Sample records for maglev linear actuator

  1. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  2. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  3. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  4. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  5. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  6. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  7. The concept of the mechanically active guideway as a novel approach to maglev

    NASA Technical Reports Server (NTRS)

    Horwath, T. G.

    1992-01-01

    A maglev system that is suitable for operation in the United States will have to meet unique requirements which determine the major systems characteristics. Maglev configurations presently developed in Germany and Japan are based on conventional maglev concepts and as such do not meet all of the requirements. A novel maglev guideway concept is introduced as a solution. This concept, the mechanically active guideway, is articulated in three degrees of freedom and assumes system functions which normally reside in the maglev vehicle. The mechanically active guideway contains spatially distributed actuators which are energized under computer control at the time of vehicle passage to achieve bank angle adjustment and ride quality control. A typical realization of the concept is outlined.

  8. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  9. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  10. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  11. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds

  12. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10

  13. Polarized Linear Motor Combined With Levitation Actuators Working in a Partial Vacuum Environment—Application to Swissmetro

    NASA Astrophysics Data System (ADS)

    Cassat, Alain; Espanet, Christophe; Bourquin, Vincent; Hagmann, Pascal; Jufer, Marcel

    Worldwide high speed Maglev (> 400km/h) developments refer to Maglev such as the Japanese JR-Maglev MLX, the German Transrapid and the USA Inductrack Maglev. Other world projects exist such as the Japan HSST (< 300km/h) and the China HTC. The JR-Maglev, the Transrapid and the HSST have reached industrial levels. The Swissmetro Project presents a unique aspect of Maglev: it is designed to work under partial vacuum (< 10kPa) in two tunnels and for high speeds (>400km/h). The authors investigate new possibilities to combine both the propulsion and the levitation. In order to minimize the heat due to the motor levitation and guidance losses, a polarized excitation is proposed. The use of permanent magnet NdFeB for the excitation is still not applied for high speed Maglev, requiring mechanical power greater than 6MW. Such a solution only appears in Urban Rapid Transit Maglev (<160km/h), such as the USA MagneMotion M3 and the General Atomic Urban Maglev. For Swissmetro, the authors study the polarized inductors for the levitation, implying a polarized synchronous linear motor. The polarization is obtained with permanent magnets NdFeB. This paper presents some key issues related to such technical choices. The motor design is described and the power balance is presented. The thermal behavior is analyzed using a numerical platform of the complete vehicle-tunnel system, based on computation of the air flow dynamic.

  14. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  15. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  16. Technical assessment of maglev system concepts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.H.

    1998-10-01

    The Government Maglev System Assessment Team operated from 1991 to 1993 as part of the National Maglev Initiative. They assessed the technical viability of four US Maglev system concepts, using the French TGV high speed train and the German TR07 Maglev system as assessment baselines. Maglev in general offers advantages that include high speed potential, excellent system control, high capacity, low energy consumption, low maintenance, modest land requirements, low operating costs, and ability to meet a variety of transportation missions. Further, the US Maglev concepts could provide superior performance to TR07 for similar cost or similar performance for less cost.more » They also could achieve both lower trip times and lower energy consumption along typical US routes. These advantages result generally from the use of large gap magnetic suspensions, more powerful linear synchronous motors and tilting vehicles. Innovative concepts for motors, guideways, suspension, and superconducting magnets all contribute to a potential for superior long term performance of US Maglev systems compared with TGV and TR07.« less

  17. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

    NASA Astrophysics Data System (ADS)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

    2017-10-01

    A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

  18. Linear fully dry polymer actuators

    NASA Astrophysics Data System (ADS)

    De Rossi, Danilo; Mazzoldi, Alberto

    1999-05-01

    In the last period, the interest in the development of devices that emulate the properties of the 'par excellence' biological actuator, the human muscle, is considerably grown. The recent advances in the field of conducting polymers open new interesting prospects in this direction: from this point of view polyaniline (PANi), since it is easily produced in fiber form, represents an interesting material. In this conference we report the development of a linear actuator prototype that makes use of PANi fiber. All fabrication steps (fiber extrusion, solid polymer electrolyte preparation, compound realization) and experimental set-up for the electromechanical characterization are described. Quantitative measurements of isotonic length changes and isometric stress generation during electrochemical stimulation are reported. An overall assessment of PANi fibers actuative properties in wet and dry conditions is reported and possible future developments are proposed. Finally, continuum and lumped parameter models formulated to describe passive and active contractile properties of conducting polymer actuators are briefly outlined.

  19. Dynamic actuation of a novel laser-processed NiTi linear actuator

    NASA Astrophysics Data System (ADS)

    Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.

    2012-09-01

    A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.

  20. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    NASA Astrophysics Data System (ADS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  1. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  2. Robot Arm with Tendon Connector Plate and Linear Actuator

    NASA Technical Reports Server (NTRS)

    Bridgwater, Lyndon (Inventor); Millerman, Alexander (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  3. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  4. Design and fabrication of a hybrid maglev model employing PML and SML

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.

    2017-10-01

    A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.

  5. Status of US Maglev Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D.M.

    1993-11-01

    Factors that have led to a reawakening of national interest in maglev technology in the United States are discussed. The development of the National Maglev program, its findings, and the four maglev design concepts resulting from the System Concept Definition study are reviewed. Technical requirements for the SCD contractors and for the Prototype Development Program are compared. Some legislative background information is given, with a review of the most important maglev legislation. Plans for the National Maglev Prototype Development Program are discussed, and activities related to maglev at Argonne National Laboratory are summarized.

  6. Potential impact of high temperature superconductors on MAGLEV transportation

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    1992-02-01

    This report describes the potential impact that high-temperature superconductors (HTS's) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTS's is described. Areas identified for possible impact on maglev technology are: (1) liquid-nitrogen-cooled levitation magnets; (2) magnetic-field shielding of the passenger compartment; (3) superconducting magnetic energy storage for wayside power; (4) superconducting bearings for flywheel energy storage for wayside power; (5) downleads to continuously powered liquid-helium-cooled levitation magnets; and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTS's in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

  7. Dynamic analysis of the American Maglev system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seda-Sanabria, Y.; Ray, J.C.

    1996-06-01

    Understanding the dynamic interaction between a magnetic levitated (Maglev) vehicle and its supporting guideway is essential in the evaluation of the performance of such a system. This interacting coupling, known as vehicle/guideway interaction (VGI), has a significant effect on system parameters such as the required magnetic suspension forces and gaps, vehicular ride quality, and guideway deflections and stresses. This report presents the VGI analyses conducted on an actual Maglev system concept definition (SCD), the American Maglev SCD, using a linear-elastic finite-element (FE) model. Particular interest was focused on the comparison of the ride quality of the vehicle, using two differentmore » suspension systems, and their effect on the guideway structure. The procedure and necessary assumptions in the modeling are discussed.« less

  8. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  9. Feedback Linearization in a Six Degree-of-Freedom MAG-LEV Stage

    NASA Technical Reports Server (NTRS)

    Ludwick, Stephen J.; Trumper, David L.; Holmes, Michael L.

    1996-01-01

    A six degree-of-freedom electromagnetically suspended motion control stage (the Angstrom Stage) has been designed and constructed for use in short-travel, high-resolution motion control applications. It achieves better than 0.5 nm resolution over a 100 micron range of travel. The stage consists of a single moving element (the platen) floating in an oil filled chamber. The oil is crucial to the stage's operation since it forms squeeze film dampers between the platen and the frame. Twelve electromagnetic actuators provide the forces necessary to suspend and servo the platen, and six capacitance probes measure its position relative to the frame. The system is controlled using a digital signal processing board residing in a '486 based PC. This digital controller implements a feedback linearization algorithm in real-time to account for nonlinearities in both the magnetic actuators and the fluid film dampers. The feedback linearization technique reduces a highly nonlinear plant with coupling between the degrees of freedom into one that is linear, decoupled, and setpoint independent. The key to this procedure is a detailed plant model. The operation of the feedback linearization procedure is transparent to the outer loop of the controller, and so a proportional controller is sufficient for normal operation. We envision applications of this stage in scanned probe microscopy and for integrated circuit measurement.

  10. Survey of foreign maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, J.L.; Rote, D.M.; Coffey, H.T.

    1992-07-01

    Magnetic levitation (maglev) transportation systems represent an innovative technology that promises to provide pollution-free, contact-free, high-speed ground transportation for the twenty-first century. Great interest in maglev systems has been developing in the United States over the past two years under the auspices of the US National Maglev Initiative. The objective of the survey presented in this report is to provide the US maglev community with information on various maglev concepts that were developed in foreign countries over the past two decades. The main maglev systems included in the survey are the German Transrapid series and the M-Bahn, the Japanese HSSTmore » and MLU series, and the British Birmingham. Each maglev system is introduced and discussed according to its type, historical development, unique features, current status, and future prospects. Advantages and disadvantages of each system are briefly noted.« less

  11. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  12. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-04-01

    Because dynamic instability is not acceptable for any commercial maglev systems, it is important to consider this phenomenon in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study identifies basic stability characteristics and future research needs of maglev systems.

  13. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1994-05-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  14. Releasable High-Mechanical-Advantage Linear Actuator

    NASA Technical Reports Server (NTRS)

    Young, Gordon H.

    1994-01-01

    Proposed linear actuator includes ball-screw mechanism made to engage or disengage piston as needed. Requires low power to maintain release and no power to maintain engagement. Pins sliding radially in solenoids in yoke engage or disengage slot in piston. With help of optoelectronic feedback, yoke made to follow free piston during disengagement so always in position to "grab" piston.

  15. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-09-01

    Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.

  16. 78 FR 26393 - Certain Linear Actuators; Institution of Investigation Pursuant to 19 U.S.C. 1337

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-880] Certain Linear Actuators... importation, and the sale within the United States after importation of certain linear actuators by reason of... linear actuators by reason of infringement of one or more of claims 1-29 of the '144 patent, and whether...

  17. A novel propulsion method for high- Tc superconducting maglev vehicle

    NASA Astrophysics Data System (ADS)

    Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.

  18. Linear Actuator Has Long Stroke and High Resolution

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Moore, Donald M.; Braun, David F.; Koenig, John S.; Hankins, Steve M.

    2009-01-01

    The term precision linear actuator, direct drive ( PLADD ) refers to a robust linear actuator designed to be capable of repeatedly performing, over a lifetime of the order of 5 to 10 years, positioning maneuvers that include, variously, submicron increments or slews of the order of a centimeter. The PLADD is capable of both long stroke (120 mm) and high resolution (repeatable increments of 20 nm). Unlike precise linear actuators of prior design, the PLADD contains no gears, levers, or hydraulic converters. The PLADD, now at the prototype stage of development, is intended for original use as a coarse-positioning actuator in a spaceborne interferometer. The PLADD could also be adapted to terrestrial applications in which there are requirements for long stroke and high resolution: potential applications include medical imaging and fabrication of semiconductor devices. The PLADD (see figure) includes a commercially available ball-screw actuator driven directly by a commercially available three-phase brushless DC motor. The ball-screw actuator comprises a spring-preloaded ball nut on a ball screw that is restrained against rotation as described below. The motor is coupled directly (that is, without an intervening gear train) to a drive link that, in turn, is coupled to the ball nut. By eliminating the gear train, the direct-drive design eliminates the complexity, backlash, and potential for misalignment associated with a gear train. To prevent inadvertent movement, there is a brake that includes flexured levers compressed against the drive link by preload springs. This is a power-off brake: There are also piezoelectric stacks that can be activated to oppose the springs and push the levers away from the drive link. Hence, power must be applied to the piezoelectric stacks to release the drive link from braking. To help ensure long operational life, all of the mechanical drive components are immersed in an oil bath within hermetically sealed bellows. The outer end of the

  19. Linear or Rotary Actuator Using Electromagnetic Driven Hammer as Prime Mover

    NASA Technical Reports Server (NTRS)

    McMahan, Bert K. (Inventor); Sesler, Joshua J. (Inventor); Paine, Matthew T. (Inventor); McMahan, Mark C. (Inventor); Paine, Jeffrey S. N. (Inventor); Smith, Byron F. (Inventor)

    2018-01-01

    We claim a hammer driven actuator that uses the fast-motion, low-force characteristics of an electro-magnetic or similar prime mover to develop kinetic energy that can be transformed via a friction interface to produce a higher-force, lower-speed linear or rotary actuator by using a hammering process to produce a series of individual steps. Such a system can be implemented using a voice-coil, electro-mechanical solenoid or similar prime mover. Where a typical actuator provides limited range of motion or low force, the range of motion of a linear or rotary impact driven motor can be configured to provide large displacements which are not limited by the characteristic dimensions of the prime mover.

  20. Note: Development of a small maglev-type antirolling system.

    PubMed

    Park, Cheol Hoon; Park, Hee Chang; Cho, Han Wook; Moon, Seok Jun; Chung, Tae Young

    2010-05-01

    Various passive and/or active antirolling devices have been used for suppressing the rolling motion of ships in the ocean. In this study, a maglev-type active mass driver (AMD) is developed for controlling the rolling motion of a shiplike structure. No friction is generated during the motion of this maglev-type AMD, as the moving mass is floated by the magnetic levitation force and displaced by the propulsion force generated by the linear motor. For verifying the feasibility of the proposed method, a small AMD having a moving mass of approximately 4.0 kg is constructed and used in a small-scale model of a catamaran. This paper presents the detailed design procedures and obtained experimental results. Our results show that the developed maglev-type AMD has the potential for use in controlling the rolling motion of ships and other oceanographic vessels.

  1. Miniature High-Force, Long-Stroke SMA Linear Actuators

    NASA Technical Reports Server (NTRS)

    Cummin, Mark A.; Donakowski, William; Cohen, Howard

    2008-01-01

    Improved long-stroke shape-memory-alloy (SMA) linear actuators are being developed to exert significantly higher forces and operate at higher activation temperatures than do prior SMA actuators. In these actuators, long linear strokes are achieved through the principle of displacement multiplication, according to which there are multiple stages, each intermediate stage being connected by straight SMA wire segments to the next stage so that relative motions of stages are additive toward the final stage, which is the output stage. Prior SMA actuators typically include polymer housings or shells, steel or aluminum stages, and polymer pads between successive stages of displacement-multiplication assemblies. Typical output forces of prior SMA actuators range from 10 to 20 N, and typical strokes range from 0.5 to 1.5 cm. An important disadvantage of prior SMA wire actuators is relatively low cycle speed, which is related to actuation temperature as follows: The SMA wires in prior SMA actuators are typically made of a durable nickel/titanium alloy that has a shape-memory activation temperature of 80 C. An SMA wire can be heated quickly from below to above its activation temperature to obtain a stroke in one direction, but must then be allowed to cool to somewhat below its activation temperature (typically, less than or equal to 60 C in the case of an activation temperature of 80 C) to obtain a stroke in the opposite direction (return stroke). At typical ambient temperatures, cooling times are of the order of several seconds. Cooling times thus limit cycle speeds. Wires made of SMA alloys having significantly higher activation temperatures [denoted ultra-high-temperature (UHT) SMA alloys] cool to the required lower return-stroke temperatures more rapidly, making it possible to increase cycle speeds. The present development is motivated by a need, in some applications (especially aeronautical and space-flight applications) for SMA actuators that exert higher forces, operate

  2. Dynamic stability of electrodynamic maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1997-01-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  3. Carbide-derived carbon (CDC) linear actuator properties in combination with conducting polymers

    NASA Astrophysics Data System (ADS)

    Kiefer, Rudolf; Aydemir, Nihan; Torop, Janno; Kilmartin, Paul A.; Tamm, Tarmo; Kaasik, Friedrich; Kesküla, Arko; Travas-Sejdic, Jadranka; Aabloo, Alvo

    2014-03-01

    Carbide-derived Carbon (CDC) material is applied for super capacitors due to their nanoporous structure and their high charging/discharging capability. In this work we report for the first time CDC linear actuators and CDC combined with polypyrrole (CDC-PPy) in ECMD (Electrochemomechanical deformation) under isotonic (constant force) and isometric (constant length) measurements in aqueous electrolyte. CDC-PPy actuators showing nearly double strain under cyclic voltammetric and square wave potential measurements in comparison to CDC linear actuators. The new material is investigated by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray analysis) to reveal how the conducting polymer layer and the CDC layer interfere together.

  4. Demystifying Mag-Lev.

    ERIC Educational Resources Information Center

    Ruiz, Ernest; And Others

    1991-01-01

    Presented are classroom activities in which students explore the potential use of magnetic levitation for transportation purposes. The advantages of using a MagLev transportation system instead of conventional trains are discussed. Directions for designing and building a MagLev track and circuit are provided. (KR)

  5. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling

    PubMed Central

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-01-01

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator. PMID:26978370

  6. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    PubMed

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  7. Precision Pointing in Space Using Arrays of Shape Memory Based Linear Actuators

    NASA Astrophysics Data System (ADS)

    Sonawane, Nikhil

    Space systems such as communication satellites, earth observation satellites and telescope require accurate pointing to observe fixed targets over prolonged time. These systems typically use reaction wheels to slew the spacecraft and gimballing systems containing motors to achieve precise pointing. Motor based actuators have limited life as they contain moving parts that require lubrication in space. Alternate methods have utilized piezoelectric actuators. This paper presents Shape memory alloys (SMA) actuators for control of a deployable antenna placed on a satellite. The SMAs are operated as a series of distributed linear actuators. These distributed linear actuators are not prone to single point failures and although each individual actuator is imprecise due to hysteresis and temperature variation, the system as a whole achieves reliable results. The SMAs can be programmed to perform a series of periodic motion and operate as a mechanical guidance system that is not prone to damage from radiation or space weather. Efforts are focused on developing a system that can achieve 1 degree pointing accuracy at first, with an ultimate goal of achieving a few arc seconds accuracy. Bench top model of the actuator system has been developed and working towards testing the system under vacuum. A demonstration flight of the technology is planned aboard a CubeSat.

  8. Dynamic Stability Experiment of Maglev Systems,

    DTIC Science & Technology

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  9. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  10. Dynamic Stability of Maglev Systems,

    DTIC Science & Technology

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  11. Publications on maglev technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, J.L.; Coffey, H.T.; Rote, D.M.

    1991-12-01

    Magnetically levitated passenger-transportation vehicles, using attractive and repulsive magnetic forces, are currently in the development or prototype-revenue stages in Japan and Germany. The basic principles of these technologies have been understood for several decades, but their practical applications awaited advances in high-power electronic devices, modern controls, superconducting magnets, and improvements in our transportation infrastructures. A considerable amount of work was devoted to magnetic-levitation (maglev) transportation system in the late 1960s and the 1970s. Detailed development was sustained primarily in Germany and Japan. This listing of publications was begun as the initial phase of a design study for a maglev developmentmore » facility sponsored by the State of Illinois. The listing has been continually updated under programs sponsored by the Federal Railroad Administration and the US Army Corps of Engineers. In 1991, the National Maglev Initiative issued 27 contracts for the study of technical issues related to maglev and four contracts for the definition of maglev systems. In December 1991, the Intermodal Surface Transportation Efficiency Act was enacted, mandating the development of a US-designed maglev system in a six-year period. This listing is offered as an aid to those working on these projects, to help them locate technical papers on relevant technologies. The design and installation of a maglev transportation system will require the efforts of workers in many disciplines, from electronics to economics to safety. Accordingly, the references have been grouped in 14 different sections to expedite review of the listing. In many case, the references are annotated to indicate the general content of the papers. Abstracts are not available. A list of information services from which the listed documents might be obtained and an author index are provided.« less

  12. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  13. Maglev guideway design issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, D.; Kim, S.

    1997-05-01

    This paper reports results from guideway analyses conducted as part of the National Maglev Initiative (NMI), a government-industry effort from 1989 to 1994, formed to encourage the development of US maglev technology and to assess its potential application within the US transportation system. Covered here are some key guideway design issues that were common to the designs assessed for the NMI, and to maglev guideways in general. They represent aspects that will need additional attention in future efforts to produce structurally sound and economical maglev guideways. These recommendations come from the analyses conducted by a team from the US Armymore » Construction Engineering Research Laboratories, the Civil Engineering Department of the University of Illinois, and Alfred Benesch and Company. The recommendations focus on design philosophy and the development of general design criteria, guideway maintenance and the provision for future alignment adjustment in both the guideway and the magnets, foundation design, and the long-term performance of guideway materials and reinforcement. Generally, one of the main challenges to guideway designers is to produce a structure that will be easily maintainable to the narrow tolerances and precise alignment required for practical high-speed maglev operation.« less

  14. Maglev ready for prime time.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D. M.; Johnson, L. R.; Energy Systems

    2003-01-01

    Putting Maglev on Track' (Issues, Spring 1990) observed that growing airline traffic and associated delays were already significant and predicted that they would worsen. The article argued that a 300-mile-per-hour (mph) magnetic levitation (maglev) system integrated into airport and airline operations could be a part of the solution. Maglev was not ready for prime time in 1990, but it is now.

