Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Generalized parallel heat transport equations in collisional to weakly collisional plasmas
NASA Astrophysics Data System (ADS)
Zawaideh, Emad; Kim, N. S.; Najmabadi, Farrokh
1988-11-01
A new set of two-fluid heat-transport equations for heat conduction in collisional to weakly collisional plasmas was derived on the basis of gyrokinetic equations in flux coordinates. In these equations, no restrictions on the anisotropy of the ion distribution function or the collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation of Spitzer and Haerm (1953), while in the weakly collisional limit, they describe a saturated heat flux. Numerical examples comparing these equations with conventional heat transport equations are presented.
Weak turbulence theory for collisional plasmas
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.
2016-03-01
Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.
Generalized parallel heat transport equations in collisional to weakly collisional plasmas
Zawaideh, E.; Kim, N.S.; Najmabadi, F.
1988-11-01
A new set of two-fluid heat transport equations that is valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates, a set of moment equations describing plasma energy transport along the field lines of a space- and time-dependent magnetic field is derived. No restrictions on the anisotropy of the ion distribution function or collisionality are imposed. In the highly collisional limit, these equations reduce to the classical heat conduction equation (e.g., Spitzer and Haerm or Braginskii), while in the weakly collisional limit, they describe a saturated heat flux (flux limited). Numerical examples comparing these equations with conventional heat transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the temperature gradient L/sub T/ approaches zero, there is no significant difference between the solutions of the new and conventional heat transport equations. As lambda/L/sub T/..-->..1, the conventional heat conduction equation contains a significantly larger error than (lambda/L/sub T/)/sup 2/. The error is found to be O(lambda/L)/sup 2/, where L is the smallest of the scale lengths of the gradient in the magnetic field, or the macroscopic plasma parameters (e.g., velocity scale length, temperature scale length, and density scale length). The accuracy of the flux-limited model depends significantly on the value of the flux limit parameter which, in general, is not known. The new set of equations shows that the flux-limited parameter is a function of the magnetic field and plasma parameter profiles.
NASA Astrophysics Data System (ADS)
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas
NASA Astrophysics Data System (ADS)
Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot
2015-09-01
Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.
BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM
Kunz, Matthew W.; Stone, James M.; Bogdanovic, Tamara; Reynolds, Christopher S. E-mail: jstone@astro.princeton.edu E-mail: chris@astro.umd.edu
2012-08-01
The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.
Plasma-wall transition in weakly collisional plasmas
Manfredi, G.; Devaux, S.
2008-10-15
This paper reviews some theoretical and computational aspects of plasma-wall interactions, in particular the formation of sheaths. Some fundamental results are derived analytically using a simple fluid model, and are subsequently tested with kinetic simulations. The various regions composing the plasma-wall transition (Debye sheath, collisional and magnetic presheaths) are discussed in details.
Ion drag force on a dust grain in a weakly ionized collisional plasma
Semenov, I. L.; Krivtsun, I. V.; Zagorodny, A. G.
2013-01-15
The problem of calculating the ion drag force acting on a dust grain immersed in a weakly ionized collisional plasma is studied using an approach based on the direct numerical solution of the Vlasov-Bhatnagar-Gross-Krook kinetic equations. A uniform subthermal flow of argon plasma past a spherical dust grain is considered. The numerical computations are performed for a wide range of plasma pressures. On the basis of the obtained results, the effect of ion-neutral collisions on the ion drag force is analyzed in a wide range of ion collisionality. In the collisionless limit, our results are shown to be in good agreement with the results obtained by the binary collision approach. As the ion collisionality increases, the ion drag force is found to decrease sharply and even become negative, i.e., directed oppositely to the plasma flow. A qualitative explanation of this effect is presented and a comparison of our results with those obtained using the drift diffusion approach is discussed. The velocity dependence of the ion drag force in the highly collisional regime is examined. The relationship between the ion and the neutral drag forces in the highly collisional limit is analyzed and the possibility of a superfluid-like behavior of dust grains is discussed.
Rotation of weakly collisional plasmas in tokamaks, operated with Alfv{acute e}n waves
Tsypin, V.S.; Elfimov, A.G.; de Azevedo, C.A.; de Assis, A.S.
1996-12-01
The effect of the kinetic Alfv{acute e}n waves on weakly collisional plasma rotation in tokamaks has been studied for the plateau and banana regimes. The quasistationary rotation velocities and radial electric field have been found. The estimation of these quantities for the Phaedrus-T tokamak [S. Wukitch {ital et} {ital al}., Phys. Rev. Lett. {bold 77}, 294 (1996)] and for the Joint European Torus (JET) [A. Fasoli {ital et} {ital al}., Nucl. Fusion, {bold 36}, 258 (1996)] has been presented. It is shown that the kinetic Alfv{acute e}n waves, which are needed for current drive, change weakly the quasistationary rotation velocities and radial electric field, as found from the experimental data of these tokamaks. In conditions with increased rf power, the plasma rotation and radial electric field can essentially grow up. {copyright} {ital 1996 American Institute of Physics.}
THE STABILITY OF WEAKLY COLLISIONAL PLASMAS WITH THERMAL AND COMPOSITION GRADIENTS
Pessah, Martin E.; Chakraborty, Sagar E-mail: sagarc@iitk.ac.in
2013-02-10
Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly collisional, magnetized plasmas which are stratified in temperature. The insights gained via these studies have led to a significant improvement of our understanding of the processes that determine the physical evolution and observational properties of the intracluster medium (ICM) permeating galaxy clusters. These studies have been carried out under the assumption that the ICM is a homogeneous medium. This, however, might not be a good approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject to a wide variety of unstable modes which include modifications to the magnetothermal instability (MTI), the heat-flux-driven buoyancy instability (HBI), and overstable gravity modes previously studied in homogeneous media. We also find that there are new modes which are driven by heat conduction and particle diffusion. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular
Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.
2015-01-01
Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the corresponding (anomalous) transport coefficients dominate over the collisional ones and their properties are similar to those in collisionless plasmas.
Numerical study on the stability of weakly collisional plasma in E×B fields
Horký, M.
2015-02-15
Plasma stability in weakly collisional plasmas in the presence of E×B fields is studied with numerical simulations. Different types of ion-neutral collisions are considered in a fully magnetized regime. We study the influence of ion-neutral collisions and the role of collision types on the stability of plasma. It is found that the stability of plasma depends on the type of ion-neutral collisions, with the plasma being unstable for charge exchange collisions, and stable for the elastic scattering. The analysis focuses on the temporal evolution of the velocity phase space, RMS values of the potential fluctuations, and coherent structures in potential densities. For the unstable case, we observe growth and propagation of electrostatic waves. Simulations are performed with a three-dimensional electrostatic particle in cell code.
Vlasov simulations of plasma-wall interactions in a magnetized and weakly collisional plasma
Devaux, S.; Manfredi, G.
2006-08-15
A Vlasov code is used to model the transition region between an equilibrium plasma and an absorbing wall in the presence of a tilted magnetic field, for the case of a weakly collisional plasma ({lambda}{sub mfp}>>{rho}{sub i}, where {lambda}{sub mfp} is the ion-neutral mean-free path and {rho}{sub i} is the ion Larmor radius). The phase space structure of the plasma-wall transition is analyzed in detail and theoretical estimates of the magnetic presheath width are tested numerically. It is shown that the distribution near the wall is far from Maxwellian, so that temperature measurements should be interpreted with care. Particular attention is devoted to the angular distribution of ions impinging on the wall, which is an important parameter to determine the level of wall erosion and sputtering.
Grach, V. S. Garasev, M. A.
2015-07-15
We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of the stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.
Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind
Howes, G. G.; Klein, K. G.; TenBarge, J. M.
2014-07-10
The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.
Gupta, D. N.; Islam, M. R.; Jaroszynski, D. A.; Jang, D. G.; Suk, H.
2013-12-15
Self-focusing a laser beam in collisional plasma is investigated under the weak relativistic-ponderomotive nonlinearity. In this case, the plasma equilibrium density is modified and it causes generation of the nonlinearity due to the Ohmic heating of electrons, collisions, and the weak relativistic-ponderomotive force during the interaction of the laser beam with the plasma. Our theoretical and simulation results show that a significant nonlinearity in laser self-focusing can occur under the weak relativistic-ponderomotive regime for some appropriate simulation parameters.
NASA Technical Reports Server (NTRS)
Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.
2013-01-01
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
Black, Carrie; Ng, C. S.
2013-01-15
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein (LB) collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set [C.-S. Ng et al., Phys. Rev. Lett. 83, 1974 (1999) and C. S. Ng et al., Phys. Rev. Lett. 96, 065002 (2004)]. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
NASA Astrophysics Data System (ADS)
Jia, Jieshu; Yuan, Chengxun; Liu, Sha; Yue, Feng; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui
2016-04-01
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.
NASA Astrophysics Data System (ADS)
Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.
2016-08-01
In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.
Motie, Iman; Bokaeeyan, Mahyar
2015-02-15
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.
NASA Astrophysics Data System (ADS)
Motie, Iman; Bokaeeyan, Mahyar
2015-02-01
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.
NASA Astrophysics Data System (ADS)
Quiroga, A.; Bermudez, A.; Kornblit, F.; Garcia, F.; Fang, H.; Caceres, J.; Peña, L. M.; Ramos, O.; Viaggio, A.; Santo, C.
2016-01-01
This report summarizes the results of a SIM comparison of magentic properties by means of the susceptometer method. It was carried out by seven SIM laboraories and BIPM. Five standards have been circulated: two OIML weights class E2, two of them with nominal value 1 kg and two of them with nominal value 2 g, and a steel disk. Most of the results were consistent with each other. This final report shows the degree of equivalence achieved by the participants Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-15
We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-01
We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-30
Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
Collisional Relaxation of Fine Velocity Structures in Plasmas.
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
The existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can locally increase due to velocity space deformations of the particle velocity distribution function. These results support the idea that high-resolution measurements of the particle velocity distribution function are crucial for an accurate description of weakly collisional systems, such as the solar wind, in order to answer relevant scientific questions, related, for example, to particle heating and energization. PMID:27104713
Collisional Relaxation of Fine Velocity Structures in Plasmas
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
The existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can locally increase due to velocity space deformations of the particle velocity distribution function. These results support the idea that high-resolution measurements of the particle velocity distribution function are crucial for an accurate description of weakly collisional systems, such as the solar wind, in order to answer relevant scientific questions, related, for example, to particle heating and energization.
Fine velocity structures collisional dissipation in plasmas
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures
Collisional lifetimes of meteoroids
NASA Astrophysics Data System (ADS)
Soja, R. H.; Schwarzkopf, G. J.; Sommer, M.; Vaubaillon, J.; Albin, T.; Rodmann, J.; Grün, E.; Srama, R.
2016-01-01
Collisions of meteoroids with interplanetary dust grain fragments particles, dispersing larger particles amongst lower mass intervals. Here we use the method of Grün et al. (1985) and the IMEM interplanetary dust model to calculate the collisional lifetimes for different orbits, and for particles in different meteor showers. The timescales are usually long - of order 10^4 years for 1mm grains on Jupiter-family and Hally-type comet orbits. However, near-sun orbits particles suffer more frequent collisions and therefore have much shorter lifetimes. We discuss factors that affect the accuracy of these calculations.
Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping
NASA Astrophysics Data System (ADS)
Gong, Xueyu; Xie, Baoyi; Guo, Wenfeng; Chen, You; Yu, Jiangmei; Yu, Jun
2016-03-01
With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.
Transition from Collisionless to Collisional MRI
Prateek Sharma; Gregory W. Hammett; Eliot Quataert
2003-07-24
Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.
Modelling of collective Thomson scattering from collisional plasmas
NASA Astrophysics Data System (ADS)
Tierney, T. E., IV; Montgomery, D. S.; Benage, J. F., Jr.; Wysocki, F. J.; Murillo, M. S.
2003-06-01
Anomalous broadening of ion-acoustic modes has been observed using collective Thomson scattering from both the electron plasma and ion-acoustic waves in ion-collisional plasmas. Ion-acoustic waves may be broadened by Landau damping, plasma inhomogeneities and instrumental effects. A model was constructed to calculate the contribution of these effects based upon spatially and spectrally resolved measurements of collective Thomson scattering. Collisional broadening effects were then calculated using a modification of the Mermin formalism. The computational model was used to interpret experimental measurements of collisional damping rates in dense, moderately coupled, plasmas. Collisional broadening is weakly dependent of ion-acoustic frequency in nearly isothermal plasmas; and therefore collective Thomson scattering can be used as a measurement technique for collisional damping rates provided all additional broadening mechanisms are taken into account. This paper further demonstrates that modelling of collective Thomson scattering from ion-collisional ion-acoustic modes must account for inhomogeneities, Landau damping, and collisions in order to evaluate plasma parameters, such as temperature and average ionization.
Radiation-induced collisional pumping of molecules containing few atoms
Vasil'ev, G.K.; Chernyshev, Y.A.; Makarov, E.F.; Yakushev, V.G.
1986-01-01
The authors analyze the radiation-induced collisional pumping of few-atom molecules by laser emission taking into account both collisional and noncollisional processes of vibrational energy transfer in a molecule. For typical values of the parameters the vibrational energy of the molecules was found to depend on the laser emission intensity; regions of weak absorption, optimum absorption, and saturation appear as the pumping rate rises. Qualitative general conclusions are reached concerning the optimum conditions for the realization, in a medium absorbing laser emission, of either nonequilibrium dissociation or a chemical reaction involving vibrationally excited molecules.
Magentically actuated compressor
NASA Technical Reports Server (NTRS)
Evans, J.; Studer, P. A. (Inventor)
1985-01-01
A vibration free fluid compressor particularly adapted for Stirling cycle cryogenic refrigeration apparatus comprises a pair of identical opposing ferromagnetic pistons located in a housing and between a gas spring including a sealed volume of a working fluid such as gas under pressure. The gas compresses and expands in accordance with movement of the pistons to generate a compression wave which can be vented to other apparatus, for example, a displacer unit in a Stirling cycle engine. The pistons are urged outwardly due to the pressure of the gas; however, a fixed electromagnetic coil assembly located in the housing adjacent the pistons, is periodically energized to produce a magnetic field which interlinks the pistons in such a fashion that the pistons are mutually attracted to one another. The mass of the pistons, in conjunction with the compressed gas between them, form a naturally resonant system which, when the pistons are electromagnetically energized, produces an oscillating compression wave in the entrapped fluid medium.
Magnetismo Molecular (Molecular Magentism)
Reis, Mario S; Moreira Dos Santos, Antonio F
2010-07-01
The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.
Collisional decoherence reexamined
Hornberger, Klaus; Sipe, John E.
2003-07-01
We rederive the quantum master equation for the decoherence of a massive Brownian particle due to collisions with lighter particles from a thermal environment. Our careful treatment avoids the occurrence of squares of Dirac {delta} functions. It leads to a decoherence rate that is smaller by a factor of 2{pi} compared to previous findings. This result, which is in agreement with recent experiments, is confirmed both by a physical analysis of the problem and by a perturbative calculation in the weak-coupling limit.
Pusztai, I.; Fueloep, T.; Candy, J.; Hastie, R. J.
2009-07-15
The stability of ion temperature gradient (ITG) modes and the quasilinear fluxes driven by them are analyzed in weakly collisional tokamak plasmas using a semianalytical model based on an approximate solution of the gyrokinetic equation, where collisions are modeled by a Lorentz operator. Although the frequencies and growth rates of ITG modes far from threshold are only very weakly sensitive to the collisionality, the a/L{sub Ti} threshold for stability is affected significantly by electron-ion collisions. The decrease in collisionality destabilizes the ITG mode driving an inward particle flux, which leads to the steepening of the density profile. Closed analytical expressions for the electron and ion density and temperature responses have been derived without expansion in the smallness of the magnetic drift frequencies. The results have been compared with gyrokinetic simulations with GYRO and illustrated by showing the scalings of the eigenvalues and quasilinear fluxes with collisionality, temperature scale length, and magnetic shear.
Mach Probe Wakes are Important in Weakly Magnetized, Collisional Plasmas
NASA Astrophysics Data System (ADS)
Gosselin, Jordan James; Thakur, Saikat; Sears, Stephanie; McKee, John; Scime, Earl; Tynan, George
2015-11-01
Mach probes are often used as the diagnostic for flow in the scrape off layer (SOL) of tokamaks and in linear devices because of their low cost and ease of construction. However, proper interpretation of the Mach number has been debated, and interpretation methods use different calibration factors for different plasma parameters. The Controlled Shear Decorrelation eXperiment (CSDX) operates in an intermediate magnetization regime. To validate theories in this regime, measurements of the parallel ion velocity were made with Mach probes and laser induced fluorescence (LIF) at magnetic fields from 400 to 1600 gauss. We find that Mach probe measurements indicate higher velocities than LIF at fields above 400 gauss. Reduced downstream plasma density due to probe shadowing is a strong candidate for the cause of the discrepancy. An advective-diffusive model for the geometric shadowing and downstream plasma density is presented. When the model for the density drop is included, the Mach probe results agree with the LIF data. This result should be included by groups using Mach probes to measure parallel velocities in plasmas where the ion-neutral mean free path is shorter than the probe shadow length, Lps = a2Cs /Dperp in linear devices, the SOL, or divertor region of tokamaks. This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Awards Number DE-FG02-07ER54912.
Petrologic evidence for collisional heating of chondritic asteroids
NASA Technical Reports Server (NTRS)
Rubin, Alan E.
1995-01-01
The identification of the mechanism(s) responsible for heating asteroids is among the major problems in planetary science. Because of difficulties with models of electromagnetic induction and the decay of short-lived radionuclides, it is worthwhile to evaluate the evidence for collisional heating. New evidence for localized impact heating comes from the high proportion of relict type-6 material among impact-melt-bearing ordinary chondrites (OC). This relict material was probably metamorphosed by residual heat within large craters. Olivine aggregates composed of faceted crystals with 120 deg triple junctions occur within the melted regions of the Chico and Rose City OC melt rocks; the olivine aggregates formed from shocked, mosaicized olivine grains that underwent contact metamorphism. Large-scale collisional heating is supoorted by the correlation in OC between petrologic type and shock stage; no other heating mechanism can readily account for this correlation. The occurrence of impact-melt-rock clasts in OC that have been metamorphosed along with their whole rocks indicates that some impact events preceded or accompanied thermal metamorphism. Such impacts events, occurring during or shortly after accretion, are probably responsible for substantially melting approximately 0.5% of OC. These events must have heated a larger percentage of OC to subsolidus temperatures sufficient to have caused significant metamorphism. If collisional heating is viable, then OC parent asteroids must have been large; large OC asteroids in the main belt may include those of the S(IV) spectral subtype. Collisional heating is inconsistent with layered ('onion-shell') structures in OC asteroids (wherein the degree of metamorphism increases with depth), but the evidence for such structures is weak. It seems likely that collisional heating played an important role in metamorphosing chondritic asteroids.
Collisional current drive in two interpenetrating plasma jets
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S.
2011-10-01
The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ``Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.
Collisional current drive in two interpenetrating plasma jets
Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S.
2011-10-15
The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ''Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.
Collisional properties and dynamical accretion of centimeter-sized protoplanetesimals
NASA Astrophysics Data System (ADS)
Whizin, Akbar; Colwell, Joshua E.; Blum, Jürgen; Lewis, Mark C.
2015-11-01
The seeds of planetesimals that formed in the turbulent gaseous environment of the nascent protoplanetary disk have many barriers to overcome in their growth from millimeter to meter-sized and larger objects, such as collisional disruption and orbital decay. Centimeter-sized agglomerates can be weakly bound and quite fragile and at these sizes self-gravity is almost non-existent. Electrostatic surface forces such as van der Waal’s forces play a critical role in holding loosely bound rubble-piles together. We wish to further understand the mechanical, material, collisional properties, and outcomes of collisions between cm-sized rubble-piles at low speeds that may lead to accretion. The collisional outcomes can be determined by a set of definable collision parameters, and experimental constraints on these parameters will improve formation models for planetesimals. We have carried out a series of laboratory microgravity collision experiments of small aggregates to determine under what conditions collisional growth can occur using mm-sized silica beads and SiO2 dust as simulants. In our free-fall chambers we obtain collision velocities ranging from 1 to 200 cm s-1 for 1-2 cm aggregates with pressures ~0.1 mbars. We measure coefficients of restitution, sticking thresholds, and fragmentation thresholds, then compare the results of our experiments with numerical simulations using a collisional N-body code. We find that cm-sized agglomerates made up of mm-sized particles (or of mm-sized aggregates of micron sized SiO2 dust) are very weakly bound and require high porosity and internal cohesion to avoid fragmentation in agreement with both simulations and collision experiments. The velocity threshold for sticking is found to be near 7 cm s-1, far from the fragmentation threshold of ~1 m s-1 for cm-sized bodies. Quiescent regions in the mid-plane of the disk may cultivate abnormally low relative velocities permitting sticking to occur (~1 cm s-1), however, without a well
Collisional plateaus. [in earth and Venus lithospheres
NASA Technical Reports Server (NTRS)
Morgan, P.; Burke, K.
1985-01-01
Aspects of the geology of collisional plateaus formed by the thickening of continental crust are briefly reviewed. The history of studies of collisional plateaus is summarized, and igneous activity in collisional plateaus is discussed. Isostatic considerations pertaining to these plateaus are addressed, developing models of isostatic support of topography which illustrate the importance of compressional tectonics in the creation of high altitude plateaus. Possible analogous environments on Venus are considered. Finally, the paradox of extension associated with compression in the plateaus is discussed.
Problems of collisional stellar dynamics
NASA Astrophysics Data System (ADS)
Heggie, D. C.
2011-03-01
The discovery of dynamical friction was Chandrasekhar's best known contribution to the theory of stellar dynamics, but his work ranged from the few-body problem to the limit of large N (in effect, galaxies). Much of this work was summarised in the text "Principles of Stellar Dynamics" tep{C1942,C1960}, which ranges from a precise calculation of the time of relaxation, through a long analysis of galaxy models, to the behaviour of star clusters in tidal fields. The later edition also includes the work on dynamical friction and related issues. In this review we focus on progress in the collisional aspects of these problems, i.e. those where few-body interactions play a dominant role, and so we omit further discussion of galaxy dynamics. But we try to link Chandrasekhar's fundamental discoveries in collisional problems with the progress that has been made in the 50 years since the publication of the enlarged edition. There is one other such problem to which Chandrasekhar contributed, though the paper in question tep{C1944} was not reprinted in the book. See Section ref{sec:binaries}. For more on the collisionless problems studied by Chandrasekhar, see the paper by N. Wyn Evans (2011) in the present volume.
THE COLLISIONAL EVOLUTION OF DEBRIS DISKS
Gaspar, Andras; Rieke, George H.; Balog, Zoltan E-mail: grieke@as.arizona.edu
2013-05-01
We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration
Theory of runaway collisional transport
Tessarotto, M. ); White, R.B. )
1993-11-01
The purpose of this paper is to formulate the transport problem for a multispecies rotating toroidal magnetoplasma in the so-called runaway regime, which is defined by an appropriate ordering of relevant characteristic frequencies, in particular, the Larmor frequency, the characteristic acceleration frequency due to the applied electric field and the effective collision frequency, all evaluated at some characteristic speed [ital v][sub 0]. A suitable form of the gyrokinetic equation is obtained to describe the time-dependent, multispecies plasma response to an applied electric field, in toroidal geometry and for a strongly rotating, quiescent, and collisional plasma. Its moment equations are proven to imply the reduction of the energy equation to Joule's law, as well as consequences on the form of Ohm's law and of the Grad--Shafranov equation. To construct an approximate solution of the gyrokinetic equation and to evaluate all relevant fluxes, appearing in the moment equations, a general variational solution method is developed.
Neoclassical Transport Including Collisional Nonlinearity
Candy, J.; Belli, E. A.
2011-06-10
In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Collisional Aggregation Due to Turbulence
NASA Astrophysics Data System (ADS)
Pumir, Alain; Wilkinson, Michael
2016-03-01
Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.
Universal collisional activation ion trap mass spectrometry
McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.
1993-04-27
A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.
Universal collisional activation ion trap mass spectrometry
McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.
1993-01-01
A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.
Magnetosonic shock wave in collisional pair-ion plasma
NASA Astrophysics Data System (ADS)
Adak, Ashish; Sikdar, Arnab; Ghosh, Samiran; Khan, Manoranjan
2016-06-01
Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wave exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.
Collisionality scaling of turbulence and transport in advanced inductive plasmas in DIII-D
NASA Astrophysics Data System (ADS)
Yan, Z.; McKee, G. R.; Petty, C.; Luce, T.; Chen, X.; Holland, C.; Rhodes, T.; Schmitz, L.; Wang, G.; Zeng, L.; Marinoni, A.; Solomon, W.; DIII-D Team
2015-11-01
The collisionality scaling of multiscale turbulence properties and thermal transport characteristics in high-beta, high confinement Advanced Inductive (AI) plasmas was determined via systematic dimensionless scaling experiments on DIII-D. Preliminary estimate indicates a weak collisionality dependence of energy confinement as v* varied by a factor of ~2. Electron density and scaled (~Bt2) temperature profiles are well matched in the scan. Interestingly, low-k density fluctuation amplitudes are observed to decrease at lower v* near ρ ~ 0 . 75 . Ion and electron thermal transport values, computed with ONETWO using experimentally measured profiles and sources, will be presented, along with multi-scale turbulence measurements obtained with various fluctuation diagnostics. Altering collisionality should change the relative contribution of different modes to transport.
Leap frog integrator modifications in highly collisional particle-in-cell codes
NASA Astrophysics Data System (ADS)
Hanzlikova, N.; Turner, M. M.
2014-07-01
Leap frog integration method is a standard, simple, fast, and accurate way to implement velocity and position integration in particle-in-cell codes. Due to the direct solution of kinetics of particles in phase space central to the particle-in-cell procedure, important information can be obtained on particle velocity distributions, and consequently on transport and heating processes. This approach is commonly associated with physical situations where collisional effects are weak, but can also be profitably applied in some highly collisional cases, such as occur in semiconductor devices and gaseous discharges at atmospheric pressure. In this paper, we show that the implementation of the leap frog integration method in these circumstances can violate some of the assumptions central to the accuracy of this scheme. Indeed, without adaptation, the method gives incorrect results. We show here how the method must be modified to deal correctly with highly collisional cases.
Collisional damping rates for plasma waves
NASA Astrophysics Data System (ADS)
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT
Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.
2011-05-20
The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r {approx} 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.
Planet signatures in collisionally active debris discs: scattered light images
NASA Astrophysics Data System (ADS)
Thebault, P.; Kral, Q.; Ertel, S.
2012-11-01
Context. Planet perturbations have been often invoked as a potential explanation for many spatial structures that have been imaged in debris discs. So far this issue has been mostly investigated with pure N-body numerical models, which neglect the crucial effect collisions within the disc can have on the disc's response to dynamical perturbations. Aims: We numerically investigate how the coupled effect of collisions and radiation pressure can affect the formation and survival of radial and azimutal structures in a disc perturbed by a planet. We consider two different set-ups: a planet embedded within an extended disc and a planet exterior to an inner debris ring. One important issue we want to address is under which conditions a planet's signature can be observable in a collisionally active disc. Methods: We use our DyCoSS code, which is designed to investigate the structure of perturbed debris discs at dynamical and collisional steady-state, and derive synthetic images of the system in scattered light. The planet's mass and orbit, as well as the disc's collisional activity (parameterized by its average vertical optical depth τ0) are explored as free parameters. Results: We find that collisions always significantly damp planet-induced spatial structures. For the case of an embedded planet, the planet's signature, mostly a density gap around its radial position, should remain detectable in head-on images if Mplanet ≥ MSaturn. If the system is seen edge-on, however, inferring the presence of the planet is much more difficult, as only weak asymmetries remain in a collisionally active disc, although some planet-induced signatures might be observable under very favourable conditions. For the case of an inner ring and an external planet, planetary perturbations cannot prevent collision-produced small fragments from populating the regions beyond the ring. The radial luminosity profile exterior to the ring is in most cases close to the one it should have in the absence
Jeans stability in collisional quantum dusty magnetoplasmas
Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate
Li, Fei; Zhang, Dongxia; Rong, Shiguang; Xu, Ying
2013-11-15
The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.
On collisional disruption - Experimental results and scaling laws
NASA Astrophysics Data System (ADS)
Davis, D. R.; Ryan, E. V.
1990-01-01
Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.
DOE R&D Accomplishments Database
Lee, T. D.
1957-06-01
Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)
Collisional quenching dynamics and reactivity of highly vibrationally excited molecules
NASA Astrophysics Data System (ADS)
Liu, Qingnan
Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine
Ambient tremors in a collisional orogenic belt
Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei
2014-01-01
Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.
Collisional zones in Puerto Rico and the northern Caribbean
NASA Astrophysics Data System (ADS)
Laó-Dávila, Daniel A.
2014-10-01
Puerto Rico is an amalgamation of island arc terranes that has recorded the deformational and tectonic history of the North American-Caribbean Plate boundary. Four collisional zones indicate the contractional events that have occurred at the plate boundary. Metamorphism and deformation of Middle Jurassic to Early Cretaceous oceanic lithosphere during the Early Cretaceous indicate the earliest collisional event. Then, an ophiolitic mélange, mostly comprised of blocks of the metamorphosed oceanic lithosphere, was formed and emplaced in the backarc region during the Turonian-Coniacian deformational event. A possible collision with a buoyant block in the North American Plate caused late Maastrichtian-early Paleocene contraction that created fold-and-thrust belts and the remobilization and uplift of serpentinite bodies in the Southwest Block. Late Eocene-early Oligocene transpression was localized along the Southern and Northern Puerto Rico fault zones, which occur north and south of large granodiorite intrusions in the strong Central Block. The deformation was accommodated in pure shear domains of fold-and-thrust belts and conjugate strike-slip faults, and simple shear domains of large mostly left-lateral faults. In addition, it reactivated faults in the weak Southwest Block. This island-wide transpression is the result of a Greater Antilles arc and continental North American collision. The kinematic model of the structures described in Puerto Rico correlate with some structures in Hispaniola and Cuba, and shows how the northern boundary of the Caribbean Plate was shortened by collisions with continental lithosphere of the North American Plate throughout its history. The tectonic evolution of the Greater Antilles shows a history of collisions, in which the latest collision accretes Cuba to the North American Plate, reorganizes the plate boundary, and deforms with transpression Hispaniola and Puerto Rico. The latest collision in Puerto Rico shows the case in which an
Collisional excitation of interstellar methyl cyanide
NASA Technical Reports Server (NTRS)
Green, Sheldon
1986-01-01
Theoretical calculations are used to determine the collisional excitation rates of methyl cyanide under interstellar molecular cloud conditions. The required Q(L,M) as a function of kinetic temperature were determined by averaging fixed energy IOS (infinite order sudden) results over appropriate Boltzmann distributions of collision energies. At a kinetic temperature of 40 K, rates within a K ladder were found to be accurate to generally better than about 30 percent.
Fe XVII Emission from Hot, Collisional Plasmas
Beiersdorfer, P; Bitter, M; von Goeler, S; Hill, K W
2004-12-03
The ratios of the Fe XVII 3s {yields} 2p transitions to that of the dominant 3d {yields} 2p transition measured in high-temperature tokamak plasmas are compared to solar and astrophysical observations. Good agreement is found, indicating that the collisional line formation processes active in opacity-free, low-density, high-temperature laboratory plasmas are a good description of those found in astrophysical plasmas.
Collisionally induced atomic clock shifts and correlations
Band, Y. B.; Osherov, I.
2011-07-15
We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.
Collisional thulium vapour gas-discharge laser
Gerasimov, V A; Pavlinskii, A V
2004-01-31
A collisional laser on a system of atomic levels based on the principle proposed by Gould is built for the first time. The population of the upper laser level and relaxation of the lower level occur upon inelastic collisions of excited thulium atoms with helium atoms. The lower-level relaxation occurs in a reaction with an energy defect of > 13000 cm{sup -1}. (active media. lasers)
Collisional records in LL-chondrites
NASA Technical Reports Server (NTRS)
Graf, Thomas; Marti, Kurt
1994-01-01
One third of all the LL-chondrites have exposure ages of approx. 15 Ma and were exposed to cosmic rays following a collisional break-up. The probability that the 15-Ma peak represents a random signal is calculated to be less than 2%. Considerably lower probabilities are obtained if only LL5s or subgroups of high Ar-40 retention are used. Furthermore, we show that the peak shape agrees with statistical constraints obtained from multiple analyses of samples from the St. Severin LL6-chondrites. The frequency in and out of the 15-Ma peak varies significantly for different petrographic LL-types. The radiogenic Ar-40 retention systematics (most LL-chondrites retained Ar-40(sub rad) shows that no substantial heat pulse resulted in the 15-Ma collisional event. Interestingly, smaller exposure age clusters at approx. 28 Ma and approx. 40 Ma match up well with clusters in the histogram of L-chondrites. The distribution of LL-exposure ages is not consistent with that expected for a quasi-continuous injection of LL material into a resonance zone of the asteroid belt. The near absence of exposure ages shorter than 8 Ma either indicates a lack of recent collisional events or considerably longer transfer times than inferred from dynamical considerations.
Superfluorescence polarization: Signature of collisional redistribution
NASA Astrophysics Data System (ADS)
Kumarakrishnan, A.; Chudasama, S.; Han, X. L.
2003-09-01
We have studied effects of magnetic sublevel degeneracy on the polarization of superfluorescent pulses generated on the Ca 4s4p 1P1 3d4s 1D2 transition at 5.5 μm. These pulses were generated from a cell of length 50 cm by optically pumping calcium vapor on the 4s2 1S0 4s4p 1P1 transition in the presence of Ar gas. The axis of ellipticity of superfluorescence (SF) polarization is oriented parallel to the axis of the pump-laser polarization at large detunings, and undergoes an abrupt rotation through 90° for detunings close to resonance. The distribution of populations in the magnetic sublevels of the 1P1 state can be estimated using a simple model based on previously calculated cross sections for collisionally aided absorption in the presence of an intense (pump) field. For large detunings, these estimates are consistent with the polarized SF intensity measured in the experiment. A direct measurement of the populations of the 1P1 magnetic sublevels also supports the collisional redistribution predicted by the calculated cross sections. We therefore suggest that SF polarization can be a useful signature of collisional redistribution. However, the change in ellipticity is unexpected, and probable causes for this effect are discussed.
ACCRETION IN PROTOPLANETARY DISKS BY COLLISIONAL FUSION
Wettlaufer, J. S.
2010-08-10
The formation of a solar system such as ours is believed to have followed a multi-stage process around a protostar and its associated accretion disk. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag, and Cuzzi and colleagues have shown that when midplane particle mass densities approach or exceed those of the gas, solid-solid interactions dominate the drag effect. The size dependence of the drag creates a 'bottleneck' at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Independent of whether the origin of the drag is angular momentum exchange with gas or solids in the disk, successful planetary accretion requires rapid planetesimal growth to kilometer scales. A commonly accepted picture is that for collisional velocities V{sub c} above a certain threshold value, V {sub th{approx}} 0.1-10 cm s{sup -1}, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all ranges of interparticle collision speeds the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter-phase diagrams, amorphs, and polymorphs-has been neglected. Here, it is demonstrated for compact bodies that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting/amorphization/polymorphization and subsequent fusion/annealing to extend the collisional velocity range of primary accretion to {Delta}V{sub c} {approx} 1-100 m s{sup -1} >> V {sub th}, which encompasses both typical turbulent rms speeds and the velocity differences between boulder-sized and small grains {approx}1-50 m s{sup -1}. Therefore, as inspiraling meter-sized bodies collide
Accretion in Protoplanetary Disks by Collisional Fusion
NASA Astrophysics Data System (ADS)
Wettlaufer, J. S.
2010-08-01
The formation of a solar system such as ours is believed to have followed a multi-stage process around a protostar and its associated accretion disk. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag, and Cuzzi and colleagues have shown that when midplane particle mass densities approach or exceed those of the gas, solid-solid interactions dominate the drag effect. The size dependence of the drag creates a "bottleneck" at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Independent of whether the origin of the drag is angular momentum exchange with gas or solids in the disk, successful planetary accretion requires rapid planetesimal growth to kilometer scales. A commonly accepted picture is that for collisional velocities Vc above a certain threshold value, V th~ 0.1-10 cm s-1, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all ranges of interparticle collision speeds the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter-phase diagrams, amorphs, and polymorphs—has been neglected. Here, it is demonstrated for compact bodies that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting/amorphization/polymorphization and subsequent fusion/annealing to extend the collisional velocity range of primary accretion to ΔVc ~ 1-100 m s-1 Gt V th, which encompasses both typical turbulent rms speeds and the velocity differences between boulder-sized and small grains ~1-50 m s-1. Therefore, as inspiraling meter-sized bodies collide with smaller particles in this high velocity collisional fusion
Computational Methods for Collisional Plasma Physics
Lasinski, B F; Larson, D J; Hewett, D W; Langdon, A B; Still, C H
2004-02-18
Modeling the high density, high temperature plasmas produced by intense laser or particle beams requires accurate simulation of a large range of plasma collisionality. Current simulation algorithms accurately and efficiently model collisionless and collision-dominated plasmas. The important parameter regime between these extremes, semi-collisional plasmas, has been inadequately addressed to date. LLNL efforts to understand and harness high energy-density physics phenomena for stockpile stewardship require accurate simulation of such plasmas. We have made significant progress towards our goal: building a new modeling capability to accurately simulate the full range of collisional plasma physics phenomena. Our project has developed a computer model using a two-pronged approach that involves a new adaptive-resolution, ''smart'' particle-in-cell algorithm: complex particle kinetics (CPK); and developing a robust 3D massively parallel plasma production code Z3 with collisional extensions. Our new CPK algorithms expand the function of point particles in traditional plasma PIC models by including finite size and internal dynamics. This project has enhanced LLNL's competency in computational plasma physics and contributed to LLNL's expertise and forefront position in plasma modeling. The computational models developed will be applied to plasma problems of interest to LLNL's stockpile stewardship mission. Such problems include semi-collisional behavior in hohlraums, high-energy-density physics experiments, and the physics of high altitude nuclear explosions (HANE). Over the course of this LDRD project, the world's largest fully electromagnetic PIC calculation was run, enabled by the adaptation of Z3 to the Advanced Simulation and Computing (ASCI) White system. This milestone calculation simulated an entire laser illumination speckle, brought new realism to laser-plasma interaction simulations, and was directly applicable to laser target physics. For the first time, magnetic
State dependence of Rydberg interaction-induced collisional loss
NASA Astrophysics Data System (ADS)
Feng, Zhigang; Zhao, Kejia; Miao, Jingyuan; Li, Difei; Yang, Zhijun; Wu, Zhaochun; He, Zhao; Zhao, Jianming; Jia, Suotang
2016-09-01
We present a simple analytical formula from an existing theoretical model and theoretically investigate in detail the state dependence of interaction-induced collisional loss rate coefficients, and the various parameter effects on collisional loss rate. We also investigate the different mechanisms and corresponding effects on collisional loss by analyzing our previous experimental results using the present formula, and even investigate the time evolution of Rydberg atom number for different Rydberg states.
Ion closure theory for high collisionality revisited
Ji, Jeong-Young Held, Eric D.
2015-06-15
According to analytical calculations of the ion collision operator, the ion-electron collision terms could be larger than the ion-ion collision terms. In the previous work [J.-Y. Ji and E. D. Held, Phys. Plasmas 20, 042114 (2013)], the ion-electron collision effects are diminished by the ion temperature change terms introduced from unlikely assumptions. In this work, the high-collisionality closures for ions are calculated without the temperature change terms. The ion-electron collision terms significantly modify existing closure coefficients.
Simulation of collisional fragmentation with explosives
NASA Technical Reports Server (NTRS)
Housen, Kevin
1993-01-01
For practical reasons, experimental studies of collisional fragmentation must at times rely on explosives to fragment a target body. For example, Housen et al., described experiments in which spheres were fragmented in a pressurized atmosphere. Explosives were used because impacts could not be performed in the pressure chamber. Explosives can also be used to study targets much larger than those which can be disrupted by conventional light-gas guns, thereby allowing size- and rate-effects to be investigated. The purpose of this study is to determine the charge burial depth required to simulate various aspects of collisions.
