Science.gov

Sample records for magma ocean hypothesis

  1. Multiphase Dynamics of Magma Oceans

    NASA Astrophysics Data System (ADS)

    Boukaré, Charles-Edouard; Ricard, Yanick; Parmentier, Edgar M.

    2017-04-01

    Since the earliest study of the Apollo lunar samples, the magma ocean hypothesis has received increasing consideration for explaining the early evolution of terrestrial planets. Giant impacts seem to be able to melt significantly large planets at the end of their accretion. The evolution of the resulting magma ocean would set the initial conditions (thermal and compositionnal structure) for subsequent long-term solid-state planet dynamics. However, magma ocean dynamics remains poorly understood. The major challenge relies on understanding interactions between the physical properties of materials (e.g., viscosity (at liquid or solid state), buoyancy) and the complex dynamics of an extremely vigorously convecting system. Such complexities might be neglected in cases where liquidus/adiabat interactions and density stratification leads to stable situations. However, interesting possibilities arise when exploring magma ocean dynamics in other regime. In the case of the Earth, recent studies have shown that the liquidus might intersect the adiabat at mid-mantle depth and/or that solids might be buoyant at deep mantle conditions. These results require the consideration of more sophisticated scenarios. For instance, how does bottom-up crystallization look with buoyant crystals? To understand this complex dynamics, we develop a multiphase phase numerical code that can handle simultaneously phase change, the convection in each phase and in the slurry, as well as the compaction or decompaction of the two phases. Although our code can only run in a limited parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number), it provides a rich dynamics that illustrates what could have happened. For a given liquidus/adiabat configuration and density contrast between melt and solid, we explore magma ocean scenarios by varying the relative timescales of three first order processes: solid-liquid separation, thermo-chemical convective motions and magma ocean cooling.

  2. Mercury's Magma Ocean

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Parmentier, E. M.; Wang, S.

    2016-12-01

    The crystallization of Mercury's magma ocean (MMO) would follow a significantly different path than the terrestrial or lunar magma ocean. Evidence from the MESSENGER mission [1] indicates that Mercury's interior has an oxygen fugacity (fO2) orders of magnitude lower any other terrestrial planet (3-8 log units below the iron-wustite buffer = IW-3 to IW-8; [2]). At these conditions, silicate melts and minerals have negligible Fe contents. All Fe is present in sulfides or metal. Thus, the build up of Fe in the last dregs of the lunar magma ocean, that is so important to its evolution, would not happen in the MMO. There would be no overturn or plagioclase flotation crust. Sulfur solubility in silicate melts increases dramatically at low fO2, from 1 wt% at IW-3 to 8wt% at IW-8 [3]. Thus it is possible, perhaps probable, that km-thick layers of sulfide formed during MMO crystallization. Some of the sulfides (e.g. CaS) have high partition coefficients for trace elements and so could control the spatial distribution of radioactive heat producing elements such as U, Th and K. This in turn would have first order effects on the thermal and chemical evolution of the planet. The distribution of the sulfide layers depend upon the density of the sulfides that form in the MMO. At such low fO2, S forms compounds with a range of elements not typical for other planets: Ca, Mg, Na, K. The densities of these sulfides vary widely, with Mg and Ca-rich sulfides being more dense than estimated MMO densities, and Na and K-rich sulfides being less dense than the MMO. Thus sulfide sinking and floating may produce substantial chemical layering on Mercury, potentially including an Mg-Ca rich deep layer and a Na-K rich shallow layer or possibly floatation crust. The total amount of S in the MMO depends on the fO2 and the bulk S content of Mercury, both of which are poorly constrained. In the most extreme case, if the MMO had an fO2of IW-8 and was sulfide saturated from the start, a total

  3. Superheat in magma oceans

    NASA Technical Reports Server (NTRS)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  4. Impact melts in the MAC88105 lunar meteorite - Inferences for the lunar magma ocean hypothesis and the diversity of basaltic impact melts

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.

    1991-01-01

    The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine-grained, and rich in Al2O3 (28 wt pct); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P2O5 than most and has a much lower MgO/(MgO + FeO). The third impact-melt type resembles a prominent melt group at Apollo 16, but has lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test the idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.

  5. Can basal magma oceans generate magnetic fields?

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Ziegler, L. B.; Davies, C.

    2015-12-01

    Earth's magnetic field is very old, with recent data now showing the field possibly extended back to 4.1 billion years ago (Tarduno et al., Science, 2015). Yet, based upon our current knowledge there are difficulties in sustained a core dynamo over most of Earth's history. Moreover, recent estimates of thermal and electrical conductivity of liquid iron at core conditions from mineral physics experiments indicate that adiabatic heat flux is approximately 15 TW, nearly 3 times larger than previously thought, exacerbating difficulties for driving a core dynamo by convective core cooling alone throughout Earth history. A long-lived basal magma ocean in the lowermost mantle has been proposed to exist in the early Earth, surviving perhaps into the Archean. While the modern, solid lower mantle is an electromagnetic insulator, electrical conductivities of silicate melts are known to be higher, though as yet they are unconstrained for lowermost mantle conditions. Here we explore the geomagnetic consequences of a basal magma ocean layer for a range of possible electrical conductivities. For the highest electrical conductivities considered, we find a basal magma ocean could be a primary dynamo source region. This would suggest the proposed three magnetic eras observed in paleomagnetic data originate from distinct sources for dynamo generation: from 4.5-2.45 Ga within a basal magma ocean, from 2.25-0.4 Ga within a superadiabatically cooled liquid core, and from 0.4-present within a quasi-adiabatic core that includes a solidifying inner core. We have extended this work by developing a new code, Dynamantle, which is a model with an entropy-based approach, similar to those commonly used in core dynamics models. We present new results using this code to assess the conditions under which basal magma oceans can generate positive ohmic dissipation. This is more generally useful than just considering the early Earth, but also for many silicate exoplanets in which basal magma oceans

  6. Cumulate Mantle Dynamics Response to Magma Ocean Cooling Rate

    NASA Astrophysics Data System (ADS)

    Boukare, C.-E.; Parmentier, E. M.; Parman, S. W.

    2018-05-01

    We investigate the issue of the cumulate compaction during magma ocean solidification. We show that the cooling rate of the magma ocean affects the amount and distribution of retained melt in the cumulate layers and the timing of cumulate overturn.

  7. Petrology and Physics of Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Parmentier, E. M.; Hess, P. C.

    2003-01-01

    Early Mars is thought to have been melted significantly by the conversion of kinetic energy to heat during accretion of planetesimals. The processes of solidification of a magma ocean determine initial planetary compositional differentiation and the stability of the resulting mantle density profile. The stability and compositional heterogeneity of the mantle have significance for magmatic source regions, convective instability, and magnetic field generation. Significant progress on the dynamical problem of magma ocean crystallization has been made by a number of workers. The work done under the 2003 MFRP grant further explored the implications of early physical processes on compositional heterogeneity in Mars. Our goals were to connect early physical processes in Mars evolution with the present planet's most ancient observable characteristics, including the early, strong magnetic field, the crustal dichotomy, and the compositional characteristics of the SNC meteorite's source regions as well as their formation as isotopically distinct compositions early in Mars's evolution. We had already established a possible relationship between the major element compositions of SNC meteorite sources and processes of Martian magma ocean crystallization and overturn, and under this grant extended the analysis to the crucial trace element and isotopic SNC signatures. This study then demonstrated the ability to create and end the magnetic field through magma ocean cumulate overturn and subsequent cooling, as well as the feasibility of creating a compositionally- and volumetrically-consistent crustal dichotomy through mode-1 overturn and simultaneous adiabatic melting.

  8. Magma ocean formation due to giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

  9. Asteroid differentiation - Pyroclastic volcanism to magma oceans

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Keil, Klaus; Mccoy, Timothy; Haack, Henning; Scott, Edward R. D.

    1993-01-01

    A summary is presented of theoretical and speculative research on the physics of igneous processes involved in asteroid differentiation. Partial melting processes, melt migration, and their products are discussed and explosive volcanism is described. Evidence for the existence of asteroidal magma oceans is considered and processes which may have occurred in these oceans are examined. Synthesis and inferences of asteroid heat sources are discussed under the assumption that asteroids are heated mainly by internal processes and that the role of impact heating is small. Inferences of these results for earth-forming planetesimals are suggested.

  10. Geochemical Evidence for a Terrestrial Magma Ocean

    NASA Technical Reports Server (NTRS)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  11. The chlorine isotope fingerprint of the lunar magma ocean

    PubMed Central

    Boyce, Jeremy W.; Treiman, Allan H.; Guan, Yunbin; Ma, Chi; Eiler, John M.; Gross, Juliane; Greenwood, James P.; Stolper, Edward M.

    2015-01-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free (“dry”) Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because 37Cl/35Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, 37Cl/35Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high 37Cl/35Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon’s history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  12. The chlorine isotope fingerprint of the lunar magma ocean.

    PubMed

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  13. Evidence for magma oceans on asteroids, the moon, and Earth

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Norman, Marc D.

    1992-01-01

    There are sound theoretical reasons to suspect that the terrestrial planets melted when they formed. For Earth, the reasons stem largely from the hypothesis that the moon formed as a result of the impact of a Mars-sized planetesimal with the still accreting Earth. Such a monumental event would have led to widespread heating of the Earth and the materials from which the moon was made. In addition, formation of a dense atmosphere on the Earth (and possibly the Moon) would have led to retention of accretional heat and, thus, widespread melting. In other words, contemporary theory suggests that the primitive Moon and terrestrial planets had magma oceans.

  14. The magma ocean concept and lunar evolution

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    The model of lunar evolution in which the anorthositic plagioclase-rich oldest crust of the moon is formed over a period of 300 Myr or less by crystallization as it floats on a global ocean of magma tens or hundreds of km thick is examined in a review of petrological and theoretical studies. Consideration is given to the classification of lunar rocks, the evidence for primordial deep global differentiation, constraints on the depth of the molten zone, the effects of pressure on mineral stability relationships, mainly-liquid vs mainly-magmifer ocean models, and the evidence for multiple ancient differentiation episodes. A synthesis of the model of primordial differentiation and its aftereffects is presented, and the generalization of the model to the earth and to Mars, Mercury, Venus, and the asteroids is discussed.

  15. Experimental Constraints on a Vesta Magma Ocean

    NASA Technical Reports Server (NTRS)

    Hoff, C.; Jones, J. H.; Le, L.

    2014-01-01

    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the <1250C portion of the MELTS Vesta magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the

  16. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  17. Timescale of Destabilization of a Magma Ocean Cumulate

    NASA Astrophysics Data System (ADS)

    Morison, A.; Labrosse, S.; Deguen, R.; Alboussiere, T.

    2017-12-01

    A common scenario considered during the formation of terrestrial planets is the crystallization of a global magma ocean from the bottom-up. The crystallization of the surface magma ocean is expected to be rapid, on a timescale of the order of 1 Myr. This has lead several authors to assume convection in the solid part of the crystallizing mantle only sets out after the complete solidification of the surface magma ocean. Assuming fractionnal crystallization of this ocean, the magma (and resulting solid) is more and more enriched in FeO as the crystallization progresses. This leads to an unstable stratification and an overturn. After overturn, the resulting solid mantle would be strongly compositionally stratified. The present study tests the assumption that solid-state mantle overturn only occurs after complete crystallization of the surface magma ocean. We model convection in the solid part of the mantle only and parametrize the presence of a magma ocean with boundary conditions. Our model includes through these boundary conditions the possibility for matter to cross the boundary between the solid shell and the magma ocean by melting and freezing. We perfomed a linear stability analysis with respect to the temperature and compositional profiles obtained in a growing magma ocean cumulate to assess the destabilization timescale of such profiles as a function of the crystallized thickness. By comparing this timescale with a model of surface magma ocean crystallization, we deduce the time and crystallized thickness at which the convection timescale is comparable to the age of the solid crystallizing mantle. This time is found to be small ( 1 kyr) compared to the time needed to crystallize the entire surface magma ocean ( 1 Myr).

  18. Magma ocean formation due to giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1992-01-01

    The effect of giant impacts on the initial chemical and thermal states of the terrestrial planets is just now being explored. A large high speed impact creates an approximately hemispherical melt region with a radius that depends on the projectile's radius and impact speed. It is shown that giant impacts on large planets can create large, intact melt regions containing melt volumes up to a few times the volume of the projectile. These large melt regions are not created on asteroid sized bodies. If extruded to the surface, these regions contain enough melt to create a magma ocean of considerable depth, depending on the impact speed, projectile radius, and gravity of the target planet.

  19. How did the Lunar Magma Ocean crystallize?

    NASA Astrophysics Data System (ADS)

    Davenport, J.; Neal, C. R.

    2012-12-01

    It is generally accepted that the lunar crust and at least the uppermost (500 km) mantle was formed by crystallization of a magma ocean. How the magma ocean cooled and crystallized is still under debate. Parameters such as bulk composition, lunar magma ocean (LMO) crystallization method (fractional vs. equilibrium), depth of the LMO, and time for LMO solidification (effects of tidal heating mechanisms, insulating crustal lid, etc.) are still under debate. Neal (2001, JGR 106, 27865-27885) argues for the presence of garnet in the deep lunar mantle via compositional differences between low- and high-Ti mare basalts and volcanic glasses. Neal (2001) suggests that these compositional differences are due to the presence of garnet in the source regions of certain volcanic glass bead groups. As Neal (2001, JGR 106, 27865-27885) points out, determining if there is garnet in the lunar mantle is important in determining if the LMO was a "whole-Moon" event or if it was limited to certain areas. In the latter case, garnet would have been preserved in the lunar mantle and would have been used in the source material for some of the volcanic glasses. High-pressure experimental work concludes that with the right T-P conditions (2.5-4.5 GPa and 1675-1800° C) there could be a garnet-bearing pyroxene rich protolith at ~500 km depth. This also has significant implications for the bulk Al2O3 composition of the initial bulk Moon. If the LMO was not global, the volcanic glass beads that show evidence of garnet in their sources were formed from the deep, primitive lunar mantle, it begs the questions how was the non-LMO regions of the Moon formed and what was it's bulk composition? To try to answer these questions, it is necessary to thoroughly model the evolution of the LMO and then use that work to model the sources and formation of mare basalts, the volcanic glass beads, and other regions in question. To begin to answer these questions, we developed a scenario we have termed reverse

  20. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    NASA Astrophysics Data System (ADS)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  1. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    NASA Astrophysics Data System (ADS)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  2. Experimental Fractional Crystallization of the Lunar Magma Ocean

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  3. Fate of a perched crystal layer in a magma ocean

    NASA Technical Reports Server (NTRS)

    Morse, S. A.

    1992-01-01

    The pressure gradients and liquid compressibilities of deep magma oceans should sustain the internal flotation of native crystals owing to a density crossover between crystal and liquid. Olivine at upper mantle depths near 250 km is considered. The behavior of a perched crystal layer is part of the general question concerning the fate of any transient crystal carried away from a cooling surface, whether this be a planetary surface or the roof of an intrusive magma body. For magma bodies thicker than a few hundred meters at modest crustal depths, the major cooling surface is the roof even when most solidification occurs at the floor. Importation of cool surroundings must also be invoked for the generation of a perched crystal layer in a magma ocean, but in this case the perched layer is deeply embedded in the hot part of the magma body, and far away from any cooling surface. Other aspects of this study are presented.

  4. Crystallization and Cooling of a Deep Silicate Magma Ocean

    NASA Astrophysics Data System (ADS)

    Bower, Dan; Wolf, Aaron

    2016-04-01

    Impact and accretion simulations of terrestrial planet formation suggest that giant impacts are both common and expected to produce extensive melting. The moon-forming impact, for example, likely melted the majority of Earth's mantle to produce a global magma ocean that subsequently cooled and crystallised. Understanding the cooling process is critical to determining magma ocean lifetimes and recognising possible remnant signatures of the magma ocean in present-day mantle heterogeneities. Modelling this evolution is challenging, however, due to the vastly different timescales and lengthscales associated with turbulent convection (magma ocean) and viscous creep (present-day mantle), in addition to uncertainties in material properties and chemical partitioning. We consider a simplified spherically-symmetric (1-D) magma ocean to investigate both its evolving structure and cooling timescale. Extending the work of Abe (1993), mixing-length theory is employed to determine convective heat transport, producing a high resolution model that parameterises the ultra-thin boundary layer (few cms) at the surface of the magma ocean. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting. This model is used to determine the cooling timescale for a variety of plausible thermodynamic models, with special emphasis on comparing the center-outwards vs bottom-up cooling scenarios that arise from the assumed EOS.

  5. Geophysical and geochemical evolution of the lunar magma ocean

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Drake, M. J.; Sonett, C. P.

    1978-01-01

    There is increasing evidence that at least the outer few hundred kilometers of the moon were melted immediately following accretion. This paper studies the evolution of this lunar magma ocean. The long time scale for solidification leads to the inference that the plagioclase-rich (ANT) lunar crust began forming, perhaps preceded by local accumulations termed 'rockbergs', at the very beginning of the magma ocean epoch. In this view the cooling and solidification of the magma ocean was primarily controlled by the rate at which heat could be conducted across the floating ANT crust. Thus the thickness of the crust was the factor controlling the lunar solidification time. Heat arising from enthalpy of crystallization was transported in the magma by convection. Mixing length theory is used to deduce the principal flow velocity (typically several cm/s) during convection. The magma ocean is deduced to have been turbulent down to a characteristic length scale of the order of 100 m, and to have overturned on a time scale of the order of 1 yr for most of the magma ocean epoch.

  6. Crystallization and Cooling of a Deep Silicate Magma Ocean

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Bower, D. J.

    2015-12-01

    Impact and accretion simulations of terrestrial planet formation suggest that giant impacts are both common and expected to produce extensive melting. The moon-forming impact, for example, likely melted the majority of Earth's mantle to produce a global magma ocean that subsequently cooled and crystallized (e.g. Nakajima and Stevenson, 2015). Understanding the cooling process is critical to determining magma ocean lifetimes and recognizing possible remnant signatures of the magma ocean in present-day mantle heterogeneities (i.e. Labrosse et al., 2007). Modeling this evolution is challenging, however, due to the vastly different timescales and lengthscales associated with turbulent convection (magma ocean) and viscous creep (present-day mantle), in addition to uncertainties in material properties and chemical partitioning. We consider a simplified spherically-symmetric (1-D) magma ocean to investigate both its evolving structure and cooling timescale. Extending the work of Abe (1993), mixing-length theory is employed to determine convective heat transport, producing a high resolution model that captures the ultra-thin boundary layer (few cms) at the surface of the magma ocean. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting (important for multi-component systems). We derive a new high P-T equation of state (EOS) formulation designed to capture the energetics and physical properties of the partially molten system using parameters that are readily interpreted in the context of magma ocean crystallization. This model is used to determine the cooling timescale for a variety of plausible thermodynamic models, with special emphasis on comparing the center-outwards vs bottom-up cooling scenarios that arise from the assumed EOS (e.g., Mosenfelder et al., 2009; Stixrude et al., 2009).

  7. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  8. Thermal diffusion of the lunar magma ocean and the formation of the lunar crust

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wang, S.

    2010-12-01

    The magma ocean hypothesis is consistent with several lines of evidence including planet formation, core-mantle differentiation and geochemical observations, and it is proved as an inevitable stage in the early evolution of planets. The magma ocean is assumed to be homogeneous in previous models during solidification or crystallization[1]. Based on the recent advance and our new data in experimental igneous petrology[2], we question this assumption and propose that an gabbrotic melt, from which the anorthositic lunar crust crystallized, can be produced by thermal diffusion, rather than by magma fractionation. This novel model can provide explanations for the absence of the advection in lunar magma ocean[3] and the old age of the anorthositic lunar crust[4-5]. 1. Solomatov, V., Magma Oceans and Primordial Mantle Differentiation, in Treatise on Geophysics, S. Gerald, Editor. 2007, Elsevier: Amsterdam. p. 91-119. 2. Huang, F., et al., Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009. 73(3): p. 729-749. 3. Turcotte, D.L. and L.H. Kellogg, Implications of isotope data for the origin of the Moon, in Origin of the Moon, W.K. Hartmann, R.J. Phillips, and G.J. Taylor, Editors. 1986, Lunar and Planet. Inst.: Houston, TX. p. 311-329. 4. Alibert, C., M.D. Norman, and M.T. McCulloch, An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica Et Cosmochimica Acta, 1994. 58(13): p. 2921-2926. 5. Touboul, M., et al., Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009. 199(2): p. 245-249.