  15. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  16. Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong

    2017-12-01

    Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.

  17. Jim Powell: Maglev Pioneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Jim

    2016 marks the 50th anniversary of the first published paper on Maglev by retired Brookhaven Lab scientists Gordon Danby and James Powell. The two researchers invented and patented maglev technology — the suspension, guidance, and propulsion of vehicles by magnetic forces.

  18. Geometry optimization of linear and annular plasma synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Seri, P.; Taglioli, M.; Shaw, A.; Iza, F.; Borghi, C. A.

    2017-01-01

    The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance.

  19. Jim Powell: Maglev Pioneer

    ScienceCinema

    Powell, Jim

    2018-06-12

    2016 marks the 50th anniversary of the first published paper on Maglev by retired Brookhaven Lab scientists Gordon Danby and James Powell. The two researchers invented and patented maglev technology — the suspension, guidance, and propulsion of vehicles by magnetic forces.

  20. Dynamics, stability, and control of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1993-06-01

    The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics,more » stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.« less

  1. Dynamics, stability, and control of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1993-01-01

    The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics,more » stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.« less

  2. Maglev program test plan. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deBenedet, D.; Gilchrist, A.J.; Karanian, L.A.

    1992-07-01

    Maglev systems represent a promising evolution in the high-speed ground transportation, offering speeds in excess of 300 mph along with the potential for low operating costs and minimal environmental impact. The goal of this effort is to investigate the feasibility and viability of maglev systems in the United States. The emergence of a sophisticated technology such as maglev requires a need for a coordinated research test program and the determination of test requirements to identify and mitigate development risk and to maximize the use of domestic resources. The study is directed toward the identification and characterization of maglev systems developmentmore » risks tied to a preliminary system architecture. Research objectives are accomplished by surveying experiences from previous maglev development programs, both foreign and domestic, and interviews with individuals involved with maglev research and testing. Findings include ninety-four distinct development risks and twenty risk types. Planning and implementation requirements are identified for a maglev test program, including the development of a facilities strategy to meet any operational concepts that evolve out of early development effort. Also specified is the logical development flow and associated long-lead support needs for sub-scale and full-scale testing.« less

  3. Present status of computational tools for maglev development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.; Chen, S.S.; Rote, D.M.

    1991-10-01

    High-speed vehicles that employ magnetic levitation (maglev) have received great attention worldwide as a means of relieving both highway and air-traffic congestion. At this time, Japan and Germany are leading the development of maglev. After fifteen years of inactivity that is attributed to technical policy decisions, the federal government of the United States has reconsidered the possibility of using maglev in the United States. The National Maglev Initiative (NMI) was established in May 1990 to assess the potential of maglev in the United States. One of the tasks of the NMI, which is also the objective of this report, ismore » to determine the status of existing computer software that can be applied to maglev-related problems. The computational problems involved in maglev assessment, research, and development can be classified into two categories: electromagnetic and mechanical. Because most maglev problems are complicated and difficult to solve analytically, proper numerical methods are needed to find solutions. To determine the status of maglev-related software, developers and users of computer codes were surveyed. The results of the survey are described in this report. 25 refs.« less

  4. Vehicle/Guideway Interaction in Maglev Systems

    DTIC Science & Technology

    1992-03-01

    Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1

  5. Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation

    PubMed Central

    Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza

    2017-01-01

    The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer’s expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion. PMID:28773036

  6. Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation.

    PubMed

    Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza

    2017-06-21

    The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.

  7. Dynamic stability experiment of Maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Mulcahy, T.M.; Chen, S.S.

    1995-04-01

    This report summarizes the research performed on Maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents magnetic-force data obtained from both measurements and calculations. Because dynamic instability is not acceptable for any commercial Maglev system, it is important to consider this phenomenon in the development of all Maglev systems. This report presents dynamic stability experiments on Maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an electrodynamic system (EDS)-type vehicle model were obtained from both experimental observations and computer simulations for a five-degree-of-freedom Maglevmore » vehicle moving on a guideway consisting of double L-shaped aluminum segments attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of Maglev systems.« less

  8. Implementation of cargo MagLev in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Chris R; Peterson, Dean E; Leung, Eddie M

    2008-01-01

    Numerous studies have been completed in the United States, but no commercial MagLev systems have been deployed. Outside the U.S., MagLev continues to attract funding for research, development and implementation. A brief review of recent global developments in MagLev technology is given followed by the status of MagLev in the U.S. The paper compares the cost of existing MagLev systems with other modes of transport, notes that the near-term focus of MagLev development in the U.S. should be for cargo, and suggests that future MagLev systems should be for very high speed cargo. The Los Angeles to Port of Losmore » Angeles corridor is suggested as a first site for implementation. The benefits of MagLev are described along with suggestions on how to obtain funding.« less

  9. High temperature superconducting Maglev equipment on vehicle

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  10. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  11. Comparison of linear synchronous and induction motors

    DOT National Transportation Integrated Search

    2004-06-01

    A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...

  12. Linear finite-difference bond graph model of an ionic polymer actuator

    NASA Astrophysics Data System (ADS)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  13. Design criteria for maglev structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandberg, H.R.; Williams, J.R.

    1997-05-01

    Maglev systems represent an entirely new concept in transportation. They will not operate on nor share the right-of-way with any other system. It is important, therefore, that the guideways be designed and constructed so as to be economical, constructable, durable, adaptable, reliable, and readily maintained. Comparisons should be made with the current transportation systems, especially highways and railroads. Since most of the guideway will be elevated, the comparison should be with the bridges. The object of the comparisons should be to avoid the shortcomings of the other systems while building on their strengths. This paper develops in some detail designmore » and construction criteria that will ensure a good, long-lived performance of the maglev guideway. The importance of beauty should have a low priority in comparison to the other design criteria. Clean, simple details meeting other criteria will ensure an acceptable appearance. These criteria were used in evaluating the four maglev concepts developed for the National Maglev Initiative.« less

  14. Design of a Telescopic Linear Actuator Based on Hollow Shape Memory Springs

    NASA Astrophysics Data System (ADS)

    Spaggiari, Andrea; Spinella, Igor; Dragoni, Eugenio

    2011-07-01

    Shape memory alloys (SMAs) are smart materials exploited in many applications to build actuators with high power to mass ratio. Typical SMA drawbacks are: wires show poor stroke and excessive length, helical springs have limited mechanical bandwidth and high power consumption. This study is focused on the design of a large-scale linear SMA actuator conceived to maximize the stroke while limiting the overall size and the electric consumption. This result is achieved by adopting for the actuator a telescopic multi-stage architecture and using SMA helical springs with hollow cross section to power the stages. The hollow geometry leads to reduced axial size and mass of the actuator and to enhanced working frequency while the telescopic design confers to the actuator an indexable motion, with a number of different displacements being achieved through simple on-off control strategies. An analytical thermo-electro-mechanical model is developed to optimize the device. Output stroke and force are maximized while total size and power consumption are simultaneously minimized. Finally, the optimized actuator, showing good performance from all these points of view, is designed in detail.

  15. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    NASA Astrophysics Data System (ADS)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  16. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  17. Dynamic stability of repulsive-force maglev suspension systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guidewaymore » that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.« less

  18. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    PubMed

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  19. Issues Associated with a Hypersonic Maglev Sled

    NASA Technical Reports Server (NTRS)

    Haney, Joseph W.; Lenzo, J.

    1996-01-01

    Magnetic levitation has been explored for application from motors to transportation. All of these applications have been at velocities where the physics of the air or operating fluids are fairly well known. Application of Maglev to hypersonic velocities (Mach greater than 5) presents many opportunities, but also issues that require understanding and resolution. Use of Maglev to upgrade the High Speed Test Track at Holloman Air Force Base in Alamogordo New Mexico is an actual hypersonic application that provides the opportunity to improve test capabilities. However, there are several design issues that require investigation. This paper presents an overview of the application of Maglev to the test track and the issues associated with developing a hypersonic Maglev sled. The focus of this paper is to address the issues with the Maglev sled design, rather than the issues with the development of superconducting magnets of the sled system.

  20. Micro-fabrication of a novel linear actuator

    NASA Astrophysics Data System (ADS)

    Jiang, Shuidong; Liu, Lei; Hou, Yangqing; Fang, Houfei

    2017-04-01

    The novel linear actuator is researched with light weight, small volume, low power consumption, fast response and relatively large displacement output. It can be used for the net surface control of large deployable mesh antennas, the tension precise adjustment of the controlled cable in the tension and tensile truss structure and many other applications. The structure and the geometry parameters are designed and analysed by finite element method in multi-physics coupling. Meantime, the relationship between input voltage and displacement output is computed, and the strength check is completed according to the stress distribution. Carbon fiber reinforced composite (CFRC), glass fiber reinforced composited (GFRC), and Lead Zirconium Titanate (PZT) materials are used to fabricate the actuator by using laser etching and others MEMS process. The displacement output is measured by the laser displacement sensor device at the input voltage range of DC0-180V. The response time is obtained by oscilloscope at the arbitrarily voltage in the above range. The nominal force output is measured by the PTR-1101 mechanics setup. Finally, the computed and test results are compared and analysed.

  1. Mechanical Design of Innovative Electromagnetic Linear Actuators for Marine Applications

    NASA Astrophysics Data System (ADS)

    Muscia, Roberto

    2017-11-01

    We describe an engineering solution to manufacture electromagnetic linear actuators for moving rudders and fin stabilizers of military shipsItalian Ministry of Defence, General Direction of Naval Equipments (NAVARM), Projects ISO (2012-2014) and EDDA (2015-2017). . The solution defines the transition from the conceptual design of the device initially studied from an electromagnetic point of view to mechanical configurations that really work. The structural problems that have been resolved with the proposed configuration are described. In order to validate the design choices discussed we illustrate some results of the numerical simulations performed by the structural finite elements method. These results quantitatively justify the suggested mechanical solution by evaluating stresses and deformations in a virtual prototype of the structure during its functioning. The parts of the device that have been studied are the most critical because in cases of excessive deformation/stress, they can irreparably compromise the actuator operation. These parts are the pole piece-base set and the retention cages of the permanent magnets. The FEM analysis has allowed us to identify the most stressed areas of the previous elements whose shape has been appropriately designed so as to reduce the maximum stresses and deformations. Moreover, the FEM analysis helped to find the most convenient solution to join the pole pieces to the respective bases. The good results obtained by the suggested engineering solution have been experimentally confirmed by tests on a small prototype actuator purposely manufactured. Finally, a qualitative analysis of the engineering problems that have to be considered to design electromagnetic linear actuators bigger than the one already manufactured is illustrated.

  2. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  3. Linear Actuator System for the NASA Docking System

    NASA Technical Reports Server (NTRS)

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  4. New York State technical economic MAGLEV evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The Energy Authority, the New York State Departments of Transportation, Economic Development, Environmental Conservation and the New York State Thruway Authority sponsored an evaluation of high-speed surface transit options for New York State. This study is the preliminary evaluation of magnetically levitated ground transportation systems (MAGLEV). The evaluation focuses on using the New York State Thruway right-of-way in combination with MAGLEV systems currently in development in Germany and Japan and those proposed for development in the United States. The Energy Authority's goal in cosponsoring this study was to determine if MAGLEV offered the potential to meet future New York Statemore » transportation demands cost-effectively, and to evaluate the benefits that the State might expect from supporting MAGLEV technology development and system implementation. According to the preliminary report, substantial economic benefits could accrue to the State through MAGLEV-related research, development, manufacturing and construction. Implementation would have a favorable impact on issues related to transportation, the environment and energy conservation. With the exception of the German Transrapid system, developing a domestic prototype MAGLEV vehicle would take seven to nine years; no insurmountable technical barriers are apparent. EMF shielding (electromagnetic fields) is, however a concern. 39 refs., 71 figs., 26 tabs.« less

  5. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  6. Assessment of CHSST maglev for U.S. urban transportation

    DOT National Transportation Integrated Search

    2002-07-01

    This report provides an assessment of the Urban Maglev system proposed by the Maglev Urban Systems Associates MUSA team for application in the United States. The proposed system is the Japanese Chubu high speed surface transportation (HSST) Maglev wh...

  7. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  8. A National MagLev Transportation System

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    The case for a national high-speed magnetic-levitation (MagLev) transportation system is presented. Focus is on current issues facing the country, such as national security, the economy, transportation, technology, and the environment. NASA s research into MagLev technology for launch assist is also highlighted. Further, current socio-cultural norms regarding motor-vehicle-based transportation systems are questioned in light of the problems currently facing the U.S. The multidisciplinary benefits of a long-distance MagLev system support the idea that such a system would be an important element of a truly multimodal U.S. transportation infrastructure.

  9. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  10. Fatigue Testing of Maglev-Hybrid Box Beam

    DTIC Science & Technology

    2009-03-02

    04142009 3. DATES COVERED: (From - To) 23052006-14092008 4. TITLE AND SUBTITLE Fatigue Testing of Maglev -Hybrid Box Beam 5a. CONTRACT NUMBER NA...was previously built under collaboration between Maglev Inc. and Lehigh University. The girder was instrumented with strain gages and LVDT’s to monitor...report March 2,2009 Contract N00014-06-1-0872 Project: Fatigue Testing of Maglev -Hybrid Box Beam Prepared by Dr. J.L. Grenestedt and Dr. R. Sause

  11. Maglev crude oil pipeline

    NASA Technical Reports Server (NTRS)

    Knolle, Ernst G.

    1994-01-01

    This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

  12. Workshop on technology issues of superconducting Maglev transportation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegrzyn, J.E.; Shaw, D.T.

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and tomore » identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.« less

  13. Dynamics and controls in maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1992-09-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are tomore » be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed. Particular emphasis is placed on modeling vehicle/guideway interactions and response characteristics of maglev systems for a multicar, multiload vehicle traveling on a single- or doublespan flexible guideway, including coupling effects of vehicle/guideway, comparison of concentrated and distributed loads, and ride comfort. Different control-law designs are introduced into vehicle suspensions when a simple two-degree-of-freedom vehicle model is applied. Active and semiactive control designs for primary and secondary suspensions do improve the response of vehicle and provide acceptable ride comfort. Finally, future research associated with dynamics and controls of vehicle/guideway systems is identified.« less

  14. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  15. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  16. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  17. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  18. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  19. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  20. Linear Actuator System for the NASA Docking System

    NASA Technical Reports Server (NTRS)

    Dick, Brandon; Oesch, Chris

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS, which implements the Soft Impact Mating and Attenuation Concept (SIMAC). This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  1. Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System

    NASA Astrophysics Data System (ADS)

    Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).

  2. Embedded Carbide-derived Carbon (CDC) particles in polypyrrole (PPy) for linear actuator

    NASA Astrophysics Data System (ADS)

    Zondaka, Zane; Valner, Robert; Aabloo, Alvo; Tamm, Tarmo; Kiefer, Rudolf

    2016-04-01

    Conducting polymer linear actuators, for example sodium dodecylbenzenesulfonate (NaDBS) doped polypyrrole (PPy/DBS), have shown moderate strain and stress. The goal of this work was to increase the obtainable strain and stress by adding additional active material to PPy/DBS. In recent year's carbide-derived carbon (CDC)-based materials have been applied in actuators; however, the obtained displacement and actuation speed has been low comparing to conducting polymer based actuators. In the present work, a CDC-PPy hybrid was synthesized electrochemically and polyoxometalate (POM) - phosphotungstic acid - was used to attach charge to CDC particles. The CDC-POM served in the presence of NaDBS as an additional electrolyte. Cyclic voltammetry and chronopotentiometric electrochemomechanical deformation (ECMD) measurements were performed in Lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) aqueous electrolyte. The ECMD measurements revealed that the hybrid CDC-PPy material exhibited higher force and strain in comparison to PPy/DBS films. The new material was investigated by scanning electron microscopy (SEM) to evaluate CDC particle embedding in the polymer network.

  3. The superconducting magnet for the Maglev transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet`s stability and the on board refrigeration system will be presented.

  4. Status of maglev: Opportunities in cryogenics and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.T.

    1994-12-31

    A program to develop a prototype of a magnetically levitated (maglev) high-speed-ground-transportation system has been announced by the U.S. administration. This paper reviews the development of maglev and steel-wheel-on-steel-rail trains and examines the unique right-of-way requirements for these systems. The basic principles of maglev are discussed, highlighting U.S. efforts in this field. Japanese and German maglev systems and four recently designed U.S. systems are discussed. Five of these systems use superconducting magnets. The trend in the demand for intercity transportation capacity is reviewed, and the need for maglev to supplement or replace short-haul aircraft is discussed in terms of itsmore » competitiveness in travel time, capacity to transport large numbers of passengers, and environmental considerations, including energy, emissions, land use, and noise. The unusual consideration that the superconducting magnets should be sacrificed, if necessary, to permit the vehicle to stop safely is discussed, and various design and development issues related to the cryogenics and superconductivity in the system are listed.« less

  5. New York State technical and economic MAGLEV evaluation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The study is the preliminary evaluation of magnetically levitated ground transportation systems (MAGLEV). The evaluation focuses on using the New York State Thruway right-of-way in combination with MAGLEV systems currently in development in Germany and Japan and those proposed for development in the United States. The Energy Authority's goal in cosponsoring the study was to determine if MAGLEV offered the potential to meet future New York State transportation demands cost-effectively, and to evaluate the benefits that the State might expect from supporting MAGLEV technology development and system implementation. According to the preliminary report, substantial economic benefits could accrue to themore » State through MAGLEV-related research, development, manufacturing and construction. Implementation would have a favorable impact on issues related to transportation, the environment and energy conservation. With the exception of the German Transrapid system, developing a domestic prototype MAGLEV vehicle would take seven to nine years; no insurmountable technical barriers are apparent. EMF shielding (electromagnetic fields) is, however, a concern. It will cost an estimated $1 billion to develop a new MAGLEV system design; however, innovative designs may reduce the price.« less

  6. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of actuators must withstand high static loads as they must support the mirror segment, which has a mass of -100 kg. A stepper motor driving a differential satellite roller screw was designed to meet these demanding requirements. Initial testing showed that the actuator is capable of sub-micron repeatability over the entire 6-mm range, and was limited by 100-200 nm measurement noise levels present in the facility. Further testing must be accomplished in an isolated facility with a measurement noise floor of <5 nm. Such a facility should be ready for use at GSFC in the early summer of 2006, and will be used to better characterize this actuator.

  7. Maglev System Concept Definition (SCD) System Safety Review

    DOT National Transportation Integrated Search

    1993-01-07

    As part of the National Maglev Initiative (NMI), the Federal Railroad : Administration (FRA) solicited proposals to conceptually define the technical feasibility, : performance and costs of constructing and operating Maglev systems in the United : St...

  8. H∞ control for uncertain linear system over networks with Bernoulli data dropout and actuator saturation.

    PubMed

    Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping

    2018-03-01

    This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  10. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  11. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  12. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  13. Flux-canceling electrodynamic maglev suspension. Part 1: Test fixture design and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.T.; Thornton, R.D.; Kondoleon, A.

    1999-05-01

    The design and analysis of a scale-model suspension test facility for magnetic levitation (maglev) is discussed. The authors describe techniques for the design, construction, and testing of a prototype electrodynamic suspension (EDS) levitation system. The viability of future high-temperature superconducting magnet designs for maglev has been investigated with regard to their application to active secondary suspensions. In order to test the viability of a new flux-canceling EDS suspension, a 1/5-scale suspension magnet and guideway was constructed. The suspension was tested by using a high-speed rotating test wheel facility with linear peripheral speed of up to 84 m/s (300 km/h). Amore » set of approximate design tools and scaling laws has been developed in order to evaluate forces and critical velocities in the suspension.« less

  14. Maglev-rail intermodal equipment and suspension study. Final report, July 1991-February 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilcrease, E.E.; Gillam, C.M.

