths near the boundaries of such plasmas. Plasma potential was determined with emissive probes, ion density with Langmuir probes and diode laser LIF, ion drift velocity with Mach probes calibrated with LIF, and directly with LIF, and from the phase velocity of ion acoustic waves. LIF provided measurements of the ion velocity distribution functions and showed that ion-neutral charge exchange results in ion "heating" near boundaries. LIF showed that Ar ions in Ar-He plasma exit the plasma at the plasma/sheath boundary with a velocity greater than the Ar ion Bohm velocity. In single species plasma, the same diagnostic shows Ar average ion exit velocity equals the Bohm velocity. ^A Suleyman Demirel University, Physics Dept., Isparta Turkey ^B KACST, Space Research Institute, Riyadh, Saudi Arabia *Work supported by US DOE grant DE-FG02-97ER 54437

  3. Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity

    SciTech Connect

    Gupta, D. N.; Islam, M. R.; Jaroszynski, D. A.; Jang, D. G.; Suk, H.

    2013-12-15

    Self-focusing a laser beam in collisional plasma is investigated under the weak relativistic-ponderomotive nonlinearity. In this case, the plasma equilibrium density is modified and it causes generation of the nonlinearity due to the Ohmic heating of electrons, collisions, and the weak relativistic-ponderomotive force during the interaction of the laser beam with the plasma. Our theoretical and simulation results show that a significant nonlinearity in laser self-focusing can occur under the weak relativistic-ponderomotive regime for some appropriate simulation parameters.

  4. Stationary distribution functions for ohmic Tokamak-plasmas in the weak-collisional transport regime by MaxEnt principle

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio; Peeters, Philippe; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György

    2015-01-01

    In previous works, we derived stationary density distribution functions (DDF) where the local equilibrium is determined by imposing the maximum entropy (MaxEnt) principle, under the scale invariance restrictions, and the minimum entropy production theorem. In this paper we demonstrate that it is possible to reobtain these DDF solely from the MaxEnt principle subject to suitable scale invariant restrictions in all the variables. For the sake of concreteness, we analyse the example of ohmic, fully ionized, tokamak-plasmas, in the weak-collisional transport regime. In this case we show that it is possible to reinterpret the stationary distribution function in terms of the Prigogine distribution function where the logarithm of the DDF is directly linked to the entropy production of the plasma. This leads to the suggestive idea that also the stationary neoclassical distribution functions, for magnetically confined plasmas in the collisional transport regimes, may be derived solely by the MaxEnt principle.

  5. Discrete Kinetic Eigenmode Spectra of Electron Plasma Oscillations in Weakly Collisional Plasma: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.

    2013-01-01

    It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.

  6. Discrete kinetic eigenmode spectra of electron plasma oscillations in weakly collisional plasma: A numerical study

    NASA Astrophysics Data System (ADS)

    Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.

    2013-01-01

    It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein (LB) collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set [C.-S. Ng et al., Phys. Rev. Lett. 83, 1974 (1999) and C. S. Ng et al., Phys. Rev. Lett. 96, 065002 (2004)]. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.

  7. Subgrid modeling of convective turbulence in weakly ionized collisional plasma by renormalization group analysis

    SciTech Connect

    Hamza, A.M.; Sudan, R.N.

    1995-03-01

    The equations governing the nonlinear evolution of density fluctuations in a low-pressure weakly ionized plasma driven unstable by the ExB or gradient-drift instability were derived by Sudan and Keskinen for addressing the electrostatic turbulence in the E and F regions of the Earth`s ionosphere. The authors have developed a subgrid model suitable for the numerical simulation of these equations which is closely related to renormalized diffusion caused by small-scale fluctuation spectrum. {open_quotes}Dynamical Renormalization Group{close_quotes} (RNG) methods are employed to obtain the renormalized diffusion. This procedure computes the long-wavelength, long-time behavior of density correlations generated by the evolution equation for the plasma stirred by a Gaussian random force characterized by a correlation function {proportional_to} k{sup m} where k is the wavenumber of the forcing function. The effect of small scales on the large-scale dynamics in the limit k{yields}0 and infinite Reynolds number can be expressed in the form of renormalized coefficients; in this case, renormalized diffusion. If one assumes the power spectra to be given by the Kolmogorov argument of cascading of energy through k space then one can derive a subgrid model based on the results of RNG. 27 refs.

  8. Generation of electric fields and currents by neutral flows in weakly ionized plasmas through collisional dynamos

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.

    2016-08-01

    In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.

  9. Generation of Currents in Weakly Ionized Plasmas through a Collisional Dynamo

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers; Fletcher, Alex

    2016-10-01

    Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. We argue that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for the current formation, ∇ × (U-> × B->) ≠ ∂ B-> / ∂ t , where U-> is the neutral flow velocity, B-> is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ̂ . For many systems, the displacement current, ∂ B-> / ∂ t , is negligible, making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates electrojets plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law. Work supported by NSF/DOE Grant PHY-1500439.

  10. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    SciTech Connect

    Motie, Iman; Bokaeeyan, Mahyar

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.

  11. Weakness

    MedlinePlus

    Lack of strength; Muscle weakness ... feel weak but have no real loss of strength. This is called subjective weakness. It may be ... flu. Or, you may have a loss of strength that can be noted on a physical exam. ...

  12. Collisional Evolution of Planetesimals

    NASA Astrophysics Data System (ADS)

    Leinhardt, Zoë Malka

    2010-05-01

    Over 400 extrasolar planets have been discovered. These planetary systems are very different from our solar system and surprisingly diverse. The large number of planets detected suggests that planet formation is common around main sequence stars. The major problem facing the scientific community with regards to these discoveries is that observations cannot trace the history of planet formation. Observations provide snapshots of the early stages of a protoplanetary gas disk orbiting a young star and the late stages after planetary systems have formed. But the evolution from a young star to a planetary system has not been observed. Thus, the challenge is to connect the early and late stages of planet formation. Planets form from the collisional growth of planetary building blocks, planetesimals. In recent numerical work we found that the resistance of planetesimals to collisional erosion changes dramatically during planet formation. Young planetesimals are weak aggregates that are easily disrupted due to efficient momentum coupling during low-velocity collisions in early phases of collisional evolution. However, as impact speeds increase the same weak planetesimals become dramatically stronger because the shock from a supersonic impact loses energy to deformation and phase changes. Our work identifies a paradox for the early stages of planet formation. Objects in the km-size range are weak and susceptible to collisional disruption. However, this disruption may actually produce large amounts of debris that can be accreted by remaining undisrupted planetesimals allowing growth. As we work to disentangle these sorts of conundrums we can expect to put forward hypotheses for collisional remnants in our solar system - for example, the dwarf planet Haumea and its collisional family. In this talk I will review the current understanding of planetesimal evolution and discuss how future numerical simulations may connect observational snapshots to provide a complete history of

  13. Quenching of internal rotations versus collisional cooling at ultralow energies for weakly interacting partners: Cs{sub 2}({sup 3{Sigma}}{sub u}{sup +}) with {sup 3,4}He

    SciTech Connect

    Caruso, D.; Tacconi, M.; Gianturco, F. A.; Yurtsever, E.

    2010-04-15

    Quantum-scattering calculations at ultralow (close to 10{sup -6} cm{sup -1}) collision energies are carried out for the Cs dimer in its spin-stretched triplet state, interacting with helium. An ab initio potential energy surface is computed and employed, while the target molecule is kept in its ground vibrational state and several excitated initial rotational states are considered in the quantum dynamics. The highly anisotropic interaction is seen to cause, in spite of its weakness, internal energy quenching rates comparable with the efficiency of the collisional cooling of relative kinetic energies. The rates of spin-flip processes are also analyzed and compared with pure rotational quenching events.

  14. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-15

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.

  15. Two-photon collisional redistribution of radiation

    NASA Technical Reports Server (NTRS)

    Alber, G.; Cooper, J.

    1985-01-01

    Collisional redistribution in the presence of two weakly exciting laser fields is studied, including the effects due to degeneracy of the radiator states. A general expression for the total redistributed intensity is derived valid for arbitrary detunings and polarizations of the exciting laser fields. In particular, this expression contains all single-collision and sequential-collision contributions, which are equally important under certain circumstances. The similarities and differences between the redistributed intensity as calculated in this paper and the collisionally aided radiative excitation cross sections studied by Yeh and Berman (1979) and Light and Szoke (1978) are pointed out.

  16. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-30

    Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  17. Fine velocity structures collisional dissipation in plasmas

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2016-04-01

    In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures

  18. Collisional lifetimes of meteoroids

    NASA Astrophysics Data System (ADS)

    Soja, R. H.; Schwarzkopf, G. J.; Sommer, M.; Vaubaillon, J.; Albin, T.; Rodmann, J.; Grün, E.; Srama, R.

    2016-01-01

    Collisions of meteoroids with interplanetary dust grain fragments particles, dispersing larger particles amongst lower mass intervals. Here we use the method of Grün et al. (1985) and the IMEM interplanetary dust model to calculate the collisional lifetimes for different orbits, and for particles in different meteor showers. The timescales are usually long - of order 10^4 years for 1mm grains on Jupiter-family and Hally-type comet orbits. However, near-sun orbits particles suffer more frequent collisions and therefore have much shorter lifetimes. We discuss factors that affect the accuracy of these calculations.

  19. Collisional atomic mixing

    NASA Astrophysics Data System (ADS)

    Biersack, Jochen P.

    The collisional mixing of thin metal markers in silicon is investigated with the computer program TRIM-DYNAMIC (T-DYN). This code assumes that at high dose irradiation, the substrate Si or Ge, will get fully amorphized, and the recoil atom can stop in any position after slowing down below a certain final energy Ef (taken here as 3 eV). In order to avoid chemical effects, the system Au marker in a silicon matrix was chosen for the TRIM simulation. The results are in good agreement with the experimental findings, as compiled in the review article by Paine and Averback. Similar collisional mixing effects occur in the process of SIMS or Auger electron depth profiling, and cannot be avoided. An example is given here for a thin layer of arsenic vapor deposited on Si and covered by amorphous silicon. The analysing ion beam in this case was 14.5 keV Cs+ incident at 37° towards the surface normal. In comparison with the SIMS measurements by modern depth profiling equipment, again good agreement was found between the T-DYN results and the experiment.

  20. Transition from Collisionless to Collisional MRI

    SciTech Connect

    Prateek Sharma; Gregory W. Hammett; Eliot Quataert

    2003-07-24

    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.

  1. FLYCHK Collisional-Radiative Code

    National Institute of Standards and Technology Data Gateway

    SRD 160 FLYCHK Collisional-Radiative Code (Web, free access)   FLYCHK provides a capability to generate atomic level populations and charge state distributions for low-Z to mid-Z elements under NLTE conditions.

  2. Inclined, collisional sediment transport

    NASA Astrophysics Data System (ADS)

    Berzi, Diego; Fraccarollo, Luigi

    2013-10-01

    We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.

  3. Magnetismo Molecular (Molecular Magentism)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  4. Magentically actuated compressor

    NASA Technical Reports Server (NTRS)

    Evans, J.; Studer, P. A. (Inventor)

    1985-01-01

    A vibration free fluid compressor particularly adapted for Stirling cycle cryogenic refrigeration apparatus comprises a pair of identical opposing ferromagnetic pistons located in a housing and between a gas spring including a sealed volume of a working fluid such as gas under pressure. The gas compresses and expands in accordance with movement of the pistons to generate a compression wave which can be vented to other apparatus, for example, a displacer unit in a Stirling cycle engine. The pistons are urged outwardly due to the pressure of the gas; however, a fixed electromagnetic coil assembly located in the housing adjacent the pistons, is periodically energized to produce a magnetic field which interlinks the pistons in such a fashion that the pistons are mutually attracted to one another. The mass of the pistons, in conjunction with the compressed gas between them, form a naturally resonant system which, when the pistons are electromagnetically energized, produces an oscillating compression wave in the entrapped fluid medium.

  5. COLLISIONALLY BORN FAMILY ABOUT 87 SYLVIA

    SciTech Connect

    Vokrouhlicky, David; Nesvorny, David; Bottke, William F.; Morbidelli, Alessandro E-mail: davidn@boulder.swri.ed E-mail: morby@obs-nice.f

    2010-06-15

    There are currently more than 1000 multi-opposition objects known in the Cybele population, adjacent and exterior to the asteroid main belt, allowing a more detailed analysis than was previously possible. Searching for collisionally born clusters in this population, we find only one statistically robust case: a family of objects about (87) Sylvia. We use a numerical model to simulate the Sylvia family long-term evolution due to gravitational attraction from planets and thermal (Yarkovsky) effects and to explain its perturbed structure in the orbital element space. This allows us to conclude that the Sylvia family must be at least several hundreds of million years old, in agreement with evolutionary timescales of Sylvia's satellite system. We find it interesting that other large Cybele-zone asteroids with known satellites-(107) Camilla and (121) Hermione-do not have detectable families of collisional fragments about them (this is because we assume that binaries with large primary and small secondary components are necessarily impact generated). Our numerical simulations of synthetic clusters about these asteroids show they would suffer a substantial dynamical depletion by a combined effect of diffusion in numerous weak mean-motion resonances and Yarkovsky forces provided their age is close to {approx}4 billion years. However, we also believe that a complete effacement of these two families requires an additional component, very likely due to resonance sweeping or other perturbing effects associated with the late Jupiter's inward migration. We thus propose that both Camilla and Hermione originally had their collisional families, as in the Sylvia case, but they lost them in an evolution that lasted a billion years. Their satellites are the only witnesses of these effaced families.

  6. Collisional processes in cometary plasmas

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1991-01-01

    The interaction of the solar wind with comets is initiated at large distances from the nucleus by the ionization of cometary neutrals. The resulting contamination of the solar wind with cometary ions mass-loads the solar wind flow, causing it to slow down. The plasma-comet interaction is largely collisionless at large cometocentric distances. However, collisional processes become important in the inner coma (within the cometopause). Collisional processes include charge-transfer between solar wind protons and neutrals, ion-neutral friction, electron and ion thermal cooling, and ion-neutral chemistry. For example, the magnetometer on the Giotto spacecraft observed a diamagnetic cavity near closest approach. This cavity is a consequence of the balance between an inward-directed magnetic pressure gradient force and an outward ion-netural frictional force. Thermalization of the cometary ion distribution function by Coulomb collisions is another important process in the inner coma of an active comet.

  7. Petrologic evidence for collisional heating of chondritic asteroids

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1995-01-01

    The identification of the mechanism(s) responsible for heating asteroids is among the major problems in planetary science. Because of difficulties with models of electromagnetic induction and the decay of short-lived radionuclides, it is worthwhile to evaluate the evidence for collisional heating. New evidence for localized impact heating comes from the high proportion of relict type-6 material among impact-melt-bearing ordinary chondrites (OC). This relict material was probably metamorphosed by residual heat within large craters. Olivine aggregates composed of faceted crystals with 120 deg triple junctions occur within the melted regions of the Chico and Rose City OC melt rocks; the olivine aggregates formed from shocked, mosaicized olivine grains that underwent contact metamorphism. Large-scale collisional heating is supoorted by the correlation in OC between petrologic type and shock stage; no other heating mechanism can readily account for this correlation. The occurrence of impact-melt-rock clasts in OC that have been metamorphosed along with their whole rocks indicates that some impact events preceded or accompanied thermal metamorphism. Such impacts events, occurring during or shortly after accretion, are probably responsible for substantially melting approximately 0.5% of OC. These events must have heated a larger percentage of OC to subsolidus temperatures sufficient to have caused significant metamorphism. If collisional heating is viable, then OC parent asteroids must have been large; large OC asteroids in the main belt may include those of the S(IV) spectral subtype. Collisional heating is inconsistent with layered ('onion-shell') structures in OC asteroids (wherein the degree of metamorphism increases with depth), but the evidence for such structures is weak. It seems likely that collisional heating played an important role in metamorphosing chondritic asteroids.

  8. Optimal electric potential profile in a collisional magnetized thruster

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon; Makrinich, Gennady

    2016-10-01

    A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. As expected, the higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate. Operation in the collisional regime can be advantageous for certain space missions. We analyze a Hall thruster configuration in which the flow is only weakly ionized but there are frequent ion-neutral collisions. With a variational method we seek an electric potential profile that maximizes thrust over power. We then examine what radial magnetic field profile should determine such a potential profile. Supported by the Israel Science Foundation Grant 765/11.

  9. Collisional plateaus. [in earth and Venus lithospheres

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Burke, K.

    1985-01-01

    Aspects of the geology of collisional plateaus formed by the thickening of continental crust are briefly reviewed. The history of studies of collisional plateaus is summarized, and igneous activity in collisional plateaus is discussed. Isostatic considerations pertaining to these plateaus are addressed, developing models of isostatic support of topography which illustrate the importance of compressional tectonics in the creation of high altitude plateaus. Possible analogous environments on Venus are considered. Finally, the paradox of extension associated with compression in the plateaus is discussed.

  10. THE COLLISIONAL EVOLUTION OF DEBRIS DISKS

    SciTech Connect

    Gaspar, Andras; Rieke, George H.; Balog, Zoltan E-mail: grieke@as.arizona.edu

    2013-05-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration

  11. Collisional Aggregation Due to Turbulence

    NASA Astrophysics Data System (ADS)

    Pumir, Alain; Wilkinson, Michael

    2016-03-01

    Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.

  12. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  13. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  14. Leap frog integrator modifications in highly collisional particle-in-cell codes

    NASA Astrophysics Data System (ADS)

    Hanzlikova, N.; Turner, M. M.

    2014-07-01

    Leap frog integration method is a standard, simple, fast, and accurate way to implement velocity and position integration in particle-in-cell codes. Due to the direct solution of kinetics of particles in phase space central to the particle-in-cell procedure, important information can be obtained on particle velocity distributions, and consequently on transport and heating processes. This approach is commonly associated with physical situations where collisional effects are weak, but can also be profitably applied in some highly collisional cases, such as occur in semiconductor devices and gaseous discharges at atmospheric pressure. In this paper, we show that the implementation of the leap frog integration method in these circumstances can violate some of the assumptions central to the accuracy of this scheme. Indeed, without adaptation, the method gives incorrect results. We show here how the method must be modified to deal correctly with highly collisional cases.

  15. Collisionality Dependence of Multi-species Density Peaking in Turbulence Simulations of C-Mod Plasmas

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N.; Podpaly, Y.; Reinke, M.; Rice, J. E.; Hughes, J. W.; Ma, Y.; Candy, J.; Waltz, R. E.

    2012-10-01

    In nonlinear GYRO simulations of C-Mod plasmas, a turbulently driven pinch produces modest density peaking of all species. The ratio of density at r/a=0.44 and 0.74 is 1.2 for the majority and minority D & H (and electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.29 for neon, 1.36 for argon, 1.47 for molybdenum. Density peaking is only weakly affected when the ion temperature profile is varied to align the predicted heat flux to the experimental transport analysis. New simulations will extend the collisionality to the lower part of the experimentally accessible range in C-Mod to study the collisionality dependence of density peaking, and to establish whether much stronger peaking is predicted for lower collisionalities. Simulations based on measured I-mode ion and electron temperature profiles will also be presented.

  16. Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model.

    NASA Astrophysics Data System (ADS)

    Seifert, Axel; Khain, Alexander; Blahak, Ulrich; Beheng, Klaus D.

    2005-06-01

    The effects of the collisional breakup of raindrops are investigated using the Hebrew University Cloud Model (HUCM). The parameterizations, which are combined in the new breakup scheme, are those of Low and List, Beard and Ochs, as well as Brown. A sensitivity study reveals strong effects of collisional breakup on the precipitation formation in mixed-phase deep convective clouds for strong as well as for weak precipitation events. Collisional breakup reduces the number of large raindrops, increases the number of small raindrops, and, as a consequence, decreases surface rain rates and considerably reduces the speed of rain formation. In addition, it was found that including breakup can lead to a more intense triggering of secondary convective cells. But a statistical comparison with observed raindrop size distributions shows that the parameterizations might systematically overestimate collisional breakup.

  17. Collisional damping rates for plasma waves

    NASA Astrophysics Data System (ADS)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2016-06-01

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  18. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT

    SciTech Connect

    Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.

    2011-05-20

    The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r {approx} 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.

  19. Jeans stability in collisional quantum dusty magnetoplasmas

    SciTech Connect

    Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.

    2014-09-15

    Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.

  20. Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate

    SciTech Connect

    Li, Fei; Zhang, Dongxia; Rong, Shiguang; Xu, Ying

    2013-11-15

    The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.

  1. On collisional disruption - Experimental results and scaling laws

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.

    1990-01-01

    Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.

  2. Collisional Transitions in Interstellar Asymmetric Top Molecules

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    2012-07-01

    For the study of a molecule in interstellar space or in circumstellar envelopes of an evolved star, one has to deal with a multi-level system in the molecule. These levels are connected through radiative as well as collisional transitions. The NLTE effects in a molecule come in the picture only when collisional transitions are present. Computation of collisional rates is quite cumbersome task. Besides emission and absorption, two anomalous phenomena: (i) MASER action and (ii) Anomalous absorption (Absorption against the CMB) are shown by some molecules in interstellar space. Both of these phenomena are good examples of NLTE prevailing in the interstellar space and circumstellar envelopes of evolved stars. In the present talk, we shall discuss about the collisional transitions between rotational levels in a molecule. The collisional rate coefficients for the rotational transition J τ → J' τ' at the kinetic temperature T, averaged over the Maxwellian distribution are C(J τ → J' τ'|T) = \\Big(\\frac{8 k T}{π μ}\\Big)^{1/2} \\Big(\\frac{1}{k T}\\Big)^2 \\int_0^\\infty σ (J τ → J' τ'|E) E {e}^{-E/kT} {d} E where μ is the reduced mass of the system and the cross section σ(J τ → J' τ'|E) for the transition is \\begin{eqnarray} σ (J τ → J' τ'|E) = \\sum_{L M M'} S(J, τ, J', τ'|L, M, M') q(L, M, M'|E) The q(L, M, M'|E) are the parameters which can be obtained from the software MOLSCAT. The spectroscopic coefficients, S ( J, τ, J', τ'|L, M, M'), depend on the wave-functions of the molecules and on the angular momentum coupling factors: S(J, τ, J', τ'|L, M, M') = \\sum_{p, p', q, q'} g^p_{J τ} g^q_{J τ} g^{p'}_{J' τ'} g^{q'}_{J' τ'} \\big \\big Here, \\big represents the Clebsch-Gorden coefficient. The g-coefficients can be obtained from laboratory analysis of the molecule and the parameters q(L, M, M'|E) can be obtained with the help of the software MOLSCAT for a

  3. Collisional and collisionless expansion of Yukawa balls.

    PubMed

    Piel, Alexander; Goree, John A

    2013-12-01

    The expansion of Yukawa balls is studied by means of molecular dynamics simulations of collisionless and collisional situations. High computation speed was achieved by using the parallel computing power of graphics processing units. When the radius of the Yukawa ball is large compared to the shielding length, the expansion process starts with the blow-off of the outermost layer. A rarefactive wave subsequently propagates radially inward at the speed of longitudinal phonons. This mechanism is fundamentally different from Coulomb explosions, which employ a self-similar expansion of the entire system. In the collisionless limit, the outer layers carry away most of the available energy. The simulations are compared with analytical estimates. In the collisional case, the expansion process can be described by a nonlinear diffusion equation that is a special case of the porous medium equation.

  4. Ambient tremors in a collisional orogenic belt

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei

    2014-01-01

    Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.

  5. Collisionally induced atomic clock shifts and correlations

    SciTech Connect

    Band, Y. B.; Osherov, I.

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  6. Collisional excitation of interstellar methyl cyanide

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1986-01-01

    Theoretical calculations are used to determine the collisional excitation rates of methyl cyanide under interstellar molecular cloud conditions. The required Q(L,M) as a function of kinetic temperature were determined by averaging fixed energy IOS (infinite order sudden) results over appropriate Boltzmann distributions of collision energies. At a kinetic temperature of 40 K, rates within a K ladder were found to be accurate to generally better than about 30 percent.

  7. Collisional thulium vapour gas-discharge laser

    SciTech Connect

    Gerasimov, V A; Pavlinskii, A V

    2004-01-31

    A collisional laser on a system of atomic levels based on the principle proposed by Gould is built for the first time. The population of the upper laser level and relaxation of the lower level occur upon inelastic collisions of excited thulium atoms with helium atoms. The lower-level relaxation occurs in a reaction with an energy defect of > 13000 cm{sup -1}. (active media. lasers)

  8. Kinetic Theory of Instability-Enhanced Collisional Effects

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott

    2009-10-01

    A generalization of the Lenard-Balescu collision operator is derived which accounts for the scattering of particles by instability amplified fluctuations that originate from the thermal motion of discrete particles (in contrast to evoking a fluctuation level externally, as is done in quasilinear kinetic theory) [1]. Emphasis is placed on plasmas with convective instabilities. It is shown that an instability-enhanced collective response results which can be the primary mechanism for scattering particles, being orders of magnitude more frequent than conventional Coulomb collisions, even though the fluctuations are in a linear growth phase. The resulting collision operator is shown to obey conservation laws (energy, momentum, and density), Galilean invariance, and the Boltzmann H-theorem. It has the property that Maxwellian is the unique equilibrium distribution function; again in contrast to weak turbulence or quasilinear theories. Instability-enhanced collisional effects can dominate the physics of low-temperature plasmas. For example, this theory has been applied to two outstanding problems: Langmuir's paradox [2] and determining Bohm's criterion for plasmas with multiple ion species. Langmuir's paradox is a measurement of anomalous electron scattering rapidly establishing a Maxwellian distribution in gas discharges with low temperature and pressure. This may be explained by instability-enhanced scattering in the plasma-boundary transition region (presheath) where convective ion-acoustic instabilities are excited. Bohm's criterion for multiple ion species is a single condition that the ion fluid speeds must obey at the sheath edge; but it is insufficient to determine the speed of individual species. It is shown that an instability-enhanced collisional friction, due to streaming instabilities in the presheath, determines this criterion.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).[0pt] [2] S.D. Baalrud, J.D. Callen, and C

  9. Mantle conveyor beneath the Tethyan collisional belt

    NASA Astrophysics Data System (ADS)

    Faccenna, C.; Becker, T. W.

    2012-04-01

    Collisional belts are generated by the arrival of continental lithosphere into a subduction zone. The Tethyan suture from the Bitlis to the Himalayas is a prime example where the Arabian and Indian plates collided with Eurasia during the Cenozoic. While the kinematics of this process are well established, its dynamics are more uncertain. India and Arabia intriguingly keep advancing, in spite of large collisional resisting forces, and in the absence of a substantial, upper mantle slab driving force at present-day. We perform global mantle circulation computations to test the role of deep mantle flow as a driving force for the kinematics of the Tethyan collisional belt, evaluating different boundary conditions and mantle density distributions as inferred from seismic tomography or slab models. Our results show that mantle drag exerted on the base of the lithosphere by a large-scale, convective "conveyor belt" with an active upwelling component is likely the main cause for the ongoing indentation of the Indian and Arabian plates into Eurasia

  10. Mantle conveyor beneath the Tethyan collisional belt

    NASA Astrophysics Data System (ADS)

    Becker, Thorsten W.; Faccenna, Claudio

    2011-10-01

    Collisional belts are generated by the arrival of continental lithosphere into a subduction zone. The Tethyan suture from the Bitlis to the Himalayas is a prime example where the Arabian and Indian plates collided with Eurasia during the Cenozoic. While the kinematics of this process are well established, its dynamics are more uncertain. India and Arabia intriguingly keep advancing, in spite of large collisional resisting forces, and in the absence of a substantial, upper mantle slab driving force at present-day. We perform global mantle circulation computations to test the role of deep mantle flow as a driving force for the kinematics of the Tethyan collisional belt, evaluating different boundary conditions and mantle density distributions as inferred from seismic tomography or slab models. Our results show that mantle drag exerted on the base of the lithosphere by a large-scale, convective "conveyor belt" with an active upwelling component is likely the main cause for the ongoing indentation of the Indian and Arabian plates into Eurasia.

  11. Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1957-06-01

    Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)

  12. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-10-15

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.

  13. Muscle Weakness

    PubMed Central

    Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2017-01-01

    Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640

  14. Simulation of collisional fragmentation with explosives

    NASA Technical Reports Server (NTRS)

    Housen, Kevin

    1993-01-01

    For practical reasons, experimental studies of collisional fragmentation must at times rely on explosives to fragment a target body. For example, Housen et al., described experiments in which spheres were fragmented in a pressurized atmosphere. Explosives were used because impacts could not be performed in the pressure chamber. Explosives can also be used to study targets much larger than those which can be disrupted by conventional light-gas guns, thereby allowing size- and rate-effects to be investigated. The purpose of this study is to determine the charge burial depth required to simulate various aspects of collisions.

  15. Wavepacket theory of collisional dissociation in molecules

    SciTech Connect

    Kulander, K.

    1980-01-01

    An explicit integration scheme is used to solve the time dependent Schroedinger equation for wavepackets which model collisions in the collinear H + H/sub 2/ system. A realistic LEPS-type potential energy surface is used. Collision energies considered are above the dissociation threshold and probabilities for collision induced dissociation are reported. Also quantum mechanical state-to-state transition probabilities are generated. These results are compared to extensive classical trajectory calculations performed on this same system. The time evolution of the wavepacket densities is studied to understand the dynamics of the collinear collisional dissociation process.

  16. Missing mass in collisional debris from galaxies.

    PubMed

    Bournaud, Frédéric; Duc, Pierre-Alain; Brinks, Elias; Boquien, Médéric; Amram, Philippe; Lisenfeld, Ute; Koribalski, Bärbel S; Walter, Fabian; Charmandaris, Vassilis

    2007-05-25

    Recycled dwarf galaxies can form in the collisional debris of massive galaxies. Theoretical models predict that, contrary to classical galaxies, these recycled galaxies should be free of nonbaryonic dark matter. By analyzing the observed gas kinematics of such recycled galaxies with the help of a numerical model, we demonstrate that they do contain a massive dark component amounting to about twice the visible matter. Staying within the standard cosmological framework, this result most likely indicates the presence of large amounts of unseen, presumably cold, molecular gas. This additional mass should be present in the disks of their progenitor spiral galaxies, accounting for a substantial part of the so-called missing baryons.

  17. Ion closure theory for high collisionality revisited

    SciTech Connect

    Ji, Jeong-Young Held, Eric D.

    2015-06-15

    According to analytical calculations of the ion collision operator, the ion-electron collision terms could be larger than the ion-ion collision terms. In the previous work [J.-Y. Ji and E. D. Held, Phys. Plasmas 20, 042114 (2013)], the ion-electron collision effects are diminished by the ion temperature change terms introduced from unlikely assumptions. In this work, the high-collisionality closures for ions are calculated without the temperature change terms. The ion-electron collision terms significantly modify existing closure coefficients.

  18. Collisional Drift Waves in Stellarator Plasmas

    SciTech Connect

    J.L.V. Lewandowski

    2003-10-07

    A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  19. Archean collisional tectonics in SW Montana

    SciTech Connect

    Mogk, D.; Rickmond, D.; Salt, K.; Clark, M.; Mueller, P.; Lafrenze, D.; Wooden, J.; Henry, D.

    1985-01-01

    The Archean continental crust of SW Montana evolved through alternating cycles of stable platform sedimentation followed by crustal thickening through collisional tectonics. The ancient sialic crust in the Beartooth Mountains served as the nucleus for accretion of younger terranes to the west. The oldest orogenic cycle recognized in the Beartooth Mountains involves a 3.4 Ga old supracrustal sequence which was metamorphosed in the granulite facies (T=700-800/sup 0/C, P=6Kb, 35/sup 0/C/Km); deep burial is interpreted as the result of collisional tectonic thickening. The second orogenic cycle is subduction related and has produced 2.8 Ga old andesites, 2.75 Ga old calc-alkaline intrusives, upper amphibolite grade metamorphism, transcurrent faulting (in the North Snowy Block and Yankee Jim canyon at 2.8 Ga) and nappe emplacement. In the central Beartooths post-orogenic granites intrude pelitic schists (T=600/sup 0/C, P=8Kb, 25/sup 0/C/Km). West of the Beartooths the basement consists of 2.75-2.70 Ga old, tectonically telescoped coarse clastics (Gallatin, Madison Ranges) and stable platform sequences (Gravelly, Tobacco Root, Ruby Ranges). Nappe formation and granulite-migmatite (700-750/sup 0/C) associations are common, suggesting deep burial through tectonic thickening. A later-kinematic mesozonal (8Kb) qtz diorite-granodiorite batholithic complex is present in the northern Madison Range. Quartzofeldspathic paragneisses in the westernmost Archean basement are derived from either a continental or island arc source.

  20. Collisional-Radiative Kinetics in Monatomic Gases

    NASA Astrophysics Data System (ADS)

    Le, Hai; Karagozian, Ann

    2012-11-01

    A detailed model of electronic excited states is essential in capturing all the nonequilibrium processes of a partially ionized plasma by means of collisional and radiative interactions. This collisional-radiative (CR) model allows us to consider deviations from equilibrium distribution of the internal states, and is now more commonly used in the study of plasma discharges. Prior studies by Kapper and Cambier and Panesi et al. suggest that this level of detail is needed for an accurate prediction of the flow field, and it is particularly relevant to plasma-combustion interactions. The required number of excited states needed to be included in the CR model is often prohibitively large due to the nonequilibrium condition of the plasma. The consequence is a large system of ODE's which needs to be solved at each time step. A reduced mechanism for the CR model can be attained by grouping the upper states of the atomic state distribution (ASDF) into a pseudo-level in which the population is characterized either by a uniform distribution or a Boltzmann distribution. This talk presents both detailed and reduced models for an ionizing shock in Argon. Supported by the US Air Force/ERC, Inc. under subcontract RS111738.

  1. Collisional Features in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Attree, Nicholas; Murray, Carl D; Cooper, Nicholas; Williams, Gareth

    2014-05-01

    Saturn’s F ring is a highly dynamic environment; changeable over timescales from hours to years and displaying a variety of features caused by both gravitational and collisional interactions with local objects. These objects range from the ‘shepherding’ moons Prometheus and Pandora down to small (radius < 1 km) moonlets, embedded in the ring or on nearby orbits. Previously (Attree et al. 2014) we catalogued nearly 900 small-scale collisional features (“mini-jets”) from Cassini images, placing constraints on the size and orbital distribution of the local colliding population. Here we will present the latest work on F ring collisions; updating the catalogue with new Cassini images to further refine our statistics of the population as well as discussing specific, interesting features which shed light on the collision process. We will also present the results of N-body simulations of the collisions and discuss ongoing work to survey the larger “jet” features. These are caused by higher velocity collisions 30m/s) with more distant objects like S/2004 S 6 which may represent the upper end of the moonlet population in size and in orbit.

  2. Collisional population transfer in yterbium ions

    SciTech Connect

    Schauer, Martin Michael; Torgerson, Justin R; Danielson, Jeremy R; Zhao, Xinxin; Nguyen, Ahn - Tuan; Wang, Li - Bang

    2009-01-01

    Long-lived metastable states of Yb+ ions are used for atomic frequency standards, precision measurements, and quantum information research. The effect of population trapping and transfer in these states must be well understood. We report here the transfer of Yb+ ions into the long-lived {sup 2}F{sub 7/2} state by means of collisions between He buffer gas and Yb+ ions held in a linear Paul trap. Transfer rates were measured as functions of buffer-gas pressure and repump-laser power, and the collisional population transfer rates were extracted. The measured transfer rate coefficients are 8.32(75)x10-11 and 8.65(33)x10-11 cm3/s for the collisional processes {sup 2}P{sub 1/2}{yields}{sup 2}D{sub 5/2} and {sup 2}D{sub 3/2}{yields}{sup 2}F{sub 7/2}, respectively.

  3. Collisional Features in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Attree, Nicholas Oliver; Murray, Carl; Cooper, Nicholas; Williams, Gareth

    2016-10-01

    Saturn's highly dynamic F ring contains a population of small (radius ~ 1 km) moonlets embedded within its core or on nearby orbits. These objects interact, both gravitationally and collisionally, with the ring producing a range of features, some of which are unique to it. Here we present a brief overview of F ring collisional processes, investigated using a combination of Cassini imaging, simulations and orbital dynamics. Collisions produce linear debris clouds, known as 'jets' and 'mini-jets', which evolve, due to differential orbital motion, over periods ranging from hours to months. Mini-jet-forming collisions occur daily in the F ring whilst larger, more dramatic, events are rarer but produce jets that persist for many months, 'wrapping around' the ring to form almost parallel strands. Measuring jet properties, such as formation rates and relative orbits, allows us to infer a local population of order hundreds of objects colliding at relative velocities of a few metres per second. N-body modelling of the collisions shows good agreement with observations when two aggregates are allowed to impact and partially fragment (as opposed to a solid moonlet encountering dust), implying massive objects both in the core and nearby. Multiple, repeated collisions by the same, or fragments of the same, object are also important in explaining some jet morphology, showing that many objects survive the collisions. The F ring represents a natural laboratory for observing low-velocity collisions between icy objects as well as the ongoing aggregation and accretion that most-likely forms them.

  4. Collisional deactivation of highly vibrationally excited pyrazine

    NASA Astrophysics Data System (ADS)

    Miller, Laurie A.; Barker, John R.

    1996-07-01

    The collisional deactivation of vibrationally excited pyrazine (C4N2H4) in the electronic ground state by 19 collider gases was studied using the time-resolved infrared fluorescence (IRF) technique. The pyrazine was photoexcited with a 308 nm laser and its vibrational deactivation was monitored following rapid radiationless transitions to produce vibrationally excited molecules in the electronic ground state. The IRF data were analyzed by a simple approximate inversion method, as well as with full collisional master equation simulations. The average energies transferred in deactivating collisions (<ΔE>d) exhibit a near-linear dependence on vibrational energy at lower energies and less dependence at higher energies. The deactivation of ground state pyrazine was found to be similar to that of ground state benzene [J. R. Barker and B. M. Toselli, Int. Rev. Phys. Chem. 12, 305 (1990)], but it is strikingly different from the deactivation of triplet state pyrazine [T. J. Bevilacqua and R. B. Weisman, J. Chem. Phys. 98, 6316 (1993)].

  5. Laser cooling by collisional redistribution of radiation.

    PubMed

    Vogl, Ulrich; Weitz, Martin

    2009-09-03

    The general idea that optical radiation may cool matter was put forward 80 years ago. Doppler cooling of dilute atomic gases is an extremely successful application of this concept. More recently, anti-Stokes cooling in multilevel systems has been explored, culminating in the optical refrigeration of solids. Collisional redistribution of radiation has been proposed as a different cooling mechanism for atomic two-level systems, although experimental investigations using moderate-density gases have not reached the cooling regime. Here we experimentally demonstrate laser cooling of an atomic gas based on collisional redistribution of radiation, using rubidium atoms in argon buffer gas at a pressure of 230 bar. The frequent collisions in the ultradense gas transiently shift a highly red-detuned laser beam (that is, one detuned to a much lower frequency) into resonance, whereas spontaneous decay occurs close to the unperturbed atomic resonance frequency. During each excitation cycle, kinetic energy of order k(B)T-that is, the thermal energy (k(B), Boltzmann's constant; T, temperature)-is extracted from the dense atomic sample. In a proof-of-principle experiment with a thermally non-isolated sample, we demonstrate relative cooling by 66 K. The cooled gas has a density more than ten orders of magnitude greater than the typical values used in Doppler-cooling experiments, and the cooling power reaches 87 mW. Future applications of the technique may include supercooling beyond the homogeneous nucleation temperature and optical chillers.

  6. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  7. Collisional PIC Simulations of Particles in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Peter, William

    2003-10-01

    Because of the long range of Coloumb forces, collisions with distant particles in plasmas are more important than collisions with near neighbors. In addition, many problems in space physics and magnetic confinement include regions of weak magnetic field where the MHD approximation breaks down. A particle-in-cell code based on the quiet direct simulation Monte-Carlo method(B. J. Albright, W. Daughton, D. Lemons, D. Winske, and M. E. Jones, Physics of Plasmas) 9, 1898 (2002). is being developed to study collisional (e.g., ν ˜ Ω) particle motion in magnetic fields. Primary application is to energetic particle loss in the radiation belts(K. Papadopoulos, COSPAR Meeting, Houston, TX, Oct., 2002.) at a given energy and L-shell. Other applications include trapping in rotating field-reversed configurations(N. Rostoker and A. Qerushi, Physics of Plasmas) 9, 3057 (2002)., and electron behavior in magnetic traps(V. Gorgadze, T. Pasquini, J. S. Wurtele, and J. Fajans, Bull. Am. Phys. Soc.) 47, 127 (2002).. The use of the random time-step method(W. Peter, Bull. Am. Phys. Soc.) 47, 52 (2002). to decrease simulation times by 1-2 orders of magnitude is also being studied.

  8. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  9. Complexity Reduction of Collisional-Radiative Kinetics for Atomic Plasma

    DTIC Science & Technology

    2013-12-23

    or disclose the work. 14. ABSTRACT Thermal non- equilibrium processes in partially ionized plasmas can be most accurately modeled by collisional...prohibitively large, making multidimensional and unsteady simulations of non- equilibrium radiating plasma particularly challenging. In this paper, we...published online 23 December 2013) Thermal non- equilibrium processes in partially ionized plasmas can be most accurately modeled by collisional

  10. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  11. Collisional effects on nonlinear ion drag force for small grains

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.

    2013-08-15

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  12. Collisional Effects in Simulations of High Altitude Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Islam, Tanim

    2013-10-01

    The simulation of the later-time (> 1 second) debris dynamics of a high altitude nuclear explosion (HANE) require, at a minimum, an understanding of the interaction of the ionized blast material with the relatively collisional upper ionosphere and lower exosphere (<= 200 km). At these altitudes, the collisional mean free path of ionized atmospheric particles may become smaller than the length scale of the diamagnetic bubble. Here we report on the local dynamics about the debris/air interface for Starfish Prime like, and lower energy, HANEs at altitudes in which collisionality becomes important. We model the debris dynamics with the hybrid plasma simulation code KIM3D, and use a standard Miller-Combi particle pairing algorithm to model particle collisions. We demonstrate new dynamics associated with finite collisionality in mildly collisional HANEs.