  9. The magma ocean as an impediment to lunar plate tectonics

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  10. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  11. Eutectic propeties of primitive Earth's magma ocean

    NASA Astrophysics Data System (ADS)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  12. On the Role of Mantle Overturn during Magma Ocean Solidification

    NASA Astrophysics Data System (ADS)

    Boukaré, C. E.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Solidification of potential global magma ocean(s) (MO) early in the history of terrestrial planets may play a key role in the evolution of planetary interiors by setting initial conditions for their long-term evolution. Constraining this initial structure of solid mantles is thus crucial but remains poorly understood. MO fractional crystallization has been proposed to generate gravitationally unstable Fe-Mg chemical stratification capable of driving solid-state mantle overturn. Fractional solidification and overturn hypothesis, while only an ideal limiting case, can explain important geochemical features of both the Moon and Mars. Current overturn models consider generally post-MO overturn where the cumulate pile remains immobile until the end of MO solidification. However, if the cumulate pile overturns during MO solidification, the general picture of early planet evolution might differ significantly from the static crystallization models. We show that the timing of mantle overturn can be characterized with a dimensionless number measuring the ratio of the MO solidification time and the purely compositional overturn timescale. Syn-solidification overturn occurs if this dimensionless parameter, Rc, exceeds a critical value. Rc is mostly affected by the competition between the MO solidification time and mantle viscosity. Overturn that occurs during solidification can result in smaller scales of mantle chemical heterogeneity that could persist for long times thus influencing the whole evolution of a planetary body. We will discuss the effects of compaction/percolation on mantle viscosity. If partially molten cumulate do not have time to compact during MO solidification, viscosity of cumulates would be significantly lower as the interstitcial melt fraction would be large. Both solid mantle remelting during syn-solidification overturn and porous convection of melt retained with the cumulates are expected to reduce the degree of fractional crystallization. Syn

  13. A magma ocean and the Earth's internal water budget

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  14. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  15. Terrestrial magma ocean and core segregation in the earth

    NASA Technical Reports Server (NTRS)

    Ohtani, Eiji; Yurimoto, Naoyoshi

    1992-01-01

    According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower

  16. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.; Mittlefehldt, D. W.

    2017-07-01

    Initially small liquid metal drops must grow to about 10 cm in size before sinking through the convecting silicate magma ocean to form a core. The required magma temperature is consistent with moderately siderophile element abundances in eucrites.

  17. An 'outrageous hypothesis' for Mars - Episodic oceans

    NASA Astrophysics Data System (ADS)

    Kerr, R. A.

    1993-02-01

    The conventional view of Mars is that, during the past 3 billion years, the atmosphere has been so thin and cold that the planet's water has remained locked up underground as ice. However, Baker et al. (1991) proposed a radically different and far-reaching alternative: a Mars that is periodically shrouded in an earthlike atmosphere, with a temporary ocean and massive ice sheets. This hypothesis was proposed in order to explain the assortment of surface features sent back by the Viking spacecraft in 1970, such as huge channels, apparent ocean shorelines, and possible glacial landforms. To support this hypothesis, Baker and his coworkers invoked a spate of catastrophic floods, all cutting their channels at the same geological moment due a great outburst of Mars's volcanic activity which could have melted some subsurface ice and belched out CO2. This gas, together with some additional CO2 released as the water interacted with the surface, caused a strong greenhouse warming, causing melting of underground ice and the formation of an ocean.

  18. Zinc and volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  19. The Role of Magma During Continent-Ocean Transition

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Rooney, Tyrone; Kendall, J.-Michael

    2010-05-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). These margins are no longer tectonically active so the roles of faulting, stretching and magma intrusion in accommodating extension, and timing of SDRs emplacement during rift evolution have to be inferred from rifting models or from the geological record preserved at the fully developed passive margin. Similarly mantle processes during COT development have long since ceased, so whether breakup was characterized by broad thermal upwelling, small-scale convection or a fertile geoscientific mantle remains ambiguous. The East African rift in Ethiopia offers a unique opportunity to address all these problems because south-to-north it exposes subaerially the transition from continental rifting and incipient sea-floor spreading within a young flood basalt province. Here we present a suite of geophysical and geochemical observations from Ethiopia that document the significance of magma intrusion and extrusion as rifting evolves from an initially broad zone of stretching and faulting to a narrower axial graben in which magma injection dominates strain.

  20. Interpretation of Ferroan Anorthosite Ages and Implications for the Lunar Magma Ocean

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Draper, D. S.

    2017-01-01

    Ferroan Anorthosites (FANs) are considered to have purportedly crystallized directly from the lunar magma ocean (LMO) as a flotation crust. LMO modeling suggests that such anorthosites started to form only after greater than 70 percent of the LMO had crystallized. Recent age dates for FANs have questioned this hypothesis as they span too large of an age range. This means a younger age for the Moon-forming giant impact or the LMO hypothesis is flawed. However, FANs are notoriously difficult to age-date using the isochron method. We have proposed a mechanism for testing the LMO hypothesis through using plagioclase trace element abundances to calculate equilibrium liquids and compare them with LMO crystallization models. We now examine the petrography of the samples that have Sm-Nd (Samarium-Neodymium) age dates (Rb-Sr (Rubidium-Strontium) isotopic systematics may have been disturbed) and propose a relative way to age date FANs.

  1. Advancing dynamic and thermodynamic modelling of magma oceans

    NASA Astrophysics Data System (ADS)

    Bower, Dan; Wolf, Aaron; Sanan, Patrick; Tackley, Paul

    2017-04-01

    The techniques for modelling low melt-fraction dynamics in planetary interiors are well-established by supplementing the Stokes equations with Darcy's Law. But modelling high-melt fraction phenomena, relevant to the earliest phase of magma ocean cooling, necessitates parameterisations to capture the dynamics of turbulent flow that are otherwise unresolvable in numerical models. Furthermore, it requires knowledge about the material properties of both solid and melt mantle phases, the latter of which are poorly described by typical equations of state. To address these challenges, we present (1) a new interior evolution model that, in a single formulation, captures both solid and melt dynamics and hence charts the complete cooling trajectory of a planetary mantle, and (2) a physical and intuitive extension of a "Hard Sphere" liquid equation of state (EOS) to describe silicate melt properties for the pressure-temperature (P-T) range of Earth's mantle. Together, these two advancements provide a comprehensive and versatile modelling framework for probing the far-reaching consequences of magma ocean cooling and crystallisation for Earth and other rocky planets. The interior evolution model accounts for heat transfer by conduction, convection, latent heat, and gravitational separation. It uses the finite volume method to ensure energy conservation at each time-step and accesses advanced time integration algorithms by interfacing with PETSc. This ensures it accurately and efficiently computes the dynamics throughout the magma ocean, including within the ultra-thin thermal boundary layers (< 2 cm thickness) at the core-mantle boundary and surface. PETSc also enables our code to support a parallel implementation and quad-precision calculations for future modelling capabilities. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval

  2. A Reassessment of the Mars Ocean Hypothesis

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    2004-01-01

    Initial work on the identification and mapping of potential ancient shorelines on Mars was based on Viking Orbiter image data (Parker et al., 1987, 1989, 1993). The Viking Orbiters were designed to locate landing site for the two landers and were not specifically intended to map the entire planet. Fortunately, they mapped the entire planet. Unfortunately, they did so at an average resolution of greater than 200m/pixel. Higher resolution images, even mosaics of interesting regions, are available, but relatively sparse. Mapping of shorelines on Earth requires both high-resolution aerial photos or satellite images and good topographic information. Three significant sources of additional data from missions subsequent to Viking are useful for reassessing the ocean hypothesis. These are: MGS MOC images; MGS MOLA topography; Odyssey THEMIS IR and VIS images; and MER surface geology at Meridiani and Gusev. Okay, my mistake: Four.

  3. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    NASA Technical Reports Server (NTRS)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  4. Volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2018-01-01

    Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon forming Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼+1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc 'consanguinity' following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid

  5. Top-down solidification of lunar magma ocean

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Zhang, M.; Xu, Y.

    2017-12-01

    The early Moon was wholly or mostly molten, known as Lunar Magma Ocean (LMO) [1]. Most models suggest that the solidification of the LMO is bottom-up crystallization, because the liquidus temperature of the LMO increases with pressure more quickly than the adiabatic temperature [2]. In addition, the quenched lid is simply assumed to founder into the LMO [3, 4], because this solid lid is denser than the magma ocean liquids. Therefore, the dominated model for the solidification of the LMO is: olivine and pyroxene crystallized first at the base of the LMO and form the Moon's mantle; after ˜80% of the LMO had solidified, plagioclase began to crystallize and floated from dense silicate melt to the surface to form a global crust of anorthosite [5]. However, as the observational data on lunar meteorites accumulated, the standard model received challenges [6, 7]. Here we propose a new model suggesting the solidification of the LMO is top-down. Our model considers that olivine, pyroxene and plagioclase would crystalize at the mush region between the initially quenched lid and the interior of the LMO at the initial stage. Then the crystallized plagioclase floated and collected at the Moon's surface to form a stable anorthosite-crust; while the crystallized olivine and pyroxene would descend into the LMO and completely remelt away because the LMO interior is super-liquidus [2]. The overall result of our model is that plagioclase existed stably prior to olivine and pyroxene, rather than it crystallized after ˜80% LMO solidification. So, the model here is fundamentally different from previous models [5]. The plagioclase can crystallize from the very beginning to the end of the LMO, that is consistent with the ancient anorthosite age and long anorthosite-crystallization span which is over 200 Myr [6]. Importantly, our model can explain the coexistence of ferroan and magnesian anorthosite [7]. In addition, it is also understandable that the whole lunar mantle is depleted in Eu

  6. Are Ferroan Anorthosites Direct Products of the Lunar Magma Ocean?

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Draper, D. S.

    2016-01-01

    According to Lunar Magma Ocean (LMO) theory, lunar samples that fall into the ferroan anorthosite (FAN) category represent the only samples we have of of the primordial crust of the Moon. Modeling indicates that plagioclase crystallizes after >70% LMO crystallization and formed a flotation crust, depending upon starting composition. The FAN group of highlands materials has been subdivided into mafic-magnesian, mafic-ferroan, anorthositic- sodic, and anorthositic-ferroan, although it is not clear how these subgroups are related. Recent radiogenic isotope work has suggested the range in FAN ages and isotopic systematics are inconsistent with formation of all FANs from the LMO. While an insulating lid could have theoretically extend the life of the LMO to explain the range of the published ages, are the FAN compositions consistent with crystallization from the LMO? As part of a funded Emerging Worlds proposal (NNX15AH76G), we examine this question through analysis of FAN samples. We compare the results with various LMO crystallization models, including those that incorporate the influence of garnet.

  7. Timing of mantle overturn during magma ocean solidification

    NASA Astrophysics Data System (ADS)

    Boukaré, C.-E.; Parmentier, E. M.; Parman, S. W.

    2018-06-01

    Solidification of magma oceans (MOs) formed early in the evolution of planetary bodies sets the initial condition for their evolution on much longer time scales. Ideal fractional crystallization would generate an unstable chemical stratification that subsequently overturns to form a stably stratified mantle. The simplest model of overturn assumes that cumulates remain immobile until the end of MO solidification. However, overturning of cumulates and thermal convection during solidification may act to reduce this stratification and introduce chemical heterogeneity on scales smaller than the MO thickness. We explore overturning of cumulates before the end of MO crystallization and the possible consequences for mantle structure and composition. In this model, increasingly dense iron-rich layers, crystallized from the overlying residual liquid MO, are deposited on a thickening cumulate layer. Overturn during solidification occurs if the dimensionless parameter, Rc, measuring the ratio of the MO time of crystallization τMO to the timescale associated with compositional overturn τov = μ / ΔρgH exceeds a threshold value. If overturn did not occur until after solidification, this implies that the viscosity of the solidified mantle must have been sufficiently high (possibly requiring efficient melt extraction from the cumulate) for a given rate of solidification. For the lunar MO, possible implications for the generation of the Mg-suites and mare basalt are suggested.

  8. Crystallization of a compositionally stratified basal magma ocean

    NASA Astrophysics Data System (ADS)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  9. Iron Partitioning in Ferropericlase and Consequences for the Magma Ocean.

    NASA Astrophysics Data System (ADS)

    Braithwaite, J. W. H.; Stixrude, L. P.; Holmstrom, E.; Pinilla, C.

    2016-12-01

    The relative buoyancy of crystals and liquid is likely to exert a strong influence on the thermal and chemical evolution of the magma ocean. Theory indicates that liquids approach, but do not exceed the density of iso-chemical crystals in the deep mantle. The partitioning of heavy elements, such as Fe, is therefore likely to control whether crystals sink or float. While some experimental results exist, our knowledge of silicate liquid-crystal element partitioning is still limited in the deep mantle. We have developed a method for computing the Mg-Fe partitioning of Fe in such systems. We have focused initially on ferropericlase, as a relatively simple system where the buoyancy effects of Fe partitioning are likely to be large. The method is based on molecular dynamics driven by density functional theory (spin polarized, PBEsol+U). We compute the free energy of Mg for Fe substitution in simulations of liquid and B1 crystalline phases via adiabatic switching. We investigate the dependence of partitioning on pressure, temperature, and iron concentration. We find that the liquid is denser than the coexisting crystalline phase at all conditions studies. We also find that the high-spin to low-spin transition in the crystal and the liquid, have an important influence on partitioning behavior.

  10. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  11. Ferric Iron Production in Magma Oceans and Evolution of Mantle Oxidation State

    NASA Astrophysics Data System (ADS)

    Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.

    2018-05-01

    Self-oxidation of the magma ocean by ferric iron production at high pressure may explain the mantle oxidation state of the Earth. Partitioning during fractional crystallization can further increase the mantle oxygen fugacity during solidification.

  12. Evolution of a terrestrial magma ocean: Thermodynamics, kinetics, rheology, convection, differentiation

    NASA Technical Reports Server (NTRS)

    Solomatov, V. S.; Stevenson, D. J.

    1992-01-01

    The evolution of an initially totally molten magma ocean is constrained on the basis of analysis of various physical problems in the magma ocean. First of all an equilibrium thermodynamics of the magma ocean is developed in the melting temperature range. The equilibrium thermodynamical parameters are found as functions only of temperature and pressure and are used in the subsequent models of kinetics and convection. Kinematic processes determine the crystal size and also determine a non-equilibrium thermodynamics of the system. Rheology controls all dynamical regimes of the magma ocean. The thermal convection models for different rheological laws are developed for both the laminar convection and for turbulent convection in the case of equilibrium thermodynamics of the multiphase system. The evolution is estimated on the basis of all the above analysis.

  13. A basal magma ocean dynamo to explain the early lunar magnetic field

    NASA Astrophysics Data System (ADS)

    Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.

    2018-06-01

    The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.

  14. The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.

    2015-11-01

    Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.

  15. Lunar Magma Ocean Bedrock Anorthosites Detected at Orientale Basin by M3

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Boardman, J. W.; Burratti, B.; Cheek, L.; Clark, R. N.; Combe, J.; Green, R. O.; Head, J. W.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G. Y.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.

    2009-12-01

    The lunar crust is thought to have formed as a result of global melting of the outer parts of the Moon in its earliest history, a lunar magma ocean (LMO). Crystallization of this magma ocean set the stage for the ensuing history of the planet. Models for the formation of the lunar crust and the evolution of the LMO were derived from individual Apollo samples that could not be placed directly in the context of crustal bedrock with remote sensing data that was available. Data from modern sensors, such as the Moon Mineralogy Mapper (M3) on Chandrayaan-1, now allow such bedrock issues to be addressed. The ~930 km diameter Orientale multi-ringed impact basin in the western highlands provides an opportunity to evaluate the mineralogy of the in situ crust of the Moon in the search for LMO mineralogy and structure. Orientale is the youngest large basin on the Moon, and the basin deposits and ring structures expose progressively deeper bedrock layering that can be used to determine lunar crustal structure and test the LMO model. With its high spatial and spectral resolution, M3 data show that the ejecta of the basin is composed of mixed assemblages of processed feldspathic breccias with small amounts of low-Ca pyroxene comprising the upper kilometers-thick mega-regolith layer of the crust. Exposures in the outermost (Cordillera) ring reveal less processed examples of this material. The M3 data show that the next interior ring (Outer Rook), representing deeper material, is characterized by distinctly more crystalline blocks of impact-shocked anorthosite and noritic anorthosite. Most importantly, M3 data reveal that the mountains of the closest ring toward the basin interior (Inner Rook) consist of pure anorthosite, including outcrops of the unshocked crystalline form. This massive exposure of anorthosite across the entire mountain range provides validation for the LMO hypothesis. These mountains are believed to have originated in the upper crust below the impact fragmented

  16. Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean

    NASA Astrophysics Data System (ADS)

    Lin, Yanhao; Tronche, Elodie J.; Steenstra, Edgar S.; van Westrenen, Wim

    2017-01-01

    The Moon is thought to have been covered initially by a deep magma ocean, its gradual solidification leading to the formation of the plagioclase-rich highland crust. We performed a high-pressure, high-temperature experimental study of lunar mineralogical and geochemical evolution during magma ocean solidification that yields constraints on the presence of water in the earliest lunar interior. In the experiments, a deep layer containing both olivine and pyroxene is formed in the first ~50% of crystallization, β-quartz forms towards the end of crystallization, and the last per cent of magma remaining is extremely iron rich. In dry experiments, plagioclase appears after 68 vol.% solidification and yields a floatation crust with a thickness of ~68 km, far above the observed average of 34-43 km based on lunar gravity. The volume of plagioclase formed during crystallization is significantly less in water-bearing experiments. Using the relationship between magma water content and the resulting crustal thickness in the experiments, and considering uncertainties in initial lunar magma ocean depth, we estimate that the Moon may have contained at least 270 to 1,650 ppm water at the time of magma ocean crystallization, suggesting the Earth-Moon system was water-rich from the start.

  17. Chronological evidence that the Moon is either young or did not have a global magma ocean.

    PubMed

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W

    2011-08-17

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  18. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon

    NASA Technical Reports Server (NTRS)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.

    2009-01-01

    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  19. Chronological evidence that the Moon is either young or did not have a global magma ocean

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Boyet, Maud; Carlson, Richard W.

    2011-09-01

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotopic systems to be 4,360+/-3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  20. Onset of solid state mantle convection and mixing during magma ocean solidification

    NASA Astrophysics Data System (ADS)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  1. Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Le Corvec, Nicolas; McGovern, Patrick

    2015-04-01

    Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of Galgana et al. (2011) and McGovern and Solomon (1993), respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic

  2. Contraction or expansion of the Moon's crust during magma ocean freezing?

    PubMed Central

    Elkins-Tanton, Linda T.; Bercovici, David

    2014-01-01

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. PMID:25114310

  3. Contraction or expansion of the Moon's crust during magma ocean freezing?

    PubMed

    Elkins-Tanton, Linda T; Bercovici, David

    2014-09-13

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon

    PubMed Central

    KARATO, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon. PMID:24621956

  5. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    PubMed

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  6. Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?

    NASA Astrophysics Data System (ADS)

    Plesa, A.-C.; Tosi, N.; Breuer, D.

    2014-10-01

    The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong

  7. Workshop on the Physics and Chemistry of Magma Oceans from 1 Bar to 4 Mbar

    NASA Technical Reports Server (NTRS)

    Agee, Carl B. (Editor); Longhi, John (Editor)

    1992-01-01

    Evidence for the existence of magma oceans is discussed in great detail, and among the many new items introduced were high-pressure phase equilibrium experiments, calculations of depth of impact-produced melting, models incorporating crystal growth rates with degree of crystallinity and convection, and models of hard turbulent convection. It was agreed that before we can point to some present-day observable parameters and confidently establish the existence of magma oceans, we must learn much more about their phase equilibria and solidification dynamics.

  8. Evidence of a global magma ocean in Io's interior.

    PubMed

    Khurana, Krishan K; Jia, Xianzhe; Kivelson, Margaret G; Nimmo, Francis; Schubert, Gerald; Russell, Christopher T

    2011-06-03

    Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

  9. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply.