    1993-02-01

    The physical and operational characteristics of four existing and planned maglev systems were surveyed pertinent to the intermodal interface for each system. The maglev systems investigated were: Grumman New York State' (Configuration 002) Maglev; Transrapid Intercity (Transrapid 07) Maglev; HSST Passive Intermediate Speed (HSST-300) Maglev; and Japan Railways Vertical Magnet (Configuration MLU 002) Maglev. The focus of the study was to investigate the feasibility of using existing railroad right-of-way to access center-city terminals in one of three possible methods: Maglev vehicles traveling over existing railroad tracks with the use of steel guide wheels and some means of exterior propulsion; maglevmore » vehicles transferred onto modified railroad flatcars and transported over existing railroad tracks with locomotive power; or new grade-separated maglev guideways on existing railroad rights-of-way.« less

  15. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  16. Fault tolerant computer control for a Maglev transportation system

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  17. Automatic Design of a Maglev Controller in State Space

    DTIC Science & Technology

    1991-12-01

    Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING

  18. Technical Assessment of Maglev System Concepts

    DTIC Science & Technology

    1998-10-01

    pressurizes the loop but retains sufficient heat capacity for the day’s cooling needs. Magneplane uses a cryorefrigerator to keep its supercritical helium in...comparative baselines. the technical and economic viability of maglev in * Apply this process to alternative U.S. maglev the U.S. and to recommend...output/joules- heat the same data as in Figure 119 with the aforemen- input). In effect, applying this factor implies that tioned efficiencies applied

  19. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  20. On the Unsteady-Motion Theory of Magnetic Forces for Maglev

    DTIC Science & Technology

    1993-11-01

    DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S

  1. Experiment results of high temperature superconducting Maglev vehicle

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Wang, S. Y.; Ren, Z. Y.; Jiang, H.; Zhu, M.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    The first man-loading high temperature superconducting (HTS) magnetic levitation (Maglev) test vehicle in the world has normally operated over one year after its birth on December 31, 2000. Heretofore over 23 000 passengers have taken the vehicle, and it operates very well from first running to now. The HTS Maglev vehicle is over guideway, which consists of two parallel permanent magnetic tracks. The levitation force of the entire Maglev vehicle is measured. Three times measurement results on December 24, 2000, July 1, 2001, and December 24, 2001 are reported respectively, it will be seen from this that the levitation forces do not change nearly after long running. Total levitation force of entire vehicle is 1050 kg at the 8 mm net levitation gap, which the gap between the bottom of liquid nitrogen vessels and guideway face. A measuring equipment of the guidance force of the entire Maglev vehicle is designed and manufactured. The guidance force of the vehicle is obtained by the equipment.

  2. The present status of the high temperature superconducting Maglev vehicle in China

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Wang, S. Y.; Zeng, Y. W.; Deng, C. Y.; Ren, Z. Y.; Wang, X. R.; Song, H. H.; Wang, X. Z.; Zheng, J.; Zhao, Y.

    2005-02-01

    Since the first successful running of the people-carrying high temperature superconducting (HTS) Maglev test vehicle on 31 December 2000, about 27 000 people have taken it, and the accumulated running distance is about 400 km. The levitation force of the onboard HTS equipment is measured periodically, and new experimental results measured on 5 March 2003 show that the performance of the onboard HTS Maglev equipment is almost the same as that of two years ago. Experimental results indicate that the long-term stability of the HTS Maglev vehicle is good. This further proves the feasibility of the HTS Maglev vehicle for practical transportation. It is worth mentioning that all the results are measured at a low speed; however, investigations of the dynamic performance of the HTS Maglev vehicle at high speed are necessary for practical application. Research on the dynamic performance of the HTS Maglev vehicle is ongoing.

  3. MAGLEV: The double benefits of high-Tc superconductors and its development as an aerospace technology

    NASA Astrophysics Data System (ADS)

    Johnson, L. R.; Giese, R. F.

    1988-04-01

    The potential for magnetically levitated (MAGLEV) vehicles is discussed as a means of both inter-city travel and a technology option to relieve the growing problem of air traffic congestion. A brief summary is presented of the two primary MAGLEV concepts: (1) the attractive-force, electromagnetic system (EMS) and (2) the repulsive-force, electrodynamic system (EDS), and continues with a discussion of the advantages, potential for reduced costs and higher reliability, that the newly-discovered, high-temperature superconductors offer for EDS MAGLEV vehicles. A summary of the current status of worldwide MAGLEV research is presented, followed by a discussion of the resurgence of US interest in MAGLEV. An analysis of air-traffic congestion suggests that MAGLEV can substitute for short-to-medium distance air travel. By promoting MAGLEV as an airline technology, airlines can retain their familiar hub-and-spoke systems with MAGLEVs an integral part of the spoke portion. A preliminary analysis suggests that MAGLEV capital costs are likely to be comparable to those of interstate highways, and use of MAGLEVs can delay the need for new airport construction. For each short-to-medium flight diverted to MAGLEV, an airline can substitute a longer flight. The short-haul flights use an inordinate amount of fuel, which is a major component of airline operating costs. MAGLEV energy consumption would be significantly less and would not have the emissions associated with petroleum fuel. Finally, passengers should benefit from MAGLEV technology: travel options will be extended, delays will be reduced, and costs for inter-city travel will be reduced.

  4. MAGLEV: the double benefits of high-Tc superconductors and its development as an aerospace technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L.R.; Giese, R.F.

    1988-01-01

    The potential for magnetically levitated (MAGLEV) vehicles is discussed as a means of both inter-city travel and a technology option to relieve the growing problem of air traffic congestion. A brief summary is presented of the two primary maglev concepts: (1) the attractive-force, electromagnetic system (EMS) and (2) the repulsive-force, electrodynamic system (EDS), and continues with a discussion of the advantages, potential for reduced costs and higher reliability, that the newly-discovered, high-temperature superconductors offer for EDS maglev vehicles. A summary of the current status of worldwide maglev research is presented, followed by a discussion of the resurgence of US interestmore » in maglev. An analysis of air-traffic congestion suggests that maglev can substitute for short-to-medium distance air travel. By promoting maglev as an airline technology, airlines can retain their familiar hub-and-spoke systems with maglevs an integral part of the spoke portion. A preliminary analysis suggests that maglev capital costs are likely to be comparable to those of interstate highways, and use of maglevs can declay the need for new airport and construction. For each short-to-medium flight diverted to maglev, an airline can substitute a longer flight. The short-haul flights use an inordinate amount of fuel, which is a major component of airline operating costs. Maglev energy consumption would be significantly less and would not have the emissions associated with petroleum fuel. Finally, passengers should benefit from maglev technology: travel options will be extended, delays will be reduced, and costs for inter-city travel will be reduced.« less

  5. Urban Maglev Technology Development Program : Colorado Maglev Project : part 2 final report

    DOT National Transportation Integrated Search

    2004-06-01

    The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...

  6. Control of maglev vehicles with aerodynamic and guideway disturbances

    NASA Technical Reports Server (NTRS)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

    1994-01-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  7. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    NASA Astrophysics Data System (ADS)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  8. Comparison of high-speed rail and maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, F.T.; Nassar, F.E.

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, themore » German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).« less

  9. Maglev for Students

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    An experiment and a demonstration concerning transport by magnetic levitation (Maglev) are described. The lift, drag and radial forces on a magnet placed over a rotating conducting disc are measured versus the rotation frequency. The experiment relates to important topics of electromagnetism and could be a useful addition to the undergraduate…

  10. Maglev guideway cost and construction schedule assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, D.; Kim, S.

    1997-05-01

    A summary of construction cost and scheduling information is presented for four maglev guideway designs on an example route from Baltimore, MD to Newark, NJ. This work results from the National Maglev Initiative (NMI), a government-industry effort from 1989 to 1994. The system design concepts used as a basis for developing cost and construction scheduling information, were submitted by four industry consortia solely for this analysis, and represent their own unpublished designs. The detailed cost and construction schedule analyses cover the main guideway only. A summary estimate was made for stations, power distribution systems, maintenance facilities, and other types ofmore » infrastructure. The results of the analyses indicate a number of design aspects which must receive further consideration by future designers. These aspects will affect the practical and economic construction and long-term maintenance of a high-speed maglev guideway.« less

  11. Integrated sensing and actuation of dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-04-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.

  12. A Hands-On Approach to Maglev for Gifted Students.

    ERIC Educational Resources Information Center

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  13. Verification Methodology of Fault-tolerant, Fail-safe Computers Applied to MAGLEV Control Computer Systems

    DOT National Transportation Integrated Search

    1993-05-01

    The Maglev control computer system should be designed to verifiably possess high reliability and safety as well as high availability to make Maglev a dependable and attractive transportation alternative to the public. A Maglev computer system has bee...

  14. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developedmore » in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.« less

  15. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.

    PubMed

    Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira

    2010-08-01

    To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of

  16. A review of dynamic stability of repulsive-force maglev suspension systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Rote, D.M.

    1998-07-01

    Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDSmore » suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.« less

  17. Linear actuation using milligram quantities of CL-20 and TAGDNAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snedigar, Shane; Salton, Jonathan Robert; Tappan, Alexander Smith

    2009-07-01

    There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter-diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and tomore » select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3{prime}dinitroazotriazolate) (TAGDNAT).« less

  18. Positioning performance of a maglev fine positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronosky, J.B.; Smith, T.G.; Jordan, J.D.

    1996-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages ofmore » maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.« less

  19. Micro Linear Pump with Electromagnetic Actuator

    NASA Astrophysics Data System (ADS)

    Suzumori, Koichi; Furusawa, Hiroaki; Kanda, Takefumi; Yamada, Yoshiaki; Nagata, Takashi

    In recent years, research and development of the micro-fluid systems have been activated in the field of chemical technology and biotechnology. Micro-fluid systems are realized by micromachine technology and MEMS technology. Micro pump is an essential element for miniaturization of chemical analysis reaction systems. The aim of this research is development of a micro linear pump which will be built into micro-fluid systems. This pump aims to take a sample of very-small-quantity of liquids. Taking a sample of very-small-quantity of liquids reduce the amount used and waste fluid of a reagent. Full length and diameter of this pump are 32.5mm and 6mm respectively. The features of this pump are (1) the pump is built with actuator, (2) the gap of 7μm between piston and cylinder is achieved through fine machining process, and (3) micro check-valves of 2mm diameter made of stainless-steel film are fabricated and integrated. In this paper, the structure and the characteristics of this pump were shown. And the characteristics after improvement of micro check-valves were shown.

  20. 49 CFR 268.7 - Federal/State share and restrictions on the uses of Federal Maglev Funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of Federal Maglev Funds. 268.7 Section 268.7 Transportation Other Regulations Relating to... Federal Maglev Funds. (a) Federal share. The Federal share of Full Projects Costs shall be not more than 2...) Restrictions on the uses of Federal Maglev Funds. (1) Federal Maglev Funds may be applied only to Eligible...

  1. 49 CFR 268.7 - Federal/State share and restrictions on the uses of Federal Maglev Funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of Federal Maglev Funds. 268.7 Section 268.7 Transportation Other Regulations Relating to... Federal Maglev Funds. (a) Federal share. The Federal share of Full Projects Costs shall be not more than 2...) Restrictions on the uses of Federal Maglev Funds. (1) Federal Maglev Funds may be applied only to Eligible...

  2. 49 CFR 268.7 - Federal/State share and restrictions on the uses of Federal Maglev Funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of Federal Maglev Funds. 268.7 Section 268.7 Transportation Other Regulations Relating to... Federal Maglev Funds. (a) Federal share. The Federal share of Full Projects Costs shall be not more than 2...) Restrictions on the uses of Federal Maglev Funds. (1) Federal Maglev Funds may be applied only to Eligible...

  3. 49 CFR 268.7 - Federal/State share and restrictions on the uses of Federal Maglev Funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Federal Maglev Funds. 268.7 Section 268.7 Transportation Other Regulations Relating to... Federal Maglev Funds. (a) Federal share. The Federal share of Full Projects Costs shall be not more than 2...) Restrictions on the uses of Federal Maglev Funds. (1) Federal Maglev Funds may be applied only to Eligible...

  4. 49 CFR 268.7 - Federal/State share and restrictions on the uses of Federal Maglev Funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Federal Maglev Funds. 268.7 Section 268.7 Transportation Other Regulations Relating to... Federal Maglev Funds. (a) Federal share. The Federal share of Full Projects Costs shall be not more than 2...) Restrictions on the uses of Federal Maglev Funds. (1) Federal Maglev Funds may be applied only to Eligible...

  5. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  6. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  7. A method to enhance the curve negotiation performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  8. Stability and Bifurcation Analysis in a Maglev System with Multiple Delays

    NASA Astrophysics Data System (ADS)

    Zhang, Lingling; Huang, Jianhua; Huang, Lihong; Zhang, Zhizhou

    This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.

  9. National Maglev initiative: California line electric utility power system requirements

    NASA Technical Reports Server (NTRS)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  10. Comparison of high-speed rail and maglev system costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D.M.

    1998-07-01

    This paper compares the two modes of transportation, and notes important similarities and differences in the technologies and in how they can be implemented to their best advantage. Problems with making fair comparisons of the costs and benefits are discussed and cost breakdowns based on data reported in the literature are presented and discussed in detail. Cost data from proposed and actual construction projects around the world are summarized and discussed. Results from the National Maglev Initiative and the recently-published Commercial Feasibility Study are included in the discussion. Finally, estimates will be given of the expected cost differences between HSRmore » and maglev systems implemented under simple and complex terrain conditions. The extent to which the added benefits of maglev technology offset the added costs is examined.« less

  11. Urban Maglev Technology Development Program : Colorado Maglev Project : part 1 : executive summary of final report

    DOT National Transportation Integrated Search

    2004-06-01

    The overall objective of the urban maglev transit technology development program is to develop magnetic levitation technology that is a cost effective, reliable, and environmentally sound transit option for urban mass transportation in the United Sta...

  12. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  13. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  14. Linear force device

    NASA Technical Reports Server (NTRS)

    Clancy, John P.

    1988-01-01

    The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.

  15. 78 FR 21149 - Certain Linear Actuators; Notice of Receipt of Complaint; Solicitation of Comments Relating to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2949] Certain Linear Actuators; Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has...

  16. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    NASA Astrophysics Data System (ADS)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-12-01

    High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  17. Compendium of Executive Summaries from the Maglev System Concept Definition. Final Reports.

    DTIC Science & Technology

    1993-03-01

    This report contains the Executive Summaries from the four System Concept Definition (SCD) studies awarded under the National Maglev Initiative...These summaries present the technical feasibility, performance, capital, operating and maintenance costs for a maglev system that would be available by

  18. Vane Separation Control in a Linear Cascade with Area Expansion using AC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Kleven, Christopher; Corke, Thomas

    2013-11-01

    Experiments are presented on the use of AC dielectric barrier discharge (DBD) plasma actuators to prevent flow separation on vanes in a linear cascade with area expansion. The inlet Mach number to the cascade ranged from 0.3 to 0.5, and the vane chord Reynolds numbers ranged from 0 . 9 ×106 to 1 . 5 ×106 . Three cascade designs with different amounts of area expansion, providing different degrees of adverse pressure gradients, were examined. Surface flow visualization revealed a 3-D separation bubble with strong recirculation that formed on the suction side of the vanes. The pattern agreed well with CFD simulations. Plasma actuators were placed on the suction sides of the vanes, just upstream of the flow separation location. Quantitative measurements were performed in the wakes of the vanes using a 5-hole Pitot probe. The measurements were used to determine the effect of the plasma actuator separation control on the pressure loss coefficient, and flow turning angle through the cascades. Overall, the plasma actuators separation control increased the velocity magnitude and dynamic pressure in the passage between the vanes, resulted in a more spanwise-uniform flow turning angle in the vane passage, and significantly lowered the loss coefficient compared to the baseline.

  19. MagLev Cobra: Test Facilities and Operational Experiments

    NASA Astrophysics Data System (ADS)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  20. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    PubMed

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, recommendations for acoustical test facility for maglev research. Final report, July 1991-October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, C.E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States.more » Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.« less

  2. Optimal design of a for middle-low-speed maglev trains

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Zhang, Kunlun; Liu, Guoqing; Jing, Yongzhi; Sykulski, Jan K.

    2018-04-01

    A middle-low-speed maglev train is supported by an electromagnetic force between the suspension electromagnet (EM) and the steel rail and is driven by a linear induction motor. The capability of the suspension system has a direct bearing on safety and the technical and economic performance of the train. This paper focuses on the dependence of the electromagnetic force on the structural configuration of the EM with the purpose of improving performance of a conventional EM. Finally, a novel configuration is proposed of a hybrid suspension magnet, which combines permanent magnets and coils, in order to increase the suspension force while reducing the suspension power loss.

  3. Control of non-linear actuator of artificial muscles for the use in low-cost robotics prosthetics limbs

    NASA Astrophysics Data System (ADS)

    Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham

    2017-10-01

    Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.

  4. Preliminary study of superconducting bulk magnets for Maglev

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  5. MagneMotion urban maglev : final report

    DOT National Transportation Integrated Search

    2004-11-01

    The MagneMotion Urban Maglev System, called M3, is designed as an alternative to all conventional guided transportation systems. Advantages include major reductions in travel time, operating cost, capital cost, noise, and energy consumption. Small ve...

  6. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    NASA Technical Reports Server (NTRS)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  7. Novel maglev pump with a combined magnetic bearing.

    PubMed

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  8. Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data

    NASA Astrophysics Data System (ADS)

    Wu, Jicang; Zhang, Lina; Chen, Jie; Li, Tao

    2012-11-01

    Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.

  9. Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    To effectively suppress the external disturbances and parameter perturbation problem of the maglev guiding system, and improve speed and robustness, the electromagnetic guiding system is exactly linearized using state feedback method, Fractional calculus theory is introduced, the order of integer order PID control was extended to the field of fractional, then fractional order PIλDμ Controller was presented, Due to the extra two adjustable parameters compared with traditional PID controller, fractional order PIλDμ controllers were expected to show better control performance. The results of the computer simulation show that the proposed controller suppresses the external disturbances and parameter perturbation of the system effectively; the system response speed was increased; at the same time, it had flexible structure and stronger robustness.

  10. Soft actuators and soft actuating devices

    DOEpatents

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  11. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  12. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  13. High-Speed Maglev Trains; German Safety Requirements

    DOT National Transportation Integrated Search

    1991-12-31

    This document is a translation of technology-specific safety requirements developed : for the German Transrapid Maglev technology. These requirements were developed by a : working group composed of representatives of German Federal Railways (DB), Tes...

  14. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  15. Actuator development for the Instrument Pointing System (IPS)

    NASA Technical Reports Server (NTRS)

    Suttner, K.

    1984-01-01

    The mechanisms of the instrument pointing system (IPS) are described. Particular emphasis is placed on the actuators which are necessary for operating the IPS. The actuators are described as follows: (1) two linear actuators that clamp the gimbals down during ascent and descent; (2) two linear actuators that attach the payload to the IPS during the mission, and release it into the payload clamps; (3) one rotational actuator that opens and closes the payload clamps; and (4) three identical drive units that represent the three orthogonal gimbal axes and are the prime movers for pointing. Design features, manufacturing problems, test performance, and results are presented.

  16. Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line

    NASA Astrophysics Data System (ADS)

    Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.

    2017-10-01

    With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.

  17. A mini axial and a permanent maglev radial heart pump.

    PubMed

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-05-31

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.

  18. Vibration analysis of the maglev guideway with the moving load

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Li, J.; Zhang, K.

    2007-09-01

    The response of the guideway induced by moving maglev vehicle is investigated in this paper. The maglev vehicle is simplified as evenly distributed force acting on the guideway at constant speed. According to the experimental line, the guideway structure of rail-sleeper-bridge is simplified as Bernoulli-Euler (B-E) beam—evenly distributed spring—simply supported B-E beam structure; thus, double deck model of the maglev guideway is constructed which can more accurately reflect the dynamic characteristic of the experimental line. The natural frequency and mode are deduced based on the theoretical model. The relationship between structural parameters and natural frequency are exploited by employing the numerical calculation method. The way to suppress the vehicle-guideway interaction by regulating the structural parameter is also discussed here. Using the normal coordinate transformation method, the coupled differential equations of motion of the maglev guideway are converted into a set of uncoupled equations. The closed-form solutions for the response of the guideway subjecting the moving load are derived. It is noted that the moving load would not induce the vehicle-guideway interaction oscillation. The analysis of the guideway impact factor implies that at some position of the guideway, the deflection may decrease with the increase of the speed of the load; several extreme value of the guideway displacement will appear induced by different speeds, with different acting place, the speeds are different either. The final numerical simulation verifies these conclusions.