Wavepacket theory of collisional dissociation in molecules
Kulander, K.
1980-01-01
An explicit integration scheme is used to solve the time dependent Schroedinger equation for wavepackets which model collisions in the collinear H + H/sub 2/ system. A realistic LEPS-type potential energy surface is used. Collision energies considered are above the dissociation threshold and probabilities for collision induced dissociation are reported. Also quantum mechanical state-to-state transition probabilities are generated. These results are compared to extensive classical trajectory calculations performed on this same system. The time evolution of the wavepacket densities is studied to understand the dynamics of the collinear collisional dissociation process.
Electron parallel closures for arbitrary collisionality
Ji, Jeong-Young Held, Eric D.
2014-12-15
Electron parallel closures for heat flow, viscosity, and friction force are expressed as kernel-weighted integrals of thermodynamic drives, the temperature gradient, relative electron-ion flow velocity, and flow-velocity gradient. Simple, fitted kernel functions are obtained for arbitrary collisionality from the 6400 moment solution and the asymptotic behavior in the collisionless limit. The fitted kernels circumvent having to solve higher order moment equations in order to close the electron fluid equations. For this reason, the electron parallel closures provide a useful and general tool for theoretical and computational models of astrophysical and laboratory plasmas.
Weakly dissipative solitons in dense relativistic-degenerate plasma
NASA Astrophysics Data System (ADS)
Ahmad, Saeed; Ata-ur-Rahman; Khan, S. A.
2015-07-01
We investigate the features of weakly nonlinear waves in a collisional dense plasma consisting of ultra-relativistic degenerate electrons and non-relativistic degenerate ions. In weak dissipation limit, the dynamics of low frequency nonlinear ion (solitary) wave is described by solving a damped Korteweg-deVries equation. The analytical and numerical analysis shows the existence of weakly dissipative solitons evolving with time. The characteristics of soliton evolution with plasma number density and slow ion-neutral collision rate are discussed with some detail. The relevance of the study with degenerate plasmas in ultra-dense astrophysical objects, particularly white dwarf stars is also pointed out.
Heat flux viscosity in collisional magnetized plasmas
Liu, C.; Fox, W.; Bhattacharjee, A.
2015-05-15
Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.
Heat flux viscosity in collisional magnetized plasmas
NASA Astrophysics Data System (ADS)
Liu, C.; Fox, W.; Bhattacharjee, A.
2015-05-01
Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.
Intense sediment transport: Collisional to turbulent suspension
NASA Astrophysics Data System (ADS)
Berzi, Diego; Fraccarollo, Luigi
2016-02-01
A recent simple analytical approach to the problem of steady, uniform transport of sediment by a turbulent shearing fluid dominated by interparticle collisions is extended to the case in which the mean turbulent lift may partially or totally support the weight of the sediment. We treat the granular-fluid mixture as a continuum and make use of constitutive relations of kinetic theory of granular gases to model the particle phase and a simple mixing-length approach for the fluid. We focus on pressure-driven flows over horizontal, erodible beds and divide the flow itself into layers, each dominated by different physical mechanisms. This permits a crude analytical integration of the governing equations and to obtain analytical expressions for the distribution of particle concentration and velocity. The predictions of the theory are compared with existing laboratory measurements on the flow of glass spheres and sand particles in water. We also show how to build a regime map to distinguish between collisional, turbulent-collisional, and fully turbulent suspensions.
Collisional Features in Saturn's F Ring
NASA Astrophysics Data System (ADS)
Attree, Nicholas Oliver; Murray, Carl; Cooper, Nicholas; Williams, Gareth
2016-10-01
Saturn's highly dynamic F ring contains a population of small (radius ~ 1 km) moonlets embedded within its core or on nearby orbits. These objects interact, both gravitationally and collisionally, with the ring producing a range of features, some of which are unique to it. Here we present a brief overview of F ring collisional processes, investigated using a combination of Cassini imaging, simulations and orbital dynamics. Collisions produce linear debris clouds, known as 'jets' and 'mini-jets', which evolve, due to differential orbital motion, over periods ranging from hours to months. Mini-jet-forming collisions occur daily in the F ring whilst larger, more dramatic, events are rarer but produce jets that persist for many months, 'wrapping around' the ring to form almost parallel strands. Measuring jet properties, such as formation rates and relative orbits, allows us to infer a local population of order hundreds of objects colliding at relative velocities of a few metres per second. N-body modelling of the collisions shows good agreement with observations when two aggregates are allowed to impact and partially fragment (as opposed to a solid moonlet encountering dust), implying massive objects both in the core and nearby. Multiple, repeated collisions by the same, or fragments of the same, object are also important in explaining some jet morphology, showing that many objects survive the collisions. The F ring represents a natural laboratory for observing low-velocity collisions between icy objects as well as the ongoing aggregation and accretion that most-likely forms them.
Archean collisional tectonics in SW Montana
Mogk, D.; Rickmond, D.; Salt, K.; Clark, M.; Mueller, P.; Lafrenze, D.; Wooden, J.; Henry, D.
1985-01-01
The Archean continental crust of SW Montana evolved through alternating cycles of stable platform sedimentation followed by crustal thickening through collisional tectonics. The ancient sialic crust in the Beartooth Mountains served as the nucleus for accretion of younger terranes to the west. The oldest orogenic cycle recognized in the Beartooth Mountains involves a 3.4 Ga old supracrustal sequence which was metamorphosed in the granulite facies (T=700-800/sup 0/C, P=6Kb, 35/sup 0/C/Km); deep burial is interpreted as the result of collisional tectonic thickening. The second orogenic cycle is subduction related and has produced 2.8 Ga old andesites, 2.75 Ga old calc-alkaline intrusives, upper amphibolite grade metamorphism, transcurrent faulting (in the North Snowy Block and Yankee Jim canyon at 2.8 Ga) and nappe emplacement. In the central Beartooths post-orogenic granites intrude pelitic schists (T=600/sup 0/C, P=8Kb, 25/sup 0/C/Km). West of the Beartooths the basement consists of 2.75-2.70 Ga old, tectonically telescoped coarse clastics (Gallatin, Madison Ranges) and stable platform sequences (Gravelly, Tobacco Root, Ruby Ranges). Nappe formation and granulite-migmatite (700-750/sup 0/C) associations are common, suggesting deep burial through tectonic thickening. A later-kinematic mesozonal (8Kb) qtz diorite-granodiorite batholithic complex is present in the northern Madison Range. Quartzofeldspathic paragneisses in the westernmost Archean basement are derived from either a continental or island arc source.
Collisional-Radiative Kinetics in Monatomic Gases
NASA Astrophysics Data System (ADS)
Le, Hai; Karagozian, Ann
2012-11-01
A detailed model of electronic excited states is essential in capturing all the nonequilibrium processes of a partially ionized plasma by means of collisional and radiative interactions. This collisional-radiative (CR) model allows us to consider deviations from equilibrium distribution of the internal states, and is now more commonly used in the study of plasma discharges. Prior studies by Kapper and Cambier and Panesi et al. suggest that this level of detail is needed for an accurate prediction of the flow field, and it is particularly relevant to plasma-combustion interactions. The required number of excited states needed to be included in the CR model is often prohibitively large due to the nonequilibrium condition of the plasma. The consequence is a large system of ODE's which needs to be solved at each time step. A reduced mechanism for the CR model can be attained by grouping the upper states of the atomic state distribution (ASDF) into a pseudo-level in which the population is characterized either by a uniform distribution or a Boltzmann distribution. This talk presents both detailed and reduced models for an ionizing shock in Argon. Supported by the US Air Force/ERC, Inc. under subcontract RS111738.
Collisional population transfer in yterbium ions
Schauer, Martin Michael; Torgerson, Justin R; Danielson, Jeremy R; Zhao, Xinxin; Nguyen, Ahn - Tuan; Wang, Li - Bang
2009-01-01
Long-lived metastable states of Yb+ ions are used for atomic frequency standards, precision measurements, and quantum information research. The effect of population trapping and transfer in these states must be well understood. We report here the transfer of Yb+ ions into the long-lived {sup 2}F{sub 7/2} state by means of collisions between He buffer gas and Yb+ ions held in a linear Paul trap. Transfer rates were measured as functions of buffer-gas pressure and repump-laser power, and the collisional population transfer rates were extracted. The measured transfer rate coefficients are 8.32(75)x10-11 and 8.65(33)x10-11 cm3/s for the collisional processes {sup 2}P{sub 1/2}{yields}{sup 2}D{sub 5/2} and {sup 2}D{sub 3/2}{yields}{sup 2}F{sub 7/2}, respectively.
Collisional Features in Saturn's F Ring
NASA Astrophysics Data System (ADS)
Attree, Nicholas; Murray, Carl D; Cooper, Nicholas; Williams, Gareth
2014-05-01
Saturn’s F ring is a highly dynamic environment; changeable over timescales from hours to years and displaying a variety of features caused by both gravitational and collisional interactions with local objects. These objects range from the ‘shepherding’ moons Prometheus and Pandora down to small (radius < 1 km) moonlets, embedded in the ring or on nearby orbits. Previously (Attree et al. 2014) we catalogued nearly 900 small-scale collisional features (“mini-jets”) from Cassini images, placing constraints on the size and orbital distribution of the local colliding population. Here we will present the latest work on F ring collisions; updating the catalogue with new Cassini images to further refine our statistics of the population as well as discussing specific, interesting features which shed light on the collision process. We will also present the results of N-body simulations of the collisions and discuss ongoing work to survey the larger “jet” features. These are caused by higher velocity collisions 30m/s) with more distant objects like S/2004 S 6 which may represent the upper end of the moonlet population in size and in orbit.
Non-resonant Particle Heating due to Collisional Separatrix Crossings
NASA Astrophysics Data System (ADS)
Driscoll, C. Fred; Anderegg, F.; Affolter, M.; Dubin, D. H. E.
2015-11-01
We observe plasma heating when a pure ion column is ``sloshed'' back and forth across a trapping separatrix, with heating rate larger than expected from simple collisional viscosity. Here, an externally applied theta-symmetric ``squeeze'' potential creates a velocity separatrix between trapped and passing particles, and weak collisions at rate νc cause separatrix crossings. The trapped particles are repeatedly compressed and expanded (by δL at rate fsl) whereas the passing particles counter-stream and Debye shield the resultant potential variations. LIF diagnostics clearly show the separatrix energy Esep (r) , in close agreement with (r , z) Boltmann-Poisson equilibrium calculations. With νc << 2 πfsl << 2 πfplas , simple bounce-averaged transport theory of the separatrix boundaries layer predicts heating scaling as Ṫ / T (δL / L)2fsl√{νc /fsl } Vsq2 /T2 , distinct from bulk-viscosity heating scaling as νc1. Experiments corroborate the scalings with fsl (and hence νc), with δL , and with Vsq, and give overall quantitative agreement with theory within a factor-of-two. Supported by National Science Foundation Grant PHY-1414570, Department of Energy Grants DE-SC0002451.
Inelastic collisional effect on a dilute granular shock layer with a heated wall.
Yano, R; Suzuki, K
2011-03-01
The inelastic collisional effect on a shock layer of a dilute granular gas with a heated wall is numerically studied. To investigate the inelastic collisional effect via the gain term in the inelastic Boltzmann equation on the shock layer, an inelastic Bhatnagar-Gross-Krook (BGK) type equation, whose loss term is equivalent to that in the inelastic Boltzmann equation, is formulated on the basis of the kinetic theory of the granular gas. The inelastic BGK-type equation formulated for a hard-sphere particle is generalized to that for an inverse power law (IPL) molecule. Numerical results in a weakly inelastic regime confirm the nonequilirium contribution to the cooling rate, when the collision frequency depends on the particle velocity. The profile of the negative high-velocity tail of the distribution function in the generation regime of the shock wave obtained by the Direct Simulation Monte Carlo method is higher than that obtained by the proposed BGK-type equation when the collision frequency depends on the particle velocity because of the inelastic collisional effect via the gain term in the inelastic Boltzmann equation, which is not included in the proposed BGK-type equation. PMID:21437794
Maitra, Sarit; Banerjee, Gadadhar
2014-11-15
The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.
Polarization of fast particle beams by collisional pumping
Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.
1988-01-01
Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.
Collisional effects on nonlinear ion drag force for small grains
Hutchinson, I. H.; Haakonsen, C. B.
2013-08-15
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Aeolian Sand Transport with Collisional Suspension
NASA Technical Reports Server (NTRS)
Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre
2004-01-01
Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent
Collisional electron spectroscopy method for gas analysis
NASA Astrophysics Data System (ADS)
Stefanova, M. S.; Pramatarov, P. M.; Kudryavtsev, A. A.; Peyeva, R. A.; Patrikov, T. B.
2016-05-01
Recently developed collisional electron spectroscopy (CES) method, based on identification of gas impurities by registration of groups of nonlocal fast electrons released by Penning ionization of the impurity particles by helium metastable atoms, is verified experimentally. Detection and identification of atoms and molecules of gas impurities in helium at pressures of 14 - 90 Torr with small admixtures of Ar, Kr, CO2, and N2 are carried out. The nonlocal negative glow plasma of short dc microdischarge is used as most suitable medium. Records of the energy spectra of penning electrons are performed by means of an additional electrode - sensor, located at the boundary of the discharge volume. Maxima appear in the electron energy spectra at the characteristic energies corresponding to Penning ionization of the impurity particles by helium metastable atoms.
Maximum efficiency of the collisional Penrose process
NASA Astrophysics Data System (ADS)
Zaslavskii, O. B.
2016-09-01
We consider the collision of two particles that move in the equatorial plane near a general stationary rotating axially symmetric extremal black hole. One of the particles is critical (with fine-tuned parameters) and moves in the outward direction. The second particle (usual, not fine-tuned) comes from infinity. We examine the efficiency η of the collisional Penrose process. There are two relevant cases here: a particle falling into a black hole after collision (i) is heavy or (ii) has a finite mass. We show that the maximum of η in case (ii) is less than or equal to that in case (i). It is argued that for superheavy particles, the bound applies to nonequatorial motion as well. As an example, we analyze collision in the Kerr-Newman background. When the bound is the same for processes (i) and (ii), η =3 for this metric. For the Kerr black hole, recent results in the literature are reproduced.
Collisional and Dynamical Evolution of Planetary Systems
NASA Technical Reports Server (NTRS)
Weidenschilling, Stuart J.
2004-01-01
Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.
Solar Wind Collisional Age from a Global Magnetohydrodynamics Simulation
NASA Astrophysics Data System (ADS)
Chhiber, R.; Usmanov, AV; Matthaeus, WH; Goldstein, ML
2016-04-01
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure
Piel, Alexander Schmidt, Christian
2015-05-15
Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.
NASA Astrophysics Data System (ADS)
Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco
2016-03-01
This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.
THE CREATION OF HAUMEA'S COLLISIONAL FAMILY
Schlichting, Hilke E.; Sari, Re'em E-mail: sari@tapir.caltech.edu
2009-08-01
Recently, the first collisional family was discovered in the Kuiper Belt. The parent body of this family, Haumea, is one of the largest objects in the Kuiper Belt and is orbited by two satellites. It has been proposed that the Haumea family was created from dispersed fragments that resulted from a giant impact. This proposed origin of the Haumea family is however in conflict with the observed velocity dispersion between the family members ({approx} 140 m s{sup -1}) which is significantly less than the escape velocity from Haumea's surface ({approx} 900 m s{sup -1}). In this paper we propose a different formation scenario for Haumea's collisional family. In our scenario the family members are ejected while in orbit around Haumea. This scenario, therefore, naturally gives rise to a lower velocity dispersion among the family members than expected from direct ejection from Haumea's surface. In our scenario Haumea's giant impact forms a single moon that tidally evolves outward until it suffers a destructive collision from which the family is created. We show that this formation scenario yields a velocity dispersion of {approx} 190 m s{sup -1} among the family members which is in good agreement with the observations. We discuss an alternative scenario that consists of the formation and tidal evolution of several satellites that are ejected by collisions with unbound Kuiper Belt objects. However, the formation of the Haumea family in this latter way is difficult to reconcile with the large abundance of Kuiper Belt binaries. We, therefore, favor forming the family by a destructive collision of a single moon of Haumea. The probability for Haumea's initial giant impact in today's Kuiper Belt is less than 10{sup -3}. In our scenario, however, Haumea's giant impact can occur before the excitation of the Kuiper Belt and the ejection of the family members afterward. This has the advantage that one can preserve the dynamical coherence of the family and explain Haumea's original
Particle Segregation in Collisional Shearing Flows
NASA Technical Reports Server (NTRS)
Jenkins, J. T.; Louge, M. Y.
1999-01-01
The size segregation of flowing or shaken grains is a commonly observed phenomenon in industrial processes and in nature. In systems that do not involve much agitation of the grains, several mechanisms that involve gravity have been identified as leading to such segregation. In highly agitated flows, there is a mechanism independent of gravity that is available to drive separation of different grains. This is associated with spatial gradients in the energy of their velocity fluctuations. Because collisions between grains inevitably dissipate energy, collisional granular shear flows are usually of limited extent in the direction transverse to the flow. One consequence of this is that shear flows are strongly influenced by their boundaries. Because grains, on average, slip relative to boundaries, a bumpy or frictional boundary can convert slip energy into fluctuation energy. However, because each collision between a grain and the boundary dissipates fluctuation energy, there is a competition between production and dissipation. In principle, it is possible to design the geometry of the boundary - for example, the size and spacing of the bumps - so that the boundary either produces or dissipates fluctuation energy. This permits the control of the component of the spatial gradient of the fluctuation energy that is normal to the boundary. The gradients in fluctuation energy established by such boundaries may be exploited to drive the separation by size or other properties in a binary mixture of spherical grains. Microgravity makes the visual observations possible by permitting us to employ moderate rates of shear. On earth, the effects of gravity can be minimized by shearing so rapidly that the particle pressure overwhelms gravity. However, in this event, separation takes place too rapidly for visual observation, buoyancy and/or condensation associated with the centripetal acceleration must be accounted for, and the particles can be severely damaged. Because, in the
Collisional Ionization Equilibrium for Optically Thin Plasmas
NASA Technical Reports Server (NTRS)
Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.
2006-01-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.
Research studies on radiative collisional processes
NASA Astrophysics Data System (ADS)
Harris, S. E.; Young, J. F.
1982-01-01
This program has supported theoretical and experimental studies in three broad areas. The first is a study of pair absorption processes which may be viewed as a collisional process in which two atoms and a photon simultaneously react and exchange energy. The present goal is to investigate the possibility of using such processes to construct new types of lasers. Secondly, we have invented and developed a promising new technique for pumping high pressure gas systems using high power microwave pulses. This work has led to two related projects: excitation of rare gas halide excimer lasers to achieve long pulse lengths, high reliability and good efficiencies, and the excitation of metal vapors to create new lasers. Finally, we have been applying the anti-Stokes light source developed here to practical measurements of VUV spectral features both to elucidate the physics of such innershell transitions and to search for transitions suitable for short wavelength lasers. This last project has also been partially supported by NASA. Section 2 summarizes our research findings for these projects, and Sections 3 and 4 list the publications and personnel, respectively, supported by this program.
Collisional and Rotational Disruption of Asteroids
NASA Astrophysics Data System (ADS)
Walsh, Kevin J.; Michel, Patrick; Richardson, Derek C.
2011-02-01
Asteroids are leftover pieces from the era of planet formation that help us understand conditions in the early Solar System. Unlike larger planetary bodies that were subject to global thermal modification during and subsequent to their formation, these small bodies have kept at least some unmodified primordial material from the solar nebula. However, the structural properties of asteroids have been modified considerably since their formation. Thus, we can find among them a great variety of physical configurations and dynamical histories. In fact, with only a few possible exceptions, all asteroids have been modified or completely disrupted many times during the age of the Solar System. This picture is supported by data from space mission encounters with asteroids that show much diversity of shape, bulk density, surface morphology, and other features. Moreover, the gravitational attraction of these bodies is so small that some physical processes occur in a manner far removed from our common experience on Earth. Thus, each visit to a small body has generated as many questions as it has answered. In this review we discuss the current state of research into asteroid disruption processes, focusing on collisional and rotational mechanisms. We find that recent advances in modeling catastrophic disruption by collisions have provided important insights into asteroid internal structures and a deeper understanding of asteroid families. Rotational disruption, by tidal encounters or thermal effects, is responsible for altering many smaller asteroids, and is at the origin of many binary asteroids and oddly shaped bodies.
The effect of collisionality and diamagnetism on the plasma dynamo
Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.
1995-04-28
Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs.
Cancellation of the Collisional Frequency Shift in Caesium Fountain Clocks
Szymaniec, K.; Chalupczak, W.; Tiesinga, E.; Williams, C. J.; Weyers, S.; Wynands, R.
2007-04-13
We have observed that the collisional frequency shift in primary caesium fountain clocks varies with the clock state population composition and, in particular, is zero for a given fraction of the |F=4,m{sub F}=0> atoms, depending on the initial cloud parameters. We present a theoretical model explaining our observations. The possibility of the collisional shift cancellation implies an improvement in the performance of caesium fountain standards and a simplification in their operation.
Polarization of fast particle beams by collisional pumping
Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.
1984-10-19
The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.
Hund's Paradox and the Collisional Stabilization of Chiral Molecules
NASA Astrophysics Data System (ADS)
Trost, Johannes; Hornberger, Klaus
2009-07-01
We identify the dominant collisional decoherence mechanism which serves to stabilize and superselect the configuration states of chiral molecules. A high-energy description of this effect is compared to the results of the exact molecular scattering problem, obtained by solving the coupled-channel equations. It allows us to predict the experimental conditions for observing the collisional suppression of the tunneling dynamics between the left- and the right-handed configuration of D2S2 molecules.
Mikkelsen, D. R. Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Ma, Y.; Candy, J.; Waltz, R. E.
2015-06-01
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Phase-Diffusion Dynamics in Weakly Coupled Bose-Einstein Condensates
Boukobza, Erez; Vardi, Amichay; Chuchem, Maya; Cohen, Doron
2009-05-08
We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a {pi} relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates agree well with the numerical results.
Collisional activation with random noise in ion trap mass spectrometry
McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.
1992-07-01
Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi
2013-09-15
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.
Eulerian simulations of collisional effects on electrostatic plasma waves
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi
2013-09-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.
Landau-fluid closure and drift-wave dispersion relations for arbitrary collisional plasmas
NASA Astrophysics Data System (ADS)
Lee, Wonjae; Umansky, M. V.; Angus, J. R.; Dorf, M. A.; Cohen, R. H.; Dorr, M. R.; Krasheninnikov, S. I.
2015-11-01
The Landau fluid model has been revisited to describe drift-wave instabilities in edge plasmas where the plasma parameters can vary by an order of magnitude or more. Usually, simple fluid models without Landau-fluid closure have been used to describe edge plasma dynamics. However, the collisionality conditions for the simple fluid descriptions are only marginally satisfied in present-day tokamaks and the validity conditions for such models will not be satisfied for future devices. As a result, the simple fluid models without Landau closure cannot properly describe the electron kinetic effects (e.g. the wave-electron resonances) in weakly collisional plasmas. We compare the analytical growth rates of drift-wave instabilities from the electromagnetic Landau-fluid model and the electromagnetic drift-kinetic model by conducting linear analysis on both models in various plasma parameters. Consequently, we demonstrate that both the electromagnetic Landau-fluid model and the electromagnetic drift-kinetic model, which yield similar linear growth rates, can be used to describe drift wave turbulence in a wide range of plasma parameters. We also present comparative simulations of drift wave instability using BOUT++ and COGENT(M. Dorf, invited talk, this meeting). Work performed for USDOE, at UCSD under Grants DE-FG02-04ER54739 and DE-SC0010413, and at LLNL under contract DE-AC52-07NA27344.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
NASA Astrophysics Data System (ADS)
Jana, Sayanee; Ghosh, Samiran; Chakrabarti, Nikhil
2016-07-01
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Hall, L.J. California Univ., Berkeley, CA . Dept. of Physics)
1990-11-12
An introduction to the ideas and current state of weak scale supersymmetry is given. It is shown that LEP data on Z decays has already excluded two of the most elegant models of weak scale supersymmetry. 14 refs.
Magnetic reconnection in a weakly ionized plasma
Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.
2013-06-15
Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.
Collisional dynamics of perturbed particle disks in the solar system
NASA Technical Reports Server (NTRS)
Roberts, William W., Jr.
1989-01-01
Theoretical and computational studies were carried out on galactic and planetary disks. With the goal of addressing important open questions centered on galactic structure, the cloudy interstellar medium, giant molecular clouds, and star formation in galactic disks and the collisional dynamics of perturbed particulate matter in planetary disks, focus was largely on the self-gravitational effects, dissipative effects, and collisional dynamics of cloud-particle disks. N-body, 'cloud-particle' computational algorithms were developed for the purpose of isolating the role of gaseous self gravity from the roles of other dominant physical mechanisms and dynamical processes, e.g. the collisional dynamics and dissipative processes. The efforts focused largely on galactic disks show that observational constraints provide stringent tests of the numerical simulation techniques developed. Self gravitational effects of the galactic interstellar medium's gas clouds are included by means of Fourier Transform technique.
Collisional simulations of particles in a narrow planetary ring
NASA Technical Reports Server (NTRS)
Kolvoord, Robert A.; Burns, Joseph A.
1992-01-01
A model is used to investigate how particle-particle collisions might modify some consequences of satellite perturbations relevant to short-term features of narrow planetary rings. A Monte Carlo-like simulation ring-model particle velocity alteration allows the simulation of collisions while individual particles are tracked. Periodic features visible in Voyager images are reproduced in a 2D numerical model which incorporates the collisional simulation as well as the perturbations of adjacent satellites. Collisions are noted to wash out periodic features within one collisional relaxation time.
Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas
Schenke, Bjoern; Strickland, Michael; Dumitru, Adrian; Nara, Yasushi; Greiner, Carsten
2009-03-15
We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p{sub perpendicular} distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R{sub AA} due to elastic energy loss of a jet in a classical Yang-Mills field.
Postselected weak measurement beyond the weak value
Geszti, Tamas
2010-04-15
Closed expressions are derived for the quantum measurement statistics of pre- and postselected Gaussian particle beams. The weakness of the preselection step is shown to compete with the nonorthogonality of postselection in a transparent way. The approach is shown to be useful in analyzing postselection-based signal amplification, allowing measurements to be extended far beyond the range of validity of the well-known Aharonov-Albert-Vaidman limit. Additionally, the present treatment connects postselected weak measurement to the topic of phase-contrast microscopy.
Aperiodic Weak Topological Superconductors
NASA Astrophysics Data System (ADS)
Fulga, I. C.; Pikulin, D. I.; Loring, T. A.
2016-06-01
Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.
Aperiodic Weak Topological Superconductors.
Fulga, I C; Pikulin, D I; Loring, T A
2016-06-24
Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand. PMID:27391744
Comets as collisional fragments of a primordial planetesimal disk
NASA Astrophysics Data System (ADS)
Morbidelli, A.; Rickman, H.
2015-11-01
Context. The Rosetta mission and its exquisite measurements have revived the debate on whether comets are pristine planetesimals or collisionally evolved objects. Aims: We investigate the collisional evolution experienced by the precursors of current comet nuclei during the early stages of the solar system in the context of the so-called Nice model. Methods: We considered two environments for the collisional evolution: (1) the transplanetary planetesimal disk, from the time of gas removal until the disk was dispersed by the migration of the ice giants; and (2) the dispersing disk during the time that the scattered disk was formed. We performed simulations using different methods in the two cases to determine the number of destructive collisions typically experienced by a comet nucleus of 2 km radius. Results: In the widely accepted scenario, where the dispersal of the planetesimal disk occurred at the time of the Late Heavy Bombardment about 4 Gy ago, comet-sized planetesimals have a very low probability of surviving destructive collisions in the disk. On the extreme assumption that the disk was dispersed directly upon gas removal, a significant fraction of the planetesimals might have remained intact. However, these survivors would still bear the marks of many nondestructive impacts. Conclusions: The Nice model of solar system evolution predicts that typical km-sized comet nuclei are predominantly fragments resulting from collisions experienced by larger parent bodies. An important goal for future research is to investigate whether the observed properties of comet nuclei are compatible with such a collisional origin.
Effects of Collisional Zonal Flow Damping on Turbulent Transport
P.H. Diamond; T.S. Hahm; W.M. Tang; W.W. Lee; Z. Lin
1999-10-01
Results from 3D global gyrokinetic particle simulations of ion temperature gradient driven microturbulence in a toroidal plasma show that the ion thermal transport level in the interior region exhibits significant dependence on the ion-ion collision frequency even in regimes where the instabilities are collisionless. This is identified as arising from the Coulomb collisional damping of turbulence-generated zonal flows.
The limits of the Bohm criterion in collisional plasmas
Valentini, H.-B.; Kaiser, D.
2015-05-15
The sheath formation within a low-pressure collisional plasma is analysed by means of a two-fluid model. The Bohm criterion takes into account the effects of the electric field and the inertia of the ions. Numerical results yield that these effects contribute to the space charge formation, only, if the collisionality is lower than a relatively small threshold. It follows that a lower and an upper limit of the drift speed of the ions exist where the effects treated by Bohm can form a sheath. This interval becomes narrower as the collisionality increases and vanishes at the mentioned threshold. Above the threshold, the sheath is mainly created by collisions and the ionisation. Under these conditions, the sheath formation cannot be described by means of Bohm like criteria. In a few references, a so-called upper limit of the Bohm criterion is stated for collisional plasmas where the momentum equation of the ions is taken into account, only. However, the present paper shows that this limit results in an unrealistically steep increase of the space charge density towards the wall, and, therefore, it yields no useful limit of the Bohm velocity.
Collisional and dynamic evolution of dust from the asteroid belt
NASA Technical Reports Server (NTRS)
Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.
1992-01-01
The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.
Collisional diffusion in toroidal plasmas with elongation and triangularity
Martin, P.; Castro, E.; Haines, M. G.
2007-05-15
Collisional diffusion is analyzed for plasma tokamaks with different ellipticities and triangularities. Improved nonlinear equations for the families of magnetic surfaces are used here. Dimensionless average velocities are calculated as a function of the inductive electric field, elongation, triangularity, and Shafranov shift. Confinement has been found to depend significantly on triangularity.
Peculiarities of collisional excitation transfer with excited screened energy levels of atoms
Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.
2007-09-15
We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.
Collisional dust fragmentation near nuclear surface within cometary jets
NASA Astrophysics Data System (ADS)
Steckloff, J.; Melosh, J.
2014-07-01
model and find that Δ R_{(R)} ∝ R is additionally able to create power-law radiance profiles. For a thermal fragmentation mechanism, thermal skin depth considerations suggest that the splitting time in binary fission should have the dependence of τ_{s (R)} ∝ R^{2}, whereas the thickness of the shed layer Δ R in grain shedding should remain constant or grow with time, rather than decrease with time as the grain loses mass. Therefore, these functional dependencies of the fundamental splitting parameters are inconsistent with the thermal fragmentation mechanisms suspected to act on dust grains further away from the nucleus such as volatile sublimation [2] and sintering [4]. Our best fit to the most prominent Tempel 1 scarp jet [5,6] is a binary splitting mechanism where τ_{s (R)} R^{2} = const. (see Figure). This dependence of dust fragmentation upon the surface area of the dust grain suggests that dust fragmentation near the origin of Tempel 1's scarp jets is dominated by collisions, consistent with observed radiances. The low collisional speeds in this region are consistent with weak, fractal-like dust-grain structures.
NASA Astrophysics Data System (ADS)
Lee, Keonhee; Oh, Jumi
2016-01-01
A notion of measure expansivity for flows was introduced by Carrasco-Olivera and Morales in [3] as a generalization of expansivity, and they proved that there were no measure expansive flows on closed surfaces. In this paper we introduce a concept of weak measure expansivity for flows which is really weaker than that of measure expansivity, and show that there is a weak measure expansive flow on a closed surface. Moreover we show that any C1 stably weak measure expansive flow on a C∞ closed manifold M is Ω-stable, and any C1 stably measure expansive flow on M satisfies both Axiom A and the quasi-transversality condition.
Sheath formation under collisional conditions in presence of dust
Moulick, R. Goswami, K. S.
2014-08-15
Sheath formation is studied for collisional plasma in presence of dust. In common laboratory plasma, the dust acquires negative charges because of high thermal velocity of the electrons. The usual dust charging theory dealing with the issue is that of the Orbit Motion Limited theory. However, the theory does not find its application when the ion neutral collisions are significantly present. An alternate theory exists in literature for collisional dust charging. Collision is modeled by constant mean free path model. The sheath is considered jointly with the bulk of the plasma and a smooth transition of the plasma profiles from the bulk to the sheath is obtained. The various plasma profiles such as the electrostatic force on the grain, the ion drag force along with the dust density, and velocity are shown to vary spatially with increasing ion neutral collision.
Radiative and rovibrational collisional relaxation of sodium dimer
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Horton, Tim; McFarland, Jacob
2016-05-01
Radiative and rovibrational collisional relaxation of sodium dimer of the A1Σu+ (8,30) state have been measured by direct observation of the decay fluorescence. Sodium molecular vapor is created in a heatpipe oven at 600 K and excited using a 6-ns pulsed dye laser pumped by a Nd:YAG, operating at 532 nm. The preliminary lifetime measurement was done by directly acquiring lifetime data through boxcar averager from the stored oscilloscope trace of the fluorescence. Analysis of the exponential decay of the fluorescence allows us to obtain the radiative lifetime. By introducing the argon buffer gas and varying the pressure of the heatpipe, a collisional cross section between excited sodium dimer and ground state argon atom collision can be extracted using Stern-Volmer relation.
Collisional energy transfer from highly vibrationally excited triatomic molecules
NASA Astrophysics Data System (ADS)
Hynes, Robert G.; Sceats, Mark G.
1989-12-01
The atom-atom encounter model developed in the accompanying paper [M. G. Sceats, J. Chem. Phys. 91, 0000 (1989)] is applied to the collisional deactivation of highly vibrationally excited triatomic molecules CS2 and SO2 by the monatomic colliders He, Ne, Ar, Kr, and Xe at 300 K. The molecular inputs are a crude normal mode analysis, vibrational frequencies and effective anharmonicities, while the collisional inputs are parameters of the atom-atom potentials. The results for CS2 are compared with the simulations of Bruehl and Schatz and the experiments of Dove, Hippler, and Troe, while those for SO2 are compared with the simulations of Schranz and Troe and the experimental results of Heymann, Hippler, and Troe. Excellent agreement is found with experiment, and the superlinear energy dependence of the average energy transfer is attributed to anharmonicity of the triatomic molecule.
Measuring Femtosecond Collisional Ionization Rates in Solid-Density Plasmas
NASA Astrophysics Data System (ADS)
Vinko, Sam; Ciricosta, Orlando; Hollebon, Patrick; Preston, Thomas; Wark, Justin; Burian, Tomas; Chalupsky, Jaromir; Vozda, Vojtech; Dakovski, Georgi; Minitti, Michael; Zastrau, Ulf
2015-11-01
The rate at which atoms and ions within a plasma are further ionized by collisions with free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collisional ionization rates are well known experimentally in a few dilute systems, similar measurements for non-ideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we illustrate a spectroscopic method capable of measuring rates of collisional ionization dynamics in solid-density plasmas by clocking them to Auger recombination processes. We have recently employed this technique on the LCLS X-ray free-electron laser at SLAC and will present the first experimental results for optically-thin, solid-density magnesium plasmas at peak temperatures exceeding 200 eV.
Gyrokinetic simulation of the collisional micro-tearing mode instability
NASA Astrophysics Data System (ADS)
Startsev, Edward; Lee, Wei-Li; Wang, Weixing
2015-11-01
An application of recently developed perturbative particle simulation scheme for finite- β plasmas in the presence of background inhomogeneities is presented. Originally, using similar scheme, we were able to simulate shear-Alfven waves, finite- β modified drift waves and ion temperature gradient modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters. Recently, we have successfully used the scheme for simulation of linear tearing and drift-tearing modes, in both collisionless semi-collisional regimes in slab geometry with sheared magnetic field. Here, we present further development of this scheme for the simulation of linear semi-collisional micro-tearing mode driven by electron temperature gradient in high-aspect ratio cylindrical cross-section tokamak using the modified turbulence code GTS. Research supported by the U. S. Department of Energy.
Collisional shifts in optical-lattice atom clocks
Band, Y. B.; Vardi, A.
2006-09-15
We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of {pi} between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.
Collisional effects on Rayleigh-Taylor-induced magnetic fields
Manuel, M. J.-E.; Flaig, M.; Plewa, T.; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V.
2015-05-15
Magnetic-field generation from the Rayleigh-Taylor (RT) instability was predicted more than 30 years ago, though experimental measurements of this phenomenon have only occurred in the past few years. These pioneering observations demonstrated that collisional effects are important to B-field evolution. To produce fields of a measurable strength, high-intensity lasers irradiate solid targets to generate the nonaligned temperature and density gradients required for B-field generation. The ablation process naturally generates an unstable system where RT-induced magnetic fields form. Field strengths inferred from monoenergetic-proton radiographs indicate that in the ablation region diffusive effects caused by finite plasma resistivity are not negligible. Results from the first proof-of-existence experiments are reviewed and the role of collisional effects on B-field evolution is discussed in detail.
ADAS tools for collisional-radiative modelling of molecules
NASA Astrophysics Data System (ADS)
Guzmán, F.; O'Mullane, M.; Summers, H. P.
2013-07-01
New theoretical and computational tools for molecular collisional-radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H2 are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional-radiative) rate coefficients versus temperature and density are presented.
Turbulence-driven bootstrap current in low-collisionality tokamaks.
McDevitt, C J; Tang, Xian-Zhu; Guo, Zehua
2013-11-15
Neoclassical bootstrap current is expected to provide a significant fraction of the equilibrium plasma current in tokamak reactors. Here we report a novel mechanism through which a bootstrap current may be driven even in a collisionless plasma. In analogy with the neoclassical mechanism, in which the collisional equilibrium established between trapped and passing electrons produces a steady state current, we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons and thus driving a bootstrap current. Employing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions and resonant electron scattering is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.
Collisional Cascade in a Debris Disk from an External Perturber
NASA Astrophysics Data System (ADS)
Nesvold, Erika; Naoz, Smadar; Vican, Laura; Zuckerman, Benjamin; Holmbeck, Erika
2015-11-01
The study of circumstellar debris disks has often been coupled with the study of planet formation. A thermally warm debris disk (~300 K) may indicate the presence of an exoplanet orbiting within and stirring the disk. However, there is another possible mechanism for heating a debris disk: an external stellar-mass perturber exciting the eccentricities and inclinations of the particles in a disk.We explore the consequences of an external perturber on the evolution of a debris disk. The perturber excites the eccentricities of the particles in the disk via the Kozai-Lidov mechanism, triggering a collisional cascade among the planetesimals. These collisions produce smaller dust grains and damp the particles’ larger eccentricities.We present the results of our study of a such a disk using secular analysis and collisional N-body simulations. We will discuss the connections to observations of warm disks and the implications for planet formation.
DOE R&D Accomplishments Database
Lee, T. D.
1970-07-01
While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.
System and method for collisional activation of charged particles
Ibrahim, Yehia M; Belov, Mikhail E; Prior, David C
2013-09-24
A collision cell is disclosed that provides ion activation in various selective modes. Ion activation is performed inside selected segments of a segmented quadrupole that provides maximum optimum capture and collection of fragmentation products. The invention provides collisional cooling of precursor ions as well as product fragments and further allows effective transmission of ions through a high pressure interface into a coupled mass analysis instrument.
Kinetic model for the collisionless sheath of a collisional plasma
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; Guo, Zehua
2016-08-01
Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. These predictions are contrasted here with direct kinetic simulations, showing good agreement.
Collisional and dynamical processes in moon and planet formation
NASA Technical Reports Server (NTRS)
1979-01-01
The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.