  13. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent

  14. Kinetic Theory of Instability-Enhanced Collisional Effects

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2009-11-01

    A generalization of the Lenard-Balescu collision operator is derived which accounts for the scattering of particles by instability amplified fluctuations that originate from the thermal motion of discrete particles (in contrast to evoking a fluctuation level externally, as is done in quasilinear kinetic theory) [1]. Emphasis is placed on plasmas with convective instabilities. It is shown that an instability-enhanced collective response results which can be the primary mechanism for scattering particles, being orders of magnitude more frequent than conventional Coulomb collisions, even though the fluctuations are in a linear growth phase. The resulting collision operator is shown to obey conservation laws (energy, momentum, and density), Galilean invariance, and the Boltzmann H-theorem. It has the property that Maxwellian is the unique equilibrium distribution function; again in contrast to weak turbulence or quasilinear theories. Instability-enhanced collisional effects can dominate particle scattering and cause strong frictional forces. For example, this theory has been applied to two outstanding problems: Langmuir's paradox [2] and determining Bohm's criterion for plasmas with multiple ion species [3]. Langmuir's paradox is a measurement of anomalous electron scattering rapidly establishing a Maxwellian distribution in gas discharges with low temperature and pressure. This may be explained by instability-enhanced scattering in the plasma-boundary transition region (presheath) where convective ion-acoustic instabilities are excited. Bohm's criterion for multiple ion species is a single condition that the ion fluid speeds must obey at the sheath edge; but it is insufficient to determine the speed of individual species. It is shown that an instability-enhanced collisional friction, due to streaming instabilities in the presheath, determines this criterion.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).[0pt] [2] S.D. Baalrud, J

  15. Collisional and Dynamical Evolution of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2004-01-01

    Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.

  16. Energy balance of the collisional tearing mode

    SciTech Connect

    Bondeson, A.; Sobel, J.R.

    1984-08-01

    The energy balance of the collisional tearing mode is examined within linear theory. It is found that in an asymmetric case the quadratic form given by Furth for the net release of magnetic energy must be completed with a term connected with the current gradient in the resistive layer. The growth-rate and the inner-layer solution are calculated in the limit where viscosity dominates over inertia. The amounts of energy going into Joule heating and either kinetic energy or viscous dissipation are calculated analytically. In the inertial regime 1/4 of the net decrease in magnetic energy goes into kinetic energy and (3)/(4) into Joule heating, while, in viscous regime, (1)/(6) goes into viscous dissipation and (5)/(6) into Joule heating. The analytical results, based on the constant-psi approximation, are in good agreement with numerical simulations when the resistive layer is sufficiently narrow.

  17. SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION

    SciTech Connect

    Chhiber, R; Usmanov, AV; Matthaeus, WH; Goldstein, ML

    2016-04-10

    Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.

  18. Collisional Penrose process in a rotating wormhole spacetime

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Bambi, Cosimo

    2015-05-01

    In a collisional Penrose process, two particles coming from the asymptotically flat region collide in the ergosphere of a compact object. The collision produces two new particles, one with positive energy and one with negative energy. When the particle with positive energy escapes to infinity, the process extracts energy from the compact object. In this paper, we study the collisional Penrose process in a rotating wormhole spacetime. We consider the simple case of a head-on collision at the throat of a Teo wormhole. We find that the process of energy extraction from a Teo wormhole can be substantially more efficient than the collisional Penrose process in the Kerr black hole spacetime.

  19. THE CREATION OF HAUMEA'S COLLISIONAL FAMILY

    SciTech Connect

    Schlichting, Hilke E.; Sari, Re'em E-mail: sari@tapir.caltech.edu

    2009-08-01

    Recently, the first collisional family was discovered in the Kuiper Belt. The parent body of this family, Haumea, is one of the largest objects in the Kuiper Belt and is orbited by two satellites. It has been proposed that the Haumea family was created from dispersed fragments that resulted from a giant impact. This proposed origin of the Haumea family is however in conflict with the observed velocity dispersion between the family members ({approx} 140 m s{sup -1}) which is significantly less than the escape velocity from Haumea's surface ({approx} 900 m s{sup -1}). In this paper we propose a different formation scenario for Haumea's collisional family. In our scenario the family members are ejected while in orbit around Haumea. This scenario, therefore, naturally gives rise to a lower velocity dispersion among the family members than expected from direct ejection from Haumea's surface. In our scenario Haumea's giant impact forms a single moon that tidally evolves outward until it suffers a destructive collision from which the family is created. We show that this formation scenario yields a velocity dispersion of {approx} 190 m s{sup -1} among the family members which is in good agreement with the observations. We discuss an alternative scenario that consists of the formation and tidal evolution of several satellites that are ejected by collisions with unbound Kuiper Belt objects. However, the formation of the Haumea family in this latter way is difficult to reconcile with the large abundance of Kuiper Belt binaries. We, therefore, favor forming the family by a destructive collision of a single moon of Haumea. The probability for Haumea's initial giant impact in today's Kuiper Belt is less than 10{sup -3}. In our scenario, however, Haumea's giant impact can occur before the excitation of the Kuiper Belt and the ejection of the family members afterward. This has the advantage that one can preserve the dynamical coherence of the family and explain Haumea's original

  20. Particle Segregation in Collisional Shearing Flows

    NASA Technical Reports Server (NTRS)

    Jenkins, J. T.; Louge, M. Y.

    1999-01-01

    The size segregation of flowing or shaken grains is a commonly observed phenomenon in industrial processes and in nature. In systems that do not involve much agitation of the grains, several mechanisms that involve gravity have been identified as leading to such segregation. In highly agitated flows, there is a mechanism independent of gravity that is available to drive separation of different grains. This is associated with spatial gradients in the energy of their velocity fluctuations. Because collisions between grains inevitably dissipate energy, collisional granular shear flows are usually of limited extent in the direction transverse to the flow. One consequence of this is that shear flows are strongly influenced by their boundaries. Because grains, on average, slip relative to boundaries, a bumpy or frictional boundary can convert slip energy into fluctuation energy. However, because each collision between a grain and the boundary dissipates fluctuation energy, there is a competition between production and dissipation. In principle, it is possible to design the geometry of the boundary - for example, the size and spacing of the bumps - so that the boundary either produces or dissipates fluctuation energy. This permits the control of the component of the spatial gradient of the fluctuation energy that is normal to the boundary. The gradients in fluctuation energy established by such boundaries may be exploited to drive the separation by size or other properties in a binary mixture of spherical grains. Microgravity makes the visual observations possible by permitting us to employ moderate rates of shear. On earth, the effects of gravity can be minimized by shearing so rapidly that the particle pressure overwhelms gravity. However, in this event, separation takes place too rapidly for visual observation, buoyancy and/or condensation associated with the centripetal acceleration must be accounted for, and the particles can be severely damaged. Because, in the

  1. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    NASA Astrophysics Data System (ADS)

    Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco

    2016-03-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.

  2. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  3. Deterministic single-file dynamics in collisional representation.

    PubMed

    Marchesoni, F; Taloni, A

    2007-12-01

    We re-examine numerically the diffusion of a deterministic, or ballistic single file with preassigned velocity distribution (Jepsen's gas) from a collisional viewpoint. For a two-modal velocity distribution, where half the particles have velocity +/-c, the collisional statistics is analytically proven to reproduce the continuous time representation. For a three-modal velocity distribution with equal fractions, where less than 12 of the particles have velocity +/-c, with the remaining particles at rest, the collisional process is shown to be inhomogeneous; its stationary properties are discussed here by combining exact and phenomenological arguments. Collisional memory effects are then related to the negative power-law tails in the velocity autocorrelation functions, predicted earlier in the continuous time formalism. Numerical and analytical results for Gaussian and four-modal Jepsen's gases are also reported for the sake of a comparison.

  4. The Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Pellerin, A.; Meurer, G. R.; Bekki, K.; Elmegreen, D. M.; Wong, O. I.; Knezek, P. M.

    2010-06-01

    We present a detailed study of the star cluster population detected in the galaxy NGC 922, one of the closest collisional ring galaxies, using HST/WFPC2 UBVI photometry, population synthesis models, and N-body/SPH simulations. We find that most clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong Hα emission. The observed age distribution displays a slope not consistent with the simulated star formation history of NGC 922. However our simulations match the cluster age distribution best when cluster disruption is considered. We also find clusters with ages (>50 Myr) and masses (>105 Msun) that are excellent progenitors for faint fuzzy clusters. The images also show a tidal plume pointing toward the companion. Its stellar age suggests that it consists of stars significantly older than the epoch of collision and that they were stripped off during the passage of the companion. Finally, a comparison of the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS field indicates very similar masses and sizes, suggesting similar origins.

  5. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  6. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  7. Cancellation of the Collisional Frequency Shift in Caesium Fountain Clocks

    SciTech Connect

    Szymaniec, K.; Chalupczak, W.; Tiesinga, E.; Williams, C. J.; Weyers, S.; Wynands, R.

    2007-04-13

    We have observed that the collisional frequency shift in primary caesium fountain clocks varies with the clock state population composition and, in particular, is zero for a given fraction of the |F=4,m{sub F}=0> atoms, depending on the initial cloud parameters. We present a theoretical model explaining our observations. The possibility of the collisional shift cancellation implies an improvement in the performance of caesium fountain standards and a simplification in their operation.

  8. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    SciTech Connect

    Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.

    2015-06-15

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  9. Collisional activation with random noise in ion trap mass spectrometry.

    PubMed

    McLuckey, S A; Goeringer, D E; Glish, G L

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.

  10. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  11. Nonlinear coherent structures of Alfvén wave in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Jana, Sayanee; Ghosh, Samiran; Chakrabarti, Nikhil

    2016-07-01

    The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.

  12. Phase-diffusion dynamics in weakly coupled bose-einstein condensates.

    PubMed

    Boukobza, Erez; Chuchem, Maya; Cohen, Doron; Vardi, Amichay

    2009-05-08

    We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a pi relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates agree well with the numerical results.

  13. Phase-Diffusion Dynamics in Weakly Coupled Bose-Einstein Condensates

    SciTech Connect

    Boukobza, Erez; Vardi, Amichay; Chuchem, Maya; Cohen, Doron

    2009-05-08

    We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a {pi} relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates agree well with the numerical results.

  14. Collisional dynamics of perturbed particle disks in the solar system

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.

    1989-01-01

    Theoretical and computational studies were carried out on galactic and planetary disks. With the goal of addressing important open questions centered on galactic structure, the cloudy interstellar medium, giant molecular clouds, and star formation in galactic disks and the collisional dynamics of perturbed particulate matter in planetary disks, focus was largely on the self-gravitational effects, dissipative effects, and collisional dynamics of cloud-particle disks. N-body, 'cloud-particle' computational algorithms were developed for the purpose of isolating the role of gaseous self gravity from the roles of other dominant physical mechanisms and dynamical processes, e.g. the collisional dynamics and dissipative processes. The efforts focused largely on galactic disks show that observational constraints provide stringent tests of the numerical simulation techniques developed. Self gravitational effects of the galactic interstellar medium's gas clouds are included by means of Fourier Transform technique.

  15. A mantle conveyor belt beneath the Tethyan collisional belt

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Faccenna, C.

    2011-12-01

    Collisional belts are generated by the arrival of continental lithosphere into a subduction zone, leading to stacking of crustal slices during indentation. The Tethyan suture from the Bitlis to the Himalayas is a prime example where the Arabian and Indian plates collided with Eurasia during the Cenozoic, generating the highest mountain belts on Earth (Argand, 1924). While the kinematics of this process are well established, its dynamics are more uncertain. India and Arabia intriguingly keep advancing in spite of large collisional resisting forces. We perform global mantle circulation computations to test the role of deep mantle flow as a driving force for the kinematics of the Tethyan collisional belt, evaluating different boundary conditions and mantle density distributions as inferred from seismic tomography or slab models. Our results show that mantle drag exerted on the base of the lithosphere by a large-scale upwelling is likely the main cause for the ongoing indentation of the Indian and Arabian plates into Eurasia.

  16. The Magentic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Bhat, Ramesh; Crutcher, Richard; Vaillancourt, John

    2010-04-01

    We propose to measure the magnetic field in the Southern Coalsack, using the Zeeman effect in OH at 1665 and 1667 MHz. The impetus for this measurement comes 1) from the large magnetic field (B~90 uG) derived by Andersson & Potter (2005), using Chandrasekhar-Fermi analysis of optical polarimetry and 2) because the Southern Coalsack may be a near-by example of triggered star formation. While the derived field strength is significantly larger than usually seen in the interstellar medium (ISM), the existence of an X-ray emitting envelope around the cloud, containing significant amounts of O VI ions (Anderson et al., 2004), puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicates that the Coalsack might be a, maybe unique, near-by example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus superbubble over the cloud (Crawford 1991) and eventually causing triggered star formation (Lada et al. 2004; Hennebelle, Witworth & Goodwin 2006). Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is of great importance for testing this hypothesis.

  17. Radiative and collisional processes in CNA 2Π i

    NASA Astrophysics Data System (ADS)

    Halpern, Joshua B.; Huang, Yuhui; Titarchuk, Tatiana

    1996-02-01

    In the last four years we have carried out a number of studies on the radiative and collisional processes in theA 2Π i state of CN. Many of these of interest to those studying planetary atmospheres, comets and solar spectra are summarized in this paper. Data for CNA 2Π i fluorescence lifetimes and quenching rates, and collisional energy transfer between CNA 2Π i andX 2∑+ are reported. Detailed comparisons and a discussion of the results may be found in several already published papers.

  18. Collisional redistribution effects on x-ray laser saturation behavior

    SciTech Connect

    Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.J.; Lee, R.W.; London, R.A.; Mrowka, S.; Underwood, J.H.; Batson, P.J.

    1994-06-01

    We recently published a detailed summary of our experimental and theoretical research on Ne-like Se x-ray laser line widths, and one of our conclusions was that collisional redistribution rates are likely to have an effect on the saturation behavior of the 206.4 {angstrom} Se x-ray laser. In this paper we focus on the effects of collisional redistribution on x-ray laser gain coefficients, and discuss ways of including these effects in existing laser line- transfer models.

  19. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  20. Laser-induced collisional autoionization in europium and strontium atoms.

    PubMed

    Buffa, R

    1995-01-15

    An experiment that involves laser-induced collisional autoionization in europium and strontium atoms is proposed and the spectral line shape of the cross section is calculated on the basis of data available in the literature. The feasibility of the experiment both in oven cells and in a crossed-atomic-beam geometry is discussed.

  1. Does the Bohm Criterion have meaning for collisional plasmas?

    NASA Astrophysics Data System (ADS)

    Severn, Greg; Yip, Chi-Shung; Nourgostar, Sirous; Hershkowitz, Noah

    2014-10-01

    Theorists view the Bohm criterion as approximately true, holding only for collisionless plasmas. The question of whether there exists a collisionally modified Bohm Criterion (CMBC) is often answered in the negative, and it is only a question of how the Bohm Criterion fails for the case of finite collisionality. The question is of importance considering that nearly all practical plasma processing applications involve plasmas of finite collisionality. There is, however, very little experimental work to help choose between competing models of how Bohm's Criterion fails. The question of critical importance is this: in plasmas of finite collisionality, do ions reach the Bohm speed at the location where the quasineutral plasma ends and where space charge appears? We have begun to examine the question experimentally in single ion species plasmas, and our goal is to vary the ion-neutral mean free path λ within the interval 1 < λ /λD <103 , where λD is the Debye length, and to present both plasma potential data and ion velocity distribution function profiles, measured by emissive probes and by LIF, respectively, to help us understand and assess the validity of theoretical claims. Work supported by NSF Grant No. PHY-1206421, CBET-0903783, and CBET-0903832, and U.S. Department of Energy (DOE) Grant Nos. DE-FG02- 97ER54437 and DE FG02- 03ER54728.

  2. Formation and Collisional Evolution of Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Kenyon, S. J.; Bromley, B. C.; O'Brien, D. P.; Davis, D. R.

    This chapter summarizes analytic theory and numerical calculations for the formation and collisional evolution of Kuiper belt objects (KBOs) at 20-150 AU. We describe the main predictions of a baseline self-stirring model and show how dynamical perturbations from a stellar flyby or stirring by a giant planet modify the evolution. Although robust comparisons between observations and theory require better KBO statistics and more comprehensive calculations, the data are broadly consistent with KBO formation in a massive disk followed by substantial collisional grinding and dynamical ejection. However, there are important problems reconciling the results of coagulation and dynamical calculations. Contrasting our current understanding of the evolution of KBOs and asteroids suggests that additional observational constraints, such as the identification of more dynamical families of KBOs (like the 2003 EL61 family), would provide additional information on the relative roles of collisional grinding and dynamical ejection in the Kuiper belt. The uncertainties also motivate calculations that combine collisional and dynamical evolution, a "unified" calculation that should give us a better picture of KBO formation and evolution.

  3. Collisional and dynamic evolution of dust from the asteroid belt

    NASA Astrophysics Data System (ADS)

    Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.

    1992-12-01

    The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.

  4. Collisional and dynamic evolution of dust from the asteroid belt

    NASA Technical Reports Server (NTRS)

    Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.

    1992-01-01

    The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.

  5. Comets as collisional fragments of a primordial planetesimal disk

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Rickman, H.

    2015-11-01

    Context. The Rosetta mission and its exquisite measurements have revived the debate on whether comets are pristine planetesimals or collisionally evolved objects. Aims: We investigate the collisional evolution experienced by the precursors of current comet nuclei during the early stages of the solar system in the context of the so-called Nice model. Methods: We considered two environments for the collisional evolution: (1) the transplanetary planetesimal disk, from the time of gas removal until the disk was dispersed by the migration of the ice giants; and (2) the dispersing disk during the time that the scattered disk was formed. We performed simulations using different methods in the two cases to determine the number of destructive collisions typically experienced by a comet nucleus of 2 km radius. Results: In the widely accepted scenario, where the dispersal of the planetesimal disk occurred at the time of the Late Heavy Bombardment about 4 Gy ago, comet-sized planetesimals have a very low probability of surviving destructive collisions in the disk. On the extreme assumption that the disk was dispersed directly upon gas removal, a significant fraction of the planetesimals might have remained intact. However, these survivors would still bear the marks of many nondestructive impacts. Conclusions: The Nice model of solar system evolution predicts that typical km-sized comet nuclei are predominantly fragments resulting from collisions experienced by larger parent bodies. An important goal for future research is to investigate whether the observed properties of comet nuclei are compatible with such a collisional origin.

  6. Collisional diffusion in toroidal plasmas with elongation and triangularity

    SciTech Connect

    Martin, P.; Castro, E.; Haines, M. G.

    2007-05-15

    Collisional diffusion is analyzed for plasma tokamaks with different ellipticities and triangularities. Improved nonlinear equations for the families of magnetic surfaces are used here. Dimensionless average velocities are calculated as a function of the inductive electric field, elongation, triangularity, and Shafranov shift. Confinement has been found to depend significantly on triangularity.

  7. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  8. Postselected weak measurement beyond the weak value

    SciTech Connect

    Geszti, Tamas

    2010-04-15

    Closed expressions are derived for the quantum measurement statistics of pre- and postselected Gaussian particle beams. The weakness of the preselection step is shown to compete with the nonorthogonality of postselection in a transparent way. The approach is shown to be useful in analyzing postselection-based signal amplification, allowing measurements to be extended far beyond the range of validity of the well-known Aharonov-Albert-Vaidman limit. Additionally, the present treatment connects postselected weak measurement to the topic of phase-contrast microscopy.

  9. Scattering properties of weakly-bound dimers of Fermi atoms

    NASA Astrophysics Data System (ADS)

    Petrov, Dmitry

    2005-03-01

    We discuss the behavior of weakly bound bosonic dimers formed in a two-component Fermi gas with a large positive scattering length for the interspecies interaction. We present a theoretical approach for solving a few-body scattering problem and describe the physics of dimer-dimer elastic and inelastic scattering. We explain why these diatomic molecules, while in the highest ro-vibrational level, are characterized by remarkable collisional stability. Co-authors are Christophe Salomon, LKB, Ecole Normale Superieure, Paris, France; Georgy Shlyapnikov, LPTMS, University of South Paris, Orsay, France.

  10. Collisional dust fragmentation near nuclear surface within cometary jets

    NASA Astrophysics Data System (ADS)

    Steckloff, J.; Melosh, J.

    2014-07-01

    model and find that Δ R_{(R)} ∝ R is additionally able to create power-law radiance profiles. For a thermal fragmentation mechanism, thermal skin depth considerations suggest that the splitting time in binary fission should have the dependence of τ_{s (R)} ∝ R^{2}, whereas the thickness of the shed layer Δ R in grain shedding should remain constant or grow with time, rather than decrease with time as the grain loses mass. Therefore, these functional dependencies of the fundamental splitting parameters are inconsistent with the thermal fragmentation mechanisms suspected to act on dust grains further away from the nucleus such as volatile sublimation [2] and sintering [4]. Our best fit to the most prominent Tempel 1 scarp jet [5,6] is a binary splitting mechanism where τ_{s (R)} R^{2} = const. (see Figure). This dependence of dust fragmentation upon the surface area of the dust grain suggests that dust fragmentation near the origin of Tempel 1's scarp jets is dominated by collisions, consistent with observed radiances. The low collisional speeds in this region are consistent with weak, fractal-like dust-grain structures.

  11. Robust Weak Measurements

    NASA Astrophysics Data System (ADS)

    Tollaksen, Jeff; Aharonov, Yakir

    2006-03-01

    We introduce a new type of weak measurement which yields a quantum average of weak values that is robust, outside the range of eigenvalues, extends the valid regime for weak measurements, and for which the probability of obtaining the pre- and post-selected ensemble is not exponentially rare. This result extends the applicability of weak values, shifts the statistical interpretation previously attributed to weak values and suggests that the weak value is a property of every pre- and post-selected ensemble. We then apply this new weak measurement to Hardy's paradox. Usually the paradox is dismissed on grounds of counterfactuality, i.e., because the paradoxical effects appear only when one considers results of experiments which do not actually take place. We suggest a new set of measurements in connection with Hardy's scheme, and show that when they are actually performed, they yield strange and surprising outcomes. More generally, we claim that counterfactual paradoxes point to a deeper structure inherent to quantum mechanics characterized by weak values (Aharonov Y, Botero A, Popescu S, Reznik B, Tollaksen J, Physics Letters A, 301 (3-4): 130-138, 2002).

  12. Turbulence-driven bootstrap current in low-collisionality tokamaks.

    PubMed

    McDevitt, C J; Tang, Xian-Zhu; Guo, Zehua

    2013-11-15

    Neoclassical bootstrap current is expected to provide a significant fraction of the equilibrium plasma current in tokamak reactors. Here we report a novel mechanism through which a bootstrap current may be driven even in a collisionless plasma. In analogy with the neoclassical mechanism, in which the collisional equilibrium established between trapped and passing electrons produces a steady state current, we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons and thus driving a bootstrap current. Employing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions and resonant electron scattering is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.

  13. Collisional shifts in optical-lattice atom clocks

    SciTech Connect

    Band, Y. B.; Vardi, A.

    2006-09-15

    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of {pi} between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.

  14. Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice

    SciTech Connect

    Cheng Yongshan; Adhikari, S. K.

    2011-02-15

    By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a Bose-Einstein condensate [Roati et al., Nature (London) 453, 895 (2008)]. The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis. Where possible, the numerical results are shown to be in good agreement with the variational results.

  15. ADAS tools for collisional-radiative modelling of molecules

    NASA Astrophysics Data System (ADS)

    Guzmán, F.; O'Mullane, M.; Summers, H. P.

    2013-07-01

    New theoretical and computational tools for molecular collisional-radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H2 are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional-radiative) rate coefficients versus temperature and density are presented.

  16. Collisional cooling of large ions in electrospray mass spectrometry.

    PubMed

    Chernushevich, Igor V; Thomson, Bruce A

    2004-03-15

    Collisional cooling of ions in the rf-only multipole guides has become a method of choice for coupling electrospray sources to various mass analyzers. Normally parameters of such ion guides (length, pressure) provide enough thermalization and focusing for ions in a wide mass range. Noncovalent complexes, however, have more compact conformations than denatured biomolecules of similar mass and, therefore may not be transmitted efficiently through standard ion guides, as demonstrated by theoretical analysis, simulations, and experiments. Several methods of improving collisional cooling for large compact ions have been developed on a quadrupole time-of-flight instrument, which include operating the ion guides at higher pressure and trapping ions to increase the cooling time. Improved transmission of heavy ions obtained with those methods is studied in experiments with proteasome 20S, an oligomeric protein noncovalent complex with molecular weight around 692,000, and a few other compounds.

  17. Collisional dynamics of perturbed particle disks in the solar system

    NASA Technical Reports Server (NTRS)

    Roberts, W. W.; Stewart, G. R.

    1987-01-01

    Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.

  18. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.

  19. Uniform derivation of Coulomb collisional transport thanks to Debye shielding

    NASA Astrophysics Data System (ADS)

    Escande, Dominique; Elskens, Yves; Doveil, Fabrice

    2016-10-01

    The effective potential acting on particles in plasmas being essentially the Debye-shielded Coulomb potential, the particles collisional transport in thermal equilibrium is calculated for all impact parameters b, with a convergent expression reducing to Rutherford scattering for small b, in agreement with both usual expressions holding for large b and small b. No cutoff at the Debye length scale is needed, and the Coulomb logarithm is only slightly modified.

  20. Collisional Radiative Models for non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Hartgers, Bart; van Dijk, Jan; van der Mullen, Joost

    1999-10-01

    Collisional Radiative models are a useful tool for studying plasmas. In their simplest form, they are used to calculate an atomic state distribution function (ASDF) from given electron and neutral densities and an electron temperature. Additionally, global ionization and recombination coefficients can be calculated as a function of electron density and temperature. In turn, these coefficients are used as input for the general plasma model

  1. Collisional and dissociative processes involving molecular free radicals

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.; Alexander, Millard H.

    1995-04-01

    A collaborative experimental and theoretical study of a number of elementary collisional processes involving small molecular free radicals of importance in combustion and in the decomposition of propellants has been carried out. These have involved chemical reactions and photodissociation, as well as nonreactive collision-induced rotational and electronic transitions. Information on non-bonding interactions involving free radicals was also obtained from analysis of the electronic spectrum of van der Waals complexes of these species.

  2. System and method for collisional activation of charged particles

    DOEpatents

    Ibrahim, Yehia M; Belov, Mikhail E; Prior, David C

    2013-09-24

    A collision cell is disclosed that provides ion activation in various selective modes. Ion activation is performed inside selected segments of a segmented quadrupole that provides maximum optimum capture and collection of fragmentation products. The invention provides collisional cooling of precursor ions as well as product fragments and further allows effective transmission of ions through a high pressure interface into a coupled mass analysis instrument.

  3. COLLISIONAL EVOLUTION OF ULTRA-WIDE TRANS-NEPTUNIAN BINARIES

    SciTech Connect

    Parker, Alex H.; Kavelaars, J. J.

    2012-01-10

    The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small (R {approx}> 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small size cannot be excessively steep-likely q {approx}< 3.5. We track mutual semimajor axis, inclination, and eccentricity evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population, their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing collisions in real time in the Kuiper Belt with future optical surveys is feasible.

  4. Constraining Collisional Models of Planetesimals in Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Wilner, David J.; Hughes, A. Meredith; Steele, Amy; Ricci, Luca; Andrews, Sean M.; Chandler, Claire J.; Tahli Maddison, Sarah

    2016-01-01

    Debris disks around main-sequence stars are produced by the ongoing collisional erosion of planetesimals, analogous to Kuiper Belt Objects (KBOs) or comets in our own Solar System. Observations of these dusty belts offer a window into the physical and dynamical properties of planetesimals in extrasolar systems through the size distribution of dust grains. In particular, the millimeter/radio spectral index of thermal dust emission encodes information on the grain size distribution that can be used to test proposed collisional models of planetesimals. We have made sensitive Jansky Very Large Array (JVLA) observations of a sample of 7 nearby debris disks at 9 mm and combine these with archival Australia Telescope Compact Array (ATCA) observations of 8 additional debris disks at 7 mm. Using measurements at (sub)millimeter wavelengths from the literature, we place tight constraints on the millimeter spectral indices and thus grain size distributions of this sample of debris disks. Our analysis gives a weighted mean for the slope of the power-law grain distribution that is close to the classical prediction for a steady-state collisional cascade (q=3.5), but not consistent with the steeper distributions predicted by recent models that include more complex fragmentation processes. To interpret this result, we explore the effects of material strengths, velocity distributions, and small-size cutoffs on the steady-state grain size distribution.

  5. Intersystem collisional transfer of excitation in low altitude aurora

    NASA Astrophysics Data System (ADS)

    Benesch, W.

    1983-03-01

    The characteristics of auroral optical emission as a function of altitude are exploited as a source of data for the investigation of the intersystem collisional transfer (ICT) of excitation in the nitrogen molecule. The procedure is based on a recently proposed model for the generation of the red lower border of type B auroras as resulting from the effect of the increased collision frequency at lower altitudes on the distribution of population within the excited molecules. In particular, the 85 km turn-on altitude for the red lower border of auroral arcs provides an indicator for the determination of the density and pressure required for the onset of the ICT process at mesopause temperatures. Values are obtained for collision cross sections and rate constants for the coupling of neighboring vibrational levels in adjacent electronic states in nitrogen. The results are compared with the findings of several laboratory studies on similar collisional transfers among nested electronic states. A two-part process is suggested to account for the observed features of intersystem collisional transfer phenomena.

  6. New insights into main belt asteroid collisional lifetimes

    NASA Astrophysics Data System (ADS)

    Henych, Tomas; Holsapple, Keith

    2016-10-01

    We are developing a new Monte Carlo code to study the collisional and spin evolution of main belt asteroids. A byproduct is information on asteroid lifetimes. We find new interpretations and values of those lifetimes.In the conventional approach, the "collisional lifetime" is measured by the time when an asteroid is struck by an impactor large enough to remove one-half of the target's mass. That event is called a catastrophic disruption (CD). From an assumed population of impactors and Poisson statistics, one can estimate the largest expected impactor to impact in a given time interval to get its expected collisional lifetime. However, our Monte Carlo simulations give lifetimes that are distinctly shorter. That raises questions about the basic definition of catastrophic disruption.During its presence in the main belt, many other asteroids of all sizes continually strike a target asteroid. Before the CD one happens, there are many small impacts, and a few less than but not equal to the CD one. Each impact erodes the target asteroid. Very commonly, it is eroded to a much smaller mass before some CD event. We will present examples.So what shall we define as its collisional lifetime? Should it be the time for which its mass is reduced to one-half of its original mass, irrespective of how that happened, perhaps from many impacts? Or when any single impact reduces its mass to one-half of its original mass? Or when a single impact reduces it to one-half of its current mass?We propose that collisional lifetime is defined as the time at which it reaches 50% of its original mass, from any combination of small and/or large events. We use cratering and ejecta scaling formulas (e.g. Holsapple, 1993, Housen and Holsapple, 2011) to calculate the eroded mass history of the target for a history of impactors and calculate the outcome of any impact using the current size. In the gravity regime, the eroded body is easier to disrupt. We will present our lifetime estimates and those of

  7. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    SciTech Connect

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-28

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma

  8. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    SciTech Connect

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-27

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.

  9. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  10. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  11. Collisional Processing of Olivine and Pyroxene in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Cintala, M. J.; Olney, R. D.; Keller, L. P.; Nakamura-Messenger, K.; Zolensky, M.

    2008-01-01

    According to the nebular theory of solar-system formation, collisions between bodies occurred frequently early in the solar system s history and continue at a lower rate even today. Collisions have reworked the surface compositions and structures of cometary nuclei, though to an unknown degree. The majority of the collisional history of a typical Jupiter-family comet takes place while it resides in the Kuiper Belt. Impacts occur on the surfaces of small bodies over a large range of velocities by impactors of all sizes, but typical encounter speeds within the Kuiper Belt are 1.5 to 2.0 km/s[1]. Durda and Stern suggest that the interiors of most cometary nuclei with diameters <5 km have been heavily damaged by collisions [2]. They estimate that over a period of 3.5 Gy, a nucleus with a diameter of 2 km and an orbit between 35-45 AU will experience 90-300 collisions with objects greater than 8 m in diameter. In this same time interval, collisions between a typical Trans-Neptunian Object (TNO) 200 km in diameter and objects with d > 8 m would rework up to one-third of that TNO s surface. In fact, it has been proposed that most short-period comets from the Kuiper Belt (90%) are collisional fragments from larger TNOs - not primordial objects themselves [3] - and that most short-period comets from the Kuiper Belt will be collisionally processed both on their surfaces as well as in their interiors.

  12. The Collisional Evolution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Brož, M.; O'Brien, D. P.; Campo Bagatin, A.; Morbidelli, A.; Marchi, S.

    Collisional and dynamical models of the main asteroid belt allow us to glean insights into planetesimal- and planet-formation scenarios as well as how the main belt reached its current state. Here we discuss many of the processes affecting asteroidal evolution and the constraints that can be used to test collisional model results. We argue the main belt's wavy size-frequency distribution for diameter D < 100-km asteroids is increasingly a byproduct of comminution as one goes to smaller sizes, with its shape a fossil-like remnant of a violent early epoch. Most D > 100-km asteroids, however, are primordial, with their physical properties set by planetesimal formation and accretion processes. The main-belt size distribution as a whole has evolved into a collisional steady state, and it has possibly been in that state for billions of years. Asteroid families provide a critical historical record of main-belt collisions. The heavily depleted and largely dispersed "ghost families," however, may hold the key to understanding what happened in the primordial days of the main belt. New asteroidal fragments are steadily created by both collisions and mass shedding events via YORP spinup processes. A fraction of this population, in the form of D < 30 km fragments, go on to escape the main belt via the Yarkovsky/YORP effects and gravitational resonances, thereby creating a quasi-steady-state population of planet-crossing and near-Earth asteroids. These populations go on to bombard all inner solar system worlds. By carefully interpreting the cratering records they produce, it is possible to constrain how portions of the main-belt population have evolved with time.

  13. Fractionation of hydrogen and deuterium on Venus due to collisional ejection

    NASA Astrophysics Data System (ADS)

    Gurwell, M. A.; Yung, Y. L.

    1993-02-01

    The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.

  14. Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; McDaniel, J. C.

    1995-01-01

    The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.

  15. Weak lensing and cosmology

    NASA Astrophysics Data System (ADS)

    Lombardi, Marco; Bertin, Giuseppe

    1999-02-01

    Recently, it has been shown that it is possible to reconstruct the projected mass distribution of a cluster from weak lensing provided that both the geometry of the universe and the probability distribution of galaxy redshifts are known; actually, when additional photometric data are taken to be available, the galaxy redshift distribution could be determined jointly with the cluster mass from the weak lensing analysis. In this paper we develop, in the spirit of a ``thought experiment,'' a method to constrain the geometry of the universe from weak lensing, provided that the redshifts of the source galaxies are measured. The quantitative limits and merits of the method are discussed analytically and with a set of simulations, in relation to point estimation, interval estimation, and test of hypotheses for homogeneous Friedmann-Lema\\^\\i tre models. The constraints turn out to be significant when a few thousand source galaxies are used.

  16. A+M Collisional Databases in ALADDIN Format

    DOE Data Explorer

    ALADDIN (A Labelled Atomic Data Interface) is a database system developed in order to provide a standard and flexible format and interface for the exchange and management of atomic, molecular and plasma-material interaction data of interest to fusion research. As part of the Atomic and Molecular Data Information System (AMDIS), introduced by the IAEA Atomic and Molecular Data Unit, the ALADDIN interface is available on-line. Twelve databases from DOE and IAEA sources are available from the CFADC website under the heading A+M Collisional Databases.

  17. Collisional Excitation of Automotive Fuel Components (ethanol and Isooctane)

    NASA Astrophysics Data System (ADS)

    Cobb, Rachelle H.; White, Allen R.; Devasher, Rebecca B.

    2009-06-01

    It is possible to excite fuel components indirectly via a 10.6 um CO2 laser. A 9% solution of isopropanol in ethanol was used, as it has a strong absorption cross section at 10.6 um. CO2 laser excitation of pure ethanol caused little or no change in absorption in the C-H stretch region. However, the ethanol/isopropanol mixture did show a response proportional to laser excitation. Further studies indicate that excitation of isooctane/isopropanol mixture is also possible via collisional energy transfer between the laser excited isopropanol and isooctane.

  18. Magnetosonic wave in pair-ion electron collisional plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Hasnain, H.

    2017-03-01

    Low frequency magnetosonic waves in positive and negative ions of equal mass and opposite charges in the presence of electrons in collisional plasmas are studied. The collisions of ions and electrons with neutrals are taken into account. The nonlinearities in the plasma system arise due to ion and electrons flux, Lorentz forces, and plasma current densities. The reductive perturbation method is applied to derive the Damped Korteweg de Vries (DKdV) equation. The time dependent solution of DKdV is presented. The effects of variations of different plasma parameters on propagation characteristics of magnetosonic waves in pair-ion electron plasma in the context of laboratory plasmas are discussed.

  19. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies.

  20. Zeeman degeneracy effects in collisional intense-field resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Ballagh, R. J.; Burnett, K.

    1980-01-01

    Resonance fluorescence due to intense laser fields from a Zeeman degenerate atom being perturbed by collisional interactions is calculated in the impact regime by using the quantum-fluctuation-regression theorem. Various interesting effects are found. For example, the scattered intensity spectrum for a J = 0 to J = 1 transition for polarization parallel to the laser polarization is essentially an asymmetric triplet, whereas for a perpendicular polarization due to collisions the spectrum is essentially a doublet (whose frequencies do not correspond with any of those of the triplet). Further, the width of the fluorescent component (whose frequency is close to the unperturbed frequency) actually decreases with increasing laser power.

  1. Experimental test of instability enhanced collisional friction for determining ion loss in two ion species plasmas a)

    NASA Astrophysics Data System (ADS)

    Hershkowitz, N.; Yip, C.-S.; Severn, G. D.

    2011-05-01

    Recent experiments have shown that ions in weakly collisional plasmas containing two ion species of comparable densities approximately reach a common velocity at the sheath edge equal to the bulk plasma ion sound velocity. A recent theory [S. D. Baalrud, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 103, 205002 (2009)] suggests that this is a consequence of collisional friction between the two ion species enhanced by the two stream instability. The theory finds that the difference in velocities at the sheath edge depends on the relative concentrations of the two ions. The difference in velocities is small, with both species approaching to the bulk sound velocity, when the concentrations are comparable, and is large, with each species reaching its own Bohm velocity, when the relative concentration differences are large. To test these findings, drift velocities of Ar and Xe ions were measured with laser-induced fluorescence in Ar-Xe and He-Xe plasmas and combined with ion acoustic wave and plasma potential data. In addition, electron temperature was varied by a Maxwell demon [K. R. MacKenzie et al., App. Phys. Lett. 18, 529 (1971)]. The predictions were found to be in excellent agreement with the experimental data. The generalized Bohm criterion in two ion species plasmas is also verified in a wider variety of relative ion concentrations.

  2. Weaknesses in Underperforming Schools

    ERIC Educational Resources Information Center

    van de Grift, Wim; Houtveen, Thoni

    2007-01-01

    In some Dutch elementary schools, the average performance of students over several years is significantly below the level that could be expected of them. This phenomenon is known as "underperformance." The most important identifiable weaknesses that go along with this phenomenon are that (a) learning material offered at school is…

  3. Modeling collisional processes in plasmas using discontinuous numerical methods

    NASA Astrophysics Data System (ADS)

    Miller, Sean

    Fluid-based plasma models are typically applied to parameter regimes where a local thermal equilibrium is assumed. The applicability of this regime is valid for many plasmas, however, it is limited to plasma dynamics dominated by collisional effects. This study attempts to extend the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the heat flux hyperbolically alongside the density, momentum, and energy in order to capture dynamics usually restricted to costly kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collision operators. To remove electromagnetic divergence errors inherent to numerical representations of Maxwell's equations, both hyperbolic and parabolic cleaning methods are presented. The plasma models are implemented using high-order finite volume and discontinuous Galerkin numerical methods designed for unstructured meshes. The unstructured code framework, numerical methods, and plasma models were developed in the University of Washington's WARPXM code for use on heterogeneous accelerated clusters.

  4. Shear Alfven waves with Landau and collisional effects

    SciTech Connect

    Hedrick, C.L.; Leboeuf, J.; Spong, D.A.

    1995-06-01

    Shear Alfven waves can be driven unstable by hot particles such as alpha particles in an ignited fusion device or hot ions in existing devices. Motivated by rather collisional Wendelstein 7 Advanced Stellarator (W7-AS) [Phys. Rev. Lett. {bold 72}, 1220 (1994)] beam-driven global Alfven instability experiments, the effect of electron and ion collisions on these modes has been examined. Collisions broaden and suppress the peak associated with Landau effects. This broadening makes ion damping more important, while the electron damping is suppressed. Additional resistive effects provide increased damping for the main part of the spectrum, which can have a rather high phase velocity. Of more general interest is the fact that collisional and collisionless resistivity has a numerically stabilizing effect that is known to be important for nonlinear resistive magnetohydrodynamics (MHD). This can preclude the need for introducing and testing the sensitivity to similar ad hoc effects. Numerical and analytic results for both a particle-conserving Krook collision operator and a Lorentz (pitch angle) collision operator are compared and contrasted.

  5. SELF-CONSISTENT SIZE AND VELOCITY DISTRIBUTIONS OF COLLISIONAL CASCADES

    SciTech Connect

    Pan, Margaret; Schlichting, Hilke E. E-mail: hilke@ucla.edu

    2012-03-10

    The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan and Sari can steepen to values as large as q = 3.26. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies for the Kuiper belt, the asteroid belt, and extrasolar debris disks may constrain the mass and number of large bodies stirring the cascade as well as the colliding bodies' internal strengths.

  6. GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK

    SciTech Connect

    Nesvold, Erika R.; Kuchner, Marc J. E-mail: Marc.Kuchner@nasa.gov

    2015-01-10

    We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.