  19. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    PubMed

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  20. Evaluation of synthetic linear motor-molecule actuation energetics

    PubMed Central

    Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming

    2006-01-01

    By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of experimental force spectroscopy and theoretical computational modeling has revealed that the repulsive electrostatic interaction, which is responsible for the molecular actuation, is as high as 65 kcal·mol−1, a result that is supported by ab initio calculations. PMID:16735470

  1. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  2. Verification methodology for fault-tolerant, fail-safe computers applied to maglev control computer systems. Final report, July 1991-May 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lala, J.H.; Nagle, G.A.; Harper, R.E.

    1993-05-01

    The Maglev control computer system should be designed to verifiably possess high reliability and safety as well as high availability to make Maglev a dependable and attractive transportation alternative to the public. A Maglev control computer system has been designed using a design-for-validation methodology developed earlier under NASA and SDIO sponsorship for real-time aerospace applications. The present study starts by defining the maglev mission scenario and ends with the definition of a maglev control computer architecture. Key intermediate steps included definitions of functional and dependability requirements, synthesis of two candidate architectures, development of qualitative and quantitative evaluation criteria, and analyticalmore » modeling of the dependability characteristics of the two architectures. Finally, the applicability of the design-for-validation methodology was also illustrated by applying it to the German Transrapid TR07 maglev control system.« less

  3. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  4. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  5. Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.

    2015-09-01

    Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.

  6. Parametric Studies Of Lightweight Reflectors Supported On Linear Actuator Arrays

    NASA Astrophysics Data System (ADS)

    Seibert, George E.

    1987-10-01

    , describes the extent to which the deflection under a point force is localized by the shell's curvature. The deflection shape is typically a near-gaussian "bump" with a zero-crossing at a local radius of approximately 3.5 characteristic lengths. The amplitude is a function of the shells elastic modulus, radius, and thickness, and is linearly proportional to the applied force. This basic shell behavior is well-treated in an excellent set of papers by Eric Reissner entitled "Stresses and Small Displacements of Shallow Spherical Shells".1'2 Building on the insight offered by these papers, we developed our design tools around two derived parameters, the ratio of the mirror's diameter to its characteristic length (D/l), and the ratio of the actuator spacing to the characteristic length (b/l). The D/1 ratio determines the "finiteness" of the shell, or its dependence on edge boundary conditions. For D/1 values greater than 10, the influence of edges is almost totally absent on interior behavior. The b/1 ratio, the basis of all our normalizations is the most universal term in the description of correctability or ratio of residual/input errors. The data presented in the paper, shows that the rms residual error divided by the peak amplitude of the input error function is related to the actuator spacing to characteristic length ratio by the following expression RMS Residual Error b 3.5 k (I) (1) Initial Error Ampl. The value of k ranges from approximately 0.001 for low spatial frequency initial errors up to 0.05 for higher error frequencies (e.g. 5 cycles/diameter). The studies also yielded insight to the forces required to produce typical corrections at both the center and edges of the mirror panels. Additionally, the data lends itself to rapid evaluation of the effects of trading faceplate weight for increased actuator count,

  7. Optimization of an electromagnetic linear actuator using a network and a finite element model

    NASA Astrophysics Data System (ADS)

    Neubert, Holger; Kamusella, Alfred; Lienig, Jens

    2011-03-01

    Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.

  8. Magnetic Damping For Maglev

    DOE PAGES

    Zhu, S.; Cai, Y.; Rote, D. M.; ...

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  9. Documentation and Control of Flow Separation on a Low Pressure Turbine Linear Cascade of Pak-B Blades Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Corke, Thomas c.; Thomas, FLint, O.; Huang, Junhui

    2007-01-01

    This work involved the documentation and control of flow separation that occurs over low pressure turbine (LPT) blades at low Reynolds numbers. A specially constructed linear cascade was utilized to study the flow field over a generic LPT cascade consisting of Pratt & Whitney "Pak-B" shaped blades. Flow visualization, surface pressure measurements, LDV measurements, and hot-wire anemometry were conducted to examine the flow fields with and without separation control. Experimental conditions were chosen to give a range of chord Reynolds numbers (based on axial chord and inlet velocity) from 10,000 to 100,000, and a range of freestream turbulence intensities from u'/U(infinity) = 0.08 to 2.85 percent. The blade pressure distributions were measured and used to identify the region of separation that depends on Reynolds number and the turbulence intensity. Separation control was performed using dielectric barrier discharge (DBD) plasma actuators. Both steady and unsteady actuation were implemented and found to work well. The comparison between the steady and unsteady actuators showed that the unsteady actuators worked better than the steady ones. For the steady actuators, it was found that the separated region is significantly reduced. For the unsteady actuators, where the signal was pulsed, the separation was eliminated. The total pressure losses (a low Reynolds number) was reduced by approximately a factor of two. It was also found that lowest plasma duty cycle (10 percent in this work) was as effective as the highest plasma duty cycle (50 percent in this work). The mechanisms of the steady and unsteady plasma actuators were studied. It was suggested by the experimental results that the mechanism for the steady actuators is turbulence tripping, while the mechanism for the unsteady actuators is to generate a train of spanwise structures that promote mixing.

  10. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  11. Maglev guideway route alignment and right-of-way requirements

    NASA Astrophysics Data System (ADS)

    Carlton, S.; Andriola, T.

    1992-12-01

    The use of existing rights-of-way (ROW) is assessed for maglev systems by estimating trip times and land acquisition requirements for potential maglev corridors while meeting passenger comfort limits. Right-of-way excursions improve trip time but incur a cost for purchasing land. The final report documents findings of the eight tasks in establishing right-of-way feasibility by examining three city-pair corridors in detail and developing an approximation method for estimating route length and travel times in 20 additional city-pair corridor portions and 21 new corridors. The use of routes independent of existing railroad or highway right-of-way have trip time advantages and significantly reduce the need for aggressive guideway geometries on intercity corridors. Selection of the appropriate alignment is determined by many corridor specific issues. Use of existing intercity rights-of-way may be appropriate for parts of routes on a corridor-specific basis and for urban penetration where vehicle speeds are likely to be reduced by policy due to noise and safety considerations, and where land acquisition costs are high. Detailed aspects of available rights-of-way, land acquisition costs, geotechnical issues, land use, and population centers must be examined in more detail on a specific corridor basis before the proper or best maglev alignment can be chosen.

  12. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  13. A Mini Axial and a Permanent Maglev Radial Heart Pump§

    PubMed Central

    Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng

    2007-01-01

    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements. The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004. The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure. An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation. PMID:19662120

  14. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.

    2009-05-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  15. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  16. Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains

    NASA Astrophysics Data System (ADS)

    Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.

    2018-07-01

    There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.

  17. Robust levitation control for maglev systems with guaranteed bounded airgap.

    PubMed

    Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

    2015-11-01

    The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  19. 40 HP Electro-Mechanical Actuator

    NASA Technical Reports Server (NTRS)

    Fulmer, Chris

    1996-01-01

    This report summarizes the work performed on the 40 BP electro-mechanical actuator (EMA) system developed on NASA contract NAS3-25799 for the NASA National Launch System and Electrical Actuation (ELA) Technology Bridging Programs. The system was designed to demonstrate the capability of large, high power linear ELA's for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, high frequency power source, drive electronics and a linear actuator. The power source is a 25kVA 20 kHz Mapham inverter. The drive electronics are based on the pulse population modulation concept and operate at a nominal frequency of 40 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response and step response tests were conducted at the Marshall Space Flight Center facility. A complete description of the system and all test results can be found in the body of the report.

  20. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  1. Misfire tolerant combustion-powered actuation

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  2. Quasi-Static Analysis of LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  3. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  4. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  5. Maglev Facility for Simulating Variable Gravity

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful

  6. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  7. Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures.

    PubMed

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-11-01

    This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  9. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    NASA Technical Reports Server (NTRS)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  10. Proceedings of the Federal Transit Administration's Urban Maglev Workshop

    DOT National Transportation Integrated Search

    2005-09-01

    The Federal Transit Administrations (FTA) Urban Maglev Workshop was held at FTA Headquarters in Washington, DC, on September 8-9, 2005. The key workshop goals were to review progress, share lessons learned among the grantees, and discuss future di...

  11. Transrapid (the first high-speed Maglev train system certified ready for application): Development status and prospects for deployment

    NASA Technical Reports Server (NTRS)

    Luerken, Reinhard F.

    1994-01-01

    The Transrapid maglev technology is at the threshold of commercial deployment and technologically all prerequisites for the successful operation of the system in public service are given. In post unification Germany the domestic maglev technology is envisioned to be applied in the Berlin-Hamburg project. At present, a public-private funding concept is being prepared and the lengthy planning process is about to be initiated. In the USA the AMG has presented a program to Americanize the technology and to make it available for commercial use in the U.S. in the very near future. The paramount features of this program are to generate economic development, provide a basis for transportation technology development, create opportunities for U.S. industry, improve the U.S. transportation infrastructure, and improve the environment and traveler safety. Maglev is ready for the U.S.; is the U.S. ready for maglev?

  12. Quasi-Static Analysis of Round LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  13. General atomics low speed Maglev technology development program (Supplemental #3)

    DOT National Transportation Integrated Search

    2005-05-01

    This report details accomplishments of the Low Speed Maglev Technology Development Program, Supplemental #3. The 4 major tasks included: guideway foundation construction, fabrication and installation of 7 guideway modules, system integration and test...

  14. FTA low-speed urban Maglev research program : updated lessons learned.

    DOT National Transportation Integrated Search

    2012-11-01

    In 1999, the Federal Transit Administration (FTA) initiated the Low-Speed Urban Magnetic Levitation (Urban Maglev) Program to develop magnetic levitation technology that offers a cost-effective, reliable, and environmentally-sound transit option for ...

  15. Electro-Mechanical Actuator. DC Resonant Link Controller

    NASA Technical Reports Server (NTRS)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  16. Tilt/Tip/Piston Manipulator with Base-Mounted Actuators

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2006-01-01

    A proposed three-degree-of-freedom (tilt/tip/piston) manipulator, suitable for aligning an optical or mechanical component, would offer several advantages over prior such manipulators: Unlike in some other manipulators, no actuator would support the weight of another actuator: All of the actuators would be mounted on a base. Hence, there would be less manipulated weight. The basic geometry of the manipulator would afford mechanical advantage: that is, actuator motions would be larger than the motions they produce in the manipulated object. Mechanical advantage inherently increases the accuracy and resolution of manipulation. Unlike in some other manipulators, it would not be necessary to route power and/or data lines through manipulator joints. The proposed manipulator (see figure) would include three prismatic actuators (T1N1, T2N2, and T3N3) mounted on the base and operating in the same plane. Examples of suitable prismatic actuators include lead-screw mechanisms, linear hydraulic motors, piezoelectric linear drives, inchworm-movement linear stepping motors, and linear flexure drives. The actuators would control the lengths of links R1T1, R2T2, and R3T3. Three spherical joints (P1, P2, and P3) would be located at the corners of an equilateral triangle of side length q on the platform holding the object to be manipulated. Three inextensible limbs (R1P1, R2P2, and R3P3) having length r would connect the spherical joints on the platform to revolute joints (R1, R2, and R3) at the ends of the actuator-controlled links R1T1, R2T2, and R3T3. By varying the lengths of these links, one could control the tilt, tip, and piston coordinates of the platform. Closed-form equations for direct or forward kinematics of the manipulator (given the lengths of the variable links, find the tilt, tip, and piston coordinates) have been derived. The equations of inverse kinematics (find the variable link lengths needed to obtain the desired tilt, tip, and piston coordinates) have also

  17. Force-deflection behavior of piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashok K.; Nagpal, Pawan

    2001-11-01

    In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.

  18. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    NASA Astrophysics Data System (ADS)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  19. A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1998-01-01

    This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.

  20. The General Atomics low speed urban Maglev technology development program

    DOT National Transportation Integrated Search

    2003-01-01

    The overall objective of this program is to develop magnetic levitation technology that is a cost effective, reliable, : and environmentally friendly option for urban mass transportation in the United States. Maglev is a revolutionary : approach in w...

  1. Newly developed ventricular assist device with linear oscillatory actuator.

    PubMed

    Fukunaga, Kazuyoshi; Funakubo, Akio; Fukui, Yasuhiro

    2003-01-01

    The goal of this study was to develop a new direct electromagnetic left ventricular assist device (DEM-LVAD) with a linear oscillatory actuator (LOA). The DEM-LVAD is a pulsatile pump with a pusher plate. The pusher plate is driven directly by the mover of the LOA. The LOA provides reciprocating motion without using any movement converter such as a roller screw or a hydraulic system. It consists of a stator with a single winding excitation coil and a mover with two permanent magnets. The simple structure of the LOA is based on fewer parts to bring about high reliability and smaller size. The mover moves back and forth when forward and backward electric current is supplied to the excitation coil. The pump housings have been designed using three-dimensional computer aided design software and fabricated with the aid of computer aided manufacturing technology. Monostrut valves (Bjork-Shiley #21) were used for the prototype. The DEM-LVAD dimension is 96 mm in diameter and 50 mm thick with a mass of 0.62 kg and a volume of 280 ml. An in vitro test (afterload 100 mm Hg; preload 10 mm Hg; input power 10 W) demonstrated more than 6 L/minute maximum output and 15% maximum efficiency at 130 beats per minute (bpm). Dynamic stroke volume ranged between 40 and 60 ml. The feasibility of the DEM-LVAD was confirmed.

  2. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  3. Side-suspended High-Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    NASA Astrophysics Data System (ADS)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.

  4. Maglev deployment program : final programmatic environmental impact statement, volume 1

    DOT National Transportation Integrated Search

    2001-04-01

    In order to comply with the TEA -21 legislation, the Federal Railroad Administration (FRA) conducted a seven-state competition to : select a project for the purpose of demonstrating the use of Maglev technology as a next generation of high-speed grou...

  5. Maglev deployment program : final programmatic environmental impact statement, volume 2

    DOT National Transportation Integrated Search

    2001-04-01

    In order to comply with the TEA -21 legislation, the Federal Railroad Administration (FRA) conducted a seven-state competition to : select a project for the purpose of demonstrating the use of Maglev technology as a next generation of high-speed grou...

  6. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  7. Dynamical Tests in a Linear Superconducting Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.

    The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.

  8. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  9. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  10. Field homogeneity improvement of maglev NdFeB magnetic rails from joints.

    PubMed

    Li, Y J; Dai, Q; Deng, C Y; Sun, R X; Zheng, J; Chen, Z; Sun, Y; Wang, H; Yuan, Z D; Fang, C; Deng, Z G

    2016-01-01

    An ideal magnetic rail should provide a homogeneous magnetic field along the longitudinal direction to guarantee the reliable friction-free operation of high temperature superconducting (HTS) maglev vehicles. But in reality, magnetic field inhomogeneity may occur due to lots of reasons; the joint gap is the most direct one. Joint gaps inevitably exist between adjacent segments and influence the longitudinal magnetic field homogeneity above the rail since any magnetic rails are consisting of many permanent magnet segments. To improve the running performance of maglev systems, two new rail joints are proposed based on the normal rail joint, which are named as mitered rail joint and overlapped rail joint. It is found that the overlapped rail joint has a better effect to provide a competitive homogeneous magnetic field. And the further structure optimization has been done to ensure maglev vehicle operation as stable as possible when passing through those joint gaps. The results show that the overlapped rail joint with optimal parameters can significantly reduce the magnetic field inhomogeneity comparing with the other two rail joints. In addition, an appropriate gap was suggested when balancing the thermal expansion of magnets and homogenous magnetic field, which is considered valuable references for the future design of the magnetic rails.

  11. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  12. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  13. Optimization of levitation and guidance forces in a superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  14. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  15. Influence of Off-Centre Operation on the Performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  16. The first man-loading high temperature superconducting Maglev test vehicle in the world

    NASA Astrophysics Data System (ADS)

    Wang, Jiasu; Wang, Suyu; Zeng, Youwen; Huang, Haiyu; Luo, Fang; Xu, Zhipei; Tang, Qixue; Lin, Guobin; Zhang, Cuifang; Ren, Zhongyou; Zhao, Guomin; Zhu, Degui; Wang, Shaohua; Jiang, He; Zhu, Min; Deng, Changyan; Hu, Pengfei; Li, Chaoyong; Liu, Fang; Lian, Jisan; Wang, Xiaorong; Wang, Lianghui; Shen, Xuming; Dong, Xiaogang

    2002-10-01

    The first man-loading high temperature superconducting Maglev test vehicle in the world is reported. This vehicle was first tested successfully on December 31, 2000 in the Applied Superconductivity Laboratory, Southwest Jiaotong University, China. Heretofore over 17,000 passengers took the vehicle, and it operates very well from beginning to now. The function of suspension is separated from one of propulsion. The high temperature superconducting Maglev provides inherent stable forces both in the levitation and in the guidance direction. The vehicle is 3.5 m long, 1.2 m wide, and 0.8 m high. When five people stand on vehicle and the total weight is 530 kg, the net levitation gap is more than 20 mm. The whole vehicle system includes three parts, vehicle body, guideway and controlling system. The high temperature superconducting Maglev equipment on board is the most important for the system. The onboard superconductors are melt-textured YBaCuO bulks. The superconductors are fixed on the bottom of liquid nitrogen vessels and cooled by liquid nitrogen. The guideway consists of two parallel permanent magnetic tracks, whose surface concentrating magnetic field is up to 1.2 T. The guideway is 15.5 m long.

  17. Separated Flow Control with Actuated Membrane Wings

    NASA Astrophysics Data System (ADS)

    Bohnker, Jillian; Breuer, Kenneth

    2017-11-01

    By perturbing shear layer instabilities, some level of control over highly separated flows can be established, as has been demonstrated on rigid wings using synthetic jet actuators or acoustic excitation. Here, we demonstrate similar phenomena using sinusoidal actuation of a dielectric membrane wing. The effect of actuation on lift is examined as a function of freestream velocity (5-25 m/s), angle of attack (10°-40°), and actuation frequency (0.1 actuation voltage is shown with phase-averaged particle image velocimetry (PIV), as well as corresponding lift. Dynamic mode decomposition is used to show coherent vortex shedding in the flow field. Membrane kinematics are tracked using time-resolved direct linear transformation (DLT), and the vibration is shown to be dominated by actuation, rather than passive deformation. Finally, both the strengths and limitations of the current actuation mechanism will be discussed. Also affiliated with Naval Undersea Warfare Center, Division Newport.

  18. High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles

    DTIC Science & Technology

    2012-08-26

    we designed and fabricated the LionFly, a flapping wing prototype actuated by a PZT -5H bimorph actuator. Several LionFly prototypes were fabricated...in the literature, using PZT thin film actuators directly coupled to a 2.5 mm SiO2/Si3N4/T i-Au wing that produces large flapping angle at resonance...for larger scale mechanisms [17, 9]. For PAVs, linear electromagnetic ac- tuation [21] and bulk PZT bimorph actuators [8], and thin film PZT unimorph

  19. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.

  20. Polymer-based actuators for virtual reality devices

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  1. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.

    PubMed

    Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh

    2017-07-01

    Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.

  2. Preliminary design for a maglev development facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.T.; He, J.L.; Chang, S.L.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less

  3. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  4. Five-DOF innovative linear MagLev slider to account for pitch, tilt and load uncertainty

    NASA Astrophysics Data System (ADS)

    Kao, Yi-Ming; Tsai, Nan-Chyuan; Chiu, Hsin-Lin

    2017-02-01

    This paper is focused at position deviation regulation upon a slider by Fuzzy Sliding Mode Control (FSMC). Five Degrees Of Freedom (DOF) of position deviation are required to be regulated except for the direction (i.e., X-axis) in which the slider moves forward and backward. Totally 8 sets of Magnetic Actuators (MAs) and an Electro-Pneumatic Transducer (EPT) are employed to drive the slider carrying loads under the commands of FSMC. EPT is applied to adjust the pressure of compressed air to counterbalance the weight of slider itself. At first, the system dynamic model of slider, including load uncertainty and load position uncertainty, is established. Intensive computer simulations are undertaken to verify the validity of proposed control strategy. Finally, a prototype of realistic slider position deviation regulation system is successfully built up. According to the experiments by cooperation of pneumatic and magnetic control, the actual linear position deviations of slider can be regulated within ±8 μm and angular position deviations within ±1 mini-degrees. From the viewpoint of energy consumption, the applied currents to 8 sets of MAs are all below 1.2 A. To sum up, the closed-loop levitation system by cooperation of pneumatic and magnetic control is capable to account for load uncertainty and uncertainty of the standing position of load to be carried.