Collisional heating by nonthermal electrons in a tapered magnetic loop
NASA Technical Reports Server (NTRS)
Chandrashekar, S.; Emslie, A. Gordon
1987-01-01
The behavior of nonthermal electrons ejected into a tapered magnetic loop, under the action of both Coulomb collisional and magnetic field gradient forces is studied. An approximate analytic formula for the heating rate as a function of distance along the loop is developed, and found to be in good agreement with exact numerical solutions of the relevant equations. Such a formula is useful as a source term in many situations, such as hydrodynamic simulations of atmospheric response to flare energy input.
Collisional Radiative Models for non-Maxwellian plasmas
NASA Astrophysics Data System (ADS)
Hartgers, Bart; van Dijk, Jan; van der Mullen, Joost
1999-10-01
Collisional Radiative models are a useful tool for studying plasmas. In their simplest form, they are used to calculate an atomic state distribution function (ASDF) from given electron and neutral densities and an electron temperature. Additionally, global ionization and recombination coefficients can be calculated as a function of electron density and temperature. In turn, these coefficients are used as input for the general plasma model
Constraining Collisional Models of Planetesimals in Debris Disks
NASA Astrophysics Data System (ADS)
MacGregor, Meredith A.; Wilner, David J.; Hughes, A. Meredith; Steele, Amy; Ricci, Luca; Andrews, Sean M.; Chandler, Claire J.; Tahli Maddison, Sarah
2016-01-01
Debris disks around main-sequence stars are produced by the ongoing collisional erosion of planetesimals, analogous to Kuiper Belt Objects (KBOs) or comets in our own Solar System. Observations of these dusty belts offer a window into the physical and dynamical properties of planetesimals in extrasolar systems through the size distribution of dust grains. In particular, the millimeter/radio spectral index of thermal dust emission encodes information on the grain size distribution that can be used to test proposed collisional models of planetesimals. We have made sensitive Jansky Very Large Array (JVLA) observations of a sample of 7 nearby debris disks at 9 mm and combine these with archival Australia Telescope Compact Array (ATCA) observations of 8 additional debris disks at 7 mm. Using measurements at (sub)millimeter wavelengths from the literature, we place tight constraints on the millimeter spectral indices and thus grain size distributions of this sample of debris disks. Our analysis gives a weighted mean for the slope of the power-law grain distribution that is close to the classical prediction for a steady-state collisional cascade (q=3.5), but not consistent with the steeper distributions predicted by recent models that include more complex fragmentation processes. To interpret this result, we explore the effects of material strengths, velocity distributions, and small-size cutoffs on the steady-state grain size distribution.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Collisional ballooning mode dispersion relation in the banana regime
Zheng, L.; Tessarotto, M.
1995-08-01
Collisional ballooning mode theory in the banana regime is developed for tokamak configurations from the gyrokinetic formalism. A general dispersion relation is obtained, which in principle can deal with a collision operator of any type. However, investigation of an approximate Fokker--Planck collision operator developed in recent neoclassical transport theory is detailed. The most significant feature of the present theory as compared to the customary treatment lies in that the distinction between particle and fluid velocities is made in the ordering analyses. This reveals that the eigenfrequency of modes is determined by balancing the small-parallel-ion-velocity (SPIV) effect [L.-J. Zheng and M. Tessarotto, Phys. Plasmas {bold 1}, 3928 (1994)], instead of the fluid inertia one, with the instability drives. Since the parallel-electric-field effect is found to be negligible as compared to the SPIV effect, in contrast to the customary resistive ballooning mode picture, the leading collisional effect is demonstrated to be the modification of the SPIV effect instead of the relaxation of the frozen-in-law. The ion--ion collisions are the cause for this modification, while the electron collisional effect is shown to be negligible. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Tearing instabilities in the banana-plateau collisionality regime
Qu, W.X.; Callen, J.D.
1985-04-01
Starting from a resistive MHD set of equations and adding neoclassical currents (bootstrap, enhanced polarization and pinch type), we derive the eigenmode equation and relevant dispersion relation for ''neoclassical MHD'' tearing modes in the banana-plateau collisionality regime. The ballooning mode representation and a multiple length scale approximation are utilized. Analysis of the dispersion relation shows that the neoclassical effects on tearing modes are quite strong for ..sqrt..epsilon ..beta../sub p/(1 + nu/sub *//sub e/)/sup -1/ > S/sup -2/5/ (epsilon is the inverse aspect ratio, ..beta../sub p/ is the poloidal beta value, nu/sub *//sub e/ is the electron collisionality factor and S is the neoclassical MHD Reynolds number). The growth rate ..gamma.. and singular layer width deltax are increased typically by more than one order of magnitude from the usual values for epsilon ..beta../sub p/ approx. = 1. For our model, the changes in the tearing modes from the banana-plateau collisionality regime to the usual Pfirsch-Schlueter regime are very clear and natural.
COLLISIONAL EVOLUTION OF ULTRA-WIDE TRANS-NEPTUNIAN BINARIES
Parker, Alex H.; Kavelaars, J. J.
2012-01-10
The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small (R {approx}> 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small size cannot be excessively steep-likely q {approx}< 3.5. We track mutual semimajor axis, inclination, and eccentricity evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population, their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing collisions in real time in the Kuiper Belt with future optical surveys is feasible.
High-frequency electromagnetic surface waves in a semi-bounded weakly ionized plasma
Moaied, M.; Tyshetskiy, Yu.; Vladimirov, S. V.
2013-02-15
High-frequency electromagnetic surface waves (SWs) in a weakly ionized plasma half-space with Maxwellian electrons are studied taking into account elastic electron-neutral collisions. The SWs spectrum and damping rate are obtained numerically for a wide range of wavelengths, and the asymptotes of damping rate are analytically calculated in some limits. It is shown that the high-frequency SWs become strongly damped at wavelengths {lambda}<{lambda}{sub Min}, where {lambda}{sub Min} significantly depends on plasma parameters (e.g., electron temperature and electron and neutral atom density). The relative importance of collisional and Cherenkov (collisionless) damping of SWs is investigated and is graphically shown for a range of plasma parameters and SW wavelengths. The behavior of weakly ionized plasma with respect to the SW propagation has been recovered for the collisional parameter {eta}.
Density drift instabilities and weak collisions. [in space plasmas
NASA Technical Reports Server (NTRS)
Gary, S. P.; Bernhardt, P. A.; Cole, T. E.
1983-01-01
A model is developed which describes the effects of weak collisions on the linear kinetic theory of electrostatic density drift instabilities. A dispersion equation valid at all frequencies and wave numbers is derived using the assumptions of a weak, uniform density gradient; a uniform magnetic field; and the BGK collision operator with a modification of the local approximation. The properties of the universal and collisional density drift instabilities at maximum growth rates are examined in detail. The thresholds of the instabilities are examined for an ionospheric model which includes ion-neutral, electron-neutral, and electron-ion collisions, and are compared with the threshold of the lower hybrid density drift instability. It is concluded that the k to the -5th short wavelength density power spectra observed above 280 km in the PLUMEX experiment are due to the effects of the universal density drift instability.
New insights into main belt asteroid collisional lifetimes
NASA Astrophysics Data System (ADS)
Henych, Tomas; Holsapple, Keith
2016-10-01
We are developing a new Monte Carlo code to study the collisional and spin evolution of main belt asteroids. A byproduct is information on asteroid lifetimes. We find new interpretations and values of those lifetimes.In the conventional approach, the "collisional lifetime" is measured by the time when an asteroid is struck by an impactor large enough to remove one-half of the target's mass. That event is called a catastrophic disruption (CD). From an assumed population of impactors and Poisson statistics, one can estimate the largest expected impactor to impact in a given time interval to get its expected collisional lifetime. However, our Monte Carlo simulations give lifetimes that are distinctly shorter. That raises questions about the basic definition of catastrophic disruption.During its presence in the main belt, many other asteroids of all sizes continually strike a target asteroid. Before the CD one happens, there are many small impacts, and a few less than but not equal to the CD one. Each impact erodes the target asteroid. Very commonly, it is eroded to a much smaller mass before some CD event. We will present examples.So what shall we define as its collisional lifetime? Should it be the time for which its mass is reduced to one-half of its original mass, irrespective of how that happened, perhaps from many impacts? Or when any single impact reduces its mass to one-half of its original mass? Or when a single impact reduces it to one-half of its current mass?We propose that collisional lifetime is defined as the time at which it reaches 50% of its original mass, from any combination of small and/or large events. We use cratering and ejecta scaling formulas (e.g. Holsapple, 1993, Housen and Holsapple, 2011) to calculate the eroded mass history of the target for a history of impactors and calculate the outcome of any impact using the current size. In the gravity regime, the eroded body is easier to disrupt. We will present our lifetime estimates and those of
The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX
Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.
2012-11-27
Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.
The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX
Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.
2012-11-28
Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma
Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas
NASA Technical Reports Server (NTRS)
Braun, C. G.; Kunc, J. A.
1989-01-01
A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.
NASA Astrophysics Data System (ADS)
Chuang, S. Y.; Chang, F. H.; Bell, J. R.
Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.
NASA Astrophysics Data System (ADS)
Hunter, John K.; Brio, Moysey
2000-05-01
We present numerical solutions of a two-dimensional inviscid Burgers equation which provides an asymptotic description of the Mach reflection of weak shocks. In our numerical solutions, the incident, reflected, and Mach shocks meet at a triple point, and there is a supersonic patch behind the triple point, as proposed by Guderley for steady weak-shock reflection. A theoretical analysis indicates that there is an expansion fan at the triple point, in addition to the three shocks. The supersonic patch is extremely small, and this work is the first time it has been resolved.
Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas
Rax, J. M.; Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2015-09-15
The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed.
Lankin, A. V.; Norman, G. E.
2010-12-15
A model capable of describing the kinetics of collisional recombination in nonideal plasmas by the methods of molecular dynamics is developed. The dependence of the collisional recombination rate on the coupling parameter is found to differ substantially from the extrapolation of the three-body recombination rate in nonideal plasmas. A sharp decrease in the recombination rate in strongly nonideal plasmas is revealed. As the coupling parameter decreases, collisional recombination transforms into three-body recombination.
NASA Astrophysics Data System (ADS)
Steinberg, Aephraim; Feizpour, Amir; Rozema; Mahler; Hayat
2013-03-01
Quantum physics is being transformed by a radical new conceptual and experimental approach known as weak measurement that can do everything from tackling basic quantum mysteries to mapping the trajectories of photons in a Young's double-slit experiment. Aephraim Steinberg, Amir Feizpour, Lee Rozema, Dylan Mahler and Alex Hayat unveil the power of this new technique.
Fractionation of hydrogen and deuterium on Venus due to collisional ejection
NASA Technical Reports Server (NTRS)
Gurwell, Mark A.; Yung, Yuk L.
1993-01-01
The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.
NASA Astrophysics Data System (ADS)
Tallents, G. J.
2016-09-01
Collisional-radiative models enable average ionization and ionization populations, plus the rates of absorption and emission of radiation to be calculated for plasmas not in thermal equilbrium. At high densities and low temperatures, electrons may have a high occupancy of the free electron quantum states and evaluations of rate coefficients need to take into account the free electron degeneracy. We demonstrate that electron degeneracy can reduce collisional rate coefficients by orders-of-magnitude from values calculated neglecting degeneracy. We show that assumptions regarding the collisional differential cross-section can alter collisional ionization and recombination rate coefficients by a further factor two under conditions relevant to inertial fusion.
Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm
NASA Technical Reports Server (NTRS)
Fletcher, D. G.; McDaniel, J. C.
1995-01-01
The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.
A Collisional Algorithm for Modeling Circumstellar Debris Disks
NASA Technical Reports Server (NTRS)
Nesvold, Erika; Kuchner, Marc
2011-01-01
Many planetary systems harbor circumstellar disks of dust and planetesimals thought to be debris left over from planet formation. These debris disks exhibit a range of morphological features which can arise from the gravitational perturbations of planets. Accurate models of these features, accounting for the interactions of the particles in a disk with each other and with whatever planets they contain, can act as signposts for planets in debris disks that otherwise could not be detected. Such models can also constrain the planet's mass and orbital parameters. Current models for many disks consider the gravitational and radiative effects of the star and planets on the disk, but neglect the morphological consequences of collisional interactions between the planetesimals. Many observed disk features are not satisfactorily explained by the current generation of models. I am developing a new kind of debris disk model that considers both the gravitational shaping of the disk by planets and the inelastic collisions between particles. I will use a hybrid N-body integrator to numerically solve the equations of motion for the particles and planets in the disk. To include the collisional effects, I begin with an algorithm that tests for collisions at each step of the orbit integration and readjusts the velocities of colliding particles. I am adapting this algorithm to the problem at hand by allowing each particle to represent a "swarm" of planetesimals with a range of masses. When the algorithm detects an encounter between swarms, two or three swarms are produced to approximate the range of possible trajectories of the daughter planetesimals. Here I present preliminary results from my collisional algorithm.
Collisional Processing of Olivine and Pyroxene in Cometary Dust
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Cintala, M. J.; Olney, R. D.; Keller, L. P.; Nakamura-Messenger, K.; Zolensky, M.
2008-01-01
According to the nebular theory of solar-system formation, collisions between bodies occurred frequently early in the solar system s history and continue at a lower rate even today. Collisions have reworked the surface compositions and structures of cometary nuclei, though to an unknown degree. The majority of the collisional history of a typical Jupiter-family comet takes place while it resides in the Kuiper Belt. Impacts occur on the surfaces of small bodies over a large range of velocities by impactors of all sizes, but typical encounter speeds within the Kuiper Belt are 1.5 to 2.0 km/s[1]. Durda and Stern suggest that the interiors of most cometary nuclei with diameters <5 km have been heavily damaged by collisions [2]. They estimate that over a period of 3.5 Gy, a nucleus with a diameter of 2 km and an orbit between 35-45 AU will experience 90-300 collisions with objects greater than 8 m in diameter. In this same time interval, collisions between a typical Trans-Neptunian Object (TNO) 200 km in diameter and objects with d > 8 m would rework up to one-third of that TNO s surface. In fact, it has been proposed that most short-period comets from the Kuiper Belt (90%) are collisional fragments from larger TNOs - not primordial objects themselves [3] - and that most short-period comets from the Kuiper Belt will be collisionally processed both on their surfaces as well as in their interiors.
The collisional history of dwarf planet Ceres revealed by Dawn
NASA Astrophysics Data System (ADS)
Marchi, S.; Williams, D. A.; Mest, S. C.; Schenk, P.; O'Brien, D. P.; De Sanctis, M. C.; Ermakov, A.; Castillo, J. C.; Jaumann, R.; Neesemann, A.; Hiesinger, H.; Park, R. S.; Kneissl, T.; Schmedemann, N.; Raymond, C. A.; Russell, C. T.
2015-12-01
Impact craters are a ubiquitous feature of solid surfaces of celestial objects. Craters are oftentimes used to constrain the past evolution of their host objects, as well as to assess their crustal structures. The Dawn spacecraft, currently in orbit around the dwarf planet Ceres, has revealed a surface peppered with impact craters. Two important facts emerge from their global spatial distribution: i) significant longitudinal and latitudinal asymmetries in the crater areal density, ii) and the lack of well-preserved craters larger than 400 km in imaging data. Interestingly, most of the low crater density terrains are found in the vicinity of the three largest, well-preserved impact craters ranging from ~160 to ~290 km in diameter. These low crater areal density terrains expand over a greater distance than observed for large craters on rocky bodies and icy satellites, which typically are confined within one crater radius from the rim. To assess the collisional history of Ceres we developed a Monte Carlo model that tracks the timing, size and number of collisions throughout the history of the solar system. The model shows that Ceres' collisional evolution should have resulted typically in a factor of 10 more craters than observed, with some ~10 craters larger than 400 km expected to have formed over the last 4.5 Gyr ago. While small craters may have reached an equilibrium level, which does not allow then to further increase in number, the lack of evident large craters is a puzzle. A possibility is that the scars of large craters have been obliterated by topography relaxation due to an ice-rich crust. Here we will present an overview of the Ceres' crater spatial distribution and compare it to other siblings (such as the asteroid Vesta), and collisional evolution models. We will also discuss how these results pose important constraints on the internal structure of the dwarf planet in conjunction with surface composition and gravity data acquired by Dawn.
The Collisional Evolution of the Main Asteroid Belt
NASA Astrophysics Data System (ADS)
Bottke, W. F.; Brož, M.; O'Brien, D. P.; Campo Bagatin, A.; Morbidelli, A.; Marchi, S.
Collisional and dynamical models of the main asteroid belt allow us to glean insights into planetesimal- and planet-formation scenarios as well as how the main belt reached its current state. Here we discuss many of the processes affecting asteroidal evolution and the constraints that can be used to test collisional model results. We argue the main belt's wavy size-frequency distribution for diameter D < 100-km asteroids is increasingly a byproduct of comminution as one goes to smaller sizes, with its shape a fossil-like remnant of a violent early epoch. Most D > 100-km asteroids, however, are primordial, with their physical properties set by planetesimal formation and accretion processes. The main-belt size distribution as a whole has evolved into a collisional steady state, and it has possibly been in that state for billions of years. Asteroid families provide a critical historical record of main-belt collisions. The heavily depleted and largely dispersed "ghost families," however, may hold the key to understanding what happened in the primordial days of the main belt. New asteroidal fragments are steadily created by both collisions and mass shedding events via YORP spinup processes. A fraction of this population, in the form of D < 30 km fragments, go on to escape the main belt via the Yarkovsky/YORP effects and gravitational resonances, thereby creating a quasi-steady-state population of planet-crossing and near-Earth asteroids. These populations go on to bombard all inner solar system worlds. By carefully interpreting the cratering records they produce, it is possible to constrain how portions of the main-belt population have evolved with time.
Hybrid accretionary/collisional mechanism of Paleozoic Asian continental growth
NASA Astrophysics Data System (ADS)
Schulmann, Karel; Lexa, Ondrej; Janousek, Vojtech; Pavla, Stipska; Yingde, Jiang; Alexandra, Guy; Min, Sun
2016-04-01
Continental crust is formed above subduction zones by well-known process of "juvenile crust growth". This new crust is in modern Earth assembled into continents by two ways: (i) short-lived collisions of continental blocks with the Eurasian continent along the "Alpine-Himalayan collisional/interior orogens" in the heart of the Pangean continental plates realm; and (ii) long lived lateral accretion of ocean-floor fragments along "circum-Pacific accretionary/peripheral orogens" at the border of the Pacific oceanic plate. This configuration has existed since the late Proterozoic, when the giant accretionary Terra Australis Orogen developed at periphery of an old Palaeo-Pacific ocean together with collisional Caledonian and Variscan orogens. At the same time, the large (ca. 9 millions km2) Central Asian Orogenic Belt (CAOB) developed in the NE part of the Pangea. This orogen reveals features of both peripheral and interior orogens, which implies that the generally accepted "peripheral-accretionary" and "interior- collisional" paradigm is not applicable here. To solve this conundrum a new model of unprecedented Phanerozoic continental growth is proposed. In this model, the CAOB precursor evolved at the interface of old exterior and young interior oceans. Subsequently, the new lithospheric domain was transferred by advancing subduction into the interior of the Pangean mostly continental realm. During this process the oceanic crust was transformed into continental crust and it was only later when this specific lithosphere was incorporated into the Asian continent. If true, this concept represents revolutionary insight into processes of crustal growth explaining the enigma of anchoring hybrid lithosphere inside a continent without its subduction or Tibetan-type thickening.
NASA Astrophysics Data System (ADS)
Itonaga, K.; Motoba, T.
The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.
Zeeman degeneracy effects in collisional intense-field resonance fluorescence
NASA Technical Reports Server (NTRS)
Cooper, J.; Ballagh, R. J.; Burnett, K.
1980-01-01
Resonance fluorescence due to intense laser fields from a Zeeman degenerate atom being perturbed by collisional interactions is calculated in the impact regime by using the quantum-fluctuation-regression theorem. Various interesting effects are found. For example, the scattered intensity spectrum for a J = 0 to J = 1 transition for polarization parallel to the laser polarization is essentially an asymmetric triplet, whereas for a perpendicular polarization due to collisions the spectrum is essentially a doublet (whose frequencies do not correspond with any of those of the triplet). Further, the width of the fluorescent component (whose frequency is close to the unperturbed frequency) actually decreases with increasing laser power.
A+M Collisional Databases in ALADDIN Format
ALADDIN (A Labelled Atomic Data Interface) is a database system developed in order to provide a standard and flexible format and interface for the exchange and management of atomic, molecular and plasma-material interaction data of interest to fusion research. As part of the Atomic and Molecular Data Information System (AMDIS), introduced by the IAEA Atomic and Molecular Data Unit, the ALADDIN interface is available on-line. Twelve databases from DOE and IAEA sources are available from the CFADC website under the heading A+M Collisional Databases.
s-Wave collisional frequency shift of a fermion clock.
Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M
2013-04-19
We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies. PMID:23679589
Collisional and Radiative Processes in Optically Thin Plasmas
NASA Astrophysics Data System (ADS)
Bradshaw, Stephen J.; Raymond, John
2013-10-01
Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.
Collisional and Radiative Processes in Optically Thin Plasmas
NASA Astrophysics Data System (ADS)
Bradshaw, Stephen J.; Raymond, John
Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.
Structural and Collisional Relaxations in Liquids and Supercritical Fluids
Bencivenga, F.; Krisch, M.; Monaco, G.; Sette, F.; Cunsolo, A.; Ruocco, G.; Vispa, A.
2007-02-23
The dynamic structure factor S(Q,{omega}) of both associated (water and ammonia) and simple fluids (nitrogen and neon) has been determined by high-resolution inelastic x-ray scattering in the 2-14 nm{sup -1} momentum transfer range. A line-shape analysis with a generalized hydrodynamic model was used to study the involved relaxation process and to characterize its strength and time scale. We observe that in the liquid phase such a process is governed by rearrangements of intermolecular bonds, whereas in the supercritical region it assumes a collisional nature.
Collisional-radiative nonequilibrium in partially ionized atomic nitrogen
NASA Technical Reports Server (NTRS)
Kunc, J. A.; Soon, W. H.
1989-01-01
A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.
Electrostatic modes in collisional complex plasmas under microgravity conditions.
Yaroshenko, V V; Annaratone, B M; Khrapak, S A; Thomas, H M; Morfill, G E; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F; Ivanov, A I; Turin, M V
2004-06-01
A linear dispersion relation in a highly collisional complex plasma, including ion drift, was derived in the light of recent PKE-Nefedov wave experiment performed under microgravity conditions onboard the International Space Station. Two modifications of dust density waves with wave frequencies larger than the dust-neutral collision frequency were obtained. The relevance to the space observations was analyzed and a comparison of theory and observations was made for two different complex plasma domains formed by small and large microparticles. Good qualitative agreement is found between the measurements and the theoretical dispersion relations. This allows a determination of the basic complex plasma parameters.
NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
Mitchison, Graeme; Jozsa, Richard; Popescu, Sandu |||
2007-12-15
The notion of weak measurement provides a formalism for extracting information from a quantum system in the limit of vanishing disturbance to its state. Here we extend this formalism to the measurement of sequences of observables. When these observables do not commute, we may obtain information about joint properties of a quantum system that would be forbidden in the usual strong measurement scenario. As an application, we provide a physically compelling characterization of the notion of counterfactual quantum computation.
Experimental observations of low-velocity collisional systems
NASA Astrophysics Data System (ADS)
Jorges, Jeffery; Dove, Adrienne; Colwell, Joshua
Low-velocity collisions in systems of centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand the collisional parameters governing the outcomes of these collisions over a range of conditions. Here, we present the results from laboratory experiments designed to explore low-velocity collisions by conducting experiments in a vacuum chamber in our 0.8-sec drop tower apparatus. These experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are ``mantled'' - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome. We determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. For impact velocities in the range from about 20-100 cm/s we observe that mantling of particles has the most significant effect, reducing the coefficients of restitution.
SELF-CONSISTENT SIZE AND VELOCITY DISTRIBUTIONS OF COLLISIONAL CASCADES
Pan, Margaret; Schlichting, Hilke E. E-mail: hilke@ucla.edu
2012-03-10
The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan and Sari can steepen to values as large as q = 3.26. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies for the Kuiper belt, the asteroid belt, and extrasolar debris disks may constrain the mass and number of large bodies stirring the cascade as well as the colliding bodies' internal strengths.
Ultrahigh-Energy Debris from the Collisional Penrose Process.
Berti, Emanuele; Brito, Richard; Cardoso, Vitor
2015-06-26
Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to extract energy from black holes. The original idea (involving the breakup of a single particle) yields only modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion. The collisional Penrose process has been explored recently in the context of dark matter searches, with the conclusion that the ratio η between the energy of postcollision particles detected at infinity and the energy of the colliding particles should be modest (η≲1.5). Schnittman [Phys. Rev. Lett. 113, 261102 (2014)] has shown that these studies underestimated the maximum efficiency by about 1 order of magnitude (i.e., η≲15). In this work we show that particle collisions in the vicinity of rapidly rotating black holes can produce high-energy ejecta and result in high efficiencies under much more generic conditions. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the tantalizing possibility that the collisional Penrose process may power gamma rays and ultrahigh-energy cosmic rays. PMID:26197116
Nonlinear transport processes in tokamak plasmas. I. The collisional regimes
Sonnino, Giorgio; Peeters, Philippe
2008-06-15
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.
Collisional deactivation of CF 3I - a molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Svedung, Harald; Marković, Nikola; Nordholm, Sture
1999-10-01
The detailed mechanisms of ro-vibrational energy transfer in collisions between CF 3I and argon or propane are investigated. Molecular dynamics simulations of collisions between a reactant CF 3I molecule at energies from 50 to 200 kJ/mol with medium argon or propane at selected initial temperatures are interpreted in terms of ergodic collision limits. The intramolecular potential used for CF 3I is a Morse-stretch/harmonic-bend type function with parameters fitted to equilibrium structure, normal mode frequencies and dissociation energies. Simple generic Buckingham type pair-potentials are used for intermolecular atom-atom interactions. Energy transfer is related to (i) geometry of collision, (ii) impact parameter, (iii) number of atom-atom encounters, (iv) average dynamical hardness of interaction at atom-atom collisions, (v) number of minima in the center of mass separation and (vi) lifetime of the collisional complex. The energy transfer in our molecular dynamics calculations is compared with experimental results for the same colliders. The observed trends are interpreted in terms of detailed collisional mechanisms. Our results highlight the importance of rotational excitation and the repulsive part of the intermolecular potential.
Collisional cooling investigation of THz rotational transitions of water
NASA Astrophysics Data System (ADS)
Dick, Michael J.; Drouin, Brian J.; Pearson, John C.
2010-02-01
An investigation of the pressure broadening by helium and hydrogen of six rotational transitions of water has been completed. The six transitions studied included two para water transitions (000-111 and 111-202) and four ortho water transitions (101-110, 221-312, 303-312 and 312-321) in the frequency region 0.55-1.17 THz. This survey was accomplished using the collisional cooling technique which allowed the broadening of each transition to be studied below the water condensation temperature. For each of the transitions studied, the temperature dependence of the pressure broadening by helium showed little dependence on temperature, while the broadening by hydrogen showed a sharp decrease at the lowest temperatures. This behavior was modeled, for each transition broadened by helium and hydrogen, with a power law, or a power law modified with a Boltzmann-like step function, and the results of these fits will be presented. In addition, an extensive investigation of the systematic error in the temperature of the water vapor in the collisional cooling experiment will be discussed. Finally, the impact of these new broadening measurements on models of star formation in the interstellar medium will be outlined.
Gap Clearing by Planets in a Collisional Debris Disk
NASA Astrophysics Data System (ADS)
Nesvold, Erika R.; Kuchner, Marc J.
2015-01-01
We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by α = 0.32(t/t coll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ~1-10 M Jup. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.
Phantom crossing with collisional matter in f(T) gravity
NASA Astrophysics Data System (ADS)
Zubair, M.
2016-02-01
We study the late-time cosmological evolution of f(T) (where T is the torsion scalar) theories with matter contents consisting of collisional self-interacting matter and radiations. The power law, exponential and logarithmic f(T) models are considered to explore the evolution of Hubble parameter H(z), dark energy (DE) equation of state (EoS) ωDE and effective EoS parameter ωeff. We show that crossing of phantom divide line can be realized in the presence of collisional matter as compared to the results obtained for the choice of noncollisional matter [K. Bamba, C.-Q. Geng, C.-C. Lee and L.-W. Luo, J. Cosmol. Astropart. Phys. 01 (2011) 021; K. Bamba, C.-Q. Geng and C.-C. Lee, arXiv:1008.4036]. The evolutionary behavior of ωDE is consistent with the one developed in [P. Wu and H. Yu, Eur. Phys. J. C 71 (2011) 1552] and recent observational data [U. Alam, V. Sahni and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0406 (2004) 008; S. Nesseris and L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0701 (2007) 018; P. Wu and H. Yu, Phys. Lett. B 643 (2006) 315; U. Alam, V. Sahni and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0702 (2007) 011; H. K. Jassal, J. S. Bagla and T. Padmanabhan, Mon. Not. R. Astron. Soc. 405 (2010) 2639].
Collisional cooling investigation of THz rotational transitions of water
Dick, Michael J.; Drouin, Brian J.; Pearson, John C.
2010-02-15
An investigation of the pressure broadening by helium and hydrogen of six rotational transitions of water has been completed. The six transitions studied included two para water transitions (0{sub 00}-1{sub 11} and 1{sub 11}-2{sub 02}) and four ortho water transitions (1{sub 01}-1{sub 10}, 2{sub 21}-3{sub 12}, 3{sub 03}-3{sub 12} and 3{sub 12}-3{sub 21}) in the frequency region 0.55-1.17 THz. This survey was accomplished using the collisional cooling technique which allowed the broadening of each transition to be studied below the water condensation temperature. For each of the transitions studied, the temperature dependence of the pressure broadening by helium showed little dependence on temperature, while the broadening by hydrogen showed a sharp decrease at the lowest temperatures. This behavior was modeled, for each transition broadened by helium and hydrogen, with a power law, or a power law modified with a Boltzmann-like step function, and the results of these fits will be presented. In addition, an extensive investigation of the systematic error in the temperature of the water vapor in the collisional cooling experiment will be discussed. Finally, the impact of these new broadening measurements on models of star formation in the interstellar medium will be outlined.
Recombination and collisional x-ray lasers at LULI
NASA Astrophysics Data System (ADS)
Jamelot, Gerard; Jaegle, Pierre; Carillon, Antoine; Gauthe, Bernard; Goedtkindt, P.; Guennou, M.; Klisnick, Annie; Moeller, Clary; Rus, Bedrich; Sureau, Alain; Zeitoun, Philippe
1994-02-01
We present our recent efforts to produce X-ray lasers in the 200 angstroms range by using the moderate power drive of the LULI facility in Palaiseau. The 4 - 5 transitions of Li-like sulfur exhibit large gain-length products in recombining plasmas, and appear to be less sensitive to plasma non-uniformity than the 3 - 4 and 3 - 5 transitions previously studied. From numerical simulations this is likely due to smaller radiative and collisional excitation from 4f than from 3d levels. In collisional scheme, neon-like zinc gives analogous results to similar works on other elements for the 3p - 3s, J equals 2 yields 1 transitions, but the J equals 0 yields 1 transition shows a surprisingly large gain coefficient of 4.9 cm-1. From a detailed comparison of time-dependent intensities of the J equals 0 yields 1 and the J equals 2 yields 1 lines, we conclude that transitions from J equals 0 and from J equals 2 are not emitted in the same region of the plasma.
GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK
Nesvold, Erika R.; Kuchner, Marc J. E-mail: Marc.Kuchner@nasa.gov
2015-01-10
We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.
Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium.
Kettle, B; Dzelzainis, T; White, S; Li, L; Dromey, B; Zepf, M; Lewis, C L S; Williams, G; Künzel, S; Fajardo, M; Dacasa, H; Zeitoun, Ph; Rigby, A; Gregori, G; Spindloe, C; Heathcote, R; Riley, D
2016-08-01
The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (T_{e}≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state. PMID:27627403
Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium
NASA Astrophysics Data System (ADS)
Kettle, B.; Dzelzainis, T.; White, S.; Li, L.; Dromey, B.; Zepf, M.; Lewis, C. L. S.; Williams, G.; Künzel, S.; Fajardo, M.; Dacasa, H.; Zeitoun, Ph.; Rigby, A.; Gregori, G.; Spindloe, C.; Heathcote, R.; Riley, D.
2016-08-01
The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (Te≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.
Elaboration of collisional-radiative models applied to Earth and Mars entry problems
NASA Astrophysics Data System (ADS)
Annaloro, Julien; Bultel, Arnaud; Omaly, Pierre
2014-11-01
Three Collisional-Radiative (CR) models are elaborated and tested in typical atmospheric entry conditions. The first CR model (CoRaM-AIR) is dedicated to the Earth atmospheric entry and is based on an electronically and vibrationally specific state-to-state description of N2-O2-Ar mixtures. The second CR model (CoRaM-MARS) is dedicated to the Mars atmospheric entry and treats the CO2-N2-Ar mixtures with a similar vibrationally and electronically specific approach. Since their implementation in a Computational Fluid Dynamics (CFD) code has not yet been performed, they are implemented in a 0D code giving the evolution in time of the excited states number density in constant pressure and temperature conditions similar to trajectory points at lower altitude. Nevertheless, such an implementation in a CFD code has been performed for a third CR model, specifically devoted to pure nitrogen flows (CoRaM-N2). The results show that the equilibrium is reached relatively slowly. In addition, the influence of radiation on the chemistry is weak.
On negative ion-drag force for dust in collisional plasmas
Patacchini, Leonardo; Hutchinson, Ian H.
2008-09-07
The ion-drag force on a dust particle in collisional plasmas is self-consistently calculated using the Particle In Cell code SCEPTIC in the entire range of charge-exchange collisionlality. It is shown that the ion-drag only reverses in the strongly collisional regime, where other forces are of much stronger magnitude than the ion-drag itself.
Cartron, J. P.; Gerbal, A.; Hughes-Jones, N. C.; Salmon, C.
1974-01-01
Thirty-five weak A samples including fourteen A3, eight Ax, seven Aend, three Am and three Ae1 were studied in order to determine their A antigen site density, using an IgG anti-A labelled with 125I. The values obtained ranged between 30,000 A antigen sites for A3 individuals, and 700 sites for the Ae1 red cells. The hierarchy of values observed made it possible to establish a quantitative relationship between the red cell agglutinability of these phenotypes measured under standard conditions, and their antigen site density. PMID:4435836
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Grace, R.
1983-01-01
The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo E-mail: luca.santoni@sns.it E-mail: filippo.vernizzi@cea.fr
2015-09-01
Effective theories of a scalar φ invariant under the internal galileon symmetry φ→φ+b{sub μ} x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon's quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Abedi, Samira; Dorranian, Davoud; Abari, Mehdi Etehadi; Shokri, Babak
2011-09-15
In this paper, the effect of weakly relativistic ponderomotive force in the interaction of intense laser pulse with nonisothermal, underdense, collisional plasma is studied. Ponderomotive force modifies the electron density and temperature distribution. By considering the weakly relativistic effect and ohmic heating of plasma electrons, the nonlinear dielectric permittivity of plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. It is shown that with considering the ohmic heating of electrons and collisions, the effect of ponderomotive force in weakly relativistic regime leads to steepening the electron density profile and increases the temperature of plasma electrons noticeably. Bunches of electrons in plasma become narrower. By increasing the laser pulse strength, the wavelength of density oscillations decreases. In this regime of laser-plasma interaction, electron temperature increases sharply by increasing the intensity of laser pulse. The amplitude of electric and magnetic fields increases by increasing the laser pulse energy while their wavelength decreases and they lost their sinusoidal form.
Flexural extension of the upper continental crust in collisional foredeeps
Bradley, D.C.; Kidd, W.S.F.
1991-01-01
Normal faults on the outer slopes of trenches and collisional foredeeps reveal that high-amplitude lithospheric flexure can result in inelastic extensional deformation of the convex side of a flexed plate. This process, which we call "flexural extension', differs fundamentally from rifting in that the lower lithosphere contracts while the upper lithosphere extends. Structural evidence does not support common illustrations of flexural normal faults as planar-irrotational structures which simply die out at shallow crustal depths. Instead, the surface geology shows that flexural normal faulting must be rotational with respect to the enveloping surface of the flexed plate. This toppled domino geometry implies the presence at depth of a detachment or zone of distributed ductile simple shear where fault displacement and block rotation are accommodated. -from Authors
Collisional effects on kinetic electromagnetic modes and associated quasilinear transport
Rewoldt, G.; Tang, W.M.; Hastie, R.J.
1986-08-01
The general procedure for the analysis of low-frequency electrostatic and electro-magnetic modes in toroidal geometry is now well known. In the collisionless limit, the relevant dynamics (e.g., trapped particles, resonances, etc.) can be treated appropriately. However, with the introduction of collisional effects, it is customary, for tractability, to employ model collision operators of varying degrees of complexity. Guided by results of earlier studies of alternative collision operators in unsheared slab geometry and in toroidal geometry, an improved model collision operator is introduced here for calculating toroidal eigenmodes. Analytic and numerical results are presented to support its relevance and to demonstrate its improvement over earlier models. The associated quasilinear particle and energy transport coefficients for each species are also calculated, and compared with the usual D/sub j/ approx. = kappa/sub j/ approx. = ..gamma../k /sub perpendicular//sup 2/ estimate.
Signal Propagation in Collisional Plasma with Negative Ions
I. Kaganovich; S.V. Berezhnoi; C.B. Shin
2000-12-18
The transport of charged species in collisional currentless plasmas is traditionally thought of as a diffusion-like process. In this paper, it is demonstrated that, in contrast to two-component plasma, containing electrons and positive ions, the transport of additional ions in multi-species plasmas is not governed by diffusion, rather described by nonlinear convection. As a particular example, plasmas with the presence of negative ions have been studied. The velocity of a small perturbation of negative ions was found analytically and validated by numerical simulation. As a result of nonlinear convection, initially smooth ion density profiles break and form strongly inhomogeneous shock-like fronts. These fronts are different from collisionless shocks and shocks in fully ionized plasma. The structure of the fronts has been found analytically and numerically.
Parameter space region in the collisional magnetized electronegative plasma
Yasserian, Kiomars; Aslaninejad, Morteza
2010-02-15
The influence of the elastic collisions on the structure of a magnetized electronegative discharge is investigated. For a constant magnetic field, the profiles of the velocities of positive ions, the density of species, and electric potential are obtained. Furthermore, the positive ion flux is obtained as a function of magnetic field strength for different values of the collision frequency. The results show that in the absence of collision in a constant magnetic field, the discharge structure is uniform while by taking the collision into account, the structure becomes multilayer stratified. By increasing the collision frequency the discharge leaves the multilayer structure, and related oscillations in the plasma potential and space charge vanish. The parameter space region is obtained for collisionless and collisional cases. In this paper it is shown that a combined effect of collision and magnetic field determines the presheath-sheath structure.
The acoustic instabilities in magnetized collisional dusty plasmas
Pandey, B. P.; Vladimirov, S. V.; Dwivedi, C. B.
2014-09-15
The present work investigates the wave propagation in collisional dusty plasmas in the presence of electric and magnetic field. It is shown that the dust ion-acoustic waves may become unstable to the reactive instability whereas dust-acoustic waves may suffer from both reactive and dissipative instabilities. If the wave phase speed is smaller than the plasma drift speed, the instability is of reactive type whereas in the opposite case, the instability becomes dissipative in nature. Plasma in the vicinity of dust may also become unstable to reactive instability with the instability sensitive to the dust material: dielectric dust may considerably quench this instability. This has implications for the dust charging and the use of dust as a probe in the plasma sheath.
Theory of collisional electron spectroscopy for gas analysis
Panasyuk, George Y.; Tsyganov, Alexander B.