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2015-10-16

    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth. Copyright © 2015, American Association for the Advancement of Science.

  10. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  11. Numerical Simulations of Melting-Crystallisation Processes at the Boundaries Between Magma Oceans and Solid Mantle

    NASA Astrophysics Data System (ADS)

    Bolrão, D. P.; Rozel, A.; Morison, A.; Labrosse, S.; Tackley, P. J.

    2017-12-01

    The idea that the Earth had a global magma ocean, mostly created by impacts, core formation, radiogenic and tidal heating, is well accepted nowadays. When this ocean starts to crystallise, if the melt is denser than the solid, a basal magma ocean is created below the solid part. These two magma oceans influence the dynamics and evolution of solid mantle. Near the boundaries, the vertical flow in the solid part creates a topography. If this topography is destroyed by melting/crystallisation processes in a time scale much shorter than the time needed to adjust the topography by viscous relaxation, then matter can cross the boundary. In this case, the boundary is said to be permeable. On the other hand, if this time is longer, matter cannot cross and the boundary is said impermeable. This permeability is defined by a non-dimensional phase change number, φ, introduced by Deguen, 2013. This φ is the ratio of the two timescales mentioned, and defines a permeable boundary when φ « 1, and an impermeable one when φ » 1. To understand the impact of magma oceans on the dynamics of the solid mantle, we use the convection code StagYY, with a 2D spherical annulus geometry, to compute the convection of the solid part. Our results show different convection behaviours depending on the type of boundary chosen. For the permeable case, we investigate the thermo-compositional evolution of the solid domain, explicitly taking into account the compositional evolution of the magma oceans. Reference: Deguen, R. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries. Journal of Earth Science, Vol. 24, No. 5, p. 669-682, 2013. doi: 10.1007/s12583-013-0364-8

  12. Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; McGovern, P. J., Jr.

    2014-12-01

    Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of [Galgana et al., 2011] and [McGovern and Solomon, 1993], respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic

  13. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we

  14. Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core

    NASA Astrophysics Data System (ADS)

    Kendall, Jordan D.; Melosh, H. J.

    2016-08-01

    The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.

  15. Some constraints on the thermal history of the lunar magma ocean

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Drake, M. J.; Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    If the accumulating evidence is accepted that the outer portion of the moon was molten for 100-200 million years, it is clear that a permanent insulating surface layer existed over nearly all of that epoch. Considerations of crustal stability against break-up and foundering lead to the view that this insulating blanket must have been an early-forming plagioclase-rich layer light enough to float on the hot magma. It is found that radiometric age-dating evidence implies a fairly specific history for the solidification of the lunar magma ocean. The possibility is anticipated that geochronological and petrological constraints will be sufficient to narrow the range of allowed geophysical and geochemical models. It is hoped that such a study will make it possible to deduce the original depth, and hence, the composition of the lunar magma ocean. If the moon accreted homogeneously, the composition of the magma ocean will also be that of the whole moon, and hence such models should allow estimation of the bulk lunar composition.

  16. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  17. Redox Evolution in Magma Oceans Due to Ferric/Ferrous Iron Partitioning

    NASA Astrophysics Data System (ADS)

    Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.

    2017-12-01

    A long-standing puzzle in the evolution of the Earth is that while the present day upper mantle has an oxygen fugacity close to the QFM buffer, core formation during accretion would have occurred at much lower oxygen fugacities close to IW. We present a new model based on experimental evidence that normal solidification and differentiation processes in the terrestrial magma ocean may explain both core formation and the current oxygen fugacity of the mantle without resorting to a change in source material or process. A commonly made assumption is that ferric iron (Fe3+) is negligible at such low oxygen fugacities [1]. However, recent work on Fe3+/Fe2+ ratios in molten silicates [2-4] suggests that the Fe3+ content should increase at high pressure for a given oxygen fugacity. While disproportionation was not observed in these experiments, it may nonetheless be occurring in the melt at high pressure [5]. Therefore, there may be non-negligible amounts of Fe3+ formed through metal-silicate equilibration at high pressures within the magma ocean. Homogenization of the mantle and further partitioning of Fe2+/Fe3+ as the magma ocean crystallizes may explain the oxygen fugacity of the Earth's mantle without requiring additional oxidation mechanisms. We present here models using different parameterizations for the Fe2+/Fe3+ thermodynamic relationships in silicate melts to constrain the evolution of the redox state of the magma ocean as it crystallizes. The model begins with metal-silicate partitioning at high pressure to form the core and set the initial Fe3+ abundance. Combined with previous work on oxygen absorption by magma oceans due to escape of H from H2O [6], we show that the upper layers of solidifying magma oceans should be more oxidized than the lower mantle. This model also suggests that large terrestrial planets should have more oxidized mantles than small planets. From a redox perspective, no change in the composition of the Earth's accreting material needs to be

  18. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    NASA Technical Reports Server (NTRS)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  19. The Lunar Magma Ocean: Sharpening the Focus on Process and Composition

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2014-01-01

    The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].

  20. Crystal settling and crystal growth caused by Ostwald Ripening in a terrestrial magma ocean under rotation

    NASA Astrophysics Data System (ADS)

    Maas, C.; Moeller, A.; Hansen, U.

    2013-12-01

    About 4.5 billion years ago the earth was covered by a heavily convecting and rotating global magma ocean which was caused by an impact of a mars-sized impactor in a later stage of the earth's accretion. After the separation of metal and silicate (see A. Möller, U. Hansen (2013)) and the formation of the earth's core it began to crystallize. Small silicate crystals emerge and grow by Ostwald Ripening when the fluid is supersaturated. This process results in shrinking of small crystals and growing of large crystals on behalf of the smaller ones. This leads to an altering of the crystal settling time. One question which is still under great debate is whether fractional or equilibrium crystallization occurred in the magma ocean. Fractional crystallization means that different mineral fractions settle one after the other which would lead to a strongly differentiated mantle after solidification of the magma ocean. In contrast to that equilibrium crystallization would result in a well mixed mantle. Whether fractional or equilibrium crystallization occurred is for example important for the starting model of plate tectonics or the understanding of the mantle development until today. To study the change of crystal radius in a convecting and rotating magma ocean we employed a 3D numerical model. Due to the low viscosity and strong rotation the influence of rotation on the early magma Ocean cannot be neglected. In the model the crystals are able to influence each other and the fluid flow. They are able to grow, shrink, vanish and form and gravitational, Coriolis and drag forces due to the fluid act on them. In our present work we study the crystal settling depending on different rotation rates and rotation axes with two configurations. For the polar setting the rotation axis is parallel, at the equator it is perpendicular to gravity. Low rotation at the pole leads to a large fraction of suspended crystals. With increasing rotation the crystals settle and form a thick layer

  1. Silicate Melts of the Protolunar Disk and the Formation of the Magma Ocean from AB Initio Simulations

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Stewart, S. T.

    2018-05-01

    We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the evolution of the molten protolunar disk from its formation all the way to the crystallization of the magma ocean.

  2. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  3. Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars.

    PubMed

    Debaille, V; Brandon, A D; Yin, Q Z; Jacobsen, B

    2007-11-22

    Resolving early silicate differentiation timescales is crucial for understanding the chemical evolution and thermal histories of terrestrial planets. Planetary-scale magma oceans are thought to have formed during early stages of differentiation, but the longevity of such magma oceans is poorly constrained. In Mars, the absence of vigorous convection and plate tectonics has limited the scale of compositional mixing within its interior, thus preserving the early stages of planetary differentiation. The SNC (Shergotty-Nakhla-Chassigny) meteorites from Mars retain 'memory' of these events. Here we apply the short-lived 146Sm-142Nd and the long-lived 147Sm-143Nd chronometers to a suite of shergottites to unravel the history of early silicate differentiation in Mars. Our data are best explained by progressive crystallization of a magma ocean with a duration of approximately 100 million years after core formation. This prolonged solidification requires the existence of a primitive thick atmosphere on Mars that reduces the cooling rate of the interior.

  4. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    PubMed

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model

    PubMed Central

    Russell, Sara S.; Joy, Katherine H.; Jeffries, Teresa E.; Consolmagno, Guy J.; Kearsley, Anton

    2014-01-01

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. PMID:25114312

  6. A Computational Approach to Modeling Magma Ocean Evolution in 2-D and 3-D

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Louro Lourenço, D. J.; Fomin, I.

    2017-12-01

    Models of magma ocean evolution have typically been performed in 1-D (e.g. Abe, PEPI 1997; Solomatov and Stevenson, JGR 1993; Elkins-Tanton EPSL 2008). However, 1-D models may miss important aspects of the process, in particular the possible development of solid-state convection before the magma ocean has completely crystallised, and possible large-scale overturn driven by thermal and/or compositional gradients. On the other hand, fully resolving magma ocean evolution in 2-D or 3-D would be extremely challenging due to the small time-scales and length-scales associated with turbulent convection in the magma and the extreme viscosity contrast between regions of high melt fraction and regions of low melt fraction, which are separated by a rheological threshold associated with the solid forming an interconnected matrix. Here, an intermediate approach to treat these has been implemented within the framework of the mantle convection code StagYY (Tackley, PEPI 2008). The basic approach is to resolve processes that occur in the mostly solid state (i.e. below the rheological threshold) while parameterising processes that occur in the mostly liquid state, based largely on the works of Y. Abe. Thus, turbulent convection in magma-rich regions is treated using an effective thermal conductivity based on mixing-length theory, and segregation of solid and liquid is treated using Darcy's law for low melt fractions or crystal settling (offset by vigorous convection) for high melt fractions. At the outer surface a combined radiative-conductive heat balance is implemented, including the temperature drop over a very thin ( cm) thermal boundary layer and reduction of radiative heat loss by an atmosphere. Key to the whole process is petrology: the coexisting compositions of magma and solid under various conditions including possible fractionation, and for this different approaches have been parameterised ranging from a simple basalt-harzburgite parameterisation to a bi-eutectic lower

  7. A computational approach to modelling magma ocean evolution in 2-D and 3-D

    NASA Astrophysics Data System (ADS)

    Tackley, Paul; Lourenco, Diogo; Fomin, Ilya

    2017-04-01

    Models of magma ocean evolution have typically been performed in 1-D (e.g. Abe, PEPI 1997; Solomatov and Stevenson, JGR 1993; Elkins-Tanton EPSL 2008). However, 1-D models may miss important aspects of the process, in particular the possible development of solid-state convection before the magma ocean has completely crystallised, and possible large-scale overturn driven by thermal and/or compositional gradients. On the other hand, fully resolving magma ocean evolution in 2-D or 3-D would be extremely challenging due to the small time-scales and length-scales associated with turbulent convection in the magma and the extreme viscosity contrast between regions of high melt fraction and regions of low melt fraction, which are separated by a rheological threshold associated with the solid forming an interconnected matrix. Here, an intermediate approach to treat these has been implemented within the framework of the mantle convection code StagYY (Tackley, PEPI 2008). The basic approach is to resolve processes that occur in the mostly solid state (i.e. below the rheological threshold) while parameterising processes that occur in the mostly liquid state, based largely on the works of Y. Abe. Thus, turbulent convection in magma-rich regions is treated using an effective thermal conductivity based on mixing-length theory, and segregation of solid and liquid is treated using Darcy's law for low melt fractions or crystal settling (offset by vigorous convection) for high melt fractions. At the outer surface a combined radiative-conductive heat balance is implemented, including the temperature drop over a very thin ( cm) thermal boundary layer and reduction of radiative heat loss by an atmosphere. Key to the whole process is petrology: the coexisting compositions of magma and solid under various conditions including possible fractionation, and for this different approaches have been parameterised ranging from a simple basalt-harzburgite parameterisation to a bi-eutectic lower

  8. Effect of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Hansen, Ulrich; Maas, Christian

    2017-04-01

    About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120

  9. Constraining the Depth of the Martian Magma Ocean during Core Formation using Element Partitioning

    NASA Astrophysics Data System (ADS)

    Wijbrans, Ineke; Tronche, Elodie; van Westrenen, Wim

    2010-05-01

    The depth of a planetary magma ocean places first order constraints on the thermal state of a young planet. For the Earth, the depth of the magma ocean is mostly constrained by the pressure-temperature conditions at which Fe-rich metal last equilibrated with the bulk silicate Earth (BSE). These equilibration conditions are thought to correspond to the conditions at the terrestrial magma ocean floor, as this is where the metal ponds before sinking to the core. This depth is estimated by combining the BSE contents of siderophile (iron-loving) elements with metal-silicate partition coefficients (D) at high temperatures and pressures [e.g. 1]. The extent and depth of a magma ocean on Mars are hotly debated. In the case of Mars, the sulphur content of the core is significantly higher than for Earth (10-16 wt% sulphur [2]). The presence of sulphur has been shown to have an effect on the metal-silicate partitioning of some siderophile elements [3], but the current data set is insufficient to be of use for direct application to Martian conditions. We have started an experimental programme to constrain siderophile element partition coefficients for Ni and Co between metal and silicate as a function of temperature, pressure and sulphur content in the metal-alloy. For the silicate composition we used a newly proposed bulk silicate Mars (BSM) [4]. We chose the above-mentioned siderophile elements because their BSM concentrations are reasonably known from studies of Martian meteorites. Our aim is to derive new constraints on the depth of the Martian magma ocean and the chemistry accompanying Martian core formation. Experimental methods: The starting material consisted of a 1:1 mixture of silicate glass + quench crystals in the FeO-CaO-MgO-Al2O3-SiO2 (FCMAS) system with a composition based on [4], and metal consisting of FeS, Fe, Ni, Co, FeP3. Four different metal compositions were used with sulphur contents of 0, 5, 15 and 25wt% respectively. Experiments were made in an end

  10. Duration of a Magma Ocean and Subsequent Mantle Overturn in Mars: Evidence from Nakhlites

    NASA Technical Reports Server (NTRS)

    Debaille, V.; Brandon, A. D.; Yin, Q.-Z.; Jacobsen, B.

    2008-01-01

    It is now generally accepted that the heat produced by accretion, short-lived radioactive elements such as Al-26, and gravitational energy from core formation was sufficient to at least partially melt the silicate portions of terrestrial planets resulting in a global-scale magma ocean. More particularly, in Mars, the geochemical signatures displayed by shergottites, are likely inherited from the crystallization of this magma ocean. Using the short-lived chronometer Sm-146 - Nd-142 (t(sup 1/2) = 103 Myr), the duration of the Martian magma ocean (MMO) has been evaluated to being less than 40 Myr, while recent and more precise ND-142/ND-144 data were used to evaluate the longevity of the MMO to approximately 100 Myr after the solar system formation. In addition, it has been proposed that the end of the crystallization of the MMO may have triggered a mantle overturn, as a result of a density gradient in the cumulate layers crystallized at different levels. Dating the mantle overturn could hence provide additional constraint on the duration of the MMO. Among SNC meteorites, nakhlites are characterized by high epsilon W-182 of approximately +3 and an epsilon Nd-142 similar to depleted shergottites of +0.6-0.9. It has hence been proposed that the source of nakhlites was established very early in Mars history (approximately 8-10 Myr). However, the times recorded in HF-182-W-182 isotope system, i.e. when 182Hf became effectively extinct (approximately 50 Myr after solar system formation) are less than closure times recorded in the Sm-146-Nd-142 isotope system (with a full coverage of approximately 500 Myr after solar system formation). This could result in decoupling between the present-day measured epsilon W-182 and epsilon Nd-142 as the SM-146 may have recorded later differentiation events in epsilon ND-142 not observed in epsilon W-182 values. With these potential complexities in short-lived chronological data for SNC's in mind, new Hf-176/Hf-177, Nd-143/Nd-144 and Nd

  11. Viscosity and Structure of a Late Lunar Magma Ocean Liquid: Implications for the Purity of Ferroan Anorthosites and the Dynamics of a Crystallizing Magma Ocean

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Lin, J. F.; Marshall, E. W., IV; Kono, Y.; Gardner, J. E.

    2016-12-01

    The current paradigm argues the Moon formed after a giant impact that produced a deep lunar magma ocean (LMO). After a period of turbulent convection, the LMO experienced fractional crystallization, causing the initially peridotitic liquid to evolve to a plagioclase-saturated ferrobasalt. The lunar crust, much of which comprises 93-98% pure anorthosite [1,2], formed by flotation of positively buoyant plagioclase on the residual liquid. A flotation crust would contain some trapped melt; compaction of the melt out of the crust before solidification may be necessary to generate a very pure anorthitic crust. The efficiency of this process depends on the previously unmeasured viscosity of the residual liquid [3]. To characterize the viscosity and thermal equation of state of a late LMO liquid, we conducted experiments at the Advanced Photon Source, Beamline 16-BM-B, Argonne National Laboratory on a nominally anhydrous Ti-rich ferrobasalt [4]. X-ray radiography and diffuse scattering experiments were conducted in a Paris-Edinburgh apparatus in graphite-lined BN capsules, allowing in-situ observation of viscosity and derivation of thermal EoS at P-T conditions relevant to the Moon (1300-1600°C, 0.1-4.4GPa). We calculated viscosities of 0.23-1.45 Pa·s for the melt; based on 11 observations, we find that viscosity is pressure insensitive under the conditions explored. Viscosity can be modeled by an Arrhenius relation with an activation enthalpy of 66 kJ/mol. Composition-dependent predictive models [5] overestimate our observations by roughly a factor of 2. Preliminary analysis suggests no pressure-dependent structural transition over the conditions explored. Late LMO liquids brought to the lunar core-mantle boundary by cumulate mantle overturn may be positively buoyant, implying the seismically attenuating layer around the lunar core contains a denser, higher-Ti melt. Our results suggest that efficient phase segregation in the lunar magma ocean and compaction in the

  12. Differentiation of magma oceans and the thickness of the depleted layer on Venus

    NASA Technical Reports Server (NTRS)

    Solomatov, V. S.; Stevenson, D. J.

    1993-01-01

    Various arguments suggest that Venus probably has no asthenosphere, and it is likely that beneath the crust there is a highly depleted and highly viscous mantle layer which was probably formed in the early history of the planet when it was partially or completely molten. Models of crystallization of magma oceans suggest that just after crystallization of a hypothetical magma ocean, the internal structure of Venus consists of a crust up to about 70 km thickness, a depleted layer up to about 500 km, and an enriched lower layer which probably consists of an undepleted 'lower mantle' and heavy enriched accumulates near the core-mantle boundary. Partial or even complete melting of Venus due to large impacts during the formation period eventually results in differentiation. However, the final result of such a differentiation can vary from a completely differentiated mantle to an almost completely preserved homogeneous mantle depending on competition between convection and differentiation: between low viscosity ('liquid') convection and crystal settling at small crystal fractions, or between high viscosity ('solid') convection and percolation at large crystal fractions.

  13. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel

    2016-04-01

    Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.

  14. Cooling of the magma ocean due to accretional disruption of the surface insulating layer

    NASA Technical Reports Server (NTRS)

    Sasaki, Sho

    1992-01-01

    Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.

  15. Moonage Daydream: Reassessing the Simple Model for Lunar Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2016-01-01

    Details of the differentiation of a global-scale lunar magma ocean (LMO) remain enigmatic, as the Moon is not simply composed of highlands anorthosite and a suite of mare basalts as inferred from early studies. Results from recent orbital missions, and the increasingly detailed study of lunar samples, have revealed a much larger range of lithologies, from relatively MgO-rich and "purest anorthosite" discovered on the lunar far side by the M3 instrument on Chandraayan-1 to more exotic lithologies such as Si-rich domes and spinel-rich clasts distributed globally. To understand this increasingly complex geology, we must understand the initial formation and evolution of the LMO, and the composition of the cumulates this differentiation could have produced. Several attempts at modelling such a crystallization sequence have been made, and have raised as many questions as they have answered. We present results from our ongoing experimental simulations of magma ocean crystallization, investigating two end-member bulk compositions (TWM and LPUM) under fully fractional crystallization conditions. These simulations represent melting of the entire silicate portion of the Moon, as an end-member starting point from which to begin assessing the evolution of the lunar interior and formation of the lunar crust.

  16. Emergence of two types of terrestrial planet on solidification of magma ocean.

    PubMed

    Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

    2013-05-30

    Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.

  17. Evolution of C-O-H-N volatile species in the magma ocean during core formation.

    NASA Astrophysics Data System (ADS)

    Dalou, C.; Le Losq, C.; Hirschmann, M. M.; Jacobsen, S. D.; Fueri, E.