  5. Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Xu, Minglong; Zi, Yanyang; Zhang, Xinong

    2015-01-01

    This paper proposes rhombic micro-displacement amplifier (RMDA) for piezoelectric actuator (PA). First, the geometric amplification relations are analyzed and linear model is built to analyze the mechanical and electrical properties of this amplifier. Next, the accurate modeling method of amplifier is studied for important application of precise servo control. The classical Preisach model (CPM) is generally implemented using a numerical technique based on the first-order reversal curves (FORCs). The accuracy of CPM mainly depends on the number of FORCs. However, it is generally difficult to achieve enough number of FORCs in practice. So, Support Vector Machine (SVM) is employed in the work to circumvent the deficiency of the CPM. Then the hybrid model, which is based on discrete CPM and SVM is developed to account for hysteresis and dynamic effects. Finally, experimental validation is carried out. The analyzed result shows that this amplifier with the hybrid model is suitable for control application.

  6. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  7. Making a Reliable Actuator Faster and More Affordable

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Before any rocket is allowed to fly and be used for a manned mission, it is first test-fired on a static test stand to verify its flight readiness. NASA s Stennis Space Center provides testing of Space Shuttle Main Engines, rocket propulsion systems, and related components with several test facilities. It has been NASA s test-launch site since 1961. The testing stations age with time and repeated use; and with aging comes maintenance; and with maintenance comes expense. NASA has been seeking ways to lower the cost of maintaining the stations, and has aided in the development of an improved reliable linear actuator that arrives onsite quickly and costs less money than other actuators. In general terms, a linear actuator is a servomechanism that supplies a measured amount of energy for the operation of another mechanical system. Accuracy, reliability, and speed of the actuator are critical to performance of the entire system, and these actuators are critical components of the engine test stands. Partnership An actuator was developed as part of a Dual-Use Cooperative Agreement between BAFCO, Inc., of Warminister, Pennsylvania, and Stennis. BAFCO identified four suppliers that manufactured actuator components that met the rigorous testing standards imposed by the Space Agency and then modified these components for application on the rocket test stands. In partnership with BAFCO, the existing commercial products size and weight were reworked, reducing cost and delivery time. Previously, these parts would cost between $20,000 and $22,000, but with the new process, they now run between $11,000 and $13,000, a substantial savings, considering NASA has already purchased over 120 of the units. Delivery time of the cost-saving actuators has also been cut from over 20 to 22 weeks to within 8 to 10 weeks. The redesigned actuator is commercially available, and the company is successfully supplying them to customers other than NASA.

  8. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    DOEpatents

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  9. Modeling and design of a high-performance hybrid actuator

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-12-01

    This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic

  10. Actuators Using Piezoelectric Stacks and Displacement Enhancers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkenmeyer, Phillip; Lih, Shyh-Shiuh

    2015-01-01

    Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL’s Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric’s potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.

  11. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  12. Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids

    PubMed Central

    Rossiter, Jonathan

    2018-01-01

    Abstract Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance–strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles. PMID:29211627

  13. Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids.

    PubMed

    Helps, Tim; Rossiter, Jonathan

    2018-04-01

    Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance-strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles.

  14. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  15. Research on the filtering algorithm in speed and position detection of maglev trains.

    PubMed

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train's structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  16. An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2007-01-01

    In 1839, Earnshaw proved theoretically that it is impossible to achieve a stable equilibrium with a pure permanent maglev. Furthermore, in 1939, Braunbeck deduced that it is only possible to stabilize a super conductive or an electric maglev. In 2000, however, the present authors discovered that stable levitation is achievable by a combination of permanent magnetic and nonmagnetic forces, and its stability can be maintained even with mere passive magnetic forces by use of the gyro-effect. An improved design of permanent maglev impeller pump has been developed. Passive magnetic (PM) bearings support the rotor radially; on its right side, an impeller is fixed and on its left side a motor magnets-assemble is mounted. Unlike a previous prototype design, in which the rotor magnets were driven by a motor via magnetic coupling, a motor coil is installed opposite to the motor magnets disc, producing a rotating magnetic field. At standstill or if the rotating speed is lower than 4000 rpm, the rotor has one axial point contact with the motor coil. The contact point is located at the centre of the rotor. As the rotating speed increases gradually to higher than 4000 rpm, the rotor will be drawn off from the contact point by the hydrodynamic force of the fluid. Then the rotor becomes fully suspended. For radial and peripheral stabilization, a gyro-effect is important, which is realized by designing the motor magnets disc to have large diameter, short length and high rotating speed; for axial stability, an axial rehabilitating force is necessary, which is produced by PM bearings. The rotor demonstrated a full levitation by rotation over 4000 rpm. As a left ventricular assist device, the rotation of the pump has a speed range from 5000 to 8000 rpm. The relation between pressure head and flow rate indicates that there is neither mechanical friction nor hydrodynamic turbulence inside the pump; the former is due to the frictionless maglev and the latter is a result of the

  17. Adaptive Control Allocation in the Presence of Actuator Failures

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Crespo, Luis G.

    2010-01-01

    In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.

  18. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  19. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  20. Amplitude control of the track-induced self-excited vibration for a maglev system.

    PubMed

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  2. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W [Woods Cross, UT; Jones, Warren F [Idaho Falls, ID; Bamberg, Eberhard [Salt Lake City, UT

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  3. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  4. New Terfenol-D actuator design with applications to multiple DOF active vibration control

    NASA Astrophysics Data System (ADS)

    Haynes, Leonard S.; Geng, Zheng J.; Teter, Joseph P.

    1993-09-01

    A linear actuator system for multi-dimensional structure control using the magnetostrictive material Terfenol-D has been designed, built, and tested by the Intelligent Automation, Inc. The actuator assembly incorporates an instrumented Terfenol-D rod, an excitation coil to provide the magnetic field, a permanent magnet assembly to provide a magnetic bias field, and a mechanical preload mechanism. The prototype of the actuator is 2.0 inches in diameter and 8 inches long, and provides a peak-to-peak stroke of 0.01 inches. A linear model was also established to characterize the behavior of the actuator for small motion. Based on the prototype of the actuator, we have performed a study of a six degree-of-freedom active vibration isolation system using a Stewart Platform in a new configuration. IAI's final system is intended for precision control of a wide range of space-based structures as well as earth- base systems.

  5. Effect of plasma actuator control parameters on a transitional flow

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnob; Roy, Subrata

    2018-04-01

    This study uses a wall-resolved implicit large eddy simulation to investigate the effects of different surface dielectric barrier discharge actuator parameters such as the geometry of the electrodes, frequency, amplitude of actuation and thermal effect. The actuator is used as a tripping device on a zero-pressure gradient laminar boundary layer flow. It is shown that the standard linear actuator creates structures like the Tollmien-Schlichting wave transition. The circular serpentine, square serpentine and spanwise actuators have subharmonic sinuous streak breakdown and behave like oblique wave transition scenario. The spanwise and square actuators cause comparably faster transition to turbulence. The square actuator adds energy into the higher spanwise wavenumber modes resulting in a faster transition compared to the circular actuator. When the Strouhal number of actuation is varied, the transition does not occur for a value below 0.292. Higher frequencies with same amplitude of actuation lead to faster transition. Small changes (<4%) in the amplitude of actuation can have a significant impact on the transition location which suggests that an optimal combination of frequency and amplitude exists for highest control authority. The thermal bumps approximating the actuator heating only shows localized effects on the later stages of transition for temperatures up to 373 K and can be ignored for standard actuators operating in subsonic regimes.

  6. Energy efficient fluid powered linear actuator with variable area

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  7. A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules.

    PubMed

    Natividad, Rainier; Del Rosario, Manuel; Chen, Peter C Y; Yeow, Chen-Hua

    2018-06-01

    A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.

  8. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    NASA Astrophysics Data System (ADS)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  9. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.

    PubMed

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-27

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  10. Vibration suppression using a proofmass actuator operating in stroke/force saturation

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Celano, T. P.; Ide, E. N.

    1991-01-01

    The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.

  11. The artificial neural network modelling of the piezoelectric actuator vibrations using laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Paralı, Levent; Sarı, Ali; Kılıç, Ulaş; Şahin, Özge; Pěchoušek, Jiří

    2017-09-01

    We report an improvement of the artificial neural network (ANN) modelling of a piezoelectric actuator vibration based on the experimental data. The controlled vibrations of an actuator were obtained by utilizing the swept-sine signal excitation. The peak value in the displacement signal response was measured by a laser displacement sensor. The piezoelectric actuator was modelled in both linear and nonlinear operating range. A consistency from 90.3 up to 98.9% of ANN modelled output values and experimental ones was reached. The obtained results clearly demonstrate exact linear relationship between the ANN model and experimental values.

  12. Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    PubMed Central

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally. PMID:22164012

  13. Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration

    NASA Astrophysics Data System (ADS)

    Zhou, D. F.; Li, J.; Hansen, C. H.

    2011-11-01

    Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.

  14. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    NASA Astrophysics Data System (ADS)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  15. Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.

    PubMed

    Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang

    2018-05-24

    In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.

  16. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  17. Laminar composite structures for high power actuators

    NASA Astrophysics Data System (ADS)

    Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.

    2017-05-01

    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.

  18. Fiber-Reinforced Origamic Robotic Actuator.

    PubMed

    Yi, Juan; Chen, Xiaojiao; Song, Chaoyang; Wang, Zheng

    2018-02-01

    A novel pneumatic soft linear actuator Fiber-reinforced Origamic Robotic Actuator (FORA) is proposed with significant improvements on the popular McKibben-type actuators, offering nearly doubled motion range, substantially improved force profile, and significantly lower actuation pressure. The desirable feature set is made possible by a novel soft origamic chamber that expands radially while contracts axially when pressurized. Combining this new origamic chamber with a reinforcing fiber mesh, FORA generates very high traction force (over 150N) and very large contractile motion (over 50%) at very low input pressure (100 kPa). We developed quasi-static analytical models both to characterize the motion and forces and as guidelines for actuator design. Fabrication of FORA mostly involves consumer-grade three-dimensional (3D) printing. We provide a detailed list of materials and dimensions. Fabricated FORAs were tested on a dedicated platform against commercially available pneumatic artificial muscles from Shadow and Festo to showcase its superior performances and validate the analytical models with very good agreements. Finally, a robotic joint was developed driven by two antagonistic FORAs, to showcase the benefits of the performance improvements. With its simple structure, fully characterized mechanism, easy fabrication procedure, and highly desirable performance, FORA could be easily customized to application requirements and fabricated by anyone with access to a 3D printer. This will pave the way to the wider adaptation and application of soft robotic systems.

  19. Investigation of electrically conducting yarns for use in textile actuators

    NASA Astrophysics Data System (ADS)

    Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.

    2018-07-01

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

  20. Control of a flexible planar truss using proof mass actuators

    NASA Technical Reports Server (NTRS)

    Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.

    1989-01-01

    A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.

  1. Quantitative fault tolerant control design for a hydraulic actuator with a leaking piston seal

    NASA Astrophysics Data System (ADS)

    Karpenko, Mark

    Hydraulic actuators are complex fluid power devices whose performance can be degraded in the presence of system faults. In this thesis a linear, fixed-gain, fault tolerant controller is designed that can maintain the positioning performance of an electrohydraulic actuator operating under load with a leaking piston seal and in the presence of parametric uncertainties. Developing a control system tolerant to this class of internal leakage fault is important since a leaking piston seal can be difficult to detect, unless the actuator is disassembled. The designed fault tolerant control law is of low-order, uses only the actuator position as feedback, and can: (i) accommodate nonlinearities in the hydraulic functions, (ii) maintain robustness against typical uncertainties in the hydraulic system parameters, and (iii) keep the positioning performance of the actuator within prescribed tolerances despite an internal leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. Experimental tests verify the functionality of the fault tolerant control under normal and faulty operating conditions. The fault tolerant controller is synthesized based on linear time-invariant equivalent (LTIE) models of the hydraulic actuator using the quantitative feedback theory (QFT) design technique. A numerical approach for identifying LTIE frequency response functions of hydraulic actuators from acceptable input-output responses is developed so that linearizing the hydraulic functions can be avoided. The proposed approach can properly identify the features of the hydraulic actuator frequency response that are important for control system design and requires no prior knowledge about the asymptotic behavior or structure of the LTIE transfer functions. A distributed hardware-in-the-loop (HIL) simulation architecture is constructed that enables the performance of the proposed fault tolerant control law to be further substantiated, under realistic operating

  2. Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1993-01-01

    Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed in this paper using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated in this paper by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-18 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.

  3. Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1993-01-01

    Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-l8 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.

  4. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    PubMed Central

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-01-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953

  5. Design and reliability of a MEMS thermal rotary actuator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Michael Sean; Corwin, Alex David

    2007-09-01

    A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around themore » gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation

  6. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    NASA Technical Reports Server (NTRS)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  7. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  8. Control of stationary crossflow modes in swept Hiemenz flows with dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Wang, Zhefu; Wang, Liang; Fu, Song

    2017-09-01

    Sensitivity analyses and non-linear parabolized stability equations are solved to provide a computational assessment of the potential use of a Dielectric Barrier Discharge (DBD) plasma actuator for a prolonging laminar region in swept Hiemenz flow. The derivative of the kinetic energy with respect to the body force is deduced, and its components in different directions are defined as sensitivity functions. The results of sensitivity analyses and non-linear parabolized stability equations both indicate that the introduction of a body force as the plasma actuator at the bottom of a crossflow vortex can mitigate instability to delay flow transition. In addition, the actuator is more effective when placed more upstream until the neutral point. In fact, if the actuator is sufficiently close to the neutral point, it is likely to act as a strong disturbance over-riding the natural disturbance and dominating transition. Different operating voltages of the DBD actuators are tested, resulting in an optimal practice for transition delay. The results demonstrate that plasma actuators offer great potential for transition control.

  9. Frequency Characteristics of the MAGLEV Double-layered Propulsion Coil

    NASA Astrophysics Data System (ADS)

    Ema, Satoshi

    The MAGLEV (magnetically levitated vehicle) is now well along in development testing at Yamanashi Test Line. The MAGLEV power source needs to supply a variable voltage and variable frequency to propulsion coils, which installed on outdoor guideway. The output voltage of the electric power converter contains many higher harmonics, which causes many troubles such as inductive interference. Accordingly, it is necessary to clarify the frequency characteristics of the propulsion coils and the power feeding circuit. In view of this situation, experiments and the theoretical analysis concerning the frequency characteristics of the propulsion coils with single-layer arrangement and the power feeding circuit at Miyazaki Test Line had been performed by the author. But the arrangement of the propulsion coils had been changed in Yamanashi Test Line from the single-layered coils to the double-layered coils for the stability of the super-conducting magnet on board. Thus, experiments and investigations concerning the frequency characteristics(resonance characteristics)of the propulsion coils with double-layer arrangement at Yamanashi Test Line have been performed but a theoretical analysis had not been done enough. A theoretical analysis was therefore done in this paper by applying the inverted L equivalent circuit with mutual inductance and capacitance to the propulsion coil, from which the positive and zero phase characteristics of the double-layered propulsion coils were analyzed.

  10. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2017-11-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  11. High-authority smart material integrated electric actuator

    NASA Astrophysics Data System (ADS)

    Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary

    1997-05-01

    For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.

  12. On reliable control system designs. Ph.D. Thesis; [actuators

    NASA Technical Reports Server (NTRS)

    Birdwell, J. D.

    1978-01-01

    A mathematical model for use in the design of reliable multivariable control systems is discussed with special emphasis on actuator failures and necessary actuator redundancy levels. The model consists of a linear time invariant discrete time dynamical system. Configuration changes in the system dynamics are governed by a Markov chain that includes transition probabilities from one configuration state to another. The performance index is a standard quadratic cost functional, over an infinite time interval. The actual system configuration can be deduced with a one step delay. The calculation of the optimal control law requires the solution of a set of highly coupled Riccati-like matrix difference equations. Results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.

  13. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  14. Assessing the degradation of compliant electrodes for soft actuators.

    PubMed

    Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R

    2017-10-01

    We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.

  15. Assessing the degradation of compliant electrodes for soft actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R.

    2017-10-01

    We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.

  16. Processing and characterization of oval piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Jadidian, B.; Allahverdi, M.; Mohammadi, F.; Safari, A.

    2002-03-01

    The processing and characterization of piezoelectric actuators with oval geometry are presented. The monolithic actuators were fabricated using the fused deposition of ceramic process. The minor diameter of the ovals varied between 2 and 14 mm and their major diameter, wall thickness, and width were 20, 0.85, and 7 mm, respectively. When driven under electric field, the actuators expanded along their minor diameter. The static and dynamic displacements of ˜7 and ˜5.6 μm were observed at 850 V(dc) and 100 V(ac). The static displacement of the ovals varied almost linearly with voltage and did not change under the application of external load in the range of 1-15 N. However, both dynamic displacement and resonant frequency of the ovals varied, with a maximum of 42 μm and 38 Hz, respectively, under 13 N load.

  17. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting

    NASA Astrophysics Data System (ADS)

    Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon

    2015-12-01

    A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.

  18. A multilayered-cylindrical piezoelectric shear actuator operating in shear (d15) mode

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu; Xin, Xudong; Wu, Jingen; Chu, Zhaoqiang; Dong, Shuxiang

    2018-04-01

    In this work, a multilayered-cylindrical piezoelectric shear actuator (MCPSA) operating in the d15 shear mode was presented for precision actuation under a large mechanical load. The actuator was made of Pb(Zr,Ti)O3 (PZT-51) piezoelectric ceramic rings, which were concentrically assembled together in electrically parallel connection with alternately positive and negative polarizations along the axial direction. Experimental results show that the acquired displacement amplitude at the center of the actuator along the axial direction is around 6.5 μm under the 1 Hz applied voltage of 400 Vpp/mm, and it stayed stably under a mechanical load up to 18 N, which is 7 times larger than that of the previously reported d15 shear actuator. The proposed actuator also shows good displacement linearity with a high resolution of 0.1 μm in responding to a step voltage, indicating its great potential for precision actuation under a large mechanical load.

  19. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  20. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  1. A Novel Fractional Order Model for the Dynamic Hysteresis of Piezoelectrically Actuated Fast Tool Servo

    PubMed Central

    Zhu, Zhiwei; Zhou, Xiaoqin

    2012-01-01

    The main contribution of this paper is the development of a linearized model for describing the dynamic hysteresis behaviors of piezoelectrically actuated fast tool servo (FTS). A linearized hysteresis force model is proposed and mathematically described by a fractional order differential equation. Combining the dynamic modeling of the FTS mechanism, a linearized fractional order dynamic hysteresis (LFDH) model for the piezoelectrically actuated FTS is established. The unique features of the LFDH model could be summarized as follows: (a) It could well describe the rate-dependent hysteresis due to its intrinsic characteristics of frequency-dependent nonlinear phase shifts and amplitude modulations; (b) The linearization scheme of the LFDH model would make it easier to implement the inverse dynamic control on piezoelectrically actuated micro-systems. To verify the effectiveness of the proposed model, a series of experiments are conducted. The toolpaths of the FTS for creating two typical micro-functional surfaces involving various harmonic components with different frequencies and amplitudes are scaled and employed as command signals for the piezoelectric actuator. The modeling errors in the steady state are less than ±2.5% within the full span range which is much smaller than certain state-of-the-art modeling methods, demonstrating the efficiency and superiority of the proposed model for modeling dynamic hysteresis effects. Moreover, it indicates that the piezoelectrically actuated micro systems would be more suitably described as a fractional order dynamic system.

  2. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  3. Sensor-actuator system for dynamic chloride ion determination.

    PubMed

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Analysis and Design of a Speed and Position System for Maglev Vehicles

    PubMed Central

    Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang

    2012-01-01

    This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed. PMID:23012504

  5. Analysis and design of a speed and position system for maglev vehicles.

    PubMed

    Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang

    2012-01-01

    This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.

  6. Design of a rotary dielectric elastomer actuator using a topology optimization method based on pairs of curves

    NASA Astrophysics Data System (ADS)

    Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin

    2018-05-01

    Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.

  7. Wing box transonic-flutter suppression using piezoelectric self-sensing actuators attached to skin

    NASA Astrophysics Data System (ADS)

    Otiefy, R. A. H.; Negm, H. M.

    2010-12-01

    The main objective of this research is to study the capability of piezoelectric (PZT) self-sensing actuators to suppress the transonic wing box flutter, which is a flow-structure interaction phenomenon. The unsteady general frequency modified transonic small disturbance (TSD) equation is used to model the transonic flow about the wing. The wing box structure and piezoelectric actuators are modeled using the equivalent plate method, which is based on the first order shear deformation plate theory (FSDPT). The piezoelectric actuators are bonded to the skin. The optimal electromechanical coupling conditions between the piezoelectric actuators and the wing are collected from previous work. Three main different control strategies, a linear quadratic Gaussian (LQG) which combines the linear quadratic regulator (LQR) with the Kalman filter estimator (KFE), an optimal static output feedback (SOF), and a classic feedback controller (CFC), are studied and compared. The optimum actuator and sensor locations are determined using the norm of feedback control gains (NFCG) and norm of Kalman filter estimator gains (NKFEG) respectively. A genetic algorithm (GA) optimization technique is used to calculate the controller and estimator parameters to achieve a target response.