2012-06-01
We develop an analytical model for a proposed method of gas analysis. The method is based on collisional electron spectroscopy, where a limited number of electron scatterings on gas molecules inside the analyzer is permitted. The proposed method can be used to identify impurity species in a main gas from the resulted energy spectra of photoelectrons collected by the cathode. The photoelectrons are produced by vacuum ultraviolet-ionization of impurity species. Physical processes are explored in the case of detecting impurities in atmospheric air. The electron velocity distribution function inside the detector is derived. It is shown that the voltage dependence of the second derivative of the cathode current with respect to the applied cathode voltage can provide electron energy spectrum and subsequent identification of the impurity species.
Cosmochemical fractionation by collisional erosion during the Earth's accretion
Boujibar, Asmaa; Andrault, Denis; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed Ali; Monteux, Julien
2015-01-01
Early in the Solar System's history, energetic collisions of differentiated bodies affected the final composition of the terrestrial planets through partial destruction. Enstatite chondrites (EC) are the best candidates to represent the primordial terrestrial precursors as they present the most similar isotopic compositions to Earth. Here we report that collisional erosion of >15% of the early Earth's mass can reconcile the remaining compositional differences between EC and the Earth. We base our demonstration on experimental melting of an EC composition at pressures between 1 bar and 25 GPa. At low pressures, the first silicate melts are highly enriched in incompatible elements Si, Al and Na, and depleted in Mg. Loss of proto-crusts through impacts raises the Earth's Mg/Si ratio to its present value. To match all major element compositions, our model implies preferential loss of volatile lithophile elements and re-condensation of refractory lithophile elements after the impacts. PMID:26395157
Collisional stabilization of van der Waals states of ozone.
Ivanov, Mikhail V; Babikov, Dmitri
2011-05-01
The mixed quantum-classical theory developed earlier [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the collisional energy transfer and the ro-vibrational energy flow in a recombination reaction that forms ozone. Assumption is that the van der Waals states of ozone are formed in the O + O(2) collisions, and then stabilized into the states of covalent well by collisions with bath gas. Cross sections for collision induced dissociation of van der Waals states of ozone, for their stabilization into the covalent well, and for their survival in the van der Waals well are computed. The role these states may play in the kinetics of ozone formation is discussed.
Collisional stabilization of van der Waals states of ozone
NASA Astrophysics Data System (ADS)
Ivanov, Mikhail V.; Babikov, Dmitri
2011-05-01
The mixed quantum-classical theory developed earlier [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the collisional energy transfer and the ro-vibrational energy flow in a recombination reaction that forms ozone. Assumption is that the van der Waals states of ozone are formed in the O + O2 collisions, and then stabilized into the states of covalent well by collisions with bath gas. Cross sections for collision induced dissociation of van der Waals states of ozone, for their stabilization into the covalent well, and for their survival in the van der Waals well are computed. The role these states may play in the kinetics of ozone formation is discussed.
Collisional Processing of Comet Surfaces: Impact Experiments into Olivine
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Jensen, E. A.; Cintala, M. J.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Wooden, D. H.; Fernandez, Y. R.; Zolensky, M. E.
2011-01-01
A new paradigm has emerged where 3.9 Ga ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. In addition, objects in the Kuiper Belt are believed to undergo extensive collisional processing while in the Kuiper Belt. Physical manifestations of shock effects (e.g., planar dislocations) in minerals typically found in comets will be correlated with spectral changes (e.g. reddening, loss and shift of peaks, new signatures) to allow astronomers to better understand geophysical impact processing that has occurred on small bodies. Targets will include solid and granular olivine (forsterite), impacted over a range of impact speeds with the Experimental Impact Laboratory at NASA JSC. Analyses include quantification of the dependence of the spectral changes with respect to impact speed, texture of the target, and temperature.
The Violent Collisional History of Asteroid 4 Vesta
NASA Astrophysics Data System (ADS)
Marchi, S.; McSween, H. Y.; O'Brien, D. P.; Schenk, P.; De Sanctis, M. C.; Gaskell, R.; Jaumann, R.; Mottola, S.; Preusker, F.; Raymond, C. A.; Roatsch, T.; Russell, C. T.
2012-05-01
Vesta is a large differentiated rocky body in the main asteroid belt that accreted within the first few million years after the formation of the earliest solar system solids. The Dawn spacecraft extensively imaged Vesta’s surface, revealing a collision-dominated history. Results show that Vesta’s cratering record has a strong north-south dichotomy. Vesta’s northern heavily cratered terrains retain much of their earliest history. The southern hemisphere was reset, however, by two major collisions in more recent times. We estimate that the youngest of these impact structures, about 500 kilometers across, formed about 1 billion years ago, in agreement with estimates of Vesta asteroid family age based on dynamical and collisional constraints, supporting the notion that the Vesta asteroid family was formed during this event.
Collisional-radiative modelling of an Ar helicon plasma discharge
NASA Astrophysics Data System (ADS)
Loch, Stuart
2005-10-01
We report on recent modelling results of emission observed from a helicon plasma, comparing theoretical and observed line intensities and line ratios of Ar, Ar^+ and Ar^2+. Our Helicon plasma is from the ASTRAL device at Auburn University, with spectral measurements from 275 nm through to 1015 nm. We concentrate on the Ar^+ ion stage, and present the results of a collisional-radiative model using various qualities of atomic data. In particular, we compare the modelling results using Plane-Wave Born, Distorted-Wave and R-matrix electron impact excitation data with those observed from the plasma. As part of the modelling work, we investigate the potential use of various lines as plasma diagnostic tools.
Test ion transport in a collisional, field-reversed configuration
NASA Astrophysics Data System (ADS)
Roche, T.; McWilliams, R.; Heidbrink, W. W.; Bolte, N.; Garate, E. P.; Morehouse, M.; Slepchenkov, M.; Wessel, F.
2014-08-01
Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is measured via time-resolved tomographic reconstruction of Ar+ optical emission in the predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is found to be classical during the stable period of the discharge. Test ion radial confinement is enhanced by a radial electric field, reducing the observed outward radial transport rate below predictions based solely on classical cross-field diffusion rates. Test ion diffusion is ˜500 m2 s-1 during the stable period of the discharge. The electric field inferred from plasma potential measurements and from equilibrium calculations is consistent with the observed reduction in argon transport.
Collisional dynamics in a gas of molecular super-rotors.
Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh
2015-01-01
Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable 'gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational-translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the 'gyroscopic stage' is abruptly terminated by an explosive rotational-translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223
Collisional desorption of NO by fast O atoms
NASA Technical Reports Server (NTRS)
Sonnenfroh, David M.; Caledonia, George E.
1993-01-01
Surface-adsorbed NO figures largely in the mechanism that produces visible glow around spacecraft in low Earth orbit (LEO). In view of the potential interference to optical observations such a glow represents, we have investigated the collision-induced desorption of NO from Al, Ni, and Z306 Chemglaze-coated surfaces at 96 K by hyperthermal (8 km/s) oxygen atoms. The removal of surface NO was followed by the monitoring of the visible fluorescence of electronically excited NO2 produced through the surface-mediated reaction O + NO. A variability in collisional desorption rate with material was observed. The limited data suggest a removal efficiency of 4 to 8% of the impinging O atom flux. Implications for the atmospheric scouring of contaminants from external surfaces of LEO spacecraft are discussed.
Collisional dynamics in a gas of molecular super-rotors
Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh.
2015-01-01
Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable ‘gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational–translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the ‘gyroscopic stage' is abruptly terminated by an explosive rotational–translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223
Turbulence Locality and Granularlike Fluid Shear Viscosity in Collisional Suspensions.
Berzi, Diego; Fraccarollo, Luigi
2015-11-01
We reanalyze previous experimental measurements of solid volume fraction, mean velocity, and velocity fluctuations in collisional suspensions of plastic cylinders and water flowing over inclined, erodible beds. We show that the particle pressure scales with the granular temperature, as predicted by kinetic theory of granular gases. The assumption that the particle shear stress is also well predicted by kinetic theory permits us to determine the fluid shear stress and the effective fluid viscosity from the experiments. The fluid viscosity can be decomposed into turbulent and granularlike components: the turbulent viscosity can be modeled using a mixing length, which is a decreasing function of the local volume fraction and does not depend upon the distance from the bed; the granularlike viscosity, associated with the transfer of momentum due to the conjugate motion of the fluid mass added to the particles, can be modeled by replacing the particle density with the density of the added fluid mass in the viscosity of kinetic theory. PMID:26588387
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Collisional statistics of the hard-sphere gas.
Visco, Paolo; van Wijland, Frédéric; Trizac, Emmanuel
2008-04-01
We investigate the probability distribution functions of the free flight time and of the number of collisions in a hard-sphere gas at equilibrium. At variance with naive expectation, the latter quantity does not follow Poissonian statistics, even in the dilute limit, which is the focus of the present analysis. The corresponding deviations are addressed both numerically and analytically. In writing an equation for the generating function of the cumulants of the number of collisions, we came across a perfect mapping between our problem and a previously introduced model: the probabilistic ballistic annihilation process [Coppex, Phys. Rev. E 69, 11303 (2004)]. We exploit this analogy to construct a Monte Carlo-like algorithm able to investigate the asymptotically large time behavior of the collisional statistics within a reasonable computational time. In addition, our predictions are compared with the results of molecular dynamics simulations and the direct simulation Monte Carlo technique. An excellent agreement is reported. PMID:18517588
Collisional effects in the dynamics of a dipolar gas
NASA Astrophysics Data System (ADS)
Sykes, Andrew
2016-05-01
In this talk, we discuss the role of collisions in dipolar gases which are far from equilibrium. We compare and contrast collisional mechanisms with mean-field effects. We consider several cases of dynamical behaviour. We begin with cross-dimensional relaxation, where the time-scale of equilibration is studied following a quench in the trap parameters. We also discuss the damping of monopole and quadrupole excitations. Finally we discuss time-of-flight expansion dynamics. Our results demonstrate that collisions can play a significant role. We use these results to extract an estimate of the deca-heptuplet s-partial-wave scattering length of bosonic dysprosium, and to improve the accuracy of experimental time-of-flight expansion imaging. Financial support from the Marie Sklodowska-Curie H2020 framework program.
Self-focusing of electromagnetic pulsed beams in collisional plasmas
Faisal, Mohammad; Verma, M. P.; Sodha, Mahendra Singh
2008-10-15
In this paper, the self-focusing of an electromagnetic pulsed beam in a collisional plasma has been investigated in the paraxial approximation, following the formalism developed by Akhmanov. The energy balance equation for electrons, the equation expressing the equality of pressure gradient (of electrons and ions) to the force due to space charge field, and the equation for the beam width parameter f (obtained by following Akhmanov's approach) have been simultaneously solved for given initial (z=0) time profile of the pulse to obtain f as a function of {xi} (cz/{omega}r{sub 0}{sup 2}) and t{sup '}=t-z/V{sub g}, where V{sub g} is the group velocity. Both Gaussian and sine time profiles of the pulse have been investigated.
Equilibrium models of mass distribution and collisional lifetimes of asteroids
NASA Technical Reports Server (NTRS)
Williams, David R.; Wetherill, George
1993-01-01
An understanding of the steady state distribution expected in the present day asteroid belt is important to our understanding of the collisional evolution of the asteroids and their physical properties. We have extended earlier work to show that, in the absence of gravity, a simple power law distribution as a function of mass with constant exponent will give an equilibrium distribution of asteroids for all bodies much smaller than the largest asteroids. This result holds for realistic fragmentation mechanisms and is independent of the physical properties of the asteroids. Inclusion of the effects of gravity on disruption and fragmentation of asteroids precludes an analytic solution to this problem, and rules out a simple power law distribution. We are currently calculating numerical solutions in order to determine the expected steady state mass distribution in the asteroid belt.
Collisional radiative coarse-grain model for ionization in air
NASA Astrophysics Data System (ADS)
Panesi, Marco; Lani, Andrea
2013-05-01
We present a reduced kinetic mechanism for the modeling of the behavior of the electronic states of the atomic species in air mixtures. The model is built by lumping the electronically excited states of the atomic species and by performing Maxwell-Boltzmann averages of the rate constants describing the elementary kinetic processes of the individual states within each group. The necessary reaction rate coefficients are taken from the model compiled by Bultel et al. ["Collisional-radiative model in air for earth re-entry problems," Phys. Plasmas 13, 043502 (2006), 10.1063/1.2194827]. The reduced number of pseudo-states considered leads to a significant reduction of the computational cost, thus enabling the application of the state of the art collisional radiative models to bi-dimensional and three-dimensional problems. The internal states of the molecular species are assumed to be in equilibrium. The rotational energy mode is assumed to quickly equilibrate with the translational energy mode at the kinetic temperature of the heavy species as opposed to the electronic and the vibrational modes, assumed to be in Maxwell-Boltzmann equilibrium at a common temperature TV. In a first step we validate the model by using simple zero- and one-dimensional test cases for which the full kinetic mechanism can be run efficiently. Finally, the reduced kinetic model is used to analyze the strong non-equilibrium flow surrounding the FIRE II flight experiment during the early part of its re-entry trajectory. It is found that the reduced kinetic mechanism is capable of reproducing the ionizational non-equilibrium phenomena, responsible for the drastic reduction of the radiative heat loads on the space capsules during the re-entry phase.
Oxygen nightglow emissions of Venus: Vertical distribution and collisional quenching
NASA Astrophysics Data System (ADS)
Gérard, J.-C.; Soret, L.; Migliorini, A.; Piccioni, G.
2013-03-01
We compare the altitude of three O2 night airglow emissions observed at the limb of Venus by the VIRTIS spectral imager with those values predicted by a model accounting for the different radiative lifetimes and collisional deactivation of the upper O2 states. The O and CO2 density profiles are based on remote sensing observations from the Venus Express spacecraft. Effective production efficiencies of the involved O2 metastable states and quenching coefficients by oxygen and carbon dioxide are adjusted to provide the best match with the measured emission limb profiles. We find values in general good agreement with earlier studies for the cΣu- state which gives rise to the Herzberg II bands. In particular, we confirm the low net yield of the c state production and the importance of its deactivation by CO2, for which we derive a quenching coefficient of 3 × 10-16 cm-3 s-1. The ∼4.5 km higher altitude of the Chamberlain band emission also recently detected by VIRTIS and the ratio of the Herzberg II/Chamberlain bands observed with Venera are well reproduced. To reach agreement, we use a 12% yield for the A‧3Δu production following O atom association and quenching coefficients by O and CO2 of 1.3 × 10-11 cm-3 s-1 and 4.5 × 10-13 cm-3 s-1 respectively. We conclude that the different peak altitudes of the IR Atmospheric, Herzberg II and the Chamberlain bands reflect the relative importance of radiative relaxation and collisional quenching by O and CO2.
Collisional modelling of the debris disc around HIP 17439
NASA Astrophysics Data System (ADS)
Schüppler, Ch.; Löhne, T.; Krivov, A. V.; Ertel, S.; Marshall, J. P.; Eiroa, C.
2014-07-01
We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme, the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a previous study, we assumed that the size and radial distribution of the circumstellar dust are independent power laws. There, several scenarios capable of explaining the observations were suggested after exploring a very broad range of possible model parameters. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, which are the actual physical processes operating in debris discs. We find that all scenarios discussed in the first paper are physically reasonable and can reproduce the observed spectral energy distribution along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120 au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. Good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not confirmed - although not ruled out - by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of distinguishing between the competing scenarios by future observations are discussed.
Weakly relativistic plasma expansion
Fermous, Rachid Djebli, Mourad
2015-04-15
Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.
The Collisional and Radiative Processes of the Hydroxyl Radical
NASA Astrophysics Data System (ADS)
Steffens, Kristen Lisa
1995-01-01
The OH radical is an important species in the chemistry of atmospheric and combustion environments, where an understanding of OH concentration and chemistry is necessary to create and validate chemical models. Laser-induced fluorescence (LIF) is used with great success in OH detection, but OH LIF measurements require a vast knowledge of the collisional and spectroscopic properties of OH. Information is still lacking, especially concerning vibrational levels v^' > 0 of the rm A^2Sigma^+ electronic state. We investigate transition probabilities and collisional processes of these higher vibrational levels. Experimental vibrational band transition probabilities from v^' = 3 and 2 of OH rm A^2Sigma^+ are needed to determine the electronic transition moment for the rm A^2Sigma^+ -rm X^2Pi_{i } system to calculate a consistent set of rotational and vibrational dependent transition probabilities for uses including rm X^2Pi_ {i} temperature determinations and rm A^2Sigma^+ and rm X^2Pi_{i} nascent population determinations. Using LIF in a low -pressure CH_4/O_2 flame, we measured relative emission intensities for vibrational bands (3,0) through (3,5) and (2,0) through (2,6). Our emission intensities have been used in another study to determine the best rm A^2 Sigma^+-rm X^2 Pi_{i} electronic transition moment. For quantitative OH concentration measurements in high pressure flames exciting the predissociative v ^' = 3 level, one must account for vibrational energy transfer (VET). We measure the amounts of VET occurring from v^' = 3 in CH_4/O_2 , CH_4/air, and H _2/O_2 flames at pressures between 14 and 760 Torr. Significant amounts of VET occur in all flames and must be accounted for to get accurate OH concentrations. Stratospheric OH concentration measurement employs OH rm A^2Sigma^+v ^' = 1 excitation, which requires accurate VET and quenching cross sections for major colliders. We use LIF to measure the v^ ' = 1 VET and quenching cross sections for N_2, O_2 and CO_2
CLMSZ, Garnet Mountain area, southern California: A collisionally generated contractional shear zone
Bracchi, K.A.; Girty, G.H.; Girty, M.S. . Dept. of Geological Sciences)
1993-04-01
The Harper Creek gneiss (HCg) and Oriflamme Canyon unit (OCu) underlie the central portion of the Cuyamaca Laguna Mountains shear zone (CLMSZ) in and around Garnet Mountain, Peninsular Ranges, California, and may have been deformed during Cretaceous arc-continent collision. U-Pb zircon work and petrological and geochemical analyses suggest that in the Garnet Mountain area, the 140 Ma HCg is derived from granite and granodiorite, whereas the 122 [+-] 1 Ma OCu is a protomylonite derived from a granite. Both units appear to be per aluminous calc-alkaline magmatic arc granitoids. Mineral assemblages suggest uppermost greenschist to lower amphibolite grade conditions during deformation. In the HCg, S-1hc is a mylonitic gneissosity with a mean attitude of N11W, 60 NE. A mineral streaking lineation lies within the plane of S-1hc and has a mean attitude of 61[degree] N76E. In the OCu, S-1oc strikes about N13W and dips 52 NE and contains a mineral streaking lineation with an attitude of 49 N52E. Dextral and sinistral shear bands, S-2d and S-2s (looking NW), transect S-1hc and S-1oc. S-2d and S-2s strike subparallel to S-1. In the HCg S-2s is weakly developed and dips about 32 NE, whereas S-2d is more dominant and dips about 76 NE. On the OCu these relationships are reversed. S-2d does not cross cut S-2s: hence, the two sets of shear bands are interpreted to be conjugates reflecting NE-SW contraction and subvertical extension during collisional development of the CLMSZ.
Reply to 'Comment on 'Collisional cooling investigation of THz rotational transitions of water''
Drouin, Brian J.; Pearson, John C.; Dick, Michael J.
2010-09-15
This response describes the authors' reaction to a critique of recent work on the ultracold physics of water. The possibility of spin-selective adsorption occurring in the context of the collisional cooling experiment is discussed.
Yuan Chengxun; Zhou Zhongxiang; Sun Hongguo; Pu Shaozhi; Xiang Xiaoli
2010-11-15
The terahertz characteristics of a dense-magnetized-collisional-bounded plasma under normal incident are analyzed in this study, which is of practical significance in plasma diagnostics with electromagnetic waves. We theoretically calculate the reflection, absorption, and transmission coefficients for right- and left-handed polarized terahertz waves through a uniform, magnetized, and collisional plasma slab bounded by lossless transparent walls. The power absorption spectra in the frequency range of 0.1-2 THz are given with strong external magnetic fields and different plasma parameters such as plasma density and collisional frequency. Our numerical result is consistent with Jamison's experimental result. It is found that plasma absorption is mainly caused by the collisional absorption and electron cyclotron resonance. Furthermore, the absorption heavily depends on the polarization mode of the terahertz waves when the external magnetic field B is high enough that the election gyrofrequency is near the incident wave frequency. The relationships between the corresponding parameters of the problem are studied numerically.
Direct and Collisional Excitation of Automotive Fuel Components)
NASA Astrophysics Data System (ADS)
White, Allen R.; Wilson, Kyle; Sakai, Stephen; Devasher, Rebecca B.
2010-06-01
Adding energy directly into the vibrational modes of automotive fuel may reduce the threshold energy required for combustion, without raising the combustion charge temperature. This energy can be supplied either directly via incident laser radiation or indirectly through collision with directly excited molecules. The most common chemical in commercial gasoline, isooctane, does not absorb infrared radiation sufficiently at any wavelength for which an infrared laser is readily available. However, CO2 lasers are relatively cheap, and are available at wavelengths which are absorbed by isopropanol as well as ethanol, which is also a component of commercial gasoline. In this study, the infrared absorption of isopropanol and ethanol in balance isooctane were measured at three wavelengths (10.6 m, 10.2 m, and 9.3 m) of incident CO2 laser radiation. Additional time-resolved emission measurements were performed for these mixtures. The data support the existence of the proposed collisional pathway for energy transfer from ethanol and isopropanol to isooctane.
Global, Collisional Model of High-Energy Photoelectrons
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Moore, T. E.; Liemohn, M. W.; Jordanova, V. K.; Fok, M.-C.
1996-01-01
A previously-developed colissional, interhemispheric flux tube model for photoelectrons (PE) has been extended to three dimensions by including transport due to vector E x vector B and magnetic gradient-curvature drifts. Using this model, initial calculations of the high-energy (greater then 50 eV) PE distribution as a function of time, energy, pitch angle, and spatial location in the equatorial plane, are reported for conditions of low geomagnetic activity. To explore both the dynamic and steady behaviors of the model, the simulation starts with the abrupt onset of photoelectron excitation, and is followed to steady state conditions. The results illustrate several features of the interaction of photoelectrons with typical magnetospheric plasmas and fields, including collisional diffusion of photoelectrons in pitch angle with flux tube filling, diurnal intensity and pitch angle asymmetries introduced by directional sunlight, and energization of the photoelectron distribution in the evening sector. Cross-field drift is shown to have a long time scale, taking 12 to 24 hours to reach a steady state distribution. Future applications of the model are briefly outlined.
Expansion of Collisional Radiative Model for Helium line ratio spectroscopy
NASA Astrophysics Data System (ADS)
Cinquegrani, David; Cooper, Chris; Forest, Cary; Milhone, Jason; Munoz-Borges, Jorge; Schmitz, Oliver; Unterberg, Ezekial
2015-11-01
Helium line ratio spectroscopy is a powerful technique of active plasma edge spectroscopy. It enables reconstruction of plasma edge parameters like electron density and temperature by use of suitable Collisional Radiative Models (CRM). An established approach is successful at moderate plasma densities (~1018m-3 range) and temperature (30-300eV), taking recombination and charge exchange to be negligible. The goal of this work is to experimentally explore limitations of this approach to CRM. For basic validation the Madison Plasma Dynamo eXperiment (MPDX) will be used. MPDX offers a very uniform plasma and spherical symmetry at low temperature (5-20 eV) and low density (1016 -1017m-3) . Initial data from MPDX shows a deviation in CRM results when compared to Langmuir probe data. This discrepancy points to the importance of recombination effects. The validated model is applied to first time measurement of electron density and temperature in front of an ICRH antenna at the TEXTOR tokamak. These measurements are important to understand RF coupling and PMI physics at the antenna limiters. Work supported in part by start up funds of the Department of Engineering Physics at the UW - Madison, USA and NSF CAREER award PHY-1455210.
The radial gradients and collisional properties of solar wind electrons
NASA Technical Reports Server (NTRS)
Gilvie, K. W.; Scudder, J. D.
1977-01-01
The plasma instrument on Mariner 10 carried out measurements of electron density and temperature in the interplanetary medium between heliocentric distances of 0.85 and 0.45 AU. Due to the stable coronal configuration and low solar activity during the period of observation, the radial variations of these quantities could be obtained. The power-law exponent of the core temperature was measured to be -0.3 + or - 0.04, and the halo temperature was found to be almost independent of heliocentric distance. The exponent of the power law for the density variation was 2.5 + or - 0.2 and the extrapolated value at 1 AU was consistent with measured values during the same period. Calculations of the core electron self-collision time, and the core-halo equipartition time were made as a function of radial distance. These measurements indicate a macroscale picture of a Coulomb-collisional core and a collisionless isothermal halo. Extrapolating back to the sun, core and halo temperatures become equal at a radial distance of approx. 2-15 radii.
Collisionally-induced fragmentation of chlorinated n-paraffins
Tomy, G.T. |; Muir, D.C.G.; Stern, G.A. |
1995-12-31
Chlorinated n-paraffins (CPs) are used as fire retardants, plasticisers in PVC, adhesives, and as extreme pressure additives in lubricants and cutting oils. They have also found use as replacement chemicals for more toxic and persistent chemicals such as PCBs. There have been a few reports of the mass spectrometric behavior of CPs. In these studies, efforts were made to resolve commercial mixtures by capillary gas chromatography (gc) columns, prior to introduction into the ion source. Because of the inherent complexity of commercial mixtures, most peaks eluting off the gc-column contained multiple components, and thus mass spectra were not of individual congeners. Clearly then, there is a need for individual CP congeners. Methods of synthesizing individual CP congeners have already been developed in this laboratory. In addition, the positive electron ionization (EI) and the electron capture negative ion (ECNI) mass spectrometry of these synthesized CP congeners have been described. In this report, the authors describe the fragmentation behavior of two individual CP congeners by examining the results of a detailed study of metastable and collisionally induced dissociation (CID, argon) processes. Fragmentation pathways were determined by B/E, B{sup 2}/E and CNL linked-field scanning.
Collisional Grooming Models of the Kuiper Belt Dust Cloud
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.; Stark, Christopher C.
2010-01-01
We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.
COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD
Kuchner, Marc J.; Stark, Christopher C. E-mail: starkc@umd.ed
2010-10-15
We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.
Variational Algorithms for Drift and Collisional Guiding Center Dynamics
NASA Astrophysics Data System (ADS)
Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.
2014-10-01
The simulation of guiding center test particle dynamics in the upcoming generation of magnetic confinement devices requires novel numerical methods to obtain the necessary long-term numerical fidelity. Geometric algorithms, which retain conserved quantities in the numerical time advances, are well-known to exhibit excellent long simulation time behavior. Due to the non-canonical Hamiltonian structure of the guiding center equations of motion, it is only recently that geometric algorithms have been developed for guiding center dynamics. This poster will discuss and compare several families of variational algorithms for application to 3-D guiding center test particle studies, while benchmarking the methods against standard Runge-Kutta techniques. Time-to-solution improvements using GPGPU hardware will be presented. Additionally, collisional dynamics will be incorporated into the structure-preserving guiding center algorithms for the first time. Non-Hamiltonian effects, such as polarization drag and simplified stochastic operators, can be incorporated using a Lagrange-d'Alembert variational principle. The long-time behavior of variational algorithms which include dissipative dynamics will be compared against standard techniques. This work was supported by DOE Contract DE-AC02-09CH11466.
Consistent analytic approach to the efficiency of collisional Penrose process
NASA Astrophysics Data System (ADS)
Harada, Tomohiro; Ogasawara, Kota; Miyamoto, Umpei
2016-07-01
We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the colliding particles has its angular momentum fine-tuned to the critical value to enter the horizon. We show that if the fine-tuned particle is ingoing on the collision, the upper limit of the efficiency is (2 +√{3 })(2 -√{2 })≃2.186 , while if the fine-tuned particle is bounced back before the collision, the upper limit is (2 +√{3 })2≃13.93 . Despite earlier claims, the former can be attained for inverse Compton scattering if the fine-tuned particle is massive and starts at rest at infinity, while the latter can be attained for various particle reactions, such as inverse Compton scattering and pair annihilation, if the fine-tuned particle is either massless or highly relativistic at infinity. We discuss the difference between the present and earlier analyses.
Tabletop Transient Collisional Excitation X-Ray Lasers
Dunn, J; Li, Y; Osterheld, A L; Nilsen, J; Moon, S J; Fournier, K B; Hunter, J R; Faenov, A; Pikuz, T A; Shlyaptsev, V N
1999-09-03
Recent transient collisional excitation x-ray laser experiments are reported using the COMET tabletop laser driver at the Lawrence Livermore National Laboratory (LLNL). Ne-like and Ni-like ion x-ray laser schemes have been investigated with a combination of long 600 ps and short {approximately}1 ps high power laser pulses with 5-10 J total energy. We show small signal gain saturation for x-ray lasers when a reflection echelon traveling wave geometry is utilized. A gain length product of 18 has been achieved for the Ni-like Pd 4d{r_arrow}4p J=0-1 line at 147 {angstrom}, with an estimated output of {approximately}10{micro}J. Strong lasing on the 119 {angstrom} Ni-like Sn line has also been observed. To our knowledge this is the first time gain saturation has been achieved on a tabletop laser driven scheme and is the shortest wavelength tabletop x-ray laser demonstrated to date. In addition, we present preliminary results of the characterization of the line focus uniformity for a Ne-like ion scheme using L-shell spectroscopy.
Nonextensive statistics and the sheath criterion in collisional plasmas
Hatami, M. M.
2015-01-15
The Bohm criterion in an electropositive plasma containing nonextensively distributed electrons and warm ions is investigated by using a steady state two-fluid model. Taking into account the ion-neutral collisions and finite temperature of ions, a modified Bohm criterion is derived which limits both maximum and minimum allowable velocity of ions at the sheath edge (u{sub 0i}). It is found that the degree of nonextensivity of electrons (q) and temperature of positive ions (T{sub i}) affect only the lower limit of the entrance velocity of ions into the sheath while the degree of ion collisionality (α) influences both lower and upper limits of the ion velocities at the sheath edge. In addition, depending on the value of q, it is shown that the minimum velocity of positive ions at the sheath edge can be greater or smaller than its Maxwellian counterpart. Moreover, it is shown that, depending on the values of α and T{sub i}, the positive ions with subsonic velocity may enter the sheath for either q > 1 or −1 < q < 1. Finally, as a practical application, the density distribution of charged particles in the sheath region is studied for different values of u{sub 0i}, and it is shown that monotonical reduction of the positive ion density distribution occurs only when the velocity of positive ions at the sheath edge lies between two above mentioned limits.
Collisional disruption of gravitational aggregates in the tidal environment
Hyodo, Ryuki; Ohtsuki, Keiji
2014-05-20
The degree of disruption in collisions in free space is determined by specific impact energy, and the mass fraction of the largest remnant is a monotonically decreasing function of impact energy. However, it has not been shown whether such a relationship is applicable to collisions under the influence of a planet's tidal force, which is important in ring dynamics and satellite accretion. Here we examine the collisional disruption of gravitational aggregates in the tidal environment by using local N-body simulations. We find that outcomes of such a collision largely depend on the impact velocity, the direction of impact, and the radial distance from the planet. In the case of a strong tidal field corresponding to Saturn's F ring, collisions in the azimuthal direction are much more destructive than those in the radial direction. Numerical results of collisions sensitively depend on the impact velocity, and a complete disruption of aggregates can occur even in impacts with velocity much lower than their escape velocity. In such low-velocity collisions, the deformation of colliding aggregates plays an essential role in determining collision outcomes, because the physical size of the aggregate is comparable to its Hill radius. On the other hand, the dependence of collision outcomes on impact velocity becomes similar to the case in free space when the distance from the planet is sufficiently large. Our results are consistent with Cassini observations of the F ring, which suggest ongoing creation and disruption of aggregates within the ring.
Collisional timing of asteroids space weathering: A first approach
NASA Astrophysics Data System (ADS)
Paolicchi, P.; Marchi, S.; Lazzarin, M.; Magrin, S.
2009-02-01
The space weathering, i.e. the evolution of surface properties over time, due to the exposure to external factors, has been shown to affect the optical properties of the asteroids, usually causing reddening (an effect which is measured in terms of the spectral slope in the visible and near infrared range) and darkening over time. However, some problems remain open. In particular, the timescale for reddening, which we estimate from laboratory experiments, is shorter - maybe, by two or even more orders of magnitude - than the typical asteroidal ages. Thus we should expect a complete saturation of the reddening effects for most of the objects, which does not happen, instead of a general significant dependence of the slope on the age, as indeed we find. In this paper we discuss, with the aid of a simplified model, how the collisions may affect the timing of the reddening process. We show that the collisions might halt the reddening, unless a significant reaccumulation of the fragments created in the cratering collisions takes place. In this case the timing for the complete reddening is driven by the collisional events, thus providing a rationale for the observed slope-age and slope-exposure relations.
COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS
Marcus, Robert A.; Sasselov, Dimitar; Hernquist, Lars; Stewart, Sarah T.
2009-08-01
The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of high-velocity (up to {approx}5v {sub esc}) collisions between 1 and 10 M {sub +} planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle.
Collisional excitation of electron Landau levels in strong magnetic fields
NASA Technical Reports Server (NTRS)
Langer, S. H.
1981-01-01
The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
NASA Astrophysics Data System (ADS)
Jafari, M. J.; Jafari Milani, M. R.; Niknam, A. R.
2016-07-01
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).
On the inclusion of collisional correlations in quantum dynamics
Slama, N.; Reinhard, P.-G.; Suraud, E.
2015-04-15
We present a formalism to describe collisional correlations responsible for thermalization effects in finite quantum systems. The approach consists in a stochastic extension of time dependent mean field theory. Correlations are treated in time dependent perturbation theory and loss of coherence is assumed at some time intervals allowing a stochastic reduction of the correlated dynamics in terms of a stochastic ensemble of time dependent mean-fields. This theory was formulated long ago in terms of density matrices but never applied in practical cases because of its complexity. We propose here a reformulation of the theory in terms of wave functions and use a simplified 1D model of cluster and molecules allowing to test the theory in a schematic but realistic manner. We illustrate the performance in terms of several observables, in particular global moments of the density matrix and single particle entropy built on occupation numbers. The occupation numbers remain fixed in time dependent mean-field propagation and change when evaluating the correlations, then taking fractional values. They converge asymptotically towards Fermi distributions which is a clear indication of thermalization.
Collisional and radiative processes in high-pressure discharge plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
Dynamical and collisional evolution of Halley-type comets
NASA Astrophysics Data System (ADS)
van der Helm, E.; Jeffers, S. V.
2012-03-01
The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.
Lithosphere delamination and topography evolution in collisional orogens
NASA Astrophysics Data System (ADS)
Li, Z. H.; Liu, M.; Gerya, T.
2015-12-01
Systematic high-resolution thermo-mechanical numerical models are conducted in order to better understand the behavior of deep mantle lithosphere and surface topography response during continental collision. In the models with similar rheological properties for the pro- (subducting) and retro- (overriding) continental plates, subduction mode is preferred, with localized topography uplift and mountain building. However, if the effective viscosities of the retro-plate are decreased, then delamination of the lithospheric mantle may occur there, which results in large-scale topography buildup and plateau formation. Several other factors that may also influence the delamination dynamics are further investigated, e.g., plastic weakening of the lithospheric mantle, density contrast between the lithospheric and asthenospheric mantle, convergence velocity, as well as the possible lower crust eclogitization effects. Based on the series of numerical simulations, the delamination processes in collisional orogens are summarized into three modes: (1) pro-plate delamination, (2) retro-plate delamination, and (3) a transitional double-plates (both the pro- and retro-plate) delamination. The controlling factors, as well as the geological applications in nature, of the variable delamination modes are also discussed.
3D multispecies collisional model of Ganymede's atmosphere
NASA Astrophysics Data System (ADS)
Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.
2016-10-01
Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.
Potential around a dust grain in collisional plasma
Moulick, R. Goswami, K. S.
2015-04-15
The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.
Hiding in the Shadows. II. Collisional Dust as Exoplanet Markers
NASA Astrophysics Data System (ADS)
Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J.; Dodson-Robinson, Sarah E.; Teanby, Nick A.
2016-03-01
Observations of the youngest planets (˜1-10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.
A collisional family of icy objects in the Kuiper belt.
Brown, Michael E; Barkume, Kristina M; Ragozzine, Darin; Schaller, Emily L
2007-03-15
The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61. PMID:17361177
On collisional diffusion in a stochastic magnetic field
Abdullaev, S. S.
2013-08-15
The effect of particle collisions on the transport in a stochastic magnetic field in tokamaks is investigated. The model of resonant magnetic perturbations generated by external coils at the plasma edge is used for the stochastic magnetic field. The particle collisions are simulated by a random walk process along the magnetic field lines and the jumps across the field lines at the collision instants. The dependencies of the local diffusion coefficients on the mean free path λ{sub mfp}, the diffusion coefficients of field lines D{sub FL}, and the collisional diffusion coefficients, χ{sub ⊥} are studied. Based on these numerical data and the heuristic arguments, the empirical formula, D{sub r}=χ{sub ⊥}+v{sub ||}D{sub FL}/(1+L{sub c}/λ{sub mfp}), for the local diffusion coefficient is proposed, where L{sub c} is the characteristic length of order of the connection length l{sub c}=πqR{sub 0}, q is the safety factor, R{sub 0} is the major radius. The formula quite well describes the results of numerical simulations. In the limiting cases, the formula describes the Rechester-Rosenbluth and Laval scalings.
Ro-Vibrational Collisional Excitation Database: BASECOL - http://www.obspm.fr/basecol
NASA Astrophysics Data System (ADS)
Dubernet, Marie-Lise; Grosjean, Alain; Flower, David; Roueff, Evelyne; Daniel, Fabien; Moreau, Nicolas; Debray, Bernard
2006-01-01
The BASECOL database is presented. The 2004 Version contains bibliographical and numerical data on collisional ro-vibrational excitation of molecules by H, He and H2. It provides collisional rotational and rovibrational excitation rate coefficients for molecules of astrophysical interest, the molecular energy levels and a complete description of the chain of errors. It gives information on current calculations and is designed as a reference database to be used by both astrophysicists and physicists.
First Test of Long-Range Collisional Drag via Plasma Wave Damping
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2016-10-01
This paper presents the first experimental confirmation of a new theory predicting enhanced drag due to long-range collisions in a magnetized plasma. The experiments measure damping of Langmuir waves in a multispecies pure ion plasma, which is dominated by interspecies collisional drag in certain regimes. The measured damping rates in these regimes exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agree with the new theory.
Collisional evolution - an analytical study for the non steady-state mass distribution.
NASA Astrophysics Data System (ADS)
Vieira Martins, R.
1999-05-01
To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the
Degenerate four-wave mixing and phase conjugation in a collisional plasma
Federici, J.F.; Mansfield, D.K.
1986-06-01
Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10..mu..m. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed.
Collisional processes and transfer of mass among the planetary satellites
NASA Astrophysics Data System (ADS)
Marchi, S.; Dell'Oro, A.; Paolicchi, P.; Barbieri, C.
2001-08-01
Several pairs of planetary satellites may have been involved, during the history of the Solar System, in mutual mass transfer processes. Such processes can be triggered by catastrophic collisions of a satellite (parent body) with a third object. As a consequence, the collision fragments are injected into independent orbits that can cross the trajectory of the another satellite (target). These swarms of secondary impacts may be of some importance influencing the properties of the target body. Even the formation of the atmosphere around some giant satellites may have been triggered by the gas released after the impacts of fragments onto the target's surface. Moreover, the different albedos and the different surface density of impact craters within the same satellite system may be connected to peculiar collisional phenomena, such as those we are dealing with. A quantitative modelling of the role of mass transfer processes obviously requires an estimate of how much material the parent bodies are able to supply, and under what circumstances the process may take place. A general analysis of the various pairs throughout the major satellite systems present in the Solar System has been performed in the present paper. Our analysis uses a statistical algorithm, computing, as a function of the initial properties of the fragments (masses and ejection velocities from their parent body), the mean intrinsic probability of impact, and then the mean lifetime of a fragment before impacting the target, as well as the distribution of the relative velocity. For an order-of-magnitude estimate of the available amount of mass, some simple analytical equations have been derived to evaluate the fraction of fragments from the parent body that can reach the target. These formulae allow a preliminary discrimination of the interesting cases. The pair Hyperion-Titan and the Uranus system have been analyzed in detail.