    2017-12-01

    The composition of the Hadean atmosphere affected how life began on Earth. Magma ocean degassing of C, O, H, and N was a key influence on the composition of the Hadean atmosphere. To identify the nature of degassed C-O-H-N species, we determined their speciation in reduced basaltic glasses (in equilibrium with Fe-C-N metal alloy, synthetized at 1400 and 1600 ºC and 1.2-3 GPa) via Raman spectroscopy. We addressed the effect of oxygen fugacity (fO2) on C-O-H-N speciation between IW-2.3 and IW-0.4, representing the evolution of the shallow upper mantle fO2 during the Hadean. We observe H2, NH2, NH3, CH3, CH4, CO, N2, and OH species in all glasses. With increasing ƒO2, our results support the formation of OH groups at the expense of N-H and C-H bonds in the melt, implying the equilibria at IW-2: (1) 2OH- (melt) + ½ N2 (melt) ↔ NH2 (melt) + 2 O2- (melt) , (2) 2OH- (melt) + ½ N2 (melt) + ½ H2 (melt) ↔ NH3 (melt) + 2 O2- (melt) . With increasing fO2, eqs. (1) and (2) shift to the left. From IW-2 to IW, we also observe an increase in the intensity of the NH2 peak relative to NH3. Carbon is present as CH3, CH4, and CO in all our glasses. While CO is likely the main carbon specie under reduced conditions (e.g., Armstrong et al. 2015), CH species should remain stable from moderately (IW-0.4) to very reduced (IW-3; Ardia et al. 2014; Kadik et al. 2015, 2017) conditions in hydrous silicate glasses following the equilibria: (3) 3OH- (melt) + C (graphite) ↔ CH3 (melt) + 3O2- (melt) , (4) 4OH- (melt) + C (graphite) ↔ CH4 (melt) + 4O2- (melt) . With increasing fO2, eqs. (3) and (4) shift to the left. As metal segregation and core formation drove the ƒO2 of the magma ocean from IW-4 to IW during the Hadean (Rubie et al. 2011), the nature of species degassed by the magma ocean should have evolved during that time. The C-O-H-N species we observe dissolved in our reduced glasses may not directly correspond to those degassed (Schaeffer and Fegley, 2007), but a better

  18. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity

    SciT

    Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.

    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22more » $$+0.11\\atop{-0.19}$$to 1.45 $$+0.46\\atop{-0.82}$$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.« less

  19. Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies

    NASA Astrophysics Data System (ADS)

    Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.

    2017-12-01

    The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is <4.8km thick designated as thin crust, and 60.99% is 4.8-9.8km thick as normal crust. The remaining 18.70% is >9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.

  20. New Experimental Constraints on Crystallization Differentiation in a Deep Magma Ocean

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Ito, E.; Nakamura, E.; Tronnes, R.; Frost, D.

    2001-12-01

    Most of Earth's mass probably accreted as a consequence of numerous impacts between large bodies and proto-Earth, and a giant impact with a Mars-sized object is the most plausible explanation for a Moon forming event. 1 Physical models show that large impacts would have caused high-degrees of melting and a global magma ocean. 2 Crystallization differentiation in a deep magma ocean could impart stratification in the solidified mantle, forming large geochemical domains. To accurately model crystallization in a deep magma ocean the liquidus phase-relations of peridotite, as well as mineral/melt element partitioning, must be known at lower mantle conditions. Here, we report the results of liquidus experiments on fertile model peridotite compositions at 23 - 33 GPa. Experiments were performed in 6/8-type multi-anvil apparatus using carbide and sintered-diamond second-stage anvils with 4 and 2 mm truncations, respectively. Samples were encapsulated by either graphite or Re. High-temperatures were generated using LaCrO3 or Re furnaces, and temperatures were held from 2 to 50 minutes at 2300 - 2500 C. Run products were analyzed for major and trace elements using EPMA and SIMS. At 23 GPa the liquidus phase is majorite, followed closely down temperature by ferropericlase (Fp) and Mg-perovskite (Mg-Pv). At 24 GPa the liquidus phase has changed to Fp, followed closely by majorite and Mg-Pv. Ca-perovskite (Ca-Pv) is present only at much lower temperatures close to the solidus. At approximately 31 GPa Mg-Pv is the liquidus phase followed down-temperature by Fp then Ca-Pv. At ~ 33 GPa Ca-Pv crystallizes closer to the liquidus, within about 50 C, at a similar temperature to Fp. Thus, important phases crystallizing in a deep magma ocean are Mg-Pv, Ca-Pv and Fp. Crystallization models based on major element partitioning show that only very modest amounts of crystal separation of a Mg-Pv + Fp assemblage can be tolerated before Ca/Al, Al/Ti and Ca/Ti ratios become unrealistic for

  1. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    PubMed

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  2. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Guedel, M.

    2017-10-01

    Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with the current instrumentation. Recently, seven small planets have been discovered orbiting the ultracool dwarf TRAPPIST-1 te{Gillon16,Gillon17}. We examine the role of electromagnetic induction heating of these planets, caused by the star's rotation and the planet's orbital motion. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the three innermost planets, one of which is in the habitable zone, to either evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the four outermost planets remain mostly unaffected.

  3. Experimental Simulations of Lunar Magma Ocean Crystallization: The Plot (But Not the Crust) Thickens

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Rapp, J. F.; Elardo, S. M.; Shearer, C. K., Jr.; Neal, C. R.

    2016-01-01

    Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.

  4. Initiation of plate tectonics from post-magma ocean thermochemical convection

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.; Bercovici, David; Elkins-Tanton, Linda T.

    2014-11-01

    Leading theories for the presence of plate tectonics on Earth typically appeal to the role of present day conditions in promoting rheological weakening of the lithosphere. However, it is unknown whether the conditions of the early Earth were favorable for plate tectonics, or any form of subduction, and thus, how subduction begins is unclear. Using physical models based on grain-damage, a grainsize-feedback mechanism capable of producing plate-like mantle convection, we demonstrate that subduction was possible on the Hadean Earth (hereafter referred to as proto-subduction or proto-plate tectonics), that proto-subduction differed from modern day plate tectonics, and that it could initiate rapidly. Scaling laws for convection with grain-damage show that though either higher mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of ≈1.75 cm/yr, can still be maintained in the Hadean, even with a CO2 rich primordial atmosphere. Furthermore, when the mantle potential temperature is high (e.g., above ≈2000 K), the mode of subduction switches to a "sluggish subduction" style, where downwellings are drip like and plate boundaries are diffuse. Finally, numerical models of post-magma ocean mantle convection demonstrate that proto-plate tectonics likely initiates within ˜100 Myr of magma ocean solidification, consistent with evidence from Hadean zircons. After the initiation of proto-subduction, non-plate-tectonic "sluggish subduction" prevails, giving way to modern style plate tectonics as both the mantle interior and climate cool. Hadean proto-subduction may hasten the onset of modern plate tectonics by drawing excess CO2 out of the atmosphere and cooling the climate.

  5. Incorporation of Solar Noble Gases from a Nebula-Derived Atmosphere During Magma Ocean Cooling

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Cassen, P.; Wasserburg, G. J.; Porcelli, D.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The presence of solar noble gases in the deep interior of the Earth is inferred from the Ne isotopic compositions of MORB (Mid-ocean Ridge Basalts) and OIB (Oceanic Island Basalt); Ar data may also consistent with a solar component in the deep mantle. Models of the transport and distribution of noble gases in the earth's mantle allow for the presence of solar Ar/Ne and Xe/Ne ratios and permit the calculation of lower mantle noble gas concentrations. These mantle data and models also indicate that the Earth suffered early (0.7 to 2 x 10(exp 8) yr) and large (greater than 99 percent) losses of noble gases from the interior, a result previously concluded for atmospheric Xe. We have pursued the suggestion that solar noble gases were incorporated in the forming Earth from a massive, nebula-derived atmosphere which promoted large-scale melting, so that gases from this atmosphere dissolved in the magma ocean and were mixed downward. Models of a primitive atmosphere captured from the solar nebula and supported by accretion luminosity indicate that pressures at the Earth's surface were adequate (and largely more than the required 100 Atm) to dissolve sufficient gases. We have calculated the coupled evolution of the magma ocean and the overlying atmosphere under conditions corresponding to the cessation (or severe attenuation) of the sustaining accretion luminosity, prior to the complete removal of the solar nebula. Such a condition was likely to obtain, for instance, when most of the unaccumulated mass resided in large bodies which were only sporadically accreted. The luminosity supporting the atmosphere is then that provided by the cooling Earth, consideration of which sets a lower limit to the time required to solidify the mantle and terminate the incorporation of atmospheric gases within it. In our initial calculations, we have fixed the nebula temperature at To = 300K, a value likely to be appropriate for nebular temperatures at lAU in the early planet-building epoch

  6. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    NASA Astrophysics Data System (ADS)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the

  7. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation

    NASA Astrophysics Data System (ADS)

    Herzberg, C.; Asimow, P. D.

    2008-09-01

    PRIMELT2.XLS software is introduced for calculating primary magma composition and mantle potential temperature (TP) from an observed lava composition. It is an upgrade over a previous version in that it includes garnet peridotite melting and it detects complexities that can lead to overestimates in TP by >100°C. These are variations in source lithology, source volatile content, source oxidation state, and clinopyroxene fractionation. Nevertheless, application of PRIMELT2.XLS to lavas from a wide range of oceanic islands reveals no evidence that volatile-enrichment and source fertility are sufficient to produce them. All are associated with thermal anomalies, and this appears to be a prerequisite for their formation. For the ocean islands considered in this work, TP maxima are typically ˜1450-1500°C in the Atlantic and 1500-1600°C in the Pacific, substantially greater than ˜1350°C for ambient mantle. Lavas from the Galápagos Islands and Hawaii record in their geochemistry high TP maxima and large ranges in both TP and melt fraction over short horizontal distances, a result that is predicted by the mantle plume model.

  8. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    PubMed

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  9. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where

  10. Exploring the links between volcano flank collapse and magma evolution: Fogo oceanic shield volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Cornu, Melodie-Neige; Paris, Raphael; Doucelance, Regis; Bachelery, Patrick; Guillou, Hervé

    2017-04-01

    Mass wasting of oceanic shield volcanoes is largely documented through the recognition of collapse scars and submarine debris fans. However, it is actually difficult to infer the mechanisms controlling volcano flank failures that potentially imply tens to hundreds of km3. Studies coupling detailed petrological and geochemical analyses of eruptive products hold clues for better understanding the relationships between magma sources, the plumbing system, and flank instability. Our study aims at tracking potential variations of magma source, storage and transport beneath Fogo shield volcano (Cape Verde) before and after its major flank collapse. We also provide a geochronological framework of this magmatic evolution through new radiometric ages (K-Ar and Ar-Ar) of both pre-collapse and post-collapse lavas. The central part of Fogo volcanic edifice is truncated by an 8 km-wide caldera opened to the East, corresponding to the scar of the last flank collapse (Monte Amarelo collapse, Late Pleistocene, 150 km3). Lavas sampled at the base of the scar (the so-called Bordeira) yielded ages between 158 and 136 ka. The age of the collapse is constrained between 68 ka (youngest lava flow cut by the collapse scar) and 59 ka (oldest lava flow overlapping the scar). The collapse walls display a complex structural, intrusive and eruptive history. Undersaturated volcanism (SiO2<43%) is surprisingly dominated by explosive products such as ignimbrites, with 4 major explosive episodes representing half of the volume of the central edifice. This explosive record onshore is correlated with the offshore record of mafic tephra and turbidites (Eisele et al., 2015). Major elements analyses indicate that the pre-collapse lavas are significantly less differentiated than post-collapse lavas, with a peak of alkalis at the collapse. Rare-earth elements concentration decreases with time, with a notable positive anomaly before the collapse. The evolution of the isotopic ratios (Sr, Nd and Pb) through

  11. The implications of tides on the Mimas ocean hypothesis

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan

    2017-02-01

    We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.

  12. The Implications of Tides on the Mimas Ocean Hypothesis

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan

    2017-01-01

    We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.

  13. Lower crustal strength controls on melting and type of oceanization at magma-poor margins

    NASA Astrophysics Data System (ADS)

    Ros, E.; Perez-Gussinye, M.; Araujo, M. N.; Thoaldo Romeiro, M.; Andres-Martinez, M.; Morgan, J. P.

    2017-12-01

    Geodynamical models have been widely used to explain the variability in the architectonical style of conjugate rifted margins as a combination of lithospheric deformation modes, which are strongly influenced by lower crustal strength. We use 2D numerical models to show that the lower crustal strength also plays a key role on the onset and amount of melting and serpentinization during continental rifting. The relative timing between melting and serpentinization onsets controls whether the continent-ocean transition (COT) of margins will be predominantly magmatic or will mainly consist of exhumed and serpentinized mantle. Based on our results for magma-poor continental rifting, we propose a genetic link between margin architecture and COT styles that can be used as an additional tool to help interpret and understand the processes leading to margin formation. Our results show that strong lower crusts and very slow extension velocities (<5 mm/yr) lead to either symmetric or asymmetric margins with large oceanward dipping faults, strong syn-rift subsidence and abrupt crustal tapering beneath the continental shelf. These margins are characterized by a COT consisting of exhumed and serpentinized mantle and some magmatic products. Weak lower crusts at ultra-slow velocities lead also to either symmetric or asymmetric margins with small faults dipping both ocean- and landward, small syn-rift subsidence and gentle crustal tapering, and present a predominantly magmatic COT, perhaps underlain by some serpentinized mantle. When conjugate margins are asymmetric, if the rheology is relatively strong, serpentinite predominantly underlays the wide margin, whereas if the lower crustal strength is weak, melt preferentially migrates towards the wide margin. Based on the onshore lithospheric structure, extension velocity and margin architecture of the magma-poor section of the South Atlantic, we suggest that the COT of the northern sector, Camamu-Gabon basins, is more likely to consist

  14. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    PubMed

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  15. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition

    PubMed Central

    Righter, K.; Ghiorso, M. S.

    2012-01-01

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO2), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO2 that is based on the ratio of Fe and FeO [called “ΔIW (ratio)” hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO2 + O2 = Fe2SiO4 to calculate absolute fO2 and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO2 in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO2 may evolve from high to low fO2 during Earth (and other differentiated bodies) accretion. Any modeling of

  16. Metal-silicate thermochemistry at high temperature - Magma oceans and the 'excess siderophile element' problem of the earth's upper mantle

    NASA Technical Reports Server (NTRS)

    Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.

    1993-01-01

    Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.

  17. Re-impacting Debris Facilitated Cooling of the Lunar Magma Ocean

    NASA Astrophysics Data System (ADS)

    Perera, Viranga; Jackson, Alan; Elkins-Tanton, Linda T.; Asphaug, Erik

    2017-10-01

    It is widely believed that the Moon formed from the debris of a giant impact between the proto-Earth and a roughly Mars-sized body. Concomitant to this formation scenario, and also inferred from geochemical analyses of Apollo samples, is the past existence of a Lunar Magma Ocean (LMO). After about 80% of the LMO solidified, it is believed that the mineral plagioclase would have become stable and crystallized out of the LMO. Rocks that formed principally of plagioclase would have been buoyant in the residual liquid and thus helped form a floatation crust that acted as a thermally conductive blanket over the LMO. Previous modelling work found that the LMO would have solidified in about 10 Myr. However, studies have shown that, during the giant impact event, a large quantity of debris (totaling over a Lunar mass) would have been released that was not immediately incorporated into the Earth and the Moon. This material would have subsequently re-impacted the Earth and the Moon. Particularly for the Moon, this debris would have punctured holes into the nascent lunar crust, attenuated its thermal blanketing effect, and thus facilitated the cooling of the LMO. We improve upon previous studies of the solidification of the LMO by incorporating this re-impacting debris, and find that the re-impacting debris may have reduced the LMO solidification time.

  18. Differentiation of Asteroid 4 Vesta: Core Formation by Iron Rain in a Silicate Magma Ocean

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.

  19. The Role of Magma During Continent-Ocean Transition: Evidence from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Bastow, I. D.; Keir, D.; Stuart, G. W.

    2010-12-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). The Main Ethiopian Rift offers a unique opportunity to address this problem because it captures sub-aerially the final stages of transition from continental rifting to seafloor spreading. Recent studies there have shown that magma intrusion plays an important role during the final stages of continental breakup, but the mechanism by which it is incorporated into the extending plate remains ambiguous: wide angle seismic data and complementary geophysical tools such as gravity analysis are not strongly sensitive to the geometry of subsurface melt intrusions. Studies of shear wave splitting in near-vertical SKS phases beneath the transitional Main Ethiopian Rift (MER) provide strong and consistent evidence for a rift-parallel fast anisotropic direction. However, it is difficult to discriminate between oriented melt pocket (OMP) and lattice preferred orientation (LPO) causes of anisotropy based on SKS study alone. The speeds of horizontally propagating Love (SH) and Rayleigh (SV) waves vary in similar fashions with azimuth for LPO- and OMP-induced anisotropy, but their relative change is distinctive for each mechanism. This diagnostic is exploited by studying the propagation of surface waves from a suite of azimuths across the MER. Anisotropy is roughly perpendicular to the absolute plate motion direction, thus ruling out anisotropy due to the slowly moving African Plate. Instead, three mechanisms for anisotropy act beneath the MER: periodic thin layering of seismically

  20. Fast Spreading Mid Ocean Ridge Magma Chamber Processes: New Constraints from Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, J. C.; Howard, K. A.; Ildefonse, B.; Morris, A.; JC21 Scientific Party

    2011-12-01

    Hess Deep, on the northern edge of the Galapagos Microplate, is a rift valley located at the tip of the Cocos Nazca spreading centre. It is actively propagating westwards into young lithosphere formed at the East Pacific Rise (EPR). Previous studies have shown that the centre of Hess Deep, in the vicinity of a horst block termed the intra-rift ridge (IRR), is characterised by outcrops of gabbro and (minor) peridotite that form the most extensive and complete exposure yet known of lower crust and shallow mantle from a fast spreading mid-ocean ridge. In the absence of a total crustal penetration borehole, the tectonic window of Hess Deep provides our best opportunity to study fast-spreading magma chamber processes and lower crustal accretion by direct observation. Using the Isis ROV we collected high-resolution bathymetry and video data from an 11 sq km area of seafloor, from the nadir of Hess Deep (5400 mbsl) up to the IRR, and sampled outcrops from the region in detail. Of 145 samples in total 94 were gabbro (s.l.). Accounting as much as possible for the complex tectonic disruption of the region we have reassembled these gabbros into a stratigraphic section through an EPR lower crust that we estimate to have been originally about 4350 m thick. The upper half of this plutonic section, which includes a dyke to gabbro transition at the top, is more or less intact on the IRR; however the lower half has been tectonically thinned by active gravity driven faulting and is incomplete. Within this lower section we nevertheless believe we have representative samples from the entire interval. At its base, in addition to primitive olivine gabbro we also recovered dunite, troctolite and residual mantle harzburgite. We here present a synthesis of the petrography and whole rock and mineral compositions of the gabbros from the reconstructed lower crustal section, coupled with a quantitative (electron backscatter diffraction and magnetic) study of their petrofabrics. From this, in

  1. Pressure Dependence of Komatiite Liquid Viscosity and Implications for Magma Ocean Rheology

    NASA Astrophysics Data System (ADS)

    O'Dwyer Brown, L.; Lesher, C. E.; Terasaki, H. G.; Yamada, A.; Sakamaki, T.; Shibazaki, Y.; Ohtani, E.

    2009-12-01

    temperature and pressure on ultramafic liquids suggests that changes in viscosity are likely modest and viscosity will decrease with depth. Stiffening and isolation of the lower regions of a magma ocean due to increasing melt viscosity seem unlikely. [1] PEPI (2003) 139, 45 [2] EPSL (2005) 240, 589

  2. Magma Dynamics at Mid-Ocean Ridges by Noble Gas Kinetic Fractionation: Assessment of Magmatic Ascent Rates and Mantle Composition

    NASA Astrophysics Data System (ADS)

    Paonita, A.; Martelli, M.