  7. GAMMA-RAY BURSTS FROM MAGNETIZED COLLISIONALLY HEATED JETS

    SciTech Connect

    Vurm, Indrek; Beloborodov, Andrei M.; Poutanen, Juri E-mail: juri.poutanen@oulu.fi

    2011-09-01

    Jets producing gamma-ray bursts (GRBs) are likely to carry a neutron component that drifts with respect to the proton component. The neutron-proton collisions strongly heat the jet and generate electron-positron pairs. We investigate radiation produced by this heating using a new numerical code. Our results confirm the recent claim that collisional heating generates the observed Band-type spectrum of GRBs. We extend the model to study the effects of magnetic fields on the emitted spectrum. We find that the spectrum peak remains near 1 MeV for the entire range of the magnetization parameter 0 < {epsilon}{sub B} < 2 that is explored in our simulations. The low-energy part of the spectrum softens with increasing {epsilon}{sub B}, and a visible soft excess appears in the keV band. The high-energy part of the spectrum extends well above the GeV range and can contribute to the prompt emission observed by Fermi/LAT. Overall, the radiation spectrum created by the collisional mechanism appears to agree with observations, with no fine tuning of parameters.

  8. Ultrahigh-Energy Debris from the Collisional Penrose Process.

    PubMed

    Berti, Emanuele; Brito, Richard; Cardoso, Vitor

    2015-06-26

    Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to extract energy from black holes. The original idea (involving the breakup of a single particle) yields only modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion. The collisional Penrose process has been explored recently in the context of dark matter searches, with the conclusion that the ratio η between the energy of postcollision particles detected at infinity and the energy of the colliding particles should be modest (η≲1.5). Schnittman [Phys. Rev. Lett. 113, 261102 (2014)] has shown that these studies underestimated the maximum efficiency by about 1 order of magnitude (i.e., η≲15). In this work we show that particle collisions in the vicinity of rapidly rotating black holes can produce high-energy ejecta and result in high efficiencies under much more generic conditions. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the tantalizing possibility that the collisional Penrose process may power gamma rays and ultrahigh-energy cosmic rays.

  9. Fast Collisional Lipid Transfer Among Polymer-Bounded Nanodiscs

    PubMed Central

    Cuevas Arenas, Rodrigo; Danielczak, Bartholomäus; Martel, Anne; Porcar, Lionel; Breyton, Cécile; Ebel, Christine; Keller, Sandro

    2017-01-01

    Some styrene/maleic acid (SMA) copolymers solubilise membrane lipids and proteins to form polymer-bounded nanodiscs termed SMA/lipid particles (SMALPs). Although SMALPs preserve a lipid-bilayer core, they appear to be more dynamic than other membrane mimics. We used time-resolved Förster resonance energy transfer and small-angle neutron scattering to determine the kinetics and the mechanisms of phospholipid transfer among SMALPs. In contrast with vesicles or protein-bounded nanodiscs, SMALPs exchange lipids not only by monomer diffusion but also by fast collisional transfer. Under typical experimental conditions, lipid exchange occurs within seconds in the case of SMALPs but takes minutes to days in the other bilayer particles. The diffusional and second-order collisional exchange rate constants for SMALPs at 30 °C are kdif = 0.287 s−1 and kcol = 222 M−1s−1, respectively. Together with the fast kinetics, the observed invariability of the rate constants with probe hydrophobicity and the moderate activation enthalpy of ~70 kJ mol−1 imply that lipids exchange through a “hydrocarbon continuum” enabled by the flexible nature of the SMA belt surrounding the lipid-bilayer core. Owing to their fast lipid-exchange kinetics, SMALPs represent highly dynamic equilibrium rather than kinetically trapped membrane mimics, which has important implications for studying protein/lipid interactions in polymer-bounded nanodiscs. PMID:28378790

  10. Quasi-collisional Magneto-optic Effects in Collisionless Plasmas

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Ford, Alex; Medvedev, Mikhail

    2016-03-01

    High-amplitude, chaotic/turbulent electromagnetic fluctuations are ubiquitous in astrophysical plasmas, where they can be excited by various kinetic-streaming and/or anisotropy-driven instabilities, such as the Weibel instability. These fields typically exist on ``sub-Larmor scales'' -- scales smaller than the electron Larmor radius. Electrons moving through such magnetic fields undergo small-angle stochastic deflections of their pitch-angles, thus establishing diffusive transport on long time-scales. We show that this behavior, under certain conditions, is equivalent to Coulomb collisions in collisional plasmas. The magnetic pitch-angle diffusion coefficient, which acts as an effective ``collision'' frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma ``quasi-collisionality'', may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel radiative diagnostic tool for the exploration and characterization of small-scale magnetic turbulence.

  11. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ("Onsager") transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlüter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 102. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 102 when the nonlinear contributions are duly taken into account but, there is still a factor of 102 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  12. Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium

    NASA Astrophysics Data System (ADS)

    Kettle, B.; Dzelzainis, T.; White, S.; Li, L.; Dromey, B.; Zepf, M.; Lewis, C. L. S.; Williams, G.; Künzel, S.; Fajardo, M.; Dacasa, H.; Zeitoun, Ph.; Rigby, A.; Gregori, G.; Spindloe, C.; Heathcote, R.; Riley, D.

    2016-08-01

    The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (Te≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.

  13. Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium.

    PubMed

    Kettle, B; Dzelzainis, T; White, S; Li, L; Dromey, B; Zepf, M; Lewis, C L S; Williams, G; Künzel, S; Fajardo, M; Dacasa, H; Zeitoun, Ph; Rigby, A; Gregori, G; Spindloe, C; Heathcote, R; Riley, D

    2016-08-01

    The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (T_{e}≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.

  14. Weak Finsler structures and the Funk weak metric

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Athanase; Troyanov, Marc

    2009-04-01

    We discuss general notions of metrics and of Finsler structures which we call weak metrics and weak Finsler structures. Any convex domain carries a canonical weak Finsler structure, which we call its tautological weak Finsler structure. We compute distances in the tautological weak Finsler structure of a domain and we show that these are given by the so-called Funk weak metric. We conclude the paper with a discussion of geodesics, of metric balls and of convexity properties of the Funk weak metric.

  15. On negative ion-drag force for dust in collisional plasmas

    SciTech Connect

    Patacchini, Leonardo; Hutchinson, Ian H.

    2008-09-07

    The ion-drag force on a dust particle in collisional plasmas is self-consistently calculated using the Particle In Cell code SCEPTIC in the entire range of charge-exchange collisionlality. It is shown that the ion-drag only reverses in the strongly collisional regime, where other forces are of much stronger magnitude than the ion-drag itself.

  16. Interstellar formaldehyde. I - The collisional pumping mechanism for anomalous 6-centimeter absorption.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.

    1972-01-01

    Investigation of the quantum mechanics of the collisional pumping process which Townes and Cheung (1969) propose as the cause of 'anomalous' formaldehyde absorption in diffuse dark nebulae discussed by Palmer et al. (1969). Quantum effects are taken into account in an attempt to determine whether such nebulae are likely to provide the physical conditions required for the collisional pumping process.

  17. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy

  18. Composite weak bosons

    SciTech Connect

    Suzuki, M.

    1988-04-01

    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  19. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  20. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    SciTech Connect

    Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  1. Collisional effects in the dynamics of a dipolar gas

    NASA Astrophysics Data System (ADS)

    Sykes, Andrew

    2016-05-01

    In this talk, we discuss the role of collisions in dipolar gases which are far from equilibrium. We compare and contrast collisional mechanisms with mean-field effects. We consider several cases of dynamical behaviour. We begin with cross-dimensional relaxation, where the time-scale of equilibration is studied following a quench in the trap parameters. We also discuss the damping of monopole and quadrupole excitations. Finally we discuss time-of-flight expansion dynamics. Our results demonstrate that collisions can play a significant role. We use these results to extract an estimate of the deca-heptuplet s-partial-wave scattering length of bosonic dysprosium, and to improve the accuracy of experimental time-of-flight expansion imaging. Financial support from the Marie Sklodowska-Curie H2020 framework program.

  2. Synchrotron and collisional damping effects on runaway electron distributions

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Eidietis, N.; Pace, D.; Cooper, C.; Shiraki, D.; Commaux, N.; Hollmann, E.; Moyer, R.; Granetz, R.; Embreus, O.; Fulop, T.; Stahl, A.; Wilkie, G.; Aleynikov, P.; Brennan, D. P.; Liu, C.

    2016-10-01

    Validated models of runaway electron (RE) dissipation are required to confidently approve safe ITER Q = 10 operation. DIII-D experiments using quiescent REs are exploring the importance of synchrotron and collisional damping terms to RE dissipation. New time and energy-resolved measurements of RE bremsstrahlung hard X-ray (HXR) emission reveal stark differences between high and low energy REs as damping terms are varied. Previously reported anomalously high RE dissipation only applies to low energy REs. At high energy (where synchrotron effects are strongest) low synchrotron damping cases reach higher peak RE energy despite weaker particle confinement. Low-energy RE decay is observed concurrently with high-energy RE growth. RE dissipation models predict bump-on-tail distributions whose properties depend on the damping terms. Measured HXR spectra are very broad, as expected for bump-on-tail distributions. Work supported by the U.S. DOE under DE-FC02-04ER54698.

  3. Modeling Collisional Cascades in Debris Disks: The Numerical Method

    NASA Astrophysics Data System (ADS)

    Gáspár, András; Psaltis, Dimitrios; Özel, Feryal; Rieke, George H.; Cooney, Alan

    2012-04-01

    We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.

  4. Short-Period Comets: Primordial Bodies or Collisional Fragments?

    PubMed

    Farinella; Davis

    1996-08-16

    Modeling results show that collisions among Edgeworth-Kuiper Belt Objects (EKOs), a vast swarm of small bodies orbiting beyond Neptune, have been a major process affecting this population and its progeny, the short-period comets. Most EKOs larger than about 100 kilometers in diameter survive over the age of the solar system, but at smaller sizes collisional breakup is frequent, producing a cascade of fragments having a power law size-frequency distribution. Collisions are also a plausible mechanism for injecting EKOs 1 to 10 kilometers in diameter into dynamical resonances, where they can be transported into the inner solar system to become short-period comets. The fragmental nature of these comets may explain their physical properties, such as shape, color, and strength.

  5. The violent collisional history of asteroid 4 Vesta.

    PubMed

    Marchi, S; McSween, H Y; O'Brien, D P; Schenk, P; De Sanctis, M C; Gaskell, R; Jaumann, R; Mottola, S; Preusker, F; Raymond, C A; Roatsch, T; Russell, C T

    2012-05-11

    Vesta is a large differentiated rocky body in the main asteroid belt that accreted within the first few million years after the formation of the earliest solar system solids. The Dawn spacecraft extensively imaged Vesta's surface, revealing a collision-dominated history. Results show that Vesta's cratering record has a strong north-south dichotomy. Vesta's northern heavily cratered terrains retain much of their earliest history. The southern hemisphere was reset, however, by two major collisions in more recent times. We estimate that the youngest of these impact structures, about 500 kilometers across, formed about 1 billion years ago, in agreement with estimates of Vesta asteroid family age based on dynamical and collisional constraints, supporting the notion that the Vesta asteroid family was formed during this event.

  6. Equilibrium models of mass distribution and collisional lifetimes of asteroids

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Wetherill, George

    1993-01-01

    An understanding of the steady state distribution expected in the present day asteroid belt is important to our understanding of the collisional evolution of the asteroids and their physical properties. We have extended earlier work to show that, in the absence of gravity, a simple power law distribution as a function of mass with constant exponent will give an equilibrium distribution of asteroids for all bodies much smaller than the largest asteroids. This result holds for realistic fragmentation mechanisms and is independent of the physical properties of the asteroids. Inclusion of the effects of gravity on disruption and fragmentation of asteroids precludes an analytic solution to this problem, and rules out a simple power law distribution. We are currently calculating numerical solutions in order to determine the expected steady state mass distribution in the asteroid belt.

  7. MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD

    SciTech Connect

    Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan E-mail: dpsaltis@as.arizona.edu E-mail: grieke@as.arizona.edu

    2012-04-10

    We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.

  8. Simulations of a molecular plasma in collisional-radiative nonequilibrium

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Moreau, Stephane

    1993-01-01

    A code for the simulation of nonequilibrium plasmas is being developed, with the capability to couple the plasma fluid-dynamics for a single fluid with a collisional-radiative model, where electronic states are treated as separate species. The model allows for non-Boltzmann distribution of the electronic states. Deviations from the Boltzmann distributions are expected to occur in the rapidly ionizing regime behind a strong shock or in the recombining regime during a fast expansion. This additional step in modeling complexity is expected to yield more accurate predictions of the nonequilibrium state and the radiation spectrum and intensity. An attempt at extending the code to molecular plasma flows is presented. The numerical techniques used, the thermochemical model, and the results of some numerical tests are described.

  9. Self-focusing of electromagnetic pulsed beams in collisional plasmas

    SciTech Connect

    Faisal, Mohammad; Verma, M. P.; Sodha, Mahendra Singh

    2008-10-15

    In this paper, the self-focusing of an electromagnetic pulsed beam in a collisional plasma has been investigated in the paraxial approximation, following the formalism developed by Akhmanov. The energy balance equation for electrons, the equation expressing the equality of pressure gradient (of electrons and ions) to the force due to space charge field, and the equation for the beam width parameter f (obtained by following Akhmanov's approach) have been simultaneously solved for given initial (z=0) time profile of the pulse to obtain f as a function of {xi} (cz/{omega}r{sub 0}{sup 2}) and t{sup '}=t-z/V{sub g}, where V{sub g} is the group velocity. Both Gaussian and sine time profiles of the pulse have been investigated.

  10. Flexural extension of the upper continental crust in collisional foredeeps

    USGS Publications Warehouse

    Bradley, D.C.; Kidd, W.S.F.

    1991-01-01

    Normal faults on the outer slopes of trenches and collisional foredeeps reveal that high-amplitude lithospheric flexure can result in inelastic extensional deformation of the convex side of a flexed plate. This process, which we call "flexural extension', differs fundamentally from rifting in that the lower lithosphere contracts while the upper lithosphere extends. Structural evidence does not support common illustrations of flexural normal faults as planar-irrotational structures which simply die out at shallow crustal depths. Instead, the surface geology shows that flexural normal faulting must be rotational with respect to the enveloping surface of the flexed plate. This toppled domino geometry implies the presence at depth of a detachment or zone of distributed ductile simple shear where fault displacement and block rotation are accommodated. -from Authors

  11. Cosmochemical fractionation by collisional erosion during the Earth's accretion

    PubMed Central

    Boujibar, Asmaa; Andrault, Denis; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed Ali; Monteux, Julien

    2015-01-01

    Early in the Solar System's history, energetic collisions of differentiated bodies affected the final composition of the terrestrial planets through partial destruction. Enstatite chondrites (EC) are the best candidates to represent the primordial terrestrial precursors as they present the most similar isotopic compositions to Earth. Here we report that collisional erosion of >15% of the early Earth's mass can reconcile the remaining compositional differences between EC and the Earth. We base our demonstration on experimental melting of an EC composition at pressures between 1 bar and 25 GPa. At low pressures, the first silicate melts are highly enriched in incompatible elements Si, Al and Na, and depleted in Mg. Loss of proto-crusts through impacts raises the Earth's Mg/Si ratio to its present value. To match all major element compositions, our model implies preferential loss of volatile lithophile elements and re-condensation of refractory lithophile elements after the impacts. PMID:26395157

  12. Turbulence Locality and Granularlike Fluid Shear Viscosity in Collisional Suspensions

    NASA Astrophysics Data System (ADS)

    Berzi, Diego; Fraccarollo, Luigi

    2015-11-01

    We reanalyze previous experimental measurements of solid volume fraction, mean velocity, and velocity fluctuations in collisional suspensions of plastic cylinders and water flowing over inclined, erodible beds. We show that the particle pressure scales with the granular temperature, as predicted by kinetic theory of granular gases. The assumption that the particle shear stress is also well predicted by kinetic theory permits us to determine the fluid shear stress and the effective fluid viscosity from the experiments. The fluid viscosity can be decomposed into turbulent and granularlike components: the turbulent viscosity can be modeled using a mixing length, which is a decreasing function of the local volume fraction and does not depend upon the distance from the bed; the granularlike viscosity, associated with the transfer of momentum due to the conjugate motion of the fluid mass added to the particles, can be modeled by replacing the particle density with the density of the added fluid mass in the viscosity of kinetic theory.

  13. Young Stellar Populations in the Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Pellerin, A.; Meurer, G. R.; Bekki, K.; Elmegreen, D. M.; Wong, O. I.; Knezek, P.

    2010-04-01

    We studied the star cluster population properties in the nearby collisional ring galaxy NGC 922 using HST/WFPC2 photometry and population synthesis modeling. We found that 69% of the detected clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong Hα emission. The images also show a tidal plume pointing toward the companion. Its stellar age is consistent with pre-existing stars that were probably stripped off during the passage of the companion. We compared the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS eld. It indicates very similar masses and sizes, suggesting similar origins. Finally, we found clusters that are excellent progenitor candidates for faint fuzzy clusters.

  14. Collisional Effects On Laser-Induced Fluorescence Flame Measurements

    NASA Astrophysics Data System (ADS)

    Crosley, David R.

    1981-08-01

    Abstract. Laser-induced fluorescence (LIF) is a method of considerable utility for the measurement of the transient free radicals which are the keys to the chemistry of flames. Collisions experienced by the electronically excited state can alter the magnitude and the spectral form of the fluorescence signals. Recent studies on both quenching and energy transfer collisions, and their influence on LIF measurements, are treated in this review; special emphasis is given to the important and popular OH molecule. Different solutions to the problem of accounting for quenching are considered, and both effects and exploitation of energy transfer within the excited state are discussed. Although further research is needed to better quantify these collisional effects, LIF can currently provide data significant for the understanding of combustion chemistry.

  15. THE COLLISIONAL DIVOT IN THE KUIPER BELT SIZE DISTRIBUTION

    SciTech Connect

    Fraser, Wesley C.

    2009-11-20

    This paper presents the results of collisional evolution calculations for the Kuiper Belt starting from an initial size distribution similar to that produced by accretion simulations of that region-a steep power-law large object size distribution that breaks to a shallower slope at r approx 1-2 km, with collisional equilibrium achieved for objects r approx< 0.5 km. We find that the break from the steep large object power law causes a divot, or depletion of objects at r approx 10-20 km, which, in turn, greatly reduces the disruption rate of objects with r approx> 25-50 km, preserving the steep power-law behavior for objects at this size. Our calculations demonstrate that the roll-over observed in the Kuiper Belt size distribution is naturally explained as an edge of a divot in the size distribution; the radius at which the size distribution transitions away from the power law, and the shape of the divot from our simulations are consistent with the size of the observed roll-over, and size distribution for smaller bodies. Both the kink radius and the radius of the divot center depend on the strength scaling law in the gravity regime for Kuiper Belt objects. These simulations suggest that the sky density of r approx 1 km objects is approx10{sup 6}-10{sup 7} objects per square degree. A detection of the divot in the size distribution would provide a measure of the strength of large Kuiper Belt objects, and constrain the shape of the size distribution at the end of accretion in the Kuiper Belt.

  16. Collisional modelling of the debris disc around HIP 17439

    NASA Astrophysics Data System (ADS)

    Schüppler, Ch.; Löhne, T.; Krivov, A. V.; Ertel, S.; Marshall, J. P.; Eiroa, C.

    2014-07-01

    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme, the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a previous study, we assumed that the size and radial distribution of the circumstellar dust are independent power laws. There, several scenarios capable of explaining the observations were suggested after exploring a very broad range of possible model parameters. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, which are the actual physical processes operating in debris discs. We find that all scenarios discussed in the first paper are physically reasonable and can reproduce the observed spectral energy distribution along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120 au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. Good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not confirmed - although not ruled out - by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of distinguishing between the competing scenarios by future observations are discussed.

  17. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  18. `Weak A' phenotypes

    PubMed Central

    Cartron, J. P.; Gerbal, A.; Hughes-Jones, N. C.; Salmon, C.

    1974-01-01

    Thirty-five weak A samples including fourteen A3, eight Ax, seven Aend, three Am and three Ae1 were studied in order to determine their A antigen site density, using an IgG anti-A labelled with 125I. The values obtained ranged between 30,000 A antigen sites for A3 individuals, and 700 sites for the Ae1 red cells. The hierarchy of values observed made it possible to establish a quantitative relationship between the red cell agglutinability of these phenotypes measured under standard conditions, and their antigen site density. PMID:4435836

  19. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  20. Collisionless Zonal Flow Saturation for Weak Magnetic Shear

    NASA Astrophysics Data System (ADS)

    Lu, Zhixin; Wang, Weixing; Diamond, Patrick; Ashourvan, Arash; Tynan, George

    2015-11-01

    The damping of the zonal flow, either collisional or collisionless, plays an important role in regulating the drift wave-zonal flow system, and can affect the transport and confinement. The tertiary instability, e.g., a generalized Kelvin-Helmholtz (KH) instability driven by flow shear, has been suggested theoretically as a possible damping mechanism [Rogers 2000 PRL, Diamond 2005 PPCF]. The sensitivity of the tertiary mode to magnetic shear has not been quantified, especially in weak magnetic shear regimes. In this work, parametric scans using gyrokinetic simulation demonstrate that the zonal electric field energy normalized by the turbulence electric field energy decreases as magnetic shear decreases. With ITG drive artificially eliminated, the time evolution of the zonal structure indicates that the zonal electric field damps more rapidly at weak shear. This suggests larger collisionless zonal flow damping or larger effective turbulent viscosity at weak magnetic shear. The effects of the zonal components of specific variables, e.g., the parallel shear flow and the radial electric field, on tertiary instability, are also studied. Quantitative studies on the magnetic shear scaling of tertiary instability excitation and the collisionless zonal flow saturation are ongoing.

  1. The Collisional and Radiative Processes of the Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Steffens, Kristen Lisa

    1995-01-01

    The OH radical is an important species in the chemistry of atmospheric and combustion environments, where an understanding of OH concentration and chemistry is necessary to create and validate chemical models. Laser-induced fluorescence (LIF) is used with great success in OH detection, but OH LIF measurements require a vast knowledge of the collisional and spectroscopic properties of OH. Information is still lacking, especially concerning vibrational levels v^' > 0 of the rm A^2Sigma^+ electronic state. We investigate transition probabilities and collisional processes of these higher vibrational levels. Experimental vibrational band transition probabilities from v^' = 3 and 2 of OH rm A^2Sigma^+ are needed to determine the electronic transition moment for the rm A^2Sigma^+ -rm X^2Pi_{i } system to calculate a consistent set of rotational and vibrational dependent transition probabilities for uses including rm X^2Pi_ {i} temperature determinations and rm A^2Sigma^+ and rm X^2Pi_{i} nascent population determinations. Using LIF in a low -pressure CH_4/O_2 flame, we measured relative emission intensities for vibrational bands (3,0) through (3,5) and (2,0) through (2,6). Our emission intensities have been used in another study to determine the best rm A^2 Sigma^+-rm X^2 Pi_{i} electronic transition moment. For quantitative OH concentration measurements in high pressure flames exciting the predissociative v ^' = 3 level, one must account for vibrational energy transfer (VET). We measure the amounts of VET occurring from v^' = 3 in CH_4/O_2 , CH_4/air, and H _2/O_2 flames at pressures between 14 and 760 Torr. Significant amounts of VET occur in all flames and must be accounted for to get accurate OH concentrations. Stratospheric OH concentration measurement employs OH rm A^2Sigma^+v ^' = 1 excitation, which requires accurate VET and quenching cross sections for major colliders. We use LIF to measure the v^ ' = 1 VET and quenching cross sections for N_2, O_2 and CO_2

  2. CLMSZ, Garnet Mountain area, southern California: A collisionally generated contractional shear zone

    SciTech Connect

    Bracchi, K.A.; Girty, G.H.; Girty, M.S. . Dept. of Geological Sciences)

    1993-04-01

    The Harper Creek gneiss (HCg) and Oriflamme Canyon unit (OCu) underlie the central portion of the Cuyamaca Laguna Mountains shear zone (CLMSZ) in and around Garnet Mountain, Peninsular Ranges, California, and may have been deformed during Cretaceous arc-continent collision. U-Pb zircon work and petrological and geochemical analyses suggest that in the Garnet Mountain area, the 140 Ma HCg is derived from granite and granodiorite, whereas the 122 [+-] 1 Ma OCu is a protomylonite derived from a granite. Both units appear to be per aluminous calc-alkaline magmatic arc granitoids. Mineral assemblages suggest uppermost greenschist to lower amphibolite grade conditions during deformation. In the HCg, S-1hc is a mylonitic gneissosity with a mean attitude of N11W, 60 NE. A mineral streaking lineation lies within the plane of S-1hc and has a mean attitude of 61[degree] N76E. In the OCu, S-1oc strikes about N13W and dips 52 NE and contains a mineral streaking lineation with an attitude of 49 N52E. Dextral and sinistral shear bands, S-2d and S-2s (looking NW), transect S-1hc and S-1oc. S-2d and S-2s strike subparallel to S-1. In the HCg S-2s is weakly developed and dips about 32 NE, whereas S-2d is more dominant and dips about 76 NE. On the OCu these relationships are reversed. S-2d does not cross cut S-2s: hence, the two sets of shear bands are interpreted to be conjugates reflecting NE-SW contraction and subvertical extension during collisional development of the CLMSZ.

  3. Reply to 'Comment on 'Collisional cooling investigation of THz rotational transitions of water''

    SciTech Connect

    Drouin, Brian J.; Pearson, John C.; Dick, Michael J.

    2010-09-15

    This response describes the authors' reaction to a critique of recent work on the ultracold physics of water. The possibility of spin-selective adsorption occurring in the context of the collisional cooling experiment is discussed.

  4. Elimination of collisional dephasing by control laser fields

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei

    2003-05-01

    The perturbation of electronic states during a molecular collision results in an adiabatic shift of natural molecular frequencies. It is this frequency shift (integrated over the collision time) that produces an oscillation phase shift, and ultimately leads to dephasing of a molecular ensemble. However, the fact that during the collision all molecular levels shift in unison can be used to eliminate the shift of one selected transition, by applying a control laser field to an adjacent (control) transition. The amplitude and frequency of the control field can be adjusted such that the time-varying Stark shift produced by this field precisely compensates collisional frequency shift for the transition of interest, and as a result suppresses dephasing. This technique can possibly be extended to adiabatic atomic collisions, and to different types of inhomogeneous broadening. Earlier workers have demonstrated similar methods for Doppler width reduction, by utilizing velocity-dependent Stark shifts produced by control fields. There is also a relation of this proposal to electromagnetically induced transparency.

  5. Collisional excitation of electron Landau levels in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Langer, S. H.

    1981-01-01

    The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.

  6. Potential around a dust grain in collisional plasma

    SciTech Connect

    Moulick, R. Goswami, K. S.

    2015-04-15

    The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.

  7. Tabletop Transient Collisional Excitation X-Ray Lasers

    SciTech Connect

    Dunn, J; Li, Y; Osterheld, A L; Nilsen, J; Moon, S J; Fournier, K B; Hunter, J R; Faenov, A; Pikuz, T A; Shlyaptsev, V N

    1999-09-03

    Recent transient collisional excitation x-ray laser experiments are reported using the COMET tabletop laser driver at the Lawrence Livermore National Laboratory (LLNL). Ne-like and Ni-like ion x-ray laser schemes have been investigated with a combination of long 600 ps and short {approximately}1 ps high power laser pulses with 5-10 J total energy. We show small signal gain saturation for x-ray lasers when a reflection echelon traveling wave geometry is utilized. A gain length product of 18 has been achieved for the Ni-like Pd 4d{r_arrow}4p J=0-1 line at 147 {angstrom}, with an estimated output of {approximately}10{micro}J. Strong lasing on the 119 {angstrom} Ni-like Sn line has also been observed. To our knowledge this is the first time gain saturation has been achieved on a tabletop laser driven scheme and is the shortest wavelength tabletop x-ray laser demonstrated to date. In addition, we present preliminary results of the characterization of the line focus uniformity for a Ne-like ion scheme using L-shell spectroscopy.

  8. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    SciTech Connect

    Kuchner, Marc J.; Stark, Christopher C. E-mail: starkc@umd.ed

    2010-10-15

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.

  9. A collisional family of icy objects in the Kuiper belt.

    PubMed

    Brown, Michael E; Barkume, Kristina M; Ragozzine, Darin; Schaller, Emily L

    2007-03-15

    The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61.

  10. Collisional Grooming Models of the Kuiper Belt Dust Cloud

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.

  11. Study of Mixed Collisionality Gas Flow in the VASIMR Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, Oleg; Molvig, Kim

    2000-11-01

    The degree of gas ionization in the VASIMR plasma thruster [1] is about one percent. This allows separating of the gas propellant flow from the plasma dynamics. The Knudsen number of the hydrogen (deuterium) or helium gas flow in a system of pipes of varying diameter falls into the .2-5 range. This indicates that the kinetic approach is required. First we present results from 1D hybrid Poiseuille-Knudsen model for viscous - free molecular pipe flow [2]. We compare simulation results to the experimental measurements. Next we study effects of (i) internal baffles to assist the retaining of the propellant, and (ii) gas pre-heating. Finally, we describe an extension of our 1D2V fully kinetic finite volume method [3] to a semi-collisional gas flow simulation. [1] F. Chang-Díaz et al., Bulletin of APS, 44 (1999) 99. [2] O. Batishchev and K. Molvig, AIAA 2000-3754 paper (2000). [3] Batishchev O. et al., J. Plasma Phys. 61 (1999) 347.

  12. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    SciTech Connect

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J.; Dodson-Robinson, Sarah E.; Teanby, Nick A.

    2016-03-20

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.

  13. COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS

    SciTech Connect

    Marcus, Robert A.; Sasselov, Dimitar; Hernquist, Lars; Stewart, Sarah T.

    2009-08-01

    The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of high-velocity (up to {approx}5v {sub esc}) collisions between 1 and 10 M {sub +} planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle.

  14. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  15. Direct and Collisional Excitation of Automotive Fuel Components)

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Wilson, Kyle; Sakai, Stephen; Devasher, Rebecca B.

    2010-06-01

    Adding energy directly into the vibrational modes of automotive fuel may reduce the threshold energy required for combustion, without raising the combustion charge temperature. This energy can be supplied either directly via incident laser radiation or indirectly through collision with directly excited molecules. The most common chemical in commercial gasoline, isooctane, does not absorb infrared radiation sufficiently at any wavelength for which an infrared laser is readily available. However, CO2 lasers are relatively cheap, and are available at wavelengths which are absorbed by isopropanol as well as ethanol, which is also a component of commercial gasoline. In this study, the infrared absorption of isopropanol and ethanol in balance isooctane were measured at three wavelengths (10.6 m, 10.2 m, and 9.3 m) of incident CO2 laser radiation. Additional time-resolved emission measurements were performed for these mixtures. The data support the existence of the proposed collisional pathway for energy transfer from ethanol and isopropanol to isooctane.

  16. On the inclusion of collisional correlations in quantum dynamics

    SciTech Connect

    Slama, N.; Reinhard, P.-G.; Suraud, E.

    2015-04-15

    We present a formalism to describe collisional correlations responsible for thermalization effects in finite quantum systems. The approach consists in a stochastic extension of time dependent mean field theory. Correlations are treated in time dependent perturbation theory and loss of coherence is assumed at some time intervals allowing a stochastic reduction of the correlated dynamics in terms of a stochastic ensemble of time dependent mean-fields. This theory was formulated long ago in terms of density matrices but never applied in practical cases because of its complexity. We propose here a reformulation of the theory in terms of wave functions and use a simplified 1D model of cluster and molecules allowing to test the theory in a schematic but realistic manner. We illustrate the performance in terms of several observables, in particular global moments of the density matrix and single particle entropy built on occupation numbers. The occupation numbers remain fixed in time dependent mean-field propagation and change when evaluating the correlations, then taking fractional values. They converge asymptotically towards Fermi distributions which is a clear indication of thermalization.

  17. Collisional disruption of gravitational aggregates in the tidal environment

    SciTech Connect

    Hyodo, Ryuki; Ohtsuki, Keiji

    2014-05-20

    The degree of disruption in collisions in free space is determined by specific impact energy, and the mass fraction of the largest remnant is a monotonically decreasing function of impact energy. However, it has not been shown whether such a relationship is applicable to collisions under the influence of a planet's tidal force, which is important in ring dynamics and satellite accretion. Here we examine the collisional disruption of gravitational aggregates in the tidal environment by using local N-body simulations. We find that outcomes of such a collision largely depend on the impact velocity, the direction of impact, and the radial distance from the planet. In the case of a strong tidal field corresponding to Saturn's F ring, collisions in the azimuthal direction are much more destructive than those in the radial direction. Numerical results of collisions sensitively depend on the impact velocity, and a complete disruption of aggregates can occur even in impacts with velocity much lower than their escape velocity. In such low-velocity collisions, the deformation of colliding aggregates plays an essential role in determining collision outcomes, because the physical size of the aggregate is comparable to its Hill radius. On the other hand, the dependence of collision outcomes on impact velocity becomes similar to the case in free space when the distance from the planet is sufficiently large. Our results are consistent with Cassini observations of the F ring, which suggest ongoing creation and disruption of aggregates within the ring.

  18. Variational Algorithms for Drift and Collisional Guiding Center Dynamics

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2014-10-01

    The simulation of guiding center test particle dynamics in the upcoming generation of magnetic confinement devices requires novel numerical methods to obtain the necessary long-term numerical fidelity. Geometric algorithms, which retain conserved quantities in the numerical time advances, are well-known to exhibit excellent long simulation time behavior. Due to the non-canonical Hamiltonian structure of the guiding center equations of motion, it is only recently that geometric algorithms have been developed for guiding center dynamics. This poster will discuss and compare several families of variational algorithms for application to 3-D guiding center test particle studies, while benchmarking the methods against standard Runge-Kutta techniques. Time-to-solution improvements using GPGPU hardware will be presented. Additionally, collisional dynamics will be incorporated into the structure-preserving guiding center algorithms for the first time. Non-Hamiltonian effects, such as polarization drag and simplified stochastic operators, can be incorporated using a Lagrange-d'Alembert variational principle. The long-time behavior of variational algorithms which include dissipative dynamics will be compared against standard techniques. This work was supported by DOE Contract DE-AC02-09CH11466.

  19. Predictions for collisional frequency shifts of ultracold rubidium atomic clocks

    NASA Astrophysics Data System (ADS)

    Kokkelmans, S. J. J. M. F.; Verhaar, B. J.; Heinzen, D. J.; Gibble, K.

    1997-04-01

    A few years ago atomic fountains using cold ^133Cs atoms led to a breakthrough in the field of atomic frequency standards(A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, Europhys. Lett. 16), 165 (1991); K. Gibble and S. Chu, Phys. Rev. Lett. 70, 1771 (1993).. It was soon found that the frequency shifts induced by collisions between atoms during their fountain orbit stand in the way to drawing the full benefits from this development. A possible way out is to switch to another atomic species(K. Gibble and B.J. Verhaar, Phys. Rev. A 52), 3370 (1995).. Recent experiments have made it possible to determine cold collision parameters for pairs of rubidium atoms with unprecedented accuracy(J.M. Vogels, C.C. Tsai, R.S. Freeland, S.J.J.M.F. Kokkelmans, B.J. Verhaar, and D.J. Heinzen (submitted).). Making use of these parameters we predict the collisional frequency shifts for a ^87Rb and a ^85Rb laser-cooled clock. Our results show the prospects for new atomic clocks based on ultracold rubidium to be promising.

  20. On collisional diffusion in a stochastic magnetic field

    SciTech Connect

    Abdullaev, S. S.

    2013-08-15

    The effect of particle collisions on the transport in a stochastic magnetic field in tokamaks is investigated. The model of resonant magnetic perturbations generated by external coils at the plasma edge is used for the stochastic magnetic field. The particle collisions are simulated by a random walk process along the magnetic field lines and the jumps across the field lines at the collision instants. The dependencies of the local diffusion coefficients on the mean free path λ{sub mfp}, the diffusion coefficients of field lines D{sub FL}, and the collisional diffusion coefficients, χ{sub ⊥} are studied. Based on these numerical data and the heuristic arguments, the empirical formula, D{sub r}=χ{sub ⊥}+v{sub ||}D{sub FL}/(1+L{sub c}/λ{sub mfp}), for the local diffusion coefficient is proposed, where L{sub c} is the characteristic length of order of the connection length l{sub c}=πqR{sub 0}, q is the safety factor, R{sub 0} is the major radius. The formula quite well describes the results of numerical simulations. In the limiting cases, the formula describes the Rechester-Rosenbluth and Laval scalings.

  1. Nonextensive statistics and the sheath criterion in collisional plasmas

    SciTech Connect

    Hatami, M. M.

    2015-01-15

    The Bohm criterion in an electropositive plasma containing nonextensively distributed electrons and warm ions is investigated by using a steady state two-fluid model. Taking into account the ion-neutral collisions and finite temperature of ions, a modified Bohm criterion is derived which limits both maximum and minimum allowable velocity of ions at the sheath edge (u{sub 0i}). It is found that the degree of nonextensivity of electrons (q) and temperature of positive ions (T{sub i}) affect only the lower limit of the entrance velocity of ions into the sheath while the degree of ion collisionality (α) influences both lower and upper limits of the ion velocities at the sheath edge. In addition, depending on the value of q, it is shown that the minimum velocity of positive ions at the sheath edge can be greater or smaller than its Maxwellian counterpart. Moreover, it is shown that, depending on the values of α and T{sub i}, the positive ions with subsonic velocity may enter the sheath for either q > 1 or −1 < q < 1. Finally, as a practical application, the density distribution of charged particles in the sheath region is studied for different values of u{sub 0i}, and it is shown that monotonical reduction of the positive ion density distribution occurs only when the velocity of positive ions at the sheath edge lies between two above mentioned limits.

  2. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    NASA Astrophysics Data System (ADS)

    Jafari, M. J.; Jafari Milani, M. R.; Niknam, A. R.

    2016-07-01

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).

  3. Isotope Effects in Collisional VT Relaxation of Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Bieniek, R. J.

    2006-01-01

    A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for rates of collisionally induced vibrational-translation (VT) energy exchange that has been shown to be accurate over variations of orders of magnitude as a function of temperature in a variety of systems. This includes excellent agreement with reported experimental and theoretical results for the fundamental self-relaxation rate of molecular hydrogen H2(v = 1) + H2 yields H2(v = 0) + H2. The analytic rate successfully follows the five-orders-of-magnitude change in experimental values for the temperature range 50-2000 K. This approach is now applied to isotope effects in the vibrational relaxation rates of excited HD and D2 in collision with H2: HD(v = 1)+H2 yields HD(v = 0)+H2 and D2(v = 1)+H2 yields D2(v = 0)+H2. The simplicity of the analytic expression for the thermal rate lends itself to convenient application in modeling the evolving vibrational populations of molecular hydrogen in shocked astrophysical environments.

  4. Multiscale mantle convection along the Tethyan collisional margin

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Becker, Thorsten

    2013-04-01

    We perform global mantle circulation to reconstruct the style and geometry of mantle convection beneath the Tethyan region, from the Mediterranean to the Hiamalayan belt. To quantify the contribution of mantle heterogeneity and subduction zones to mantle circulation and plate motions, we compute the instantaneous mantle flow that can be inferred from seismic tomography when velocity anomalies are converted into temperature. Model results are compared with geodesy, residual topography, and shear wave splitting observations. We evaluate different boundary conditions to test the role of slab pull and mantle convection as driving forces for the kinematics of the Tethyan system. Our results show that mantle drag exerted on the base of the lithosphere by a large-scale, convective "conveyor belt" with an active upwelling component is likely the main cause for the ongoing indentation of the Indian and Arabian plates into Eurasia. This large scale convection cell superimposed to small scale convection that could be resolved in region such as the Mediterranean, where high resolution seismic tomography is available. More in general, our model emphasizes that large scale mantle convection dragging continental block against Eurasia produce the necessary kinematic conditions to sustaine thick collisional orogen, whereas small scale convection confined in the upper mantle produces ephemeral, slab-pull dominated, orogenic belt.

  5. Expansion of Collisional Radiative Model for Helium line ratio spectroscopy

    NASA Astrophysics Data System (ADS)

    Cinquegrani, David; Cooper, Chris; Forest, Cary; Milhone, Jason; Munoz-Borges, Jorge; Schmitz, Oliver; Unterberg, Ezekial

    2015-11-01

    Helium line ratio spectroscopy is a powerful technique of active plasma edge spectroscopy. It enables reconstruction of plasma edge parameters like electron density and temperature by use of suitable Collisional Radiative Models (CRM). An established approach is successful at moderate plasma densities (~1018m-3 range) and temperature (30-300eV), taking recombination and charge exchange to be negligible. The goal of this work is to experimentally explore limitations of this approach to CRM. For basic validation the Madison Plasma Dynamo eXperiment (MPDX) will be used. MPDX offers a very uniform plasma and spherical symmetry at low temperature (5-20 eV) and low density (1016 -1017m-3) . Initial data from MPDX shows a deviation in CRM results when compared to Langmuir probe data. This discrepancy points to the importance of recombination effects. The validated model is applied to first time measurement of electron density and temperature in front of an ICRH antenna at the TEXTOR tokamak. These measurements are important to understand RF coupling and PMI physics at the antenna limiters. Work supported in part by start up funds of the Department of Engineering Physics at the UW - Madison, USA and NSF CAREER award PHY-1455210.

  6. Weak neutral current chemistry

    SciTech Connect

    Mohan, R.

    1996-07-01

    Metal cluster organic complexes, neither atomic nor solid but in analogy to atomic nuclei and to mesoscopic systems, have unusual dynamics and catalytic properties. Organo-metal clusters as quintessence prebiotic enzymes could have originated the homochirality of the molecules from achiral precursors, controlled from the atomic-nucleus, with the initial product itself serving subsequently as chiral auxiliary transferring and amplifying the chirality in the autocatalytic process now. High resolution spectroscopic studies of diatomic molecules beginning now may lead to upper estimates of the interaction strength of weak neutral currents (WNG) with valence electrons of metal clusters and suggest kinetic pathways to dynamic symmetry breaking in the asymmetric synthesis of chiral molecules. An estimate of 10{sup {minus}5} kT (thousand times larger than for radiolysis) for the parity violating energy (PVE) could be sufficient to run an entropy driven spin-catalyzed asymmetric synthesis. Expect then, wherever there are metal clusters in interstellar dust or under the sea chiral molecular production. {copyright} {ital 1996 American Institute of Physics.}

  7. Weak neutral current chemistry

    NASA Astrophysics Data System (ADS)

    Mohan, R.