Coupling Dynamical And Collisional Evolution Of Dust In Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Charnoz, Sebastien
2010-10-01
Gaseous circumstellar disks are rich in dust and are thought to be both accretionaly and dynamically active. Unfortunately large bodies that could be embedded in these disks are still difficult to observe and their putative properties are indirectly inferred from the observable small dust content. It is why constraining the size distribution coupled with dust-dynamics is so critical. Unfortunately, coupling effects such as a realistic time-dependant dynamics, fragmentation and coagulation, has been recognized as numerically challenging and almost no attempt really succeeded with a generic approach. In these disks, the dust dynamics is driven by a variety of processes (gravity, gas drag, radiation pressure..) inducing a size-dependant dynamics, and, at the same time collisional evolution changes the local size distributions. These two effects are intimately coupled because the local dynamics and size-distribution determines the local collision rates, that, in-turn, determines the size-distribution and modifies the particle's dynamics. Here we report on a new algorithm that overcomes these difficulties by using a hybrid approach extending the work of Charnoz & Morbidelli (Icarus, 2004, 2007). We will briefly present the method and focus on gaseous protoplanetary disks either laminar or turbulent (the time dependant transport and dust evolution will be shown) . We will show how the taking into account of a 3D dynamics helps to determine disantengle the dust size-distribution in the disk's photosphere and in the midplane and thus may provide observational signatures of accretion. We will show how the coupling of turbulence with fragmentation may significantly affect the dust/ratio for the smallest bodies. Finally, we will show that an accurate description of the time dependant dynamics of larger dusts (those with Stokes numbers >= 1) may provide a possible path to the formation of bodies larger than the accretion barrier, through accretion in a transitory regime.
The Collisional Cascade Model for Saturn's Ring Spokes
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2006-09-01
Spokes in Saturn's B ring are rapidly-formed radial markings that have puzzled planetary scientists since their discovery in Voyager images 25 years ago. The most popular theoretical model, due to Goertz and Morfill (1983), postulates that meteoroid impacts into the rings generate clouds of plasma that charge micron-sized dust grains and levitate them out of the ring plane. Recently this model has received two major challenges. First McGhee etal (2005) using HST and later the Cassini imaging team found that spokes are not readily observed when Saturn's rings have a large opening angle as seen from the Sun. The Goertz and Morfill model predicts no such dependence. Second, Framer and Goldreich (2005) showed theoretically that the radial propagation speed of the plasma cloud is limited to about 2km/s, far slower than the >20km/s implied by the rapid formation of some Voyager spokes. Here we present a new model for the formation of Saturn ring spokes that can address the two recent challenges. As with the Goertz and Morfill model, we begin with an interplanetary impact that releases a cloud of dusty ejecta. Some micron-sized debris is immediately visible, but only in a small localized area. In addition, numerous invisible submicron dust grains are also produced. These tiny grains are rapidly accelerated to high speeds by electromagnetic forces, and they are transported both vertically and radially. When they return to the ring plane, the submicron grains strike ring parent bodies at km/s speeds raising clouds of new debris particles at new radial locations; small grains continue this collisional cascade, while micron-sized ones become visible as spokes. We will show that visible spokes form rapidly, as observed, and will discuss how their generation is suppressed by solar radiation pressure.
Laboratory Measurement of OH(υ = 2) Collisional Deactivation by Oxygen Atoms
NASA Astrophysics Data System (ADS)
Marschall, J.; Kalogerakis, K. S.; Copeland, R. A.
2001-05-01
Vibrationally excited hydroxyl radicals (υ = 6-9) are generated in the 80 to 100 km altitude range of the Earth's atmosphere by the reaction of atomic hydrogen with ozone. Low vibrational levels (υ < 5) are populated from the higher vibrational levels via collisions with molecular oxygen. For these low vibrational levels molecular oxygen relaxation is inefficient (1.3 - 17 x10-13 cm3-s-1 at room temperature [1]) and collisions with oxygen atoms may play an important role in the collisional lifetime in the atmosphere. Given the importance of O-atom collisions, we have developed an experimental approach and performed experiments on the collisional removal of OH(υ = 2) with O-atoms. In our experimental approach, we use the output of a pulsed excimer laser at 248 nm to photodissociate ozone in an O3/H2O/N2 mixture and the wavelength tunable output of a frequency-double Nd:YAG-pumped dye laser to probe the transient population of OH in the υ = 0, 1, and 2 vibrational levels using laser-induced fluorescence spectroscopy. Vibrationally excited OH molecules are produced, in vibrational levels up to and including υ = 2, through the exothermic reaction of O(1D) with water. By adjusting the composition of the O3/H2O/N2 mixture and by varying the 248 nm laser fluence to control the ozone dissociation fraction, the dominant relaxation partner can be varied systematically from ozone and water to atomic oxygen. We can dissociate > 90% of the ozone in the beam with easily obtainable laser fluences, generating copious amounts of O atoms. Using this method we obtained a preliminary rate constant of 4 \\pm 1 x10-11 cm3-s-1 for removal of OH(υ = 2) with O atoms. This rate constant is only slightly larger than the value of 3.3 \\pm 0.7 x10-11 cm3-s-1 for the reaction of OH(υ = 0) with O atoms to generate H atoms and oxygen molecules [2]. This weak dependence of OH loss rates on vibrational excitation is in contrast to previous measurements indicating a factor of 3 to 5 increase
Experimental investigations of weak definite and weak indefinite noun phrases
Klein, Natalie M.; Gegg-Harrison, Whitney M.; Carlson, Greg N.; Tanenhaus, Michael K.
2013-01-01
Definite noun phrases typically refer to entities that are uniquely identifiable in the speaker and addressee’s common ground. Some definite noun phrases (e.g. the hospital in Mary had to go the hospital and John did too) seem to violate this uniqueness constraint. We report six experiments that were motivated by the hypothesis that these “weak definite” interpretations arise in “incorporated” constructions. Experiments 1-3 compared nouns that seem to allow for a weak definite interpretation (e.g. hospital, bank, bus, radio) with those that do not (e.g. farm, concert, car, book). Experiments 1 and 2 used an instruction-following task and picture-judgment task, respectively, to demonstrate that a weak definite need not uniquely refer. In Experiment 3 participants imagined scenarios described by sentences such as The Federal Express driver had to go to the hospital/farm. The imagined scenarios following weak definite noun phrases were more likely to include conventional activities associated with the object, whereas following regular nouns, participants were more likely to imagine scenarios that included typical activities associated with the subject; similar effects were observed with weak indefinites. Experiment 4 found that object-related activities were reduced when the same subject and object were used with a verb that does not license weak definite interpretations. In Experiment 5, a science fiction story introduced an artificial lexicon for novel concepts. Novel nouns that shared conceptual properties with English weak definite nouns were more likely to allow weak reference in a judgment task. Experiment 6 demonstrated that familiarity for definite articles and anti- familiarity for indefinite articles applies to the activity associated with the noun, consistent with predictions made by the incorporation analysis. PMID:23685208
Resisting Weakness of the Will
Levy, Neil
2012-01-01
I develop an account of weakness of the will that is driven by experimental evidence from cognitive and social psychology. I will argue that this account demonstrates that there is no such thing as weakness of the will: no psychological kind corresponds to it. Instead, weakness of the will ought to be understood as depletion of System II resources. Neither the explanatory purposes of psychology nor our practical purposes as agents are well-served by retaining the concept. I therefore suggest that we ought to jettison it, in favour of the vocabulary and concepts of cognitive psychology. PMID:22984298
Reichenbach, H.; Kuhl, A.L.
1993-09-07
The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: square-wave planar shock reflection from wedges; square-wave planar shock reflection from cylinders; and spherical blast wave reflection from a planar surface. We restrict ourselves to weak shocks. Shocks with a Mach number of M{sub O} < 1.56 in air or with an overpressure of {Delta}{sub PI} < 25 psi (1.66 bar) under normal ambient conditions are called weak.
Ion acoustic shock wave in collisional equal mass plasma
Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil
2015-10-15
The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.
Ion acoustic shock wave in collisional equal mass plasma
NASA Astrophysics Data System (ADS)
Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil
2015-10-01
The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.
Collisional Disruption of Gravity Dominated Bodies: New Data and Scaling
NASA Astrophysics Data System (ADS)
Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E. I.; Owen, M.
2015-12-01
We present data from a suite of 169 hydrocode simulations of collisions between planetary bodies with radii from 100 to 1000 km. The data is used to derive a simple scaling law for the threshold for catastrophic disruption, defined as a collision that leads to half the total colliding mass escaping the system post impact. For a target radius 100≤R_T≤1000 km and a mass MTM_T and a projectile radius r_p≤R_T and mass mpm_p we find that a head-on impact with velocity magnitude vv is catastrophic if the kinetic energy of the system in the center of mass frame, K=0.5{M_T}{m_p}/(M_T+m_p)v^2, exceeds K∗R_D=(3.3±0.6)U_R U_R where U_R=(3/5)G{M_T}^2/R_T + (3/5)G{m_p}^2/{r_p}+G{M_T}{m_p}/(M_T+{m_p}) is the gravitational binding energy of the system at the moment of impact; GG is the gravitational constant. Oblique impacts are catastrophic when the fraction of kinetic energy contained in the volume of the projectile intersecting the target at impact exceeds ˜1.9K∗_RD for 30° impacts and ˜3.5K∗_RD for 45deg; impacts. We compare predictions made with this scaling to those made with existing scaling laws in the literature extrapolated from numerical studies on smaller targets. We find significant divergence between predictions where in general our data suggest a lower threshold for disruption except for highly oblique impacts with r_p≪R_T. This result has implications for the efficiency of collisional grinding in the asteroid belt (Morbidelli, A., Bottke, W. F., Nesvorny, D., & Levison, H. F., 2009, Icarus, 204, 558-573), Kuiper belt (Greenstreet, S., Gladman, B., & McKinnon, W. B., 2015, Icarus, 258, 267-288), and early solar system accretion (Chambers, J. E., 2013, Icarus, 224, 43-56).
Collisional modelling of the AU Microscopii debris disc
NASA Astrophysics Data System (ADS)
Schüppler, Ch.; Löhne, T.; Krivov, A. V.; Ertel, S.; Marshall, J. P.; Wolf, S.; Wyatt, M. C.; Augereau, J.-C.; Metchev, S. A.
2015-09-01
AU Microscopii's debris disc is one of the most famous and best-studied debris discs and one of only two resolved debris discs around M stars. We perform in-depth collisional modelling of the AU Mic disc including stellar radiative and corpuscular forces (stellar winds), aiming at a comprehensive understanding of the dust production and the dust and planetesimal dynamics in the system. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3 mm to spatially resolved polarisation measurements in the visible. Most of the data are shown to be reproduced with dust production in a belt of planetesimals with an outer edge at around 40 au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5 au and 17 au wide, as well as a broad 44 au-wide belt, are consistent with observations. All models show surface density profiles that increase with distance from the star up to ≈40 au, as inferred from observations. The best model is achieved by assuming a stellar mass loss rate that exceeds the solar one by a factor of 50. The models reproduce the spectral energy distribution and the shape of the ALMA radial profile well, but deviate from the scattered light observations more strongly. The observations show a bluer disc colour and a lower degree of polarisation for projected distances <40 au than predicted by the models. These deviations may be reduced by taking irregularly shaped dust grains which have scattering properties different from the Mie spheres used in this work. From tests with a handful of selected dust materials, we favour mixtures of silicate, carbon, and ice of moderate porosity. We also address the origin of the unresolved central excess emission detected by ALMA and show that
Spoke Formation in Saturn's Ring: The Collisional Cascade Model
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2014-11-01
The mysterious wedge-shaped spokes in Saturn's main rings have defied explanation ever since their discovery during the Voyager flybys of the early 1980s. No earlier model can explain the three disparate timescales over which spokes evolve: i) the 10-minute formation time for a new spoke, ii) the hour-long period over which a spoke's radial edge remains active, and iii) the day-long timescale over which the magnetic longitude of earlier spoke activity is preferentially repopulated with subsequent spokes. This and other observations of ongoing spoke formation can be understood in the context of a Collisional Cascade model in which a hail of rapidly-moving submicron dust grains rain down upon more massive ring particles. Tiny ~0.1 micron grains leave the ring plane en masse from the site of an initial disturbance (likely a meteoroid impact) and are accelerated by the magnetic field to high speeds relative to more massive ring particles. When the dust returns to the ring plane -nearly simultaneously over a large radial range - they strike fluffy dust-coated ring particles at km/s speeds, freeing both visible 0.5 micron spoke particles and additional submicron debris. Differences between the motions of the 0.1 micron dust grains and the much larger ring particles provides a potent free energy source that powers spoke formation. The onset of this hail of tiny energetic impactors can account for the observed rapid formation of spokes and, as the hail continues to fall, for the hour-long active periods over which some spoke edges remains nearly radial. The hour-long timescale is controlled by differences in initial launch velocities and different grain charge-to-mass ratios which strongly affect vertical motions. Additional tiny grains liberated in the first hailstorm go on to continue the cascade, returning to strike the same magnetic longitude in the ring hours to days later and stirring up more micron-sized spoke particles. This continuing cascade nicely accounts for
NASA Astrophysics Data System (ADS)
Lucca Fabris, Andrea; Young, Chris V.; Cappelli, Mark A.; Plasma Physics Laboratory Team
2014-10-01
We study the evolution of the Xe I 6 s '[ 1 / 2 ] 1 - 6 p '[ 3 / 2 ] 2 (834.68 nm air) transition lineshape in a plasma discharge oscillating at 60 Hz using time-synchronized laser induced fluorescence (LIF) measurements and a collisional-radiative model. Two different time-synchronized LIF techniques based on phase sensitive detection of the fluorescence signal are applied, yielding consistent results. The maximum observed peak fluorescence intensity occurs at low values of the discharge current, although the peak intensity drops to zero at zero discharge current. The peak intensity also decreases at the discharge current maximum. A dynamic collisional-radiative model of the weakly ionized xenon discharge is also implemented, based on a set of rate equations. The proper electron impact cross-sections and radiative decay rates are identified from the literature and used to compute accurate rate coefficients with the Boltzmann solver Bolsig+, including the time-varying electric field. The time evolution of the probed excited state density predicted by the model shows good agreement with the experimental measurements. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. CVY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.
Weak interactions and presupernova evolution
Aufderheide, M.B. State Univ. of New York . Dept. of Physics)
1991-02-19
The role of weak interactions, particularly electron capture and {beta}{sup {minus}} decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs.
Precision Metrology Using Weak Measurements
NASA Astrophysics Data System (ADS)
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A.
2015-05-01
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Collisional Effect on Weibel Instability with Semi-Relativistic Maxwellian Distribution Function
NASA Astrophysics Data System (ADS)
Mahdavi, M.; Khanzadeh, H.
2014-01-01
In this paper, the Coulomb collisional effect of electron-ion on the growth rate of Weibel instability is investigated based on the semi-relativistic Maxwellian distribution function in dense and unmagnetized plasma. An analytical expression was derived for the dispersion relation of Weibel instability for two limit cases |ξ = ω'/k‖ T‖|≫ 1 and |ξ| ≪ 1. In limit |ξ| ≫ 1 the dispersion relation only includes a real part and in limit |ξ| ≪ 1 the imaginary part of the frequency of waves' instability plays a role in the dispersion relation. In limit |ξ| ≪ 1, the two quantities μ and η, that are due to the relativistic and collisional effects, will appear in the growth rate of Weibel instability. The growth rate of Weible istability will be increased through decreasing the Coulomb collisional frequency and also increasing the temperature anisotropic parameter in strong relativistic limit.
Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption
NASA Astrophysics Data System (ADS)
Wani, Manzoor Ahmad; Kant, Niti
2016-09-01
This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma. Supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II
Formation and evolution of vortices in a collisional strongly coupled dusty plasma
NASA Astrophysics Data System (ADS)
Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil
2016-07-01
Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge-Kutta-Gill time integrator.
A multi-species 13-moment model for moderately collisional plasmas
NASA Astrophysics Data System (ADS)
Miller, S. T.; Shumlak, U.
2016-08-01
Fluid-based models of collisional transport in multi-species plasmas have typically been applied to parameter regimes where a local thermal equilibrium is assumed. While this parameter regime is valid for low temperature and/or high density applications, it begins to fail as plasmas enter the collisionless regime and kinetic effects dominate the physics. A plasma model is presented that lays the foundation for extending the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the pressure tensor and heat flux vector along with the density and flow velocity to capture dynamics usually restricted to kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collisional interactions.
Investigation of the Electron-Ion Hybrid Instability in a Collisional Environment
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Enloe, L.; Sotnikov, V. I.; Amatucci, B.; Ganguli, G.
2013-12-01
The Electron-Ion Hybrid (EIH) instability, a transverse velocity shear-driven instability with frequency near the lower hybrid frequency, was previously predicted theoretically to explain the observation of lower hybrid waves in applications from the plasma sheet boundary layer to laser produced plasmas. The EIH instability has also been observed in the laboratory in scaled magnetospheric plasma conditions and in laser produced plasma expansion experiments across magnetic fields. In the work presented, we have expanded the theoretical framework to highly collisional plasmas for applications to the plasma region surrounding a hypersonic vehicle. In this collisional plasma layer, strongly sheared transverse flows can exist that can give rise to the EIH instability. We wish to study whether the resulting lower hybrid turbulence can impede communication to and from the hypersonic vehicle. Results from theory and a comparison from laboratory experiments on the generation of the EIH instability in a collisional plasma environment will be presented.
Collisional statistics and dynamics of two-dimensional hard-disk systems: From fluid to solid.
Taloni, Alessandro; Meroz, Yasmine; Huerta, Adrián
2015-08-01
We perform extensive MD simulations of two-dimensional systems of hard disks, focusing on the collisional statistical properties. We analyze the distribution functions of velocity, free flight time, and free path length for packing fractions ranging from the fluid to the solid phase. The behaviors of the mean free flight time and path length between subsequent collisions are found to drastically change in the coexistence phase. We show that single-particle dynamical properties behave analogously in collisional and continuous-time representations, exhibiting apparent crossovers between the fluid and the solid phases. We find that, both in collisional and continuous-time representation, the mean-squared displacement, velocity autocorrelation functions, intermediate scattering functions, and self-part of the van Hove function (propagator) closely reproduce the same behavior exhibited by the corresponding quantities in granular media, colloids, and supercooled liquids close to the glass or jamming transition. PMID:26382368
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
NASA Astrophysics Data System (ADS)
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in
Insights on Continental Collisional Processes from GPS Data: Dynamics of the Peri-Adriatic Belts
NASA Astrophysics Data System (ADS)
Metois, Marianne; D'Agostino, Nicola; Avallone, Antonio; Chamot-Rooke, Nicolas; Rabaute, Alain; Duni, Llambro; Kuka, Neki; Koci, Rexhep; Georgiev, Ivan
2015-04-01
Recent advances in GPS technology and processing strategies make now spatial geodesy a suitable tool to image intra-continental slowly deforming areas such as collisional mountain belts and to get further insights on their kinematics and dynamics. Here, using the peri-Adriatic belts as a test case, we propose a methodology based on accurate GPS velocities to discriminate whether the current day deformation pattern over a mountain belt is controlled at the first order by gravity through gradients of gravitational potential energy. We calculate a new GPS velocity field covering the peri-Adriatic region and the entire Balkan Peninsula, taking advantage of newly available measurements coming from private networks operating since several years in this area. Based on these velocities, we derive the strain rate tensor and an interpolated velocity field using the method of Haines & Holt (1993). Opposite to the commonly accepted hypothesis considering the Balkans as part of the stable Eurasia, we show that the peninsula experiences significant compression across the Dinarides belt and extension toward the Aegean domain South of 44°N. We image a clockwise rotation of the entire peninsula around North Albania, and propose that the lithosphere under the old Scutari-Peck transform zone is weak and acts as a pivot point for this rotation since early Miocene. The Hellenic slab suction and the release of stress in the northern Hellenides subduction zone may favour the southwestward motion of the inner Balkan lithosphere, flowing between the rigid Apulia and Black sea blocks consequently. Because our velocity field is unusually dense in Slovenia and Austria, we picture the Eastern Alps deformation with great details and show that the Austrian Alps are moving eastward together with the Alpine foreland and Bohemian Promontory relative to stable Eurasia. Based on these new GPS data, we investigate the dynamics of the peri-Adriatic mountain belts, in particular of Albania and Eastern
Weak Energy: Form and Function
NASA Astrophysics Data System (ADS)
Parks, Allen D.
The equation of motion for a time-dependent weak value of a quantum mechanical observable contains a complex valued energy factor—the weak energy of evolution. This quantity is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. It is shown that this energy: (i) is manifested as dynamical and geometric phases that govern the evolution of the weak value during the measurement process; (ii) satisfies the Euler-Lagrange equations when expressed in terms of Pancharatnam (P) phase and Fubini-Study (FS) metric distance; (iii) provides for a PFS stationary action principle for quantum state evolution; (iv) time translates correlation amplitudes; (v) generalizes the temporal persistence of state normalization; and (vi) obeys a time-energy uncertainty relation. A similar complex valued quantity—the pointed weak energy of an evolving quantum state—is also defined and several of its properties in PFS coordinates are discussed. It is shown that the imaginary part of the pointed weak energy governs the state's survival probability and its real part is—to within a sign—the Mukunda-Simon geometric phase for arbitrary evolutions or the Aharonov-Anandan (AA) geometric phase for cyclic evolutions. Pointed weak energy gauge transformations and the PFS 1-form are defined and discussed and the relationship between the PFS 1-form and the AA connection 1-form is established. [Editors note: for a video of the talk given by Prof. Parks at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-25.
NASA Astrophysics Data System (ADS)
Thébault, P.
2012-01-01
Context. Debris discs are traditionally studied using two distinct types of numerical models: statistical particle-in-a-box codes to study their collisional and size distribution evolution, and dynamical N-body models to study their spatial structure. The absence of collisions in N-body codes is in particular a major shortcoming, as collisional processes are expected to significantly alter the results obtained from pure N-body runs. Aims: We present a new numerical model, to study the spatial structure of perturbed debris discs in both a dynamical and collisional steady-state. We focus on the competing effects of gravitational perturbations by a massive body (planet or star), the collisional production of small grains, and the radiation pressure placing these grains in possibly dynamically unstable regions. Methods: We consider a disc of parent bodies in a dynamical steady-state, from which small radiation-pressure-affected grains are released in a series of runs, each corresponding to a different orbital position of the perturber, where particles are assigned a collisional destruction probability. These collisional runs produce successive position maps that are then recombined, following a complex procedure, to generate surface density profiles for each orbital position of the perturbing body. Results: We apply our code to the case of a circumprimary disc in a binary. We find pronounced structures inside and outside the dynamical stability regions. For low eB, the disc's structure is time varying, with spiral arms in the dynamically "forbidden" region precessing with the companion star. For high eB, the disc is strongly asymmetric but time invariant, with a pronounced density drop in the binary's periastron direction.
Linear tearing mode stability equations for a low collisionality toroidal plasma
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2009-01-01
Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake
Is collisional breakup an important process within mixed-phase deep convective clouds?
NASA Astrophysics Data System (ADS)
Seifert, A.; Khain, A.; Mayer, F.
2003-04-01
The microphysics of deep convective clouds determines their precipitation efficiency as well as the dynamical evolution of cloud systems and is therefore of great importance for numerical weather prediction, flood forecasting and regional climate modeling. Of all cloud systems mixed-phase deep convection is maybe the most complex and least understood. One reason is that the numerous microphysical processes taking place are highly nonlinear and strongly coupled with each other as well as with the hydrodynamics of the cloud. Collisional breakup of raindrops is one of these cloud microphysical processes, but is often neglected or not well represented in state-of-the-art cloud resolving models. The importance of collisional breakup is well known for tropical cloud systems, which are dominated by warm phase processes. In addition various studies using so-called rainshaft models showed that collisional breakup can alter the raindrop size distribution below cloud base. But what happens within the clouds and especially within strong convective updrafts? Can collisional breakup lead to a different cloud evolution by changing the drop size distribution? Using the Hebrew University Cloud Model (HUCM), which includes the most detailed spectral microphysics model available today, we performed a sensitivity study to answer these questions. Collisional breakup was therefore recently included in HUCM using Bleck's numerical method, which is standard for simulation of the breakup process. Our breakup scheme itself is mainly based on the parameterization of Low and List (1982, JAS), but includes also additional data for small raindrops by Beard and Ochs (1995, JAS). As a test case a deep convective mixed-phase cloud is simulated with initial conditions based on a sounding from 13 August 1999, Midland/Texas. We present a detailed analysis of the simulated cloud evolution with and without collisional breakup taken into account. The conclusion from our sensitivity study is that
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
New regime of low ion collisionality in the neoclassical equilibrium of tokamak plasmas
Ramos, J. J.
2015-07-15
The neoclassical description of an axisymmetric toroidal plasma equilibrium is formulated for an unconventionally low ordering of the collisionality that suits realistic thermonuclear fusion conditions. This requires a drift-kinetic analysis to the second order of the ion Larmor radius, which yields a new contribution to the leading solution for the non-Maxwellian part of the ion distribution function if the equilibrium geometry is not up-down symmetric. An explicit geometrical factor weighs this second Larmor-radius order, low-collisionality effect that modifies the neoclassical ion parallel flow, and the ion contribution to the bootstrap current.
Ro-vibrational Collisional Excitation Database: BASECOL - http://www.obspm.fr/basecol
NASA Astrophysics Data System (ADS)
Dubernet, M. L.; Cernicharo, J.; Daniel, F.; Debray, B.; Faure, A.; Feautrier, N.; Flower, D.; Grosjean, A.; Roueff, E.; Spielfiedel, A.; Stoecklin, T.; Valiron, P.
2004-12-01
Numerical and bibliographical Databases in Atomic and Molecular Physics are essential for both the modelling of various astrophysical media and the interpretation of astrophysical spectra provided by ground or space-based telescopes. We will present the current status of a numerical and bibliographical database concerning collisional ro-vibrational excitation rate coefficients of molecules (basecol.obs-besancon.fr). This is part of a EU effort towards the scientific preparation of the HIFI instrument of the Herschel Space Observatory (HSO) and ALMA. An identification of needs for data on collisional ro-vibrational excitation of molecules has been specified in a recent report. These first steps have triggered different groups to carry out calculations on collisional ro-vibrational excitation of molecules and to build a related bibliographic and numerical database. This database, called BASECOL is devoted to collisional ro-vibrational excitation of molecules by colliders such as atom, ion, molecule or electron. We have constituted a international working group of molecular physicists involved in the calculations of ro-vibrational cross-sections, in order to ensure the continuity and the quality of the database. We are primarily focusing on collisional systems of interest for various astrophysical media. The database is composed of several parts : a bibliographic database (papers are read and associated to very precise keywords), calculated collisional rates or cross-sections, information on the molecular data used in the cross section calculations, various information on ro-vibrational excitation of molecules. For the systems of astrophysical interest, we will provide full information on the chain of errors of the data and give some recommendations. We will improve and enlarge the content of the bibliographic database and provide more collisional rates. Access is currently available via a classical WEB interface with an interactive query page for the bibliographic
Cooling and Infrared Emission due to Molecular Collisional Excitation in Astrophysical Environments
NASA Astrophysics Data System (ADS)
Stancil, Phillip
2011-06-01
Non-thermal popluations of molecules in a variety of astronomical environments, including photodissociation regions, X-ray dominated regions, and protoplanetary disks, are controlled by collisional excitation and quenching of their rovibrational levels. The important colliders are the dominant neutral species: H, He, and H2. Resulting emission lines are primary cooling transitions and can be observed by current and upcoming IR/submillimeter observatories including Spitzer, Herschel, SOFIA, and ALMA. Modeling these environments, however, requires large-scale computation of collisional excitation processes. The status, needs, and astrophysical applications for important molecular targets will be reviewed including H2, HD, CO, H2O, and NH3.
Collisional narrowing by polyatomic buffer gases in an optically pumped CH3F laser
NASA Technical Reports Server (NTRS)
Lawandy, N. M.; Koepf, G. A.
1980-01-01
The gain linewidth of an optically pumped CH3F molecular laser is observed with the addition of various polyatomic buffer gases. This is interpreted as collisional (Dicke) narrowing. The measurement is the first observation of collisional narrowing by polyatomic buffer gases. It is also the first observation of the effect in a laser oscillator. The effect was observed using a heterodyne mixing technique at the laser emission frequency of 604 GHz. Collision cross sections for SF6-CH3F and CS2-CH3F are obtained.
A flexible method to evolve collisional systems and their tidal debris in external potentials
NASA Astrophysics Data System (ADS)
Renaud, Florent; Gieles, Mark
2015-04-01
We introduce a numerical method to integrate tidal effects on collisional systems, using any definition of the external potential as a function of space and time. Rather than using a linearization of the tidal field, this new method follows a differential technique to numerically evaluate the tidal acceleration and its time derivative. These are then used to integrate the motions of the components of the collisional systems, like stars in star clusters, using a predictor-corrector scheme. The versatility of this approach allows the study of star clusters, including their tidal tails, in complex, multicomponents, time-evolving external potentials. The method is implemented in the code NBODY6.
Magnetic data analysis for the ALS lattice magents
Keller, R.
1991-05-01
The Advanced Light Source (ALS), now under construction at Lawrence Berkeley Laboratory, is a third-generation synchrotron radiation source designed to produce extremely bright photon beams in the UV and soft X-ray regions. The lattice magnets to be installed in the two rings, a 1--1.9 GeV storage ring, and a 1.5 GeV booster synchrotron, have been magnetically measured to ascertain their excitation curves and field uniformity. In this paper the analysis of these data is discussed, and results for measured magnets are given. 5 refs., 2 figs., 7 tabs.
NATIONAL HIGH MAGENTIC FIELD LABORATORY FEL INJECTOR DESIGN CONSIDERATION
Pavel Evtushenko; Stephen Benson; David Douglas; George Neil
2007-06-25
A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, and is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility.
Quantum discord with weak measurements
Singh, Uttam Pati, Arun Kumar
2014-04-15
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.
Weak Selection and Protein Evolution
Akashi, Hiroshi; Osada, Naoki; Ohta, Tomoko
2012-01-01
The “nearly neutral” theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (including adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave fitness functions as a plausible underlying basis for weak selection. PMID:22964835
Exploring the collisional evolution of the asteroid belt
NASA Astrophysics Data System (ADS)
Bottke, W.; Broz, M.; O'Brien, D.; Campo Bagatin, A.; Morbidelli, A.
2014-07-01
The asteroid belt is a remnant of planet-formation processes. By modeling its collisional and dynamical history, and linking the results to constraints, we can probe how the planets and small bodies formed and evolved. Some key model constraints are: (i) The wavy shape of the main-belt size distribution (SFD), with inflection points near 100-km, 10--20-km, 1 to a few km, and ˜0.1-km diameter; (ii) The number of asteroid families created by the catastrophic breakup of large asteroid bodies over the last ˜ 4 Gy, with the number of disrupted D > 100 km bodies as small as ˜20 or as large as 60; (iii) the flux of small asteroids derived from the main belt that have struck the Moon over the last 3.5 Ga --- crater SFDs on lunar terrains with known ages suggest the D < 0.1 km projectile population has not varied appreciably over this interval; (iv) Vesta has an intact basaltic crust with two very large basins, but only two, on its surface. Fits to these parameters allow us to predict the shape of the initial main-belt SFD after accretion and the approximate asteroid disruption scaling law, with the latter consistent with numerical hydrocode simulations. Overall, we find that the asteroid belt probably experienced the equivalent of ˜6--10 Gy of comminution over its history. This value may seem strange, considering the solar system is only 4.56 Gy old. One way to interpret it is that the main belt once had more mass that was eliminated by early dynamical processes between 4--4.56 Ga. This would allow for more early grinding, and it would suggest the main belt's wavy-shaped SFD is a ''fossil'' from a more violent early epoch. Simulations suggest that most D > 100 km bodies have been significantly battered, but only a fraction have been catastrophically disrupted. Conversely, most small asteroids today are byproducts of fragmentation events. These results are consistent with growing evidence that most of the prominent meteorite classes were produced by young asteroid
Warping the Weak Gravity Conjecture
NASA Astrophysics Data System (ADS)
Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne
2016-08-01
The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
State tomography via weak measurements
Wu, Shengjun
2013-01-01
Recent work has revealed that the wave function of a pure state can be measured directly and that complementary knowledge of a quantum system can be obtained simultaneously by weak measurements. However, the original scheme applies only to pure states, and it is not efficient because most of the data are discarded by post-selection. Here, we propose tomography schemes for pure states and for mixed states via weak measurements, and our schemes are more efficient because we do not discard any data. Furthermore, we demonstrate that any matrix element of a general state can be directly read from an appropriate weak measurement. The density matrix (with all of its elements) represents all that is directly accessible from a general measurement. PMID:23378924
Cosmology and the weak interaction
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.
Weak value amplification considered harmful
NASA Astrophysics Data System (ADS)
Ferrie, Christopher; Combes, Joshua
2014-03-01
We show using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of parameter estimation and signal detection. We show that using all data and considering the joint distribution of all measurement outcomes yields the optimal estimator. Moreover, we show estimation using the maximum likelihood technique with weak values as small as possible produces better performance for quantum metrology. In doing so, we identify the optimal experimental arrangement to be the one which reveals the maximal eigenvalue of the square of system observables. We also show these conclusions do not change in the presence of technical noise.
Cosmology and the weak interaction
Schramm, D.N. ):)
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
NASA Astrophysics Data System (ADS)
Candy, J.; Belli, E. A.; Bravenec, R. V.
2016-11-01
We describe a new approach to solve the electromagnetic gyrokinetic equations which is optimized for accurate treatment of multispecies Fokker-Planck collisions including both pitch-angle and energy diffusion. The new algorithm is spectral/pseudospectral in four of the five phase space dimensions, and in the fieldline direction a novel 5th-order conservative upwind scheme is used to permit high-accuracy electromagnetic simulation even in the limit of very high plasma β and vanishingly small perpendicular wavenumber, k⊥ → 0. To our knowledge, this is the first pseudospectral implementation of the collision operator in a gyrokinetic code. We show that the new solver agrees closely with GYRO in the limit of weak Lorentz collisions, but gives a significantly more realistic description of collisions at high collision frequency. The numerical methods are also designed to be efficient and scalable for multiscale simulations that treat ion-scale and electron-scale turbulence simultaneously.
Cosmology with weak lensing surveys.
Munshi, Dipak; Valageas, Patrick
2005-12-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.
Weak localization of seismic waves.
Larose, E; Margerin, L; Van Tiggelen, B A; Campillo, M
2004-07-23
We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity.
Cosmology with weak lensing surveys.
Munshi, Dipak; Valageas, Patrick
2005-12-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284
Graczyk, Krzysztof M.
2011-11-23
A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; Cintala, Mark; See, Thomas; Bernhard, Ronald; Cardenas, Frank; Davidson, William; Haynes, Jerry
1992-01-01
An experimental inquiry into the utility of discontinuous bumpers was conducted to investigate the collisional outcomes of impacts into single grid-like targets and to compare the results with more traditional bumper designs that employ continuous sheet stock. We performed some 35 experiments using 6.3 and 3.2 mm diameter spherical soda-lime glass projectiles at low velocities (less than 2.5 km/s) and 13 at velocities between 5 and 6 km/s, using 3.2 mm spheres only. The thrust of the experiments related to the characterization of collisional fragments as a function of target thickness or areal shield mass of both bumper designs. The primary product of these experiments was witness plates that record the resulting population of collisional fragments. Substantial interpretive and predictive insights into bumper performance were obtained. All qualitative observations (on the witness plates) and detailed measurements of displaced masses seem simply and consistently related only to bumper mass available for interaction with the impactor. This renders the grid bumper into the superior shield design. These findings present evidence that discontinuous bumpers are a viable concept for collisional shields, possibly superior to continuous geometries.
Collisional shift of hyperfine line for rubidium in an atmosphere of the buffer inert gas
NASA Astrophysics Data System (ADS)
Glushkov, A. V.; Khetselius, O. Yu; Lopatkin, Y. M.; Florko, T. A.; Kovalenko, O. A.; Mansarliysky, V. F.
2014-11-01
New relativistic approach, based on the relativistic many-body perturbation theory using optimized wave functions sets, is applied to calculate the hyper fine structure collision shift for rubidium atom in atmosphere of the helium inert gas. Data for the collisional shifts of the Rb-He system are presented and compared with data available in the literature.
Do the Pop II field blue stragglers have a collisional origin
Leonard, P.J.T.
1993-01-01
The hypothesis that the Pop II field blue stragglers have a collisional origin is considered. It appears unlikely that the majority of these stragglers were formed via collisions, but it is difficult to rule out the possibility that a small, but observable, fraction of them were.
Do the Pop II field blue stragglers have a collisional origin?
Leonard, P.J.T.
1993-03-01
The hypothesis that the Pop II field blue stragglers have a collisional origin is considered. It appears unlikely that the majority of these stragglers were formed via collisions, but it is difficult to rule out the possibility that a small, but observable, fraction of them were.
Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects
Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe
2008-09-07
The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.
Collisional transport across the magnetic field in drift-fluid models
NASA Astrophysics Data System (ADS)
Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul
2016-03-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.
Measurements of ion-ion collisional broadening of ion acoustic modes
NASA Astrophysics Data System (ADS)
Tierney, T. E.; Benage, J. F.; Montgomery, D. S.; Murillo, M. S.; Wysocki, F. J.; Rostoker, N.
2002-10-01
Although collisional plasmas are often encountered in inertial confinement fusion, dense plasma experiments and astrophysics, very few experiments have looked at the effects produced by the presence of these collisions. Ion-acoustic modes are predicted to broaden due to ion-ion collisions when the ion-ion mean free path, λ_ii, becomes comparable to the ion-acoustic wavelength, λ_iaw. This paper presents the first quantitative data of ion-acoustic wave broadening in moderately ion-ion collisional (0.05
Exact random walk definition of the collisional-radiative ionization and recombination coefficients
NASA Technical Reports Server (NTRS)
Kastner, S. O.
1981-01-01
The collisional-radiative ionization and recombination coefficients are shown to be expressible in terms of the 'total probability', from initial level i to final level j, which excludes intermediate returns to the initial level. Applications are made to three-level and four-level systems to illustrate the method of calculation and compare with an approximation currently used.
Competing weak localization and weak antilocalization in ultrathin topological insulators.
Lang, Murong; He, Liang; Kou, Xufeng; Upadhyaya, Pramey; Fan, Yabin; Chu, Hao; Jiang, Ying; Bardarson, Jens H; Jiang, Wanjun; Choi, Eun Sang; Wang, Yong; Yeh, Nai-Chang; Moore, Joel; Wang, Kang L
2013-01-01
We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.
Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny
NASA Astrophysics Data System (ADS)
Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden
2016-07-01
Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define "seagull"-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the
From pebbles to dust: experiments to observe low-velocity collisional outcomes
NASA Astrophysics Data System (ADS)
Dove, A.; Jorges, J.; Colwell, J. E.
2015-12-01
Particle size evolution in planetary ring systems can be driven by collisions at relatively low velocities (<1 m/s) occurring between objects with a range of sizes from very fine dust to decimeter-sized objects. In these complex systems, collisions between centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. The outcomes of these collisions are dependent on factors such as collisional energy, particle size, and particle morphology. Numerical simulations are limited by a need to understand these collisional parameters over a range of conditions. We present the results of a sequence of laboratory experiments designed to explore collisions over a range of these parameters. We are able to observe low-velocity collisions by conducting experiments in vacuum chambers in our 0.8-sec drop tower apparatus. Initial experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are "mantled" - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome; in the case of the mantled impactors, we can assess how much of the powder was released in the collision. We also determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. Impact velocities range from about 20-60 cm/s, and we observe that mantling of particles significantly reduces their coefficients of restitution. These results will contribute to an empirical model of collisional outcomes that can help refine our understanding of dusty ring system collisional evolution.