    2007-12-01

    Topical scientific literature on magma degassing at mid-ocean ridges more and more focuses on exsolution processes occurring under conditions that are far from thermodynamic equilibrium between bubbles and silicate melt. Indeed, the dynamics of magma ascent and decompression can be faster than that of CO2 diffusion into bubbles, in which case the diffusivity ratios among volatiles are the main control of the composition of the exsolving gas phase. We have developed a model of bubble growth in silicate melts that calculates the extent of both CO2 supersaturation and kinetic fractionation among noble gases in vesicles in relation to the decompressive rate of basaltic melts. The model predicts that, due to comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both He/Ar and He/CO2 ratios by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing paths. By using this tool, we have reviewed the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. The different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Moreover, variations inside a single suite emerge due to the interplay between variable ascent speed of magma and cooling rate of the emplaced lava. As a result, two data groups coming from the Pito Seamount suite (Easter Microplate East ridge), showing different degree of CO2 supersaturation and He/Ar fractionation, provide ascent rates which differ by ten folds or even more. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed

  3. Self-Organized Mantle Layering After the Magma-Ocean Period

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Dude, S.

    2017-12-01

    The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.

  4. Experimental Study of the Partitioning of Siderophile Elements in a Crystallizing Lunar Magma Ocean

    NASA Technical Reports Server (NTRS)

    Galenas, M.; Righter, K.; Danielson, L.; Pando, K.; Walker, R. J.

    2012-01-01

    The distributions of trace elements between the lunar interior and pristine crustal rocks were controlled by the composition of starting materials, lunar core formation, and crystallization of the lunar magma ocean (LMO) [1]. This study focuses on the partitioning of highly siderophile elements (HSE) including Re, Os, Ir, Ru, Pt, Rh, Pd and Au as well as the moderately siderophile elements Mo and W, and the lithophile elements of Hf and Sr. Our experiments also include Ga, which can be slightly siderophile, but is mostly considered to be chalcophile. Partitioning of these elements is not well known at the conditions of a crystallizing LMO. Previous studies of HSE partitioning in silicate systems have yielded highly variable results for differing oxygen fugacity (fO2) and pressure [2-4]. For example, under certain conditions Pt is compatible in clinopy-roxene [2] and Rh and Ru are compatible in olivine [3]. The silicate compositions used for these experiments were nominally basaltic. Ruthenium, Rh, and Pd are incompatible in plagioclase under these conditions[4]. However, this latter study was done at extremely oxidizing conditions and at atmospheric pressure, possibly limiting the applicability for consideration of conditions of a crystallizing LMO. In this study we address the effects of pressure and oxygen fugacity on the crystal/liquid partition coefficients of these trace elements. We are especially interested in the plagioclase/melt partition coefficients so that it may be possible to use reverse modeling to constrain the concentrations of these elements in the lunar mantle through their abundances in pristine crustal rocks.

  5. On the effects of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2016-12-01

    During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The

  6. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  7. Raining a magma ocean: Thermodynamics of rocky planets after a giant impact

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.; Caracas, R.

    2017-12-01

    Rocky planets in exoplanetary systems have equilibrium temperatures up to a few 1000 K. The thermal evolution after a giant impact is sensitive to the equilibrium temperature. Post-impact rocky bodies are thermally stratified, with cooler, lower-entropy silicate overlain by vaporized, higher-entropy silicate. The radii of impact-vaporized rocky planets are much larger than the radii of equivalent condensed bodies. Furthermore, after some high-energy, high-angular momentum collisions, the post-impact body exceeds the corotation limit for a rocky planet and forms a synestia. Initially, volatiles and silicates are miscible at the high temperatures of the outer layer. If the equilibrium temperature with the star is lower than the silicate condensation temperature ( 2000 K), silicate droplets form at the photosphere and fall while volatile components remain in the vapor. Radiation and turbulent convection cool the vapor outer layer to the silicate vapor curve. A distinct magma ocean forms as the thermal profile crosses the silicate vapor curve and the critical curves for the volatiles. Near the temperatures and pressures of the critical curves, volatiles and silicates are partially soluble in each other. As the system continues cooling, the volatile vapor and silicate liquid separate toward the end member compositions, which are determined by the equilibrium temperature and the total vapor pressure of volatiles. If the equilibrium temperature with the star is near or above the condensation temperature for silicates, there would be limited condensation at the photosphere. Initially, the cooler lower mantle would slowly, diffusively equilibrate with the hotter upper mantle. In some cases, the thermal profile may cross the silicate vapor curve in the middle of the silicate layer, producing a silicate rain layer within the body. With continued evolution toward an adiabatic thermal profile, the body would separate into a silicate liquid layer underlying a silicate

  8. Chlorine in mid-ocean ridge magmas: Evidence for assimilation of seawater-influenced components

    SciT

    Michael, P.J.; Schilling, J.G.

    1989-12-01

    Suites of depleted MORB glasses from the fast-spreading Pacific-Nazca Ridge at 28{degree}S and 32{degree}S and the slow-spreading eastern boundary of the Juan Fernandez microplate were analyzed for chlorine by electron microprobe. The Cl concentrations in FeTi basalts exceed by a factor of 5 to 10 the amounts that can be generated by fractional crystallization of the primitive magmas. Selective melting or breakdown of amphibole and incorporation of Cl-rich brine contained in the wall rocks may be important processes. A magmatic source for the additional Cl and H{sub 2}O cannot be ruled out on geochemical grounds but is physically unrealistic becausemore » it requires that large volumes of magma have crystallized and exsolved a Cl-rich vapor phase that has somehow migrated to a small magma chamber. Excess Cl in evolved magmas is best developed in evolved MORB from propagating or overlapping spreading centers such as the Galapagos Spreading Center at 85{degree}W and 95{degree}W and the west ridge of the Juan Fernandez microplate. Cl overenrichment has not been observed on slow-spreading ridges including the eastern ridge of the Juan Fernandez microplate, the Southwest Indian Ridge, and the mid-Atlantic Ridge. The assimilation of hydrothermally altered material could influence the concentration and isotopic ratios of other elements which have low abundances in MORB relative to seawater.« less

  9. Modelling of a Convecting, Crystallizing, and Replenished Diopside-Anorthite Axial Magma Chamber beneath Mid Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Lata, C.

    2016-12-01

    The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.

  10. Impact-induced melting and heating of planetary interiors - implications for the thermo-chemical evolution of planets and crystallization of magma oceans

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Manske, L.; Zhu, M.; Nakajima, M.; Breuer, D.; Schwinger, S.; Plesa, A. C.

    2017-12-01

    Large collisions and giant impact events play an important role in the thermo-chemical evolution of planets during their early and late accretion phases. Besides material that is delivered by differentiated and primitive projectiles a significant amount of the kinetic impact energy is transferred to the planets interior resulting in heating and widespread melting of matter. As a consequence, giant impacts are thought to form global magma oceans. The amount and distribution of impact-induced heating and melting has been previously estimated by scaling laws derived from small-scale impact simulations and experiments, simple theoretical considerations, and observations at terrestrial craters. We carried out a suite of numerical models using the iSALE shock physics code and an SPH code combined with the ANEOS package to investigate the melt production in giant impacts and planetary collision events as a function of impactor size and velocity, and the target temperature. Our results are consistent with previously derived scaling laws only for smaller impactors (<10 km in diameter), but significantly deviate for larger impactors: (1) for hot planets, where the temperature below the lithosphere lies close to the solidus temperature, the melt production is significantly increased for impactors comparable in the size to the depth of the lithosphere. The resulting crater structures would drown in their own melt and only large igneous provinces (local magma oceans) would remain visible at the surface;(2) even bigger impacts (planetary collisions) generate global magma oceans; (3) impacts into a completely solidified (cold) target result in more localized heating in comparison to impacts into a magma ocean, where the impact-induced heating is distributed over a larger volume. In addition, we investigate the influence of impacts on a cooling and crystallization of magma oceans and use the lunar magma ocean as an example.

  11. Magma explains low estimates of lithospheric strength based on flexure of ocean island loads

    NASA Astrophysics Data System (ADS)

    Buck, W. Roger; Lavier, Luc L.; Choi, Eunseo

    2015-04-01

    One of the best ways to constrain the strength of the Earth's lithosphere is to measure the deformation caused by large, well-defined loads. The largest, simple vertical load is that of the Hawaiian volcanic island chain. An impressively detailed recent analysis of the 3D response to that load by Zhong and Watts (2013) considers the depth range of seismicity below Hawaii and the seismically determined geometry of lithospheric deflection. These authors find that the friction coefficient for the lithosphere must be in the normal range measured for rocks, but conclude that the ductile flow strength has to be far weaker than laboratory measurements suggest. Specifically, Zhong and Watts (2013) find that stress differences in the mantle lithosphere below the island chain are less than about 200 MPa. Standard rheologic models suggest that for the ~50 km thick lithosphere inferred to exist below Hawaii yielding will occur at stress differences of about 1 GPa. Here we suggest that magmatic accommodation of flexural extension may explain Hawaiian lithospheric deflection even with standard mantle flow laws. Flexural stresses are extensional in the deeper part of the lithosphere below a linear island load (i.e. horizontal stresses orthogonal to the line load are lower than vertical stresses). Magma can accommodate lithospheric extension at smaller stress differences than brittle and ductile rock yielding. Dikes opening parallel to an island chain would allow easier downflexing than a continuous plate, but wound not produce a freely broken plate. The extensional stress needed to open dikes at depth depends on the density contrast between magma and lithosphere, assuming magma has an open pathway to the surface. For a uniform lithospheric density ρL and magma density ρM the stress difference to allow dikes to accommodate extension is: Δσxx (z) = g z (ρM - gρL), where g is the acceleration of gravity and z is depth below the surface. For reasonable density values (i.e.

  12. Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study

    NASA Astrophysics Data System (ADS)

    Erdmann, Martin; Fischer, Lennart A.; France, Lydéric; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen

    2015-04-01

    Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity ( aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000-1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.

  13. Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Perron, J. Taylor; Mitrovica, Jerry X.

    2016-04-01

    We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the ancient putative sea-level markers on the planet's surface. One such study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.

  14. Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks

    NASA Astrophysics Data System (ADS)

    Chan, N. H.; Perron, J. T.; Mitrovica, J. X.

    2015-12-01

    We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the topography of ancient putative sea-level markers on the planet's surface. A previous study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.

  15. The temperature-ballast hypothesis explains carbon export efficiency observations in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Wakamatsu, Lael; Primeau, François W.

    2017-02-01

    Carbon export from the Southern Ocean exerts a strong control on the ocean carbon sink, yet recent observations from the region demonstrate poorly understood relationships in which carbon export efficiency is weakly related to temperature. These observations conflict with traditional theory where export efficiency increases in colder waters. A recently proposed "temperature-ballast hypothesis" suggests an explanatory mechanism where the effect of temperature-dependent respiration is masked by variation in particle-ballast as upwelling waters move northward from Antarctica. We use observations and statistical models to test this mechanism and find positive support for the hypothesized temperature-ballast interactions. Best fitting models indicate a significant relation between export efficiency and silica-ballast while simultaneously revealing the expected inverse effect of temperature once ballast is accounted for. These findings reconcile model predictions, metabolic theory, and carbon export observations in the Southern Ocean and have consequences for how the ocean carbon sink responds to climate change.

  16. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    and, perhaps, mostly molten. The Giant Impact hypothesis for the origin of the Moon offers a tremendous input of thermal energy and the same could be true for core formation. And current solar system models favor the formation of a limited number of large (about 1000 km) planetesimals that, upon accreting to Earth, would cause great heating, being lesser versions of the Giant Impact. Several lines of geochemical evidence do not favor this hot early Earth scenario. (i) Terrestrial man-tle xenoliths are sometimes nearly chondritic in their major element compositions, suggesting that these rocks have never been much molten. Large degrees of partial melting probably promote differentiation rather than homogenization. (ii) Unlike the case of Mars, the continental crust probably did not form as a highly fractionated residual liquid from a magma ocean (about 99% crystallization), but, rather, formed in multiple steps. [The simplest model for the formation of continental crust is complicated: (a) about 10% melting of a primitive mantle, making basalt; (b) hydrothermal alteration of that basalt, converting it to greenstone; and (c) 10% partial melting of that greenstone, producing tonalite.] This model is reinforced by the recent observation from old (about 4.1 b.y.) zircons that the early crust formed from an undepleted mantle having a chondritic Lu/Hf ratio. (iii) If the mantle were once differentiated by a magma ocean, the mantle xenolith suite requires that it subsequently be homogenized. The Os isotopic compositions of fertile spinel lherzolites place constraints on the timing of that homogenization. The Os isotopic composition of spinel lherzolites approaches that of chondrites and correlates with elements such as Lu and Al. As Lu and Al concentrations approach those of the primitive mantle, Os isotopic compositions approach chondritic. The Re and Os in these xenoliths were probably added as a late veneer. Thus, the mantle that received the late veneer must have been

  17. LIFETIME AND SPECTRAL EVOLUTION OF A MAGMA OCEAN WITH A STEAM ATMOSPHERE: ITS DETECTABILITY BY FUTURE DIRECT IMAGING

    SciT

    Hamano, Keiko; Kawahara, Hajime; Abe, Yutaka

    2015-06-20

    We present the thermal evolution and emergent spectra of solidifying terrestrial planets along with the formation of steam atmospheres. The lifetime of a magma ocean and its spectra through a steam atmosphere depends on the orbital distance of the planet from the host star. For a Type I planet, which is formed beyond a certain critical distance from the host star, the thermal emission declines on a timescale shorter than approximately 10{sup 6} years. Therefore, young stars should be targets when searching for molten planets in this orbital region. In contrast, a Type II planet, which is formed inside themore » critical distance, will emit significant thermal radiation from near-infrared atmospheric windows during the entire lifetime of the magma ocean. The K{sub s} and L bands will be favorable for future direct imaging because the planet-to-star contrasts of these bands are higher than approximately 10{sup −7}–10{sup −8}. Our model predicts that, in the Type II orbital region, molten planets would be present over the main sequence of the G-type host star if the initial bulk content of water exceeds approximately 1 wt%. In visible atmospheric windows, the contrasts of the thermal emission drop below 10{sup −10} in less than 10{sup 5} years, whereas those of the reflected light remain 10{sup −10} for both types of planets. Since the contrast level is comparable to those of reflected light from Earth-sized planets in the habitable zone, the visible reflected light from molten planets also provides a promising target for direct imaging with future ground- and space-based telescopes.« less

  18. Birth of an oceanic spreading center at a magma-poor rift system.

    PubMed

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto

    2017-11-08

    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  19. Magma-sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi-steady deep influx at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Voight, Barry; Widiwijayanti, Christina; Mattioli, Glen; Elsworth, Derek; Hidayat, Dannie; Strutt, M.

    2010-02-01

    We use well-documented time histories of episodic GPS surface deformation and efflux of compressible magma to resolve apparent magma budget anomalies at Soufrière Hills volcano (SHV) on Montserrat, WI. We focus on data from 2003 to 2007, for an inflation succeeded by an episode of eruption-plus-deflation. We examine Mogi-type and vertical prolate ellipsoidal chamber geometries to accommodate both mineralogical constraints indicating a relatively shallow pre-eruption storage, and geodetic constraints inferring a deeper mean-pressure source. An exsolved phase involving several gas species greatly increases andesite magma compressibility to depths >10 km (i.e., for water content >4 wt%, crystallinity ˜40%), and this property supports the concept that much of the magma transferred into or out of the crustal reservoir could be accommodated by compression or decompression of stored reservoir magma (i.e., the “magma-sponge”). Our results suggest quasi-steady deep, mainly mafic magma influx of the order of 2 m3s-1, and we conclude that magma released in eruptive episodes is approximately balanced by cumulative deep influx during the eruptive episode and the preceding inflation. Our magma-sponge model predicts that between 2003 and 2007 there was no evident depletion of magma reservoir volume at SHV, which comprises tens of km3 with radial dimensions of order ˜1-2 km, in turn implying a long-lived eruption.

  20. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean.

    PubMed

    Anderson, Thomas R; Rice, Tony

    2006-12-01

    While dredging in the Aegean Sea during the mid-19th century, Manxman Edward Forbes noticed that plants and animals became progressively more impoverished the greater the depth they were from the surface of the water. By extrapolation Forbes proposed his now infamous azoic hypothesis, namely that life would be extinguished altogether in the murky depths of the deep ocean. The whole idea seemed so entirely logical given the enormous pressure, cold and eternal darkness of this apparently uninhabitable environment. Yet we now know that the sea floor is teeming with life. Curiously, it took 25 years for the azoic hypothesis to fall from grace. This was despite the presence of ample contrary evidence, including starfishes, worms and other organisms that seemingly originated from the deep seabed. This is a tale of scientists ignoring observations that ran counter to their deep-seated, yet entirely erroneous, beliefs.

  1. Solubility, Partitioning, and Speciation of Carbon in Shallow Magma Oceans of Terrestrial Planets Constrained by High P-T Experiments

    NASA Astrophysics Data System (ADS)

    Chi, H.; Dasgupta, R.; Shimizu, N.

    2011-12-01

    Deep planetary volatile cycles have a critical influence on planetary geodynamics, atmospheres, climate, and habitability. However, the initial conditions that prevailed in the early, largely molten Earth and other terrestrial planets, in terms of distribution of volatiles between various reservoirs - metals, silicates, and atmosphere - remains poorly constrained. Here we investigate the solubility, partitioning, and speciation of carbon-rich volatile species in a shallow magma ocean environment, i.e., in equilibrium with metallic and silicate melts. A series of high pressure-temperature experiments using a piston cylinder apparatus were performed at 1-3 GPa, 1500-1800 °C on synthetic basaltic mixtures + Fe-Ni metal powders contained in graphite capsules. All the experiments produced glassy silicate melt pool in equilibrium with quenched metal melt composed of dendrites of cohenite and kamacite. Major element compositions of the resulting phases and the carbon content of metallic melts were analyzed by EPMA at NASA-JSC. Carbon and hydrogen concentrations of basaltic glasses were determined using Cameca IMS 1280 SIMS at WHOI and speciation of dissolved volatiles was constrained using FTIR and Raman spectroscopy at Rice University. Based on the equilibria - FeO (silicate melt) = Fe (metal alloy melt) + 1/2O2, we estimate the oxygen fugacity of our experiments in the range of ΔIW of -1 to -2. FTIR analysis on doubly polished basaltic glass chips suggests that the concentrations of dissolved CO32- or molecular CO2 are negligible in graphite and metal saturated reduced conditions, whereas the presence of dissolved OH- is evident from the asymmetric peak at 3500 cm-1. Collected Raman spectra of basaltic glasses in the frequency range of 200-4200 cm-1 suggest that hydrogen is present both as dissolved OH- species (band at 3600 cm-1) and as molecular H2 (band near 4150 cm-1) for all of our experiments. Faint peaks near 2915 cm-1 and consistent peaks near 740 cm-1 suggest

  2. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units

    NASA Astrophysics Data System (ADS)

    Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.; Kono, Yoshio; Gardner, James E.

    2017-11-01

    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22-0.19+0.11 to 1.45-0.82+0.46 Pa s at experimental conditions (1,300-1,600°C; 0.1-4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.

  3. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    NASA Technical Reports Server (NTRS)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  4. The Effect of Pressure on Iron Speciation in Silicate Melts at a Fixed Oxygen Fugacity: The Possibility of a Redox Profile Through a Terrestrial Magma Ocean

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.

    2017-12-01

    As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.

  5. A layer of neutrally buoyant olivine in the early stages of a deep lunar magma ocean and a possible consecutive overturn

    NASA Astrophysics Data System (ADS)

    Krättli, G.; Schmidt, M. W.