  8. Optimal Design of the Absolute Positioning Sensor for a High-Speed Maglev Train and Research on Its Fault Diagnosis

    PubMed Central

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619

  9. Optimal design of the absolute positioning sensor for a high-speed maglev train and research on its fault diagnosis.

    PubMed

    Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge

    2012-01-01

    This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project.

  10. Design and application of shape memory actuators

    NASA Astrophysics Data System (ADS)

    Mertmann, M.; Vergani, G.

    2008-05-01

    The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.

  11. Magnetic Actuators and Suspension for Space Vibration Control

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Allaire, Paul E.; Lewis, David W.

    1993-01-01

    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.

  12. Coupling effect and control strategies of the maglev dual-stage inertially stabilization system based on frequency-domain analysis.

    PubMed

    Lin, Zhuchong; Liu, Kun; Zhang, Li; Zeng, Delin

    2016-09-01

    Maglev dual-stage inertially stabilization (MDIS) system is a newly proposed system which combines a conventional two-axis gimbal assembly and a 5-DOF (degree of freedom) magnetic bearing with vernier tilting capacity to perform dual-stage stabilization for the LOS of the suspended optical instrument. Compared with traditional dual-stage system, maglev dual-stage system exhibits different characteristics due to the negative position stiffness of the magnetic forces, which introduces additional coupling in the dual stage control system. In this paper, the coupling effect on the system performance is addressed based on frequency-domain analysis, including disturbance rejection, fine stage saturation and coarse stage structural resonance suppression. The difference between various control strategies is also discussed, including pile-up(PU), stabilize-follow (SF) and stabilize-compensate (SC). A number of principles for the design of a maglev dual stage system are proposed. A general process is also suggested, which leads to a cost-effective design striking a balance between high performance and complexity. At last, a simulation example is presented to illustrate the arguments in the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    NASA Astrophysics Data System (ADS)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  14. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    NASA Technical Reports Server (NTRS)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  15. Passenger Acceptance of Alignments with Frequent Curves in Maglev or Other Very-High-Speed Ground Systems

    DOT National Transportation Integrated Search

    1995-10-31

    Proposed high-speed ground transportation systems, such as Maglev, may have motion characteristics : affecting passenger comfort which set them apart from anything previously experienced. Operating at : aircraft speeds along rights-of-way established...

  16. Analysis of helicopter flight dynamics through modeling and simulation of primary flight control actuation system

    NASA Astrophysics Data System (ADS)

    Nelson, Hunter Barton

    A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.

  17. Analysis and application of a velocity command motor as a reaction mass actuator

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1990-01-01

    A commercially available linear stepper motor is applied as a reaction mass (RM) actuator. With the actuator operating in the (RM) relative-velocity command mode, open-loop and closed-loop testing is performed to determine operational limits. With the actuator mounted on a simple beam structure, root strain, RM acceleration, or beam acceleration is used in the feedback loop to augment the structural damping. The RM relative position is also used as feedback to ensure that the RM remains centered.

  18. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    ERIC Educational Resources Information Center

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  19. Foldover effect and energy output from a nonlinear pseudo-maglev harvester

    NASA Astrophysics Data System (ADS)

    Kecik, Krzysztof; Mitura, Andrzej; Warminski, Jerzy; Lenci, Stefano

    2018-01-01

    Dynamics analysis and energy harvesting of a nonlinear magnetic pseudo-levitation (pseudo-maglev) harvester under harmonic excitation is presented in this paper. The system, for selected parameters, has two stable possible solutions with different corresponding energy outputs. The main goal is to analyse the influence of resistance load on the multi-stability zones and energy recovery which can help to tune the system to improve the energy harvesting efficiency.

  20. Design and position control of AF lens actuator for mobile phone using IPMC-EMIM

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Joo; Kim, Chul-Jin; Park, No-Cheol; Yang, Hyun-Seok; Park, Young-Pil; Park, Kang-Ho; Lee, Hyung-Kun; Choi, Nak-Jin

    2008-03-01

    IPMC-EMIM (Ionic Polyer Metal Composites + 1-ethyl-3- methyl imidazolium trifluromethane sulfonate, EMIM-Tfo) is fabricated by substituting ionic liquid for water in Nafion film, which improves water sensitiveness of IPMC and guarantees uniform performance regardless of the surrounding environment. In this paper, we will briefly introduce the procedure of fabrication of IPMC-EMIM and proceed to introduce the Hook-type actuator using IPMC-EMIM and application to AF Lens actuator. Parameters of Hook-type actuator are estimated from experimental data. In the simulation, The proposed AF Lens Actuator is assumed to be a linear system and based on estimated parameters, PID controller will be designed and controlled motion of AF Lens actuator will be shown through simulation.

  1. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    PubMed Central

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-01-01

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130

  2. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    PubMed

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  3. Design and model for the giant magnetostrictive actuator used on an electronic controlled injector

    NASA Astrophysics Data System (ADS)

    Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Ben; Rong, Ce

    2017-05-01

    Giant magnetostrictive actuator (GMA) may be a promising candidate actuator to drive an electronic controlled injector as giant magnetostrictive material (GMM) has excellent performances as large output, fast response and high operating stability etc. To meet the driving requirement of the injector, the GMA should produce maximal shortening displacement when energized. An unbiased GMA with a ‘T’ shaped output rod is designed to reach the target. Furthermore, an open-hold-fall type driving voltage is exerted on the actuator coil to accelerate the response speed of the coil current. The actuator displacement is modeled from establishing the sub-models of coil current, magnetic field within GMM rod, magnetization and magnetostrictive strain sequentially. Two modifications are done to make the model more accurate. Firstly, consider the model fails to compute the transient-state response precisely, a dead-zone and delay links are embedded into the coil current sub-model. Secondly, as the magnetization and magnetostrictive strain sub-models just influence the change rule of the transient-state response the linear magnetostrictive strain-magnetic field sub-model is introduced. From experimental results, the modified model with linear magnetostrictive stain expression can predict the actuator displacement quite effectively.

  4. Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.

    PubMed

    Li, Yunquan; Chen, Yonghua; Ren, Tao; Li, Yingtian; Choi, Shiu Hong

    2018-06-20

    The past decade has witnessed tremendous progress in soft robotics. Unlike most pneumatic-based methods, we present a new approach to soft robot design based on precharged pneumatics (PCP). We propose a PCP soft bending actuator, which is actuated by precharged air pressure and retracted by inextensible tendons. By pulling or releasing the tendons, the air pressure in the soft actuator is modulated, and hence, its bending angle. The tendons serve in a way similar to pressure-regulating valves that are used in typical pneumatic systems. The linear motion of tendons is transduced into complex motion via the prepressurized bent soft actuator. Furthermore, since a PCP actuator does not need any gas supply, complicated pneumatic control systems used in traditional soft robotics are eliminated. This facilitates the development of compact untethered autonomous soft robots for various applications. Both theoretical modeling and experimental validation have been conducted on a sample PCP soft actuator design. A fully untethered autonomous quadrupedal soft robot and a soft gripper have been developed to demonstrate the superiority of the proposed approach over traditional pneumatic-driven soft robots.

  5. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  6. A linear induction motor with a coated conductor superconducting secondary

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zheng, Shijun; Li, Jing; Ma, Guang Tong; Yen, Fei

    2018-07-01

    A linear induction motor system composed of a high-Tc superconducting secondary with close-ended coils made of REBCO coated conductor wire was designed and tested experimentally. The measured thrust, normal force and power loss are presented and explained by combining the flux dynamics inside superconductors with existing linear drive theory. It is found that an inherent capacitive component associated to the flux motion of vortices in the Type-II superconductor reduces the impedance of the coils; from such, the associated Lorentz forces are drastically increased. The resulting breakout thrust of the designed linear motor system was found to be extremely high (up to 4.7 kN/m2) while the associated normal forces only a fraction of the thrust. Compared to its conventional counterparts, high-Tc superconducting secondaries appear to be more feasible for use in maglev propulsion and electromagnetic launchers.

  7. Large Stroke High Fidelity PZN-PT Single-Crystal "Stake" Actuator.

    PubMed

    Huang, Yu; Xia, Yuexue; Lin, Dian Hua; Yao, Kui; Lim, Leong Chew

    2017-10-01

    A new piezoelectric actuator design, called "Stake" actuator, is proposed and demonstrated in this paper. As an example, the stake actuator is made of four d 32 -mode PZN-5.5%PT single crystals (SCs), each of 25 mm ( L ) ×8 mm ( W ) ×0.4 mm (T) in dimensions, bonded with the aid of polycarbonate edge guide-cum-stiffeners into a square-pipe configuration for improved bending and twisting strengths and capped with top and bottom pedestals made of 1.5-mm-thick anodized aluminum. The resultant stake actuator measured 9 mm ×9 mm ×28 mm. The hollow structure is a key design feature, which optimizes SC usage efficiency and lowers the overall cost of the actuator. The displacement-voltage responses, blocking forces, resonance characteristics of the fabricated stake actuator, as well as the load and temperature effects, are measured and discussed. Since d 32 is negative for [011]-poled SC, the "Stake" actuator contracts in the axial direction when a positive-polarity field is applied to the crystals. Biased drive is thus recommended when extensional displacement is desired. The SC stake actuator has negligible (<1%) hysteresis and a large linear strain range of >0.13% when driven up to +300 V (i.e., 0.75 kV/mm), which is close to the rhombohedral-to-orthorhombic transformation field ( E RO ) of 0.85 kV/mm of the SC used. The stake actuator displays a stroke of [Formula: see text] (at +300 V) despite its small overall dimensions, and has a blocking force of 114 N. The SC d 32 stake actuator fabricated displays more than 30% larger axial strain than the state-of-the-art PZT stack actuators of comparable length as well as moderate blocking forces. Said actuators are thus ideal for applications when large displacements with simple open-loop control are preferred.

  8. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    PubMed

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana,; Charles, P [Leawood, KS

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  10. Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.

  11. Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti; Allaire, Paul E.

    1996-01-01

    A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.

  12. A novel stiffness control method for series elastic actuator

    NASA Astrophysics Data System (ADS)

    Lin, Guangmo; Zhao, Xingang; Han, Jianda

    2017-01-01

    Compliance plays an important role in human-robot cooperation. However, fixed compliance, or fixed stiffness, is difficult to meet the growing needs of human machine collaboration. As a result, the robot actuator is demanded to be able to adjust its stiffness. This paper presents a stiffness control scheme for a single DOF series elastic actuator (SEA) with a linear spring mounted in series in the mechanism. In this proposed method, the output angle of the spring is measured and used to calculate the input angle of the spring, thus the equivalent stiffness of the robot actuator revealed to the human operator can be rendered in accordance to the desired stiffness. Since the techniques used in this method only involve the position information of the system, there is no need to install an expensive force/torque sensor on the actuator. Further, the force/torque produced by the actuator can be estimated by simply multiplying the deformation angle of the spring and its constant stiffness coefficient. The analysis of the stiffness controller is provided. Then a simulation that emulates a human operates the SEA while the stiffness controller is running is carried out and the results also validate the proposed method.

  13. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, K. M.; Li, Hua

    2018-07-01

    A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.

  14. Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi

    2017-05-01

    The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.

  15. Piezoelectric actuator uses sequentially-excited multiple elements: A concept

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1972-01-01

    Utilizing arrays of sequentially-excited piezoelectric elements to provide motion in a nonmagnetic motor provide built-in redundancy and long life required for deployment or actuation of devices on spacecraft. Linear-motion motor devices can also be fabricated.

  16. Safety of High Speed Magnetic Levitation Transportation Systems: Preliminary Safety Review of the Transrapid Maglev System

    DOT National Transportation Integrated Search

    1990-11-01

    The safety of various magnetically levitated trains under development for possible : implementation in the United States is of direct concern to the Federal Railroad : Administration. This report, one in a series of planned reports on maglev safety, ...

  17. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  18. Miniature Inchworm Actuators Fabricated by Use of LIGA

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Miniature inchworm actuators that would have relatively simple designs have been proposed for applications in which there are requirements for displacements of the order of microns or tens of microns and for the ability to hold their positions when electric power is not applied. The proposed actuators would be members of the class of microelectromechanical systems (MEMS), but would be designed and fabricated following an approach that is somewhat unusual for MEMS. Like other MEMS actuators, the proposed inchworm actuators could utilize thermoplastic, bimetallic, shape-memory-alloy, or piezoelectric actuation principles. The figure depicts a piezoelectric inchworm actuator according to the proposal. As in other inchworm actuators, linear motion of an extensible member would be achieved by lengthening and shortening the extensible member in synchronism with alternately clamping and releasing one and then the other end of the member. In this case, the moving member would be the middle one; the member would be piezoelectric and would be shortened by applying a voltage to it. The two outer members would also be piezoelectric; the release of the clamps on the upper or lower end would be achieved by applying a voltage to the electrodes on the upper or lower ends, respectively, of these members. Usually, MEMS actuators cannot be fabricated directly on the side walls of silicon wafers, yet the geometry of this actuator necessitates such fabrication. The solution, according to the proposal, would be to use the microfabrication technique known by the German acronym LIGA - "lithographie, galvanoformung, abformung," which means lithography, electroforming, molding. LIGA involves x-ray lithography of a polymer film followed by selective removal of material to form a three-dimensional pattern from which a mold is made. Among the advantages of LIGA for this purpose are that it is applicable to a broad range of materials, can be used to implement a variety of designs, including

  19. The AMT maglev test sled -- EML weapons technology transition to transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaaf, J.C. Jr.; Zowarka, R.C. Jr.; Davey, K.

    1997-01-01

    Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed railgun arc control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to themore » vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996.« less

  20. Vertical electrostatic actuator with extended digital range via tailored topology

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhang; Dunn, Martin L.

    2002-07-01

    We describe the design, fabrication, and testing of an electrostatic vertical actuator that exhibits a range of motion that covers the entire initial gap between the actuator and substrate and provides controllable digital output motion. This is obtained by spatially tailoring the electrode arrangement and the stiffness characteristics of the microstructure to control the voltage-deflection characteristics. The concept is based on the electrostatic pull down of bimaterial beams, via a series of electrodes attached to the beams by flexures with tailored stiffness characteristics. The range of travel of the actuator is defined by the post-release deformed shape of the bilayer beams, and can be controlled by a post-release heat-treat process combined with a tailored actuator topology (material distribution and geometry, including spatial geometrical patterning of the individual layers of the bilayer beams). Not only does this allow an increase in the range of travel to cover the entire initial gap, but it also permits digital control of the tip of the actuator which can be designed to yield linear displacement - pull in step characteristics. We fabricated these actuators using the MUMPs surface micromachining process, and packaged them in-house. We measured, using an interferometric microscope, full field deformed shapes of the actuator at each pull in step. The measurements compare well with companion simulation results, both qualitatively and quantitatively.

  1. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  2. Precision tip-tilt-piston actuator that provides exact constraint

    DOEpatents

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  3. Inertia-Controlled Twinning in Ni-Mn-Ga Actuators: A Discrete Twin-Boundary Dynamics Study

    NASA Astrophysics Data System (ADS)

    Faran, Eilon; Riccardi, Leonardo; Shilo, Doron

    2017-09-01

    A discrete twin-boundary modeling approach is applied for simulating the dynamic magnetomechanical response of a Ni-Mn-Ga actuator over a wide frequency range. The model is based on experimentally measured kinetic relation of individual twin boundaries and takes into account inertial forces due to acceleration of the actuator's mass. The calculated results show good agreement with experimental measurements performed on a specially designed Ni-Mn-Ga linear spring-mass actuator. In addition, the simulation reveals several new effects that have not been considered before and can be applied to the design of improved actuators. It is identified that the demagnetization effect plays a role of an "effective spring" and results in a resonance-type response. The effects of the actuator's mass and the twin-boundary density on the resonance response and the actuator performance are explored numerically. In particular, it is shown that mass-inertia poses an inherent upper limit over the actuator's bandwidth, which is approximately constant and equals to about 200 Hz.

  4. Passenger Acceptance of Alignments with Frequent Curves in Maglev or Other Very-High-Speed Ground Systems

    DOT National Transportation Integrated Search

    1999-03-31

    This study explored comfort and motion-sickness effects of Maglev travel in corridors characterized by frequent curves. A procedure was developed for estimating the propensity of a given set of ride motions to induce motion sickness, generating a num...

  5. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  6. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  7. Safety of High Speed Guided Ground Transportation Systems - The Biological Effects of Maglev Magnetic Field Exposures

    DOT National Transportation Integrated Search

    1993-08-01

    This report describes selected biological effects on transformed human cell lines and on rats from exposure to simulated : maglev magnetic fields (MFs). Rats (n = 6 per group) were exposed at various times throughout the 24-h day to MFs : simulating ...

  8. Power-efficient low-temperature woven coiled fibre actuator for wearable applications.

    PubMed

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W; Tagashira, Kenji; Omote, Atsushi

    2016-11-04

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg -1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.

  9. Power-efficient low-temperature woven coiled fibre actuator for wearable applications

    NASA Astrophysics Data System (ADS)

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi

    2016-11-01

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg-1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.

  10. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  11. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  12. Topology optimization of embedded piezoelectric actuators considering control spillover effects

    NASA Astrophysics Data System (ADS)

    Gonçalves, Juliano F.; De Leon, Daniel M.; Perondi, Eduardo A.

    2017-02-01

    This article addresses the problem of active structural vibration control by means of embedded piezoelectric actuators. The topology optimization method using the solid isotropic material with penalization (SIMP) approach is employed in this work to find the optimum design of actuators taken into account the control spillover effects. A coupled finite element model of the structure is derived assuming a two-phase material and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The undesirable effects of the feedback control on the residual modes are limited by including a spillover constraint term containing the residual controllability Gramian eigenvalues. The optimization of the shape and placement of the conventionally embedded piezoelectric actuators are performed using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the additional constraint.

  13. Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Jung; Han, Jong-Boo; Han, Hyung-Suk; Yang, Seok-Jo

    2015-04-01

    Dynamic instability, that is, resonance, may occur on an electromagnetic suspension-type Maglev that runs over the elevated guideway, particularly at very low speeds, due to the flexibility of the guideway. An analysis of the dynamic interaction between the vehicle and guideway is required at the design stage to investigate such instability, setting slender guideway in design direction for reducing construction costs. In addition, it is essential to design an effective control algorithm to solve the problem of instability. In this article, a more detailed model for the dynamic interaction of vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on virtual prototyping, flexible guideway by a modal superposition method and levitation electromagnets including feedback controller into an integrated model. By applying the proposed model to an urban Maglev vehicle newly developed for commercial application, an analysis of the instability phenomenon and an investigation of air gap control performance are carried out through a simulation.

  14. Velocity feedback control with a flywheel proof mass actuator

    NASA Astrophysics Data System (ADS)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  15. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis

    NASA Astrophysics Data System (ADS)

    Sutter, Thomas M.; Dickerson, Matthew B.; Creasy, Terry S.; Justice, Ryan S.

    2013-09-01

    A biologically inspired pneumatic pressure source was designed and sized to supply high pressure CO2(g) to power a rubber muscle actuator. The enzyme urease served to catalyze the hydrolysis of urea, producing CO2(g) that flowed into the actuator. The actuator’s power envelope was quantified by testing actuator response on a custom-built linear-motion rig. Reaction kinetics and available work density were determined by replacing the actuator with a double-action piston and measuring volumetric gas generation against a fixed pressure on the opposing piston. Under the conditions investigated, urease catalyzed the generation of up to 0.81 MPa (117 psi) of CO2(g) in the reactor headspace within 18 min, and the evolved gas produced a maximum work density of 0.65 J ml-1.