Weak values and weak coupling maximizing the output of weak measurements
Di Lorenzo, Antonio
2014-06-15
In a weak measurement, the average output 〈o〉 of a probe that measures an observable A{sup -hat} of a quantum system undergoing both a preparation in a state ρ{sub i} and a postselection in a state E{sub f} is, to a good approximation, a function of the weak value A{sub w}=Tr[E{sub f}A{sup -hat} ρ{sub i}]/Tr[E{sub f}ρ{sub i}], a complex number. For a fixed coupling λ, when the overlap Tr[E{sub f}ρ{sub i}] is very small, A{sub w} diverges, but 〈o〉 stays finite, often tending to zero for symmetry reasons. This paper answers the questions: what is the weak value that maximizes the output for a fixed coupling? What is the coupling that maximizes the output for a fixed weak value? We derive equations for the optimal values of A{sub w} and λ, and provide the solutions. The results are independent of the dimensionality of the system, and they apply to a probe having a Hilbert space of arbitrary dimension. Using the Schrödinger–Robertson uncertainty relation, we demonstrate that, in an important case, the amplification 〈o〉 cannot exceed the initial uncertainty σ{sub o} in the observable o{sup -hat}, we provide an upper limit for the more general case, and a strategy to obtain 〈o〉≫σ{sub o}. - Highlights: •We have provided a general framework to find the extremal values of a weak measurement. •We have derived the location of the extremal values in terms of preparation and postselection. •We have devised a maximization strategy going beyond the limit of the Schrödinger–Robertson relation.
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Hong; E, Ideguchi; T, Kishida; M, Ishihara; H, Tsuchida; Y, Gono; T, Morikawa; M, Shibata; H, Watanabe; M, Miyake; T, Tsutsumi; S, Motomura; S, Mitarai
2000-04-01
The high-spin states of 143Nd have been studied in the 130Te(18O, 5n)143Nd reaction at a beam energy of 80 MeV using techniques of in-beam γ-ray spectroscopy. Measurements of γ - γ - t coincidences, γ-ray angular distributions, and γ-ray linear polarizations were performed. A level scheme of 143Nd with spin and parity assignments up to 53/2+ is proposed. While a weak coupling model can explain the level structure up to the Jπ=39/2- state, this model can not reproduce the higher-lying states. Additionally, a new low-lying non-yrast level sequence in 143Nd was observed in the present work, which can be well described by the weak coupling of an i13/2 neutron to the 142Nd core nucleus.
Overdamping by weakly coupled environments
Esposito, Massimiliano; Haake, Fritz
2005-12-15
A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord with Fermi's 'golden rule'. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, and quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.
Optimizing SNAP for Weak Lensing
NASA Astrophysics Data System (ADS)
High, F. W.; Ellis, R. S.; Massey, R. J.; Rhodes, J. D.; Lamoureux, J. I.; SNAP Collaboration
2004-12-01
The Supernova/Acceleration Probe (SNAP) satellite proposes to measure weak gravitational lensing in addition to type Ia supernovae. Its pixel scale has been set to 0.10 arcsec per pixel as established by the needs of supernova observations. To find the optimal pixel scale for accurate weak lensing measurements we conduct a tradeoff study in which, via simulations, we fix the suvey size in total pixels and vary the pixel scale. Our preliminary results show that with a smaller scale of about 0.08 arcsec per pixel we can minimize the contribution of intrinsic shear variance to the error on the power spectrum of mass density distortion. Currently we are testing the robustness of this figure as well as determining whether dithering yields analogous results.
NASA Astrophysics Data System (ADS)
Hedin, G.; Brzozowski, J. H.; Hörling, P.; Mazur, S.; Nordlund, P.; Drake, J. R.
1996-05-01
The effects of plasma collisionality on power balance and magnetic fluctuations have been studied on the Extrap T1 reversed-field pinch. A characteristic minimum in loop voltage is observed as the plasma collisionality decreases. The minimum is caused by an increase in the anomalous input power and coincides with a change of scaling of the magnetic fluctuations and a rapid increase of the electron mean free path. However, the increase of anomalous input power in the low collisional regime appears to have little influence on the total amount of energy stored in the plasma.
Collisional evolution - an analytical study for the nonsteady-state mass distribution
NASA Astrophysics Data System (ADS)
Martins, R. Vieira
1999-05-01
To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution
THE DEBRIS DISK OF VEGA: A STEADY-STATE COLLISIONAL CASCADE, NATURALLY
Mueller, S.; Loehne, T.; Krivov, A. V.
2010-01-10
The archetypical debris disk around Vega has been observed intensively over the past 25 years. It has been argued that the resulting photometric data and images may be in contradiction with a standard, steady-state collisional scenario of the disk evolution. In particular, the emission in the mid-infrared (mid-IR) appears to be in excess of what is expected from a 'Kuiper belt' at approx100 AU, which is evident in the submillimeter images and inferred from the majority of photometric points. Here we re-address the question of whether or not the Vega disk observations are compatible with a continuous dust production through a collisional cascade. Instead of seeking a size and spatial distribution of dust that provide the best fit to observations, our approach involves physical modeling of the debris disk 'from the sources'. We assume that dust is maintained by a belt of parent planetesimals, and employ our collisional and radiative transfer codes to consistently model the size and radial distribution of the disk material and then thermal emission of dust. In doing so, we vary a broad set of parameters, including the stellar properties, the exact location, extension, and dynamical excitation of the planetesimal belt, chemical composition of solids, and the collisional prescription. We are able to reproduce the spectral energy distribution in the entire wavelength range from the near-IR to millimeter, as well as the mid-IR and submillimeter radial brightness profiles of the Vega disk. Thus, our results suggest that the Vega disk observations are not in contradiction with a steady-state collisional dust production, and we put important constraints on the disk parameters and physical processes that sustain it. The total disk mass in approx<100 km-sized bodies is estimated to be approx10 Earth masses. Provided that collisional cascade has been operating over much of the Vega age of approx350 Myr, the disk must have lost a few Earth masses of solids during that time. We
Analytic model of a magnetically insulated transmission line with collisional flow electrons
NASA Astrophysics Data System (ADS)
Stygar, W. A.; Wagoner, T. C.; Ives, H. C.; Corcoran, P. A.; Cuneo, M. E.; Douglas, J. W.; Gilliland, T. L.; Mazarakis, M. G.; Ramirez, J. J.; Seamen, J. F.; Seidel, D. B.; Spielman, R. B.
2006-09-01
We have developed a relativistic-fluid model of the flow-electron plasma in a steady-state one-dimensional magnetically insulated transmission line (MITL). The model assumes that the electrons are collisional and, as a result, drift toward the anode. The model predicts that in the limit of fully developed collisional flow, the relation between the voltage Va, anode current Ia, cathode current Ik, and geometric impedance Z0 of a 1D planar MITL can be expressed as Va=IaZ0h(χ), where h(χ)≡[(χ+1)/4(χ-1)]1/2-ln⌊χ+(χ2-1)1/2⌋/2χ(χ-1) and χ≡Ia/Ik. The relation is valid when Va≳1MV. In the minimally insulated limit, the anode current Ia,min=1.78Va/Z0, the electron-flow current If,min=1.25Va/Z0, and the flow impedance Zf,min=0.588Z0. {The electron-flow current If≡Ia-Ik. Following Mendel and Rosenthal [Phys. Plasmas 2, 1332 (1995)PHPAEN1070-664X10.1063/1.871345], we define the flow impedance Zf as Va/(Ia2-Ik2)1/2.} In the well-insulated limit (i.e., when Ia≫Ia,min), the electron-flow current If=9Va2/8IaZ02 and the flow impedance Zf=2Z0/3. Similar results are obtained for a 1D collisional MITL with coaxial cylindrical electrodes, when the inner conductor is at a negative potential with respect to the outer, and Z0≲40Ω. We compare the predictions of the collisional model to those of several MITL models that assume the flow electrons are collisionless. We find that at given values of Va and Z0, collisions can significantly increase both Ia,min and If,min above the values predicted by the collisionless models, and decrease Zf,min. When Ia≫Ia,min, we find that, at given values of Va, Z0, and Ia, collisions can significantly increase If and decrease Zf. Since the steady-state collisional model is valid only when the drift of electrons toward the anode has had sufficient time to establish fully developed collisional flow, and collisionless models assume there is no net electron drift toward the anode, we expect these two types
NASA Astrophysics Data System (ADS)
Lenzer, Thomas; Luther, Klaus; Reihs, Karsten; Symonds, Andrew C.
2000-03-01
Complete and detailed experimental transition probability density functions P(E',E) have been determined for the first time for collisions between a large, highly vibrationally excited molecule, toluene, and several bath gases. This was achieved by applying the method of kinetically controlled selective ionization (KCSI) (Paper I [J. Chem. Phys. 112, 4076 (2000), preceding article]). An optimum P(E',E) representation is recommended (monoexponential with a parametric exponent in the argument) which uses only three parameters and features a smooth behavior of all parameters for the entire set of bath gases. In helium, argon, and CO2 the P(E',E) show relatively increased amplitudes in the wings—large energy gaps |E'-E|—which can also be represented by a biexponential form. The fractional contribution of the second exponent in these biexponentials, which is directly related to the fraction of the so-called "supercollisions," is found to be very small (<0.1%). For larger colliders the second term disappears completely and the wings of P(E',E) have an even smaller amplitude than that provided by a monoexponential form. At such low levels, the second exponent is therefore of practically no relevance for the overall energy relaxation rate. All optimized P(E',E) representations show a marked linear energetic dependence of the (weak) collision parameter α1(E), which also results in an (approximately) linear dependence of <ΔE> and of the square root of <ΔE2>. The energy transfer parameters presented in this study form a new benchmark class in certainty and accuracy, e.g., with only 2%-7% uncertainty for our <ΔE> data below 25 000 cm-1. They should also form a reliable testground for future trajectory calculations and theories describing collisional energy transfer of polyatomic molecules.
Detecting weakly interacting massive particles.
NASA Astrophysics Data System (ADS)
Drukier, A. K.; Gelmini, G. B.
The growing synergy between astrophysics, particle physics, and low background experiments strengthens the possibility of detecting astrophysical non-baryonic matter. The idea of direct detection is that an incident, massive weakly interacting particle could collide with a nucleus and transfer an energy that could be measured. The present low levels of background achieved by the PNL/USC Ge detector represent a new technology which yields interesting bounds on Galactic cold dark matter and on light bosons emitted from the Sun. Further improvements require the development of cryogenic detectors. The authors analyse the practicality of such detectors, their optimalization and background suppression using the "annual modulation effect".
Weak lensing by galaxy troughs
NASA Astrophysics Data System (ADS)
Gruen, Daniel
2016-06-01
Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.
Weak quasielastic production of hyperons
Singh, S. K.; Vacas, M. J. Vicente
2006-09-01
The quasielastic weak production of {lambda} and {sigma} hyperons from nucleons and nuclei induced by antineutrinos is studied in the energy region of some ongoing neutrino oscillation experiments in the intermediate energy region. The hyperon-nucleon transition form factors determined from neutrino-nucleon scattering and an analysis of high precision data on semileptonic decays of neutron and hyperons using SU(3) symmetry have been used. The nuclear effects due to Fermi motion and final state interaction effects due to hyperon-nucleon scattering have also been studied. The numerical results for differential and total cross sections have been presented.
Margaryan, A.; Hashimoto, O.; Kakoyan, V.; Knyazyan, S.; Tang, L.
2011-02-15
A new 'tagged-weak {pi} method' is proposed for determination of electromagnetic transition probabilities B(E2) and B(M1) of the hypernuclear states with lifetimes of {approx}10{sup -10} s. With this method, we are planning to measure B(E2) and B(M1) for light hypernuclei at JLab. The results of Monte Carlo simulations for the case of E2(5/2{sup +}, 3/2{sup +} {yields} 1/2{sup +}) transitions in {sub {Lambda}}{sup 7}He hypernuclei are presented.
COLLISIONALLY EXCITED FILAMENTS IN HUBBLE SPACE TELESCOPE Hα AND Hβ IMAGES OF HH 1/2
Raga, A. C.; Castellanos-Ramírez, A.; Reipurth, B.; Chiang, Hsin-Fang; Bally, J.
2015-01-01
We present new Hα and Hβ images of the HH 1/2 system, and we find that the Hα/Hβ ratio has high values in ridges along the leading edges of the HH 1 bow shock and of the brighter condensations of HH 2. These ridges have Hα/Hβ = 4 → 6, which is consistent with collisional excitation from the n = 1 to the n = 3 and 4 levels of hydrogen in a gas of temperatures T = 1.5 → 10 × 10{sup 4} K. This is therefore the first direct evidence that the collisional excitation/ionization region of hydrogen just behind Herbig-Haro shock fronts is detected.
Ferro, F; Quarati, P
2005-02-01
We show that in stellar core plasmas, the one-body momentum distribution function is strongly dependent, at least in the high velocity regime, on the microscopic dynamics of ion elastic collisions and therefore on the effective collisional cross sections if a random force field is present. We take into account two cross sections describing ion-dipole and ion-ion screened interactions. Furthermore, we introduce a third unusual cross section to link statistical distributions and a quantum effect originated by the energy-momentum uncertainty owing to many-body collisions. We also propose a possible physical interpretation in terms of a tidal-like force. We show that each collisional cross section gives rise to a slight peculiar correction on the Maxwellian momentum distribution function in a well defined velocity interval. We also find a possible link between microscopic dynamics of ions and statistical mechanics in interpreting our results in the framework of nonextensive statistical mechanics.
NASA Astrophysics Data System (ADS)
Akatsuka, Hiroshi
We examine a general solution to the associated linear homogeneous ordinary differential equations of the collisional radiative model, and survey the behavior of eigenvalues of the characteristic matrix. It is proved that the real part of each eigenvalue is negative with the help of the Gershgorin's theorem. Consequently, the differential equations describing the CR model are exponentially stable. We also examine absolute values of the real part of eigenvalues for the argon CR model. Dependence of real part of the eigenvalue to determine the relaxation time is examined with respect to electron temperature and density for argon plasma with its electron temperature 0.1-10 eV, electron density 109-1014 cm-3, and discharge pressure 1-760 Torr, including the effect of atomic collisional quenching.
Hong, Woo-Pyo; Jung, Young-Dae
2014-08-01
The influence of nonthermal shielding on the optically allowed and forbidden anti-screening channels for ion-ion collisional excitations is investigated in astrophysical Lorentzian plasmas. The semiclassical trajectory method and effective interaction Hamiltonian are employed to obtain the transition amplitudes, differential cross-sections, and momentum transfer-dependent effective projectile charges for the optically allowed and forbidden excitation channels as functions of the impact parameter, collision energy, Debye radius, and spectral index of nonthermal astrophysical plasmas. It is found that the nonthermal effect suppresses the ion-ion collisional excitation probability in astrophysical Lorentzian plasmas. Additionally, the influence of nonthermal shielding on the optically allowed transition is found to be more significant than that on the optically forbidden transition. The variations of the nonthermal shielding effects on the optically allowed and forbidden anti-screening channels in astrophysical nonthermal plasmas are also discussed.
Collisional relaxation of bi-Maxwellian plasma temperatures in magnetized plasmas
NASA Astrophysics Data System (ADS)
Yoon, Peter H.
2016-07-01
In the literature, collisional processes are customarily discussed within the context of the Boltzmann-Balescu-Lenard-Landau type of collision integral, but such an equation is strictly valid for unmagnetized plasmas. For plasmas immersed in the ambient magnetic field, the foundational equation that describes binary collisions must be generalized to include the effects of magnetic field. The present paper makes use of such an equation in order to describe the collisional relaxation of temperatures under the assumption of bi-Maxwellian velocity distribution function. The formalism derived in the present paper may be useful for studying the effects of binary collisions on the isotropization of temperatures in the solar wind plasma, among possible applications.
Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence
Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.
2009-06-15
The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.
Cameron, S.M.
1993-10-01
The author proposes using the collective Thomson scattering lineshape from ion acoustic waves to measure the spatial structure of local heat transport parameters and collisionality. Ion acoustic peak height asymmetry is used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift. The local heat flux q{sub e} (proportional to drift) and the electron thermal conductivity {kappa}{sub e}{minus}q{sub e}/{gradient}T{sub e} would be inferred from experimentally determined temperature gradients {gradient}T{sub e}. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity {kappa}{sub i}, and its visibility is a direct measure of the ion-ion mean free path {lambda}{sub ii}.
H-mode power threshold, grad-B drift direction and ion collisionality
NASA Astrophysics Data System (ADS)
Power, H. M.; Shaing, K. C.
2001-10-01
An explanation on the dependence of the H-mode power threshold on the direction of the grad-B drift in diverted tokamaks is presented in the context of the H-mode theory based on the orbit loss and the subsequent turbulence suppression. Here, B is the magnetic field strength. It is shown using the results of a numerical calculation [ A. V. Chankin and G. M. McCracken, Nucl. Fusion 10, 1459(1993)] that ion collisionality that defines the onset of the orbit loss depends on the direction of the grad-B drift. The connection length is shorter when grad-B drift is toward the X-point than away from it. Judging from the sensitivity of the power threshold on the grad-B drift direction, we conclude that power threshold must be a simple function of ion collisionality among other dimensionless parameters.
NASA Technical Reports Server (NTRS)
Providakes, Jason; Seyler, Charles E.
1990-01-01
A new mechanism is proposed for the source of energetic heavy ions (NO/+/, O2/+/, and O/+/) found in the magnetosphere. Simulations using a multispecies particle simulation code for resistive current-driven electrostatic ion cyclotron waves show transverse and parallel bulk heating of bottomside ionospheric heavy ion populations. The dominant mechanism for the transverse bulk heating is resonant ion heating by wave-particle ion trapping. Using a linear kinetic dispersion relation for a magnetized, collisional, homogenous, and multiion plasma, it is found that collisional electrostatic ion cyclotron waves near the NO(+), O2(+), and O(+) gyrofrequencies are unstable to field-aligned currents of 50 microA/sq m for a typical bottomside ionosphere.
Generalized collisional radiative model for light elements: C: Data for the B isonuclear sequence
NASA Astrophysics Data System (ADS)
Loch, S. D.; Ballance, C. P.; Pindzola, M. S.; Griffin, D. C.; Colgan, J. P.; Badnell, N. R.; O'Mullane, M. G.
2015-01-01
A first stage collision database is assembled which contains electron-impact excitation, ionization, and recombination rate coefficients for B, B+, B2+, B3+, and B4+. The first stage database is constructed using the R-matrix with pseudostates, time-dependent close-coupling, and perturbative distorted-wave methods. A second stage collision database is then assembled which contains generalized collisional-radiative ionization, recombination, and power loss rate coefficients as a function of both temperature and density. The second stage database is constructed by solution of the collisional-radiative equations in the quasi-static equilibrium approximation using the first stage database. Both collision database stages reside in electronic form at the IAEA Labeled Atomic Data Interface (ALADDIN) database and the Atomic Data Analysis Structure (ADAS) open database.
Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma
Niknam, A. R.; Taheri Boroujeni, S.; Khorashadizadeh, S. M.
2013-12-15
The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.
Progress in table-top transient collisional excitation x-ray lasers at LLNL
Da Silva, L B; Dunn, J; Li, Y; Nilsen, J; Osterheld, A; Shepherd, R; Shlyaptsev, V N
1999-02-07
We present progress in experiments for high efficiency Ne-like and Ni-like ion x-ray lasers using the transient collisional excitation scheme. Experimental results have been obtained on the COMET 15 TW table-top laser system at the Lawrence Livermore National Laboratory (LLNL). The plasma formation, ionization and collisional excitation of the x-ray laser have been optimized using two sequential laser pulses of 600 ps and 1 ps duration with an optional pre-pulse. We have observed high gains up to 55 cm{sup {minus}1} in Ne-like and Ni-like ion schemes for various atomic numbers. We report strong output for the 4d - 4p line in lower Z Ni-like ion sequence for Mo to Y, lasing from {approximately}190 {angstrom} to 240 {angstrom}, by pumping with less than 5 J energy on target.
Table-top transient collisional excitation x-ray laser research at LLNL
Dunn, J., Osterheld, A.L., Shepherd, R., White, W.E., Shlyaptsev, V.N., Bullock, A.B., Stewart, R.E.
1997-10-06
We describe recent experiments at the Lawrence Livermore National Laboratory (LLNL) to produce a table-top x-ray laser. Using a combination of long 800 ps and short {approximately}1 ps high power laser pulses with {approximately} 6 J in each beam, a transient collisionally excited Ne-like ion x-ray laser scheme has been investigated. We present results of high x-ray laser gain for the Ne- like Ti 3p-3s J=O-l transition at 326 {Angstrom} and have achieved gL product of 15 for target lengths up to 1 cm. We have extended the transient collisional scheme to shorter wavelengths using the Ni-like analog, specifically the 4d-4p J=O-l of Ni-like Pd at 147 {Angstrom}.
High gain x-ray lasers pumped by transient collisional excitation
Dunn, J., LLNL
1998-06-16
We present recent results of x-ray laser amplification of spontaneous emission in Ne-like and Ni-like transient collisional excitation schemes. The plasma formation, ionization and collisional excitation can be optimized using two laser pulses of 1 ns and 1 ps duration at table-top energies of 5 J in each beam. High gain of 35 cm{sup -1} has been measured on the 147 {Angstrom} 4d{r_arrow}4p J=0{r_arrow}1 transition of Ni-like Pd and is a direct consequence of the nonstationary population inversion produced by the high intensity picosecond pulse. We report the dependence of the x-ray laser line intensity on the laser plasma conditions and compare the experimental measurements with hydrodynamic and atomic kinetics simulations for Ne-like and Ni-like lasing.
Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism
D.A. Gates; R.B. White
2004-01-28
Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.
Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone
Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.
1994-08-01
An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Yushkanov, A. A.
2016-09-01
From the Vlasov-Boltzmann kinetic equation for a collisional degenerate plasma, the electron distribution function is constructed in the quadratic approximation in the electric field strength. A formula for calculating the electric current is derived. It is shown that nonlinearity leads to the rise of a longitudinal electric current directed along the wave vector. The longitudinal current is orthogonal to the known transverse classical current obtained in the linear analysis. When the collision frequency tends to zero, all results obtained for a collisional plasma pass into the corresponding results for a collisionless plasma. The case of small wavenumbers is considered. It is shown that, when the collision frequency tends to zero, the expression for the current passes into the corresponding expression for the current in a collisionless plasma. Graphic analysis of the real and imaginary parts of the current density is performed. The dependence of the electromagnetic field oscillation frequency and electron-plasma-particle collision frequency on the wavenumber is studied.
Collisional processes in the O2 B 3Σu- state
NASA Astrophysics Data System (ADS)
Sick, Volker; Decker, Michael; Heinze, Johannes; Stricker, Winfried
1996-02-01
Collisional processes, which influence quantitative laser-induced fluorescence (LIF) measurements involving the B3Σ u- state of molecular oxygen, were investigated. Since the B state is strongly predissociating, these processes are though to be important only at higher pressure. However, we found that in LIF experiments in methane/air flames in the pressure range between atmospheric pressure and 40 bar collisional quenching and rotational energy transfer (RET) are important even at moderate pressures. Total quenching cross sections of 30(± 10) Å2for ν' = 2 and 100(± 30) Å2for ν = 0 and total RET cross sections of 40(± 16) Å2 were found. An upper limit of 0.7 Å 2 for the cross section for vibrational energy transfer (VET) out of ν' = 2 could be determined.
NASA Technical Reports Server (NTRS)
Liffman, Kurt
1990-01-01
The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Moghaddasi, M.
2016-07-01
Acceleration of an externally injected electron inside the collisional plasma-filled cylindrical waveguide during its motion in the fields of the ? mode excited by microwave radiation is studied. The effect of the electron collision frequency with background ions on the deflection angle and energy gain of electron, when it is injected along the direction of the mode propagation is investigated. The fields for the mode, the deflection angle of electron trajectory, due to these fields, and the electron energy gradient are obtained. The results for collisionless and collisional plasma are graphically presented. The numerical results illustrate that the presence of the electron collision term in the dielectric permittivity can reduce the electron's energy gain in the configuration.
Collisional bulk ion transport and poloidal rotation driven by neutral beam injection
Newton, Sarah L.; Helander, Per; Catto, Peter J.
2007-06-15
Neutral beam injection (NBI) is known to significantly affect radial transport in a tokamak plasma. Furthermore, recent observations have shown poloidal velocities, in the presence of NBI, significantly in excess of the standard neoclassical value. Motivated by this, the additional collisional radial bulk ion fluxes of particles, heat and toroidal angular momentum, and the poloidal velocity, driven by fast ions from NBI have been evaluated for a low-collisionality, pure plasma, with strong toroidal rotation and arbitrary aspect ratio. Higher order velocity space structure of the fast ion distribution function can be significant, whilst the effects of toroidal acceleration caused by strong NBI dominate at large aspect ratio. The driven poloidal velocity depends strongly on system parameters, becoming larger at higher beam density and lower beam energy.
Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T
2014-12-21
Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.
OBSERVED BINARY FRACTION SETS LIMITS ON THE EXTENT OF COLLISIONAL GRINDING IN THE KUIPER BELT
Nesvorny, David; Vokrouhlicky, David; Bottke, William F.; Levison, Harold F.; Noll, Keith
2011-05-15
The size distribution in the cold classical Kuiper Belt (KB) can be approximated by two idealized power laws: one with steep slope for radii R > R* and one with shallow slope for R < R*, where R* {approx} 25-50 km. Previous works suggested that the size frequency distribution (SFD) rollover at R* can be the result of extensive collisional grinding in the KB that led to the catastrophic disruption of most bodies with R < R*. Here, we use a new code to test the effect of collisions in the KB. We find that the observed rollover could indeed be explained by collisional grinding provided that the initial mass in large bodies was much larger than the one in the present KB and was dynamically depleted. In addition to the size distribution changes, our code also tracks the effects of collisions on binary systems. We find that it is generally easier to dissolve wide binary systems, such as the ones existing in the cold KB today, than to catastrophically disrupt objects with R {approx} R*. Thus, the binary survival sets important limits on the extent of collisional grinding in the KB. We find that the extensive collisional grinding required to produce the SFD rollover at R* would imply a strong gradient of the binary fraction with R and separation, because it is generally easier to dissolve binaries with small components and/or those with wide orbits. The expected binary fraction for R {approx}< R* is {approx}<0.1. The present observational data do not show such a gradient. Instead, they suggest a large binary fraction of {approx}0.4 for R = 30-40 km. This may indicate that the rollover was not produced by disruptive collisions, but is instead a fossil remnant of the KB object formation process.
Efficient evaluation of collisional energy transfer terms for plasma particle simulations
NASA Astrophysics Data System (ADS)
Turrell, A. E.; Sherlock, M.; Rose, S. J.
2016-02-01
Particle-based simulations, such as in particle-in-cell (PIC) codes, are widely used in plasma physics research. The analysis of particle energy transfers, as described by the second moment of the Boltzmann equation, is often necessary within these simulations. We present computationally efficient, analytically derived equations for evaluating collisional energy transfer terms from simulations using discrete particles. The equations are expressed as a sum over the properties of the discrete particles.
Coupling of an average-atom model with a collisional-radiative equilibrium model
Faussurier, G. Blancard, C.; Cossé, P.
2014-11-15
We present a method to combine a collisional-radiative equilibrium model and an average-atom model to calculate bound and free electron wavefunctions in hot dense plasmas by taking into account screening. This approach allows us to calculate electrical resistivity and thermal conductivity as well as pressure in non local thermodynamic equilibrium plasmas. Illustrations of the method are presented for dilute titanium plasma.
Can the electron heat flux at 1 AU be collisional ? Results from kinetic simulations.
NASA Astrophysics Data System (ADS)
Landi, Simone; Pantellini, Filippo; Matteini, Lorenzo
2014-05-01
Recent results using statistically significant data of the solar wind at 1AU (see Bale et al. ApJL 769:L22, 2013) have shown that when the thermal Knudsen number, the ratio between the electron mean free path and the temperature scale height, falls below ~0.3, the electron heat flux Q does rapidly approach the classical collisional Spitzer-Harm limit Q_SH ~ T5/2 dT/dr, where T is the temperature and r the heliocentric distance. This experimental finding seems to contradict a number of theoretical works which suggest that the collisional expression for the heat flux is only guaranteed for Knudsen numbers smaller than ~0.001 (e.g. Shoub ApJ, 266, 339-369, 1983; Scudder & Karimabadi, ApJ, 770:26, 2013) . Indeed, using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we do observe that the heat flux strength approaches the collisional value for Knudsen numbers below ~0.3, in rather good agreement with the experimental data of Bale et al (2013). However, closer inspection of the variation of the plasma parameters with heliocentric distance shows that for Knudsen numbers between 0.01-0.3 the heat flux Q does NOT vary with temperature as predicted by Q_SH. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity Q approaches the collisional limit Q_SH for Knudsen below ~0.3, the latter is not a generally valid closure in the solar wind for Knudsen large that 0.01.
NASA Technical Reports Server (NTRS)
Lederer. S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Cintala, M. J.; Nakamura-Messenger, K.; Keller, L. P.
2012-01-01
Impacts into forsterite and orthoenstatite at speeds typically encountered by comets demonstrate that shock imparted by collisions is detectable in the infrared signatures of their dust. The spectral signatures can be traced to physical alterations in their crystalline structures, as observed in TEM imaging and modeled using a dipole approximation. These results yield tantalizing insights into the collisional history of our solar system, as well as the history of individual comets and Trojan asteroids.
The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.
NASA Astrophysics Data System (ADS)
Hall, Lawrence J.; Pinner, David; Ruderman, Joshua T.
2014-12-01
The measured values of the weak scale, v, and the first generation masses, m u, d, e , are simultaneously explained in the multiverse, with all these parameters scanning independently. At the same time, several remarkable coincidences are understood. Small variations in these parameters away from their measured values lead to the instability of hydrogen, the instability of heavy nuclei, and either a hydrogen or a helium dominated universe from Big Bang Nucleosynthesis. In the 4d parameter space of ( m u , m d , m e , v), catastrophic boundaries are reached by separately increasing each parameter above its measured value by a factor of (1.4, 1.3, 2.5, ˜ 5), respectively. The fine-tuning problem of the weak scale in the Standard Model is solved: as v is increased beyond the observed value, it is impossible to maintain a significant cosmological hydrogen abundance for any values of m u, d, e that yield both hydrogen and heavy nuclei stability.
Weak antilocalisation in topological insulators
NASA Astrophysics Data System (ADS)
Bi, Xintao; Hankiewicz, Ewelina; Culcer, Dimitrie
2014-03-01
Topological insulators (TI) have changed our understanding of insulating behaviour. They are insulators in the bulk but conducting along their surfaces due to spin-orbit interaction. Much of the recent research focuses on overcoming the transport bottleneck, the fact that surface state transport is overwhelmed by bulk transport stemming from unintentional doping. The key to overcoming this bottleneck is identifying unambiguous signatures of surface state transport. This talk will discuss one such signature, which is manifest in the coherent backscattering of electrons. Due to strong spin-orbit coupling in TI one expects to observe weak antilocalisation rather than weak localisation, meaning that coherent backscattering increases the electrical conductivity. The features of this effect, however, are rather subtle, because in TI the impurities have strong spin-orbit coupling as well. I will show that spin-orbit coupled impurities introduce an additional time scale, which is expected to be shorter than the dephasing time, and the resulting conductivity has a logarithmic dependence on the carrier density, a behaviour hitherto unknown in 2D electron systems. The result we predict is observable experimentally and would provide a smoking gun test of surface transport.
Weak lensing and cosmological investigation
NASA Astrophysics Data System (ADS)
Acquaviva, Viviana
2005-03-01
In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.
COLLISIONAL AND LUMINOSITY EVOLUTION OF A DEBRIS DISK: THE CASE OF HD 12039
Weidenschilling, S. J.
2010-10-20
Extrasolar debris disks that are bright enough to be observed are dense enough to be collision-dominated; i.e., the small grains that produce their infrared excess have collisional lifetimes shorter than their Poynting-Robertson decay times. This paper describes a numerical code for the modeling of such disks, including accretion and gravitational stirring as well as disruptive collisions. A constraint relating the mass of a debris disk and the sizes of the largest embedded bodies to its luminosity is demonstrated. The collisional code is applied to the debris disk around HD 12039, which has been intensively observed by the Spitzer Space Telescope. The evolution in time of the disk's luminosity is computed for a range of initial disk masses and planetesimal sizes. The luminosity at a given age depends on both the initial disk mass and the initial size of the planetesimals. Luminosity decays more rapidly for massive disks due to the combination of collisional depletion of small bodies and their accretion by bodies too large to contribute to dust production. Disks with low initial masses evolve slowly and can maintain their luminosities for {approx} Gyr timescales. This behavior may explain the lack of correlation between stellar metallicity and the abundance of debris disks.
Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade
Tsujii, N.; D'Inca, R.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; Schneider, P.; Noterdaeme, J.-M.; Van Eester, D.; Lerche, E. A.; Jaeger, E. F.; Collaboration: ASDEX Upgrade Team
2014-02-12
ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.
Search for collisional exchange of ground-state atomic alignment between rubidium isotopes
NASA Astrophysics Data System (ADS)
Bahr, E. J.; Kimball, D. F. Jackson; Coste, B.; Rangwala, S. A.; Higbie, J. M.; Ledbetter, M. P.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.
2009-05-01
The collisional transfer of pure atomic alignment (related to coherences between Zeeman sublevels with δM=2) between isotopes of rubidium is searched for using time-dependent magneto-optical rotation. Alignment-exchange collisions are fundamentally different than the commonly studied orientation-exchange collisions: for example, spin-exchange collisions preserve the net orientation in an atomic vapor (because of angular momentum conservation) but do not conserve alignment. Collisional transfer of alignment in alkali atoms has seldom been studied because the cross-sections are expected to be three to four orders of magnitude smaller than the nominal spin-exchange cross-sections. This is due to the fact that ground-state alkali atoms have electronic angular momentum J=1/2 and so the electronic state cannot support a δM=2 coherence. Thus collisional transfer of alignment is only possible because of hyperfine re-coupling during the collision. Implications of the measurement for searches for anomalous spin-dependent forces will be discussed.
Linear stability of low mode number tearing modes in the banana collisionality regime
Fitzpatrick, R. , Abingdon, OX14 3DB, England )
1989-12-01
The semicollisional layer equations governing the linear stability of small mode number tearing modes in a low beta, large aspect ratio, tokamak equilibrium are derived from an expansion of the gyrokinetic equation. In this analysis only the cases where the ion Larmor radius is either much less than, or much greater than, the layer width are considered. Both the electrons and the ions are assumed to lie in the banana collisionality regime. One interesting feature of the derived layer equations, in the limit of small ion Larmor radius, is a substantial reduction in the effective collisionality of the system due to neoclassical ion dynamics. Next, using a shooting code, a dispersion relation is obtained from the layer equations in the limits of small ion Larmor radius and a vanishingly small fraction of trapped particles. As expected, strong semicollisional stabilization of the mode is found, but, in addition, a somewhat weaker destabilizing effect is obtained in the transition region between the collisional and semicollisional regimes.
Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV
Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph
2015-04-30
We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that were submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.
Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV
Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph
2015-04-30
We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less
Neufeld, David A.
2010-01-01
An artificial neural network (ANN) is investigated as a tool for estimating rate coefficients for the collisional excitation of molecules. The performance of such a tool can be evaluated by testing it on a data set of collisionally induced transitions for which rate coefficients are already known: the network is trained on a subset of that data set and tested on the remainder. Results obtained by this method are typically accurate to within a factor of approx2.1 (median value) for transitions with low excitation rates and approx1.7 for those with medium or high excitation rates, although 4% of the ANN outputs are discrepant by a factor of 10 or more. The results suggest that ANNs will be valuable in extrapolating a data set of collisional rate coefficients to include high-lying transitions that have not yet been calculated. For the asymmetric top molecules considered in this paper, the favored architecture is a cascade-correlation network that creates 16 hidden neurons during the course of training, with three input neurons to characterize the nature of the transition and one output neuron to provide the logarithm of the rate coefficient.
NanoRocks: Experimental Study of Collisional Damping and Aggregation at Low Velocities
NASA Astrophysics Data System (ADS)
Colwell, Joshua E.; Brisset, Julie; Dove, Adrienne R.; Metzger, Jessica; Rascon, Allison
2015-11-01
The NanoRocks experiment on the International Space Station consists of 8 separate sample trays of particles from ~0.1 mm - 2.0 mm in diameter that undergo collisional evolution. The microgravity environment of the ISS allows collision speeds of less than 1 mm/s to be studied. At these speeds the experiment reproduces the velocity dispersion found in unperturbed regions of Saturn’s rings. Observations of the rings from Cassini instruments hint at aggregation and fragmentation of clumps depending on the local surface mass density, particle size distribution and velocity dispersion.The eight NanoRocks samples include plastic beads, copper, glass, and JSC-1 lunar regolith simulant. The samples are shaken at 1 minute intervals to provide initial collision velocities of a few cm/s, and video is recorded of the collisional evolution of the particle samples. We derive mean coefficients of restitution for the different samples based on the damping of the mean velocity dispersion as well as tracking of individual particle trajectories. The evolution of the velocity distribution is consistent with a uniform random distribution of the coefficient of restitution, independent of collision velocity. This is consistent with results of Heißelmann et al. (Icarus Vol. 206, pp. 424-430, 2010) using larger icy particles. We also find the onset of cluster formation at speeds of a few mm/s. We will present our results and discuss applications to models of the collisional evolution of Saturn’s rings.
Syn-collisional transform faulting of the Tan-Lu fault zone, East China
NASA Astrophysics Data System (ADS)
Zhu, Guang; Liu, Guo Sheng; Niu, Man Lan; Xie, Cheng Long; Wang, Yong Sheng; Xiang, Biwei
2009-02-01
Origin of the continental-scale Tan-Lu fault zone (TLFZ), East China, remains controversial. About 550 km sinistral offset of the Dabie orogenic belt (DOB) and Sulu orogenic belt (SOB) is shown along the NE-NNE-striking TLFZ. Syn-collisional, sinistral ductile shear belts in the TLFZ have been identified. Thirteen phengite bulk separates from the mylonites were dated by the 40Ar/39Ar method. They gave cooling ages of the 198-181 Ma for the shear belts along the eastern margin of the DOB and 221-210 Ma from the western margin of the SOB. Distribution of the foreland basin deposits suggests that sinistral offset of the DOB and SOB by the TLFZ took place prior to deposition of the Upper Triassic strata. The marginal structures around the DOB and SOB support syn-collisional faulting, and indicate anticlockwise rotation of the DOB during the displacement. The folding and thrust faulting related to crustal subduction, coeval with the Tan-Lu faulting, is older than the foreland basin deposition related to the orogenic exhumation. Several lines of evidence demonstrate that the TLFZ was developed as a syn-collisional transform fault during latest Middle to earliest Late Triassic time when the DOB and SOB experienced crustal subduction of the South China Block (SCB). Eastward increase of the crustal subduction rates is believed to be responsible for the sinistral transform faulting.
Effect of collisional heat transfer in ICRF power modulation experiment on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Tsujii, N.; D'Inca, R.; Noterdaeme, J.-M.; Bilato, R.; Bobkov, Vl. V.; Brambilla, M.; van Eester, D.; Harvey, R. W.; Jaeger, E. F.; Lerche, E. A.; Schneider, P.; ASDEX Upgrade Team
2014-02-01
ICRF (ion cyclotron range of frequencies) heating experiments were performed in D-H plasmas at various H concentrations on ASDEX Upgrade. The rf power was modulated to measure the electron power deposition profile from electron temperature modulation. To minimize the contribution from indirect collisional heating and the effect of radial transport, the rf power was modulated at 50 Hz. However, peaking of electron temperature modulation was still observed around the hydrogen cyclotron resonance indicating collisional heating contribution. Time dependent simulation of the hydrogen distribution function was performed for the discharges, using the full-wave code AORSA (E.F. Jaeger, et al., Phys. Plasmas, Vol. 8, page 1573 (2001)) coupled to the Fokker-Planck code CQL3D (R.W. Harvey, et al., Proc. IAEA (1992)). In the present experimental conditions, it was found that modulation of the collisional heating was comparable to that of direct wave damping. Impact of radial transport was also analyzed and found to appreciably smear out the modulation profile and reduce the phase delay.