    2017-12-01

    The moon is thought to have undergone a completely molten stage during its accretion, the lunar magma ocean. In order to understand the evolution and first differentiation of the lunar magma ocean, we performed a series of consecutive liquidus experiments at pressures of the lower half of the lunar magma ocean. In these experiments, we determined the liquidus, crystallized some amount of minerals (typically 10-20%) and then stepped to a new bulk composition representing the residual liquid after fractionation of these minerals. Mineral and melt densities were then calculated in order to decide whether minerals would float or sink. The bulk lunar composition used in this study (Taylor 1982) results in extensive early olivine crystallization with high XMg (94-90) for all experimental pressures, the liquidus temperature slightly decreasing from 1900 to 1850°C from 4.5 to 3.5 GPa. Crystallization begins at the core-mantle boundary, but calculations indicate that olivine initially floats and becomes neutrally buoyant at 3.5-3.7 GPa, leading to a stable olivine layer of several 100 km thickness at this depth. This layer should rapidly compact yielding two chemically separated magma reservoirs. Olivine crystallization is followed by orthopyroxene (1650°C, twm_fr2), minor garnet (1600°C, twm_fr3), clinopyroxene and spinel (1550°C, twm_fr3) in the lower magma ocean. Despite continuously decreasing XMg and increasing Ca/Al, further experiments indicate that the more extensively fractionated lower magma should become finally buoyant, possibly causing an overturn of the previously layered structure. Additionally, few centrifuge assisted experiments at 2.5-3.5 GPa were performed showing decreasing olivine-melt density contrasts with increasing pressure. Slightly higher pressures would be necessary to positively prove the neutral buoyancy of olivine at 3.6 GPa, currently we are improving the piston cylinder on the centrifuge to reach 4 GPa. Taylor, Stuart Ross. Planetary

  6. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  7. Experimental determination of CO2 content at graphite saturation along a natural basalt-peridotite melt join: Implications for the fate of carbon in terrestrial magma oceans

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep; Tsuno, Kyusei

    2017-05-01

    Knowledge of the carbon carrying capacity of peridotite melt at reducing conditions is critical to constrain the mantle budget and planet-scale distribution of carbon set at early stage of differentiation. Yet, neither measurements of CO2 content in reduced peridotite melt nor a reliable model to extrapolate the known solubility of CO2 in basaltic (mafic) melt to solubility in peridotitic (ultramafic) melt exist. There are several reasons for this gap; one reason is due to the unknown relative contributions of individual network modifying cations, such as Ca2+ versus Mg2+, on carbonate dissolution particularly at reducing conditions. Here we conducted high pressure, temperature experiments to estimate the CO2 contents in silicate melts at graphite saturation over a compositional range from natural basalts toward peridotite at a fixed pressure (P) of 1.0 GPa, temperature (T) of 1600 °C, and oxygen fugacity (log ⁡ fO2 ∼ IW + 1.6). We also conducted experiments to determine the relative effects of variable Ca and Mg contents in mafic compositions on the dissolution of carbonate. Carbon in quenched glasses was measured and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman Spectroscopy and was found to be dissolved as carbonate (CO32-). The FTIR spectra showed CO32- doublets that shifted systematically with the MgO and CaO content of silicate melts. Using our data and previous work we constructed a new composition-based model to determine the CO2 content of ultramafic (peridotitic) melt representative of an early Earth, magma ocean composition at graphite saturation. Our data and model suggest that the dissolved CO2 content of reduced, peridotite melt is significantly higher than that of basaltic melt at shallow magma ocean conditions; however, the difference in C content between the basaltic and peridotitic melts may diminish with depth as the more depolymerized peridotite melt is more compressible. Using our model of CO2 content at

  8. Advent of Continents: A New Hypothesis

    PubMed Central

    Tamura, Yoshihiko; Sato, Takeshi; Fujiwara, Toshiya; Kodaira, Shuichi; Nichols, Alexander

    2016-01-01

    The straightforward but unexpected relationship presented here relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10–20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian arc are underlain by crust ~35 km thick. Interestingly, andesite magmas dominate eruptive products from the former volcanoes and mostly basaltic lavas erupt from the latter. According to the hypothesis presented here, rising mantle diapirs stall near the base of the oceanic crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, melting occurs at relatively low pressures in the mantle wedge producing andesitic magmas. Where the crust is thick, melting pressures are higher and only basaltic magmas tend to be produced. The implications of this hypothesis are: (1) the rate of continental crust accumulation, which is andesitic in composition, would have been greatest soon after subduction initiated on Earth, when most crust was thin; and (2) most andesite magmas erupted on continental crust could be recycled from “primary” andesite originally produced in oceanic arcs. PMID:27669662

  9. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  10. Early onset of magma ocean crystallization revealed by coupled 146,147Sm-142,143Nd systematics of Nulliak ultramafics (3.78 Ga, Labrador)

    NASA Astrophysics Data System (ADS)

    Morino, P.; Caro, G.; Reisberg, L. C.

    2015-12-01

    Early onset of magma ocean crystallization revealed by coupled 146,147Sm-142,143Nd systematics of Nulliak ultramafics (3.78 Ga, Labrador) Precillia Morino1, Guillaume Caro1, Laurie Reisberg 1 1CRPG-CNRS, Université de Lorraine, Nancy, France Coupled 146,147Sm-142,143Nd systematics provides constraints on the timing of magma ocean crystallization on Mars, the Moon and Vesta. Estimates for the Earth's mantle, however, are less accurate owing to the sparsity of Eoarchean mantle-derived rocks with undisturbed 147Sm-143Nd systematics. This study attempts to establish a coherent 142,143Nd dataset for the Eoarchean mantle using well-preserved ultramafic rocks from the Nulliak assemblage (Labrador). Samples include meta-dunites, -pyroxenites and -peridotites exhibiting only minor serpentinization and limited element mobility. The presence of "Barberton type" komatiitic compositions (low Al/Ti, HREE depletion) is suggestive of a deep mantle source. 146,147Sm-142,143Nd and 187Re-187Os analyses yield a crystallization age of 3.78±0.09 Ga with ɛ143Ndi=1.5±0.2 and ɛ142Nd=8.6±2 ppm. This 142,143Nd signature yields a model age of mantle differentiation of 4.43±0.05 Ga (assuming a BSE with chondritic Sm/Nd and ɛ142Nd=0). Superchondritic Sm/Nd compositions for the BSE would translate into older model ages. Irrespective of the choice of primitive mantle composition, Nulliak ultramafics provide differentiation ages 100 Ma older than those estimated from Akilia tonalites but remarkably similar to that estimated from the 2.7 Ga Theo's flow (Abitibi). If Nulliak ultramafics originated from deep melting of a hot plume, their model age could reflect the early onset of magma ocean crystallization in the lowermost mantle.

  11. Phylogeography of hydrothermal vent stalked barnacles: a new species fills a gap in the Indian Ocean 'dispersal corridor' hypothesis.

    PubMed

    Watanabe, Hiromi Kayama; Chen, Chong; Marie, Daniel P; Takai, Ken; Fujikura, Katsunori; Chan, Benny K K

    2018-04-01

    Phylogeography of animals provides clues to processes governing their evolution and diversification. The Indian Ocean has been hypothesized as a 'dispersal corridor' connecting hydrothermal vent fauna of Atlantic and Pacific oceans. Stalked barnacles of the family Eolepadidae are common associates of deep-sea vents in Southern, Pacific and Indian oceans, and the family is an ideal group for testing this hypothesis. Here, we describe Neolepas marisindica sp. nov. from the Indian Ocean, distinguished from N. zevinae and N. rapanuii by having a tridentoid mandible in which the second tooth lacks small elongated teeth. Morphological variations suggest that environmental differences result in phenotypic plasticity in the capitulum and scales on the peduncle in eolepadids. We suggest that diagnostic characters in Eolepadidae should be based mainly on more reliable arthropodal characters and DNA barcoding, while the plate arrangement should be used carefully with their intraspecific variation in mind. We show morphologically that Neolepas specimens collected from the South West Indian Ridge, the South East Indian Ridge and the Central Indian Ridge belong to the new species. Molecular phylogeny and fossil evidence indicated that Neolepas migrated from the southern Pacific to the Indian Ocean through the Southern Ocean, providing key evidence against the 'dispersal corridor' hypothesis. Exploration of the South East Indian Ridge is urgently required to understand vent biogeography in the Indian Ocean.

  12. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  13. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  14. Constraining the Depth of a Martian Magma Ocean through Metal-Silicate Partitioning Experiments: The Role of Different Datasets and the Range of Pressure and Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Righter, K.; Chabot, N.L.

    2009-01-01

    Mars accretion is known to be fast compared to Earth. Basaltic samples provide a probe into the interior and allow reconstruction of siderophile element contents of the mantle. These estimates can be used to estimate conditions of core formation, as for Earth. Although many assume that Mars went through a magma ocean stage, and possibly even complete melting, the siderophile element content of Mars mantle is consistent with relatively low pressure and temperature (PT) conditions, implying only shallow melting, near 7 GPa and 2073 K. This is a pressure range where some have proposed a change in siderophile element partitioning behavior. We will examine the databases used for parameterization and split them into a low and higher pressure regime to see if the methods used to reach this conclusion agree for the two sets of data.

  15. Testing the Deglacial Global Ocean Alkalization Hypothesis Using Foraminifer-based Mg/Ca, Shell Weight, and MFI

    NASA Astrophysics Data System (ADS)

    Ward, B. M.; Mekik, F.; Pourmand, A.

    2015-12-01

    In light of evidence for extensive modern ocean acidification, it has become imperative to better understand the global carbon cycle by reconstructing past ocean acidification/alkalization events. Our goal is to test the deglacial global alkalization hypothesis using a multi-proxy approach by reconstructing the pH, temperature, and [CO32-] of thermocline waters and the dissolution in deep sea sediments over the last 25,000 years in core ME-27 from the eastern equatorial Pacific. Our specific research questions are: Is there unequivocal evidence for a deglacial ocean alkalization event? If yes, what was the magnitude of the alkalization event? If no, how can we explain why evidence of this event is missing from our core? We inferred temperature from Mg/Ca, and habitat water [CO32-] from sized-normalized shell weight in Neogloboquadrina dutertrei. Dissolution in sediments was estimated using the Globorotalia menardii Fragmentation Index (MFI). We see no clear indication of a deglacial ocean alkalization event with our proxies. Neither our shell weight, nor MFI data show a more alkaline deglacial ocean compared to the Last Glacial Maximum and the modern Interglacial. Instead, we observe a steady decrease in thermocline [CO32-], and increase in deep sea calcite preservation since the LGM. Our results may indicate that the global alkalization event was obscured in ME-27 due to higher organic carbon fluxes during the deglacial, and/or due to yet undetermined effects of temperature on the foraminifer shell weight proxy.

  16. Magma oceanography. I - Thermal evolution. [of lunar surface

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Longhi, J.

    1977-01-01

    Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.

  17. Analysis of broad-band regional waveforms of the 1996 September 29 earthquake at Bárdarbunga volcano, central Iceland: investigation of the magma injection hypothesis

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos I.; Kao, Honn; Lin, Cheng-Horng; Liang, Wen-Tzong

    2003-07-01

    Large earthquakes near active volcanoes, that exhibit non-double-couple source properties are usually interpreted as result the of either magma intrusion or geometrical complexity along the fault plane. Such an earthquake occurred in 1996 September 29 at Bárdarbunga volcano in central Iceland, to be followed 2 days later by a major volcanic eruption at the area between Bárdarbunga and the nearby Grimsvötn volcano. Both of these active volcanic centres lie underneath the Vatnajökull glacier, a permanent ice cap that covers a large area of central Iceland. This event was recorded by a temporary network (HOTSPOT) that consisted of 30 broad-band three-component seismometers covering most of Iceland. The waveforms of this event at all stations show an emergent, low-amplitude, high-frequency onset that is superposed on a longer-period signal. The corresponding amplitude spectra show a low-frequency content (<1 Hz) and prominent peaks around the corner frequency (~0.25 Hz) and higher frequencies. These regional waveforms were inverted in order to obtain the best-fitting deviatoric and full moment tensor using a linear, time-domain inversion method. The results for the deviatoric moment tensor indicate a large (~60 per cent) compensated linear vector dipole (CLVD) component, a hypocentral depth of 3.5 km, a moment magnitude of 5.4 and a best double-couple solution showing thrust motion in good agreement with the previously published Harvard CMT solution. The results for the full moment tensor on the other hand, indicate an implosive isotropic component of 8.5 per cent, a reduced CLVD component of 47.2 per cent and a best double-couple solution showing normal faulting. However, a statistical F-test revealed that the full moment tensor does not fit the data significantly better than the deviatoric at a confidence level of not more than 76 per cent. All of these results were found not to change substantially when a different source time function was used or when the data

  18. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stop is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of mar (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of An contrast strongly to those of the Earth: (1) the extremely ancient ages of the martian core, mantle, and crust (approx. 4.55 b.y.); (2) the highly depleted nature of the martian mantle; and (3) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle.

  19. Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Huybers, Peter; Langmuir, Charles; Katz, Richard F; Ferguson, David; Proistosescu, Cristian; Carbotte, Suzanne

    2016-06-17

    Olive et al (Reports, 16 October 2015, p. 310) argue that ~10% fluctuations in melt supply do not produce appreciable changes in ocean ridge bathymetry on time scales less than 100,000 years and thus cannot reflect sea level forcing. Spectral analysis of bathymetry in a region they highlight as being fault controlled, however, shows strong evidence for a signal from sea level variation. Copyright © 2016, American Association for the Advancement of Science.

  20. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    PubMed

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  1. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean

    PubMed Central

    Murakami, Motohiko; Bass, Jay D.

    2011-01-01

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10–30% seismic velocity reduction observed in thin layers less than 20–40 km thick, just above the Earth’s core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO3 glass at pressures close to those of the CMB. The result suggests that MgSiO3 melt is likely to become denser than crystalline MgSiO3 above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time. PMID:21969547

  2. A hypothesis of a redistribution of North Atlantic swordfish based on changing ocean conditions

    NASA Astrophysics Data System (ADS)

    Schirripa, Michael J.; Abascal, F.; Andrushchenko, Irene; Diaz, Guillermo; Mejuto, Jaime; Ortiz, Maricio; Santos, M. N.; Walter, John

    2017-06-01

    Conflicting trends in indices of abundance for North Atlantic swordfish starting in the mid-to late 1990s, in the form of fleet specific catch-per-unit-effort (CPUE), suggest the possibility of a spatial shift in abundance to follow areas of preferred temperature. The observed changes in the direction of the CPUEs correspond with changes in trends in the summer Atlantic Multidecadal Oscillation (AMO), a long term mode of variability of North Atlantic sea surface temperature. To test the hypothesis of a relation between the CPUE and the AMO, the CPUEs were made spatially explicit by re-estimating using an ;areas-as-fleets; approach. These new CPUEs were then used to create alternative stock histories. The residuals of the fit were then regressed against the summer AMO. Significant, and opposite, relations were found in the regressions between eastern and western Atlantic areas. When the AMO was in a warm phase, the CPUEs in the western (eastern) areas were higher (lower) than predicted by the assessment model fit. Given the observed temperature tolerance limits of swordfish, it is possible that either their preferred habitat, prey species, or both have shifted spatial distributions resulting in conflicting CPUE indices. Because the available CPUE time series only overlaps with one change in the sign of the AMO ( 1995), it is not clear whether this is a directional or cyclical trend. Given the relatively localized nature of many of the fishing fleets, and the difficulty of separating fleet effects from changes in oceanography we feel that it is critical to create CPUE indices by combining data across similar fleets that fish in similar areas. This approach allowed us to evaluate area-specific catch rates which provided the power to detect basin-wide responses to changing oceanography, a critical step for providing robust management advice in a changing climate.

  3. Forsterite/melt partitioning of argon and iodine: Implications for atmosphere formation by outgassing of an early Martian magma ocean

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1992-01-01

    Argon and Xe in the Martian atmosphere are radiogenic relative to the Martian mantle if the SNC meteorites are from Mars. Decay of the short lived isotope I-129 to Xe-129 (t sub 1/2 = 16 m.y.) is the most plausible source of the radiogenic Xe. This short half life constrains any process responsible for the elevated Xe-129/Xe-132 ratio of the Martian atmosphere to occur very early in solar system history. Musselwhite et al. proposed that the differential solubility of I and Xe in liquid water played a key role in producing the radiogenic signature in the Martian atmosphere. Here we explore an alternative hypothesis involving purely igneous processes, and motivated in part by new experimental results on the partitioning of I and Xe between minerals and melt.

  4. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  5. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial

  6. Microscopic, Macroscopic, and Megascopic Melts: a simple model to synthesize simulation, spectroscopy, shock, and sink/float constraints on silicate melts and magma oceans

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Thomas, C.; Wolf, A. S.

    2012-12-01

    Silicate melts are the essential agents of planetary differentiation and evolution. Their phase relations, element partitioning preferences, density, and transport properties determine the fates of heat and mass flow in the high-temperature interior of active planets. In the early Earth and in extrasolar super-Earth-mass terrestrial planets it is these properties at very high pressure (> 100 GPa) that control the evolution from possible magma oceans to solid-state convecting mantles. Yet these melts are complex, dynamic materials that present many challenges to experimental, theoretical, and computational understanding or prediction of their properties. There has been encouraging convergence among various approaches to understanding the structure and dynamics of silicate melts at multiple scales: nearest- and next-nearest neighbor structural information is derived from spectroscopic techniques such as high-resolution multinuclear NMR; first-principles molecular dynamics probe structure and dynamics at scales up to hundreds of atoms; Archimedean, ultrasonic, sink/float, and shock wave methods probe macroscopic properties (and occasionally dynamics); and deformation and diffusion experiments probe dynamics at macroscopic scale and various time scales. One challenge that remains to integrating all this information is a predictive model of silicate liquid structure that agrees with experiments and simulation both at microscopic and macroscopic scale. In addition to our efforts to collect macroscopic equation of state data using shock wave methods across ever-wider ranges of temperature, pressure, and composition space, we have introduced a simple model of coordination statistics around cations that can form the basis of a conceptual and predictive link across scales and methods. This idea is explored in this presentation specifically with regard to the temperature dependence of sound speed in ultramafic liquids. This is a highly uncertain quantity and yet it is key, in

  7. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  8. Phylogeography of hydrothermal vent stalked barnacles: a new species fills a gap in the Indian Ocean ‘dispersal corridor’ hypothesis

    PubMed Central

    Marie, Daniel P.; Takai, Ken; Fujikura, Katsunori

    2018-01-01

    Phylogeography of animals provides clues to processes governing their evolution and diversification. The Indian Ocean has been hypothesized as a ‘dispersal corridor’ connecting hydrothermal vent fauna of Atlantic and Pacific oceans. Stalked barnacles of the family Eolepadidae are common associates of deep-sea vents in Southern, Pacific and Indian oceans, and the family is an ideal group for testing this hypothesis. Here, we describe Neolepas marisindica sp. nov. from the Indian Ocean, distinguished from N. zevinae and N. rapanuii by having a tridentoid mandible in which the second tooth lacks small elongated teeth. Morphological variations suggest that environmental differences result in phenotypic plasticity in the capitulum and scales on the peduncle in eolepadids. We suggest that diagnostic characters in Eolepadidae should be based mainly on more reliable arthropodal characters and DNA barcoding, while the plate arrangement should be used carefully with their intraspecific variation in mind. We show morphologically that Neolepas specimens collected from the South West Indian Ridge, the South East Indian Ridge and the Central Indian Ridge belong to the new species. Molecular phylogeny and fossil evidence indicated that Neolepas migrated from the southern Pacific to the Indian Ocean through the Southern Ocean, providing key evidence against the ‘dispersal corridor’ hypothesis. Exploration of the South East Indian Ridge is urgently required to understand vent biogeography in the Indian Ocean. PMID:29765686

  9. A Re-appraisal of Olivine Sorting and Accumulation in Hawaiian Magmas.

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.