  16. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    PubMed Central

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  17. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    PubMed

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  18. Soft Robotic Actuators

    NASA Astrophysics Data System (ADS)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  19. Design and validation of a slender guideway for Maglev vehicle by simulation and experiment

    NASA Astrophysics Data System (ADS)

    Han, Jong-Boo; Han, Hyung-Suk; Kim, Sung-Soo; Yang, Seok-Jo; Kim, Ki-Jung

    2016-03-01

    Normally, Maglev (magnetic levitation) vehicles run on elevated guideways. The elevated guideway must satisfy various load conditions of the vehicle, and has to be designed to ensure ride quality, while ensuring that the levitation stability of the vehicle is not affected by the deflection of the guideway. However, because the elevated guideways of Maglev vehicles in South Korea and other countries fabricated so far have been based on over-conservative design criteria, the size of the structures has increased. Further, from the cost perspective, they are unfavourable when compared with other light rail transits such as monorail, rubber wheel, and steel wheel automatic guided transit. Therefore, a slender guideway that does have an adverse effect on the levitation stability of the vehicle is required through optimisation of design criteria. In this study, to predict the effect of various design parameters of the guideway on the dynamic behaviour of the vehicle, simulations were carried out using a dynamics model similar to the actual vehicle and guideway, and a limiting value of deflection ratio of the slender guideway to ensure levitation control is proposed. A guideway that meets the requirement as per the proposed limit for deflection ratio was designed and fabricated, and through a driving test of the vehicle, the validity of the slender guideway was verified. From the results, it was confirmed that although some increase in airgap and cabin acceleration was observed with the proposed slender guideway when compared with the conventional guideway, there was no notable adverse effect on the levitation stability and ride quality of the vehicle. Therefore, it can be inferred that the results of this study will become the basis for establishing design criteria for slender guideways of Maglev vehicles in future.

  20. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  1. Selection of Noisy Sensors and Actuators for Regulation of Linear Systems.

    DTIC Science & Technology

    1983-08-01

    and the inability of (5.8) to account for the possibility of the loss of controllability or stabilizability of the system If a particular actuator is...design by performing the checks tThe condition q4 can result only when a stabilizable , detectable system Is not obtput controllable and one of the...M.R., and Installe, M.J., "Optimal sensors’ allocation strategies for a class of stochastic distributed systems ," Int. J. Control , 1975, Vol. 22, No. 2

  2. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  3. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.

    PubMed

    Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2007-01-01

    A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.

  4. Spherically Actuated Motor

    NASA Technical Reports Server (NTRS)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  5. Protein-based microhydraulic transport for controllable actuation

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Leo, Donald J.

    2006-03-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio- fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. Calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100 kJ/m 3. The mathematical model for a simplified proof of concept actuator referred to as micro hydraulic actuator uses ion transporters extracted from plants reconstituted on a synthetic bilayer lipid membrane (BLM). Thermodynamic model of the concept actuator predicted the ability to develop 5 percent normalized deformation in thickness of the micro- hydraulic actuator. Controlled fluid transport through AtSUT4 (Proton-sucrose co-transporter from Arabidopsis thaliana) reconstituted on a 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L- Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- Phosphoethanolamine (POPE) BLM on a porous lead silicate glass plate (50μm with 61μm pitch) was driven by proton gradient. Bulk fluid flux of 1.2 μl/min was observed for each microliter of AtSUT4 transporter suspension (16.6 mg/ml in pH7.0 medium) reconstituted on the BLM. The flux rate is observed to be dependent on the concentration of sucrose present in pH4 buffer. Flux rate of 10 μl/min is observed for 5 mM sucrose in the first 10 minutes. The observed flux scales linearly with BLM area and the amount of proteins reconstituted on the lipid membrane. This article details the next step in the development of the micro hydraulic actuator - fluid transport driven by exergonic Adenosine triphosphate (ATP) hydrolysis reaction in the presence of ATP

  6. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  7. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  8. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  9. Anisotropic D-EAP Electrodes and their Application in Spring Roll Actuators

    NASA Astrophysics Data System (ADS)

    Fang, Xiaomeng

    Electroactive polymers (EAPs) exhibit shape change when subjected to an electric field. They are lightweight, soft, and inexpensive, while they are easy to process, shape, and tune to offer a broad range of mechanical and electrical properties. Dielectric electroactive polymers (DEAP) constitute a class of EAPs with great potential. D-EAPs consist of physically or chemically cross-linked macromolecular networks and are mechanically isotopic. Therefore, in most actuator applications that require directional electromechanical response, it is necessary to use other complex means to direct the stress/strain in the preferred direction. In this work, a simple carbon nanotube (CNT) based electrode for D-EAP actuators is demonstrated that vastly improves directional strain response originating from the mechanical anisotropy of the electrode material. Using this novel approach, the mechanical anisotropy, defined as the ratio of initial modulus in fiber direction and that in cross-fiber direction, of the CNT electroded VHB actuators, ranges from 7.9 to 11.2. Hence, the CNT-VHB flat film actuators show high directed linear actuation strain in cross-fiber direction of greater than 25% meanwhile almost no strain in fiber direction at a relatively low electric field (120 V mum-1). The morphology of the CNT sheets has critical influence on their mechanical properties and resultant actuator performance. The results demonstrate the efficacy of microcombing and selective laser etching processes to improve the CNT fiber alignment to produce pure unidirectional strain of 33% at a relatively moderate electric field. Unidirectional D-EAP composite laminates using polyurethane and polyamide monofilaments are also employed in spring roll actuators to investigate their directional mechanical and electromechanical properties. While CNT electroded D-EAP spring roll actuators were found to have about the same performance as actuators with carbon grease electrodes (6.5% strain in CNT

  10. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  11. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelfmore » components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.« less

  12. Design and fabrication of a MEMS chevron-type thermal actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baracu, Angela, E-mail: angela.baracu@imt.ro; Voicu, Rodica; Müller, Raluca

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. Themore » design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.« less

  13. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  14. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    PubMed

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  15. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  16. Power-efficient low-temperature woven coiled fibre actuator for wearable applications

    PubMed Central

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi

    2016-01-01

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg−1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency. PMID:27812014

  17. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    NASA Astrophysics Data System (ADS)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  18. Soft, Rotating Pneumatic Actuator.

    PubMed

    Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M

    2017-09-01

    This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

  19. Decentralized control of the COFS-I Mast using linear dc motors

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Celano, Tom; Ide, Eric

    1989-01-01

    Consideration is given to a decentralized control design for vibration suppression in the COFS-I Mast using linear dc motors for actuators. The decentralized control design is based results from power systems using root locus techniques that are not well known. The approach is effective because the loop gain is low due to low actuator authority. The frequency-dependent nonlinearities of the actuator are taken into account. Because of the tendency of the transients to saturate the the stroke length of the actuator, its effectiveness is limited.

  20. Soft buckling actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dian; Whitesides, George M.

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predeterminedmore » direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.« less

  1. Externally resonated linear microvibromotor for microassembly

    NASA Astrophysics Data System (ADS)

    Saitou, Kazuhiro; Wou, Soungjin J.

    1998-10-01

    A new design of a linear micro vibromotor for on-substrate fine positioning of micro-scale components is presented where a micro linear slider is actuated by vibratory impacts exerted by micro cantilever impacters. These micro cantilever impacters are selectively resonated by shaking the entire substrate with a piezoelectric vibrator, requiring no need for built-in driving mechanisms such as electrostatic comb actuators as reported previously. This selective resonance of the micro cantilever impacters via an external vibration energy field provides with a very simple means of controlling forward and backward motion of the micro linear slider, facilitating assembly and disassembly of a micro component on a substrate. The double-V beam suspension design is employed in the micro cantilever impacters for larger displacement in the lateral direction while achieving higher stiffness in the transversal direction. An analytical model of the device is derived in order to obtain, through the Simulated Annealing algorithm, an optimal design which maximizes translation speed of the linear slider at desired external input frequencies. Prototypes of the externally-resonated linear micro vibromotor are fabricated using the three-layer polysilicon surface micro machining process provided by the MCNC MUMPS service.

  2. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  3. Optimized plasma actuation on asymmetric vortex over a slender body

    NASA Astrophysics Data System (ADS)

    Long, Yuexiao; Li, Huaxing; Meng, Xuanshi; Hu, Haiyang

    2018-01-01

    Detailed particle-image-velocimetry and surface pressure measurements are conducted to study asymmetric vortex control over a slender body at high angles of attack by using a pair of optimized alternating current surface-dielectric-barrier discharge plasma actuators. The Reynolds number based on the base diameter of the model is ReD = 3.8 × 105. Steady and duty-cycle manipulations are employed. The results demonstrate the effectiveness of the optimized actuator with a thick Teflon barrier at a high free-stream speed. Perfect linear proportional control is also achieved under duty-cycle control with a reduced frequency of f+ = 0.17.

  4. Safety of High Speed Magnetic Levitation Transportation Systems : Thermal Effects and Related Safety Issues of Typical Maglev Steel Guideways

    DOT National Transportation Integrated Search

    1994-09-01

    This report presents a theoretical analysis predicting the temperature distribution, thermal deflections, and thermal stresses that may occur in typical steel Maglev guideways under the proposed Orlando FL thermal environment. Transient, finite eleme...

  5. Field analysis & eddy current losses calculation in five-phase tubular actuator

    NASA Astrophysics Data System (ADS)

    Waindok, Andrzej; Tomczuk, Bronislaw

    2017-12-01

    Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally

  6. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Deng, Zigang; Jin, Li’an; Li, Jipeng; Li, Yanxing; Zheng, Jun

    2018-07-01

    High-temperature superconducting (HTS) maglev, owning to the capability of passive stabilization, is potentially promising for high-speed transportation. The guidance force of bulk HTS materials above a permanent magnetic guideway has a nonlinear response due to the hysteresis effect. As a kind of rail transit, when the vehicle runs along the track, the curve and other disturbances will cause vibrations to the vehicle system. These physical factors will pose dynamic loads on the components, reducing structural reliability as well as affecting the ride comfort. The lateral motion, as an important part of the vehicle system dynamics, needs to be studied in the pursuit of HTS maglev realization. In this paper, we first measured the guidance forces of HTS bulks under different motion conditions, and analyzed the relationship between the lateral displacement, the movement velocity and the guidance force. Then, a mathematical model was built based on these experimental data. The key feature of this mathematical model is that it can describe the hysteresis characteristic of the guidance force. Based on this model, we investigated the lateral motion stability of the HTS levitation system, and found three singular points, one stable focus point, and two unstable saddle points. Lastly, a phase portrait was proposed to indicate the safe working region of the HTS maglev vehicle where the vehicle can automatically return to its equilibrium position. These experimental and simulation results are important to clarify the lateral motion stability under external disturbance or shock, and provide a reference basis for the design of levitation systems.

  7. Membrane-less variable focus liquid lens with manual actuation

    NASA Astrophysics Data System (ADS)

    Patra, Roshan; Agarwal, Shivam; Kondaraju, Sasidhar; Bahga, Supreet Singh

    2017-04-01

    We present a tunable, membrane-less, mechanical-wetting liquid lens that can be actuated manually using a linear actuator such as screw or piston. The operation of the liquid lens is based on deforming the interface separating two immiscible liquids with different refractive indices, while pinning the three-phase contact line at the sharp edge of lens aperture. Our lens design improves upon the existing designs of mechanical-wetting lenses by eliminating the use of complex actuation mechanisms, without compromising on the optical performance. We demonstrate the operation of the liquid lens by tuning its power back and forth from negative to positive by simple rotation of a screw. We also present an analytical description of the focal length of the lens and validate it with detailed experimental measurements. Our experiments show that the focal length of the liquid lens can be tuned repeatably without any adverse effects of hysteresis and gravity.

  8. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  9. Control strategies for systems with limited actuators

    NASA Technical Reports Server (NTRS)

    Marcopoli, Vincent R.; Phillips, Stephen M.

    1994-01-01

    This work investigates the effects of actuator saturation in multi-input, multi-output (MIMO) control systems. The adverse system behavior introduced by the saturation nonlinearity is viewed here as resulting from two mechanisms: controller windup - a problem caused by the discrepancy between the limited actuator commands and the corresponding control signals, and directionality - the problem of how to use nonlimited actuators when a limited condition exists. The tracking mode and Hanus methods are two common strategies for dealing with the windup problem. It is seen that while these methods alleviate windup, performance problems remain due to plant directionality. Though high gain conventional antiwindup as well as more general linear methods have the potential to address both windup and directionality, no systematic design method for these schemes has emerged; most approaches used in practice are application driven. An alternative method of addressing the directionality problem is presented which involves the introduction of a control direction preserving nonlinearity to the Hanus antiwindup system. A nonlinearity is subsequently proposed which reduces the conservation inherent in the former direction-preserving approach, improving performance. The concept of multivariable sensitivity is seen to play a key role in the success of the new method.

  10. Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.

    2015-04-01

    The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.

  11. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  12. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  13. The dynamics and control of large flexible space structures, 2. Part A: Shape and orientation control using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.

    1979-01-01

    The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes.

  14. A study of low-cost reliable actuators for light aircraft. Part B: Appendices

    NASA Technical Reports Server (NTRS)

    Eijsink, H.; Rice, M.

    1978-01-01

    Computer programs written in FORTRAN are given for time response calculations on pneumatic and linear hydraulic actuators. The programs are self-explanatory with comment statements. Program output is also included.

  15. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology

  16. Design and control of electromagnetic clutch actuation system for automated manual transmission

    NASA Astrophysics Data System (ADS)

    Ranjan, Ashish; Prasanth, S.; Cherian, Fenin; Baskar, P.

    2017-11-01

    There is a growing interest towards Automatic Transmission in India as it provides better comfort and drivability. But the high cost of this system is limiting itself to be successful in the Indian markets. Due to this, Automated Manual Transmission (AMT) is considered which provides a better solution towards automation as it enhances the drivability and fuel consumption characteristics of a manual transmission at lower costs. However, torque lag and comfort are major issues with AMT which can be addressed by reducing the shift time. In this paper we describe an Electromagnetic Linear Clutch Actuator as a replacement to current electrohydraulic and electromechanical actuator. A control system for the actuator is presented and a clutch engagement strategy is also implemented which reduces the engagement time to 0.78 seconds while reducing jerk and torque lag. The actuator and control system is simulated on a MATLAB Simulink and agreeable results have been obtained.

  17. The optimal location of piezoelectric actuators and sensors for vibration control of plates

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ramesh; Narayanan, S.

    2007-12-01

    This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.

  18. Resettable binary latch mechanism for use with paraffin linear motors

    NASA Technical Reports Server (NTRS)

    Maus, Daryl; Tibbitts, Scott

    1991-01-01

    A new resettable Binary Latch Mechanism was developed utilizing a paraffin actuator as the motor. This linear actuator alternately latches between extended and retracted positions, maintaining either position with zero power consumption. The design evolution and kinematics of the latch mechanism are presented, as well as the development problems and lessons that were learned.

  19. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  20. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  1. Safety of High Speed Magnetic Levitation Transportation Systems : Magnetic Field Testing of TR-07 Maglev Vehicle. Volume 1. Analysis.

    DOT National Transportation Integrated Search

    1992-04-01

    The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...

  2. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  3. Parametric analysis of a shape memory alloy actuated arm

    NASA Astrophysics Data System (ADS)

    Wright, Cody; Bilgen, Onur

    2016-04-01

    Using a pair of antagonistic Shape Memory Allow (SMA) wires, it may be possible to produce a mechanism that replicates human musculoskeletal movement. The movement of interest is the articulation of the elbow joint actuated by the biceps brachii muscle. In an effort to understand the bio-mechanics of the arm, a single degree of freedom crankslider mechanism is used to model the movement of the arm induced by the biceps brachii muscle. First, a purely kinematical analysis is performed on a rigid body crank-slider. Force analysis is also done modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of crank-slider geometries. The SMA wire characteristics are experimentally determined for the martensite detwinned and full austenite phases. Using the experimental data, an idealized actuator characteristic curve is produced for the SMA wire. Kinematic and force analyses are performed on the nonlinear wire characteristic curve and a linearized wire curve; both cases are applied to the crankslider mechanism. Performance metrics for both cases are compared, followed by discussion.

  4. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  5. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  6. Design and test of electromechanical actuators for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  7. Status of The General Atomics Low Speed Urban Maglev Technology Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurol, S; Baldi, R; Bever, D

    2004-06-16

    This paper presents the status of General Atomics Urban Maglev Program. The development provides an innovative approach for low speed transportation suitable for very challenging urban environments. Permanent magnets arranged in a 'Halbach' array configuration produce a relatively stiff magnetic suspension operating with an air gap of 25 mm. The project has progressed from design and prototype hardware testing, to the construction of a 120-meter full-scale test track, located in San Diego, California. Dynamic testing of the levitation, propulsion and guidance systems is being performed.

  8. Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator under PID Control

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshihiro; Ishiguro, Hiroshi; Hirata, Katsuhiro

    We have been studying an interior permanent magnet linear actuator for an artificial muscle. This actuator mainly consists of a mover and stator. The mover is composed of permanent magnets, magnetic cores and a non-magnetic shaft. The stator is composed of 3-phase coils and a back yoke. In this paper, the dynamic analysis method under PID control is proposed employing the 3-D finite element method (3-D FEM) to compute the dynamic response and current response when the positioning control is active. As a conclusion, computed results show good agreement with measured ones of a prototype.

  9. Verification of operation of the actuator control system using the integration the B&R Automation Studio software with a virtual model of the actuator system

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2017-08-01

    In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.

  10. Third International Symposium on Magnetic Suspension Technology. Part 2

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1996-01-01

    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors.

  11. Third International Symposium on Magnetic Suspension Technology

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1996-01-01

    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors.

  12. Self-Latching Piezocomposite Actuator

    NASA Technical Reports Server (NTRS)

    Wilkie, William K. (Inventor); Lynch, Christopher S. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  13. A Reduced Order Model of the Linearized Incompressible Navier-Strokes Equations for the Sensor/Actuator Placement Problem

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.

    2000-01-01

    A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.

  14. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  15. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  16. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  17. Effect of bending on the performance of spool-packaged shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.; Brei, Diann; Luntz, Jonathan; Browne, Alan L.; Johnson, Nancy L.

    2009-03-01

    Shape memory alloy (SMA) actuation is becoming an increasingly viable technology for industrial applications as many of the technical issues that have limited its use are being addressed (speed of actuation, mechanical connections, performance degradation, quality control, etc.) while increasing production capacities drive costs to practical levels. Shape memory alloys are often selected because of their high energy density which can lead to compact actuators; however, wire forms with small cross-sectional diameters tend to be long (10 to 50 times the length of required stroke). Spooling the wire can be used for compact packaging, but as the spool diameter decreases performance losses and fatigue increase due to bending strains and stresses. This paper presents a simple, design-level model for spooled SMA wire actuators with linear motion outputs that includes the effects of friction and wire bending and accounts for the actuator geometry, applied load, and material friction and constitutive properties. The model was validated experimentally with respect to the ratio of mandrel to SMA wire diameter and agrees well in both form and magnitude with experiments. The resulting model provides the framework for the analysis and synthesis of spooled SMA wire actuators to guide the selection of design parameters with respect to the tradeoffs between performance and packaging.

  18. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  19. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  20. Digital Actuator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken Thomas; Ted Quinn; Jerry Mauck

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs duemore » to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  1. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  2. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  3. A Concept for the Use and Integration of Super-Conducting Magnets in Structural Systems in General and Maglev Guideway Mega-Structures in Particular

    NASA Technical Reports Server (NTRS)

    Ussery, Wilfred T.; MacCalla, Eric; MacCalla, Johnetta; Elnimeiri, Mahjoub; Goldsmith, Myron; Polk, Sharon Madison; Jenkins, Mozella; Bragg, Robert H.

    1996-01-01

    Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed

  4. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    PubMed

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  5. Intracardiac ultrasound scanner using a micromachine (MEMS) actuator.

    PubMed

    Zara, J M; Bobbio, S M; Goodwin-Johansson, S; Smith, S W

    2000-01-01

    Catheter-based intracardiac ultrasound offers the potential for improved guidance of interventional cardiac procedures. The objective of this research is the development of catheter-based mechanical sector scanners incorporating high frequency ultrasound transducers operating at frequencies up to 20 MHz. The authors' current transducer assembly consists of a single 1.75 mm by 1.75 mm, 20 MHz, PZT element mounted on a 2 mm by 2 mm square, 75 mum thick polyimide table that pivots on 3-mum thick gold plated polyimide hinges. The hinges also serve as the electrical connections to the transducer. This table-mounted transducer is tilted using a miniature linear actuator to produce a sector scan. This linear actuator is an integrated force array (IFA), which is an example of a micromachine, i.e., a microelectromechanical system (MEMS). The IFA is a thin (2.2 mum) polyimide membrane, which consists of a network of hundreds of thousands of micron scale deformable capacitors made from pairs of metallized polyimide plates. IFAs contract with an applied voltage of 30-120 V and have been shown to produce strains as large as 20% and forces of up to 8 dynes. The prototype transducer and actuator assembly was fabricated and interfaced with a GagePCI analog to digital conversion board digitizing 12 bit samples at a rate of 100 MSamples/second housed in a personal computer to create a single channel ultrasound scanner. The deflection of the table transducer in a low viscosity insulating fluid (HFE 7100, 3M) is up to +/-10 degrees at scan rates of 10-60 Hz. Software has been developed to produce real-time sector scans on the PC monitor.