Heterogeneous, weakly coupled map lattices
NASA Astrophysics Data System (ADS)
Sotelo Herrera, M.^{a.} Dolores; San Martín, Jesús; Porter, Mason A.
2016-07-01
Coupled map lattices (CMLs) are often used to study emergent phenomena in nature. It is typically assumed (unrealistically) that each component is described by the same map, and it is important to relax this assumption. In this paper, we characterize periodic orbits and the laminar regime of type-I intermittency in heterogeneous weakly coupled map lattices (HWCMLs). We show that the period of a cycle in an HWCML is preserved for arbitrarily small coupling strengths even when an associated uncoupled oscillator would experience a period-doubling cascade. Our results characterize periodic orbits both near and far from saddle-node bifurcations, and we thereby provide a key step for examining the bifurcation structure of heterogeneous CMLs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.894 Weak. Weak means... content, inferior flavor, or are of poor keeping quality....
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.894 Weak. Weak means that individual berries are somewhat translucent, watery and soft, may have relatively low...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.894 Weak. Weak means that individual berries are somewhat translucent, watery and soft, may have relatively low...
Deterministic weak localization in periodic structures.
Tian, C; Larkin, A
2005-12-01
In some perfect periodic structures classical motion exhibits deterministic diffusion. For such systems we present the weak localization theory. As a manifestation for the velocity autocorrelation function a universal power law decay is predicted to appear at four Ehrenfest times. This deterministic weak localization is robust against weak quenched disorders, which may be confirmed by coherent backscattering measurements of periodic photonic crystals.
Protecting weak measurements against systematic errors
NASA Astrophysics Data System (ADS)
Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.
2016-07-01
In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe undergoes decoherence can be significantly lower than that of a standard weak measurement. This indicates another advantage of weak-value amplification in improving the performance of parameter estimation. We illustrate the results by an exact numerical simulation of decoherence arising from a bosonic mode and compare it to the first-order analytical result we obtain.
A Universe without Weak Interactions
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-04-07
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.
Weak Turbulence in Radiation Belts
NASA Astrophysics Data System (ADS)
Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid
2015-11-01
Weak turbulence plays a significant role in space plasma dynamics. Induced nonlinear scattering dominates the evolution in the low-beta isothermal radiation belt plasmas and affects the propagation characteristics of waves. As whistler waves propagate away from the earth they are scattered in the magnetosphere such that their trajectories are turned earthward where they are reflected back towards the magnetosphere. Repeated scattering and reflection of the whistlers establishes a cavity in which the wave energy can be maintained for a long duration with, on average, a smaller wave-normal angle. Consequently, the cyclotron resonance time for the trapped energetic electrons increases, leading to an enhanced pitch-angle scattering rate. Enhanced pitch-angle scattering lowers the lifetime of the energetic electron population. Also, pitch-angle scattering of the trapped population in the cavity with a loss cone distribution amplifies the whistler waves, which in turn promotes a more rapid precipitation through a positive feedback mechanism. Typical storm-pumped radiation belt parameters and laboratory experiments will be used to elucidate this phenomenon Work supported by NRL Base Funds.
Weak Turbulence in Radiation Belts
NASA Astrophysics Data System (ADS)
Ganguli, G.; Crabtree, C. E.; Rudakov, L.
2015-12-01
Weak turbulence plays a significant role in space plasma dynamics. Induced nonlinear scattering dominates the evolution in the low-beta isothermal radiation belt plasmas and affects the propagation characteristics of waves. As whistler waves propagate away from the earth they are scattered in the magnetosphere such that their trajectories are turned earthward where they are reflected back towards the magnetosphere. Repeated scattering and reflection of the whistlers establishes a cavity in which the wave energy can be maintained for a long duration with, on average, a smaller wave-normal angle. Consequently, the cyclotron resonance time for the trapped energetic electrons increases, leading to an enhanced pitch-angle scattering rate. Enhanced pitch-angle scattering lowers the lifetime of the energetic electron population. Also, pitch-angle scattering of the trapped population in the cavity with a loss cone distribution amplifies the whistler waves, which in turn promotes a more rapid precipitation through a positive feedback mechanism. Typical storm-pumped radiation belt parameters and laboratory experiments will be used to elucidate this phenomenon.
Ryutov, D. D.
2015-12-08
Part 1 of this note considered the kinematics of large-angle scattering (LAS) of the deuterons on the counter-streaming carbon ions, with both flows having the same velocity V. Due to a large mass ratio m_{C}/m_{D}, the backscattered deuterons have high velocity of up to (24/7)V. This significantly increases the cross-section for the neutron production in the collisions between the back-scattered and incoming deuterons and may provide significant contribution to the total neutron yield, despite the smallness of a large-angle Coulomb cross-section. This effect becomes particularly important when only one of the colliding streams is made of CD, whereas the other stream is made of CH. Part 1 evaluated the neutron yield produced by this mechanism and have found that its relative role increases for higher plasma densities and lower velocities. Part 2 discusses signatures of this effect which can be used to identify it experimentally and also discusses in some more detail its spatio-temporal characteristics. It goes without saying that a complete quantitative assessment should be based on numerical simulations accounting for the large-angle scattering.
Ryutov, D. D.
2015-12-01
Laser-generated interpenetrating plasma jets are widely used in the studies of collisionless interaction of counter-streaming plasmas in conjunction with possible formation of collisionless shocks. In a number of experiments of this type the plasma is formed on plastic targets made of CH or CD. The study of the DD neutron production from the interaction between two CD jets on the one hand and between a CD jet and a CH jet could serve as a qualitative indicator of the collisionless shock formation. The purpose of this memo is a discussion of the effect of collisions on the neutron generation in the interpenetrating CH and CD jets. First, the kinematics of the large-deflection collisions of the deuterons and carbon are discussed. Then the scattering angles are related with the corresponding Rutherford cross-section. After that expression for the number of the backscattered deuterons is provided, and their contribution to the neutron yield is evaluated. The results may be of some significance to the kinetic codes benchmarking and developing the neutron diagnostic.
Efficient Pumping Schemes for High Average Brightness Collisional X-ray Lasers
Keenan, R; Dunn, J; Shlyaptsev, V N; Smith, R F; Patel, P K; Price, D F
2003-10-07
Advances in transient collisional x-ray lasers have been demonstrated over the last 5 years as a technique for achieving tabletop soft x-ray lasers using 2-10 J of laser pump energy. The high peak brightness of these sources operating in the high output saturation regime, in the range of 10{sup 24}-10{sup 25} ph. mm{sup -2} mrad{sup -2} s-1 (0.1% BW){sup -1}, is ideal for many applications requiring high photon fluence in a single short burst. However, the pump energy required for these x-ray lasers is still relatively high and limits the x-ray laser repetition rate to 1 shot every few minutes. Higher repetition rate collisional schemes have been reported and show some promise for high output in the future. We report a novel technique for enhancing the coupling efficiency of the laser pump into the gain medium that could lead to enhanced x-ray inversion with a factor of ten reduction in the drive energy. This has been applied to the collisional excitation scheme for Ni-like Mo at 18.9 nm and x-ray laser output has been demonstrated. Preliminary results show lasing on a single shot of the optical laser operating at 10 Hz and with 70 mJ in the short pulse. Such a proposed source would have higher average brightness, {approx}10{sup 14} ph. mm{sup -2} mrad{sup -2} s{sup -1} (0.1% BW){sup -1}, than present bending magnet 3rd generation synchrotron sources operating at the same spectral range.
Helander, P.; Hazeltine, R.D.; Catto, P.J.
1996-12-31
The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma.
Fully kinetic simulations of magnetic reconnction in semi-collisional plasmas
Daughton, William S; Roytershteyn, Vadim S; Albright, Brian J; Yin, Lin; Bowers, Kevin J; Karimabadi, Homa
2009-01-01
The influence of Coulomb collisions on the dynamics of magnetic reconnection is examined using fully kinetic simulations with a Monte-Carlo treatment of the Fokker-Planck collision operator. This powerful first-principles approach offers a bridge between kinetic and fluid regimes, which may prove useful for understanding the applicability of various fluid models. In order to lay the necessary groundwork, the collision algorithm is first carefully bench marked for a homogeneous plasma against theoretical predictions for beam-plasma interactions and electrical resistivity. Next, the collisional decay of a current layer is examined as a function of guide field, allowing direct comparisons with transport theory for the parallel and perpendicular resistivity as well as the thermoelectric force. Finally, the transition between collisional and collision less reconnection is examined in neutral sheet geometry. For modest Lundquist numbers S {approx}< 1000, a distinct transition is observed when the thickness of the Sweet-Parker layers falls below the ion inertia length {delta}{sub sp} {approx}< d,. At higher Lundquist number, deviations from the Sweet-Parker scaling are observed due to the growth of plasmoids (secondary-islands) within the elongated resistive layer. In certain cases, this instability leads to the onset of fast reconnection sooner than expected from {delta}{sub sp} {approx} d, condition. After the transition to fast reconnection, elongated electron current layers are formed which are unstable to the formation of new plasmoids. The structure and time-dependence of the electron diffusion region in these semi-collisional regimes is profoundly different than reported in two-fluid simulations.
Daughton, W.; Roytershteyn, V.; Yin, L.; Albright, B. J.; Gary, S. P.; Karimabadi, H.; Bowers, Kevin J.
2011-01-04
The evolution of magnetic reconnection in large-scale systems often gives rise to extended current layers that are unstable to the formation of secondary magnetic islands. The role of these islands in the reconnection process and the conditions under which they form remains a subject of debate. In this work, we benchmark two different kinetic particle-in-cell codes to address the formation of secondary islands for several types of global boundary conditions. The influence on reconnection is examined for a range of conditions and collisionality limits. Although secondary islands are observed in all cases, their influence on reconnection may be different depending on the regime. In the collisional limit, the secondary islands play a key role in breaking away from the slow Sweet-Parker scaling and pushing the evolution towards small scales where kinetic effects can dominate. In the collisionless limit, fast reconnection can proceed in small systems (30x ion inertial scale) without producing any secondary islands. However, in large-scale systems the diffusion region forms extended current layers that are unstable to the formation of secondary islands, giving rise to a time-dependent reconnection process. These instabilities provide one possible mechanism for controlling the average length of the diffusion region in large systems. New results from Fokker-Planck kinetic simulations are used to examine the role of secondary islands in electron-positron plasmas for both collisional and kinetic parameter regimes. Simple physics arguments suggest the transition should occur when the resistive layers approach the inertial scale. These expectations are confirmed by simulations, which demonstrate the average rate remains fast in large systems and is accompanied by the continuous formation of secondary islands.
Pixelation Effects in Weak Lensing
NASA Astrophysics Data System (ADS)
High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard
2007-11-01
Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape
Weak {}^* convergence of operator means
NASA Astrophysics Data System (ADS)
Romanov, Alexandr V.
2011-12-01
For a linear operator U with \\Vert U^n\\Vert \\le \\operatorname{const} on a Banach space X we discuss conditions for the convergence of ergodic operator nets T_\\alpha corresponding to the adjoint operator U^* of U in the {W^*O}-topology of the space \\operatorname{End} X^*. The accumulation points of all possible nets of this kind form a compact convex set L in \\operatorname{End} X^*, which is the kernel of the operator semigroup G=\\overline{\\operatorname{co}}\\,\\Gamma_0, where \\Gamma_0=\\{U_n^*, n \\ge 0\\}. It is proved that all ergodic nets T_\\alpha weakly {}^* converge if and only if the kernel L consists of a single element. In the case of X=C(\\Omega) and the shift operator U generated by a continuous transformation \\varphi of a metrizable compactum \\Omega we trace the relationships among the ergodic properties of U, the structure of the operator semigroups L, G and \\Gamma=\\overline{\\Gamma}_0, and the dynamical characteristics of the semi-cascade (\\varphi,\\Omega). In particular, if \\operatorname{card}L=1, then a) for any \\omega \\in\\Omega the closure of the trajectory \\{\\varphi^n\\omega, n \\ge 0\\} contains precisely one minimal set m, and b) the restriction (\\varphi,m) is strictly ergodic. Condition a) implies the {W^*O}-convergence of any ergodic sequence of operators T_n \\in \\operatorname{End} X^* under the additional assumption that the kernel of the enveloping semigroup E(\\varphi,\\Omega) contains elements obtained from the `basis' family of transformations \\{\\varphi^n, n \\ge 0\\} of the compact set \\Omega by using some transfinite sequence of sequential passages to the limit.
Merritt, Elizabeth C. Adams, Colin S.; Moser, Auna L.; Hsu, Scott C. Dunn, John P.; Miguel Holgado, A.; Gilmore, Mark A.
2014-05-15
We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].
Heymann, M.; Hippler, H.; Nahr, D.; Plach, H.J.; Troe, J.
1988-09-22
Transient UV absorption spectra after UV laser excitation of SO/sub 2/ were recorded and analyzed with respect to collisional energy transfer. Byuse of previously determined calibration curves, the absorption-time signals were converted into average energy-number of collision profiles. Energy-dependent average energies transferred per collision (..delta..E) were derived for 22 different collision partners. The temperature dependence of (..delta..E) was determined over the range 300-1500 K by experiments in a CO/sub 2/ CW laser-heated reactor and in shock waves.
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
Terahertz generation by two cross focused laser beams in collisional plasmas
Sharma, R. P. Singh, Ram Kishor
2014-07-15
The role of two cross-focused spatial-Gaussian laser beams has been studied for the high power and efficient terahertz (THz) radiation generation in the collisional plasma. The nonlinear current at THz frequency arises on account of temperature dependent collision frequency of electrons with ions in the plasma and the presence of a static electric field (applied externally in the plasma) and density ripple. Optimisation of laser-plasma parameters gives the radiated THz power of the order of 0.23 MW.
Collisional Losses, Decoherence, and Frequency Shifts in Optical Lattice Clocks with Bosons
Lisdat, Ch.; Winfred, J. S. R. Vellore; Middelmann, T.; Riehle, F.; Sterr, U.
2009-08-28
We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition {sup 1}S{sub 0}-{sup 3}P{sub 0} at 698 nm with bosonic {sup 88}Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with {sup 88}Sr shows no degradation due to collisions on the fractional uncertainty level of 10{sup -16}.
Dipolar vortices and collisional instability in rotating electron-positron-ion plasmas
Haque, Q.
2011-11-15
Linear dispersion relation of electrostatic waves is derived for rotating electron-positron-ion (e-p-i) plasmas. The role of the rotational plasma frequency on drift wave through Coriolis force in the pulsar magnetosphere is discussed. This wave can couple with acoustic mode. In the nonlinear regime, stationary solution in the form of dipolar vortices is obtained. At the end we have also found the collisional instability in the presence of neutral-ion collisions for this rotating e-p-i plasma. The importance of the study with respect to astrophysical plasmas is also pointed out.
Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers
Matyas, Alpar; Lugli, Paolo; Jirauschek, Christian
2013-01-07
Using a generalized version of Fermi's golden rule, collisional broadening is self-consistently implemented into ensemble Monte Carlo carrier transport simulations, and its effect on the transport and optical properties of terahertz quantum cascade lasers is investigated. The inclusion of broadening yields improved agreement with the experiment, without a significant increase of the numerical load. Specifically, this effect is crucial for a correct modeling at low biases. In the lasing regime, broadening can lead to significantly reduced optical gain and output power, affecting the obtained current-voltage characteristics.
M.C. Campanell, A. Khrabrov and I Kaganovich
2012-05-11
A condition for sheath instability due to secondary electron emission (SEE) is derived for low collisionality plasmas. When the SEE coefficient of the electrons bordering the depleted loss cone in energy space exceeds unity, the sheath potential is unstable to a negative perturbation. This result explains three different instability phenomena observed in Hall thruster simulations including a newly found state with spontaneous ~20MHz oscillations. When instabilities occur, the SEE propagating between the walls becomes the dominant contribution to the particle flux, energy loss and axial transport.
NASA Astrophysics Data System (ADS)
Kudryavtsev, A. A.; Mustafaev, A. S.; Tsyganov, A. B.; Chirtsov, A. S.; Yakovleva, V. I.
2012-10-01
The energy spectra of fast electrons resulting from pair collisions between metastable atoms and from collisions of the second kind with electrons are observed in the afterglow of a helium-filled microplasma collisional electron spectroscopy (CES) detector at a pressure of 5-40 Torr. It is demonstrated that impurities present in the main inert gas can be detected and their composition can be determined using a planar double-electrode detector in which the cathode simultaneously serves as an analyzer of electrons in the afterglow.
Collisional-radiative recombination Ar{sup +} + e + e: Experimental study at 77-180 K
Kotrik, Tomas; Dohnal, Petr; Roucka, Stepan; Jusko, Pavol; Plasil, Radek; Glosik, Juraj; Johnsen, Rainer
2011-03-15
Rate coefficients for collisional-radiative recombination (CRR) of Ar{sup +} ions with electrons have been measured at temperatures from 77 to 180 K in a helium-buffered flowing-afterglow (Cryo-FALP) experiment at electron densities n{sub e} from 10{sup 8} to 10{sup 10} cm{sup -3}. The measured ternary rate coefficient K{sub CRR} at 77 K is (1.1{+-}0.4)x10{sup -17} cm{sup 6}s{sup -1} and the observed variation with temperature agrees well with the theoretical T{sup -4.5} dependence.
Spin waves and collisional frequency shifts of a trapped-atom clock.
Maineult, Wilfried; Deutsch, Christian; Gibble, Kurt; Reichel, Jakob; Rosenbusch, Peter
2012-07-13
We excite spin waves with spatially inhomogeneous Ramsey pulses and study the resulting frequency shifts of a chip-scale atomic clock of trapped 87Rb. The density-dependent frequency shifts of the hyperfine transition simulate the s-wave collisional frequency shifts of fermions, including those of optical lattice clocks. As the spin polarizations oscillate in the trap, the frequency shift reverses and it depends on the area of the second Ramsey pulse, exhibiting a predicted beyond mean-field frequency shift. Numerical and analytic models illustrate these observed behaviors. PMID:23030137
Asteroid 4 Vesta: Dynamical and collisional evolution during the Late Heavy Bombardment
NASA Astrophysics Data System (ADS)
Pirani, S.; Turrini, D.
2016-06-01
Asteroid 4 Vesta is the only currently identified asteroid for which we possess samples in the form of meteorites. These meteorites revealed us that Vesta is a differentiated body and that its differentiation produced a relatively thin basaltic crust that survived intact over its entire collisional history. The survival of the vestan basaltic crust has long been identified as a pivotal constraint in the study of the evolution of the asteroid belt and the Solar System but, while we possess a reasonably good picture of the effects of the last 4 Ga on such a crust, little is known about the effects of earlier events like the Late Heavy Bombardment. In this work we address this gap in our knowledge by simulating the Late Heavy Bombardment on Vesta in the different dynamical scenarios proposed for the migration of the giant planets in the broad framework of the Nice Model. The results of the simulations allowed us to assess the collisional history of the asteroid during the Late Heavy Bombardment in terms of produced crater population, surface saturation, mass loss and mass gain of Vesta and number of energetic or catastrophic impacts. Our results reveal that planet-planet scattering is a dynamically favorable migration mechanism for the survival of Vesta and its crust. The number of impacts of asteroids larger than about 1 km in diameter estimated as due to the LHB is 31 ± 5, i.e. about 5 times larger than the number of impacts that would have occurred in an unperturbed main belt in the same time interval. The contribution of a possible extended belt to the collisional evolution of Vesta during the LHB is quite limited and can be quantified in 2 ± 1 impacts of asteroids with diameter greater than or equal to 1 km. The chance of energetic and catastrophic impacts is less than 10% and is compatible with the absence of giant craters dated back to 4 Ga ago and with the survival of the asteroid during the Late Heavy Bombardment. The mass loss caused by the bombardment
NASA Astrophysics Data System (ADS)
Niknam, A. R.; Banjafar, M. R.; Jahangiri, F.; Barzegar, S.; Massudi, R.
2016-05-01
Terahertz (THz) radiation generation by the interaction of two co-propagating high intensity laser beams with a warm collisional inhomogeneous plasma is analytically investigated. By presenting the dielectric permittivity of plasma and taking into account the ponderomotive force, the nonlinear current at THz frequency is obtained. A secondary resonant enhancement of THz radiation is observed, in addition to that occurs at the plasma frequency, which can be tuned by plasma density and temperature. Moreover, we show that for each beat frequency, there exists an optimum temperature at which THz radiation is maximized. It is also shown that the power and efficiency of THz radiation decrease by increasing the collision frequency.
The electromagnetic interchange mode in a partly-ionized collisional plasma. [in F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1975-01-01
A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift, and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange mode is noted: coupling to the intermediate Alfven mode is strongly stabilizing for finite perturbations of the magnetic field. Both ion-viscous and ion-neutral stabilization are included; and it is found that collisions destroy the FLR (finite Larmor radius) cutoff at short perpendicular wavelengths.
Huang, Yuting; Dodds, Eric D
2013-10-15
Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.
Instrumental systematics and weak gravitational lensing
NASA Astrophysics Data System (ADS)
Mandelbaum, R.
2015-05-01
We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.
Spin effects in the weak interaction
Freedman, S.J. Chicago Univ., IL . Dept. of Physics Chicago Univ., IL . Enrico Fermi Inst.)
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.
Hieke, Andreas
2014-01-21
Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined "MALDI-2," which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed. PMID:25669372
Hieke, Andreas
2014-01-21
Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined "MALDI-2," which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.
Hieke, Andreas
2014-01-21
Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined “MALDI-2,” which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.
Charge-state-dependent collisional energy-loss straggling of swift ions in a degenerate electron gas
NASA Astrophysics Data System (ADS)
Nagy, I.; Aldazabal, I.
2009-12-01
In order to characterize the statistical aspect of the energy loss in particle penetration, Bohr developed a kinetic theory and applied it to a beam of fast α particles interacting with free electrons. The present study rests on this classical theory of collisional straggling, and it is implemented by using a partially screened Coulomb potential to model the electron-projectile interaction. The deflection angle of electron scattering in this long-ranged field is calculated analytically within the framework of classical mechanics. The transport fluctuation cross section, which is the basic quantity to the collisional straggling in Bohr’s modeling, is determined numerically. By varying the number of bound electrons around the swift He ions, the effect of prefixed charge states in the collisional energy-loss straggling is quantified. An incoherent weighted summation of different fixed charge-state channels is discussed as well, by using normalized probabilities.
NASA Astrophysics Data System (ADS)
Moser, Auna L.; Hsu, Scott C.
2015-05-01
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.
Moser, Auna L. Hsu, Scott C.
2015-05-15
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.
NASA Astrophysics Data System (ADS)
Al-Ammar, Assad S.; Barnes, Ramon M.
1999-07-01
Inelastic collisional deactivation of the analyte excited state is demonstrated as a dominant cause for non-spectroscopic matrix interference in inductively coupled plasma atomic emission spectrometry (ICP-AES) for commonly used plasma operating conditions in routine analysis. A mathematical simulation of the inelastic collisional model was examined. Comparison between the theoretical model and experimental results using atomic and ionic lines of the analytes Zn, Ba, Mg, Mn and Sr validates the inelastic collisional deactivation model as a dominant cause for non-spectroscopic matrix effect. Matrices evaluated were NH 4Cl, NH 4SCN, (NH 4) 2SO 4, and H 2SO 4 to represent difficult-to-ionize matrices (DIE) and NaCl and CaCl 2 to represent easy-to-ionize element matrices (EIE).
Dayton, William S; Roytershteyn, Vadim; Gary, Peter; Yin, L; Albright, B J; Bowers, K J; Karimabadi, H
2009-01-01
The evolution of magnetic reconnection in large-scale systems often gives rise to extended current layers that are unstable to the formation of secondary magnetic islands. The role of these islands in the reconnection process and the conditions under which they form remains a subject of debate. In this work, we benchmark two different kinetic particle-in-cell codes to address the formation of secondary islands for several types of global boundary conditions. The influence on reconnection is examined for a range of conditions and collisionality limits. Although secondary islands are observed in all cases, their influence on reconnection may be different depending on the regime. In the collisional limit, the secondary islands playa key role in breaking away from the Sweet-Parker scaling and enabling faster reconnection. In the collisionless limit, their formation is one mechanism for controlling the length of the diffusion region. In both limits, the onset of secondary islands leads to a time dependent behavior in the reconnection rate. In all cases considered, the number of secondary islands increases for larger systems.
Fokker-Planck model for collisional loss of fast ions in tokamaks
NASA Astrophysics Data System (ADS)
Yavorskij, V.; Goloborod'ko, V.; Schoepf, K.
2016-11-01
Modelling of the collisional loss of fast ions from tokamak plasmas is important from the point of view of the impact of fusion alphas and neutral beam injection ions on plasma facing components as well as for the development of diagnostics of fast ion losses [1-3]. This paper develops a Fokker-Planck (FP) method for the assessment of distributions of collisional loss of fast ions as depending on the coordinates of the first wall surface and on the velocities of lost ions. It is shown that the complete 4D drift FP approach for description of fast ions in axisymmetric tokamak plasmas can be reduced to a 2D FP problem for lost ions with a boundary condition delivered by the solution of a 3D boundary value problem for confined ions. Based on this newly developed FP approach the poloidal distribution of neoclassical loss, depending on pitch-angle and energy, of fast ions from tokamak plasma may be examined as well as the contribution of this loss to the signal detected by the scintillator probe may be evaluated. It is pointed out that the loss distributions obtained with the novel FP treatment may serve as an alternative approach with respect to Monte-Carlo models [4, 5] commonly used for simulating fast ion loss from toroidal plasmas.
Proposal of a truncated atomic beam fountain for reduction of collisional frequency shift
Takamizawa, A.; Yanagimachi, S.; Ikegami, T.; Shirakawa, Y.
2010-07-15
We propose an atomic fountain clock with a truncated cold atomic beam to achieve both a low collisional frequency shift and high frequency stability. In this clock, the launching velocity of a cold atomic beam can be swept to reduce the atomic density in the interrogation region for the Ramsey resonance and to increase the atomic density in the detection region. Before the top of the beam arrives at the interrogation region, the cold atomic beam is truncated by turning off the cooling laser beams to remove the unnecessary light shift. The atomic density in the interrogation region is theoretically evaluated to be 0.04 times that in an ordinary atomic fountain with optical molasses for the same number of detected atoms. The frequency stability limit due to quantum projection noise is calculated to reach 6.4x10{sup -14} in 1 s from the number of detected atoms while the fractional collisional shift is estimated to be {approx}{sup -}2x10{sup -16}.
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.
2015-09-29
In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of N_{e} ~10^{17} cm^{-3}. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.
Taucher, Monika; Rieder, Ulrike; Breuker, Kathrin
2010-02-01
In recent years, new classes of nonprotein-coding ribonucleic acids (ncRNAs) with important cellular functions have been discovered. Of particular interest for biomolecular research and pharmaceutical developments are small ncRNAs that are involved in gene regulation, such as small interfering RNAs (21-28 nt), pre-microRNAs (70-80 nt), or riboswitches (34-200 nt). De novo sequencing of RNA by top-down mass spectrometry has so far been limited to RNA consisting of up to approximately 20 nt. We report here complete sequence coverage for 34 nt RNA (10.9 kDa), along with 30 out of 32 possible complementary ion pairs from collisionally activated dissociation (CAD) experiments. The key to minimizing undesired base loss and internal fragmentation is to minimize the internal energy of fragment ions from primary backbone cleavage. This can be achieved by collisional cooling of primary fragment ions and selection of precursor ions of relatively low negative net charge (about -0.2/nt).
Alpine Post-Collisional Orogeny: topics of debate and possible targets for AlpArray research
NASA Astrophysics Data System (ADS)
Kissling, Edi
2016-04-01
In all aspects, the Alps are by far the best documented orogen. Within their only 1000km lengths from Nice to Vienna, the Alps exhibit an extraordinary variation in structure along strike and from surface to great depth. The modern well-accepted mountain building concept calls for a material flux carefully balanced by mantle flow, plate convergence, subduction, crustal delamination, surface topography, uplift and erosion. The Alpine data set provides a basis to relate subduction processes with Penninic nappes evolution and overthrusting of Austroalpine lid, collision and oceanic slab break-off with build-up of topography, and post-collisional slab rollback and isostatic rebound due to erosional unloading to exhumation of deep European basement structures such as Tauern and Aar massiv. Temporal and spatial variations and relative importance of these processes and their relation to the overall convergence between the Adriatic/Africa and European continental plates, however, are still poorly understood and remain matters of debate. While the AlpArray Seismic Experiment will provide new geophysical information of unprecedented resolution and reliability, discussions and interdisciplinary earth science research among AlpArray community targeted at key questions will lead to a better understanding of collisional orogeny in general and Alpine evolution in particular.
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.
2015-09-29
In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore » by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less
Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.
2015-10-15
The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.
Collisional damping of helicon waves in a high density hydrogen linear plasma device
NASA Astrophysics Data System (ADS)
Caneses, Juan F.; Blackwell, Boyd D.
2016-10-01
In this paper, we investigate the propagation and damping of helicon waves along the length (50 cm) of a helicon-produced 20 kW hydrogen plasma ({{n}\\text{e}}∼ 1–2 × 1019 m‑3, {{T}\\text{e}}∼ 1–6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50–200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (4–8 G and {λz}∼ 10–15 cm) propagating away from the antenna region which become collisionally absorbed within 40–50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. Theoretical calculations are consistent with experiment and indicate that for conditions where Coulomb collisions are dominant classical collisionality is sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in helicon based linear plasma devices.
NASA Astrophysics Data System (ADS)
Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield, J. E., II; Wiens, R. C.; Clegg, S. M.
2014-11-01
Electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amend by employing oscillator strengths from Hartree-Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ˜ 1 eV and electron densities of Ne ˜ 1017 cm-3. We evaluate the D K-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D K-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D K-inspired model.
NASA Astrophysics Data System (ADS)
Lovell, Amy J.; Howell, Ellen S.
2015-11-01
Between 2000-2015, we obtained 18cm OH spectra of 26 comets, using the Arecibo Observatory 305m Gordon Telescope and the National Radio Astronomy Observatory 100m R. W. Byrd Green Bank Telescope (GBT). Spectra of both long-period and periodic comets were obtained at 1667 and 1665 MHz (18cm wavelength) with a beam resolution of 2.9 arcminutes at Arecibo and 7.4 arcminutes at GBT. Heliocentric distances for comets in the sample range between 0.4 to 2.8 AU, with gas production rates from 0.1--30 x 1028 mol/s. A wide range of gas velocities are observed, from 0.5 to nearly 2 km/s, with the highest variability in outflow velocities for comets at heliocentric distances less than 1 AU. Mapping observations provide a direct constraint on the radius within which there is collisional quenching, an important factor in estimating total water production rates, and a useful constraint on coma density. We find that collisional quenching varies considerably, and generally exceeds what might be expected theoretically, so it is best when observations make a direct constraint on this value. We will present aggregate velocity, gas production, and quenching results from this comet survey, derived from a kinetic model utilizing Monte Carlo simulations.
Collisional tests and an extension of the TEMPEST continuum gyrokinetic code
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.
2006-04-01
An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).
Rapid collisional evolution of comets during the formation of the Oort cloud.
Stern, S A; Weissman, P R
2001-02-01
The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.
Critical collisional opacity in a ^87Rb Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Beijerinck, Herman; Schuster, Johannes; Marte, Andreas; Amtage, Sebastian; Sang, Bernhard; Rempe, Gerhard
2001-05-01
We report on the observation of anomalous losses from a ^87Rb condensate with a high column density, in the absence of a scattering resonance. We identify a new loss process that is based on a collisional avalanche triggered by an elastic background collision or an inelastic collision between atoms in the trap. In this avalanche, a considerable fraction of the kinetic energy that the particles have gained in the collisional trigger is distributed among the trapped atoms, resulting in a dramatic increase of the number of atoms lost from the condensate. We present a simple model for these avalanche-enhanced loss rates which is in good agreement with our experimental observations. The model has no free parameters: the only input parameters are the s-wave scattering length, the column density of the condensate and the well-known rate constants for two- and three-body inelastic collisions. 1) J. Schuster, A. Marte, S. Amtage, B. Sang, G. Rempe, and H.C.W. Beijerinck, Phys.Rev.Lett. (2000) submitted for publication.
NASA Astrophysics Data System (ADS)
Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.
2015-10-01
The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N2, and 0.05% CO2 are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50-250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.
2010-01-01
Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.
Finite orbit width effect in ion collisional transport in TJ-II
Velasco, J. L.; Tarancon, A.; Castejon, F.
2009-05-15
The validity of the traditional local diffusive approach and of the use of monoenergetic calculations has been studied for the stellarator TJ-II [Alejaldre et al., Fusion Technol. 17, 131 (1990)]: it is shown to be doubtful, under some circumstances, even in a purely collisional description of transport. The diffusion in physical space starting from Dirac-delta-like initial conditions has been studied using the code Integrator of Stochastic Differential Equations for Plasmas by Castejon et al. [Plasma Phys. Controlled Fusion 49, 753 (2007)]. Particles may experience large radial excursions from their original magnetic surfaces in a single collisional time. The contribution of these particles to the flux may make it nondiffusive; non-Gaussian density distributions, characterized by long tails, are observed. In the velocity space, there are important variations in the average particle kinetic energy after one collision time. We discuss the effect of this fact over the calculation of monoenergetic transport coefficients and their convolution. A simple analysis based on Hurst exponents has shown nevertheless that the description of transport by means of a pinch term and an effective transport coefficient is more correct than expected.
Band-structure-based collisional model for electronic excitations in ion-surface collisions
Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.
2005-07-15
Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed.
Rapid collisional evolution of comets during the formation of the Oort cloud.
Stern, S A; Weissman, P R
2001-02-01
The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed. PMID:11214311
Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Chen, Yang; Parker, Scott
2004-11-01
The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.
NASA Astrophysics Data System (ADS)
Qi, Yue; Gou, GuoNing; Wang, Qiang; Jiang, ZiQi
2016-04-01
Post-collisional (25-8Ma) ultra-potassic rocks occur along the NS-trending grabens or rifts in southern Tibet, which have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached a near-maximum elevation. However, the petrogenesis of these rocks, especially source of enriched Sr-Nd isotopic compositions, remains controversial. Here we report on the Paleogene silicate-unsaturated pseudoleucite phonolite dike, in the Rongniduo area of central Lhasa terrane. Samples from this 62.7 ± 5.3Ma (in-suit SIMS Apatite U-Pb age) dike have distinctly more depleted whole rock Sr-Nd ((87Sr/86Sr)i = 0.7064 to 0.7062, ɛNd(t) = -1.5 to 0.4) isotopic composition, than those ((87Sr/86Sr)i = 0.7128 to 0.7406, ɛNd(t) = -18.0 to -12.4) of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa subterrane, respectively. We suggest that these ~62 Ma pseudoleucite phonolites could be derived from the enriched mantle metasomatized by subducted Tethyan oceanic materials, which provides important constraints on pre-collisional mantle characteristics beneath the Lhasa Block. Therefore, our new data indicate that the Miocene ultrapotassic rocks with the enriched Sr-Nd isotopic composition were most probably derived from a mantle source metasomatized by subducted Indian continental materials.
Collisional stability of localized Yb(3P2) atoms immersed in a Fermi sea of Li
NASA Astrophysics Data System (ADS)
Konishi, Hideki; Schäfer, Florian; Ueda, Shinya; Takahashi, Yoshiro
2016-10-01
We establish an experimental method for a detailed investigation of inelastic collisional properties between ytterbium (Yb) in the metastable {}3{{{P}}}2 state and ground state lithium (Li). By combining an optical lattice and a direct excitation to the {}3{{{P}}}2 state we achieve high selectivity on the collisional partners. Using this method we determine inelastic loss coefficients in collisions between 174Yb({}3{{{P}}}2) with magnetic sublevels of m J = 0 and ‑2 and ground state 6Li to be (4.4+/- 0.3)× {10}-11 {{cm}}3 {{{s}}}-1 and (4.7+/- 0.8)× {10}-11 {{cm}}3 {{{s}}}-1, respectively. Absence of spin changing processes in Yb({}3{{{P}}}2)–Li inelastic collisions at low magnetic fields is confirmed by inelastic loss measurements on the m J = 0 state. We also demonstrate that our method allows us to look into loss processes in few-body systems separately.
Collisional effects on the numerical recurrence in Vlasov-Poisson simulations
NASA Astrophysics Data System (ADS)
Pezzi, Oreste; Camporeale, Enrico; Valentini, Francesco
2016-02-01
The initial state recurrence in numerical simulations of the Vlasov-Poisson system is a well-known phenomenon. Here, we study the effect on recurrence of artificial collisions modeled through the Lenard-Bernstein operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456-1459 (1958)]. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through an Eulerian collisional Vlasov-Poisson code. It is found that, despite being routinely used, an artificial collisionality is not a viable way of preventing recurrence in numerical simulations without compromising the kinetic nature of the solution. Moreover, it is shown how numerical effects associated to the generation of fine velocity scales can modify the physical features of the system evolution even in nonlinear regime. This means that filamentation-like phenomena, usually associated with low amplitude fluctuations contexts, can play a role even in nonlinear regime.
PLANETARY CORE FORMATION WITH COLLISIONAL FRAGMENTATION AND ATMOSPHERE TO FORM GAS GIANT PLANETS
Kobayashi, Hiroshi; Krivov, Alexander V.; Tanaka, Hidekazu
2011-09-01
Massive planetary cores ({approx}10 Earth masses) trigger rapid gas accretion to form gas giant planets such as Jupiter and Saturn. We investigate the core growth and the possibilities for cores to reach such a critical core mass. At the late stage, planetary cores grow through collisions with small planetesimals. Collisional fragmentation of planetesimals, which is induced by gravitational interaction with planetary cores, reduces the amount of planetesimals surrounding them, and thus the final core masses. Starting from small planetesimals that the fragmentation rapidly removes, less massive cores are formed. However, planetary cores acquire atmospheres that enlarge their collisional cross section before rapid gas accretion. Once planetary cores exceed about Mars mass, atmospheres significantly accelerate the growth of cores. We show that, taking into account the effects of fragmentation and atmosphere, initially large planetesimals enable formation of sufficiently massive cores. On the other hand, because the growth of cores is slow for large planetesimals, a massive disk is necessary for cores to grow enough within a disk lifetime. If the disk with 100 km sized initial planetesimals is 10 times as massive as the minimum mass solar nebula, planetary cores can exceed 10 Earth masses in the Jovian planet region (>5 AU).
Low Collisionality Neoclassical Toroidal Viscosity in Tokamaks and Quasi-symmetric Stellarators
NASA Astrophysics Data System (ADS)
Cole, A. J.; Hegna, C. C.; Callen, J. D.
2008-11-01
Non-resonant magnetic perturbations can affect plasma rotation in toroidally confined plasmas through their modification to |B|. Variations along a field line induce nonambipolar radial transport and produce a global neoclassical toroidal viscous force [NTV]. In this work, previously calculated radial particle fluxes for the low-collisionality ``ν'' and ``1/ν'' regimes [1] are unified into a single particle flux (or toroidal viscous force). Provided pitch-angle scattering dominates over collisional energy exchange, the energy component of phase space can be decoupled into independent regions (E >Ec. for ν regime, E < Ec for 1/ν regime, with Ec determined by .νi(Ec) =ɛ,E) within which the perturbed distribution function can be calculated similar to [1]. Using a technique first employed in axisymmetric neoclassical theory [2], the smoothed particle flux is constructed by summing the partial contributions from ν and 1/ν banana drift effects respectively. The complete NTV force is expressed in terms of the equilibrium flows and a temperature-gradient-determined ``intrinsic'' flow. [1] K.C. Shaing, Phys. Plasmas, 10, 1443 (2003). [2] K.T. Tsang, and J.D. Callen, Phys. Fluids 19, 667 (1976).
NASA Astrophysics Data System (ADS)
Cottle, John M.; Larson, Kyle P.; Kellett, Dawn A.