    2002-12-01

    Bowen never used the m-words (magma mixing) in his highly influential book "The Origin of the Igneous Rocks". Yet, in the past 20-30 years, magma mixing has been proposed as an important, almost ubiquitous, process at volcanoes in all tectonic environments ranging from oceanic basalts to large silicic magma bodies, and as the possible trigger of eruptions. Bowen regarded Hawaiian olivine basalts and picrites as the result of olivine accumulation in a lower MgO magma that was crystallizing and fractionating olivine. This, with variants, has been the party line ever since, the only debate being over the MgO content of the proposed parental magmas. Although magma mixing has been recognized as an important process in differentiated, low-MgO (below 7 percent), Hawaiian magmas, the wide range in MgO (7-30 percent) in Hawaiian olivine tholeiites and picrites is invariably attributed to olivine crystallization, fractionation and accumulation. In this paper I will re-evaluate this hypothesis using well-documented examples from Kilauea, Mauna Kea and Mauna Loa that exhibit well-defined, coherent linear trends of major oxides and trace elements with MgO . If olivine control is the only factor responsible for these trends, then the intersection of the regression lines for each trend should intersect olivine compositions at a common forsterite composition, corresponding to the average accumulated olivine in each of the magmas. In some cases (the ongoing Puu Oo eruption) this simple test holds and olivine fractionation and accumulation can clearly be shown to be the dominant process. In other examples from Mauna Kea and Mauna Loa (1852, 1868, 1950 eruptions, and Mauna Loa in general) the test does not hold, and a more complicated process is required. Additionally, for those magmas that fail the test, CaO/Al2O3 invariably decreases with decreasing MgO content. This should not happen if only olivine fractionation and accumulation are involved. The explanation for these linear

  10. Adakitic magmas: modern analogues of Archaean granitoids

    NASA Astrophysics Data System (ADS)

    Martin, Hervé

    1999-03-01

    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (<20 Ma). This situation is well-exemplified in Southern Chile where the Chile ridge is subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine

  11. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  12. Magma-magma interaction in the mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; Chen, Li-Hui; Yu, Xun; Liu, Jian-Qiang; Xu, Xi-Sheng; Erdmann, Saskia

    2017-04-01

    In addition to magma-rock and rock-rock reaction, magma-magma interaction at mantle depth has recently been proposed as an alternative mechanism to produce the compositional diversity of intraplate basalts. However, up to now no compelling geochemical evidence supports this novel hypothesis. Here we present geochemistry for the Longhai basalts from Fujian Province, southeastern China, which demonstrates the interaction between two types of magma at mantle depth. At Longhai, the basalts form two groups, low-Ti basalts (TiO2/MgO < 0.25) and high-Ti basalts (TiO2/MgO > 0.25). Calculated primary compositions of the low-Ti basalts have compositions close to L + Opx + Cpx + Grt cotectic, and they also have low CaO contents (7.1-8.1 wt %), suggesting a mainly pyroxenite source. Correlations of Ti/Gd and Zr/Hf with the Sm/Yb ratios, however, record binary mixing between the pyroxenite-derived melt and a second, subordinate source-derived melt. Melts from this second source component have low Ti/Gd and high Zr/Hf and Ca/Al ratios, thus likely representing a carbonated component. The Sr, Nd, Hf, and Pb isotopic compositions of the high-Ti basalts are close to the low-Ti basalts. The Sm/Yb ratio of the high-Ti basalts, however, is markedly elevated and characterized by crossing rare earth element patterns at Ho, suggesting that they have source components comparable to the low-Ti basalts, but that they have experienced garnet and clinopyroxene fractionation. We posit that mingling of SiO2-saturated tholeiitic magma with SiO2-undersaturated alkaline magma might trigger such fractionation. Therefore, the model of magma-magma interaction and associated deep evolution of magma in the mantle is proposed to explain the formation of Longhai basalts. It may, moreover, serve as a conceptual model for the formation of tholeiitic to alkaline intraplate basalts worldwide.

  13. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    Since approximately 1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients (D) for siderophile (iron-loving) elements are much different than those measured at low PT conditions. The high PT data have been used to argue for a magma ocean during growth of the early Earth. Initial conclusions were based on experiments and calculations for a small number of elements such as Ni and Co. However, for many elements only a limited number of experimental data were available then, and they only hinted at values of metal-silicate D's at high PT conditions. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements. At the same time several different models have been advanced to explain the siderophile elements in the earth's mantle: a) intermediate depth magma ocean; 25-30 GPa, b) deep magma ocean; up to 50 GPa, and c) early reduced and later oxidized magma ocean. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to update the predictive expressions outlined by Righter et al. (1997) with new experimental data from the last decade, test the predictive ability of these expressions against independent datasets (there are more data now to do this properly), and to apply the resulting expressions to the siderophile element patterns in Earth's upper mantle. The predictive expressions have the form: lnD = alnfO2 + b/T + cP/T + d(1Xs) + e(1Xc) + SigmafiXi + g These expressions are guided by the thermodynamics of simple metal-oxide equilibria that control each element, include terms that mimic the activity coefficients of each element in the metal and silicate, and quantify the effect of

  14. Insights from geophysical monitoring into the volcano structure and magma supply systems at three very different oceanic islands in the Cape Verde archipelago

    NASA Astrophysics Data System (ADS)

    Faria, B. V.; Day, S.; Fonseca, J. F.

    2013-12-01

    Three oceanic volcano islands in the west of the Cape Verde archipelago are considered to have the highest levels of volcanic hazard in the archipelago: Fogo, Brava, and Santo Antao. Fogo has had frequent mainly effusive eruptions in historic time, the most recent in 1995, whilst Brava and Santo Antao have ongoing geothermal activity and felt earthquakes, and have experienced geologically recent violent explosive eruptions. Therefore, these three islands have been the focus of recent efforts to set up seismic networks to monitor their activity. Here we present the first results from these networks, and propose interpretations of the monitored seismic activity in terms of subsurface volcano structures, near-surface intrusive activity and seasonal controls on geothermal activity. In Fogo, most recorded seismic events are hydrothermal events. These show a strong seasonal variation, increasing during the summer rain season and decreasing afterwards. Rare volcano-tectonic (VT) events (0.1magma reservoir in the edifice. S. Antão is characterized by frequent seismic swarms composed of VT earthquakes (0.1

  15. Magma Mingling of Multiple Mush Magmas

    NASA Astrophysics Data System (ADS)

    Graham, B.; Leitch, A.; Dunning, G.

    2016-12-01

    This field, petrographic, and geochemical study catalogues complicated magma mingling at the field to thin section scale, and models the emplacement of multiple crystal-rich pulses into a growing magma chamber. Modern theories present magma chambers as short-lived reservoirs that are continuously fed by intermittent magma pulses and suggest processes that occur within them can be highly dynamic. Differences in the rheology of two mingling magmas, largely affected by crystallinity, can result in varied textural features that can be preserved in igneous rocks. Field evidence of complex magma mingling is observed at Wild Cove, located along the northeast shoreline of Fogo Island, Newfoundland, an area interpreted to represent the roof/wall region of the Devonian Fogo Batholith. Fine-grained intermediate enclaves are contained in host rocks of similar composition and occur in round to amoeboid shapes. Dykes of similar composition are also observed near enclaves suggesting they were broken up into globules in localized areas. These provide evidence for a possible mechanism by which enclaves were formed as dykes passed through a more liquid-rich region of the magma chamber. The irregular but sharp nature of the boundaries between units suggest that all co-existed as "mushy" magmas with variable crystallinities reflecting a wide range in temperature between their respective liquidus and solidus. Textural evidence of complex mingling between mush units includes the intrusion of tonalite dykes into quartz diorite and granite mushes. The dykes were later pulled apart and subsequently back-intruded by liquid from the host mush (Figure). Observed magmatic tubes of intermediate magma cross-cutting through magma of near identical composition likely reflect compaction of the underlying mush after intrusion of new pulses of magma into the system. Petrographic examination of contacts between units reveals that few are chilled and medium to coarse grained boundaries are the norm.

  16. The “White Ocean” Hypothesis: A Late Pleistocene Southern Ocean Governed by Coccolithophores and Driven by Phosphorus

    PubMed Central

    Flores, José-Abel; Filippelli, Gabriel M.; Sierro, Francisco J.; Latimer, Jennifer

    2012-01-01

    Paleoproductivity is a critical component in past ocean biogeochemistry, but accurate reconstructions of productivity are often hindered by limited integration of proxies. Here, we integrate geochemical (phosphorus) and micropaleontological proxies at millennial timescales, revealing that the coccolithophore record in the Subantarctic zone of the South Atlantic Ocean is driven largely by variations in marine phosphorus availability. A quantitative micropaleontological and geochemical analysis carried out in sediments retrieved from Ocean Drilling Program Site 1089 (Subantarctic Zone) reveals that most of the export productivity in this region over the last 0.5 my was due to coccolithophores. Glacial periods were generally intervals of high productivity, with productivity reaching a peak at terminations. Particularly high productivity was observed at Termination V and Termination IV, events that are characterized by high abundance of coccolithophores and maxima in the phosphorus/titanium and strontium/titanium records. We link the increase in productivity both to regional oceanographic phenomena, i.e., the northward displacement of the upwelling cell of the Antarctic divergence when the ice-sheet expanded, and to the increase in the inventory of phosphorus in the ocean due to enhanced transfer of this nutrient from continental margins during glacial lowstands in sea level. The Mid-Brunhes interval stands out from the rest of the record, being dominated by the small and highly calcified species Gephyrocapsa caribbeanica that provides most of the carbonate in these sediments. This likely represents higher availability of phosphorus in the surface ocean, especially in mesotrophic and oligotrophic zones. Under these condition, some coccolithophore species developed an r-strategy (opportunistic species; growth rate maximized) resulting in the bloom of G. caribbeanica. These seasonal blooms of may have induced “white tides” similar to those observed today in Emiliania

  17. Peculiarities of the tectonic and magma evolution of the southwestern Indian middle-ocean crust within the range of 51°-67° eastern longitude

    NASA Astrophysics Data System (ADS)

    Shreider, A. A.; Kashintsev, G. L.

    2010-02-01

    The comparative estimation of the parameters of the lithosphere of the Mid-Ocean Southwestern Indian range in the areas westwards and eastwards of the Atlantis II transform fault zone shows that, within this zone, an alteration in the basalt composition occurred. Eastwards of this zone, a decrease of the anomaly of the magnetic field occurred and increased average depths of the axial part (4.7 km) and thinning (up to 4-5 km) of the ocean crust with increased rates of seismic waves in the upper mantle were observed. This, first of all, indicates an anomalously cold mantle below the oceanic crust. The changes that occurred in the location of the Euler pole within the last millions of years resulted in slanting spreading in the area of the investigation with rates of opening lower than 1.8 cm/year probably accompanied by the phenomena of transtension in the active parts of the transform faults. The interaction between the Landly and Somali lithosphere plates occurred along the diffusion boundary and was accompanied by problems with tracing the chrones between the neighboring profiles of geomagnetic observations. Consequently, the more detailed investigation of the configuration of the diffusion boundary will contribute to the more accurate reconstruction of the paleogeodynamics of the central part of the Indian Ocean.

  18. The Subduction of an Exhumed and Serpentinized Magma-Poor Basement Beneath the Northern Lesser Antilles Reveals the Early Tectonic Fabric at Slow-Spreading Mid-Oceanic Ridges

    NASA Astrophysics Data System (ADS)

    Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.

    2017-12-01

    Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (<0.3 s-1) and no significant velocity change at theoretical Moho depth. 3/ Anomalously low heat-flow (40±15mW.m-2) compared to the central Antilles and to theoretical values for an 80 Myr-old oceanic plate suggesting the influence of deep hydrothermal circulation. 4/ Two sets of reflections dipping toward the paleo mid-Atlantic ridge and toward the Vidal Transform Fault Zone respectively. These highly reflective planes sometimes fracture the top of the basement, deforming the interplate contact and extend downward to 20km depth with a 20° angle. We thus propose that a large patch of mantle rocks, exhumed and serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.

  19. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165, Site 1001 basalts

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Pearson, G.; Nowell, G.

    2008-12-01

    Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.

  20. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  1. Electrical Conductivity of Partially Molten Peridotite Analogue Under Shear: Supporting Evidence to the Partial Melting Hypothesis for the Oceanic Plate Motion

    NASA Astrophysics Data System (ADS)

    Manthilake, G.; Matsuzaki, T.; Yoshino, T.; Yamazaki, D.; Yoneda, A.; Ito, E.; Katsura, T.

    2008-12-01

    So far, two hypotheses have been proposed to explain softening of the oceanic asthenosphere allowing smooth motion of the oceanic lithosphere. One is partial melting, and the other is hydraulitic weakening. Although the hydraulitic weakening hypothesis is popular recently, Yoshino et al. [2006] suggested that this hypothesis cannot explain the high and anisotropic conductivity at the top of the asthenosphere near East Pacific Rise observed by Evans et al. [2005]. In order to explain the conductivity anisotropy over one order of magnitude by the partial melting hypothesis, we measured conductivity of partially molten peridotite analogue under shear conditions. The measured samples were mixtures of forsterite and chemically simplified basalt. The samples were pre- synthesized using a piston-cylinder apparatus at 1600 K and 2 GPa to obtain textural equilibrium. The pre- synthesized samples were formed to a disk with 3 mm in diameter and 1 mm in thickness. Conductivity measurement was carried out also at 1600 K and 2 GPa in a cubic-anvil apparatus with an additional uniaxial piston. The sample was sandwiched by two alumina pistons whose top was cut to 45 degree slope to generate shear. The shear strain rates of the sample were calibrated using a Mo strain marker in separate runs. The lower alumina piston was pushed by a tungsten carbide piston embedded in a bottom anvil with a constant speed. Conductivity was measured in the directions normal and parallel to the shear direction simultaneously. We mainly studied the sample with 1.6 volume percent of basaltic component. The shear strain rates were 0, 1.2x10(-6) and 5.2x10(-6) /s. The sample without shear did not show conductivity anisotropy. In contrast, the samples with shear showed one order of magnitude higher conductivity in the direction parallel to the shear than that normal to the shear. After the total strains reached 0.3, the magnitude of anisotropy became almost constant for both of the strain rates. The

  2. Volatile content of Hawaiian magmas and volcanic vigor

    NASA Astrophysics Data System (ADS)

    Blaser, A. P.; Gonnermann, H. M.; Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    We test the hypothesis that magma supply to Kīlauea volcano, Hawai'i may be affected by magma volatile content. We find that volatile content and magma flow from deep source to Kīlauea's summit reservoirs are non-linearly related. For example, a 25-30% change in volatiles leads to a near two-fold increase in magma supply. Hawaiian volcanism provides an opportunity to develop and test hypotheses concerning dynamic and geochemical behavior of hot spot volcanism on different time scales. The Pu'u 'Ō'ō-Kupaianaha eruption (1983-present) is thought to be fed by essentially unfettered magma flow from the asthenosphere into a network of magma reservoirs at approximately 1-4 km below Kīlauea's summit, and from there into Kīlauea's east rift zone, where it erupts. Because Kīlauea's magma becomes saturated in CO2 at about 40 km depth, most CO2 is thought to escape buoyantly from the magma, before entering the east rift zone, and instead is emitted at the summit. Between 2003 and 2006 Kīlauea's summit inflated at unusually high rates and concurrently CO2emissions doubled. This may reflect a change in the balance between magma supply to the summit and outflow to the east rift zone. It remains unknown what caused this surge in magma supply or what controls magma supply to Hawaiian volcanoes in general. We have modeled two-phase magma flow, coupled with H2O-CO2 solubility, to investigate the effect of changes in volatile content on the flow of magma through Kīlauea's magmatic plumbing system. We assume an invariant magma transport capacity from source to vent over the time period of interest. Therefore, changes in magma flow rate are a consequence of changes in magma-static and dynamic pressure throughout Kīlauea's plumbing system. We use measured summit deformation and CO2 emissions as observational constraints, and find from a systematic parameter analysis that even modest increases in volatiles reduce magma-static pressures sufficiently to generate a 'surge' in

  3. The Meaning of "Magma"

    NASA Astrophysics Data System (ADS)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2016-12-01

    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  4. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  5. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  6. Watching magma from space

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte

    2000-01-01

    Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl. 

  7. Loki Patera: A Magma Sea Story

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  8. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  9. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These

  10. Mushy Magma beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Chu, R.; Helmberger, D. V.; Sun, D.; Jackson, J. M.; Zhu, L.

    2009-12-01

    A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies on regional earthquake data which suggests a high degree of crystallization of the underlying magma body. In this study, we analyzed P-wave receiver functions recorded by broadband stations above the caldera from 100 teleseismic earthquakes between January and November 2008. After applying a number of waveform modeling tools, we obtained much lower seismic velocities than previous estimates, 2.3 km/sec (Vp) and 1.1 km/sec (Vs), with a thickness of 3.6 km in the upper crust. This shallow low velocity zone is severe enough to cause difficulties with seismic tool applications. In particular, seismologists expect teleseismic P-waves to arrive with motions up and away or down and back. Many of the observations recorded by the Yellowstone Intermountain Seismic Array, however, violate this assumption. We show that many of the first P-wave arrivals observed at seismic stations on the edge of the caldera do not travel through the magma body but have taken longer but faster paths around the edge or wrap-around phases. Three stations near the trailing edge have reversal radial-component motions, while stations near the leading edge do not. Adding our constraints on geometry, we conclude that this relatively shallow magma body has a volume of over 4,300 km3. We estimate the magma body by assuming a fluid-saturated porous material consisting of granite and a mixture of rhyolite melt and supercritical water and CO2 at temperatures of 800 oC and pressure at 5 km (0.1 GPa).Theoretical calculations of seismic wave speed suggests that the magma body beneath the Yellowstone Caldera has a porosity of 32% filled with 92% rhyolite melt and 8% water-CO2 by volume.

  11. Formation of redox gradients during magma-magma mixing

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Fiege, A.; Simon, A. C.

    2015-12-01

    Magma-mixing is a key process that controls mass transfer in magmatic systems. The variations in melt compositions near the magma-magma interface potentially change the Fe oxidation state [1] and, thus, affect the solubility and transport of metals. To test this hypothesis, diffusion-couple experiments were performed at 1000 °C, 150 MPa and QFM+4. Synthesized crystal-bearing cylinders of hydrous dacite and hydrous basaltic andesite were equilibrated for up to 80 h. The run products show that mafic components (Fe, Mg, etc.) were transported from the andesite into the dacite, while Si, Na and K diffused from the dacite into the andesite. A crystal dissolution sequence in the order of cpx, opx, plag, and spl/il was observed for the andesite. We combined μ-XANES spectroscopy at Fe K-edge [2] with two-oxide oxybarometry [3] to measure redox profiles within our experiments. Here, fO2 decreased towards the interface within the dacite and increased towards the interface within the andesite. This discontinuous fO2 evolution, with a sharp redox gradient of ~1.8 log fO2 units at the interface was maintained throughout the time-series despite the externally imposed fO2 of the vessel. We propose a combination of two mechanisms that create and sustain this redox gradient: 1) The dissolution of cpx and opx in the andesite mainly introduced Fe2+ into the melt, which diffused towards the dacite, lowering Fe3+/SFe near the interface. 2) Charge balance calculations in the melt during diffusive exchange suggest net positive charge excess in the andesite near the interface (i.e., oxidation) and net negative charge excess in the dacite near the interface (i.e., reduction). We suggest that this (metastable) redox layer can help to explain the contrasting Au/Cu ratios observed for arc-related porphyry-type ore deposits. [1] Moretti (2005), Ann. Geophys. 48, 583-608. [2] Cottrell et al. (2009), Chem. Geol. 268, 167-179. [3] Ghiorso and Evans (2008), Am. J. Sci. 308, 957-1039.

  12. Native gold in Hawaiian alkalic magma

    Sisson, T.W.

    2003-01-01

    Native gold found in fresh basanite glass from the early submarine phase of Kilauea volcano, Hawaii, may be the first documented case of the transport of gold as a distinct precious metal phase in a mantle-derived magma. The gold-bearing glass is a grain in bedded volcanic glass sandstone (Japan Marine Science and Technology Center (JAMSTEC) sample S508-R3) collected by the submersible Shinkai 6500 at 3879 m depth off Kilauea's south flank. Extensive outcrops there expose debris-flow breccias and sandstones containing submarine-erupted alkalic rock fragments and glasses from early Kilauea. Precipitation of an immiscible gold liquid resulted from resorption of magmatic sulfides during crystallization-differentiation, with consequent liberation of sulfide-hosted gold. Elevated whole-rock gold concentrations (to 36 ppb) for fresh lavas and clasts from early Kilauea further show that some magmas erupted at the beginning stages of Hawaiian shield volcanoes were distinctly gold rich, most likely owing to limited residual sulfide in their mantle source. Alkalic magmas at other ocean islands may also be gold rich, and oceanic hot-spot provinces may contain underappreciated gold resources.

  13. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  14. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan

    2013-10-01

    Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2

  15. The Surtsey Magma Series.

    PubMed

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  16. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  17. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    NASA Astrophysics Data System (ADS)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  18. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    NASA Astrophysics Data System (ADS)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  19. Magma-assisted rifting in Ethiopia.

    PubMed

    Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D

    2005-01-13

    The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.

  20. Composition and origin of basaltic magma of the Hawaiian Islands

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  1. Deep magma transport at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, Thomas L.; Klein, Fred W.