    1996-07-01

    Metal cluster organic complexes, neither atomic nor solid but in analogy to atomic nuclei and to mesoscopic systems, have unusual dynamics and catalytic properties. Organo-metal clusters as quintessence prebiotic enzymes could have originated the homochirality of the molecules from achiral precursors, controlled from the atomic-nucleus, with the initial product itself serving subsequently as chiral auxiliary transferring and amplifying the chirality in the autocatalytic process now. High resolution spectroscopic studies of diatomic molecules beginning now may lead to upper estimates of the interaction strength of weak neutral currents (WNG) with valence electrons of metal clusters and suggest kinetic pathways to dynamic symmetry breaking in the asymmetric synthesis of chiral molecules. An estimate of 10-5 kT (thousand times larger than for radiolysis) for the parity violating energy (PVE) could be sufficient to run an entropy driven spin-catalyzed asymmetric synthesis. Expect then, wherever there are metal clusters in interstellar dust or under the sea chiral molecular production.

  8. Collisional evolution - an analytical study for the non steady-state mass distribution.

    NASA Astrophysics Data System (ADS)

    Vieira Martins, R.

    1999-05-01

    To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the

  9. Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions

    SciTech Connect

    Lemons, D.S.; Feldman, W.C.

    1983-09-01

    A theoretical model of suprathermal halo or strahl solar wind electrons, including both binary collisions and conservative force fields, is proposed. From this model we derive the collisionally modified electron pitch angle distribution and compare it with relevant measurements made in the solar wind at 1 AU by using the Los Alamos IMP 8 plasma analyzer. Although the collisionally modified distribution is more isotropic than that predicted by simple exospheric theory, it is not isotropic enough to describe the measurements.

  10. Degenerate four-wave mixing and phase conjugation in a collisional plasma

    SciTech Connect

    Federici, J.F.; Mansfield, D.K.

    1986-06-01

    Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10..mu..m. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed.

  11. Coupling Dynamical And Collisional Evolution Of Dust In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Charnoz, Sebastien

    2010-10-01

    Gaseous circumstellar disks are rich in dust and are thought to be both accretionaly and dynamically active. Unfortunately large bodies that could be embedded in these disks are still difficult to observe and their putative properties are indirectly inferred from the observable small dust content. It is why constraining the size distribution coupled with dust-dynamics is so critical. Unfortunately, coupling effects such as a realistic time-dependant dynamics, fragmentation and coagulation, has been recognized as numerically challenging and almost no attempt really succeeded with a generic approach. In these disks, the dust dynamics is driven by a variety of processes (gravity, gas drag, radiation pressure..) inducing a size-dependant dynamics, and, at the same time collisional evolution changes the local size distributions. These two effects are intimately coupled because the local dynamics and size-distribution determines the local collision rates, that, in-turn, determines the size-distribution and modifies the particle's dynamics. Here we report on a new algorithm that overcomes these difficulties by using a hybrid approach extending the work of Charnoz & Morbidelli (Icarus, 2004, 2007). We will briefly present the method and focus on gaseous protoplanetary disks either laminar or turbulent (the time dependant transport and dust evolution will be shown) . We will show how the taking into account of a 3D dynamics helps to determine disantengle the dust size-distribution in the disk's photosphere and in the midplane and thus may provide observational signatures of accretion. We will show how the coupling of turbulence with fragmentation may significantly affect the dust/ratio for the smallest bodies. Finally, we will show that an accurate description of the time dependant dynamics of larger dusts (those with Stokes numbers >= 1) may provide a possible path to the formation of bodies larger than the accretion barrier, through accretion in a transitory regime.

  12. Collision Strengths for Electron Collisional Excitation of S II

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1997-01-01

    Electron collisional excitation strengths for inelastic transitions in S II are calculated using the R-matrix method in a 19-state (3s(sup 2)3p(sup 3)(sup 4)S(sup o), (sup 2)D(sup o), (sup 2)p(sup o), 3s3p(sup 4)(sup 4)P, (sup 2)D, (sup 2)S, 3S(sup 2)3p(sup 2)3d(sup 2)P, (sup 4)F, (sup 4)D, (sup 2)F, (sup 4)P, 3s(sup 2)3p(sup 2)4s(sup 4)P, (sup 2)P, 3s(sup 2)3p(sup 2)4p(sup 2)S(s o), (sup 4)D(sup o), (sup 4)P(sup o), (sup 2)D(sup o), (sup 4)S(sup o), (sup 2)P(sup o)) close-coupling approximation. These target states are represented by extensive configuration-interaction wave functions that give excitation energies and oscillator strengths that are usually in good agreement with the experimental values and the available accurate calculations. The present results for collision strengths are in very good agreement with the recent merged beams energy loss measurement of Liao et al. and agree reasonably well with the 18-state R-matrix calculation of Ramsbottom, Bell, & Stafford, but show significant differences from the 12-state R-matrix calculation of Cai & Pradhan.

  13. Collisional and Radiative Processes in High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    High-pressure discharge plasmas (HPDPs) with operating pressures up to and exceeding atmospheric pressure have gained prominence in many areas of application such as EM absorbers and reflectors, remediation of waste streams, deposition and surface modification, surface cleaning and sterilization, and light source development. In particular, HPDPs are widely used as sources for the generation of non-coherent UV and VUV light such as excimer emissions in the spectral range from 50 nm to 300 nm using rare gases or rare gas admixed with other gases as the operating medium. In this talk we will discuss several common types of HPDPs (e.g. microhollow cathode discharge plasmas, dielectric barrier discharge plasmas, capillary dielectrode discharge plasmas) that are commonly used for the generation of non-coherent excimer emissions. The main focus of this talk will be on the elucidation of the underlying microscopic collisional and radiative processes in these plasmas that lead to the photon emission and that determine the efficiency and spectral characteristics of various sources. Processes of particular interest are the generation of intense, monochromatic atomic line emissions in the 90 - 130 nm range, in particular the H Lyman-alpha emission at 121.6 nm, from HPDPs in gas mixtures containing high-pressure He, Ne, or Ar with trace amounts (1which may have great potential in photolithography and related applications. The mechanism for the emission of these intense atomic VUV lines are near-resonant energy transfer processes from the excimer molecule to the diatomic gas (H2, O2, N2). This work was supported by the NSF and by DARPA/ARO and carried out in collaboration with P. Kurunczi, K.H. Schoenbach, M. Laroussi, M. Gupta, and N. Masoud. Helpful discussions with U. Kogelschatz and E. Kunhardt are gratefully acknowledged.

  14. Scalar and vector collisional interference in the vibration-rotation absorption spectra of H2 and HD

    NASA Technical Reports Server (NTRS)

    Herman, R. M.

    1987-01-01

    The only atomic or molecular spectra known to exhibit 'collisional interference' effects are those of H2 and its isotopes. Attention is presently given to the sharp absorption spectra of HD, which demonstrate collisional interference effects is a fashion that while surprising has been experimentally verified and theoretically characterized in detail. Collisional interference can dramatically alter the line shapes usually encountered in dipole absorption spectra, while nevertheless remaining narrow.

  15. Analysis of Collisional Cross Sections of Rydberg nS and nD States of Ultracold Caesium Atoms

    NASA Astrophysics Data System (ADS)

    Feng, Zhigang; Miao, Jingyuan; Zhao, Kejia; Li, Difei; Yang, Zhijun; Wu, Fan; Wu, Zhaochun; Zhao, Jianming; Jia, Suotang

    2016-05-01

    We present a simple analytical formula derived from an existing theoretical model and a detailed theoretical investigation of effects of the van der Waals interaction and dipole-dipole interaction on collisional cross sections as functions of various parameters. We analyze the main mechanism leading to large collisional cross sections on the basis of our previous experimental results using the present formula and also analyze the effects of some other factors on collisional cross sections.

  16. Intestinal Transport of Weak Electrolytes

    PubMed Central

    Jackson, Michael J.; Shiau, Yih-Fu; Bane, Susan; Fox, Margaret

    1974-01-01

    A study has been made of the transmural fluxes of benzoic, phenylacetic, and pentanoic acids, benzylamine, hexylamine, and D-amphetamine across rat jejunum incubated in vitro. The M to S fluxes of the weak acids were greater than their corresponding S to M fluxes, and the S to M fluxes of the weak bases were larger than their M to S fluxes. These patterns of asymmetric movements were observed when the transmural electrical potential difference was clamped at 0 mV, and when the pH values of the mucosal and serosal fluids were identical. The effects of a weak acid on the fluxes of other weak electrolytes were qualitatively similar when the effector weak acid was added to the mucosal fluid, and when it was added to the serosal fluid. But the effects of a weak base on the fluxes of other weak electrolytes were dependent upon its location, and the interactions observed when the effector weak base was added to the mucosal fluid were qualitatively different than those seen when it was added to the serosal fluid. The interactions between weak electrolytes could readily be explained in terms of the function of a system of three compartments in series, in which the pH of the intermediate compartment is greater than that of the bulk phases. But these observations could not be explained in terms of an analogous system involving an intermediate compartment of low pH, or in terms of a carrier mediated system. The transport function of the three-compartment system can be described in the form of an equation, and it is found that a pH difference of less than 0.5 unit may explain our observations on weak electrolyte transport. PMID:4812635

  17. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  18. Collisional Disruption of Gravity Dominated Bodies: New Data and Scaling

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E. I.; Owen, M.

    2015-12-01

    We present data from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The data is used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact. For a target radius 100≤R_T≤1000 km and a mass MTM_T and a projectile radius r_p≤R_T and mass mpm_p we find that a head-on impact with velocity magnitude vv is catastrophic if the kinetic energy of the system in the center of mass frame, K=0.5{M_T}{m_p}/(M_T+m_p)v^2, exceeds K∗R_D=(3.3±0.6)U_R U_R where U_R=(3/5)G{M_T}^2/R_T + (3/5)G{m_p}^2/{r_p}+G{M_T}{m_p}/(M_T+{m_p}) is the gravitational binding energy of the system at the moment of impact; GG is the gravitational constant. Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target at impact exceeds ˜1.9K∗_RD for 30° impacts and ˜3.5K∗_RD for 45deg; impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our data suggest a lower threshold for disruption except for highly oblique impacts with r_p≪R_T. This result has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli, A., Bottke, W. F., Nesvorny, D., & Levison, H. F., 2009, Icarus, 204, 558-573), Kuiper belt (Greenstreet, S., Gladman, B., & McKinnon, W. B., 2015, Icarus, 258, 267-288), and early solar system accretion (Chambers, J. E., 2013, Icarus, 224, 43-56).

  19. Collisional Disruption of Ice by High-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Arakawa, Masahiko

    1999-11-01

    High-velocity impact among icy planetesimals is a physical phenomenon important to the planetary evolution process in the outer Solar System. In order to study this phenomenon, impact experiments on water ice were made by using a two-stage light gas gun installed in a cold room (-10°C) to clarify the elementary processes of collisional disruption and to study the reaccumulation and the escape conditions of the impact fragments. Cubic ice targets ranging in size from 15 to 100 mm were impacted by a nylon projectile of 7 mg with an impact velocity ( vi) from 2.3 to 4.7 km/s. The corresponding mass ratio of the projectile to the target ( mp/ Mt) ranged from 10 -3 to 10 -6, which is two orders of magnitude lower than that used in previous studies (Arakawa et al. 1995, Icarus118, 341-354). As a result, we obtained data on elementary processes such as attenuation of the shock wave and fragmentation dynamics. We found that the shock pressure attenuates in the ice target according to the relation of P∝( Lp/ r2, irrespective of the mass ratio between 10 -3 and 10 -5, where Lp is the projectile size and r is a propagation distance. The largest fragment mass ( ml) normalized by the original target mass has a good relationship to a nondimensional impact stress ( PI, NDIS) defined as the ratio of the antipodal pressure to the material strength. This relationship is described as ml/ Mt ∝ PI-1.7 for a wide range of impact conditions (50 m/s< vi<4 km/s and 10 -1< ml/ Mt<10 -6), and shows the utility of NDIS. Using a measured shock wave decay constant of 2, the reaccumulation and the escape conditions of icy bodies in high-velocity collisions were estimated. As a result, it was clarified that a rubble pile could be formed when large icy bodies (radius>20 km) reaccumulated. On the other hand, when smaller icy bodies (radius<2 km) disrupted catastrophically, all fragments escaped and a rubble pile was never formed.

  20. The role of collisional compaction in primitive asteroids and comets

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Blum, J.

    2008-09-01

    During the early stages of solar system formation the consolidation of asteroids and comets took place. We have just learnt from recent space missions that some of these minor bodies have been preserved in a pristine way in several regions of our Solar System. From our experience on primitive meteorites we know that these bodies should contain valuable clues on the origin of the Solar System. Studies of the physical, chemical, and isotopic properties of the components of these minor bodies will provide important clues on their origin. We expect very different collisional histories undergone by these bodies depending on their particular formation, migration, and storage regions [1]. In Fig. 1 appears a schematic representation of the protoplanetary disk in the region of consolidation of the terrestrial planets about 4565 million years ago. Bodies located in the outer part of the main belt would have incorporated significant amounts of ice in their volume, but their migration to and residence times in other regions would have defined their physico-chemical properties. Recent laboratory studies and observational data compiled from comets, meteorites and meteoroids [2] suggest that the porosity of these bodies should have decreased with time depending on the degree of collisions, aqueous alteration and heating. For typical stony targets, the tensile strength and gravity are the main properties that are defining the formation of impact craters and subsequently the degree of impact metamorphism and mineralogy of the shocked materials. However, little is known about the influence of porosity on the impact process although the crushing of pore space is an efficient mechanism for absorbing shock waves, also increasing the postshock temperatures [2]. In this context, a Near-Earth Object (NEO) sample return mission called Marco Polo is being studied within the Cosmic Vision programme. Such kind of mission would be returning to the Earth unaltered material from a NEO, just

  1. Influence of collisional rate coefficients on water vapour excitation

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Goicoechea, J. R.; Cernicharo, J.; Dubernet, M.-L.; Faure, A.

    2012-11-01

    Context. Water is a key molecule in many astrophysical studies that deal with star or planet forming regions, evolved stars, and galaxies. Its high dipole moment makes this molecule subthermally populated under the typical conditions of most astrophysical objects. This motivated calculation of various sets of collisional rate coefficients (CRC) for H2O (with He or H2), which are needed to model its rotational excitation and line emission. Aims: The most accurate set of CRC are the quantum rates that involve H2. However, they have been published only recently, and less accurate CRC (quantum with He or quantum classical trajectory (QCT) with H2) were used in many studies before that. This work aims to underline the impact that the new available set of CRC have on interpretations of water vapour observations. Methods: We performed accurate non-local, non-LTE radiative transfer calculations using different sets of CRC to predict the line intensities from transitions that involve the lowest energy levels of H2O (E < 900 K). The results obtained from the different CRC sets were then compared using line intensity ratio statistics. Results: For the whole range of physical conditions considered in this work, we find that the intensities based on the quantum and QCT CRC are in good agreement. However, at relatively low H2 volume density (n(H2) < 107 cm-3) and low water abundance (χ(H2O) < 10-6), which corresponds to physical conditions relevant when describing most molecular clouds, we find differences in the predicted line intensities of up to a factor of ~3 for the bulk of the lines. Most of the recent studies interpreting early Herschel Space Observatory spectra have used the QCT CRC. Our results show that, although the global conclusions from those studies will not be drastically changed, each case has to be considered individually, since depending on the physical conditions, the use of the QCT CRC may lead to a mis-estimate of the water vapour abundance of up to a

  2. Experimental investigations of weak definite and weak indefinite noun phrases.

    PubMed

    Klein, Natalie M; Gegg-Harrison, Whitney M; Carlson, Greg N; Tanenhaus, Michael K

    2013-08-01

    Definite noun phrases typically refer to entities that are uniquely identifiable in the speaker and addressee's common ground. Some definite noun phrases (e.g., the hospital in Mary had to go the hospital and John did too) seem to violate this uniqueness constraint. We report six experiments that were motivated by the hypothesis that these "weak definite" interpretations arise in "incorporated" constructions. Experiments 1-3 compared nouns that seem to allow for a weak definite interpretation (e.g., hospital, bank, bus, radio) with those that do not (e.g., farm, concert, car, book). Experiments 1 and 2 used an instruction-following task and picture-judgment task, respectively, to demonstrate that a weak definite need not uniquely refer. In Experiment 3 participants imagined scenarios described by sentences such as The Federal Express driver had to go to the hospital/farm. Scenarios following weak definite noun phrases were more likely to include conventional activities associated with the object, whereas following regular nouns, participants were more likely to imagine scenarios that included typical activities associated with the subject; similar effects were observed with weak indefinites. Experiment 4 found that object-related activities were reduced when the same subject and object were used with a verb that does not license weak definite interpretations. In Experiment 5, a science fiction story introduced an artificial lexicon for novel concepts. Novel nouns that shared conceptual properties with English weak definite nouns were more likely to allow weak reference in a judgment task. Experiment 6 demonstrated that familiarity for definite articles and anti-familiarity for indefinite articles applies to the activity associated with the noun, consistent with predictions made by the incorporation analysis.

  3. Experimental investigations of weak definite and weak indefinite noun phrases

    PubMed Central

    Klein, Natalie M.; Gegg-Harrison, Whitney M.; Carlson, Greg N.; Tanenhaus, Michael K.

    2013-01-01

    Definite noun phrases typically refer to entities that are uniquely identifiable in the speaker and addressee’s common ground. Some definite noun phrases (e.g. the hospital in Mary had to go the hospital and John did too) seem to violate this uniqueness constraint. We report six experiments that were motivated by the hypothesis that these “weak definite” interpretations arise in “incorporated” constructions. Experiments 1-3 compared nouns that seem to allow for a weak definite interpretation (e.g. hospital, bank, bus, radio) with those that do not (e.g. farm, concert, car, book). Experiments 1 and 2 used an instruction-following task and picture-judgment task, respectively, to demonstrate that a weak definite need not uniquely refer. In Experiment 3 participants imagined scenarios described by sentences such as The Federal Express driver had to go to the hospital/farm. The imagined scenarios following weak definite noun phrases were more likely to include conventional activities associated with the object, whereas following regular nouns, participants were more likely to imagine scenarios that included typical activities associated with the subject; similar effects were observed with weak indefinites. Experiment 4 found that object-related activities were reduced when the same subject and object were used with a verb that does not license weak definite interpretations. In Experiment 5, a science fiction story introduced an artificial lexicon for novel concepts. Novel nouns that shared conceptual properties with English weak definite nouns were more likely to allow weak reference in a judgment task. Experiment 6 demonstrated that familiarity for definite articles and anti- familiarity for indefinite articles applies to the activity associated with the noun, consistent with predictions made by the incorporation analysis. PMID:23685208

  4. Weak-shock reflection factors

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1993-09-07

    The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  5. Collisional Scaling of the Energy Transfer in Drift-Wave Zonal Flow Turbulence

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Manz, P.; Ramisch, M.; Stroth, U.

    2017-02-01

    The collisionality scaling of density and potential coupling together with zonal flow energy transfer and spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe array, consisting of 128 Langmuir probes, density and potential fluctuations are measured on four neighboring flux surfaces simultaneously over the complete poloidal circumference. By analyzing Reynolds stress and pseudo-Reynolds stress, it is found that, for increasing collisionality, the coupling between density and potential decreases which hinders the zonal flow drive. Also, as a consequence, the nonlinear energy transfer, as well as the zonal flow contribution to the complete turbulent spectrum, decreases the same way. This is in line with theoretical expectations and is a first experimental verification of the importance of collisionality for large-scale structure formation in magnetically confined toroidal plasmas.

  6. Investigation of the Electron-Ion Hybrid Instability in a Collisional Environment

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Enloe, L.; Sotnikov, V. I.; Amatucci, B.; Ganguli, G.

    2013-12-01

    The Electron-Ion Hybrid (EIH) instability, a transverse velocity shear-driven instability with frequency near the lower hybrid frequency, was previously predicted theoretically to explain the observation of lower hybrid waves in applications from the plasma sheet boundary layer to laser produced plasmas. The EIH instability has also been observed in the laboratory in scaled magnetospheric plasma conditions and in laser produced plasma expansion experiments across magnetic fields. In the work presented, we have expanded the theoretical framework to highly collisional plasmas for applications to the plasma region surrounding a hypersonic vehicle. In this collisional plasma layer, strongly sheared transverse flows can exist that can give rise to the EIH instability. We wish to study whether the resulting lower hybrid turbulence can impede communication to and from the hypersonic vehicle. Results from theory and a comparison from laboratory experiments on the generation of the EIH instability in a collisional plasma environment will be presented.

  7. Nonlinear evolution of an ion acoustic wave in two-species, moderately collisional plasma.

    NASA Astrophysics Data System (ADS)

    Valeo, E. J.; Berger, R. L.

    2004-11-01

    The dispersion properties of ion acoustic waves (IAW) in two-species plasma with disparate ion charges and masses has shown a sensitivity to inter-species collisions in the moderate-collisionality regime where the heavy, highly-charged ions are strongly collisional (fluid-like), but where light-ion Landau damping is competitive with light-heavy collisions.(R. Berger, E. Valeo and S. Brunner, Bull. Am. Phys. Soc., 47), QP1.98 (2002). The nonlinear evolution of a driven IAW is simulated using a low-noise hybrid simulation technique in which the electrons are a massless fluid, the heavy ions are a cold fluid, and the light ions are evolved using the δ f method with an evolving background distribution. The relative importance of several nonlinear effects in determining the mode amplitude, including (collisionally interrupted) trapping and nonlinear frequency shifts, is assessed.

  8. Formation and evolution of vortices in a collisional strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil

    2016-07-01

    Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge-Kutta-Gill time integrator.

  9. Collisional Scaling of the Energy Transfer in Drift-Wave Zonal Flow Turbulence.

    PubMed

    Schmid, B; Manz, P; Ramisch, M; Stroth, U

    2017-02-03

    The collisionality scaling of density and potential coupling together with zonal flow energy transfer and spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe array, consisting of 128 Langmuir probes, density and potential fluctuations are measured on four neighboring flux surfaces simultaneously over the complete poloidal circumference. By analyzing Reynolds stress and pseudo-Reynolds stress, it is found that, for increasing collisionality, the coupling between density and potential decreases which hinders the zonal flow drive. Also, as a consequence, the nonlinear energy transfer, as well as the zonal flow contribution to the complete turbulent spectrum, decreases the same way. This is in line with theoretical expectations and is a first experimental verification of the importance of collisionality for large-scale structure formation in magnetically confined toroidal plasmas.

  10. Electron-exchange and quantum screening effects on the collisional entanglement fidelity in degenerate quantum plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-06-01

    The influence of electron-exchange and quantum screening on the collisional entanglement fidelity for the elastic electron-ion collision is investigated in degenerate quantum plasmas. The effective Shukla-Eliasson potential and the partial wave method are used to obtain the collisional entanglement fidelity in quantum plasmas as a function of the electron-exchange parameter, Fermi energy, plasmon energy and collision energy. The results show that the quantum screening effect enhances the entanglement fidelity in quantum plasmas. However, it is found that the electron-exchange effect strongly suppresses the collisional entanglement fidelity. Hence, we have found that the influence of the electron-exchange reduces the transmission of quantum information in quantum plasmas. In addition, it is found that, although the entanglement fidelity decreases with an increase of the Fermi energy, it increases with increasing plasmon energy in degenerate quantum plasmas.

  11. Collisional Delta-f Scheme with Evolving Background for Transport Time Scale Simulations

    SciTech Connect

    E. Valeo; J. Krommes; S. Brunner

    1999-07-01

    The delta-f approach is extended for simulating the transport time-scale evolution of near-Maxwellian distributions in collisional plasmas. This involves simultaneously advancing weighted marker particles for representing the intrinsically kinetic component delta-f, and fluid equations for the parameters of the shifted Maxwellian background f(subSM). The issue of increasing numerical noise in a collisional delta-f algorithm, due to marker particle weight spreading, is addressed in detail, and a solution to this problem is proposed. To obtain higher resolution in critical regions of phase space, a practical procedure for implementing sources and sinks of marker particles is developed. As a proof of principal, this set of methods are applied for computing electrical Spitzer conductivity as well as collisional absorption in a homogeneous plasma.

  12. Collisional statistics and dynamics of two-dimensional hard-disk systems: From fluid to solid.

    PubMed

    Taloni, Alessandro; Meroz, Yasmine; Huerta, Adrián

    2015-08-01

    We perform extensive MD simulations of two-dimensional systems of hard disks, focusing on the collisional statistical properties. We analyze the distribution functions of velocity, free flight time, and free path length for packing fractions ranging from the fluid to the solid phase. The behaviors of the mean free flight time and path length between subsequent collisions are found to drastically change in the coexistence phase. We show that single-particle dynamical properties behave analogously in collisional and continuous-time representations, exhibiting apparent crossovers between the fluid and the solid phases. We find that, both in collisional and continuous-time representation, the mean-squared displacement, velocity autocorrelation functions, intermediate scattering functions, and self-part of the van Hove function (propagator) closely reproduce the same behavior exhibited by the corresponding quantities in granular media, colloids, and supercooled liquids close to the glass or jamming transition.

  13. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1972-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. Three electronic levels are accounted for in the microscopic model of the atom. Nonequilibrium processes with respect to population of levels and species plus temperature are considered. By using an asymptotic technique the shock morphology is found on a continuum flow basis. The asymptotic procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer in which the gas reaches local equilibrium. A family of numerical examples is displayed for different flow regimes. Argon and helium models are used in these examples.

  14. Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma.

    PubMed

    Honda, M

    2004-01-01

    I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in collisional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by the interaction of high power laser pulses with plasma.

  15. Insights on Continental Collisional Processes from GPS Data: Dynamics of the Peri-Adriatic Belts

    NASA Astrophysics Data System (ADS)

    Metois, Marianne; D'Agostino, Nicola; Avallone, Antonio; Chamot-Rooke, Nicolas; Rabaute, Alain; Duni, Llambro; Kuka, Neki; Koci, Rexhep; Georgiev, Ivan

    2015-04-01

    Recent advances in GPS technology and processing strategies make now spatial geodesy a suitable tool to image intra-continental slowly deforming areas such as collisional mountain belts and to get further insights on their kinematics and dynamics. Here, using the peri-Adriatic belts as a test case, we propose a methodology based on accurate GPS velocities to discriminate whether the current day deformation pattern over a mountain belt is controlled at the first order by gravity through gradients of gravitational potential energy. We calculate a new GPS velocity field covering the peri-Adriatic region and the entire Balkan Peninsula, taking advantage of newly available measurements coming from private networks operating since several years in this area. Based on these velocities, we derive the strain rate tensor and an interpolated velocity field using the method of Haines & Holt (1993). Opposite to the commonly accepted hypothesis considering the Balkans as part of the stable Eurasia, we show that the peninsula experiences significant compression across the Dinarides belt and extension toward the Aegean domain South of 44°N. We image a clockwise rotation of the entire peninsula around North Albania, and propose that the lithosphere under the old Scutari-Peck transform zone is weak and acts as a pivot point for this rotation since early Miocene. The Hellenic slab suction and the release of stress in the northern Hellenides subduction zone may favour the southwestward motion of the inner Balkan lithosphere, flowing between the rigid Apulia and Black sea blocks consequently. Because our velocity field is unusually dense in Slovenia and Austria, we picture the Eastern Alps deformation with great details and show that the Austrian Alps are moving eastward together with the Alpine foreland and Bohemian Promontory relative to stable Eurasia. Based on these new GPS data, we investigate the dynamics of the peri-Adriatic mountain belts, in particular of Albania and Eastern

  16. Quiet Monte Carlo Method for the Simulation of Semi-Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Albright, Brian J.

    2001-10-01

    The modeling of collisions among particles in a plasma poses a challenge for computer simulation. Traditional simulation methods are able to model well the extremes of highly collisional plasmas (MHD and Hall-MHD simulations) and collisionless plasmas (particle-in-cell simulations). However, the intermediate, semi-collisional regime is more problematic. In semi-collisional plasmas, the collision times are comparable to the dynamical time scales of interest in the system and the collisionality often varies as a function of time or position. Some examples include interpenetrating laser-produced plasmas, tokamak plasmas near edges and divertors, plasmas in the Earth's ionosphere, cometary exospheres, and the interstellar medium. Some PIC plasma simulations have been developed that can, in a limited way, model collisions. These include the early work of Shanny et al. [Phys. Fluids 10, 1281 (1967)], the binary collision model of Takizuka and Abe [J. Comput. Phys. 25 205 (1977)], and the collision field method of Jones et al. [J. Comput. Phys. 117, 194 (1996)]. In this talk, a new approach to particle simulation, called ``quiet direct simulation Monte Carlo'' (QDSMC), will be described that can, in principle, treat plasmas with arbitrary and arbitrarily varying collisionality. The essence of the QDSMC approach is the use of carefully chosen weights for the particles (e.g., Gauss-Hermite, for Maxwellian distributions), which are destroyed each time step after the particle information is deposited onto the grid and then reconstructed at the beginning of the next time step. The method overcomes the usual limitations of particle methods: limited dynamical range and excessive statistical noise. The QDSMC method will be discussed, as will its application as ``proof of principle'' to diffusion, hydrodynamics, and radiation transport. A QDSMC formulation of collisional, kinetic plasma simulation will be outlined, and preliminary results will be presented.

  17. Determination of collisional quenching rate coefficients of metastable nitrogen molecules by air pollutants

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Itoh, Haruo

    2009-10-01

    It has already been investigated on the determination of the collisional quenching rate coefficients of the metastable nitrogen molecules N2(A^3σu^+ ) by some air pollutants [1] in our laboratory. In this report, we present the result on the collisional quenching rate coefficient of N2(A^3σu^+ ) by formaldehyde (CH2O) using a theoretical procedure that takes into account the reflection of metastables at the boundary. As far as we know, this report is the first result of the collisional quenching rate coefficients of N2(A^3σu^+ ) by CH2O. Formaldehyde is a colorless gas with the foul odor, and elements of the adhesive, paints, and preservative, etc. It is widely used for construction materials such as houses, because it is low cost. It is released from paint of construction materials in air, and, in that case, it is known as one of the causative agents of so-called ``Sick building syndrome'' to influence the human body harmfully even if it is a low concentration. The obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by CH2O is (4.7±0.4) x 10-12 cm^3/s. Because the collisional quenching rate coefficient by CH2O is large, it is understood that CH2O receives energy easily from N2(A^3σu^+ ). In addition, we reports on the obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by some air pollutants. [1] S. Suzuki, T.Suzuki and H.Itoh: Proc. of XXVIII ICPIG (Prague, Czech Republic), (2007) 1P01-40.

  18. Weak interactions and presupernova evolution

    SciTech Connect

    Aufderheide, M.B. State Univ. of New York . Dept. of Physics)

    1991-02-19

    The role of weak interactions, particularly electron capture and {beta}{sup {minus}} decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs.

  19. [Acute muscle weakness: differential diagnoses].

    PubMed

    Antoniuk, Sérgio A

    2013-09-06

    Acute muscle weakness, a common disorder in pediatrics, can occur from impairment of any part of the motor unit, including the upper motor neuron, lower motor neuron, peripheral nerve, neuromuscular junction or muscle. It usually manifests itself as an acute or hyperacute motor disorder of progressive or rapidly progressive course. Acute muscle weakness is a neuromuscular emergency, especially if it affects the respiratory or oropharyngeal musculature. The location of the motor weakness and associated neurological signs and symptoms usually indicate the location of the lesion. The onset, speed and clinical evolution, as well as other data from the patient's history, suggest the pathophysiological differential diagnosis. Successful treatment depends on the immediate and correct differential diagnosis. This paper presents the main differential diagnosis of main neuromuscular diseases that cause acute muscle weakness in children.

  20. Weak Deeply Virtual Compton Scattering

    SciTech Connect

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2007-03-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.

  1. Collisional narrowing by polyatomic buffer gases in an optically pumped CH3F laser

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Koepf, G. A.

    1980-01-01

    The gain linewidth of an optically pumped CH3F molecular laser is observed with the addition of various polyatomic buffer gases. This is interpreted as collisional (Dicke) narrowing. The measurement is the first observation of collisional narrowing by polyatomic buffer gases. It is also the first observation of the effect in a laser oscillator. The effect was observed using a heterodyne mixing technique at the laser emission frequency of 604 GHz. Collision cross sections for SF6-CH3F and CS2-CH3F are obtained.

  2. Is collisional breakup an important process within mixed-phase deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Khain, A.; Mayer, F.

    2003-04-01

    The microphysics of deep convective clouds determines their precipitation efficiency as well as the dynamical evolution of cloud systems and is therefore of great importance for numerical weather prediction, flood forecasting and regional climate modeling. Of all cloud systems mixed-phase deep convection is maybe the most complex and least understood. One reason is that the numerous microphysical processes taking place are highly nonlinear and strongly coupled with each other as well as with the hydrodynamics of the cloud. Collisional breakup of raindrops is one of these cloud microphysical processes, but is often neglected or not well represented in state-of-the-art cloud resolving models. The importance of collisional breakup is well known for tropical cloud systems, which are dominated by warm phase processes. In addition various studies using so-called rainshaft models showed that collisional breakup can alter the raindrop size distribution below cloud base. But what happens within the clouds and especially within strong convective updrafts? Can collisional breakup lead to a different cloud evolution by changing the drop size distribution? Using the Hebrew University Cloud Model (HUCM), which includes the most detailed spectral microphysics model available today, we performed a sensitivity study to answer these questions. Collisional breakup was therefore recently included in HUCM using Bleck's numerical method, which is standard for simulation of the breakup process. Our breakup scheme itself is mainly based on the parameterization of Low and List (1982, JAS), but includes also additional data for small raindrops by Beard and Ochs (1995, JAS). As a test case a deep convective mixed-phase cloud is simulated with initial conditions based on a sounding from 13 August 1999, Midland/Texas. We present a detailed analysis of the simulated cloud evolution with and without collisional breakup taken into account. The conclusion from our sensitivity study is that

  3. Conservation laws for collisional and turbulent transport processes in toroidal plasmas with large mean flows

    NASA Astrophysics Data System (ADS)

    Sugama, H.; Nunami, M.; Nakata, M.; Watanabe, T.-H.

    2017-02-01

    A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions, which can simultaneously describe classical, neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms, which are desirable properties for long-time global transport simulation.

  4. Collisional energy losses in relativistic nuclear collisions within an effective quasiparticle model

    SciTech Connect

    Tarasov, Yu. A.

    2009-10-15

    We investigate the collisional energy losses of the fast gluons and light quarks in quark-gluon plasma produced in central (Au+Au) collisions at at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC) ({radical}(s{sub NN})=200 GeV). We use the effective quasiparticle model for investigation of physical characteristic of expanding plasma. We take into account the possibility of hot glue production at the first stage. We calculate these energy losses and compare them with radiative energy losses of gluons and quarks in an analogous model. We show that radiative energy losses exceed considerably the collisional energy losses.

  5. 3D Fokker-Planck modeling of axisymmetric collisional losses of fusion products in TFTR

    SciTech Connect

    Goloborod`ko, V.Ya.; Reznik, S.N.; Yavorskij, V.A.; Zweben, S.J.

    1995-10-01

    Results of a 3D (in constants of motion space) Fokker-Planck simulation of collisional losses of fusion products in axisymmetric DT and DD discharges on TFTR are presented. The distributions of escaped ions over poloidal angle, pitch angle, and their energy spectra are obtained. Axisymmetric collisional losses of fusion products are found to be less than (2--5)%. The distribution of confined fusion products is shown to be strongly anisotropic and nonuniform in the radial coordinate mainly for slowed-down fusion products with small longitudinal energy. Comparison of these results of modeling and experimental data is done.

  6. New regime of low ion collisionality in the neoclassical equilibrium of tokamak plasmas

    SciTech Connect

    Ramos, J. J.

    2015-07-15

    The neoclassical description of an axisymmetric toroidal plasma equilibrium is formulated for an unconventionally low ordering of the collisionality that suits realistic thermonuclear fusion conditions. This requires a drift-kinetic analysis to the second order of the ion Larmor radius, which yields a new contribution to the leading solution for the non-Maxwellian part of the ion distribution function if the equilibrium geometry is not up-down symmetric. An explicit geometrical factor weighs this second Larmor-radius order, low-collisionality effect that modifies the neoclassical ion parallel flow, and the ion contribution to the bootstrap current.

  7. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    SciTech Connect

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.

  8. Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation

    NASA Astrophysics Data System (ADS)

    Autrique, D.; Gornushkin, I.; Alexiades, V.; Chen, Z.; Bogaerts, A.; Rethfeld, B.

    2013-10-01

    A study of ns-laser ablation is presented, which focuses on the transient behavior of the physical processes that act in and above a copper sample. A dimensionless multiphase collisional radiative model describes the interplay between the ablation, collisional, and radiative mechanisms. Calculations are done for a 6 ns-Nd:YAG laser pulse operating at 532 nm and fluences up to 15 J/cm2. Temporal intensity profiles as well as transmissivities are in good agreement with experimental results. It is found that volumetric ablation mechanisms and photo-processes both play an essential role in the onset of ns-laser induced breakdown.

  9. Exploring the collisional evolution of the asteroid belt

    NASA Astrophysics Data System (ADS)

    Bottke, W.; Broz, M.; O'Brien, D.; Campo Bagatin, A.; Morbidelli, A.

    2014-07-01

    The asteroid belt is a remnant of planet-formation processes. By modeling its collisional and dynamical history, and linking the results to constraints, we can probe how the planets and small bodies formed and evolved. Some key model constraints are: (i) The wavy shape of the main-belt size distribution (SFD), with inflection points near 100-km, 10--20-km, 1 to a few km, and ˜0.1-km diameter; (ii) The number of asteroid families created by the catastrophic breakup of large asteroid bodies over the last ˜ 4 Gy, with the number of disrupted D > 100 km bodies as small as ˜20 or as large as 60; (iii) the flux of small asteroids derived from the main belt that have struck the Moon over the last 3.5 Ga --- crater SFDs on lunar terrains with known ages suggest the D < 0.1 km projectile population has not varied appreciably over this interval; (iv) Vesta has an intact basaltic crust with two very large basins, but only two, on its surface. Fits to these parameters allow us to predict the shape of the initial main-belt SFD after accretion and the approximate asteroid disruption scaling law, with the latter consistent with numerical hydrocode simulations. Overall, we find that the asteroid belt probably experienced the equivalent of ˜6--10 Gy of comminution over its history. This value may seem strange, considering the solar system is only 4.56 Gy old. One way to interpret it is that the main belt once had more mass that was eliminated by early dynamical processes between 4--4.56 Ga. This would allow for more early grinding, and it would suggest the main belt's wavy-shaped SFD is a ''fossil'' from a more violent early epoch. Simulations suggest that most D > 100 km bodies have been significantly battered, but only a fraction have been catastrophically disrupted. Conversely, most small asteroids today are byproducts of fragmentation events. These results are consistent with growing evidence that most of the prominent meteorite classes were produced by young asteroid

  10. Precision metrology using weak measurements.

    PubMed

    Zhang, Lijian; Datta, Animesh; Walmsley, Ian A

    2015-05-29

    Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

  11. Weak Energy: Form and Function

    NASA Astrophysics Data System (ADS)

    Parks, Allen D.

    The equation of motion for a time-dependent weak value of a quantum mechanical observable contains a complex valued energy factor—the weak energy of evolution. This quantity is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. It is shown that this energy: (i) is manifested as dynamical and geometric phases that govern the evolution of the weak value during the measurement process; (ii) satisfies the Euler-Lagrange equations when expressed in terms of Pancharatnam (P) phase and Fubini-Study (FS) metric distance; (iii) provides for a PFS stationary action principle for quantum state evolution; (iv) time translates correlation amplitudes; (v) generalizes the temporal persistence of state normalization; and (vi) obeys a time-energy uncertainty relation. A similar complex valued quantity—the pointed weak energy of an evolving quantum state—is also defined and several of its properties in PFS coordinates are discussed. It is shown that the imaginary part of the pointed weak energy governs the state's survival probability and its real part is—to within a sign—the Mukunda-Simon geometric phase for arbitrary evolutions or the Aharonov-Anandan (AA) geometric phase for cyclic evolutions. Pointed weak energy gauge transformations and the PFS 1-form are defined and discussed and the relationship between the PFS 1-form and the AA connection 1-form is established. [Editors note: for a video of the talk given by Prof. Parks at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-25.

  12. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    SciTech Connect

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-09-07

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  13. Comparison of continuous and discontinuous collisional bumpers: Dimensionally scaled impact experiments into single wire meshes

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark; See, Thomas; Bernhard, Ronald; Cardenas, Frank; Davidson, William; Haynes, Jerry

    1992-01-01

    An experimental inquiry into the utility of discontinuous bumpers was conducted to investigate the collisional outcomes of impacts into single grid-like targets and to compare the results with more traditional bumper designs that employ continuous sheet stock. We performed some 35 experiments using 6.3 and 3.2 mm diameter spherical soda-lime glass projectiles at low velocities (less than 2.5 km/s) and 13 at velocities between 5 and 6 km/s, using 3.2 mm spheres only. The thrust of the experiments related to the characterization of collisional fragments as a function of target thickness or areal shield mass of both bumper designs. The primary product of these experiments was witness plates that record the resulting population of collisional fragments. Substantial interpretive and predictive insights into bumper performance were obtained. All qualitative observations (on the witness plates) and detailed measurements of displaced masses seem simply and consistently related only to bumper mass available for interaction with the impactor. This renders the grid bumper into the superior shield design. These findings present evidence that discontinuous bumpers are a viable concept for collisional shields, possibly superior to continuous geometries.