2015-09-01
The presence of hot, weak crust is a central component of recent hypotheses that seek to explain the evolution of continent-continent collisions, and in particular may play an important role in accommodating the >3000 km of convergence within the Himalaya-Tibetan collision over the last ˜55 Myr. Models that implicate flow of semi-viscous midcrustal rocks south toward the front of the Himalayan orogen, 'channel flow', are able to account for many geologic observations in the Himalaya, while alternative models of collision, particularly 'thrust-wedge taper', demonstrate that much of the observed geology could have formed in the absence of a low-viscosity mid-crustal layer. Several recent studies, synthesized here, have prompted a shift from initial assumptions that channel flow and thrust-wedge taper processes are by definition mutually exclusive. These new studies reveal the presence of several tectonometamorphic discontinuities in the midcrust that appear to reflect a continuum of deformation in which both channel- and wedge-type processes operate in spatially and temporally distinct domains within the orogen, and further, that the system may migrate back and forth between these types of behavior. This continuum of deformation styles within the collisional system is of crucial importance for explaining the evolution of the Himalayan orogen and, hence, for understanding the evolution of Earth's many continent-continent collision zones.
Collisional relaxation of a strongly magnetized two-species pure ion plasma
Chim, Chi Yung; O’Neil, Thomas M.; Dubin, Daniel H.
2014-04-15
The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω{sub 1},Ω{sub 2}≫|Ω{sub 1}−Ω{sub 2}|≫v{sup ¯}{sub ij}/b{sup ¯} and v{sup ¯}{sub ⊥j}/Ω{sub j}≪b{sup ¯}, where Ω{sub 1} and Ω{sub 2} are two cyclotron frequencies, v{sup ¯}{sub ij}=√(T{sub ∥}/μ{sub ij}) is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b{sup ¯}=2e{sup 2}/T{sub ∥} is the classical distance of closest approach for such collisions, and v{sup ¯}{sub ⊥j}/Ω{sub j}=√(2T{sub ⊥j}/m{sub j})/Ω{sub j} is the characteristic cyclotron radius for particles of species j. Here, μ{sub ij} is the reduced mass for the two particles, and T{sub ∥} and T{sub ⊥j} are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I{sub 1}=∑{sub i∈1}m{sub 1}v{sub ⊥i}{sup 2}/(2Ω{sub 1}) and I{sub 2}=∑{sub i∈2}m{sub 2}v{sub ⊥i}{sup 2}/(2Ω{sub 2}) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I{sub 1} and I{sub 2}, yielding a modified Gibbs distribution of the form exp[−H/T{sub ∥}−α{sub 1}I{sub 1}−α{sub 2}I{sub 2}]. Here, the α{sub j}’s are related to T{sub ∥} and T{sub ⊥j} through T{sub ⊥j}=(1/T{sub ∥}+α{sub j}/Ω{sub j}){sup −1}. Collisional relaxation to the usual Gibbs distribution, exp[−H/T{sub ∥}], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b{sup ¯2}Ω{sub 1}{sup 2}/v{sup ¯}{sub 11}{sup 2})exp(5[3π(b{sup ¯}|Ω{sub 1}−Ω{sub 2}|/v{sup ¯}{sub 12})]{sup 2/5}/6), the two
Sharma, Suresh C.; Sharma, Kavita; Gahlot, Ajay
2013-05-15
Current-driven electrostatic ion-cyclotron (EIC) instability is studied in a collisional magnetized dusty plasma. The growth rate and unstable mode frequencies were evaluated based on existing physical parameters relevant to ion cyclotron waves in dusty plasmas. It is found that the unstable mode frequency and growth rate of current-driven EIC instability increase with δ (ion-to-electron density ratio). Moreover, the increase in electron neutral collisional frequency (ν{sub e}) has no effect on the unstable mode frequency while the normalized growth rate has linear dependence on ν{sub e}.
GeV neutrinos from collisional heating in GRBs: Detection prospects with IceCube-DeepCore
Bartos, Imre
2014-11-18
The observed gamma-ray burst (GRB) emission may be due to jet reheating via nuclear collisions. The role of this collisional heating can be probed through the observation of 10–100 GeV neutrinos, which are generated in nuclear collisions along with gamma rays. Neutrino and gamma-ray luminosities are closely related, which further aids observations. If the main mechanism behind the production of GRBs is collisional heating then IceCube-DeepCore could detect the GeV-neutrino emission of GRBs with a few years of observation.
Weak rigidity in the PPN formalism
del Olmo, V.; Olivert, J.
1987-04-01
The influence of the concept of weakly rigid almost-thermodynamic material schemes on the classical deformations is analyzed. The methods of the PPN approximation are considered. In this formalism, the equations that characterize the weak rigidity are expressed. As a consequence of that, an increase of two orders of magnitude in the strain rate tensor is obtained.
On modeling weak sinks in MODPATH
Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.
2012-01-01
Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.
Spin Seebeck effect in a weak ferromagnet
NASA Astrophysics Data System (ADS)
Arboleda, Juan David; Arnache Olmos, Oscar; Aguirre, Myriam Haydee; Ramos, Rafael; Anadon, Alberto; Ibarra, Manuel Ricardo
2016-06-01
We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.
Staggering towards a calculation of weak amplitudes
Sharpe, S.R.
1988-09-01
An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.
CP Violation, Neutral Currents, and Weak Equivalence
DOE R&D Accomplishments Database
Fitch, V. L.
1972-03-23
Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.
NASA Astrophysics Data System (ADS)
Lechmann, S. M.; Schmalholz, S. M.; Hetényi, G.; May, D. A.; Kaus, B. J. P.
2014-01-01
The impact of mechanical layering and the strength of the Indian lower crust on the dynamics of the modern India-Asia collisional system are studied using 3-D thermomechanical modeling. The model includes an Indian oceanic domain, Indian continental domain, and an Asian continental domain. Each domain consists of four layers: upper/lower crust, and upper/lower lithospheric mantle. The Tarim and Sichuan Basins are modeled as effectively rigid blocks and the Quetta-Chaman and Sagaing strike-slip faults as vertical weak zones. The geometry, densities, and viscosities are constrained by geophysical data sets (CRUST2.0, gravity, and seismology). Both static (no horizontal movement of model boundaries) and dynamic scenarios (indentation) are modeled. It is demonstrated that 3-D viscosity distributions resulting from typical creep flow laws and temperature fields generate realistic surface velocities. Lateral variations in the gravitational potential energy cause locally significant tectonic overpressure (i.e., difference between pressure and lithostatic pressure) in a mechanically strong Indian lower crust (up to ~500 MPa for the static scenario and ~800 MPa for the dynamic scenario). Different density distributions in the lithosphere as well as different viscosities (3 orders of magnitude) in the Indian lower crust cause only minor differences in the surface velocity field. This result suggests that surface velocities alone are insufficient to infer the state of mechanical coupling of the lithosphere. Model results are in agreement with GPS velocities for Indian lower crustal viscosities of 1021-1024 Pa s, for a strong Quetta-Chaman Fault (1022 Pa s) and a weak Sagaing Fault (1020 Pa s).
Advances in weak-values based metrology
NASA Astrophysics Data System (ADS)
Jordan, Andrew; Viza, Gerardo; Martínez-Rincón, Julián; Alves, Gabriel; Howell, John; Kwiat, Paul
2015-03-01
We theoretically and experimentally describe the relative advantages of implementing weak-values-based metrology versus standard methods. To accomplish this, we measure small optical beam deflections both a weak-values-based technique, and a standard technique. By introducing controlled external modulations of the detector, and transverse beam-jitter, we quantify the mitigation of these sources in the weak values-based experiment versus the standard experiment. In all cases, the weak-values technique performs the same or better than the standard technique by up to two orders of magnitude in precision for our parameters. We further measure the statistical efficiency of the weak-values-based technique. By post-selecting on 1% of the photons, we obtain 99% of the available Fisher information of the beam deflection parameter. We also discuss ways to recycle the discarded events, obtaining much greater precision on a measured parameter.
Atomic homodyne detection of weak atomic transitions.
Gunawardena, Mevan; Elliott, D S
2007-01-26
We have developed a two-color, two-pathway coherent control technique to detect and measure weak optical transitions in atoms by coherently beating the transition amplitude for the weak transition with that of a much stronger transition. We demonstrate the technique in atomic cesium, exciting the 6s(2)S(1/2) --> 8s(2)S(1/2) transition via a strong two-photon transition and a weak controllable Stark-induced transition. We discuss the enhancement in the signal-to-noise ratio for this measurement technique over that of direct detection of the weak transition rate, and project future refinements that may further improve its sensitivity and application to the measurement of other weak atomic interactions.
Faure, A.; Wiesenfeld, L.; Szalewicz, K.
2014-03-10
A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH{sub 3}) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH{sub 3}-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (∼30 K), moderately dense (∼10{sup 4} cm{sup –3}), and extended region surrounding Sgr B2(N). The derived column density of ∼4 × 10{sup 14} cm{sup –2} is only a factor of ∼10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.
Collisional erosion and the non-chondritic composition of the terrestrial planets.
O'Neill, Hugh St C; Palme, Herbert
2008-11-28
The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their
Spectrum of Mathematical Weaknesses: Related Neuropsychological Correlates.
Perna, Robert; Loughan, Ashlee R; Le, Jessica; Hertza, Jeremy; Cohen, Morris J
2015-01-01
Math disorders have been recognized for as long as language disorders yet have received far less research. Mathematics is a complex construct and its development may be dependent on multiple cognitive abilities. Several studies have shown that short-term memory, working memory, visuospatial skills, processing speed, and various language skills relate to and may facilitate math development and performance. The hypotheses explored in this research were that children who performed worse on math achievement than on Full-Scale IQ would exhibit weaknesses in executive functions, memory, and visuoperceptual skills. Participants included 436 children (27% girls, 73% boys; age range = 5-17 years, M(age) = 9.45 years) who were referred for neuropsychological evaluations due to academic and/or behavioral problems. This article specifically focuses on the spectrum of math weakness rather than clinical disability, which has yet to be investigated in the literature. Results suggest that children with relative weakness to impairments in math were significantly more likely to have cognitive weaknesses to impairments on neuropsychological variables, as compared with children without math weaknesses. Specifically, the math-weak children exhibit a weakness to impairment on measures involving attention, language, visuoperceptual skills, memory, reading, and spelling. Overall, our results suggest that math development is multifaceted. PMID:25117216
Structural features of sequential weak measurements
NASA Astrophysics Data System (ADS)
Diósi, Lajos
2016-07-01
We discuss the abstract structure of sequential weak measurement (WM) of general observables. In all orders, the sequential WM correlations without postselection yield the corresponding correlations of the Wigner function, offering direct quantum tomography through the moments of the canonical variables. Correlations in spin-1/2 sequential weak measurements coincide with those in strong measurements, they are constrained kinematically, and they are equivalent with single measurements. In sequential WMs with postselection, an anomaly occurs, different from the weak value anomaly of single WMs. In particular, the spread of polarization σ ̂ as measured in double WMs of σ ̂ will diverge for certain orthogonal pre- and postselected states.
Complex weak values in quantum measurement
Jozsa, Richard
2007-10-15
In the weak value formalism of Aharonov et al., the weak value A{sub w} of any observable A is generally a complex number. We derive a physical interpretation of its value in terms of the shift in the measurement pointer's mean position and mean momentum. In particular, we show that the mean position shift contains a term jointly proportional to the imaginary part of the weak value and the rate at which the pointer is spreading in space as it enters the measurement interaction.
Weak side of strong topological insulators
NASA Astrophysics Data System (ADS)
Sbierski, Björn; Schneider, Martin; Brouwer, Piet W.
2016-04-01
Strong topological insulators may have nonzero weak indices. The nonzero weak indices allow for the existence of topologically protected helical states along line defects of the lattice. If the lattice admits line defects that connect opposite surfaces of a slab of such a "weak-and-strong" topological insulator, these states effectively connect the surface states at opposite surfaces. Depending on the phases accumulated along the dislocation lines, this connection results in a suppression of in-plane transport and the opening of a spectral gap or in an enhanced density of states and an increased conductivity.
SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.
2000-06-07
A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.
NASA Astrophysics Data System (ADS)
Dubernet, M.-L.; Alexander, M. H.; Ba, Y. A.; Balakrishnan, N.; Balança, C.; Ceccarelli, C.; Cernicharo, J.; Daniel, F.; Dayou, F.; Doronin, M.; Dumouchel, F.; Faure, A.; Feautrier, N.; Flower, D. R.; Grosjean, A.; Halvick, P.; Kłos, J.; Lique, F.; McBane, G. C.; Marinakis, S.; Moreau, N.; Moszynski, R.; Neufeld, D. A.; Roueff, E.; Schilke, P.; Spielfiedel, A.; Stancil, P. C.; Stoecklin, T.; Tennyson, J.; Yang, B.; Vasserot, A.-M.; Wiesenfeld, L.
2013-05-01
The BASECOL2012 database is a repository of collisional data and a web service within the Virtual Atomic and Molecular Data Centre (VAMDC, http://www.vamdc.eu). It contains rate coefficients for the collisional excitation of rotational, ro-vibrational, vibrational, fine, and hyperfine levels of molecules by atoms, molecules, and electrons, as well as fine-structure excitation of some atoms that are relevant to interstellar and circumstellar astrophysical applications. Submissions of new published collisional rate coefficients sets are welcome, and they will be critically evaluated before inclusion in the database. In addition, BASECOL2012 provides spectroscopic data queried dynamically from various spectroscopic databases using the VAMDC technology. These spectroscopic data are conveniently matched to the in-house collisional excitation rate coefficients using the SPECTCOL sofware package (http://vamdc.eu/software), and the combined sets of data can be downloaded from the BASECOL2012 website. As a partner of the VAMDC, BASECOL2012 is accessible from the general VAMDC portal (http://portal.vamdc.eu) and from user tools such as SPECTCOL.
Ramsey, J.M.; Whitten, W.B.; Goeringer, D.E.; Buckley, B.T.
1990-01-01
Rydberg states of rubidium are selectively generated by one and two photon laser excitation in a quadrupole ion trap mass spectrometer. Collisional and electric-field ionization is investigated in trapping device. CCl{sub 4} is studied as a target for ionization of Rydberg states through electron attachment.
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate.
Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y
2016-05-01
We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid. PMID:27203331
Ion-acoustic and Buneman instabilities in collisional plasmas with q-nonextensive distribution
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2016-10-01
The ion-acoustic and Buneman instabilities are studied in a current carrying plasma by taking into account the collisional effects and q-nonextensive distribution function. Using the kinetic theory and Bhatnagar-Gross-Krook collision model, a generalized dielectric permittivity function in the presence of moving electrons and electron and ion-neutral collision frequency is derived. The longitudinal dispersion relation in the Buneman and ion-acoustic instability limit is obtained. The results of the Buneman instability shows that the collision frequency, the q-parameter and electron drift velocity affect the growth rate of the instability. Finally, the profile of the ion-acoustic growth rate indicates that by increasing the ion to electron temperature ratio the instability growth rate decreases.
Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma.
Vinko, S M; Ciricosta, O; Preston, T R; Rackstraw, D S; Brown, C R D; Burian, T; Chalupský, J; Cho, B I; Chung, H-K; Engelhorn, K; Falcone, R W; Fiokovinini, R; Hájková, V; Heimann, P A; Juha, L; Lee, H J; Lee, R W; Messerschmidt, M; Nagler, B; Schlotter, W; Turner, J J; Vysin, L; Zastrau, U; Wark, J S
2015-01-01
The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures ~30 eV to be several times higher than that predicted by standard semiempirical models.
Continuous high-repetition-rate operation of collisional soft-x-ray lasers with solid targets.
Weith, A; Larotonda, M A; Wang, Y; Luther, B M; Alessi, D; Marconi, M C; Rocca, J J; Dunn, J
2006-07-01
We have generated a laser average output power of 2 microW at a wavelength of 13.9 nm by operating a tabletop laser-pumped Ni-like Ag laser at a 5 Hz repetition rate, using a solid helicoidal target that is continuously rotated and advanced to renew the target surface between shots. More than 2 x 10(4) soft-x-ray laser shots were obtained by using a single target. Similar results were obtained at 13.2 nm in Ni-like Cd with a Cd-coated target. This scheme will allow uninterrupted operation of laser-pumped tabletop collisional soft-x-ray lasers at a repetition rate of 10 Hz for a period of hours, enabling the generation of continuous high average soft-x-ray powers for applications. PMID:16770410
Collisional effect on the Weibel instability with the bi-Maxwellian distribution function
NASA Astrophysics Data System (ADS)
Mahdavi, M.; Khanzadeh, H.
2013-05-01
In this paper, the Coulomb collision effect of electron-ion is investigated based on the equilibrium bi-Maxwellian anisotropic distribution function in dense and unmagnetized plasma. An analytical expression is derived for the real frequency and the growth rate of the Weibel instability for two limiting cases |ξ=ω/'k||θ|||≫1 and |ξ |≪1. In the limit |ξ|≪1, the quantity η that is due to a collisional term will appear in the growth and condition of the rate of the Weibel instability, which leads to a constraining condition of the growth rate. When η increases, the growth rate will increase and the wave instability will be distant from its own damping mode.
Ursescu, Daniel; Zielbauer, Bernhard; Kuehl, Thomas; Neumayer, Paul; Pert, Geoff
2007-04-01
The effects of the incidence angle of the main pump (MP) pulse in non-normal pumping geometry and the influence of the MP duration are investigated experimentally and theoretically for a transient collisionally pumped (TCE) x-ray laser in Ni-like Zr at 45 degrees and 72 degrees incidence angle on the target. The way they transfer to the x-ray laser output depends on the preplasma conditions, most notably on the average ionization distribution at the arrival of the MP. Moreover, contrary to previous grazing incidence pumping results, it is found that the shortest attainable MP maximizes the output. Modeling of the experimental results is performed with EHYBRID code. The results are important for scaling high repetition-rate non-normal incidence pumped lasers to sub- 10nm wavelengths.
Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra
Koszykowski, M.L.; Farrow, R.L.; Palmer, R.E.
1985-10-01
High-resolution coherent anti-Stokes Raman spectroscopy spectra of the N/sub 2/ Q branch at 294 K have been obtained at 1, 5, and 10 atm. Even at 1-atm pressure, disagreements with spectra calculated using the isolated line approximation were observed, indicating the importance of collisional narrowing effects in describing these spectra. A method of using the full G-matrix approach for the calculation of these spectra that is both exact and computationally efficient (requiring only one matrix diagonalization and inversion per spectrum) is discussed. Excellent agreement with experimental data is obtained using this method and a simple exponential gap model for the off-diagonal G-matrix elements.
Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions
NASA Astrophysics Data System (ADS)
Roy, Sukesh; Hsu, Paul S.; Jiang, Naibo; Gord, Joseph R.; Kulatilaka, Waruna D.; Stauffer, Hans U.; Gord, James R.
2013-01-01
We report direct measurements of S-branch Raman-coherence lifetimes of CO2 resulting from CO2-CO2 and CO2-N2 collisions by employing time-resolved picosecond coherent anti-Stokes Raman scattering spectroscopy. The S-branch (ΔJ = +2) transitions of CO2 with rotational quantum number J = 0-52 were simultaneously excited using a broadband (˜5 nm) laser pulse with a full-width-at-half-maximum duration of ˜115 ps. The coherence lifetimes of CO2 for a pressure range of 0.05-1 atm were measured directly by probing the rotational coherence with a nearly transform-limited, 90-ps-long laser pulse. These directly measured Raman-coherence lifetimes, when converted to collisional linewidth broadening coefficients, differ from the previously reported broadening coefficients extracted from frequency-domain rotational Raman and infrared-absorption spectra and from theoretical calculations by 7%-25%.
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y.
2016-05-01
We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.
Paknezhad, Alireza
2013-01-15
Nonlinear Raman forward scattering (NRFS) of an intense short laser pulse with a duration shorter than the plasma period through a homogenous collisional transversely magnetized plasma is investigated theoretically when ponderomotive, relativistic and collioninal nonlinearities are taken into account. The plasma is embedded in a uniform magnetic field perpendicular to both, the direction of propagation and electric vector of the radiation field. Nonlinear wave equation is set up and Fourier transformation method is used to solve the coupled equations describing NRFS instability. Finally, the growth rate of this instability is obtained. Thermal effects of plasma electrons and effect of the electron-ion collisions are examined. It is found that the growth rate of Raman forward scattering first decreases on increasing electron thermal velocity, minimizes at an optimum value, and then increases. Our results also show that the growth rate increases by increasing the electron-ion collisions.
Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma
Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.
2014-06-15
The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.
Khorashadizadeh, S. M. Taheri Boroujeni, S.; Niknam, A. R.
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
Comparative study of the collisional electron detachment of C-, Si-, and Ge- by light noble gases
NASA Astrophysics Data System (ADS)
Luna, H.; Zappa, F.; Martins, M. H.; Magalhães, S. D.; Jalbert, Ginette; Coelho, L. F.; de Castro Faria, N. V.
2001-05-01
Collisional electron detachment of anions with np3 structures (n=2, 3, and 4), namely, C-, Si-, and Ge-, was studied for He, Ne, and Ar targets and relative velocities ranging from 0.2 a.u. to 2.2 a.u.. Single, double, and triple electron ejection cross sections were also measured for the C- anion colliding with an Ar target, being observed to obey a binomial distribution. Two striking universal features were observed concerning the total detachment cross sections: for each target a multiplicative scaling may be made for the cross sections of the three projectiles, and these factors are target independent. The maxima of these three curves show a nonmonotonic correspondence with the noble-gas atomic numbers. A simple law, proposed for the scaling, indicates the presence of metastable states in the Si- and Ge- beams.
Laboratory Study of O2(b1Σ g+, υ = 1) Collisional Removal at Thermospheric Temperatures
NASA Astrophysics Data System (ADS)
Wouters, E. R.; Pejaković, D. A.; Phillips, K. E.; Kalogerakis, K. S.
2003-12-01
In the Earth's thermosphere, energy transfer from O(1D) to O2 generates oxygen molecules in the υ = 0 and 1 levels of the O2(b1Σg+) state. The emissions in the O2(b1Σ g+ - X3Σ g-) system (Atmospheric Band) present a major component of the Earth's airglow. Interpretation of the measured intensities of O2 Atmospheric Band emissions can yield altitude profiles of oxygen atom density and local temperature in the lower thermosphere. To achieve this goal accurate laboratory measurements of the collisional removal rate coefficients of O2(b, υ = 1) and their temperature dependence are essential. Atmospheric observations suggest that the relevant colliders for the removal of O2(b, υ = 1) in the lower thermosphere are O2 and O(3P). We report measurements of the rate coefficients for the collisional removal of O2(b, υ = 1) by O2, N2, and CO2, at temperatures in the range 300--1000 K. A state-specific two-laser technique is used, in which the visible output of the first laser directly excites O2 to O2(b, υ = 1), and the ultraviolet output of the second laser probes the O2(b, υ = 1) population by resonantly enhanced multiphoton ionization via the υ= 4 level of the d1Π g Rydberg state. The temporal evolution of the O2(b, υ = 1) population is monitored by varying the time delay between the two laser pulses. The rate coefficient of the collisional removal of O2(b, υ = 1) by O2 increases monotonically with temperature from about 1.5 x 10-11 cm3 s-1 to about 6*E-11 cm3 s-1 in the range 300--1000 K. Experiments with colliders N2 and CO2 determine the upper limits for the removal rate coefficients of O2(b, υ = 1) by N2 and CO2 to be 2 orders of magnitude smaller. This work extends previous studies of O2(b, υ = 1) at room and low temperatures.1,2 We are currently planning experiments to investigate the collisional removal of O2(b, υ = 1) by O atoms. This study was supported by the NSF's Grant ATM-0209229. The participation of K. Phillips in this project was funded by
Quantum mechanical theory of collisional ionization in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
Bellum, J. C.; George, T. F.
1978-01-01
The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.
Collisional drag may lead to disappearance of wave-breaking phenomenon of lower hybrid oscillations
Maity, Chandan; Chakrabarti, Nikhil
2013-01-15
The inhomogeneity in the magnetic field in a cold electron-ion non-dissipative homogeneous plasma leads to the breaking of lower hybrid modes via phase mixing phenomenon [Maity et al. Phys. Plasmas 19, 102302 (2012)]. In this work, we show that an inclusion of collisional drag force in fluid equations may lead to the disappearance of the wave-breaking phenomenon of lower hybrid oscillations. The nonlinear analysis in Lagrangian variables provides an expression for a critical value of damping rate, above which spikes in the plasma density profile may disappear. The critical damping rate depends on the perturbation and magnetic field inhomogeneity amplitudes as well as the ratio of the magnetic field inhomogeneity and perturbation scale lengths.
Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.
2009-05-01
Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate.
Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y
2016-05-01
We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.
Mushtaq, A.; Saeed, R.; Haque, Q.
2011-04-15
Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.
NASA Astrophysics Data System (ADS)
Clary, David C.; Meijer, Anthony J. H. M.
2002-06-01
Quantum dynamical calculations have been carried out on the excitation of the torsional vibrations of a protein by collision with a solvent molecule. This energy transfer process represents the first step in the unfolding of the protein. The method developed for this purpose is the torsional close coupling, infinite order sudden approximation. Both time-independent and time dependent methods are used to solve the scattering problem and individual excitation of all the torsional modes of the protein is treated. The method is applied to the excitation of the HIV protein gp41 colliding with a water molecule. This protein has 1101 atoms, 56 amino acids, and 452 torsional modes. A major mode-selective effect is found in the computations: it is much easier to excite backbone torsions than sidechain torsions in the protein. In addition, resonances arise in the collisional process and these complexes involve temporary trapping of the water molecule inside the pockets of the protein.
Longitudinal Coherence Measurements of the Transient Collisional X-Ray Laser
Smith, R F; Hubert, S; Fajardo, M; Zeitoun, P; Dunn, J; Hunter, J R; Remond, C; Vanbostal, L; Jaquemot, S; Nilsen, J; Lewis, C L S; Marmoret, R
2002-08-09
The first longitudinal coherence measurement of the transient inversion collisional x-ray laser is presented. The scheme under study is the picosecond output of the Ni-like Pd x-ray laser at 14.68 nm generated by the C0MET laser facility at LLNL. Interference fringes were generated using a Michelson interferometer setup in which a thin multilayer membrane was used as a beam splitter. Longitudinal coherence measurements were made for this transition by changing the length of one interferometer arm and measuring the resultant variation in fringe visibility. The nature of this dependence also allows for an estimation of the linewidth of the lasing transition to be made. Analysis indicates a linewidth of {approx}0.3 pm which is a factor of four less than previous measurements on quasi-steady state x-ray laser schemes.
Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet
NASA Astrophysics Data System (ADS)
Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.
2015-12-01
A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.
Characterization of the transition from collisional to stochastic heating in a RF discharge
NASA Astrophysics Data System (ADS)
Canal, G. P.; Luna, H.; Galvão, R. M. O.
2010-01-01
In this work, we have studied the transition from collisional to stochastic heating regime in a RF inductively coupled plasma discharge, in which the exciting antenna is placed inside the vacuum chamber. The electron and ion energy distribution functions are obtained using an RF filtered electrostatic probe and a Faraday cup. The analysis of the energy distribution functions as a function of the working pressure reveals the existence of two distinct discharge regimes, which are governed by the heating processes. Our results show that while the electron distribution function is Druyvesteyn-like for high pressures, p >= 4.0 × 10-2 mbar, it becomes bi-Druyvesteyn, and not bi-Maxwellian, as found in other works, for low pressures, p <= 1.0 × 10-2 mbar.
Application of a hybrid collisional radiative model to recombining argon plasmas
NASA Astrophysics Data System (ADS)
Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.
1993-02-01
A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.
Collisional energy deposition threshold for extended damage depths in ion-implanted silicates
Arnold, G.W.; Battaglin, G.; Boscolo-Boscoletto, A.; Caccavalle, F.; De Marchi, G.; Mazzoldi, P.; Miotello, A.
1991-12-31
Many properties of implanted fused silica (e.g., surface stress, hardness) exhibit maximum implantation-induced changes for collisional energy deposition values of {approximately}10{sup 20} keV/cm{sup 3}. We have observed a second critical energy deposition threshold value of about 10{sup 22} keV/cm{sup 3} in stress and hardness measurements as well as in many other experiments on silicate glasses (leaching, alkali depletion, etching rate, gaseous implant redistribution). The latter show evidence for damage depths exceeding TRIM ranges by about a factor of 2. For crystalline quartz, a similar threshold value has been found for extended damage depths (greater than TRIM) for 250 kev ions (H-Au) as measured by RBS and interference fringes. This phenomenon at high damage deposition energy may involve the large stress gradients between damaged and undamaged regions and the much increased diffusion coefficient for defect transport. 13 refs., 6 figs.
Collisional energy deposition threshold for extended damage depths in ion-implanted silicates
Arnold, G.W. ); Battaglin, G. ); Boscolo-Boscoletto, A. ); Caccavalle, F.; De Marchi, G.; Mazzoldi, P. ); Miotello, A. (Consorzio INFM, Dipartiment
1991-01-01
Many properties of implanted fused silica (e.g., surface stress, hardness) exhibit maximum implantation-induced changes for collisional energy deposition values of {approximately}10{sup 20} keV/cm{sup 3}. We have observed a second critical energy deposition threshold value of about 10{sup 22} keV/cm{sup 3} in stress and hardness measurements as well as in many other experiments on silicate glasses (leaching, alkali depletion, etching rate, gaseous implant redistribution). The latter show evidence for damage depths exceeding TRIM ranges by about a factor of 2. For crystalline quartz, a similar threshold value has been found for extended damage depths (greater than TRIM) for 250 kev ions (H-Au) as measured by RBS and interference fringes. This phenomenon at high damage deposition energy may involve the large stress gradients between damaged and undamaged regions and the much increased diffusion coefficient for defect transport. 13 refs., 6 figs.
ELM Suppression in Low Edge Collisionality H-Mode Discharges Using n=3 Magnetic Perturbations
Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L
2005-07-11
Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces the edge pressure gradient and pedestal current density below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.
NASA Astrophysics Data System (ADS)
Hodges, K. V.
2016-06-01
Mature orogenic systems built by continent-continent collision feature orogenic plateaus flanked by accretionary wedges. Thermal-mechanical models of these systems predict the development of a thermally weakened orogenic infrastructure that is capable of lateral flow toward the orogenic foreland. Such flow, if it occurs, strongly influences the evolutionary pathway of a wedge. Although the architecture of a wedge features numerous large-displacement faults, three are preeminent in mature orogens: one that marks the base of the wedge and two others that mark the base and top, respectively, of the weakened infrastructure. These structures represent major decoupling horizons separating domains with distinctive deformational and thermal histories. Reviews of the geology of orogenic wedges in two mature orogenic systems—the Cenozoic Himalaya and the Paleozoic East Greenland Caledonides—show how this simple conceptual model provides a valuable context for studies of how collisional orogenic systems develop and how they interact with the surrounding lithosphere.
Radiative and collisional processes in a high pressure micro-hollow cathode discharge
NASA Astrophysics Data System (ADS)
Kurunczi, Peter Frank
Conventional low-pressure hollow cathode glow discharge lamps are well known as intense sources with high emission efficiencies. Reducing the electrode geometries to sub millimeter scales allows us to operate at higher pressures of approximately 500 to 1000 mbar. This high-pressure region is conducive to the formation of rare gas excimers, with applications as a vacuum ultraviolet light source. Here we present the results of vacuum-ultraviolet emission spectroscopy of Neon and Helium excimers. Specifically discussed are the mechanisms of rare gas excimer production, quenching of the neon excimer by H2 resulting in a novel monochromatic hydrogen Lyman-alpha line source, time resolved analysis of the quenching rate constant, and gas kinetic temperatures inferred from vibrational band emission spectra from N2 have been measured. The measured excimer emissions, rate constants, and gas kinetic temperatures have all been shown to be affected by non-radiative collisional processes.
Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A.
2015-06-15
This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time.
The evolution of resistive ballooning modes in the banana-plateau collisionality regime
Sundaram, A.K.; Callen, J.D.
1990-08-01
The theory of resistive ballooning modes relevant to the banana-plateau collisionality regime is studied using the recently developed neoclassical MHD equations. Employing the ballooning mode formulation and a multiple length scale analysis, a generalized set of poloidal flux surface averaged equations coupling the parallel ion flow velocity V{sub {parallel}i}, the vector potential A{sub {parallel}}, and the electrostatic potential {phi} are derived. A particularly simple case in which the parallel sound wave coupling reduces the order of the differential equation in the frequency range {vert bar}{omega}{vert bar} {much gt} {omega}{sub s}, where {omega}{sub s} = sc{sub s}/qR{sub 0}, s is the shear parameter, c{sub s} the sound speed and qR{sub 0} the connection length, is dealt with. The calculations show that a new class of localized pressure-gradient-driven ballooning modes with growth rates varying as ({upsilon}{sub e} + {mu}{sub e}){sup 1/2} is possible, where {upsilon}{sub e} is the electron collision frequency and {mu}{sub e} is the electron neoclassical poloidal flow viscous damping frequency. It is shown that the resistive ballooning modes are sensitive to variations of a parameter {eta} (= {vert bar} dlnP{sub 0}/dlnq {vert bar}) within the tokamak plasma. The enhanced ion polarization and pinch type currents are found to cause stabilization of resistive modes. Further, our model highlights a smooth transition from the Pfirsch-Schlueter to the (neoclassical) banana-plateau collisionality regimes. The relevance of these results to ISX-B experiments is briefly pointed out. 17 refs.
Cao, Li; Tolic, Nikola; Qu, Yi; Meng, Da; Zhao, Rui; Zhang, Qibin; Moore, Ronald J.; Zink, Erika M.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Wu, Si
2014-01-15
Simultaneous elucidation of the glycan structure and the glycosylation site are needed to reveal the biological function of protein glycosylation. In this study, we employed a recent type of fragmentation termed higher energy collisional dissociation (HCD) to examine fragmentation patterns of intact glycopeptides generated from a mixture of standard glycosylated proteins. The normalized collisional energy (NCE) value for HCD was varied from 30% to 60% to evaluate the optimal conditions for the fragmentation of peptide backbones and glycoconjugates. Our results indicated that HCD with lower NCE valuespreferentially fragmented the sugar chains attached to the peptides to generate a ladder of neutral loss of monosaccharides, thus enabling the putative glycan structure characterization. Also, detection of the oxonium ions enabled unambiguous differentiation of glycopeptides from non-glycopeptides. On the contrary, HCD with higher NCE values preferentially fragmented the peptide backbone and thus provided information needed for confident peptide identification. We evaluated the HCD approach with alternating NCE parameters for confident characterization of intact N-linked and O-linked glycopeptides in a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In addition, we applied a novel data analysis pipeline, so-called GlycoFinder, to form a basis for automated data analysis. Overall, 38 unique intact glycopeptides corresponding to eight glycosylation sites (including six N-linked and two O-linked sites) were confidently identified from a standard protein mixture. This approach provided concurrent characterization of both, the peptide and the glycan, thus enabling comprehensive structural characterization of glycoproteins in a single LC-MS/MS analysis.
Helling, Ch.; Jardine, M.; Mokler, F.
2011-08-10
Observations have shown that continuous radio emission and also sporadic H{alpha} and X-ray emission are prominent in singular, low-mass objects later than spectral class M. These activity signatures are interpreted as being caused by coupling of an ionized atmosphere to the stellar magnetic field. What remains a puzzle, however, is the mechanism by which such a cool atmosphere can produce the necessary level of ionization. At these low temperatures, thermal gas processes are insufficient, but the formation of clouds sets in. Cloud particles can act as seeds for electron avalanches in streamers that ionize the ambient gas, and can lead to lightning and indirectly to magnetic field coupling, a combination of processes also expected for protoplanetary disks. However, the precondition is that the cloud particles are charged. We use results from DRIFT-PHOENIX model atmospheres to investigate collisional processes that can lead to the ionization of dust grains inside clouds. We show that ionization by turbulence-induced dust-dust collisions is the most efficient kinetic process. The efficiency is highest in the inner cloud where particles grow quickly and, hence, the dust-to-gas ratio is high. Dust-dust collisions alone are not sufficient to improve the magnetic coupling of the atmosphere inside the cloud layers, but the charges supplied either on grains or within the gas phase as separated electrons can trigger secondary nonlinear processes. Cosmic rays are likely to increase the global level of ionization, but their influence decreases if a strong, large-scale magnetic field is present as on brown dwarfs. We suggest that although thermal gas ionization declines in objects across the fully convective boundary, dust charging by collisional processes can play an important role in the lowest mass objects. The onset of atmospheric dust may therefore correlate with the anomalous X-ray and radio emission in atmospheres that are cool, but charged more than expected by pure
NASA Astrophysics Data System (ADS)
Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Roush, T. L.; Magrin, S.; Bertini, I.; La Forgia, F.; Barbieri, C.
2013-09-01
We will present the reflectance spectrum of Phobos from Near Ultraviolet to Near Infrared (245.5-992.0 nm) acquired by the OSIRIS [1] instrument onboard the ESA Rosetta mission. The data have been acquired through the filters of the Wide and the Narrow Angle Camera of the OSIRIS instrument (see Tab. 1) during Rosetta Mars swing-by maneuver on February 24th and 25th , 2007 [2]. Since the time of the fly-by a wide Phobos paper [3] has been published, which focused on the NAC Phobos spectrophotometry and showed that the OSIRIS-NAC spectra are within the spectral dispersion of D-types asteroids. These results lead us to speculate on a possible asteroidal origin of Phobos and we decided to complement our work by performing an investigation of the conditions needed to collisionally capture Phobos in a way similar to that proposed for the irregular satellites of the giant planets [4, 5]. The observational and dynamical results we obtained strongly argued for an early capture of Phobos, likely immediately after the formation of Mars. With this work we are making a step forward from our Phobos paper [3] and we are showing the results we have accomplished in characterizing and interpreting the mineralogical possible origin of the Phobos OSIRIS data by analyzing the complete (NAC-WAC) reflectance spectrum. The observed area goes from 86.8°N to 90°S in latitude and from 126°W to 286°W in ongitude, belonging both to the leading and to the trailing hemisphere of the satellite. We have performed a mineralogical modeling of the surface composition of Phobos which plays in favor of the interpretation of Phobos as a possible collisionally captured asteroid
Postcollisional granites in the South Tien Shan Variscan Collisional Belt, Kyrgyzstan
NASA Astrophysics Data System (ADS)
Solomovich, L. I.; Trifonov, B. A.
2002-11-01
Two major types of the potassium-rich postcollisional granites of Permian age were studied in the South Tien Shan Variscan Collisional Belt. The first type, metaluminous granites of the Jangart complex, are located along the southeastern boundary of this belt with the Precambrian Tarim Block. The plagioclase rims on K-feldspar megacrysts (rapakivi texture), extremely high FeO t/(FeO t+MgO) ratio, indications of the low H 2O and O 2 fugacities, high concentrations of the incompatible elements especially light rare earth elements (LREE), Ba, Nb along with heightened contents of the compatible elements especially Ni, Cr and moderately initial 87Sr/ 86Sr ratio (Sr 0=0.7075) make those granites similar to other rapakivi granites. The second type, peraluminous granites of the Inylchek complex, is located along the northwestern boundary of the belt with the Caledonian Kazakh Microcontinent. Those granites are rich in F, B, Li, Rb, Cs, Sn, Ta and heavy rare earth elements (HREE), but are poor in Ba, Sr, Ni and Cr and are characterized by the relatively high initial 87Sr/ 86Sr ratio (Sr 0=0.7098). Li-mica granites are distributed widely among them. The granites of a transitional type (Uchkoshkon complex) occupy an intermediate geographic position between major granite types. The initial Sr isotopic composition of the transitional granites varies widely (Sr 0 from 0.7080 to 0.7256). The variation in chemical composition of the coeval postcollisional granites across the Collisional belt, together with the variability of initial Sr isotopic ratios of the transitional granites, are thought to indicate basement heterogeneity. This heterogeneity, in turn, is probably related to thrusting of the Tarim Block under South Tien Shan during the collision.