  6. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller.

    PubMed

    Tan, U-Xuan; Latt, Win Tun; Widjaja, Ferdinan; Shee, Cheng Yap; Riviere, Cameron N; Ang, Wei Tech

    2009-03-16

    With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.

  7. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

  8. Development of Thermally Actuated, High-Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-05-11

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  9. Development of Thermally Actuated, High Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-03-31

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  10. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  11. TransRapid TR-07 maglev-spectrum magnetic field effects on daily pineal indoleamine metabolic rhythms in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groh, K.R.

    This study examined the effects on pineal function of magnetic field (MF) exposures (ac and dc components) similar to those produced by the TransRapid TR-07 and other electromagnetic maglev systems (EMS). Rats were entrained to a light-dark cycle and then exposed to a continuous, or to an inverted, intermittent (on = 45 s, off = 15 s, induced current = 267 G/s) simulated multifrequency ac and dc magnetic field (MF) at 1 or 7 times the TR-07 maglev vehicle MF intensity for 2 hr. Other groups of rats were exposed to only the ac or the dc-component of the maglevmore » MF. For comparison, one group was exposed to an inverted, intermittent 60-Hz MF. Each group was compared to an unexposed group of rats for changes in pineal melatonin and serotonin-N-acetyltransferase (NAT). MF exposures at an intensity equivalent to that produced by the TR-07 vehicle had no effect on melatonin or NAT compared with sham-exposed animals under any of the conditions examined. However, 7X TR-07-level continuous 2-h MF exposures significantly depressed pineal NAT by 45%. Pineal melatonin was also depressed 33--43% by a continuous 7X TR-07 MF exposure and 28% by an intermittent 60-Hz 850-mG MF, but the results were not statically significant. This study demonstrates that intermittent, combined ac and dc MFs similar to those produced by the TR-07 EMS maglev vehicle alter the normal circadian rhythm of pineal indoleamine metabolism. The pineal regulatory enzyme NAT was more sensitive to MF exposure than melatonin and may be a more desirable measure of the biological effects of MF exposure.« less

  12. Flexure-based nanomagnetic actuators

    NASA Astrophysics Data System (ADS)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  13. Positioning actuators in efficient locations for rendering the desired sound field using inverse approach

    NASA Astrophysics Data System (ADS)

    Cho, Wan-Ho; Ih, Jeong-Guon; Toi, Takeshi

    2015-12-01

    For rendering a desired characteristics of a sound field, a proper conditioning of acoustic actuators in an array are required, but the source condition depends strongly on its position. Actuators located at inefficient positions for control would consume the input power too much or become too much sensitive to disturbing noise. These actuators can be considered redundant, which should be sorted out as far as such elimination does not damage the whole control performance significantly. It is known that the inverse approach based on the acoustical holography concept, employing the transfer matrix between sources and field points as core element, is useful for rendering the desired sound field. By investigating the information indwelling in the transfer matrix between actuators and field points, the linear independency of an actuator from the others in the array can be evaluated. To this end, the square of the right singular vector, which means the radiation contribution from the source, can be used as an indicator. Inefficient position for fulfilling the desired sound field can be determined as one having smallest indicator value among all possible actuator positions. The elimination process continues one by one, or group by group, until the remaining number of actuators meets the preset number. Control examples of exterior and interior spaces are taken for the validation. The results reveal that the present method for choosing least dependent actuators, for a given number of actuators and field condition, is quite effective in realizing the desired sound field with a noisy input condition, and in minimizing the required input power.

  14. Development of a piezo-actuated micro-teleoperation system for cell manipulation.

    PubMed

    Zareinejad, M; Rezaei, S M; Abdullah, A; Shiry Ghidary, S

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) requires long training and has low success rates, primarily due to poor control over the injection force. Making force feedback available to the operator will improve the success rate of the injection task. A macro-micro-teleoperation system bridges the gap between the task performed at the micro-level and the macroscopic movements of the operator. The teleoperation slave manipulator should accurately position a needle to precisely penetrate a cell membrane. Piezoelectric actuators are widely used in micromanipulation applications; however, hysteresis non-linearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in a feedforward scheme to cancel out this non-linearity. To deal with the influence of parametric uncertainties, unmodelled dynamics and PI identification error, a perturbation term is added to the slave model and applies a sliding mode-based impedance control with perturbation estimation. The stability of entire system is guaranteed by Llewellyn's absolute stability criterion. The performance of the proposed controller was investigated through experiments for cell membrane penetration. The experimental results verified the accurate position tracking in free motion and simultaneous position and force tracking in contact with a low stiffness environment.

  15. The development of compact electroactive polymer actuators suitable for use in full page Braille displays

    NASA Astrophysics Data System (ADS)

    Gorny, Lee J.; Zellers, Brian C.; Lin, Minren; Liu, Sheng; Zhang, Qiming M.

    2010-04-01

    Piezoceramic actuators, presently used in commercial Braille displays, are limited by the material's relatively small strain and brittle nature. For this reason, it is a challenge to develop full page, compact, graphic Braille displays that are affordable. A newly developed material composed of P(VDF-TrFE-CFE) terpolymer blended with 5% P(VDF-CTFE) electrostrictive actuators exhibits large strains (~5% at 150V/μm), fast actuation (>5 mm/s), and has a relatively high elastic modulus (1.2 GPa). This material exhibits more than double the elastic energy density and a 50% higher modulus of the original electrostrictive terpolymer. Hence, the potential for viable actuators in compact, full page Braille displays is greater than ever, provided actuators can be manufactured reliably in quantity. This talk presents recent work in scaling production of such rolled actuators. Actuators extend .5 mm, are confined to the 2.5 mm grid spacing of conventional Braille text, generate >0.5 N force and operate at less than 200V, thus meeting the primary requirements for a commercialized Braille display. To manufacture these actuators, cast films are stretched using a roll-to-roll zone drawing machine that is capable of producing quantities of 2 μm thick film with high quality. What follows is a discussion of this machine, the roll-to-roll film stretching process and an assessment of the resulting stretched film for use as linear strain actuators, like those used in our Braille cell.

  16. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  17. Design and Calibration of an RF Actuator for Low-Level RF Systems

    NASA Astrophysics Data System (ADS)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  18. Review of Aircraft Crash Databases and Evaluation of the Probability of Aircraft Crashes on to a MAGLEV Guide-way: Technical Report

    DOT National Transportation Integrated Search

    1991-12-09

    The System Safety & Security Division at The Volpe National Transportation System Center (VNTSC), Cambridge, MA is participating in an overall risk assessment study on the safety of High Speed Magnetic Levitation Transportation Systems ("MagLev"). Tr...

  19. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  1. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  2. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  3. Safety of High Speed Magnetic Levitation Transportation Systems : Magnetic Field Testing of TR-07 Maglev Vehicle and System. Volume 2. Appendices.

    DOT National Transportation Integrated Search

    1992-04-01

    The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...

  4. Passive damping in EDS maglev systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less

  5. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    NASA Astrophysics Data System (ADS)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  6. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  7. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  8. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  9. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  10. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  11. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    PubMed

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  12. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  13. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  14. Microhydraulic Electrowetting Actuators

    DTIC Science & Technology

    2015-06-26

    inkjet  printers4, and microrobots5 tend to use other  forms of actuation.   The alternatives can be widely divided  into  resistive and capacitive...actuators, based on  the primary  impedance mode.   Some examples of  resistive actuators are  thermal  inkjet  printers, electro‐osmotic pumps6, and shape

  15. Self-contained hybrid electro-hydraulic actuators using magnetostrictive and electrostrictive materials

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban

    dominates the viscous effects and the problem becomes unsteady in nature. Due to high pressures inside the actuator and the presence of entrained air, compressibility of the hydraulic fluid is important. A new mathematical model of the hydraulic hybrid actuator was formulated in time-domain to show the basic operational principle under varying operating conditions and to capture the phenomena affecting system performance. Linear induced strain behavior was assumed to model the active material. Governing equations for the moving parts were obtained from force equilibrium considerations, while the coupled inertiacompliance of the fluid passages was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. Compressibility of the working fluid was incorporated by using the bulk modulus. The model was then validated using the measured performance of both the magnetostrictive and electrostrictive-based hybrid actuators.

  16. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  17. Sensor-integrated polymer actuators for closed-loop drug delivery system

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  18. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  19. Safety of High Speed Magnetic Levitation Transportation Systems : German High-Speed Maglev Train Safety Requirements - Potential For Application in the United States

    DOT National Transportation Integrated Search

    1992-02-01

    The safety of various magnetically levitated (maglev) trains underdevelopment for possible : implementation in the United States is ofdirect concern to the Federal Railroad Administration (FRA). : This report is the second in a series of reports addr...

  20. Lifetime of dielectric elastomer stack actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2011-04-01

    Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.

  1. Microprocessor controlled proof-mass actuator

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.

    1987-01-01

    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  2. An Investigation of Electrochemomechanical Actuation of Conductive Polyacrylonitrile (PAN) Nanofiber Composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.

    A polymer-based nanofiber composite actuator designed for linear actuation was fabricated by electrospinning, actuated by electrolysis, and characterized by electrical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural motion and function of muscle desperately needed to provide breakthroughs in the bio-medical and robotic fields. Previous research has shown activated Polyacrylonitrile (PAN) fibers having biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN is also known to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers especially show faster response to changes in environmental pH and improved mechanical properties over larger diameter fibers. Conductive additives were introduced to the electrospinning solution and activated in an attempt to create composite PAN nanofiber gel actuators with improved conductivity and eliminate the need of stiff electrodes. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Introducing conductive additives did not show a significant increase in conductivity and created unusable samples, requiring alternative electrode materials. Electrochemical contraction rates up to 25%/ min were achieved. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Improvements to contraction rates and young's moduli are necessary to capture the function and performance of skeletal muscles properly.

  3. [Hemolysis Performance Analysis of the Centrifugal Maglev Blood Pump].

    PubMed

    Wang, Yiwen; Zhang, Fan; Fang, Yuan; Dong, Baichuan; Zhou, Liang

    2016-05-01

    In order to analyze and study the hemolysis performance of the centrifugal maglev blood pump, which was designed by ourselves, this paper built the mathematical model and computational fluid dynamics analyzed it using Fluent. Then we set up the in vitro hemolysis experiment platform, in case of the design condition, the content of free hemoglobin and hematocrit in plasma were measured in a certain time interval, and calculated the normalized index of hemolysis of the blood pump. The numerical simulation results show the internal static pressure distribution is smooth inside the pump, the wal shear stress inside the pump is less than 150 Pa. Therefore, the red blood cel damage and exposure time is independent. The normalized index of hemolysis is (0.002 9±0.000 7) mg/L, which is in accordance with human physiological requirement.

  4. Electromechanical rotary actuator

    NASA Technical Reports Server (NTRS)

    Smith, S. P.; Mcmahon, W. J.

    1995-01-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  5. Electromechanical rotary actuator

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; McMahon, W. J.

    1995-05-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  6. Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing

    NASA Astrophysics Data System (ADS)

    Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.

    2000-06-01

    The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.

  7. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  8. Recent developments on SMA actuators: predicting the actuation fatigue life for variable loading schemes

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Lagoudas, Dimitris C.

    2017-04-01

    Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.

  9. Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Xu, Weijie; Guo, Tong; Chen, Kai

    2017-10-01

    Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.

  10. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-06-22

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  11. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Manufacturing of ionic polymer-metal composites (IPMCs) that can actuate into complex curves

    NASA Astrophysics Data System (ADS)

    Stoimenov, Boyko L.; Rossiter, Jonathan M.; Mukai, Toshiharu

    2007-04-01

    Ionic polymer-metal composites (IPMC) are soft actuators with potential applications in the fields of medicine and biologically inspired robotics. Typically, an IPMC bends with approximately constant curvature when voltage is applied to it. More complex shapes were achieved in the past by pre-shaping the actuator or by segmentation and separate actuation of each segment. There are many applications for which fully independent control of each segment of the IPMC is not required and the use of external wiring is objectionable. In this paper we propose two key elements needed to create an IPMC, which can actuate into a complex curve. The first is a connection between adjacent segments, which enables opposite curvature. This can be achieved by reversing the polarity applied on each side of the IPMC, for example by a through-hole connection. The second key element is a variable curvature segment. The segment is designed to bend with any fraction of its full bending ability under given electrical input by changing the overlap of opposite charge electrodes. We demonstrated the usefulness of these key elements in two devices. One is a bi-stable buckled IPMC beam, also used as a building block in a linear actuator device. The other one is an IPMC, actuating into an S-shaped curve with gradually increasing curvature near the ends. The proposed method of manufacturing holds promise for a wide range of new applications of IPMCs, including applications in which IPMCs are used for sensing.

  14. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  15. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  16. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  17. Safety of High Speed Magnetic Levitation Transportation Systems - Comparison of U.S. and Foreign Safety Requirements for Application to U.S. Maglev Systems

    DOT National Transportation Integrated Search

    1993-09-01

    This report presents the results of a systematic review of the safety requirements selected for the German Transrapid : electromagnetic (EMS) type maglev system to determine their applicability and completeness with respect to the : construction and ...

  18. Design, development, and validation of a segment support actuator for the prototype segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Mandal, Amaresh; Parihar, Padmakar S.; Nayak, Dayananda; Mishra, Deepta Sundar

    2018-01-01

    Segmented mirror telescopes (SMT) are built using several small hexagonal mirrors positioned and aligned by the three actuators and six edge sensors per segment to maintain the shape of the primary mirror. The actuators are responsible for maintaining and tracking the mirror segments to the desired position, in the presence of external disturbances introduced by wind, vibration, gravity, and temperature. The present paper describes our effort to develop a soft actuator and the actuator controller for prototype SMT at Indian Institute of Astrophysics, Bangalore. The actuator designed, developed, and validated is a soft actuator based on the voice coil motor and flexural elements. It is designed for the range of travel of ±1.5 mm and the force range of 25 N along with an offloading mechanism to reduce the power consumption. A precision controller using a programmable system on chip (PSoC 5Lp) and a customized drive board has also been developed for this actuator. The close loop proportional-integral-derivative (PID) controller implemented in the PSoC gets position feedback from a high-resolution linear optical encoder. The optimum PID gains are derived using relay tuning method. In the laboratory, we have conducted several experiments to test the performance of the prototype soft actuator as well as the controller. We could achieve 5.73- and 10.15-nm RMS position errors in the steady state as well as tracking with a constant speed of 350 nm/s, respectively. We also present the outcome of various performance tests carried out when off-loader is in action as well as the actuator is subjected to dynamic wind loading.

  19. Design of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo

    2004-07-01

    A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.

  20. LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures

    NASA Astrophysics Data System (ADS)

    An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling

    2017-08-01

    This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.

  1. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  2. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  3. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  4. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer.

    PubMed

    Nishimura, Takuma; Hosaka, Hiroshi; Morita, Takeshi

    2012-01-01

    The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28m/s at driving voltages of 80V(p-p) for 44.9kHz and 48V(p-p) for 22.45kHz with a pre-load of 3.1N. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design

  6. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  7. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  8. A Portable Analyzer for Pouch-Actuated, Immunoassay Cassettes

    PubMed Central

    Qiu, Xianbo; Liu, Changchun; Mauk, Michael G.; Hart, Robert W.; Chen, Dafeng; Qiu, Jing; Kientz, Terry; Fiene, Jonathan; Bau, Haim H.

    2011-01-01

    A portable, small footprint, light, general purpose analyzer (processor) to control the flow in immunoassay cassettes and to facilitate the detection of test results is described. The durable analyzer accepts disposable cassettes that contain pouches and reaction chambers for various unit operations such as hydration of dry reagents, stirring, and incubation. The analyzer includes individually controlled, linear actuators to compress the pouches in the cassette, which facilitates the pumping and mixing of sample and reagents, and to close diaphragm-based valves for flow control. The same types of actuators are used to compress pouches and actuate valves. The analyzer also houses a compact OEM scanner/reader to excite fluorescence and detect emission from labels. The analyzer is hydraulically isolated from the cassette, reducing the possibility of cross-contamination. The analyzer facilitates programmable, automated execution of a sequence of operations such as pumping and valving in a timely fashion, reducing the level of expertise required from the operator and the possibility for errors. The analyzer’s design is modular and expandable to accommodate cassettes of various complexities and additional functionalities. In this paper, the utility of the analyzer has been demonstrated with the execution of a simple, consecutive, lateral flow assay of a model biological system and the test results were detected with up converting phosphor labels that are excited at infrared frequencies and emit in the visible spectrum. PMID:22125359

  9. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  10. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  11. A prototype piecewise-linear dynamic attenuator

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Peng, Mark V.; May, Christopher A.; Shunhavanich, Picha; Fleischmann, Dominik; Pelc, Norbert J.

    2016-07-01

    The piecewise-linear dynamic attenuator has been proposed as a mechanism in CT scanning for personalizing the x-ray illumination on a patient- and application-specific basis. Previous simulations have shown benefits in image quality, scatter, and dose objectives. We report on the first prototype implementation. This prototype is reduced in scale and speed and is integrated into a tabletop CT system with a smaller field of view (25 cm) and longer scan time (42 s) compared to a clinical system. Stainless steel wedges were machined and affixed to linear actuators, which were in turn held secure by a frame built using rapid prototyping technologies. The actuators were computer-controlled, with characteristic noise of about 100 microns. Simulations suggest that in a clinical setting, the impact of actuator noise could lead to artifacts of only 1 HU. Ring artifacts were minimized by careful design of the wedges. A water beam hardening correction was applied and the scan was collimated to reduce scatter. We scanned a 16 cm water cylinder phantom as well as an anthropomorphic pediatric phantom. The artifacts present in reconstructed images are comparable to artifacts normally seen with this tabletop system. Compared to a flat-field reference scan, increased detectability at reduced dose is shown and streaking is reduced. Artifacts are modest in our images and further refinement is possible. Issues of mechanical speed and stability in the challenging clinical CT environment will be addressed in a future design.

  12. Linear Parameter Varying Control for Actuator Failure

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.

  13. Hierarchical design of an electro-hydraulic actuator based on robust LPV methods

    NASA Astrophysics Data System (ADS)

    Németh, Balázs; Varga, Balázs; Gáspár, Péter

    2015-08-01

    The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is used to improve the roll stability of vehicles. The purpose of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The high-level hydromotor is described in a linear form, while the low-level spool valve is a polynomial system. These subsystems require different control strategies. At the high level, a linear parameter-varying control is used to guarantee performance specifications. At the low level, a control Lyapunov-function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input at the high level and must be tracked at the low-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The robust design of the high-level control incorporates the imprecision of the low-level control as an uncertainty of the system.

  14. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  15. Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert

    2014-03-01

    Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.

  16. A method to estimate the deformation and the absorbed current of an IPMC actuator

    NASA Astrophysics Data System (ADS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2006-03-01

    Based on a previous paper presented at EAPAD Conference on 2005 and supported by the European Community by the research project ISAMCO (Ionic polymer metal composite as Sensors and Actuators for Motion COntrol, 2004-2006) inside the sixth Framework Program, the proposed paper goes on describing the results about the characterization of IPMC materials as motion actuators, obtained by using an improved infrared-based system designed, realized and characterised to this aim. The system was required to detect both the IPMC absorbed current and its consequent deflection, under the effect of the applied voltage. The deflection is detected by the IR system, that uses a differential configuration in order to reduce non-linearity, peculiar to IR devices. The measurement system is used to identify and then validate a model, proposed to describe the IPMC actuator behaviour in a wide range of operating conditions. The model was obtained by adopting a grey box approach. By acquiring the signals involved: the applied voltage, the absorbed current and the IPMC displacement, for different inputs such as pulses, sinusoidal waves (with varying frequency and amplitude) and noise, and by post-processing these signals, all the parameters relative to the IPMC actuator were identified and several tests were performed in order to compare the behaviour of the actuator as predicted by the model with the experimental one. The obtained results show a very good accordance between the simulated and the real actuator response, hence represent a good validation of the proposed model.

  17. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  18. Analysis of the sweeped actuator line method

    DOE PAGES

    Nathan, Jörn; Masson, Christian; Dufresne, Louis; ...

    2015-10-16

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  19. Analysis of the sweeped actuator line method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, Jörn; Masson, Christian; Dufresne, Louis

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  20. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.