  14. Optimization of CFETR baseline performance by controlling rotation shear and pedestal collisionality through integrated modeling

    NASA Astrophysics Data System (ADS)

    Jian, Xiang; Chen, Jiale; Chan, Vincent S.; Zhuang, Ge; Li, Guoqiang; Deng, Zhao; Shi, Nan; Xu, Guoliang; Staebler, Gary M.; Guo, Wenfeng

    2017-04-01

    The optimization of a CFETR baseline scenario (Chan et al 2015 Nucl. Fusion 55 023017) with an electron cyclotron (EC) wave and neutral beam (NB) is performed using a multi-dimensional code suite. TGLF and NEO are used to calculate turbulent and neoclassical transport. The evaluation of sources and sinks, as well as the current evolution, are performed using ONETWO, and the equilibrium is updated using EFIT. The pedestal is consistent with the EPED model. Rotation shear is controlled using NB. It has been found that both fusion gain Q and NB power deposited in the edge increase with decreasing NB energy, with NB providing current drive, torque, energy and particle source simultaneously. By using an optimized combination of two NBs, Q can be kept at a high level while the NB edge power is reduced. Pedestal collisionality is controlled to find an optimization path for Q by trading off between the pedestal density and temperature with the pedestal pressure fixed. It has been found that Q increases with pedestal collisionality, while the density peaking factor (DPF) remains almost unchanged. The invariance of DPF can be explained by the change of the dominant type of turbulence from the core to the edge (i.e. trapped electron mode in the core and ion temperature gradient mode at the edge), and collisionality has the opposite effect on particle transport for these two modes. A weaker dependence of DPF on collisionality makes a higher density operation more favorable for fusion gain.

  15. Multi-Zone Simulations of the Collisional Evolution of Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Granata, V.; Marzari, F.; Davis, D. R.; Paolicchi, P.; Vanzani, V.

    2011-03-01

    We have adapted the planet building code, a multizone code, to study the collisional evolution of asteroids in the main belt. In this way the effects of resonances and Yarkowski's drift are statistically included and we can estimate the flux of bodies into NEO orbits.

  16. The quest to find the plasma edge and discover a collisionally modified Bohm criterion

    NASA Astrophysics Data System (ADS)

    Franklin, R. N.; Franklin

    2013-10-01

    The concepts of `plasma edge' and `collisionally modified Bohm criterion' have occupied attention for many years since the publication of work by Bohm that gave rise to the Bohm criterion. He acknowledged that his description of the plasma-sheath transition was incomplete. We summarize work that shows that neither concept has precision, at the same time giving a critique.

  17. Comments on "a study of the collisional fragmentation problem using the gamma distribution approximation".

    PubMed

    Nadarajah, Saralees

    2007-04-15

    M. Kostoglou and A.J. Karabelas [J. Colloid Interface Sci. 303 (2006) 419-429] proposed using a gamma distribution approximation to study a collisional fragmentation problem. This approximation involved two types of integrals and the use of continued fraction expansions for their computation. In this Comment, explicit expressions are derived for computing the integrals.

  18. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1973-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. In the microscopic model of the atom, three electronic levels are accounted for. By using an asymptotic technique, the shock morphology is found on a continuum flow basis. This procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer. The results show four main interesting points: (1) on structuring the transport shock, ionization and excitation rates must be included in the formulation, since the flow is not frozen with respect to the population of the different electronic levels; (2) an electron temperature precursor appears at the beginning of the transport shock; (3) the collisional layer is rationally reduced to quadrature for special initial conditions, which (4) are obtained from new Rankine-Hugoniot relations for the inner shock.

  19. Collisional Ion and Electron Scale Gyrokinetic Simulations in the Tokamak Pedestal

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.; Snyder, P. B.

    2016-10-01

    A new gyrokinetic solver, CGYRO, has been developed for precise studies of high collisionality regimes, such as the H-mode pedestal and L-mode edge. Building on GYRO and NEO, CGYRO uses the same velocity-space coordinates as NEO to optimize the accuracy of the collision dynamics and allow for advanced operators beyond the standard Lorentz pitch-angle scattering model. These advanced operators include energy diffusion and finite-FLR collisional effects. The code is optimized for multiscale (coupled electron and ion turbulence scales) simulations, employing a new spatial discretization and array distribution scheme that targets scalability on next-generation (exascale) HPC systems. In this work, CGYRO is used to study the complex spectrum of modes in the pedestal region. The onset of the linear KBM with full collisional effects is assessed to develop an improved KBM/RBM model for EPED. The analysis is extended to high k to explore the role of electron-scale (ETG-range) physics. Comparisons with new analytic collisional theories are made. Inclusion of sonic toroidal rotation (including full centrifugal effects) for studies including heavy wall impurities is also reported. Work supported in part by the US DOE under DE-FC02-06ER54873 and DE-FC02-08ER54963.

  20. Warping the Weak Gravity Conjecture

    NASA Astrophysics Data System (ADS)

    Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne

    2016-08-01

    The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.

  1. Weak values in continuous weak measurements of qubits

    NASA Astrophysics Data System (ADS)

    Qin, Lupei; Liang, Pengfei; Li, Xin-Qi

    2015-07-01

    For continuous weak measurements of qubits, we obtain exact expressions for weak values (WVs) from the postselection restricted average of measurement outputs, by using both the quantum-trajectory equation (QTE) and the quantum Bayesian approach. The former is applicable to short-time weak measurement, while the latter can relax the measurement strength to finite. We find that even in the "very" weak limit the result can be essentially different from the one originally proposed by Aharonov, Albert, and Vaidman (AAV), in the sense that our result incorporates nonperturbative correction which could be important when the AAV WV is large. Within the Bayesian framework, we obtain also elegant expressions for finite measurement strength and find that the amplifier's noise in quantum measurement has no effect on the WVs. In particular, we obtain very useful results for homodyne measurement in a circuit-QED system, which allows for measuring the real and imaginary parts of the AAV WV by simply tuning the phase of the local oscillator. This advantage can be exploited as an efficient state-tomography technique.

  2. Weak localization and weak antilocalization in doped germanium epilayers

    NASA Astrophysics Data System (ADS)

    Newton, P. J.; Mansell, R.; Holmes, S. N.; Myronov, M.; Barnes, C. H. W.

    2017-02-01

    The magnetoresistance of 50 nm thick epilayers of doped germanium is measured at a range of temperatures down to 1.6 K. Both n- and p-type devices show quantum corrections to the conductivity in an applied magnetic field, with n-type devices displaying weak localization and p-type devices showing weak antilocalization. From fits to these data using the Hikami-Larkin-Nagaoka model, the phase coherence length of each device is extracted, as well as the spin diffusion length of the p-type device. We obtain phase coherence lengths as large as 325 nm in the highly doped n-type device, presenting possible applications in quantum technologies. The decay of the phase coherence length with temperature is found to obey the same power law of lϕ ∝ Tc, where c = -0.68 ± 0.03, for each device, in spite of the clear differences in the nature of the conduction. In the p-type device, the measured spin diffusion length does not change over the range of temperatures for which weak antilocalization can be observed. The presence of a spin-orbit interaction manifested as weak antilocalization in the p-type epilayer suggests that these structures could be developed for use in spintronic devices such as the spin-FET, where significant spin lifetimes would be important for efficient device operation.

  3. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  4. Cosmology and the weak interaction

    SciTech Connect

    Schramm, D.N. ):)

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  5. From pebbles to dust: experiments to observe low-velocity collisional outcomes

    NASA Astrophysics Data System (ADS)

    Dove, A.; Jorges, J.; Colwell, J. E.

    2015-12-01

    Particle size evolution in planetary ring systems can be driven by collisions at relatively low velocities (<1 m/s) occurring between objects with a range of sizes from very fine dust to decimeter-sized objects. In these complex systems, collisions between centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. The outcomes of these collisions are dependent on factors such as collisional energy, particle size, and particle morphology. Numerical simulations are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of these parameters. We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome; in the case of the mantled impactors, we can assess how much of the powder was released in the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. Impact velocities range from about 20-60 cm/s, and we observe that mantling of particles significantly reduces their coefficients of restitution. These results will contribute to an empirical model of collisional outcomes that can help refine our understanding of dusty ring system collisional evolution.

  6. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny

    NASA Astrophysics Data System (ADS)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden

    2016-07-01

    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define "seagull"-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  7. Anisotropic weak localization of light.

    PubMed

    Sapienza, Riccardo; Mujumdar, Sushil; Cheung, Cecil; Yodh, A G; Wiersma, Diederik

    2004-01-23

    We have observed angular anisotropy in weak localization of light from highly scattering, orientationally ordered, nematic liquid crystals. This demonstration of angular anisotropy in a multiple-scattering interference phenomenon was facilitated by a light scattering instrument with extraordinary angular resolution. The measured anisotropies were consistent with a simple model of coherent backscattering generalized for propagation-direction dependent mean free paths.

  8. N-{Delta} weak transition

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-11-23

    A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.

  9. Theory of weak hypernuclear decay

    SciTech Connect

    Dubach, J.F.; Feldman, G.B.; Holstein, B.R. |; de la Torre, L.

    1996-07-01

    The weak nomesonic decay of {Lambda}-hypernuclei is studied in the context of a one-meson-exchange model. Predictions are made for the decay rate, the {ital p}/{ital n} stimulation ratio and the asymmetry in polarized hypernuclear decay. Copyright {copyright} 1996 Academic Press, Inc.

  10. Weak localization of seismic waves.

    PubMed

    Larose, E; Margerin, L; Van Tiggelen, B A; Campillo, M

    2004-07-23

    We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity.

  11. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.

  12. Towards adaptive kinetic-fluid simulations of weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Kolobov, V. I.; Arslanbekov, R. R.

    2012-02-01

    This paper describes an Adaptive Mesh and Algorithm Refinement (AMAR) methodology for multi-scale simulations of gas flows and the challenges associated with extending this methodology for simulations of weakly ionized plasmas. The AMAR method combines Adaptive Mesh Refinement (AMR) with automatic selection of kinetic or continuum solvers in different parts of computational domains. We first review the discrete velocity method for solving Boltzmann and Wang Chang-Uhlenbeck kinetic equations for rarefied gases. Then, peculiarities of AMR implementation with octree Cartesian mesh are discussed. A Unified Flow Solver (UFS) uses AMAR method with adaptive Cartesian mesh to dynamically introduce kinetic patches for multi-scale simulations of gas flows. We describe fluid plasma models with AMR capabilities and illustrate how physical models affect simulation results for gas discharges, especially in the areas where electron kinetics plays an important role. We introduce Eulerian solvers for plasma kinetic equations and illustrate the concept of adaptive mesh in velocity space. Specifics of electron kinetics in collisional plasmas are described focusing on deterministic methods of solving kinetic equations for electrons under different conditions. We illustrate the appearance of distinct groups of electrons in the cathode region of DC discharges and discuss the physical models appropriate for each group. These kinetic models are currently being incorporated into AMAR methodology for multi-scale plasma simulations.

  13. Experimental evidence of resonant energy collisional transfers between argon 1s and 2p states and ground state H atoms by laser collisional induced fluorescence

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; van Dijk, Jan; Kroesen, Gerrit

    2015-04-01

    In this paper, laser collisional induced fluorescence (LCIF) is used to probe resonant excitation transfers in an argon/hydrogen plasma resulting from heavy particle collisions. Different radiative transitions between the 1s and 2p states (in Paschen's notation) of argon are optically pumped by a nanosecond laser pulse. The spontaneous fluorescence and collisional responses of the argon and hydrogen systems are monitored by optical emission spectroscopy. A surfatron plasma source is used to generate an argon plasma with a few per cent hydrogen addition at pressures between 0.65 and 20 mbar. The electron density is measured independently by means of Thomson scattering. The overall response of the plasma due to optical pumping of argon is briefly discussed and an overview of the known heteronuclear excitation transfers in an argon/hydrogen plasma is given. The propagation of the shortcut in the Ar(1s) to H(n = 2) excitation transfer due to the optical pumping of the Ar(1s) states is seen in the atomic hydrogen LCIF responses. For the first time, we give direct experimental evidence of the existence of an efficient excitation transfer: Additionally, measurements are performed in order to estimate the resonant energy transfer between the resonant argon 1s states and hydrogen atoms: for which no previously measured cross sections could be found in the literature. These are extra quenching channels of argon 1s and 2p states that should be included in collisional-radiative modeling of argon-hydrogen discharges. The high repetition rate of the dye laser allows us to obtain a high sensitivity in the measurements. LCIF is shown to be a powerful tool for unraveling electron and also heavy particle excitation channels in situ in the plasma phase. The technique was previously developed for measuring electron or species densities locally in the plasma, but we show that it can be advantageously used to probe collisional transfers between very short-lived species which exist

  14. THE DEBRIS DISK OF VEGA: A STEADY-STATE COLLISIONAL CASCADE, NATURALLY

    SciTech Connect

    Mueller, S.; Loehne, T.; Krivov, A. V.

    2010-01-10

    The archetypical debris disk around Vega has been observed intensively over the past 25 years. It has been argued that the resulting photometric data and images may be in contradiction with a standard, steady-state collisional scenario of the disk evolution. In particular, the emission in the mid-infrared (mid-IR) appears to be in excess of what is expected from a 'Kuiper belt' at approx100 AU, which is evident in the submillimeter images and inferred from the majority of photometric points. Here we re-address the question of whether or not the Vega disk observations are compatible with a continuous dust production through a collisional cascade. Instead of seeking a size and spatial distribution of dust that provide the best fit to observations, our approach involves physical modeling of the debris disk 'from the sources'. We assume that dust is maintained by a belt of parent planetesimals, and employ our collisional and radiative transfer codes to consistently model the size and radial distribution of the disk material and then thermal emission of dust. In doing so, we vary a broad set of parameters, including the stellar properties, the exact location, extension, and dynamical excitation of the planetesimal belt, chemical composition of solids, and the collisional prescription. We are able to reproduce the spectral energy distribution in the entire wavelength range from the near-IR to millimeter, as well as the mid-IR and submillimeter radial brightness profiles of the Vega disk. Thus, our results suggest that the Vega disk observations are not in contradiction with a steady-state collisional dust production, and we put important constraints on the disk parameters and physical processes that sustain it. The total disk mass in approx<100 km-sized bodies is estimated to be approx10 Earth masses. Provided that collisional cascade has been operating over much of the Vega age of approx350 Myr, the disk must have lost a few Earth masses of solids during that time. We

  15. Collisional evolution - an analytical study for the nonsteady-state mass distribution

    NASA Astrophysics Data System (ADS)

    Martins, R. Vieira

    1999-05-01

    To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution

  16. Weak values and weak coupling maximizing the output of weak measurements

    SciTech Connect

    Di Lorenzo, Antonio

    2014-06-15

    In a weak measurement, the average output 〈o〉 of a probe that measures an observable A{sup -hat} of a quantum system undergoing both a preparation in a state ρ{sub i} and a postselection in a state E{sub f} is, to a good approximation, a function of the weak value A{sub w}=Tr[E{sub f}A{sup -hat} ρ{sub i}]/Tr[E{sub f}ρ{sub i}], a complex number. For a fixed coupling λ, when the overlap Tr[E{sub f}ρ{sub i}] is very small, A{sub w} diverges, but 〈o〉 stays finite, often tending to zero for symmetry reasons. This paper answers the questions: what is the weak value that maximizes the output for a fixed coupling? What is the coupling that maximizes the output for a fixed weak value? We derive equations for the optimal values of A{sub w} and λ, and provide the solutions. The results are independent of the dimensionality of the system, and they apply to a probe having a Hilbert space of arbitrary dimension. Using the Schrödinger–Robertson uncertainty relation, we demonstrate that, in an important case, the amplification 〈o〉 cannot exceed the initial uncertainty σ{sub o} in the observable o{sup -hat}, we provide an upper limit for the more general case, and a strategy to obtain 〈o〉≫σ{sub o}. - Highlights: •We have provided a general framework to find the extremal values of a weak measurement. •We have derived the location of the extremal values in terms of preparation and postselection. •We have devised a maximization strategy going beyond the limit of the Schrödinger–Robertson relation.

  17. Tomography and weak lensing statistics

    SciTech Connect

    Munshi, Dipak; Coles, Peter; Kilbinger, Martin E-mail: peter.coles@astro.cf.ac.uk

    2014-04-01

    We provide generic predictions for the lower order cumulants of weak lensing maps, and their correlators for tomographic bins as well as in three dimensions (3D). Using small-angle approximation, we derive the corresponding one- and two-point probability distribution function for the tomographic maps from different bins and for 3D convergence maps. The modelling of weak lensing statistics is obtained by adopting a detailed prescription for the underlying density contrast that involves hierarchal ansatz and lognormal distribution. We study the dependence of our results on cosmological parameters and source distributions corresponding to the realistic surveys such as LSST and DES. We briefly outline how photometric redshift information can be incorporated in our results. We also show how topological properties of convergence maps can be quantified using our results.

  18. Collisional model of energy dissipation in three-dimensional granular impact

    NASA Astrophysics Data System (ADS)

    Bester, Cacey Stevens; Behringer, Robert P.

    2017-03-01

    We study the dynamic process occurring when a granular assembly is displaced by a solid impactor. The momentum transfer from the impactor to the target is shown to occur through sporadic, normal collisions of high force carrying grains at the intruder surface. We therefore describe the stopping force of the impact through a collisional-based model. To verify the model in impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium by using high-speed imaging of its trajectory. By varying the intruder shape and granular target, intruder-grain interactions are inferred from the consequent path. As a result, we connect the drag to the effect of intruder shape and grain density based on a proposed collisional model.

  19. Collisional processes in the O2 B 3Σu- state

    NASA Astrophysics Data System (ADS)

    Sick, Volker; Decker, Michael; Heinze, Johannes; Stricker, Winfried

    1996-02-01

    Collisional processes, which influence quantitative laser-induced fluorescence (LIF) measurements involving the B3Σ u- state of molecular oxygen, were investigated. Since the B state is strongly predissociating, these processes are though to be important only at higher pressure. However, we found that in LIF experiments in methane/air flames in the pressure range between atmospheric pressure and 40 bar collisional quenching and rotational energy transfer (RET) are important even at moderate pressures. Total quenching cross sections of 30(± 10) Å2for ν' = 2 and 100(± 30) Å2for ν = 0 and total RET cross sections of 40(± 16) Å2 were found. An upper limit of 0.7 Å 2 for the cross section for vibrational energy transfer (VET) out of ν' = 2 could be determined.

  20. COLLISIONALLY EXCITED FILAMENTS IN HUBBLE SPACE TELESCOPE Hα AND Hβ IMAGES OF HH 1/2

    SciTech Connect

    Raga, A. C.; Castellanos-Ramírez, A.; Reipurth, B.; Chiang, Hsin-Fang; Bally, J.

    2015-01-01

    We present new Hα and Hβ images of the HH 1/2 system, and we find that the Hα/Hβ ratio has high values in ridges along the leading edges of the HH 1 bow shock and of the brighter condensations of HH 2. These ridges have Hα/Hβ = 4 → 6, which is consistent with collisional excitation from the n = 1 to the n = 3 and 4 levels of hydrogen in a gas of temperatures T = 1.5 → 10 × 10{sup 4} K. This is therefore the first direct evidence that the collisional excitation/ionization region of hydrogen just behind Herbig-Haro shock fronts is detected.

  1. Morphology of collisional nonlinear spectra in H2-Kr and H2-Xe mixtures.

    PubMed

    Głaz, Waldemar; Bancewicz, Tadeusz; Godet, Jean-Luc; Maroulis, George; Haskopoulos, Anastasios

    2013-03-28

    This article reports new results of theoretical and numerical studies of spectral features of the collision-induced hyper-Rayleigh light scattered in dihydrogen-noble gas (H2-Rg) mixtures. The most massive and polarizable scattering supermolecules with Rg = Kr and Xe have been added to the previously considered systems in order to gain a more complete insight into the evolution of the spectral properties. The symmetry adapted components of the first collisional hyperpolarizabilities are obtained by means of the quantum chemistry numerical routines supplemented with appropriate theoretical methods. Roto-translational spectral lines are calculated on the grounds of the quantum-mechanical as well as semi-classical approach. The role of particular hyperpolarizability components in forming the line shapes is discussed. The intensities of the lines are compared with those obtained for less massive scatterers. Advantages of prospective application of the new scattering systems for experimental detection of the nonlinear collisional effects are indicated.

  2. Collisional-Radiative Recombination of Ar^+ Ions with Electrons in a Flowing Afterglow Plasma.

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, Miroslaw P.; Golde, Michael F.; Johnsen, Rainer

    1998-10-01

    Langmuir probe measurements of electron densities, n_e, in an Ar^+/e^- plasma are quantitatively consistent with the semi-empirical rate coefficient for collisional-radiative recombination given by Stevefelt et al.(J. Stevefelt et al., Phys. Rev A 12, 1246 (1975)) : α_cr=1.55×10-10T-0.63 + 6.0×10-9T-2.18n_e^0.37+3.8×10- 9T-4.5ne over the initial electron density range 5×10^9-5×10^10cm-3 at T=300K. Optical emission spectroscopy data reveal transitions from highly-excited states of Ar to Ar(^3P). We believe that the collisional-radiative recombination of Ar^+ ions is responsible for the presence of Ar metastable atoms in flowing afterglow plasmas.

  3. Collisional relaxation of bi-Maxwellian plasma temperatures in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.

    2016-07-01

    In the literature, collisional processes are customarily discussed within the context of the Boltzmann-Balescu-Lenard-Landau type of collision integral, but such an equation is strictly valid for unmagnetized plasmas. For plasmas immersed in the ambient magnetic field, the foundational equation that describes binary collisions must be generalized to include the effects of magnetic field. The present paper makes use of such an equation in order to describe the collisional relaxation of temperatures under the assumption of bi-Maxwellian velocity distribution function. The formalism derived in the present paper may be useful for studying the effects of binary collisions on the isotropization of temperatures in the solar wind plasma, among possible applications.

  4. Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Benetti, F. P. C.; Marcos, B.

    2017-02-01

    Systems of particles with long-range interactions present two important processes: first, the formation of out-of-equilibrium quasistationary states (QSS) and, second, the collisional relaxation towards Maxwell-Boltzmann equilibrium in a much longer time scale. In this paper, we study the collisional relaxation in the Hamiltonian mean-field model using the appropriate kinetic equations for a system of N particles at order 1 /N : the Landau equation when collective effects are neglected and the Lenard-Balescu equation when they are taken into account. We derive explicit expressions for the diffusion coefficients using both equations for any magnetization, and we obtain analytic expressions for highly clustered configurations. An important conclusion is that in this system collective effects are crucial in order to describe the relaxation dynamics. We compare the diffusion calculated with the kinetic equations with simulations set up to simulate the system with or without collective effects, obtaining a very good agreement between theory and simulations.

  5. Study of electron acceleration through the ? mode in a collisional plasma-filled cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Moghaddasi, M.

    2016-07-01

    Acceleration of an externally injected electron inside the collisional plasma-filled cylindrical waveguide during its motion in the fields of the ? mode excited by microwave radiation is studied. The effect of the electron collision frequency with background ions on the deflection angle and energy gain of electron, when it is injected along the direction of the mode propagation is investigated. The fields for the mode, the deflection angle of electron trajectory, due to these fields, and the electron energy gradient are obtained. The results for collisionless and collisional plasma are graphically presented. The numerical results illustrate that the presence of the electron collision term in the dielectric permittivity can reduce the electron's energy gain in the configuration.

  6. Generalized collisional radiative model for light elements: C: Data for the B isonuclear sequence

    NASA Astrophysics Data System (ADS)

    Loch, S. D.; Ballance, C. P.; Pindzola, M. S.; Griffin, D. C.; Colgan, J. P.; Badnell, N. R.; O'Mullane, M. G.

    2015-01-01

    A first stage collision database is assembled which contains electron-impact excitation, ionization, and recombination rate coefficients for B, B+, B2+, B3+, and B4+. The first stage database is constructed using the R-matrix with pseudostates, time-dependent close-coupling, and perturbative distorted-wave methods. A second stage collision database is then assembled which contains generalized collisional-radiative ionization, recombination, and power loss rate coefficients as a function of both temperature and density. The second stage database is constructed by solution of the collisional-radiative equations in the quasi-static equilibrium approximation using the first stage database. Both collision database stages reside in electronic form at the IAEA Labeled Atomic Data Interface (ALADDIN) database and the Atomic Data Analysis Structure (ADAS) open database.

  7. Reduction of collisional-radiative models for laser-produced argon plasmas

    NASA Astrophysics Data System (ADS)

    Abrantes, Richard June; Karagozian, Ann; Le, Hai

    2016-10-01

    The formation of a laser-induced plasma involves a variety of physical phenomena stemming from the laser-plasma interaction. A thorough understanding of these processes encourages improvement and innovation for many applications. In this work, we aim to computationally reduce a previously-developed collisional-radiative (CR) model constructed from the LANL database, which includes all of the relevant collisional and radiative processes for all the ionic stages of argon. The laser is coupled to the plasma via multiphoton ionization and inverse Bremsstrahlung, processes important for electron production and heating. The use of the CR model allows us to identify dominant mechanisms responsible for initial breakdown of the gas and thermal equilibriation processes. The results are compared with experimental data from laser-induced breakdown experiments. Research supported by the AFOSR.

  8. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    SciTech Connect

    Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  9. Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism

    SciTech Connect

    D.A. Gates; R.B. White

    2004-01-28

    Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.

  10. Collisional dependence of Alfvén mode saturation in tokamaks

    NASA Astrophysics Data System (ADS)

    Zhou, Muni; White, Roscoe

    2016-12-01

    Saturation of Alfvén modes driven unstable by a distribution of high energy particles as a function of collisionality is investigated with a guiding center code, using numerical eigenfunctions produced by linear theory and numerical high energy particle distributions. The most important resonance is found and it is shown that when the resonance domain is bounded, not allowing particles to collisionlessly escape, the saturation amplitude is given by the balance of the resonance mixing time with the time for nearby particles to collisionally diffuse across the resonance width. Saturation amplitudes are in agreement with theoretical predictions as long as the mode amplitude is not so large that it produces stochastic loss from the resonance domain.

  11. Detection and Interpretation of Collisional Transfer and Rotational Anisotropy Fingerprints in Resonant Four-Wave Mixing Spectra.

    NASA Astrophysics Data System (ADS)

    Kouzov, A.; Radi, P.; Maksyutenko, P.; Kozlov, D.

    2013-06-01

    Coherent responses produced by resonant four-wave mixing (RFWM) in a weakly absorbing medium carry valuable information on the intrinsic properties and dynamics of the quantum states involved. Here, two aspects of RFWM applications are highlighted. First, the Two-Color (TC) version of RFWM was found to be a unique spectroscopic tool to directly trace collisional state-to-state transfer in isotropic gaseous media, both in the frequency% and time domains. Second, the RFWM techniques appeared to be very useful for studies of the rotational anisotropy. Here we report new experimental one-color RFWM spectra of the OH radicals produced by laser photolysis of H_{2}O_{2} at 266 nm. Polarization dependence and Doppler line structure of the spectra show clear evidence of the pronounced anisotropy of angular momentum (j) and velocity (% v) distributions as well as on the j-v correlation. The obtained results directly point to the pronounced OH helicity (i.e. j% ∥ v) which yet remained beyound the reach of purely optical means. For all mentioned cases, the line-shape theory is an optimal tool to derive compact expressions for the RFWM signals. The work was supported by the Swiss Federal Office of Energy, the Swiss National Science Foundation (200020_124542/1), and by the Russian Foundation for Basic Research, grants 11-02-01296 and 11-03-00448. P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, Chem. Phys. Lett. 265, 271 (1997). X. Chen and T. B. Settersten, Appl. Opt. 46, 3911 (2007). T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, J. Chem. Phys. 106, 6314 (1997). A.P. Kouzov and P.P. Radi, Phys. Rev. A 63, 010701 (2000).

  12. The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.

  13. Finite Larmor Radius and Collisional Effects on the Electron-Ion Hybrid Instability

    DTIC Science & Technology

    2013-11-18

    Particle Physics Branch Plasma Physics Division V. SoTnikoV Air Force Research Laboratory Dayton, Ohio C.l. EnloE Air Force Academy Colorado Springs...applying this theory to the plasma region surrounding hypersonic vehicles. In this plasma layer, these sorts of transverse sheared flows can exist in...a collisional plasma . While this dense layer of plasma can itself impede communications, the density structures created by the lower hybrid

  14. OBSERVED BINARY FRACTION SETS LIMITS ON THE EXTENT OF COLLISIONAL GRINDING IN THE KUIPER BELT

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Bottke, William F.; Levison, Harold F.; Noll, Keith

    2011-05-15

    The size distribution in the cold classical Kuiper Belt (KB) can be approximated by two idealized power laws: one with steep slope for radii R > R* and one with shallow slope for R < R*, where R* {approx} 25-50 km. Previous works suggested that the size frequency distribution (SFD) rollover at R* can be the result of extensive collisional grinding in the KB that led to the catastrophic disruption of most bodies with R < R*. Here, we use a new code to test the effect of collisions in the KB. We find that the observed rollover could indeed be explained by collisional grinding provided that the initial mass in large bodies was much larger than the one in the present KB and was dynamically depleted. In addition to the size distribution changes, our code also tracks the effects of collisions on binary systems. We find that it is generally easier to dissolve wide binary systems, such as the ones existing in the cold KB today, than to catastrophically disrupt objects with R {approx} R*. Thus, the binary survival sets important limits on the extent of collisional grinding in the KB. We find that the extensive collisional grinding required to produce the SFD rollover at R* would imply a strong gradient of the binary fraction with R and separation, because it is generally easier to dissolve binaries with small components and/or those with wide orbits. The expected binary fraction for R {approx}< R* is {approx}<0.1. The present observational data do not show such a gradient. Instead, they suggest a large binary fraction of {approx}0.4 for R = 30-40 km. This may indicate that the rollover was not produced by disruptive collisions, but is instead a fossil remnant of the KB object formation process.

  15. Observation of dynamic correlations in collisional redistribution and depolarization of light

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1980-01-01

    Theory shows that to explain the polarization of light collisionally redistributed from the far line wings of an atomic transition, one must consider correlated events in which absorption during a collision, and propagation to the final Zeeman-state superposition at the end of the collision is important. Polarizations of up to about 40% have been measured in the far line wings, substantially confirming this prediction, and showing that scattering experiments cannot just be characterized by simple absorption or emission profiles.

  16. Energy Deposition into a Collisional Gas from Optical Lattices Formed in an Optical Cavity (PREPRINT)

    DTIC Science & Technology

    2008-07-02

    pp. 1344-1347 2 Kuga et al., “Novel Optical Trap of Atoms with a Doughnut Beam,” Physical Review Letters 78, (1997), pp. 4713-4716 3 Dotsenko et...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Energy Deposition into a Collisional Gas from

  17. Can the electron heat flux at 1 AU be collisional ? Results from kinetic simulations.

    NASA Astrophysics Data System (ADS)

    Landi, Simone; Pantellini, Filippo; Matteini, Lorenzo

    2014-05-01

    Recent results using statistically significant data of the solar wind at 1AU (see Bale et al. ApJL 769:L22, 2013) have shown that when the thermal Knudsen number, the ratio between the electron mean free path and the temperature scale height, falls below ~0.3, the electron heat flux Q does rapidly approach the classical collisional Spitzer-Harm limit Q_SH ~ T5/2 dT/dr, where T is the temperature and r the heliocentric distance. This experimental finding seems to contradict a number of theoretical works which suggest that the collisional expression for the heat flux is only guaranteed for Knudsen numbers smaller than ~0.001 (e.g. Shoub ApJ, 266, 339-369, 1983; Scudder & Karimabadi, ApJ, 770:26, 2013) . Indeed, using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we do observe that the heat flux strength approaches the collisional value for Knudsen numbers below ~0.3, in rather good agreement with the experimental data of Bale et al (2013). However, closer inspection of the variation of the plasma parameters with heliocentric distance shows that for Knudsen numbers between 0.01-0.3 the heat flux Q does NOT vary with temperature as predicted by Q_SH. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity Q approaches the collisional limit Q_SH for Knudsen below ~0.3, the latter is not a generally valid closure in the solar wind for Knudsen large that 0.01.

  18. Collisional Histories of Comets and Trojan Asteroids: Insights from Forsterite and Enstatite Impact Studies

    NASA Technical Reports Server (NTRS)

    Lederer. S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Cintala, M. J.; Nakamura-Messenger, K.; Keller, L. P.

    2012-01-01

    Impacts into forsterite and orthoenstatite at speeds typically encountered by comets demonstrate that shock imparted by collisions is detectable in the infrared signatures of their dust. The spectral signatures can be traced to physical alterations in their crystalline structures, as observed in TEM imaging and modeled using a dipole approximation. These results yield tantalizing insights into the collisional history of our solar system, as well as the history of individual comets and Trojan asteroids.

  19. Coupling of an average-atom model with a collisional-radiative equilibrium model

    SciTech Connect

    Faussurier, G. Blancard, C.; Cossé, P.

    2014-11-15

    We present a method to combine a collisional-radiative equilibrium model and an average-atom model to calculate bound and free electron wavefunctions in hot dense plasmas by taking into account screening. This approach allows us to calculate electrical resistivity and thermal conductivity as well as pressure in non local thermodynamic equilibrium plasmas. Illustrations of the method are presented for dilute titanium plasma.

  20. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    PubMed

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  1. A three-dimensional numerical method for modelling weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Stephen; Downes, Turlough P.

    2007-04-01

    Astrophysical fluids under the influence of magnetic fields are often subjected to single- or two-fluid approximations. In the case of weakly ionized plasmas, however, this can be inappropriate due to distinct responses from the multiple constituent species to both collisional and non-collisional forces. As a result, in dense molecular clouds and protostellar accretion discs, for instance, the conductivity of the plasma may be highly anisotropic leading to phenomena such as Hall and ambipolar diffusion strongly influencing the dynamics. Diffusive processes are known to restrict the stability of conventional numerical schemes which are not implicit in nature. Furthermore, recent work establishes that a large Hall term can impose an additional severe stability limit on standard explicit schemes. Following a previous paper, which presented the one-dimensional case, we describe a fully three-dimensional method which relaxes the normal restrictions on explicit schemes for multifluid processes. This is achieved by applying the little-known Super TimeStepping technique to the symmetric (ambipolar) component of the evolution operator for the magnetic field in the local plasma rest frame, and the new Hall Diffusion Scheme to the skew-symmetric (Hall) component.

  2. Particle transport and density peaking at low collisionality on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Hughes, J. W.; Mikkelsen, D.; Terry, J.

    2007-11-01

    While H-modes tend to have very flat density profiles, modest density peaking is advantageous for fusion performance. Thus robust pinch mechanisms that could allow operation with peaked profiles, in the absence of any internal particle source, are of considerable interest. Recent experiments on C-Mod^1, at low collisionality, show just such peaking and are quantitatively consistent with earlier results from ASDEX-U^2 and JET^3. By extending the range in machine size, these data break the covariance between collisionality and n/nG, the density normalized to the density limit and strongly support the primary role of collisionality in determining the profile. The implication is that ITER will have density profiles with ne( 0 )/˜1.4-1.6. The C-Mod data also show a small but statistically significant dependence of the peaking factor on the edge safety factor, q. The effect is to increase the peaking by no more than 10% when q is raised from 3.5 to 5.Initial studies of gyrokinetic simulations for these discharges will be shown. ^1M. Greenwald, submitted to Nucl. Fusion, 2007 ^2C. Angioni, et al., PRL 90, 205003, 2003 ^3H.Weisen, Nucl. Fusion 45, L1, 2005

  3. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    NASA Astrophysics Data System (ADS)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  4. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES

    Colgan, James; Fontes, Christopher; Zhang, Honglin; ...

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  5. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    SciTech Connect

    Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that were submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.

  6. RATE COEFFICIENTS FOR THE COLLISIONAL EXCITATION OF MOLECULES: ESTIMATES FROM AN ARTIFICIAL NEURAL NETWORK

    SciTech Connect

    Neufeld, David A.

    2010-01-01

    An artificial neural network (ANN) is investigated as a tool for estimating rate coefficients for the collisional excitation of molecules. The performance of such a tool can be evaluated by testing it on a data set of collisionally induced transitions for which rate coefficients are already known: the network is trained on a subset of that data set and tested on the remainder. Results obtained by this method are typically accurate to within a factor of approx2.1 (median value) for transitions with low excitation rates and approx1.7 for those with medium or high excitation rates, although 4% of the ANN outputs are discrepant by a factor of 10 or more. The results suggest that ANNs will be valuable in extrapolating a data set of collisional rate coefficients to include high-lying transitions that have not yet been calculated. For the asymmetric top molecules considered in this paper, the favored architecture is a cascade-correlation network that creates 16 hidden neurons during the course of training, with three input neurons to characterize the nature of the transition and one output neuron to provide the logarithm of the rate coefficient.

  7. Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Tsujii, N.; D'Inca, R.; Noterdaeme, J.-M.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; van Eester, D.; Harvey, R. W.; Jaeger, E. F.; Lerche, E. A.; Schneider, P.; ASDEX Upgrade Team

    2014-02-01

    ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.

  8. Full orbit simulation of collisional transport of impurity ions in the MAST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Romanelli, M.; McClements, K. G.; Cross, J.; Knight, P. J.; Thyagaraja, A.; Callaghan, J.

    2011-05-01

    Transport analysis of MAST discharges indicates that collisions are an important loss mechanism in the core of a tight aspect ratio tokamak. In the strongly varying equilibrium fields of MAST many of the assumptions of drift kinetic and neoclassical theory (e.g. small plasma inverse aspect ratio and low ratio of toroidal Larmor radius to poloidal Larmor radius) are not met by all particle species and it becomes appropriate to use full orbit analysis to evaluate heat and particle fluxes. Collisional transport of impurity ions (C6+ and W20+) has been studied using a full orbit solver, CUEBIT, to integrate the test-particle dynamics. Electromagnetic fields in MAST plasma have been modelled using the cylindrical and toroidal two-fluid codes CUTIE and CENTORI. A detailed study of the scaling of the test-particle diffusivity with collisionality in the equilibrium field reveals deviations from the standard neoclassical theory, in both the Pfirsch-Schlüter and banana regimes, and difficulties in defining a local diffusivity at low collisionalities. The effect of electric and magnetic fluctuations is also briefly addressed. It is found that field fluctuations enhance the non-diffusive nature of transport. The full orbit analysis presented here predicts levels of transport and confinement times for the examined species broadly consistent with the experimental observations.

  9. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  10. Detecting weakly interacting massive particles.

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Gelmini, G. B.

    The growing synergy between astrophysics, particle physics, and low background experiments strengthens the possibility of detecting astrophysical non-baryonic matter. The idea of direct detection is that an incident, massive weakly interacting particle could collide with a nucleus and transfer an energy that could be measured. The present low levels of background achieved by the PNL/USC Ge detector represent a new technology which yields interesting bounds on Galactic cold dark matter and on light bosons emitted from the Sun. Further improvements require the development of cryogenic detectors. The authors analyse the practicality of such detectors, their optimalization and background suppression using the "annual modulation effect".

  11. Al III, Si IV, and C IV absorption toward zeta Ophiuchi: Evidence for photionized and collisionally ionized gas

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Jenkins, Edward B.

    1994-01-01

    We present Goddard High-Resolution Spectrograph observations at 3.5 km/s resolution and signal-to-noise ratios of 30 to 60 for the Al III, Si IV, and N V absorption lines in the far-ultraviolet spectrum of the O9.5 V star zeat Ophiuchi. The measurement reveal three types of highly ionized gas along the 140 pc line of sight. (1) Narrow components of Al III (b = 4.3 km/s, the mean value of (v(helio)) = -7.8 km/s; b = 3.2 km/s, the mean value of (v(sub helio)) = -14.4 km/s) and Si IV (b = 5.3 km/s, the mean value of (v(sub helio)) = -15.0 km/s) trace photionized gas in the expanding H II region surrounding zeta Oph. The observed magnitude and direction of the velocity offset between the Al III and Si IV profiles can be explained by models of H II regions that incorporate expansion. Narrow C IV absorption associated with the H II region is not detected. Predictions of the expected amounts of Si IV and C IV overestimate the column densities of these ions by factors of 30 and more than 10, respectively. The discrepancy may be due to the effects of elemental depletions in the gas and/or to the interaction of the stellar wind with surrounding matter. (2) Broad (b = 15 to 18 km/s) and weak Si IV and C IV absorption components are detected near the mean value of (v(sub helio)) = -26 km/s. The high-ionization species associated with these absorption components are probably produced by electron collisional ionization in a heated gas. This absorption may be physically related to the zeta Oph bow shock ot to a cloud complex situated within the local interstellar medium at d less than 60 pc. The C IV to Si IV column density ratio in this gas is 8, a factor of 6 less than conductive interface models predict, but this discrepancy may be removed by considering the effects of self-photoionization within the cooling gas in the model calculations. (3) A broad (b = 13 km/s) and weak C IV absorption feature detected at the mean value of (v(sub helio)) = -61 km/s is not seen in other

  12. Collisional relaxation of a strongly magnetized two-species pure ion plasma

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.; Dubin, Daniel H.

    2014-04-01

    The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω1,Ω2≫|Ω1-Ω2|≫v¯ij/b ¯ and v¯⊥j/Ωj≪b ¯, where Ω1 and Ω2 are two cyclotron frequencies, v¯ij=√T∥/μij is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b ¯=2 e2/T∥ is the classical distance of closest approach for such collisions, and v ¯⊥j/Ωj=√2T⊥j/mj /Ωj is the characteristic cyclotron radius for particles of species j. Here, μij is the reduced mass for the two particles, and T∥ and T⊥j are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I1=∑i ∈1m1v⊥i2/(2Ω1) and I2=∑i∈2m2v⊥i2/(2Ω2) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I1 and I2, yielding a modified Gibbs distribution of the form exp[-H /T∥-α1I1-α2I2]. Here, the αj's are related to T∥ and T⊥j through T⊥j=(1/T∥+αj/Ωj)-1. Collisional relaxation to the usual Gibbs distribution, exp[-H /T∥], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b ¯2Ω12/v¯112)exp{5[3π(b¯|Ω1-Ω2|/v ¯12)]2/5/6}, the two species share action so that α1 and α2 relax to a common value α. On an even longer timescale, longer than the collisional timescale by a factor of the order exp {5[3π(v¯11)]2/5/6}, the total action ceases to be a good constant of the motion and α relaxes to zero.

  13. Weak interactions at the SSC

    SciTech Connect

    Chanowitz, M.S.

    1986-03-01

    Prospects for the study of standard model weak interactions at the SSC are reviewed, with emphasis on the unique capability of the SSC to study the mechanism of electroweak symmetry breaking whether the associated new quanta are at the TeV scale or higher. Symmetry breaking by the minimal Higgs mechanism and by related strong interaction dynamical variants is summarized. A set of measurements is outlined that would calibrate the proton structure functions and the backgrounds to new physics. The ability to measure the three weak gauge boson vertex is found to complement LEP II, with measurements extending to larger Q/sup 2/ at a comparable statistical level in detectable decays. B factory physics is briefly reviewed as one example of a possible broad program of high statistics studies of sub-TeV scale phenomena. The largest section of the talk is devoted to the possible manifestations of symmetry breaking in the WW and ZZ production cross sections. Some new results are presented bearing on the ability to detect high mass WW and ZZ pairs. The principal conclusion is that although nonstandard model scenarios are typically more forgiving, the capability to study symmetry breaking in the standard model (and in related strong interaction dynamical variants) requires achieving the SSC design goals of ..sqrt.. s,L = 40Tev, 10/sup 33/cm/sup -2/sec/sup -1/. 28 refs., 5 figs.

  14. The weak scale from BBN

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Pinner, David; Ruderman, Joshua T.

    2014-12-01

    The measured values of the weak scale, v, and the first generation masses, m u, d, e , are simultaneously explained in the multiverse, with all these parameters scanning independently. At the same time, several remarkable coincidences are understood. Small variations in these parameters away from their measured values lead to the instability of hydrogen, the instability of heavy nuclei, and either a hydrogen or a helium dominated universe from Big Bang Nucleosynthesis. In the 4d parameter space of ( m u , m d , m e , v), catastrophic boundaries are reached by separately increasing each parameter above its measured value by a factor of (1.4, 1.3, 2.5, ˜ 5), respectively. The fine-tuning problem of the weak scale in the Standard Model is solved: as v is increased beyond the observed value, it is impossible to maintain a significant cosmological hydrogen abundance for any values of m u, d, e that yield both hydrogen and heavy nuclei stability.

  15. Diversity and validity of stable-unstable transitions in the algorithmic weak stability boundary

    NASA Astrophysics Data System (ADS)

    Sousa Silva, Priscilla A.; Terra, Maisa O.

    2012-08-01

    This paper is devoted to verify the consistency of the algorithmic Weak Stability Boundary definition concerning the achievement of capture-escape detection, through examining the transitions produced by the implementation of this definition. Our main goal is to show that many types of spurious transitions concerning capture-escape behavior are found besides the expected transitions due to the separatrix role of the hyperbolic invariant manifolds of the central manifold of the collinear equilibria of the Planar Circular Restricted Three-Body Problem. We identify and characterize authentic and spurious transitions and discuss their spatial distribution along the boundary for sets of initial conditions with high eccentricity, showing the frequent occurrence of spurious transitions and of collisional trajectories. Also, we investigate smooth and fractal-like portions of the boundary. Finally, we propose an alternative stability boundary definition based on the effective detection of capture-escape transitions.

  16. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. II

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    The consistent kinetic approach developed in Paper I [Ya. S. Dimant and R. N. Sudan, Phys. Plasmas {bold 2}, 1157 (1995)] is applied to obtain the general dispersion relation of the two-stream {bold E}{times}{bold B} instability in collisionally dominated weakly ionized plasmas for wave frequencies small compared to the ion--neutral collision frequency. This dispersion relation covers the whole low-frequency band from the asymptotic short-wave limit studied in Paper I to the long-wave limit. Previous theories employing simplified kinetic theory or fluid equations for electron behavior are only correct in the long-wave limit. The principal new results are that the threshold conditions for this instability and the growth rates are altered from those predicted by earlier simplified theories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. A man with worsening weakness.

    PubMed

    Proietti, G; Puliti, M; Tulli, F; Silvestri, M

    1999-01-01

    The contemporary presence of organomegaly, skin manifestations, polyneuropathy, endocrinopathy and monoclonal component characterises the POEMS syndrome, often associated with osteosclerotic myeloma and Castelman's disease and more frequent in the Japanese. Clinical manifestations seem to be related to the production of many interleukins, mainly IL-1, IL-6 and TNF. Several endocrinopathies have been described, the most frequent being diabetes. Only one previous case of hypoparathyroidism associated with the syndrome has been described in medical reviews. Polyneuropathy is often sensitivo-motory and skin disease accounts for Raynaud phenomenon, skin pigmentation, hypertricosis and others. We describe the case of a 74-year-old man who underwent clinical examination for weakness mainly in the legs. Clinical and instrumental data showed rhabdomyolysis due to hypoparathyroidism. The contemporary presence of a monoclonal band of light chains on proteic electrophoresis, organomegaly and distal leg neuropathy allowed us to make a diagnosis of POEMS syndrome.

  18. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  19. Deterministic weak localization in periodic structures.

    PubMed

    Tian, C; Larkin, A

    2005-12-09

    In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.

  20. Weak D in the Tunisian population

    PubMed Central

    Ouchari, Mouna; Romdhane, Houda; Chakroun, Taher; Abdelkefi, Saida; Houissa, Batoul; Hmida, Slama; Yacoub, Saloua Jemni

    2015-01-01

    Background More than 90 weak D types have been discovered to date. As there are no published data on the frequencies of weak D types in the Tunisian population, the aim of this study was to determine the composition of weak D alleles in our population. Material and methods Blood samples from 1777 D+ and 223 D− blood donors were tested for markers 809G, 1154C, 8G, 602G, 667G, 446A, and 885T relative to translation start codon by polymerase chain reaction with sequence-specific primers to estimate the frequencies of weak D type 1, weak D type 2, weak D type 3, weak D type 4, weak D type 5 and weak D type 11 in our population. Twenty-three samples with positive reactions were re-evaluated by DNA sequencing of RHD exons 1–10 and adjacent intronic sequences. Results Among the D+ donor cohort, weak D type 4 was the most prevalent allele (n=33, 1.2%) followed by weak D type 2 (n=6, 0.17%), weak D type 1 (n=4, 0.11%), and weak D type 5 (n=1, 0.28%) and weak D type 11 (n=1, 0.28%). RHD sequencing identified a weak D type 4.0 allele in all 19 samples tested. Among the D− pool, comprising 223 samples, we detected one sample with weak D type 4.0 associated with a C+c+E−e+ phenotype which had been missed by routine serological methods. Discussion Weak D type 4.0 appears to be the most prevalent weak D in our population. However, all samples must be sequenced in order to determine the exact subtype of weak D type 4, since weak D type 4.2 has considerable clinical importance, being associated with anti-D alloimmunisation. One case of weak D type 4 associated with dCe in trans had been missed by serology, so quality control of serological tests should be developed in our country. PMID:25369614

  1. Fully kinetic simulations of magnetic reconnction in semi-collisional plasmas

    SciTech Connect

    Daughton, William S; Roytershteyn, Vadim S; Albright, Brian J; Yin, Lin; Bowers, Kevin J; Karimabadi, Homa

    2009-01-01

    The influence of Coulomb collisions on the dynamics of magnetic reconnection is examined using fully kinetic simulations with a Monte-Carlo treatment of the Fokker-Planck collision operator. This powerful first-principles approach offers a bridge between kinetic and fluid regimes, which may prove useful for understanding the applicability of various fluid models. In order to lay the necessary groundwork, the collision algorithm is first carefully bench marked for a homogeneous plasma against theoretical predictions for beam-plasma interactions and electrical resistivity. Next, the collisional decay of a current layer is examined as a function of guide field, allowing direct comparisons with transport theory for the parallel and perpendicular resistivity as well as the thermoelectric force. Finally, the transition between collisional and collision less reconnection is examined in neutral sheet geometry. For modest Lundquist numbers S {approx}< 1000, a distinct transition is observed when the thickness of the Sweet-Parker layers falls below the ion inertia length {delta}{sub sp} {approx}< d,. At higher Lundquist number, deviations from the Sweet-Parker scaling are observed due to the growth of plasmoids (secondary-islands) within the elongated resistive layer. In certain cases, this instability leads to the onset of fast reconnection sooner than expected from {delta}{sub sp} {approx} d, condition. After the transition to fast reconnection, elongated electron current layers are formed which are unstable to the formation of new plasmoids. The structure and time-dependence of the electron diffusion region in these semi-collisional regimes is profoundly different than reported in two-fluid simulations.

  2. Evaluating a Contribution of the Knock-on Deuterons to the Neutron Yield in the Experiments with Weakly Collisional Plasma Jets (Part 1)

    SciTech Connect

    Ryutov, D. D.

    2015-12-01

    Laser-generated interpenetrating plasma jets are widely used in the studies of collisionless interaction of counter-streaming plasmas in conjunction with possible formation of collisionless shocks. In a number of experiments of this type the plasma is formed on plastic targets made of CH or CD. The study of the DD neutron production from the interaction between two CD jets on the one hand and between a CD jet and a CH jet could serve as a qualitative indicator of the collisionless shock formation. The purpose of this memo is a discussion of the effect of collisions on the neutron generation in the interpenetrating CH and CD jets. First, the kinematics of the large-deflection collisions of the deuterons and carbon are discussed. Then the scattering angles are related with the corresponding Rutherford cross-section. After that expression for the number of the backscattered deuterons is provided, and their contribution to the neutron yield is evaluated. The results may be of some significance to the kinetic codes benchmarking and developing the neutron diagnostic.

  3. Evaluating a Contribution of the Knock-on Deuterons to the Neutron Yield in the Experiments with Weakly Collisional Plasma Jets (Part 2)

    SciTech Connect

    Ryutov, D. D.

    2015-12-08

    Part 1 of this note considered the kinematics of large-angle scattering (LAS) of the deuterons on the counter-streaming carbon ions, with both flows having the same velocity V. Due to a large mass ratio mC/mD, the backscattered deuterons have high velocity of up to (24/7)V. This significantly increases the cross-section for the neutron production in the collisions between the back-scattered and incoming deuterons and may provide significant contribution to the total neutron yield, despite the smallness of a large-angle Coulomb cross-section. This effect becomes particularly important when only one of the colliding streams is made of CD, whereas the other stream is made of CH. Part 1 evaluated the neutron yield produced by this mechanism and have found that its relative role increases for higher plasma densities and lower velocities. Part 2 discusses signatures of this effect which can be used to identify it experimentally and also discusses in some more detail its spatio-temporal characteristics. It goes without saying that a complete quantitative assessment should be based on numerical simulations accounting for the large-angle scattering.

  4. Weakly relativistic dispersion of Bernstein waves

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  5. Terahertz generation by two cross focused laser beams in collisional plasmas

    SciTech Connect

    Sharma, R. P. Singh, Ram Kishor

    2014-07-15

    The role of two cross-focused spatial-Gaussian laser beams has been studied for the high power and efficient terahertz (THz) radiation generation in the collisional plasma. The nonlinear current at THz frequency arises on account of temperature dependent collision frequency of electrons with ions in the plasma and the presence of a static electric field (applied externally in the plasma) and density ripple. Optimisation of laser-plasma parameters gives the radiated THz power of the order of 0.23  MW.

  6. On dust ion acoustic solitary waves in collisional dusty plasmas with ionization effect

    NASA Astrophysics Data System (ADS)

    Shalaby, M.; El-Labany, S. K.; El-Shamy, E. F.; Khaled, M. A.

    2010-04-01

    The propagation of solitary waves in an unmagnetized collisional dusty plasma consisting of a negatively charged dust fluid, positively charged ions, isothermal electrons, and background neutral particles is studied. The ionization, ion loss, ion-neutral, ion-dust, and dust-neutral collisions are considered. Applying a reductive perturbation theory, a damped Korteweg-de Vries (DKdV) equation is derived. On the other hand, at a critical phase velocity, the dynamics of solitary waves is governed by a damped modified Korteweg-de Vries (DMKdV) equation. The nonlinear properties of solitary waves in the two cases are discussed.

  7. Collisional Losses, Decoherence, and Frequency Shifts in Optical Lattice Clocks with Bosons

    SciTech Connect

    Lisdat, Ch.; Winfred, J. S. R. Vellore; Middelmann, T.; Riehle, F.; Sterr, U.

    2009-08-28

    We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition {sup 1}S{sub 0}-{sup 3}P{sub 0} at 698 nm with bosonic {sup 88}Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with {sup 88}Sr shows no degradation due to collisions on the fractional uncertainty level of 10{sup -16}.

  8. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    NASA Technical Reports Server (NTRS)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  9. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    SciTech Connect

    Merritt, Elizabeth C. Adams, Colin S.; Moser, Auna L.; Hsu, Scott C. Dunn, John P.; Miguel Holgado, A.; Gilmore, Mark A.

    2014-05-15

    We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].

  10. Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma

    SciTech Connect

    Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.

    2011-11-15

    The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.

  11. A Study of the Collisional Dynamics for Collisions of UF(6)(-) with Atoms and Molecules.

    DTIC Science & Technology

    1981-08-01

    DiSTRIBUTION ST ATEMENT rotfill&s Repot) fn7 -viblc ralnzA 17. 0ISrISUION ST ATEMENT (a’of a bstract entered in Stock 20, if different trom Report) IS. SUPP...molecular targets. The collisional energy range which was emphasized ranged from a few electron volts up to a (laboratory) energy in the vicinity of 1...followed by a discussion of the surface electron attachment process in which the UF ion is6 created. The former aspect of the research effort has been

  12. Revealing an intermediate region between the collisional radiofrequency plasma bulk and its sheath

    NASA Astrophysics Data System (ADS)

    Beckers, J.; Trienekens, D. J. M.; Kroesen, G. M. W.

    2015-03-01

    Experimental evidence of the existence of an intermediate region between a capacitively coupled plasma and the collisional space-charge region at its borders is presented. This proof is generated by monitoring—in an airplane carrying out parabolic flights—the trajectory of plasma-confined microparticles. Based on only primary data and without the need for a sophisticated model, our analysis concludes a sharply marked transition from the sheath region into another region with a significantly lower—yet nonzero—space-charge density, i.e., a region which is often called the presheath.

  13. Collisional-radiative recombination Ar{sup +} + e + e: Experimental study at 77-180 K

    SciTech Connect

    Kotrik, Tomas; Dohnal, Petr; Roucka, Stepan; Jusko, Pavol; Plasil, Radek; Glosik, Juraj; Johnsen, Rainer

    2011-03-15

    Rate coefficients for collisional-radiative recombination (CRR) of Ar{sup +} ions with electrons have been measured at temperatures from 77 to 180 K in a helium-buffered flowing-afterglow (Cryo-FALP) experiment at electron densities n{sub e} from 10{sup 8} to 10{sup 10} cm{sup -3}. The measured ternary rate coefficient K{sub CRR} at 77 K is (1.1{+-}0.4)x10{sup -17} cm{sup 6}s{sup -1} and the observed variation with temperature agrees well with the theoretical T{sup -4.5} dependence.

  14. Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows

    SciTech Connect

    Lin, Z.; Hahm, T.S.; Lee, W.W.; Tang, W.M.; White, R.B.

    2000-02-15

    A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geometry has been developed and applied to the investigation of zonal flows dynamics in toroidal ion-temperature-gradient turbulence. Full torus simulation results support the important conclusion that turbulence-driven zonal flows significantly reduce the turbulent transport. Linear collisionless simulations for damping of an initial poloidal flow perturbation exhibit an asymptotic residual flow. The collisional damping of this residual causes the dependence of ion thermal transport on the ion-ion collision frequency even in regimes where the instabilities are collisionless.

  15. Asteroid 4 Vesta: Dynamical and collisional evolution during the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Pirani, S.; Turrini, D.

    2016-06-01

    Asteroid 4 Vesta is the only currently identified asteroid for which we possess samples in the form of meteorites. These meteorites revealed us that Vesta is a differentiated body and that its differentiation produced a relatively thin basaltic crust that survived intact over its entire collisional history. The survival of the vestan basaltic crust has long been identified as a pivotal constraint in the study of the evolution of the asteroid belt and the Solar System but, while we possess a reasonably good picture of the effects of the last 4 Ga on such a crust, little is known about the effects of earlier events like the Late Heavy Bombardment. In this work we address this gap in our knowledge by simulating the Late Heavy Bombardment on Vesta in the different dynamical scenarios proposed for the migration of the giant planets in the broad framework of the Nice Model. The results of the simulations allowed us to assess the collisional history of the asteroid during the Late Heavy Bombardment in terms of produced crater population, surface saturation, mass loss and mass gain of Vesta and number of energetic or catastrophic impacts. Our results reveal that planet-planet scattering is a dynamically favorable migration mechanism for the survival of Vesta and its crust. The number of impacts of asteroids larger than about 1 km in diameter estimated as due to the LHB is 31 ± 5, i.e. about 5 times larger than the number of impacts that would have occurred in an unperturbed main belt in the same time interval. The contribution of a possible extended belt to the collisional evolution of Vesta during the LHB is quite limited and can be quantified in 2 ± 1 impacts of asteroids with diameter greater than or equal to 1 km. The chance of energetic and catastrophic impacts is less than 10% and is compatible with the absence of giant craters dated back to 4 Ga ago and with the survival of the asteroid during the Late Heavy Bombardment. The mass loss caused by the bombardment

  16. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    PubMed

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  17. A Universe without Weak Interactions

    SciTech Connect

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-04-07

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.

  18. Weak percolation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide

    2014-04-01

    Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.

  19. Testing the weak equivalence principle

    NASA Astrophysics Data System (ADS)

    Nobili, Anna M.; Comandi, Gian Luca; Pegna, Raffaello; Bramanti, Donato; Doravari, Suresh; Maccarone, Francesco; Lucchesi, David M.

    2010-01-01

    The discovery of Dark Energy and the fact that only about 5% of the mass of the universe can be explained on the basis of the current laws of physics have led to a serious impasse. Based on past history, physics might indeed be on the verge of major discoveries; but the challenge is enormous. The way to tackle it is twofold. On one side, scientists try to perform large scale direct observations and measurements - mostly from space. On the other, they multiply their efforts to put to the most stringent tests ever the physical theories underlying the current view of the physical world, from the very small to the very large. On the extremely small scale very exciting results are expected from one of the most impressive experiments in the history of mankind: the Large Hadron Collider. On the very large scale, the universe is dominated by gravity and the present impasse undoubtedly calls for more powerful tests of General Relativity - the best theory of gravity to date. Experiments testing the Weak Equivalence Principle, on which General Relativity ultimately lies, have the strongest probing power of them all; a breakthrough in sensitivity is possible with the “Galileo Galilei” (GG) satellite experiment to fly in low Earth orbit.

  20. Pixelation Effects in Weak Lensing

    NASA Technical Reports Server (NTRS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-01-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  1. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    SciTech Connect

    Moser, Auna L. Hsu, Scott C.

    2015-05-15

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.

  2. Computational model of collisional-radiative nonequilibrium plasma in an air-driven type laser propulsion

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi

    2010-05-06

    A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperature range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.

  3. Two-Dimensional Fluid Simulation of Collisional Plasma Sheath over rf Powered Electrode with Cylindrical Hole

    NASA Astrophysics Data System (ADS)

    Hou, Lujing; Wang, Younian; Z, L. Miskvic

    2004-08-01

    The characteristics of collisional radio-frequency (rf) sheath dynamics over an electrode with a cylindrical hole is simulated by means of a self-consistent model which consists of two-dimensional time-dependent fluid equations coupled with Poisson equation. In addition, an equivalent-circuit model is coupled to the fluid equations in order to self-consistently determine relationship between the instantaneous potential at the rf-biased electrode and the sheath thickness. Two-dimensional profiles of the potential, the ion fluid velocity, and the distributions of the ion and electron densities within the sheath are computed under various discharge conditions, such as the discharge powers and the gas pressures. The results show that the existence of the cylindrical hole on the electrode significantly affects the sheath structure and generates a potential trap in the horizontal direction, which is particularly strong when the sheath thickness is comparable to the depth of the hole. Moreover, it is found that the collisional effects have a significant influence on the sheath characteristics.

  4. A study of the collisional fragmentation problem using the Gamma distribution approximation.

    PubMed

    Kostoglou, M; Karabelas, A J

    2006-11-15

    The nonlinear fragmentation population balance formulation has been elevated in recent years from a prototype for studying nonlinear integro-differential equations to a vehicle for analyzing and understanding several physicochemical processes of technological interest. The so-called pure collisional fragmentation, which is the particular mode of nonlinear fragmentation induced by collisions between particles, is studied here. It is shown that the corresponding population balance equation admits large time asymptotic (self-similarity) solutions for homogeneous fragmentation and collision functions (kernels). The self-similar solutions are given in closed form for some simple kernels. Based on the shape of the self-similar solutions the method of moments with Gamma distribution approximation is employed for transient solution (from initial state to establishment of the asymptotic shape) of the collisional fragmentation equation. These solutions are presented for several sets of parameters and their behavior is discussed rather extensively. The present study is similar to the one has already been performed for the case of the much simpler linear fragmentation equation [G. Madras, B.J. McCoy, AIChE J. 44 (1998) 647].

  5. Collisional-radiative model in air for earth re-entry problems

    SciTech Connect

    Bultel, Arnaud; Cheron, Bruno G.; Bourdon, Anne; Motapon, Ousmanou; Schneider, Ioan F.

    2006-04-15

    A nonlinear time-dependent two-temperature collisional-radiative model for air plasma has been developed for pressures between 1 kPa and atmospheric pressure to be applied to the flow conditions of space vehicle re-entry into the Earth's atmosphere. The model consists of 13 species: N{sub 2}, O{sub 2}, N, O, NO, N{sub 2}{sup +}, O{sub 2}{sup +}, N{sup +}, O{sup +}, NO{sup +}, O{sub 2}{sup -}, O{sup -} in their ground state and major electronic excited states and of electrons. Many elementary processes are considered given the temperatures involved (up to 10 000 K). Time scales to reach the final nonequilibrium or equilibrium steady states are derived. Then we apply our model to two typical re-entry situations and show that O{sub 2}{sup -} and O{sup -} play an important role during the ionization phase. Finally, a comparison with existing reduced kinetic mechanisms puts forward significant discrepancies for high velocity flows when the flow is in chemical nonequilibrium and smaller discrepancies when the flow is close to chemical equilibrium. This comparison illustrates the interest of using a time-dependent collisional-radiative model to validate reduced kinetic schemes for the relevant time scales of the flows studied.

  6. Collisional heating of a plasma column slowly forced across a squeeze potential

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    2016-10-01

    When equilibrium plasmas have two or more locally-trapped particle populations, perturbations to the equilibrium can produce phase-space discontinuities in the distribution function that strongly enhance transport, plasma loss, and wave damping. This poster presents a simple version of this process, wherein a plasma is heated as it is slowly forced back and forth across a squeeze potential (at a frequency ω that is small compared to the particle bounce frequency) that traps particles on either side of the squeeze. Adiabatic theory is developed for the distribution function, showing that trapped and passing particles have different responses to the forcing that produces a collisional boundary layer at the separatrix. Expressions for both the adiabatic and non-adiabatic distribution functions are presented, and the heating rate caused by the collisional boundary layer at the separatrix is derived. The heating is proportional to √ (ν ω) , where ν is the collision rate. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  7. Alpine Post-Collisional Orogeny: topics of debate and possible targets for AlpArray research

    NASA Astrophysics Data System (ADS)

    Kissling, Edi

    2016-04-01

    In all aspects, the Alps are by far the best documented orogen. Within their only 1000km lengths from Nice to Vienna, the Alps exhibit an extraordinary variation in structure along strike and from surface to great depth. The modern well-accepted mountain building concept calls for a material flux carefully balanced by mantle flow, plate convergence, subduction, crustal delamination, surface topography, uplift and erosion. The Alpine data set provides a basis to relate subduction processes with Penninic nappes evolution and overthrusting of Austroalpine lid, collision and oceanic slab break-off with build-up of topography, and post-collisional slab rollback and isostatic rebound due to erosional unloading to exhumation of deep European basement structures such as Tauern and Aar massiv. Temporal and spatial variations and relative importance of these processes and their relation to the overall convergence between the Adriatic/Africa and European continental plates, however, are still poorly understood and remain matters of debate. While the AlpArray Seismic Experiment will provide new geophysical information of unprecedented resolution and reliability, discussions and interdisciplinary earth science research among AlpArray community targeted at key questions will lead to a better understanding of collisional orogeny in general and Alpine evolution in particular.

  8. Paleogene Pseudoleucite Phonolites in South Tibet: Constrains on the Pre-collisional Mantle Characteristics

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Gou, GuoNing; Wang, Qiang; Jiang, ZiQi

    2016-04-01

    Post-collisional (25-8Ma) ultra-potassic rocks occur along the NS-trending grabens or rifts in southern Tibet, which have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached a near-maximum elevation. However, the petrogenesis of these rocks, especially source of enriched Sr-Nd isotopic compositions, remains controversial. Here we report on the Paleogene silicate-unsaturated pseudoleucite phonolite dike, in the Rongniduo area of central Lhasa terrane. Samples from this 62.7 ± 5.3Ma (in-suit SIMS Apatite U-Pb age) dike have distinctly more depleted whole rock Sr-Nd ((87Sr/86Sr)i = 0.7064 to 0.7062, ɛNd(t) = -1.5 to 0.4) isotopic composition, than those ((87Sr/86Sr)i = 0.7128 to 0.7406, ɛNd(t) = -18.0 to -12.4) of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa subterrane, respectively. We suggest that these ~62 Ma pseudoleucite phonolites could be derived from the enriched mantle metasomatized by subducted Tethyan oceanic materials, which provides important constraints on pre-collisional mantle characteristics beneath the Lhasa Block. Therefore, our new data indicate that the Miocene ultrapotassic rocks with the enriched Sr-Nd isotopic composition were most probably derived from a mantle source metasomatized by subducted Indian continental materials.

  9. Collisional damping of helicon waves in a high density hydrogen linear plasma device

    NASA Astrophysics Data System (ADS)

    Caneses, Juan F.; Blackwell, Boyd D.

    2016-10-01

    In this paper, we investigate the propagation and damping of helicon waves along the length (50 cm) of a helicon-produced 20 kW hydrogen plasma ({{n}\\text{e}}˜ 1-2 × 1019 m-3, {{T}\\text{e}}˜ 1-6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50-200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (4-8 G and {λz}˜ 10-15 cm) propagating away from the antenna region which become collisionally absorbed within 40-50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. Theoretical calculations are consistent with experiment and indicate that for conditions where Coulomb collisions are dominant classical collisionality is sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in helicon based linear plasma devices.

  10. PLANETARY CORE FORMATION WITH COLLISIONAL FRAGMENTATION AND ATMOSPHERE TO FORM GAS GIANT PLANETS

    SciTech Connect

    Kobayashi, Hiroshi; Krivov, Alexander V.; Tanaka, Hidekazu

    2011-09-01

    Massive planetary cores ({approx}10 Earth masses) trigger rapid gas accretion to form gas giant planets such as Jupiter and Saturn. We investigate the core growth and the possibilities for cores to reach such a critical core mass. At the late stage, planetary cores grow through collisions with small planetesimals. Collisional fragmentation of planetesimals, which is induced by gravitational interaction with planetary cores, reduces the amount of planetesimals surrounding them, and thus the final core masses. Starting from small planetesimals that the fragmentation rapidly removes, less massive cores are formed. However, planetary cores acquire atmospheres that enlarge their collisional cross section before rapid gas accretion. Once planetary cores exceed about Mars mass, atmospheres significantly accelerate the growth of cores. We show that, taking into account the effects of fragmentation and atmosphere, initially large planetesimals enable formation of sufficiently massive cores. On the other hand, because the growth of cores is slow for large planetesimals, a massive disk is necessary for cores to grow enough within a disk lifetime. If the disk with 100 km sized initial planetesimals is 10 times as massive as the minimum mass solar nebula, planetary cores can exceed 10 Earth masses in the Jovian planet region (>5 AU).

  11. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  12. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    SciTech Connect

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-07-15

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed.

  13. Finite orbit width effect in ion collisional transport in TJ-II

    SciTech Connect

    Velasco, J. L.; Tarancon, A.; Castejon, F.

    2009-05-15

    The validity of the traditional local diffusive approach and of the use of monoenergetic calculations has been studied for the stellarator TJ-II [Alejaldre et al., Fusion Technol. 17, 131 (1990)]: it is shown to be doubtful, under some circumstances, even in a purely collisional description of transport. The diffusion in physical space starting from Dirac-delta-like initial conditions has been studied using the code Integrator of Stochastic Differential Equations for Plasmas by Castejon et al. [Plasma Phys. Controlled Fusion 49, 753 (2007)]. Particles may experience large radial excursions from their original magnetic surfaces in a single collisional time. The contribution of these particles to the flux may make it nondiffusive; non-Gaussian density distributions, characterized by long tails, are observed. In the velocity space, there are important variations in the average particle kinetic energy after one collision time. We discuss the effect of this fact over the calculation of monoenergetic transport coefficients and their convolution. A simple analysis based on Hurst exponents has shown nevertheless that the description of transport by means of a pinch term and an effective transport coefficient is more correct than expected.

  14. Low Collisionality Neoclassical Toroidal Viscosity in Tokamaks and Quasi-symmetric Stellarators

    NASA Astrophysics Data System (ADS)

    Cole, A. J.; Hegna, C. C.; Callen, J. D.

    2008-11-01

    Non-resonant magnetic perturbations can affect plasma rotation in toroidally confined plasmas through their modification to |B|. Variations along a field line induce nonambipolar radial transport and produce a global neoclassical toroidal viscous force [NTV]. In this work, previously calculated radial particle fluxes for the low-collisionality ``ν'' and ``1/ν'' regimes [1] are unified into a single particle flux (or toroidal viscous force). Provided pitch-angle scattering dominates over collisional energy exchange, the energy component of phase space can be decoupled into independent regions (E >Ec. for ν regime, E < Ec for 1/ν regime, with Ec determined by .νi(Ec) =ɛ,E) within which the perturbed distribution function can be calculated similar to [1]. Using a technique first employed in axisymmetric neoclassical theory [2], the smoothed particle flux is constructed by summing the partial contributions from ν and 1/ν banana drift effects respectively. The complete NTV force is expressed in terms of the equilibrium flows and a temperature-gradient-determined ``intrinsic'' flow. [1] K.C. Shaing, Phys. Plasmas, 10, 1443 (2003). [2] K.T. Tsang, and J.D. Callen, Phys. Fluids 19, 667 (1976).

  15. Fokker-Planck model for collisional loss of fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Yavorskij, V.; Goloborod'ko, V.; Schoepf, K.

    2016-11-01

    Modelling of the collisional loss of fast ions from tokamak plasmas is important from the point of view of the impact of fusion alphas and neutral beam injection ions on plasma facing components as well as for the development of diagnostics of fast ion losses [1-3]. This paper develops a Fokker-Planck (FP) method for the assessment of distributions of collisional loss of fast ions as depending on the coordinates of the first wall surface and on the velocities of lost ions. It is shown that the complete 4D drift FP approach for description of fast ions in axisymmetric tokamak plasmas can be reduced to a 2D FP problem for lost ions with a boundary condition delivered by the solution of a 3D boundary value problem for confined ions. Based on this newly developed FP approach the poloidal distribution of neoclassical loss, depending on pitch-angle and energy, of fast ions from tokamak plasma may be examined as well as the contribution of this loss to the signal detected by the scintillator probe may be evaluated. It is pointed out that the loss distributions obtained with the novel FP treatment may serve as an alternative approach with respect to Monte-Carlo models [4, 5] commonly used for simulating fast ion loss from toroidal plasmas.

  16. Collisional dust production in extrasolar discs: a new dynamical and photometric model

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Augereau, J.-C.

    2003-05-01

    In most extrasolar discs, the observed dust is believed to be produced by collisional cascades starting at (at least) kilometre-sized planetesimals. The numerical studies of Thebault et al. (A&A 2003) have shown on a peculiar example, the inner Beta-Pictoris disc, that the collisional size distribution from micron-sized grains to planetesimals might significantly depart from the classical dN α r-3.5dr power law. The main reason for this departure is the specific behaviour of the smallest grains, i.e. stellar radiation blow-out size limit and highly eccentric orbits, which indirectly affects the whole size distribution. We extend our approach to the more general case of any collisionaly produced dust disc. We consider mutualy interacting concentric annuli with a collisionaly evolving size distribution ranging from the blow-out size to 50 km objects. Realistic grain optical properties are taken into account in order to derive scattered light and thermal images. Complete S.E.D. profiles are also derived and compared to observational data. Preliminary results are presented for the β -Pic system and for other well known discs.

  17. Collisional effects on the numerical recurrence in Vlasov-Poisson simulations

    SciTech Connect

    Pezzi, Oreste; Valentini, Francesco; Camporeale, Enrico

    2016-02-15

    The initial state recurrence in numerical simulations of the Vlasov-Poisson system is a well-known phenomenon. Here, we study the effect on recurrence of artificial collisions modeled through the Lenard-Bernstein operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456–1459 (1958)]. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through an Eulerian collisional Vlasov-Poisson code. It is found that, despite being routinely used, an artificial collisionality is not a viable way of preventing recurrence in numerical simulations without compromising the kinetic nature of the solution. Moreover, it is shown how numerical effects associated to the generation of fine velocity scales can modify the physical features of the system evolution even in nonlinear regime. This means that filamentation-like phenomena, usually associated with low amplitude fluctuations contexts, can play a role even in nonlinear regime.

  18. Measurement of electron impact collisional excitation cross sections of Ni to Ge-like gold

    NASA Astrophysics Data System (ADS)

    May, M. J.; Beiersdorfer, P.; Jordan, N.; Scofield, J. H.; Reed, K. J.; Brown, G. V.; Hansen, S. B.; Porter, F. S.; Kelley, R.; Kilbourne, C. A.; Boyce, K. R.

    2017-03-01

    We have measured the collisional excitation cross sections for the 3d→4f and 3d→5f excitations in Au ions near the Ni-like charge state by using beam plasmas created in the Livermore electron beam ion trap EBIT-I. The cross sections have been experimentally determined at approximately 1, 2 and 3 keV above the threshold energy, ET, for the 3d→4f excitations (ET ˜ 2.5 keV) and at approximately 0.1, 1 and 2 keV above the threshold energy for the 3d→5f excitations (ET ˜ 3.3 keV). The cross section measurements were made possible by using the GSFC x-ray microcalorimeter at the Livermore EBIT facility. The absolute cross sections are determined from the ratio of the intensity of the collisionally excited bound-bound transitions to the intensity of the radiative recombination lines produced in EBIT-I plasmas. The effects of polarization and Auger decay channels are accounted for in the cross section determination. Measured cross sections are compared with those from HULLAC, DWS and FAC calculations. The measurements demonstrate that some errors exist in the calculated excitation cross sections.

  19. Secondary island formation in collisional and collisionless kinetic simulations of magnetic reconnection

    SciTech Connect

    Dayton, William S; Roytershteyn, Vadim; Gary, Peter; Yin, L; Albright, B J; Bowers, K J; Karimabadi, H

    2009-01-01

    The evolution of magnetic reconnection in large-scale systems often gives rise to extended current layers that are unstable to the formation of secondary magnetic islands. The role of these islands in the reconnection process and the conditions under which they form remains a subject of debate. In this work, we benchmark two different kinetic particle-in-cell codes to address the formation of secondary islands for several types of global boundary conditions. The influence on reconnection is examined for a range of conditions and collisionality limits. Although secondary islands are observed in all cases, their influence on reconnection may be different depending on the regime. In the collisional limit, the secondary islands playa key role in breaking away from the Sweet-Parker scaling and enabling faster reconnection. In the collisionless limit, their formation is one mechanism for controlling the length of the diffusion region. In both limits, the onset of secondary islands leads to a time dependent behavior in the reconnection rate. In all cases considered, the number of secondary islands increases for larger systems.

  20. MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Wilson, H. R.; Konz, C.

    2005-10-01

    The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for edge localized modes (ELMs) and impose constraints on the pedestal height. In typical discharges with ELMs, the pedestal goes unstable to coupled peeling-ballooning or pure ballooning modes shortly before an ELM is observed. However, at very low collisionality, the bootstrap current in the pedestal region can be large, even very near the separatrix, and the discharge can be most unstable to current-driven kink/peeling modes, typically at relatively low mode number (n˜,1-10). Recently, interesting ELM-free regimes, including both Quiescent (QH) and Resonant Magnetic Perturbation (RMP) H-mode, have been observed to occur in this low collisionality regime. Here we systematically explore MHD stability in this regime, including the effects of a conducting wall and sheared toroidal flow. We consider the implications for both RMP and QH discharges, including possible connections between the EHO observed in QH mode and low-n kink/peeling modes.

  1. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    USGS Publications Warehouse

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  2. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    SciTech Connect

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-15

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  3. Model for cw laser collisionally induced fluorescence in low-temperature discharges

    PubMed

    Stewart; Smith; Borthwick; Paterson

    2000-08-01

    A perturbed steady-state rate-equation model has been developed for the cw laser collisionally induced fluorescence (LCIF) produced by excitation on one of the 1s-2p noble gas transitions. This work is one part of a wider complementary modeling program which includes cw optogalvanic spectroscopy, optical emission spectroscopy, and optical absorption spectroscopy, with the overall aim of testing all of these models with the same stringently assembled atomic and discharge data set. Our aim here is to demonstrate the principal features of our cw LCIF model by using it to describe our experimental observations produced by pumping transitions originating on the 1s(5) metastable and 1s(4) resonance states of neon atoms in the positive column of a normal glow discharge at 2.0 Torr and a discharge current of 5 mA. The model shows that these cw LCIF spectra are dominated by 1s-2p excitation and electron collisional coupling among the 2p states. We show that the model allows us to quantify explicitly the various individual contributions to each line in the cw LCIF spectra. The theory and analyses presented here apply equally well to other noble gases and we believe can be modified appropriately for trace noble gases in atomic-molecular mixtures.

  4. Rapid collisional evolution of comets during the formation of the Oort cloud.

    PubMed

    Stern, S A; Weissman, P R

    2001-02-01

    The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

  5. Enhanced stabilisation of trapped electron modes by collisional energy scattering in tokamaks

    SciTech Connect

    Manas, P.; Camenen, Y.; Benkadda, S.; Hornsby, W. A.; Peeters, A. G.

    2015-06-15

    The collisional stabilisation via energy scattering and pitch-angle scattering of micro-instabilities in tokamak plasmas is investigated by means of gyrokinetic simulations with a special emphasis on the often neglected energy scattering operator. It is shown that in the linear regime energy scattering has a negligible effect on Ion Temperature Gradient (ITG) modes but enhances the stabilisation of Trapped Electron Modes (TEM) in presence of nonzero ion temperature and density gradients. This stabilisation is sensitive to the model used for the energy restoring term in the collision operator. The contributions of parallel and drift motion to the total growth rate in velocity space are used to characterize the complex stabilisation mechanisms behind pitch-angle and energy scattering for a range of relevant parameters such as the magnetic shear, the collisionality, the logarithmic density gradient, and the logarithmic ion temperature gradient. It is shown that depending on these parameters, energy scattering stabilisation of TEM can be either due to a decrease of the contribution from drifting trapped electrons or to an increase of the contribution from the parallel motion of passing electrons. Finally, for a standard ITG/TEM case, the effect of energy scattering on the nonlinear heat and particle fluxes is investigated.

  6. Collisional effects on the numerical recurrence in Vlasov-Poisson simulations

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Camporeale, Enrico; Valentini, Francesco

    2016-02-01

    The initial state recurrence in numerical simulations of the Vlasov-Poisson system is a well-known phenomenon. Here, we study the effect on recurrence of artificial collisions modeled through the Lenard-Bernstein operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456-1459 (1958)]. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through an Eulerian collisional Vlasov-Poisson code. It is found that, despite being routinely used, an artificial collisionality is not a viable way of preventing recurrence in numerical simulations without compromising the kinetic nature of the solution. Moreover, it is shown how numerical effects associated to the generation of fine velocity scales can modify the physical features of the system evolution even in nonlinear regime. This means that filamentation-like phenomena, usually associated with low amplitude fluctuations contexts, can play a role even in nonlinear regime.

  7. Nonlinear Coherent Structures of Alfvén Wave in a Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Jana, Sayanee; Ghosh, Samiran; Chakrabarti, Nikhil

    2016-10-01

    The Alfvén wave dynamics is investigated in the framework of Lagrangian two-fluid model in a cold magnetized collisional plasma in presence of finite electron inertia. In the quasi-linear limit, the dynamics of the nonlinear Alfvén wave is shown to be governed by a modified Korteweg-de Vries Burgers (mKdVB) equation. In this mKdVB equation, the electron inertia is found to act as a source of dispersion and the electro-ion collision serves as a dissipation. In the long wavelength limit, we have also investigated wave modulation characteristics of the nonlinear Alfvén wave. The dynamics of this modulated wave is shown to be governed by a damped nonlinear Schrödinger equation (NLSE). These nonlinear equations are analysed by means of analytical and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits shock, envelope and breather like structures. Numerical simulations also predict the formation of Alfvénic rogue waves, rogue wave holes and giant breathers. These results could be useful for understanding the salient features of the Alfvénic magnetic field structures from observational data in very low- βmagnetized collisional plasmas in space and laboratory.

  8. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE PAGES

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; ...

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  9. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    SciTech Connect

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.

  10. Collisional relaxation of an isotopic, strongly magnetized pure ion plasma and topics in resonant wave-particle interaction of plasmas

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung

    First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.

  11. Collisional relaxation of a strongly magnetized two-species pure ion plasma

    SciTech Connect

    Chim, Chi Yung; O’Neil, Thomas M.; Dubin, Daniel H.

    2014-04-15

    The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω{sub 1},Ω{sub 2}≫|Ω{sub 1}−Ω{sub 2}|≫v{sup ¯}{sub ij}/b{sup ¯} and v{sup ¯}{sub ⊥j}/Ω{sub j}≪b{sup ¯}, where Ω{sub 1} and Ω{sub 2} are two cyclotron frequencies, v{sup ¯}{sub ij}=√(T{sub ∥}/μ{sub ij}) is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b{sup ¯}=2e{sup 2}/T{sub ∥} is the classical distance of closest approach for such collisions, and v{sup ¯}{sub ⊥j}/Ω{sub j}=√(2T{sub ⊥j}/m{sub j})/Ω{sub j} is the characteristic cyclotron radius for particles of species j. Here, μ{sub ij} is the reduced mass for the two particles, and T{sub ∥} and T{sub ⊥j} are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I{sub 1}=∑{sub i∈1}m{sub 1}v{sub ⊥i}{sup 2}/(2Ω{sub 1}) and I{sub 2}=∑{sub i∈2}m{sub 2}v{sub ⊥i}{sup 2}/(2Ω{sub 2}) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I{sub 1} and I{sub 2}, yielding a modified Gibbs distribution of the form exp[−H/T{sub ∥}−α{sub 1}I{sub 1}−α{sub 2}I{sub 2}]. Here, the α{sub j}’s are related to T{sub ∥} and T{sub ⊥j} through T{sub ⊥j}=(1/T{sub ∥}+α{sub j}/Ω{sub j}){sup −1}. Collisional relaxation to the usual Gibbs distribution, exp[−H/T{sub ∥}], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b{sup ¯2}Ω{sub 1}{sup 2}/v{sup ¯}{sub 11}{sup 2})exp(5[3π(b{sup ¯}|Ω{sub 1}−Ω{sub 2}|/v{sup ¯}{sub 12})]{sup 2/5}/6), the two

  12. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Kellett, Dawn A.

    2015-09-01

    The presence of hot, weak crust is a central component of recent hypotheses that seek to explain the evolution of continent-continent collisions, and in particular may play an important role in accommodating the >3000 km of convergence within the Himalaya-Tibetan collision over the last ∼55 Myr. Models that implicate flow of semi-viscous midcrustal rocks south toward the front of the Himalayan orogen, 'channel flow', are able to account for many geologic observations in the Himalaya, while alternative models of collision, particularly 'thrust-wedge taper', demonstrate that much of the observed geology could have formed in the absence of a low-viscosity mid-crustal layer. Several recent studies, synthesized here, have prompted a shift from initial assumptions that channel flow and thrust-wedge taper processes are by definition mutually exclusive. These new studies reveal the presence of several tectonometamorphic discontinuities in the midcrust that appear to reflect a continuum of deformation in which both channel- and wedge-type processes operate in spatially and temporally distinct domains within the orogen, and further, that the system may migrate back and forth between these types of behavior. This continuum of deformation styles within the collisional system is of crucial importance for explaining the evolution of the Himalayan orogen and, hence, for understanding the evolution of Earth's many continent-continent collision zones.

  13. Classical field approach to quantum weak measurements.

    PubMed

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  14. Suppression of unimolecular decay of laser desorbed peptide and protein ions by entrainment in rarefied supersonic gas jets under weak electric fields.

    PubMed

    Hieke, Andreas

    2014-01-21

    Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined "MALDI-2," which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.

  15. Suppression of unimolecular decay of laser desorbed peptide and protein ions by entrainment in rarefied supersonic gas jets under weak electric fields

    SciTech Connect

    Hieke, Andreas

    2014-01-21

    Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined “MALDI-2,” which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.

  16. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt

    NASA Astrophysics Data System (ADS)

    Seltmann, Reimar; Konopelko, Dmitry; Biske, Georgy; Divaev, Farid; Sergeev, Sergei

    2011-10-01

    The Hercynian Tien Shan (Tianshan) orogen formed during Late Palaeozoic collision between the Karakum-Tarim and the Kazakhstan paleo-continents. In order to constrain timing of Hercynian post-collisional magmatism, 27 intrusions were sampled for U-Pb zircon dating along a ca. 2000 km - long profile in Uzbekistan and Kyrgyzstan. The samples were dated utilizing sensitive high resolution ion microprobe (SHRIMP-II). The obtained ages, together with previously published age data, allowed the timing of Hercynian post-collisional magmatism to be constrained and interpreted in the context of the Paleozoic magmatic evolution of the region. Apart from Hercynian post-collisional magmatism, two older magmatic episodes have been recognized, and the following sequence of events has been established: (1) approximately 10 Ma after cessation of continuous Caledonian magmatism a number of Late Silurian-Early Devonian intrusions were emplaced in the Middle and Northern Tien Shan terranes between 420 and 390 Ma. The intrusions probably formed in an extensional back arc setting during coeval subduction under the margins of Caledonian Paleo-Kazakhstan continent; (2) the next relatively short Late Carboniferous episode of subduction under Paleo-Kazakhstan was registered in the Kurama range of the Middle Tien Shan. Calc-alkaline volcanics and granitoids with ages 315-300 Ma have distinct metallogenic affinities typical for subduction-related rocks and are not found anywhere outside the Middle Tien Shan terrane west of the Talas-Farghona fault; (3) the Early Permian Hercynian post-collisional magmatism culminated after the closure of the Paleo-Turkestan ocean and affected the whole region across terrane boundaries. The post-collisional intrusions formed within a relatively short time span between 295 and 280 Ma. The model for Hercynian post-collisional evolution suggests that after collision the Tien Shan was affected by trans-crustal strike-slip motions which provided suitable conduits

  17. GeV neutrinos from collisional heating in GRBs: Detection prospects with IceCube-DeepCore

    SciTech Connect

    Bartos, Imre

    2014-11-18

    The observed gamma-ray burst (GRB) emission may be due to jet reheating via nuclear collisions. The role of this collisional heating can be probed through the observation of 10–100 GeV neutrinos, which are generated in nuclear collisions along with gamma rays. Neutrino and gamma-ray luminosities are closely related, which further aids observations. If the main mechanism behind the production of GRBs is collisional heating then IceCube-DeepCore could detect the GeV-neutrino emission of GRBs with a few years of observation.

  18. Weak gravitational lensing by galaxies

    SciTech Connect

    Brainerd, T.G. |; Blandford, R.D.; Smail, I. |

    1996-08-01

    We report a detection of weak, tangential distortion of the images of cosmologically distant, faint galaxies due to gravitational lensing by foreground galaxies. A mean image polarization of ({ital p})=0.011{plus_minus}0.006 (95{percent} confidence bounds) is obtained for 3202 pairs of source (23{lt}{ital r}{sub {ital s}}{le}24) and lens (20{le}{ital r}{sub {ital d}}{le}23) galaxies with projected separations of 5{double_prime}{le}{theta}{le}34{double_prime}. Averaged over annuli of inner radius 5{double_prime} and outer radius {theta}{sub max}, the signal is string for lens-source separations of {theta}{sub max}{approx_lt}90{double_prime} consistent with quasi-isothermal galaxy halos extending to large radii ({approx_gt}100{ital h}{sup {minus}1} kpc). The observed polarization is also consistent with the signal expected on the basis of simulations incorporating measured properties of local galaxies and modest extrapolations of the observed redshift distribution of faint galaxies (to which the results are somewhat sensitive). From the simulations we obtain formal best-fit model parameters for the dark halos of the lens galaxies that consist of a characteristic circular velocity of {ital V}{asterisk}{approximately}220{plus_minus}80 kms{sup {minus}1} and characteristic radial extent of {ital s}{asterisk}{approx_gt}100{ital h}{sup {minus}1} kpc. The predicted polarization based on the model is relatively insensitive to the characteristic radial extent of the halos, {ital s}{asterisk}, and very small halos ({ital s}{asterisk}{approximately}10{ital h}{sup {minus}1} kpc) are excluded only at the 2 {sigma} level. The formal best-fit halo parameters imply typical masses for the lens galaxies within a radius of 100{ital h}{sup -1} kpc on the order of 1.0{sup +1.2}{sub {minus}0.5}{times}10{sup 12} {ital h}{sup {minus}1}{ital M}{sub {circle_dot}} (90% confidence bounds), in agreement with recent dynamical estimates of the masses of local spiral galaxies.

  19. Spin effects in the weak interaction

    SciTech Connect

    Freedman, S.J. Chicago Univ., IL . Dept. of Physics Chicago Univ., IL . Enrico Fermi Inst.)

    1990-01-01

    Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.

  20. Weak point target detection in star sensor

    NASA Astrophysics Data System (ADS)

    Liu, Da; Xiong, Yazhou; Li, Yi; Wang, Li; Li, Chunyan; Yin, Fang

    2016-11-01

    Space weak point targets detection is very useful in non cooperative target detection. Influenced by the chip noise and space environmental noise, weak point targets detection becomes a difficulty. In the paper, firstly the star is extracted from the picture, the background picture is filtered to reduce the noise, and then the moving distance between adjacent pictures is calculated, after picture overlapping between adjacent pictures, the energy of the weak point target is improved, with a appropriate threshold, the weak point target is extracted. The proposed method can be widely utilized in space exploration, space defense etc.

  1. Weak measurements and nonClassical correlations

    NASA Astrophysics Data System (ADS)

    Lekshmi, S.; Shaji, N.; Shaji, Anil

    2017-01-01

    We extend the definition of quantum discord as a quantifier of nonClassical correlations in a quantum state to the case where weak measurements are performed on subsystem A of a bipartite system AB. The properties of weak discord are explored for several families of quantum states. We find that in many cases weak quantum discord is identical to normal discord and in general the values of the two are very close to each other. Weak quantum discord reduces to discord in the appropriate limits as well. We also discuss the implications of these observations on the interpretations of quantum discord.

  2. Post-collisional magmatism: Crustal growth not identified by zircon Hf-O isotopes

    NASA Astrophysics Data System (ADS)

    Couzinié, Simon; Laurent, Oscar; Moyen, Jean-François; Zeh, Armin; Bouilhol, Pierre; Villaros, Arnaud

    2016-12-01

    The combination of U-Pb, Lu-Hf and O isotopic analyses in global zircon databases has recently been used to constrain continental crustal growth and evolution. To identify crust-forming events, these studies rely on the assumption that new crust is formed from depleted mantle sources. In contrast, this work suggests that post-collisional mafic magmas and their derivatives represent a non-negligible contribution to crustal growth, despite having zircons with "crust-like" Hf-O isotopic characteristics. We address this paradox and its implications for crustal evolution on the basis of a case study from the Variscan French Massif Central (FMC). The late stages of continental collisions are systematically marked by the emplacement of peculiar mafic magmas, rich in both compatible (Fe, Mg, Ni, Cr) and incompatible elements (K2O, HFSE, LREE) and displaying crust-like trace element patterns. This dual signature is best explained by melting of phlogopite- (and/or amphibole-) bearing peridotite, formed by contamination of the mantle by limited amounts (10-20%) of crustal material during continental subduction shortly preceding collision. Mass balance constraints show that in melts derived from such a hybrid source, 62-85% of the bulk mass is provided by the mantle component, whereas incompatible trace elements are dominantly crustal in origin. Thereby, post-collisional mafic magmas represent significant additions to the crust, whilst their zircons have "crustal" isotope signatures (e.g. - 2 < εHft < - 9 and + 6.4 < δ18O < + 10 ‰ in the FMC). Because post-collisional mafic magmas are (i) ubiquitous since the late Archean; (ii) the parental magmas of voluminous granitoid suites; and (iii) selectively preserved in the geological record, zircons crystallized from such magmas (and any material derived from their differentiation or reworking) bias the crustal growth record of global zircon Hf-O isotopic datasets towards ancient crust formation and, specifically, may lead to an

  3. Collisional erosion and the non-chondritic composition of the terrestrial planets.

    PubMed

    O'Neill, Hugh St C; Palme, Herbert

    2008-11-28

    The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their

  4. CP Violation, Neutral Currents, and Weak Equivalence

    DOE R&D Accomplishments Database

    Fitch, V. L.

    1972-03-23

    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  5. On modeling weak sinks in MODPATH

    USGS Publications Warehouse

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.

    2012-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  6. On modeling weak sinks in MODPATH.

    PubMed

    Abrams, Daniel; Haitjema, H; Kauffman, L

    2013-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low-resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  7. Spin Seebeck effect in a weak ferromagnet

    NASA Astrophysics Data System (ADS)

    Arboleda, Juan David; Arnache Olmos, Oscar; Aguirre, Myriam Haydee; Ramos, Rafael; Anadon, Alberto; Ibarra, Manuel Ricardo

    2016-06-01

    We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.

  8. Few body hypernuclear systems: Weak decays

    SciTech Connect

    Dover, C.B.

    1987-01-01

    The experimental and theoretical situation regarding mesonic and non-mesonic decays of light hypernuclei is reviewed. Although some models give reasonable results for pionic decays as well as the total weak decay rate, no existing approach explains, even qualitatively, the observed spin-isospin dependence of ..lambda..N ..-->.. NN non-mesonic weak decays. 31 refs., 2 figs.

  9. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. I

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    A consistent kinetic theory is developed for the description of electrons under conditions of a low-frequency two-stream {bold E}{times}{bold B} instability in collisionally dominated, weakly ionized plasmas. Starting from the Boltzmann collision integral, a simplified kinetic equation for the electron distribution function has been derived, which takes into account strong pitch-angle scattering of electrons by neutrals, velocity dependence of the electron--neutral collision frequency, etc. Linearized equations describing small oscillations of the electron distribution function and ion density are presented. For the asymptotic case of short waves, the dispersion relation of the {bold E}{times}{bold B} instability has been obtained and analyzed under conditions typical for the lower ionosphere. Under certain conditions, the rigorous kinetic consideration yields substantial changes in results compared to previous theories. The general approach may be applied to other linear and nonlinear low-frequency processes in a weakly ionized plasma. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Weak-value amplification: state of play

    NASA Astrophysics Data System (ADS)

    Knee, George C.; Combes, Joshua; Ferrie, Christopher; Gauger, Erik M.

    2016-01-01

    Weak values arise in quantum theory when the result of a weak measurement is conditioned on a subsequent strong measurement. The majority of the trials are discarded, leaving only very few successful events. Intriguingly those can display a substantial signal amplification. This raises the question of whether weak values carry potential to improve the performance of quantum sensors, and indeed a number of impressive experimental results suggested this may be the case. By contrast, recent theoretical studies have found the opposite: using weak-values to obtain an amplification generally worsens metrological performance. This survey summarises the implications of those studies, which call for a reappraisal of weak values' utility and for further work to reconcile theory and experiment.

  11. Collisional tearing instability in the current sheet with a low magnetic Lundquist number

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Fu, Z. F.

    1986-01-01

    An MHD model is used to calculate the growth rate of the collisional tearing mode instability in a current layer with a Lundquist number in the range 3-100,000. The maximum growth rate is found to be a function of the Alfven transit time in the current sheet and the Lundquist number. When the Lundquist number is below 50, the growth rate asymptotically approaches a value of about -0.075/transit time. The discovery of the dependence of the asymptotic value is considered to be of use in studies of the current sheet in the diffusion region of a magnetic reconnection configuration, where the Lundquist number will be in the range 2-100.

  12. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption

    NASA Astrophysics Data System (ADS)

    Singh, Navpreet; Gupta, Naveen; Singh, Arvinder

    2016-12-01

    This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.

  13. Nonlinear interaction between surface plasmons and ion oscillations in a semi-bounded collisional quantum plasma

    SciTech Connect

    Khorashadizadeh, S. M. Taheri Boroujeni, S.; Niknam, A. R.

    2015-11-15

    In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.

  14. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  15. Application of a hybrid collisional radiative model to recombining argon plasmas

    NASA Astrophysics Data System (ADS)

    Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.

    1993-02-01

    A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.

  16. Optimization of CFETR confinement by controlling rotation shear and pedestal collisionality

    NASA Astrophysics Data System (ADS)

    Jian, Xiang; Chen, Jiale; Chan, Vincent; Li, Guoqiang; Zhuang, Ge; Cfetr Physics Team

    2016-10-01

    Optimization of a CFETR baseline scenario (Chan et al. 2015 Nucl. Fusion. 55) with EC and NB H&CD is performed using a multi-dimensional code suite. Rotation shear is controlled using NB, with injection angle being constrained to avoid edge heating and to maintain q_min >2. The NB power is adjusted to keep the plasma fully non-inductive. The NB energy that maximize the fusion gain Q is identified. Trade-off between the pedestal density and temperature is performed with the pedestal pressure fixed. It is found that Q increases with pedestal density, while the density peaking factor (DPF) remains unchanged. Linear analysis shows that the transport is dominated by TEM and ITG turbulence. Collisionality affects these turbulences in such a way that the induced changes in DPF cancel out. A weaker dependence of DPF makes higher density operation more favorable for fusion gain.

  17. Collisional drag may lead to disappearance of wave-breaking phenomenon of lower hybrid oscillations

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2013-01-15

    The inhomogeneity in the magnetic field in a cold electron-ion non-dissipative homogeneous plasma leads to the breaking of lower hybrid modes via phase mixing phenomenon [Maity et al. Phys. Plasmas 19, 102302 (2012)]. In this work, we show that an inclusion of collisional drag force in fluid equations may lead to the disappearance of the wave-breaking phenomenon of lower hybrid oscillations. The nonlinear analysis in Lagrangian variables provides an expression for a critical value of damping rate, above which spikes in the plasma density profile may disappear. The critical damping rate depends on the perturbation and magnetic field inhomogeneity amplitudes as well as the ratio of the magnetic field inhomogeneity and perturbation scale lengths.

  18. On the quantum mechanical theory of collisional recombination rates, II. Beyond the strong collision approximation

    SciTech Connect

    Miller, W.H.

    1995-07-01

    A quantum mechanical theory of collisional recombination (within the Lindemann mechanism, A + B {leftrightarrow} AB*, AB* + M {yields} AB + M) is presented which provides a proper quantum description of the A + B collision dynamics and treats the M + AB* inelastic scattering within the impact approximation (the quantum analog of a classical master equation treatment). The most rigorous version of the theory is similar in structure to the impact theory of spectral line broadening and involves generalized (4-index) rate constants for describing M + AB* collisions. A simplified version is also presented which involves only the normal (2-index) inelastic rate constants for M + AB* scattering but which also retains a proper quantum description of the A + B dynamics.

  19. Effect of collisional lines broadening and calibration functions in the pure rotational Raman lidar technique

    NASA Astrophysics Data System (ADS)

    Gerasimov, Vladislav V.; Zuev, Vladimir V.

    2016-10-01

    We present and examine two three-coefficient calibration functions to be used for the tropospheric temperature retrievals via the pure rotational Raman (PRR) lidar technique. These functions are the special cases of the general analytical calibration function in the PRR lidar technique. The general function special cases take into account the collisional (pressure) broadening of all individual atmospheric N2 and O2 PRR lines in varying degrees. We apply these two special cases to real lidar remote sensing data and compare nighttime temperature profiles retrieved using these calibration functions to the profiles retrieved using other known ones. The absolute statistical uncertainties of temperature retrieval are also given in an analytical form. Lidar measurements data, obtained in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) using the IMCES PRR lidar at λ = 354.67 nm on 1 April 2015, were used for the tropospheric temperature retrievals (3-12 km).

  20. An experimentally constrained MHD model for a collisional, rotating plasma column

    NASA Astrophysics Data System (ADS)

    Wright, A. M.; Qu, Z. S.; Caneses, J. F.; Hole, M. J.

    2017-02-01

    A steady-state single fluid MHD model which describes the equilibrium of plasma parameters in a collisional, rotating plasma column with temperature gradients and a non-uniform externally applied magnetic field is developed. Two novel methods of simplifying the governing equations are introduced. Specifically, a ‘radial transport constraint’ and an ordering argument are applied. The reduced system is subsequently solved to yield the equilibrium of macroscopic plasma parameters in the bulk region of the plasma. The model is benchmarked by comparing these solutions to experimental measurements of axial velocity and density for a hydrogen plasma in the converging-field experiment MAGPIE and overall a good agreement is observed. The plasma equilibrium is determined by the interaction of a density gradient, due to a temperature gradient, with an electric field. The magnetic field and temperature gradient are identified as key parameters in determining the flow profile, which may be important considerations in other applications.

  1. Excitation of torsional modes of proteins via collisional energy transfer: A quantum dynamical approach

    NASA Astrophysics Data System (ADS)

    Clary, David C.; Meijer, Anthony J. H. M.

    2002-06-01

    Quantum dynamical calculations have been carried out on the excitation of the torsional vibrations of a protein by collision with a solvent molecule. This energy transfer process represents the first step in the unfolding of the protein. The method developed for this purpose is the torsional close coupling, infinite order sudden approximation. Both time-independent and time dependent methods are used to solve the scattering problem and individual excitation of all the torsional modes of the protein is treated. The method is applied to the excitation of the HIV protein gp41 colliding with a water molecule. This protein has 1101 atoms, 56 amino acids, and 452 torsional modes. A major mode-selective effect is found in the computations: it is much easier to excite backbone torsions than sidechain torsions in the protein. In addition, resonances arise in the collisional process and these complexes involve temporary trapping of the water molecule inside the pockets of the protein.

  2. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  3. The case for diffuse, collisionally ionized interstellar C IV and SI IV below Z = 1 KPC

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Bromage, Gordon E.

    1986-09-01

    The results of a study of highly ionized gas in the galactic disc and disc/halo interface region are presented, based on IUE observations of C IV and Si IV absorption in a specially selected set of 19 co-directional sight-lines to early-type stars. Evidence is presented for a generally distributed, collisionally ionized phase of this gas having a density in the plane of ≡3×10-9cm-3 and a scale height in the range of 1 - 3 kpc. It is shown that the use in a restricted range of sight-line directions in studies such as this may reduce confusion resulting from inhomogeneities in the distribution of the highly ionized medium.

  4. Atomic and Molecular Collisional Radiative Modeling for Spectroscopy of Low Temperature and Magnetic Fusion Plasmas

    SciTech Connect

    Fantz, U.; Wuenderlich, D.

    2011-05-11

    The quantitative analysis of spectroscopic data from low temperature plasmas is strongly supported from collisional radiative (CR) modeling. Low pressure plasmas for basic research in the lab and for industrial use have several aspects in common with the cold edge of magnetic fusion plasmas. On the basis of applications of CR modeling for atomic and molecular hydrogen, molecular nitrogen, and diatomic radicals such as CH and C{sub 2}, the relevance of individual processes for data interpretation is demonstrated for ionizing and recombining plasmas. Examples of such processes are opacity, dissociative excitation, dissociative recombination, mutual neutralization, and energy pooling. It is shown that the benchmark of CR modeling with experimental data can be used to identify problems in the ingoing data set of cross sections and rate coefficients. Using the flexible solver Yacora, the capability of CR modeling of low temperature plasmas is highlighted.

  5. Collisional-radiative model for the visible spectrum of W26+ ions

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Liu, Jiaxin; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chenzhong

    2016-02-01

    Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W26+ ions has been constructed by considering radiative and electron excitation processes, in which the necessary atomic data had been calculated by relativistic configuration interaction method with the implementation of Flexible Atomic Code. The visible spectrum observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm to 392 nm was reproduced by present calculations. Some transition pairs of which the intensity ratio is sensitive to the electron density were selected as potential candidates of plasma diagnostics. Their electron density dependence is theoretically evaluated for the cases of EBIT plasmas and magnetic confinement fusion plasmas.

  6. Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis

    SciTech Connect

    Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A.

    2015-06-15

    This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time.

  7. Optical control and spectroscopic studies of collisional population transfer in molecular electronic states

    NASA Astrophysics Data System (ADS)

    Ahmed, Ergin; Pan, Xinhua; Huennekens, John; Lyyra, Marjatta

    2015-05-01

    Understanding the basic physics of collision processes between atoms and molecules is of fundamental importance for large number of areas of research including chemical reactivity, ultra cold atoms and molecules, and astrophysics of the interstellar medium. We have experimentally demonstrated optical control of the singlet/triplet probability distribution in the outcome of collisions involving lithium dimer molecules and argon atoms. The control is achieved using the Autler-Townes (AT) effect to manipulate the spin character of a spin-orbit coupled pair of levels serving as a ``gateway'' between the singlet and triplet electronic state manifolds. As a result we show that the rate coefficient of a collisional process between excited molecules (7Li2) and atoms (Ar) leading to internal quantum state changes in the molecules can be effectively manipulated with a laser. In addition, as an extension of these results new gateway levels can be created from singlet and triplet levels that hardly interact to begin with.

  8. Ar-40/Ar-39 dating of collisional events in chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Wright, R. J.; Husain, L.

    1976-01-01

    Ar-40/Ar-39 age dating of a number of shocked ordinary chondrites is interpreted in terms of collisional degassing events of meteorite parent bodies, probably in the asteroid belt. Examples of L, H, and at least one LL chondrite show episodic degassing. Degassing ages suggest several distinct events ranging from about 0.03 aeon to 0.7 aeon and probably higher. All specimens of either the H or L chondrites are not consistent with a single age event. A direct correlation exists between the degree of shock heating and the fraction of argon lost during degassing. However, no chondrite yet analyzed shows complete degassing of its high-temperature phase. Consequently, whole rock K-Ar ages are not accurate monitors of the time of the shock event.

  9. Using deep images and simulations to trace collisional debris around massive galaxies

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain

    2017-03-01

    Deep imaging programs, such as MATLAS which has just been completed at the CFHT, allows us to study with their diffuse light the outer stellar populations around large number of galaxies. We have carried out a systematic census of their fine structures, i.e. the collisional debris from past mergers. We have identified among them stellar streams from minor mergers, tidal tails from gas-rich major mergers, plumes from gas-poor major mergers, and shells from intermediate mass mergers. Having estimated the visibility and life time of each of these structures with numerical simulations, we can reconstruct the past mass assembly of the host galaxy. Preliminary statistical results based on a sample of 360 massive nearby galaxies are presented.

  10. A study of the propagation of ulf electromagnetic fields in collisional, inhomogeneous, magnetized plasmas

    SciTech Connect

    Borovsky, J.E.

    1987-02-01

    The propagation of ultralow-frequency (ulf) electromagnetic signals (Alfven and magnetosonic waves) in collisional, inhomogeneous, magnetized plasmas is analyzed by numerical simulation. The problem is formulated from a Maxwell-equation orbit-theory approach rather than from a magnetohydrodynamic point of view, and the problem is numerically treated in a fully time-dependent manner. Boundary-value-problem behavior is distinguished from initial-value-problem behavior. The propagation of two-dimensional small-amplitude electromagnetic disturbances in plasmas with spatially dependent densities and in plasmas with spatially dependent conductivities is numerically simulated, and when possible, the simulations are compared with theory. Changes in the plasma density lead to changes in the signal speed and to reflections; collisions lead to changes in the signal speed, to reflections, and to attenuations. Theoretical descriptions based upon discontinuities in the media are generally incorrect in predicting the amplitudes of signals reflected from plasma inhomogeneities. 19 refs., 16 figs.

  11. Weak maser emission of methyl formate toward Sagittarius B2(N) in the green bank telescope PRIMOS survey

    SciTech Connect

    Faure, A.; Wiesenfeld, L.; Szalewicz, K.

    2014-03-10

    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH{sub 3}) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH{sub 3}-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (∼30 K), moderately dense (∼10{sup 4} cm{sup –3}), and extended region surrounding Sgr B2(N). The derived column density of ∼4 × 10{sup 14} cm{sup –2} is only a factor of ∼10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.

  12. Collisional water transport and water-loss relevant to formation of habitable planets

    NASA Astrophysics Data System (ADS)

    Maindl, T. I.; Schäfer, C. M.; Haghighipour, N.; Burger, C.; Dvorak, R.

    2017-03-01

    It is widely accepted that the vast majority of Earth's water was delivered to its accretion zone by water-carrying planetesimals and planetary embryos from the outer regions of the asteroid belt while Earth was still forming. While modern simulations of terrestrial planet formation show this process with high resolution, their treatment of the actual delivery of water is still rudimentary assuming that a water-carrying object will maintain all its water content during its journey from its original orbit to the accretion zone of Earth. Models of the ice longevity have, however, shown that the water-ice may not stay intact, and asteroids and planetary embryos may lose some of their original water in form of ice sublimation during their dynamical evolution. Also, collisions among these bodies while on their journey to Earth's accretion zone will result in the loss of large amounts of their water. These effects could be especially important during the formation of terrestrial planets as this process takes tens to hundreds of millions of years. In this study, we present results on collisional water loss obtained from collision simulations involving differently sized planetary embryos. We find that in most cases of realistic collision velocities and impact angles water loss is not negligible and may change the water inventory of formed terrestrial planets considerably. Finally, we get indication that it is not sufficient to specify collisional water loss just by the collision velocity in terms of the mutual escape velocity and the impact angle. Rather, factors like mass ratio, absolute masses (Burger & Schäfer, 2017, this volume), and the objects' water distribution need to be considered.

  13. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  14. Observation of Up-gradient Particle Flux in Collisional Drift-ITG Turbulence

    NASA Astrophysics Data System (ADS)

    Cui, Lang

    2015-11-01

    We report the observation of a net inward, up-gradient turbulent particle flux from two independent diagnostics in collisional drift-ITG plasma turbulence. At low magnetic fields (B <= 1.0 kG), particle transport is outward at all radii and the predominantly collisional electron drift wave turbulence drives a sheared ExB zonal flow. As the magnetic field is further increased (B >= 1.2 kG) the drift-waves persist, an up-gradient inward particle flux develops, fluctuations propagating in the ion diamagnetic drift direction develop and a pronounced steepening of the ion temperature and mean density gradients occurs. The two different types of fluctuation features modulate and compete with each other and dominate in different radial location and magnetic field region. Linear stability analyses show that a robust ITG instability is excited for these conditions. The onset of net inward flux also coincides with the development of a strong intrinsic parallel flow shear that can drive an inward pinch when it is coupled with grad-Ti. However, we find that the ITG-driven inward pinch is more dominant in our experiments. This basic experiment provides for a detailed examination of turbulent-driven particle pinches and up-gradient fluxes in the presence of multiple free-energy sources. Moreover, the coexistence and competition of DWs and ITG have been observed to influence tokamak transport and remains a topic of interest for both magnetically confined fusion plasmas and space plasma systems. A detailed experimental study complemented by theory and linear and nonlinear simulations of these experiments is used to elucidate the physics of up-gradient particle transport. Supported by DOE (DE- SC0001961).

  15. Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation

    SciTech Connect

    Cao, Li; Tolic, Nikola; Qu, Yi; Meng, Da; Zhao, Rui; Zhang, Qibin; Moore, Ronald J.; Zink, Erika M.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Wu, Si

    2014-01-15

    Simultaneous elucidation of the glycan structure and the glycosylation site are needed to reveal the biological function of protein glycosylation. In this study, we employed a recent type of fragmentation termed higher energy collisional dissociation (HCD) to examine fragmentation patterns of intact glycopeptides generated from a mixture of standard glycosylated proteins. The normalized collisional energy (NCE) value for HCD was varied from 30% to 60% to evaluate the optimal conditions for the fragmentation of peptide backbones and glycoconjugates. Our results indicated that HCD with lower NCE valuespreferentially fragmented the sugar chains attached to the peptides to generate a ladder of neutral loss of monosaccharides, thus enabling the putative glycan structure characterization. Also, detection of the oxonium ions enabled unambiguous differentiation of glycopeptides from non-glycopeptides. On the contrary, HCD with higher NCE values preferentially fragmented the peptide backbone and thus provided information needed for confident peptide identification. We evaluated the HCD approach with alternating NCE parameters for confident characterization of intact N-linked and O-linked glycopeptides in a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In addition, we applied a novel data analysis pipeline, so-called GlycoFinder, to form a basis for automated data analysis. Overall, 38 unique intact glycopeptides corresponding to eight glycosylation sites (including six N-linked and two O-linked sites) were confidently identified from a standard protein mixture. This approach provided concurrent characterization of both, the peptide and the glycan, thus enabling comprehensive structural characterization of glycoproteins in a single LC-MS/MS analysis.

  16. Reaction chemistry and collisional processes in multiple devices for resolving isobaric interferences in ICP-MS.

    PubMed

    Bandura, D R; Baranov, V I; Tanner, S D

    2001-07-01

    A low-level review of the fundamentals of ion-molecule interactions is presented. These interactions are used to predict the efficiencies of collisional fragmentation, energy damping and reaction for a variety of neutral gases as a function of pressure in a rf-driven collision/reaction cell. It is shown that the number of collisions increases dramatically when the ion energies are reduced to near-thermal (< 0.1 eV), because of the ion-induced dipole and ion-dipole interaction. These considerations suggest that chemical reaction can be orders of magnitude more efficient at improving the analyte signal/background ratio than can collisional fragmentation. Considerations that lead to an appropriate selection of type of gas, operating pressure, and ion energies for efficient operation of the cell for the alleviation of spectral interferences are discussed. High efficiency (large differences between reaction efficiencies of the analyte and interference ions, and concomitant suppression of secondary chemistry) might be required to optimize the chemical resolution (determination of an analyte in the presence of an isobaric interference) when using ion-molecule chemistry to suppress the interfering ion. In many instances atom transfer to the analyte, which shifts the analytical m/z by the mass of the atom transferred, provides high chemical resolution, even when the efficiency of reaction is relatively low. Examples are given of oxidation, hydroxylation, and chlorination of analyte ions (V+, Fe+, As+, Se+, Sr+, Y+, and Zr+) to improve the capability of determination of complex samples. Preliminary results are given showing O-atom abstraction by CO from CaO+ to enable the determination of Fe in high-Ca samples.

  17. GEO Collisional Risk Assessment Based on Analysis of NASA-WISE Data and Modeling

    NASA Astrophysics Data System (ADS)

    Howard, S.; Murray-Krezan, J.; Dao, P.; Surka, D.

    From December 2009 thru 2011 the NASA Wide-Field Infrared Survey Explorer (WISE) gathered radiometrically exquisite measurements of debris in near Earth orbits, substantially augmenting the current catalog of known debris. The WISE GEO-belt debris population adds approximately 2,000 previously uncataloged objects. This paper describes characterization of the WISE GEO-belt orbital debris population in terms of location, epoch, and size. The WISE GEO-belt debris population characteristics are compared with the publically available U.S. catalog and previous descriptions of the GEO-belt debris population. We found that our results differ from previously published debris distributions, suggesting the need for updates to collision probability models and a better measurement-based understanding of the debris population. Previous studies of collisional rate in GEO invoke the presence of a large number of debris in the regime of sizes too small to track, i.e. not in the catalog, but large enough to cause significant damage and fragmentation in a collision. A common approach is to estimate that population of small debris by assuming that it is dominated by fragments and therefore should follow trends observed in fragmentation events or laboratory fragmentation tests. In other words, the population of debris can be extrapolated from trackable sizes to small sizes using an empirically determined trend of population as a function of size. We use new information suggested by the analysis of WISE IR measurements to propose an updated relationship. Our trend is an improvement because we expect that an IR emissive signature is a more reliable indicator of physical size. Based on the revised relationship, we re-estimate the total collisional rate in the GEO belt with the inclusion of projected uncatalogued debris and applying a conjunction assessment technique. Through modeling, we evaluate the hot spots near the geopotential wells and the effects of fragmentation in the GEO

  18. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. II. DUST-INDUCED COLLISIONAL IONIZATION

    SciTech Connect

    Helling, Ch.; Jardine, M.; Mokler, F.

    2011-08-10

    Observations have shown that continuous radio emission and also sporadic H{alpha} and X-ray emission are prominent in singular, low-mass objects later than spectral class M. These activity signatures are interpreted as being caused by coupling of an ionized atmosphere to the stellar magnetic field. What remains a puzzle, however, is the mechanism by which such a cool atmosphere can produce the necessary level of ionization. At these low temperatures, thermal gas processes are insufficient, but the formation of clouds sets in. Cloud particles can act as seeds for electron avalanches in streamers that ionize the ambient gas, and can lead to lightning and indirectly to magnetic field coupling, a combination of processes also expected for protoplanetary disks. However, the precondition is that the cloud particles are charged. We use results from DRIFT-PHOENIX model atmospheres to investigate collisional processes that can lead to the ionization of dust grains inside clouds. We show that ionization by turbulence-induced dust-dust collisions is the most efficient kinetic process. The efficiency is highest in the inner cloud where particles grow quickly and, hence, the dust-to-gas ratio is high. Dust-dust collisions alone are not sufficient to improve the magnetic coupling of the atmosphere inside the cloud layers, but the charges supplied either on grains or within the gas phase as separated electrons can trigger secondary nonlinear processes. Cosmic rays are likely to increase the global level of ionization, but their influence decreases if a strong, large-scale magnetic field is present as on brown dwarfs. We suggest that although thermal gas ionization declines in objects across the fully convective boundary, dust charging by collisional processes can play an important role in the lowest mass objects. The onset of atmospheric dust may therefore correlate with the anomalous X-ray and radio emission in atmospheres that are cool, but charged more than expected by pure

  19. Low Temperature Collisional Spectroscopy of Simple Molecules in Collision with Hydrogen and with Helium

    NASA Astrophysics Data System (ADS)

    Flatin, Daniel Christian

    Pressure broadening and shifting cross sections have been measured for six rotational transitions distributed among four collisional systems over a 3 K to 80 K temperature range. This data was analyzed in conjunction with data taken with a different apparatus over a 100 K to 600 K temperature range. In combination this two decade span in temperature makes possible the consideration of these collisions as a spectroscopic process in which the translational energy plays the role of the spectroscopic variable. At high temperatures the measured broadening cross sections conform to the predictions of semi-classical theories. At low temperatures dramatic resonance effects due to the formation of quasi-bound states are observed. Processes which lead to resonance formation are highly sensitive to the specific details of the short range, attractive portion of the intermolecular potential as well as the internal rotational energy level structure of the collision partners. Consequently a great deal of information regarding the intermolecular potential is contained in these thermal broadening cross section spectr. Although ab initio calculations were not available for the systems studied in this work, a simple model was developed which, when guided by a few physically intuitive concepts, provided a unified description of the entire body of data. In this dissertation we describe the apparatus and the collisional cooling technique as implemented in this experiment. Lineshape theory and the analysis techniques are discussed. Pressure broadening and shifting results are reported for molecules in collision with hydrogen and with helium. The molecules and rotational transitions for systems which included H2 were the 0 → 1 and 1→ 2 transitions of CO, the (2,0)→ (3,0) transition of CH3F, and the 10.1→ 11.0 and 21.1→ 22.0 transitions of H2S. In addition the broadening and shifting results for the 21.1→ 22.0 transition of H2S in collision with He are also reported.

  20. Photogeneration of, and Efficient Collisional Energy Transfer from, Vibrationally Excited Hydrogen Isocyanide (hnc)

    NASA Astrophysics Data System (ADS)

    Wilhelm, Michael J.; Dai, Hai-Lung

    2013-06-01

    Time-resolved IR emission spectroscopy has previously been used to characterize the 193 nm photodissociation dynamics of vinyl cyanide, H_{2}CC(H)CN. Of significance, it was observed that the major molecular elimination channels generated ro-vibrationally excited photofragments consisting of: HCN + H_{2}CC: and HNC + HCCH, for which the HCN / HNC branching ratio was deduced to be 3.3 to 1. In the present study, we examine the collisional deactivation of the vibrationally excited (E_{vib}=15 kcal mole^{-1} above the zero-point energy) ν_{1} NH and ν_{3} NC stretches of HNC, in response to collisions with a series of inert rare-gas atoms: Rg=He, Ar, Kr, and Xe. Spectral modeling of the IR emission allows direct determination of the time-dependent average internal energy of HNC, and therefore a quantification of the average energy lost per collision, as a function of the internal energy. Similar to vibrationally excited radicals, collisional deactivation of HNC is shown to be remarkably efficient, likely due to comparatively strong HNC / Rg intermolecular attractive interactions. Subsequently, depending upon the relative rates, excited HNC can either isomerize to the energetically more stable HCN, or be rapidly quenched and kinetically trapped as HNC. Potential implications for the astrophysical HNC / HCN abundance ratio problem will be discussed. M. J. Wilhelm, M. Nikow, L. Letendre, and H. L. Dai J. Chem. Phys. 130, 044307 (2009). M. J. Wilhelm, M. Nikow, J. M. Smith, and H. L. Dai J. Phys. Chem. Lett. 4, 23 (2013).

  1. Spectrum of Mathematical Weaknesses: Related Neuropsychological Correlates.

    PubMed

    Perna, Robert; Loughan, Ashlee R; Le, Jessica; Hertza, Jeremy; Cohen, Morris J

    2015-01-01

    Math disorders have been recognized for as long as language disorders yet have received far less research. Mathematics is a complex construct and its development may be dependent on multiple cognitive abilities. Several studies have shown that short-term memory, working memory, visuospatial skills, processing speed, and various language skills relate to and may facilitate math development and performance. The hypotheses explored in this research were that children who performed worse on math achievement than on Full-Scale IQ would exhibit weaknesses in executive functions, memory, and visuoperceptual skills. Participants included 436 children (27% girls, 73% boys; age range = 5-17 years, M(age) = 9.45 years) who were referred for neuropsychological evaluations due to academic and/or behavioral problems. This article specifically focuses on the spectrum of math weakness rather than clinical disability, which has yet to be investigated in the literature. Results suggest that children with relative weakness to impairments in math were significantly more likely to have cognitive weaknesses to impairments on neuropsychological variables, as compared with children without math weaknesses. Specifically, the math-weak children exhibit a weakness to impairment on measures involving attention, language, visuoperceptual skills, memory, reading, and spelling. Overall, our results suggest that math development is multifaceted.

  2. Quantum correlation cost of the weak measurement

    SciTech Connect

    Zhang, Jun; Wu, Shao-xiong; Yu, Chang-shui

    2014-12-15

    Quantum correlation cost (QCC) characterizing how much quantum correlation is used in a weak-measurement process is presented based on the trace norm. It is shown that the QCC is related to the trace-norm-based quantum discord (TQD) by only a factor that is determined by the strength of the weak measurement, so it only catches partial quantumness of a quantum system compared with the TQD. We also find that the residual quantumness can be ‘extracted’ not only by the further von Neumann measurement, but also by a sequence of infinitesimal weak measurements. As an example, we demonstrate our outcomes by the Bell-diagonal state.

  3. Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Beurskens, M. N. A.; Saarelma, S.; Boom, J. E.; Delabie, E.; Flanagan, J.; Kempenaars, M.; Giroud, C.; Lomas, P.; Meneses, L.; Maggi, C. S.; Menmuir, S.; Nunes, I.; Rimini, F.; Stefanikova, E.; Urano, H.; Verdoolaege, G.; Contributors, JET

    2017-01-01

    A dimensionless collisionality scan in low-triangularity plasmas in the Joint European Torus with the ITER-like wall (JET-ILW) has been performed. The increase of the normalized energy confinement (defined as the ratio between thermal energy confinement and Bohm confinement time) with decreasing collisionality is observed. Moreover, at low collisionality, a confinement factor H98, comparable to JET-C, is achieved. At high collisionality, the low normalized confinement is related to a degraded pedestal stability and a reduction in the density-profile peaking. The increase of normalized energy confinement is due to both an increase in the pedestal and in the core regions. The improvement in the pedestal is related to the increase of the stability. The improvement in the core is driven by (i) the core temperature increase via the temperature-profile stiffness and by (ii) the density-peaking increase driven by the low collisionality. Pedestal stability analysis performed with the ELITE (edge-localized instabilities in tokamak equilibria) code has a reasonable qualitative agreement with the experimental results. An improvement of the pedestal stability with decreasing collisionality is observed. The improvement is ascribed to the reduction of the pedestal width, the increase of the bootstrap current and the reduction of the relative shift between the positions of the pedestal density and pedestal temperature. The EPED1 model predictions for the pedestal pressure height are qualitatively well correlated with the experimental results. Quantitatively, EPED1 overestimates the experimental pressure by 15-35%. In terms of the pedestal width, a correct agreement (within 10-15%) between the EPED1 and the experimental width is found at low collisionality. The experimental pedestal width increases with collisionality. Nonetheless, an extrapolation to low-collisionality values suggests that the width predictions from the KBM constraint are reasonable for ITER.

  4. Sodium in weak G-band giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Lambert, David L.

    1994-01-01

    Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.

  5. Reversing entanglement change by a weak measurement

    SciTech Connect

    Sun Qingqing; Zubairy, M. Suhail; Al-Amri, M.; Davidovich, Luiz

    2010-11-15

    Entanglement of a system changes due to interactions with the environment. A typical type of interaction is amplitude damping. If we add a detector to monitor the environment and only select the no-damping outcome, this amplitude damping is modified into a weak measurement. Here we show that the entanglement change of a two-qubit state due to amplitude damping or weak measurement can be probabilistically reversed. For the amplitude-damping case, the entanglement partially recovers under most conditions. For the weak-measurement case, the recovery of the initial entangled state is exact. The reversal procedure involves another weak measurement, preceded and followed by bit flips applied to both qubits. We propose a linear optics scheme for the experimental demonstration of these procedures.

  6. Elastic scattering with weakly bound projectiles

    SciTech Connect

    Figueira, J. M.; Abriola, D.; Arazi, A.; Capurro, O. A.; Marti, G. V.; Martinez Heinmann, D.; Pacheco, A. J.; Testoni, J. E.; Barbara, E. de; Fernandez Niello, J. O.; Padron, I.; Gomes, P. R. S.; Lubian, J.

    2007-02-12

    Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile.

  7. Calculation of Collisional Cross Sections for the 2P3/2 - 2P1/2 Transition in Alkali-Noble Gas Systems

    DTIC Science & Technology

    2010-03-01

    collisional cross sections given input potentials of a system may provide a partial answer to this question in systems where collisions play a major...CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE 2P3/2 → 2P1/2 TRANSITION IN ALKALI-NOBLE GAS SYSTEMS THESIS Sam Butler, Captain, USAF AFIT/GAP/ENP...States Air Force, Department of Defense, or the United States Government. AFIT/GAP/ENP/10-M04 CALCULATION OF COLLISIONAL CROSS SECTIONS FOR THE 2P3/2

  8. A Comparison of Recent Post-Collisional Volcanism in the Lesser and Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Bewick, Samuel; Harris, Nigel; Parkinson, Ian; Hammond, Sam; Adamia, Shota; Sadradze, Nino

    2015-04-01

    The southern margin of the Eurasian plate is a well studied region of continental collision. The Caucasus lie in the centre of the Alpine-Himalayan orogenic belt, and differ from their better studied neighbours by the presence of intense post-collisional volcanism. The Lesser Caucasus (LC) represent a Jurassic-Cretaceous-early Palaeogene arc formed from the northward subduction of the Neotethys Ocean. The back-arc basins that opened behind this arc closed during the Oligocene Arabia-Eurasian collision, forming the Greater Caucasus (GC). Late Miocene-Quaternary volcanism has erupted through the thickened crust (45-60km), tens of millions of years following continental collision. The source of magmatism in this region of significantly thickened crust is poorly constrained. We present bulk rock major and trace element, and Sr-Nd-Pb isotope data to unravel the complexity of the orogenic zone and assess the role of asthenosphere, lithosphere and crust in the contemporaneous Greater and Lesser Caucasus volcanism. Rock types from the LC cover a wide range of compositions from basalts to dacites (50-70 wt% SiO2). Those from the GC range from andesites to rhyolites, although high Mg# (up to 85) cores of olivines and clinopyroxenes, suggest more mafic melts exist that have not been recognised at the surface. Significant fractionation from a primitive source is required to produce the range of compositions measured. Enrichment in large-ion lithophiles and negative Ti and Nb-Ta anomalies are indicative of a source enriched by subduction related fluids. Flat heavy rare earths patterns ((Dy/Yb)N = 1.14-1.42) require shallow (<70km) melting for the LC magmas, while the GC volcanics ((Dy/Yb)N = 1.2-1.65) require a small input from deeper melts. Middle rare earth patterns show amphibole fractionation played a significant role in LC magmatism. Variations in radiogenic isotopic compositions (Sr, Nd, Pb, Hf) require interaction with local GC and LC crust. Our results are consistent

  9. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  10. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  11. Enhancing QKD security with weak measurements

    NASA Astrophysics Data System (ADS)

    Farinholt, Jacob M.; Troupe, James E.

    2016-10-01

    Publisher's Note: This paper, originally published on 10/24/2016, was replaced with a corrected/revised version on 11/8/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. In the late 1980s, Aharonov and colleagues developed the notion of a weak measurement of a quantum observable that does not appreciably disturb the system.1, 2 The measurement results are conditioned on both the pre-selected and post-selected state of the quantum system. While any one measurement reveals very little information, by making the same measurement on a large ensemble of identically prepared pre- and post-selected (PPS) states and averaging the results, one may obtain what is known as the weak value of the observable with respect to that PPS ensemble. Recently, weak measurements have been proposed as a method of assessing the security of QKD in the well-known BB84 protocol.3 This weak value augmented QKD protocol (WV-QKD) works by additionally requiring the receiver, Bob, to make a weak measurement of a particular observable prior to his strong measurement. For the subset of measurement results in which Alice and Bob's measurement bases do not agree, the weak measurement results can be used to detect any attempt by an eavesdropper, Eve, to correlate her measurement results with Bob's. Furthermore, the well-known detector blinding attacks, which are known to perfectly correlate Eve's results with Bob's without being caught by conventional BB84 implementations, actually make the eavesdropper more visible in the new WV-QKD protocol. In this paper, we will introduce the WV-QKD protocol and discuss its generalization to the 6-state single qubit protocol. We will discuss the types of weak measurements that are optimal for this protocol, and compare the predicted performance of the 6- and 4-state WV-QKD protocols.

  12. Collision-Induced Infrared Absorption by Collisional Complexes in dense Hydrogen-Helium gas mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-03-01

    The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2 --H2 , H2 --He, and H2 --H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. This work has been supported in part by the National Science Foundation through Grants AST-0709106 and AST-0708496.

  13. Quasiclassical trajectory study of collisional energy transfer in toluene systems. I. Argon bath gas: Energy dependence and isotope effects

    NASA Astrophysics Data System (ADS)

    Lim, Kieran F.

    1994-05-01

    Experimental studies of collisional energy transfer from highly vibrationally excited toluene to various bath gases have recently been reported [Toselli and Barker, J. Chem. Phys. 97, 1809 (1992), and references therein]. A quasiclassical trajectory investigation for toluene in argon bath gas at 300 K for initial internal energies E'=41 000, 30 000, and 15 000 cm-1 is reported here. Collisional energy transfer is almost linearly dependent on E'. Predictions of energy transfer quantities are very sensitive to the average well depth of the assumed individual pairwise potentials, but is less sensitive to the detailed shape. Qualitative and quantitative agreement with experiment is obtained where the overall well depth is physically realistic. Isotope studies using 40Ar and pseudohelium (4Ar) bath gases indicate that energy transfer is independent of the mass of the bath-gas collider, but perdeuteration increases <ΔE2>1/2 by 13% over the undeuterated values.

  14. Interaction of NH(X 3Sigma-) with He: potential energy surface, bound states, and collisional Zeeman relaxation.

    PubMed

    Cybulski, H; Krems, R V; Sadeghpour, H R; Dalgarno, A; Kłos, J; Groenenboom, G C; van der Avoird, A; Zgid, D; Chałasiński, G

    2005-03-01

    A detailed analysis of the He-NH((3)Sigma(-)) van der Waals complex is presented. We discuss ab initio calculations of the potential energy surface and fitting procedures with relevance to cold collisions, and we present accurate calculations of bound energy levels of the triatomic complex as well as collisional properties of NH molecules in a buffer gas of (3)He. The influence of the external magnetic field used to trap the NH molecules and the effect of the atom-molecule interaction potential on the collisionally induced Zeeman relaxation are explored. It is shown that minute variations of the interaction potential due to different fitting procedures may alter the Zeeman relaxation rate at ultralow temperatures by as much as 50%.

  15. Weak crystallization theory of metallic alloys

    NASA Astrophysics Data System (ADS)

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-01

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. We identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. As an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  16. Experimental noiseless linear amplification using weak measurements

    NASA Astrophysics Data System (ADS)

    Ho, Joseph; Boston, Allen; Palsson, Matthew; Pryde, Geoff

    2016-09-01

    The viability of quantum communication schemes rely on sending quantum states of light over long distances. However, transmission loss can degrade the signal strength, adding noise. Heralded noiseless amplification of a quantum signal can provide a solution by enabling longer direct transmission distances and by enabling entanglement distillation. The central idea of heralded noiseless amplification—a conditional modification of the probability distribution over photon number of an optical quantum state—is suggestive of a parallel with weak measurement: in a weak measurement, learning partial information about an observable leads to a conditional back-action of a commensurate size. Here we experimentally investigate the application of weak, or variable-strength, measurements to the task of heralded amplification, by using a quantum logic gate to weakly couple a small single-optical-mode quantum state (the signal) to an ancilla photon (the meter). The weak measurement is carried out by choosing the measurement basis of the meter photon and, by conditioning on the meter outcomes, the signal is amplified. We characterise the gain of the amplifier as a function of the measurement strength, and use interferometric methods to show that the operation preserves the coherence of the signal.

  17. Weak turbulence theory for reactive instability

    SciTech Connect

    Yoon, P. H.

    2010-11-15

    In the present paper, the customary weak turbulence theory is generalized to include reactive instabilities. For the sake of simplicity, the formalism assumes electrostatic perturbation propagating in one-dimensional uniform unmagnetized plasmas. By weak turbulence theory it is meant as the perturbative nonlinear theory based upon Vlasov equation, truncated at the second (or up to third) order nonlinearity and ensemble averaged. By reactive instability it is meant as the plasma instability whose growth rate is not necessarily exceedingly small. The traditional weak turbulence theory found in the literature is applicable only to weakly growing plasma instabilities whose real frequency {omega}{sub k} can be determined from the real part of the dispersion relation, Re {epsilon}(k,{omega}{sub k})=0, while the growth rate may be determined by the Landau formula, {gamma}{sub k}=-Im {epsilon}(k,{omega}{sub k})[{partial_derivative} Re {epsilon}(k,{omega}{sub k})/{partial_derivative}{omega}{sub k}]{sup -1}. This implies the assumption that |{gamma}{sub k}|<<{omega}{sub k}. On the other hand, for reactive instabilities for which {gamma}{sub k}/{omega}{sub k} is not necessarily small, the real frequency and growth/damping rate must be determined from the complex roots of the dispersion relation, {epsilon}(k,{omega}{sub k}+i{gamma}{sub k})=0. The present paper extends the textbook weak turbulence theory to deal with such a situation.

  18. Disturbance in weak measurements and the difference between quantum and classical weak values

    NASA Astrophysics Data System (ADS)

    Ipsen, Asger C.

    2015-06-01

    The role of measurement-induced disturbance in weak measurements is of central importance for the interpretation of the weak value. Uncontrolled disturbance can interfere with the postselection process and make the weak value dependent on the details of the measurement process. Here we develop the concept of a generalized weak measurement for classical and quantum mechanics. The two cases appear remarkably similar, but we point out some important differences. A priori it is not clear what the correct notion of disturbance should be in the context of weak measurements. We consider three different notions and get three different results: (1) For a "strong" definition of disturbance, we find that weak measurements are disturbing. (2) For a weaker definition we find that a general class of weak measurements is nondisturbing, but that one gets weak values which depend on the measurement process. (3) Finally, with respect to an operational definition of the "degree of disturbance," we find that the AAV weak measurements are the least disturbing, but that the disturbance is always nonzero.

  19. Ion drag force on an absorbing grain in highly collisional plasma in the presence of plasma production and loss processes

    SciTech Connect

    Chaudhuri, Manis; Khrapak, Sergei A.; Morfill, Gregor E.

    2008-09-07

    The ion drag force acting on a small absorbing spherical grain has been calculated analytically in highly collisional plasma with slowly drifting ions taking into account plasma production and loss mechanisms in the vicinity of the grain. It is shown that both the magnitude and direction of the ion drag force are strongly influenced by the plasma production and loss mechanisms. The parameter regimes for the 'positive' and 'negative' ion drag forces acting on an absorbing grain have been identified.

  20. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  1. Collision-Induced Infrared Absorption by Collisional Complexes in dense Hydrogen-Helium gas mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine

    2011-05-01

    The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2-H2, H2-He, and H2-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2-H2, H2-He, and H2-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. This work has been supported in part by the National Science Foundation through Grants AST-0709106 and AST-0708496.

  2. Catastrophic disruption in the solar system - Asteroid collisional history, origin of Hirayama families and disruption of small satellites

    NASA Technical Reports Server (NTRS)

    Davis, D. R.

    1986-01-01

    The process of collisional catastrophic disruption has played a significantly role in structuring the solar system. Diverse populations of bodies such as the asteroid belt, small satellites of Jupiter and Saturn and perhaps even the rings of Saturn have been created or substantially changed by catastrophic distruption. Understanding the outcome of large scale impacts is essential to learning about the early history of the solar system in the asteroid zone and the reason why a planet failed to form there.

  3. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO{sub 2}: The effect of donor fluorination on strong collision energy transfer

    SciTech Connect

    Kim, Kilyoung; Johnson, Alan M.; Powell, Amber L.; Mitchell, Deborah G.; Sevy, Eric T.

    2014-12-21

    Collisional energy transfer between vibrational ground state CO{sub 2} and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm{sup −1}) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E′ = ∼41 000 cm{sup −1} was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S{sub 1}→S{sub 0}*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO{sub 2} via collisions was measured by probing the scattered CO{sub 2} using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO{sub 2} were measured and used to determine the energy transfer probability distribution function, P(E,E′), in the large ΔE region. P(E,E′) was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E′) and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E′) and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E′). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  4. Collisional damping of helicon waves in a high density hydrogen linear plasma device

    SciTech Connect

    Caneses, Juan F.; Blackwell, Boyd D.

    2016-09-28

    In this paper, we investigate the propagation and damping of helicon waves along the length (~50 cm) of a helicon-produced 20 kW hydrogen plasma ( ~1-2 1019 m-3, ~1-6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50-200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (~10 G and ~ 10-15 cm) propagating away from the antenna region which become collisionally absorbed within 40 to 50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. By comparing theory and experiment, we show that for the conditions associated with this paper classical collisions are sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in our device (MAGPIE).

  5. Internal energy distributions from nitrogen dioxide fluorescence. 2. Collisional energy transfer from excited nitrogen dioxide

    SciTech Connect

    Patten, K.O. Jr.; Johnston, H.S. Lawrence Berkeley Lab., CA )

    1993-09-30

    We follow the collisional deactivation of laser-excited nitrogen dioxide through its dispersed fluorescence. The energy acceptor gases are NO[sub 2] at four excitation energies ranging from 18828 to 24989 cm[sup [minus]1] and five monatomic gases, four diatomic gases, and three polyatomic gases with 18828-cm[sup [minus]1] excitation energy. The nominal products are the shapes of the internal energy distributions, which are obtained and plotted for several representative cases. From these distributions, the first three moments of the internal energy distributions are derived as a function of molecular collisions and tabulated as (i) the average internal energy, (ii) energy spread, and (iii) skewness. These quantities are plotted against c(M)t, the product of buffer gas concentration c(M) and delay time after laser excitation t(0.5-2 [mu]s), which is a quantity proportional to number of collisions. The negative slope of average energy vs c(M)t is the macroscopic energy-transfer rate constant, k[sub [epsilon

  6. First Simulations of a Collisional Two-Stream Instability in the Chromosphere

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers; Dimant, Yakov; Madsen, Chad Allen; Fontenla, Juan

    2014-06-01

    Observations and modeling shows that immediately above the temperature minimum in the solar atmosphere, a steep rise from below 4,000 K to over 6,000K occurs. Recent papers show that a collisional two-stream plasma instability called the Farley-Buneman Instability can develop at the altitudes where this increase occurs. This instability may play an important role in transferring energy from turbulent neutral flows originating in the photosphere to the mid-chromosphere in the form of heat. Plasma turbulence resulting from this instability could account for some or most of this intense chromospheric heating. This paper presents a set of simulations showing the development and evolution of the Farley-Buneman Instability (FBI) applicable to the chromosphere. It compares these results with the better-understood ionospheric FBI. It examines the linear behavior and the dependence of growth rates for a range of altitudes and driving flows. It also presents the first study of FBI driven plasma nonlinearities and turbulence in the chromosphere. This research should help us evaluate the FBI as a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.

  7. Collisional Penrose process near the horizon of extreme Kerr black holes.

    PubMed

    Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida

    2012-09-21

    Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.

  8. A new 6-part collisional model of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Broz, Miroslav; Cibulkova, H.

    2013-10-01

    In this work, we constructed a new model for the collisional evolution of the Main Asteroid Belt. Our goals are to test the scaling law from the work of Benz & Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt, and to verify if the number of asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulated mutual collisions of asteroids with a modified Boulder code (Morbidelli et al., 2009), in which the results of hydrodynamic (SPH) simulations from the work of Durda et al. (2007) are included. Because material characteristics can affect breakups, we created two models - for monolithic asteroids and for rubble-piles (Benavidez et al., 2012). To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (parent body size of the order of 1 km). The work of MB was supported by grant GACR 13-013085 of the Czech Science Foundation and the Research Programme MSM0021620860 of the Czech Ministry of Education.

  9. COLLISIONAL RELAXATION OF ELECTRONS IN A WARM PLASMA AND ACCELERATED NONTHERMAL ELECTRON SPECTRA IN SOLAR FLARES

    SciTech Connect

    Kontar, Eduard P.; Jeffrey, Natasha L. S.; Bian, N. H.; Emslie, A. Gordon

    2015-08-10

    Extending previous studies of nonthermal electron transport in solar flares, which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that the effect of electron thermalization can be significant enough to nullify the need to introduce an ad hoc low-energy cutoff to the injected electron spectrum in order to keep the injected power in non-thermal electrons at a reasonable value. Rather, the suppression of the inferred low-energy end of the injected spectrum compared to that deduced from a cold-target analysis allows the inference from hard X-ray observations of a more realistic energy in injected non-thermal electrons in solar flares.

  10. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    NASA Astrophysics Data System (ADS)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  11. REBOUND: an open-source multi-purpose N-body code for collisional dynamics

    NASA Astrophysics Data System (ADS)

    Rein, H.; Liu, S.-F.

    2012-01-01

    REBOUND is a new multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond. REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping (WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles. In this work, we discuss the different algorithms implemented in REBOUND, the philosophy behind the code's structure as well as implementation specific details of the different modules. We present results of accuracy and scaling tests which show that the code can run efficiently on both desktop machines and large computing clusters.

  12. REBOUND: Multi-purpose N-body code for collisional dynamics

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Liu, Shang-Fei

    2011-10-01

    REBOUND is a multi-purpose N-body code which is freely available under an open-source license. It was designed for collisional dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily to work on a wide variety of different problems in astrophysics and beyond. REBOUND comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping (WH). It supports open, periodic and shearing-sheet boundary conditions. REBOUND can use a Barnes-Hut tree to calculate both self-gravity and collisions. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain decomposition and a distributed essential tree. Two new collision detection modules based on a plane-sweep algorithm are also implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is much longer than the other two and in simulations which are quasi-two dimensional with less than one million particles.

  13. Configuration control, fluctuations, and transport in low-collisionality plasmas in the ATF Torsatron

    SciTech Connect

    Harris, J.H.; Murakami, M.; Baylor, L.R.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C. Jr.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Howe, H.C.; Hutchinson, D.P.; Isler, R.C.; Jernigan, T.C.; Langley, R.A.; Leboeuf, J.N.; Lee, D.K.; Lyon, J.F.; Ma, C.H.; Rasmussen, D.A.; Simpkins, J.E.; Uckan, T.; Vander Sluis, K.L.; Wilgen, J.B.; Win

    1991-01-01

    In low-collisionality plasmas confined in tokamaks and stellarators, instabilities driven by particles trapped in inhomogeneities of the magnetic fields could be important in increasing plasma transport coefficients. In the Advanced Toroidal Facility (ATF), an {ell} = 2, M = 12 field-period stellarator device with major radius R = 2.1 m, average plasma minor radius a = 0.27 m, central and edge rotational transforms {chi}{sub 0} {approx} 0.3, {chi}{sub a} {approx} 1, the effects of electron trapping in the helical stellarator field are expected to be important in plasmas with {bar n}{sub e} {approx} 5 {times} 10{sup 12} cm{sup {minus}3}, T{sub e0} {approx} 1 keV. Such plasmas have already been sustained for long-pulses (20 s) using 150--400 kW of 53.2-GHz ECH power at B = 0.95 T. Transport analysis shows that for {rho} = r/a {le} 1/3, the electron anomalous transport is {le}10 times the neoclassical value, while at {rho} = 2/3 it is 10--100 times neoclassical; this is compatible with expectations for transport enhancement due to dissipative trapped-electron modes. 4 refs., 3 figs.

  14. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect

    Thomas, D. M.; Van Zeeland, M. A.; Grierson, B. A.; Munoz Burgos, J. M.

    2012-10-15

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  15. Collisional thermalization of hydrogen and helium in solar-wind plasma.

    PubMed

    Maruca, B A; Bale, S D; Sorriso-Valvo, L; Kasper, J C; Stevens, M L

    2013-12-13

    In situ observations of the solar wind frequently show the temperature of α particles (fully ionized helium) Tα to significantly differ from that of protons (ionized hydrogen) Tp. Many heating processes in the plasma act preferentially on α particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the Wind spacecraft's Faraday cups reveal that, at r=1.0  AU from the Sun, the observed values of the α-proton temperature ratio, θαp≡Tα/Tp, has a complex, bimodal distribution. This study applied a simple model for the radial evolution of θαp to these data to compute expected values of θαp at r=0.1  AU. These inferred θαp values have no trace of the bimodality seen in the θαp values measured at r=1.0  AU but are instead consistent with the actions of the known mechanisms for α-particle preferential heating. This result underscores the importance of collisional processes in the dynamics of the solar wind and suggests that similar mechanisms may lead to preferential α-particle heating in both slow and fast wind.

  16. Ion velocity-locking in the neighborhood of virtual cathodes via instability enhanced collisional friction

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg

    2017-01-01

    Axial ion motion in virtual cathodes and their connected presheaths are studied with laser-induced fluorescence. Virtual cathodes are formed using small electrodes (A electrode/A loss  <  1.7(2.3 m e/m i)1/2) biased at higher than the plasma potential far from the electrode in multi-dipole confined filament discharges of argon gas. The virtual cathodes are electrostatic, with no magnetic fields present near the electrode to confine ions. An emissive probe is employed to measure the full potential profile from the bulk plasma up to the surface of the electrode. A planar Langmuir probe is employed to measure the electron temperature T e, the plasma density n e and to calculate the Debye length. Ions reflected from the electron sheath are only observed when the electrode is biased 1T e/e above the bulk plasma potential. When the electrode is biased more negatively, ions retain most of the kinetic energy from the potential drop along the presheath and sheath structure. When reflected ions are observed, ions retain very little of the kinetic energy from the presheath and sheath potential drop. The Baalrud-Callen-Hegna two-stream instability enhanced collisional friction theory is invoked to explain the phenomenon and provides qualitative agreement with the experimental results.

  17. Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models

    SciTech Connect

    Munafò, A. Magin, T. E.

    2014-09-15

    The stagnation-line flow over re-entry bodies is analyzed by means of a quantum based collisional model which accounts for dissociation and energy transfer in N{sub 2}-N interactions. The physical model is based on a kinetic database developed at NASA Ames Research Center. The reduction of the kinetic mechanism is achieved by lumping the rovibrational energy levels of the N{sub 2} molecule in energy bins. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The governing equations are discretized in space by means of the Finite Volume method. A fully implicit time-integration is used to obtain steady-state solutions. The results show that the population of the energy bins strongly deviate from a Boltzmann distribution close to the shock wave and across the boundary layer. The sensitivity analysis to the number of energy bins reveals that accurate estimation of flow quantities (such as chemical composition and wall heat flux) can be obtained by using only 10 energy bins. A comparison with the predictions obtained by means of conventional multi-temperature models indicates that the former can lead to an overestimation of the wall heat flux, due to an inaccurate modeling of recombination in the boundary layer.

  18. A collisional radiative model of hydrogen plasmas developed for diagnostic purposes of negative ion sources

    SciTech Connect

    Iordanova, Snejana Paunska, Tsvetelina

    2016-02-15

    A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the H{sub α} to H{sub β} line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.

  19. A time-dependent model of pulse-driven radio frequency capacitively coupled collisional plasma sheath

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.; Hossain, M. Mofazzal

    2017-01-01

    The time-dependent model of ion motion is used to propose an analytical model for dual frequency (DF) capacitively coupled plasma (CCP) sheath driven by a pulsed source and a radio-frequency source. In this model, the sheath is considered to be collisional. In this model, the time dependent terms of ion fluid equations are ignored, but the electric field, ion motion and ion density remain time dependent. Electron profile is assumed to be step-like. Analytical expressions for electron sheath width and sheath potential have been developed. The calculated sheath width and potential are compared with the dual radio frequency driven time dependent models of capacitively coupled plasma sheath. From the temporal evaluation of sheath motion and potential, it has been found that pulse driven sheath has higher sheath potential and sheath width than that of conventional radio frequency driven DF CCP. Moreover, it is also found that ion energy spread can be reduced using pulsed power. From the temporal investigation of sheath motion and potential, it has been found that the duty cycle of the pulse power significantly affects sheath width and sheath potential.

  20. Comparison of Collisional Drift-Wave Simulation with CSDX Experimental Results

    NASA Astrophysics Data System (ADS)

    Vaezi, Payam; Holland, Christopher; Tynan, George; Thakur, Saikat; Brandt, Christian; Dudson, Benjamin; Friedman, Brett; Carter, Troy

    2013-10-01

    Recent upgrades to the linear Controlled Shear Decorrelation Experiment (CSDX) [Burin et al., PoP 2005] at UCSD (maximum Bz from 1 kG to 2.4 kG, increase of helicon source diameter from 10 cm to 15 cm) have revealed a rich array of turbulence dynamics at previously inaccessible conditions. We report initial comparisons of linear and nonlinear collisional drift-wave physics made using analytic theory and the BOUT + + code [Dudson et al., CPC 2009] against these observations, focusing upon the transition from nonlinearly coupled but distinct eigenmodes at 0.9 kG to fully developed broadband turbulence at 2.4 kG. Comparisons of predicted linear eigenmode structures, frequencies, and density-potential cross-phases to measurement are presented, as well as predictions for nonlinear frequency power spectra and saturated fluctuation levels. We also report progress on the development and implementation of synthetic Langmuir probe and fast framing camera diagnostics for improving the fidelity of our model-experiment comparisons.

  1. Electron transfer dissociation versus collisionally activated dissociation of cationized biodegradable polyesters.

    PubMed

    Scionti, Vincenzo; Wesdemiotis, Chrys

    2012-11-01

    Biodegradable polyesters were ionized by electrospray ionization and characterized by tandem mass spectrometry using collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) as activation methods. The compounds studied include one homopolymer, polylactide and two copolymers, poly(ethylene adipate) and poly(butylene adipate). CAD of [M+2Na](2+) ions from these polyesters proceeds via charge-remote 1,5-H rearrangements over the ester groups, leading to cleavages at the (CO)O-alkyl bonds. ETD of the same precursor ions creates a radical anion at the site of electron attachment, which fragments by radical-induced cleavage of the (CO)O-alkyl bonds and by intramolecular nucleophilic substitution at the (CO)-O bonds. In contrast to CAD, ETD produces fragments in one charge state only and does not cause consecutive fragmentations, which simplifies spectral interpretation and permits conclusive identification of the correct end groups. The radical-site reactions occurring during ETD are very similar with those reported for ETD of protonated peptides. Unlike multiply protonated species, multiply sodiated precursors form ion pairs (salt bridges) after electron transfer, thereby promoting dissociations via nucleophilic displacement in addition to the radical-site dissociations typical in ETD.

  2. Energy Confinement Recovery in Low Collisionality ITER Shape Plasmas with Applied Resonant Magnetic Perturbations (RMPs)

    NASA Astrophysics Data System (ADS)

    Cui, L.; Grierson, B.; Logan, N.; Nazikian, R.

    2016-10-01

    Application of RMPs to low collisionality (ν*e < 0.4) ITER shape plasmas on DIII-D leads to a rapid reduction in stored energy due to density pumpout that is sometimes followed by a gradual recovery in the plasma stored energy. Understanding this confinement recovery is essential to optimize the confinement of RMP plasmas in present and future devices such as ITER. Transport modeling using TRANSP+TGLF indicates that the core a/LTi is stiff in these plasmas while the ion temperature gradient is much less stiff in the pedestal region. The reduction in the edge density during pumpout leads to an increase in the core ion temperature predicted by TGLF based on experimental data. This is correlated to the increase in the normalized ion heat flux. Transport stiffness in the core combined with an increase in the edge a/LTi results in an increase of the plasma stored energy, consistent with experimental observations. For plasmas where the edge density is controlled using deuterium gas puffs, the effect of the RMP on ion thermal confinement is significantly reduced. Work supported by US DOE Grant DE-FC02-04ER54698 and DE-AC02-09CH11466.

  3. Collisional and collision-less surface heating in intense laser matter interaction

    NASA Astrophysics Data System (ADS)

    Kemp, Andreas; Divol, Laurent

    2015-11-01

    We explore the interaction of high-contrast intense sub-100 fs laser pulses with solid density tar- gets, using numerically converged collisional particle-in-cell simulations in one two and three dimen- sions. We observe a competition between two mechanisms that can lead to plasma heating. Inverse bremsstrahlung at solid density on one hand, and electrons scattering off plasma waves on the other, can both heat the skin layer to keV temperatures on a femtosecond time scale, facilitating a heat wave and a source of MeV electrons that penetrate and heat the bulk target. Collision-less effects heat the surface effectively starting at the relativistic intensity threshold, independent of plasma density. Our numerical results show that a high-contrast 1J/100fs laser can drive a solid target into the warm dense matter regime. This system is suitable to ab-initio modeling and experimental probing. Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  5. Electron Collisional Excitation Rates for OI USING the B-Spline R-Matrix Approach

    NASA Technical Reports Server (NTRS)

    Zatsarinny, O.; Tayal, S. S.

    2003-01-01

    The B-spline R-matrix approach has been used to calculate electron collisional excitation strengths and rates for transitions between the 3P, 1D, and 1S states of ground configuration and from these states to the states of the excited 2s(sup 2)2p(sup 3)ns (n = 3-5), 2s(sup 2)2p(sup 3)np (n = 3-4), 2s(sup 2)2p(sup 3)nd (n = 3-4), 2s(sup 2)2p(sup 3)4f, and 2s2p(sup 5) configurations. The nonorthogonal orbitals are used for an accurate description of both the target wave functions and the R-matrix basis functions. The thermally averaged collision strengths are obtained from the collision strengths by integrating over a Maxwellian velocity distribution of electron energies, and these are tabulated over a temperature range from 1000 to 60,000 K. The parametric functions of scaled energy have also been obtained to represent collision strengths over a wide energy range or thermally averaged collision strengths at any desired temperature.

  6. Instability-Enhanced Collisional Friction Determines the Bohm Criterion in Multiple-Ion-Species Plasmas

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Hegna, C. C.; Callen, J. D.

    2009-11-01

    Ion-ion streaming instabilities are excited in the presheath region of plasmas with multiple ion species if the ions are much colder than the electrons. Streaming instabilities onset when the relative fluid flow between ion species exceeds a critical speed, δVc, of order the ion thermal speeds. Using a generalized Lenard-Balescu theory that accounts for instability-enhanced collective responses [1], one is able to show the instabilities rapidly enhance the collisional friction between ion species far beyond the contribution from Coulomb collisions alone. This strong frictional force determines the relative fluid speed between species. When this condition is combined with the Bohm criterion generalized for multiple ion species, the fluid speed of each ion species is determined at the sheath edge. For each species, this speed differs from the common ``system'' sound speed by a factor that depends on the species concentrations, masses and δVc.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).

  7. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  8. Particle transport in low-collisionality H-mode plasmas on DIII-D

    SciTech Connect

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; Rhodes, Terry L.; Schmitz, Lothar; Zeng, Lei; Staebler, Gary M.; Petty, Clinton C.; Groebner, Richard J.; Ko, W. -H.; Grierson, Brian A.; Solomon, Wayne M.; Tala, Tuomas; Salmi, Antti; Chrystal, Colin; Diamond, P. H.; McKee, George R.

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the Te/Ti ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in the perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.

  9. Hierarchical tree algorithm for collisional N-body simulations on GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Kawai, Atsushi

    2016-06-01

    We present an implementation of the hierarchical tree algorithm on the individual timestep algorithm (the Hermite scheme) for collisional N-body simulations, running on the GRAPE-9 system, a special-purpose hardware accelerator for gravitational many-body simulations. Such a combination of the tree algorithm and the individual timestep algorithm was not easy on the previous GRAPE system mainly because its memory addressing scheme was limited only to sequential access to a full set of particle data. The present GRAPE-9 system has an indirect memory addressing unit and a particle memory large enough to store all the particle data and also the tree node data. The indirect memory addressing unit stores interaction lists for the tree algorithm, which is constructed on the host computer, and, according to the interaction lists, force pipelines calculate only the interactions necessary. In our implementation, the interaction calculations are significantly reduced compared to direct N2 summation in the original Hermite scheme. For example, we can achieve about a factor 30 of speedup (equivalent to about 17 teraflops) against the Hermite scheme for a simulation of an N = 106 system, using hardware of a peak speed of 0.6 teraflops for the Hermite scheme.

  10. Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Jensen, E. E.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.; Zolensky, M. E.

    2013-10-01

    Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system’s history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting. Funding was provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012, and a Cottrell College Scholarship through the Research Corporation.

  11. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the Te/Ti ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in the perturbed diffusionmore » coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  12. SPEX (Plasma Code Spectral Fitting Tool). Collisional ionization for atoms and ions of H to Zn.

    NASA Astrophysics Data System (ADS)

    Urdampilleta, I.; Kaastra, J. S.

    2017-03-01

    Every observation of astrophysical objects involving a spectrum requires atomic data for the interpretation of line fluxes, ratios and ionization state of the emitting plasma. One of processes which determines it is collisional ionization. In this study an update of the direct ionization (DI) and excitation-autoionization (EA) processes is discussed for the H to Zn-like isoelectronic sequences. The previous assessments were performed by Dere (2007, A&A 466, 771) for H to Zn isoelectronc sequences, Arnaud & Raymond (1992, ApJ. 398, 394) for Fe and Arnaud & Rothenflug (1985, A&AS, 60, 425). However, in the last years new laboratory measurements and theoretical calculations of ionization cross sections have become accessible. We provide a review, extension and update of this previous work and fit the cross sections of all individuals shells of all ions from H to Zn. These data are described using an extension of Younger's formula, suitable for integration over a Maxwellian velocity distribution to derive the subshell ionization rate coefficients. These ionization rate coefficients are included together with the radiative recombination rates data (Mao et al. 2016, A&AS, 27568) and a change-exchange model (Gu et al. 2016, A&A 588, A52, 11) into the high-resolution plasma code and spectral fit tool SPEX V3.0 (Kaastra et al. 1996, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas).

  13. Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, E. A.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.; Zolensky, M. E.

    2013-01-01

    Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system's history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting.

  14. Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Borah, B.

    2013-09-01

    We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries ( d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.

  15. ABSORPTIONS IN THE VISIBLE OF PROTONATED PYRENE COLLISIONALLY COOLED TO 15 K

    SciTech Connect

    Hardy, F.-X.; Gause, O.; Rice, C. A.; Maier, J. P.

    2013-12-01

    Protonated polycyclic hydrocarbons have been added to the list of suggested carriers of diffuse interstellar absorptions. To test this proposition requires laboratory spectra measured under interstellar conditions, in particular with the rotational and vibrational degrees of freedom equilibrated to low temperatures. This has been achieved for protonated pyrene with absorption bands in the visible, using an ion trap and collisional cooling to ≈15 K. A two-photon excitation-dissociation scheme was employed to record the (1) {sup 1} A' ← X {sup 1} A' electronic spectrum on around 10{sup 5} ions per duty cycle. The origin band of the absorption spectrum of this relatively large polycyclic aromatic species with 27 atoms is located at 4858.86 Å. Two further comparably intense spectral features are present at 4834.48 and 4809.32 Å. This is one of the largest protonated aromatics studied in the gas phase and compared to astronomical observations; however, it is not a carrier of known diffuse interstellar bands.

  16. Formation of collisional sheath in electronegative plasma with two species of positive ions

    SciTech Connect

    Moulick, R. Goswami, K. S.

    2015-03-15

    Sheath formation is investigated for electronegative plasma in presence of two species of positive ions in collisional environment. The gas under consideration is a mixture of oxygen and argon. Argon is the considered as having fixed volume and impact of collision is studied with increasing pressure of oxygen. Fluid equations are solved for three species namely, the two positive ions and a negative ion. Electrons are considered to follow Boltzmann distribution. Collision is modeled by constant mean free path model and has been used as a parameter. It has been found that collision enhances the sheath formation. The negative ion core is nearly unaffected by the presence of collision and is governed by the electric potential. The negative flux field is, however, affected by the presence of collision and shows a steady behavior in front of the wall. The two positive ions are heavily affected by the presence of collision and the modeling is such that their equilibrium densities can be estimated by solving simultaneous cubic equations.

  17. Low-energy collisionally activated dissociation of pentose-borate complexes

    NASA Astrophysics Data System (ADS)

    Pepi, Federico; Garzoli, Stefania; Tata, Alessandra; Giacomello, Pierluigi

    2010-01-01

    Pentose-borate 1:1 complexes were generated in the ESI source of a triple quadrupole and ion trap mass spectrometer by electrospray ionization of Na2B4O7 and pentose (arabinose, lyxose, ribose, xylose) 2:1 solution in CH3CN/H2O. The study of their low-energy collisionally activated dissociation (CAD) demonstrated that ribose and lyxose are preferentially complexed at the C2-C3 cis-diol function whereas arabinose and xylose are esterified at the C1-C2 hydroxyl groups. No evidence was found of the stronger affinity for ribose to borate. The ribose probiotic rule can be explained by considering its peculiar capability, among the investigated pentoses, to almost totally complex the borate anion at the C2-C3 hydroxyl group, thus enabling the subsequent stages of nucleotide assembly, such as phosphorylation and linkage to the nucleobases. Finally, the differences observed in the pentose-borate complex CAD spectra can be used for the mass spectrometric discrimination of isomeric pentoses in complex mixtures.

  18. Theoretical studies of collisional relaxation of highly excited SO{sub 2} in an Ar bath

    SciTech Connect

    Lendvay, G.; Schatz, G.C.; Harding, L.B.

    1995-12-31

    This paper describes molecular dynamics studies of collisional relaxation of highly excited SO{sub 2} in an Ar bath. Most of the calculations use a newly developed global ab initio potential surface for SO{sub 2} that correctly describes the superoxide (SOO) and ring isomers of SO{sub 2} that occur as secondary minima on the ground state potential surface at high energies (about 75% of the dissociation energy) above the C{sub 2v} minimum. Rate constants for the S + O{sub 2} and O + SO reactions are calculated to test this surface, and to examine the importance of electronically excited states in the O + SO recombination. The Ar + SO{sub 2} collisions are described by summing the ab initio potential with empirical intermolecular potentials. The resulting average vibrational energy transfer <{Delta}E> per collision is in good agreement with direct measurements (done at energies where the secondary minima are not populated) at 1000K, but the agreement is poorer at 300K. The agreement is significantly better than was obtained in a previous theoretical study, and our results indicate that the use of improved intramolecular and intermolecular potentials is crucial to obtaining the better results. The energy dependence of <{Delta}E> is found to be much stronger at energies where the secondary minima on the potential surface are accessible, however much of this effect is reproduced using a potential that has the same dissociation energy but not the secondary minima.

  19. The effect of radial inhomogeneity on the collisional power absorption in helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Soltani, B.; Habibi, M.; Zakeri-khatir, H.

    2016-02-01

    The paper reports on the effects of plasma radial inhomogeneity on the power absorption in a helicon plasma source, which are computationally investigated by the CST Microwave Studio code. RF (13.56 MHz) power deposition was studied using three designs of antennas, namely, the Nagoya type-III, the fractional helix, and the single loop. Argon was used as the plasma working gas at the operating pressure of 15 mTorr. We have focused on the collisional power absorption utilizing WKB approximation to describe the plasma inhomogeneity. The obtained results show that the radial inhomogeneity has different effects on the power absorption at the low and the high magnetic fields. It is found that at low magnetic fields (i.e., B 0 = 0.01 T ) , there is a specific density ( n c ) ranging from 5 × 10 18 m - 3 to 1 × 10 19 m - 3 , before and after which the radial inhomogeneity decreases and increases the absorbed power, respectively. On the other hand, at high magnetic fields (i.e., B 0 = 0.1 T ), the inhomogeneity has no regular effect on the power absorption in various plasma densities. In addition, for a given plasma density (e.g., n = 10 18 m - 3 ), as the magnetic field increases, the radial inhomogeneity effect on the power absorption would decrease for the Nagoya type-III and the fractional helix designs. However, for the single loop antenna design, this effect is negligible.

  20. Collisional damping of helicon waves in a high density hydrogen linear plasma device

    DOE PAGES

    Caneses, Juan F.; Blackwell, Boyd D.

    2016-09-28

    In this paper, we investigate the propagation and damping of helicon waves along the length (~50 cm) of a helicon-produced 20 kW hydrogen plasma ( ~1-2 1019 m-3, ~1-6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50-200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (~10 G and ~ 10-15 cm) propagating away from the antenna region which become collisionally absorbed within 40 to 50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based onmore » experimental measurements. By comparing theory and experiment, we show that for the conditions associated with this paper classical collisions are sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in our device (MAGPIE).« less