    2006-03-01

    .4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea.

  2. Deep magma transport at Kilauea volcano, Hawaii

    Wright, T.L.; Klein, F.W.

    2006-01-01

    .4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea. ?? 2005 Elsevier B.V. All rigths reserved.

  3. From Magma Fracture to a Seismic Magma Flow Meter

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.

    2007-12-01

    Seismic swarms of low-frequency events occur during periods of enhanced volcanic activity and have been related to the flow of magma at depth. Often they precede a dome collapse on volcanoes like Soufriere Hills, Montserrat, or Mt St Helens. This contribution is based on the conceptual model of magma rupture as a trigger mechanism. Several source mechanisms and radiation patterns at the focus of a single event are discussed. We investigate the accelerating event rate and seismic amplitudes during one swarm, as well as over a time period of several swarms. The seismic slip vector will be linked to magma flow parameters resulting in estimates of magma flux for a variety of flow models such as plug flow, parabolic- or friction controlled flow. In this way we try to relate conceptual models to quantitative estimations which could lead to estimations of magma flux at depth from seismic low-frequency signals.

  4. The Mid-Ocean Ridge.

    ERIC Educational Resources Information Center

    Macdonald, Kenneth C.; Fox, Paul J.

    1990-01-01

    Described are concepts involved with the formation and actions of the Mid-Ocean Ridge. Sea-floor spreading, the magma supply model, discontinuities, off-axis structures, overlaps and deviation, and aquatic life are discussed. (CW)

  5. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  6. Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean - Implications for the abundance and origin of volatiles in Earth, Mars, and the Moon

    NASA Astrophysics Data System (ADS)

    Chi, Han; Dasgupta, Rajdeep; Duncan, Megan S.; Shimizu, Nobumichi

    2014-08-01

    The budget and origin of carbon in Earth and other terrestrial planets are debated and one of the key unknowns is the fate of carbon during early planetary processes including accretion, core formation, and magma ocean (MO) crystallization. Here we determine, experimentally, the solubility of carbon in coexisting Fe-Ni alloy melt and basaltic silicate melt in shallow MO conditions, i.e., at 1-3 GPa, 1500-1800 °C. Oxygen fugacity of the experiments, estimated based on Fe (in metallic alloy melt)-FeO (in silicate melt) equilibrium, varied between ∼IW-0.4 and IW-1.0, where IW refers to the oxygen fugacity imposed by the coexistence of iron and wüstite. Four different starting mixes, each with 7:3 silicate:metal mass ratio and silicate melt NBO/T (estimated proportion of non-bridging oxygen with respect to tetrahedral cations; NBO/T=2×/total OT -4, where T = Si + Ti + Al + Cr + P) ranging from 0.81 to 1.54 were studied. Concentrations of carbon in the alloy melt were determined using electron microprobe whereas carbon contents of quenched basaltic glasses were determined using secondary ionization mass spectrometry (SIMS). Identification of carbon and hydrogen-bearing species in silicate glasses was performed using Raman and Fourier Transformed Infrared (FTIR) spectroscopy. Our results show that carbon in the metallic melt varies between 4.4 wt.% and 7.4 wt.% and increases with increasing temperature and modestly with increasing pressure but decreases with increasing Ni content of the alloy melt. Carbon concentration in the silicate melts, on the other hand, varies from 11 ± 1 ppm to 111 ± 7 ppm and is negatively correlated with pressure but positively correlated with temperature, the NBO/T, the oxygen fugacity and the water content of the silicate melts. Raman and FTIR results show that at our experimental conditions, carbon in silicate melt is dissolved both as hydrogenated species and CO32-. The calculated carbon partition coefficient DCmetal/silicate varies

  7. Axial Magma System Geometry beneath a Fast-Spreading Mid-Ocean Ridge: Insight from Three-Dimensional Seismic Reflection Imaging on the East Pacific Rise 9º42' to 9º57'N

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J. P.; Nedimovic, M. R.

    2014-12-01

    The fast-spreading East Pacific Rise at the 9º50'N Ridge 2000 Integrated Study Site was the focus of the first academic 3D, multi-source, multi-streamer seismic survey, carried out aboard R/V Langseth in summer 2008. The main area of 3D coverage extends from 9º42-57'N, spanning the seafloor extent of two documented volcanic eruptions. There, the 3D geometry of the mid-crustal axial magma lens (AML), located ~1.5 km below the seafloor, was initially investigated using a best 1D stacking velocity function hung from the seafloor and two-pass post-stack time migration. Preliminary results suggested a relatively narrow (~0.5-1.8 km wide) AML showing fingering and overlap of individual magma bodies, particularly in association with several small-scale ridge-axis discontinuities identified from seafloor morphology and structure of the axial summit trough. A westward-dipping limb of the AML was imaged near 9º51'N, where the AML attains its largest width. From 9º53-56'N, the AML was seen to veer slightly westward, in accordance with a shift in orientation of the ridge. Sub-axial magma lenses (SAMLs) have been recently imaged between 9º20' and 9º56'N on along-axis reflection profiles from the same survey, with the suggestion that these deeper lenses may have contributed melts to the 2005/06 eruption. In the cross-axis dataset, SAML events are observed down to ~600-700 ms (~1.7-2 km) below the AML. They sometimes appear slightly offset with respect to the center of the AML. They are generally less bright than the AML reflection, some of them display prominent diffraction tails on un-migrated sections, and the deeper events have a distinctly lower frequency content than the shallower ones. New images for the 9º42-57'N area are currently being generated from a suite of detailed stacking velocities for the AML and SAML events and 3D post-stack time migration, which will provide insight into the width and along-axis continuity of individual magma bodies at multiple levels

  8. Magma emplacement in 3D

    NASA Astrophysics Data System (ADS)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  9. Transition from magma dominant to magma poor rifting along the Nova Scotia Continental Margin

    NASA Astrophysics Data System (ADS)

    Lau, K. H.; Louden, K. E.; Nedimović, M. R.; Whitehead, M.; Farkas, A.; Watremez, L.; Dehler, S. A.

    2011-12-01

    Passive margins have been characterized as magma-dominant (volcanic) or magma-poor (non-volcanic). However, the conditions under which margins might switch states are not well understood as they typically have been studied as end member examples in isolation to each other. The Nova Scotia (NS) continental margin, however, offers an opportunity to study the nature of such a transition between the magma-dominant US East Coast margin to the south and the magma-poor Newfoundland margin to the north within a single rift segment. This transition is evidenced by a clear along-strike reduction in features characteristic of syn-rift volcanism from south-to-north along the NS margin, such as the weakening of the East Coast Magnetic Anomaly (ECMA) and the coincident disappearance of seaward dipping reflector sequences (SDRS) on multichannel seismic (MCS) reflection profiles. Results from recent industry MCS profiles along and across the margin suggest a potentially narrow magma-dominant to magma-poor along-strike transition between the southern and the central NS margin. Such a transition is broadly consistent with results of several widely-spaced, across-strike ocean bottom seismometer (OBS) wide-angle profiles. In the southern region, the crustal structure exhibits a narrow (~120-km wide) ocean-continent transition (OCT) with a high velocity (7.2 km/s) lower crust, interpreted as a gabbro-rich underplated melt, beneath the SDRS and the ECMA, similar to crustal models across the US East Coast. In contrast, profiles across the central and northern margin contain a much wider OCT (150-200-km wide) underlain by a low velocity mantle layer (7.3-7.9 km/s), interpreted as partially serpentinized olivine, which is similar to the magma-poor Newfoundland margin to the north. However, the central-to-northern OBS profiles also exhibit significant variations within the OCT and the along-strike continuity of these OCT structures is not yet clear. In November 2010, we acquired, in the

  10. Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis

    Perfit, M.R.; Fornari, D.J.; Ridley, W.I.; Kirk, P.D.; Casey, J.; Kastens, K.A.; Reynolds, J.R.; Edwards, M.; Desonie, D.; Shuster, R.; Paradis, S.

    1996-01-01

    Small constructional volcanic landforms and very fresh-looking lava flows are present along one of the inferred active strike-slip faults that connect two small spreading centers (A and B) in the western portion of the Siqueiros transform domain. The most primitive lavas (picritic and olivine-phyric basalts), exclusively recovered from the young-looking flows within the A-B strike-slip fault, contain millimeter-sized olivine phenocrysts (up to 20 modal%) that have a limited compositional range (Fo91.5-Fo89.5) and complexly zoned Cr-Al spinels. High-MgO (9.5-10.6 wt%) glasses sampled from the young lava flows contain 1-7% olivine phenocrysts (Fo90.5-Fo89) that could have formed by equilibrium crystallization from basaltic melts with Mg# values between 71 and 74. These high MgO (and high Al2O3) glasses may be near-primary melts from incompatible-element depleted oceanic mantle and little modified by crustal mixing and/or fractionation processes. Phase chemistry and major element systematics indicate that the picritic basalts are not primary liquids and formed by the accumulation of olivine and minor spinel from high-MgO melts (10% < MgO < 14%). Compared to typical N-MORB from the East Pacific Rise, the Siqueiros lavas are more primitive and depleted in incompatible elements. Phase equilibria calculations and comparisons with experimental data and trace element modeling support this hypothesis. They indicate such primary mid-ocean ridge basalt magmas formed by 10-18% accumulative decompression melting in the spinel peridotite field (but small amounts of melting in the garnet peridotite field are not precluded). The compositional variations of the primitive magmas may result from the accumulation of different small batch melt fractions from a polybaric melting column.

  11. Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.

  12. Magma ascent and magmatism controlled by cratering on the Moon

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Pinel, V.

    2016-12-01

    The lunar primary crust was formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a relatively light and thick crust. This crust acted as a barrier for the denser primary mantle melts: mare basalts erupted primarily within large impact basins where at least part of this crust was removed. Thus, lunar magmas likely stored at the base of or deep in the lunar crust and the ascent of magma to shallow depths probably required local or regional tensional stresses. On the Moon, evidences of shallow sites of magmatism are mostly concentrated within old and degraded simple and complex craters that surround the Mare basalts. Impacts, that were numerous in the early times of the Moon, created depressions at the lunar surface that induced specific states of stress. Below a crater, magma ascent is helped by the tensional stresses caused by the depression up to a depth that is close to the crater radius. However, many craters that are the sites of shallow magmatism are less than 10 to 20 km in radius and are equally situated in regions of thin (i.e. 20 km) or thick (i.e. 60km) crust suggesting that the depression, although significant enough to control magma emplacement, was not large enough to induce it. Since the sites of magmatism surround the mare basalts, we explore the common idea that the weight of the Mare induced a tensile state of stress in the surrounding regions. We constrain the regional state of stress that was necessary to help magma ascent to shallow depths but was low enough for the local depression due to a crater to control magma emplacement. This state of stress is consistent with a relatively thin but extended mare load. We also show that the depression due to the crater probably caused the horizontalization and hence the storage of the magmatic intrusion at shallow depth below the crater. In the end, because of the neutral buoyancy of magmas in the crust and the lack of tectonic processes, impact processes largely

  13. Carbon dioxide in magmas and implications for hydrothermal systems

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  14. Physical inter-relationships between hydrothermal activity, faulting and magmatic processes at the center of a slow-spreading, magma-rich mid-ocean ridge segment: A case study of the Lucky Strike segment (MAR, 37°03'-37‧N)

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.

    2012-12-01

    The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma

  15. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  16. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  17. Warm storage for arc magmas

    PubMed Central

    Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-01-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558

  18. CO2 Degassing at Kilauea Volcano: Implications for Primary Magma, Summit Reservoir Dynamics, and Magma Supply Monitoring

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.; Elias, T.; Sutton, A. J.; Doukas, M. P.

    2001-12-01

    We report a new CO2 emission rate of 8,500 tons/day (t/d) for the summit of Kilauea Volcano, a result several times larger than previous estimates. It is based on 12 experiments on three occasions over four years constraining the SO2 emission rate and the average CO2/SO2 of emissions along the 5.4-km summit COSPEC traverse (by COSPEC, NDIR CO2 analyzer, and CP-FTIR). The core of the summit plume is at ground level along the traverse and gives average CO2/SO2 values that are representative of the overall summit emission, even though CO2 and SO2 variations are commonly uncorrelated. CO2 and SO2 concentrations exceed background by 200-1,000 ppm and 1-7 ppm respectively. Nighttime measurements exclude Park auto exhaust as a source of CO2. The summit CO2 emission rate is nearly constant (95% confidence interval = 300 t/d), despite variable summit SO2 emission rates (62-240 t/d) and CO2/SO2 (54-183). Including other known CO2 emissions on the volcano (mainly from the Pu`u `O`o eruption) gives a total emission rate of about 8,800 t/d. Thus summit CO2 emissions comprise 97% of the total known CO2 output, consistent with the hypothesis that all primary magma supplied to Kilauea arrives under the summit caldera and is thoroughly degassed of excess CO2. A persistent large CO2 anomaly of 200-1,000 ppm indicates the entry to the summit reservoir is beneath a km2-area east of Halemaumau. The bulk CO2 content of primary magma is about 0.70 wt%, inferred from the CO2 emission rate and Kilauea's magma supply rate (0.18 km3/y [Cayol et al., Science, 288, 2343, 2000]). Most of the CO2 is present as exsolved vapor (3.6-11.7 vol%) at summit reservoir depths (2-7 km), making the primary magma strongly buoyant. Magma chamber replenishment models show that robust turbulent mixing of primary and reservoir magma prevents frequent eruption of buoyant primary magma in the summit region. The escape of 90-95% of the CO2 from the summit reservoir provides a potential proxy for monitoring the

  19. Volatiles in melt inclusions from Icelandic magmas

    NASA Astrophysics Data System (ADS)

    Nichols, A. R.; Wysoczanski, R. J.; Carroll, M. R.

    2006-12-01

    Melt inclusions hosted in olivine crystals from the glassy rims of subglacially erupted pillow basalts on Iceland have been analysed for volatiles, major elements and trace elements. Volatile measurements were undertaken using Fourier-Transform InfraRed spectroscopy utilising a novel technique which enables unexposed and much smaller inclusions than were previously possible to be analysed. Major elements were measured using electron microprobe and trace elements by laser ablation-inductively coupled plasma-mass spectrometry. Comparison between initial results from the inclusions and the compositions of the bulk glasses show that the inclusions are less evolved and contain more H2O at the same MgO content. In addition many of the inclusions have higher H2O/K2O than their bulk glasses and some even contain CO2 (up to 629 ppm), which is below detection limits in the bulk glasses. This indicates that these inclusions are less affected by degassing. Two inclusions have extreme H2O/K2O (> 10), possibly suggesting that they have assimilated hydrous crustal material. The volatile and major element compositions of the bulk glasses have been used to suggest that the Iceland mantle plume is wet. However, trace element measurements show that enriched Iceland magmas have lower H2O/Ce than the adjacent Reykjanes Ridge. This could reflect syn-eruptive degassing or mixing between undegassed and recycled degassed magmas. Alternatively Iceland magmas could be derived from the EM (enriched mantle) component, which is believed to represent recycled oceanic crust. It is suggested that this material is efficiently dehydrated during the subduction process, so even though it has an enriched character, H2O is relatively depleted. As a result, EM melts have higher absolute H2O contents than mid- ocean ridge basalts (MORB), but lower H2O/Ce (or other H2O-incompatible element ratios), which has led to EM plumes being termed `dampspots'. The inclusion data will be presented in this context

  20. Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes

    NASA Astrophysics Data System (ADS)

    Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.

    2007-12-01

    At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that

  1. Crustal forensics in arc magmas

    NASA Astrophysics Data System (ADS)

    Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.

    2005-01-01

    The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases

  2. Stability of rift axis magma reservoirs: Spatial and temporal evolution of magma supply in the Dabbahu rift segment (Afar, Ethiopia) over the past 30 kyr

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Pik, R.; Burnard, P.; Vye-Brown, C.; France, L.; Schimmelpfennig, I.; Whaler, K.; Johnson, N.; Benedetti, L.; Ayelew, D.; Yirgu, G.

    2015-01-01

    Unravelling the volcanic history of the Dabbahu/Manda Hararo rift segment in the Afar depression (Ethiopia) using a combination of cosmogenic (36Cl and 3He) surface exposure dating of basaltic lava-flows, field observations, geological mapping and geochemistry, we show in this paper that magmatic activity in this rift segment alternates between two distinct magma chambers. Recent activity in the Dabbahu rift (notably the 2005-2010 dyking crises) has been fed by a seismically well-identified magma reservoir within the rift axis, and we show here that this magma body has been active over the last 30 kyr. However, in addition to this axial magma reservoir, we highlight in this paper the importance of a second, distinct magma reservoir, located 15 km west of the current axis, which has been the principal focus of magma accumulation from 15 ka to the subrecent. Magma supply to the axial reservoir substantially decreased between 20 ka and the present day, while the flank reservoir appears to have been regularly supplied with magma since 15 ka ago, resulting in less variably differentiated lavas. The trace element characteristics of magmas from both reservoirs were generated by variable degrees of partial melting of a single homogeneous mantle source, but their respective magmas evolved separately in distinct crustal plumbing systems. Magmatism in the Dabbahu/Manda Hararo rift segment is not focussed within the current axial depression but instead is spread out over at least 15 km on the western flank. This is consistent with magneto-telluric observations which show that two magma bodies are present below the segment, with the main accumulation of magma currently located below the western flank, precisely where the most voluminous recent (<15 ka) flank volcanism is observed at the surface. Applying these observations to slow spreading mid-ocean ridges indicates that magma bodies likely have a lifetime of a least 20 ka, and that the continuity of magmatic activity is

  3. Mare basalt magma source region and mare basalt magma genesis

    SciT

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  4. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    NASA Astrophysics Data System (ADS)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  5. Ephemeral magma chambers in the Trinity peridotite, northern California

    NASA Astrophysics Data System (ADS)

    Cannat, Mathilde; Lécuyer, Christophe

    1991-02-01

    The Trinity Massif comprises the major lithologies of an ophiolite, as defined at the 1972 Penrose conference. Previous studies have shown, however, that it differs from the Semail (Oman) or Table Mountain (Newfoundland) ophiolitic massifs, particularly because its crustal section is thin, and because its mantle section has vertical plastic flow planes. These features have led to an interpretation of the Trinity Massif as a fragment of slow-spreading oceanic lithosphere (Le Sueur et al., 1984; Boudier and Nicolas, 1985). In this paper, we show that the Trinity gabbros occur in discontinuous, kilometre-sized pockets, intrusive into the mantle peridotites. The internal stratigraphy and the petrological characteristics of these gabbros suggest that they formed in short-lived magma chambers. These ephemeral magma chambers developed after the end of the plastic deformation in the surrounding mantle, when it had cooled down to lithospheric temperatures. We discuss the possibility that these small and ephemeral magma chambers formed at a slow-spreading oceanic ridge.

  6. Centrifuge models simulating magma emplacement during oblique rifting

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene

    2001-07-01

    A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).

  7. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Merle, S. G.; Bobbitt, A. M.; Caress, D. W.; Philip, B. T.; Kelley, D. S.; Nooner, S. L.

    2016-12-01

    Axial Seamount is the best monitored submarine volcano in the world, providing an exceptional window into the dynamic interactions between magma storage, transport, and eruption processes in a mid-ocean ridge setting. An eruption in April 2015 produced the largest volume of erupted lava since monitoring and mapping began in the mid-1980s after the shortest repose time, due to a recent increase in magma supply. The higher rate of magma replenishment since 2011 resulted in the eruption of the most mafic lava in the last 500-600 years. Eruptive fissures at the volcano summit produced pyroclastic ash that was deposited over an area of at least 8 km2. A systematic spatial distribution of compositions is consistent with a single dike tapping different parts of a thermally and chemically zoned magma reservoir that can be directly related to previous multichannel seismic-imaging results.

  8. Caldera resurgence driven by magma viscosity contrasts.

    PubMed

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  9. Regional Variations in Aleutian Magma Composition

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2008-12-01

    This study is based on sample data spanning 20 years from USGS, UAF, and DGGS geologists too numerous to list here. The 2900-km long Aleutian arc contains more than 50 active and over 90 Holocene volcanoes. The arc is built on oceanic Bering-sea floor west of 166W and quasi-continental crust east of 166W. Over the past twenty years the Alaska Volcano Observatory has conducted baseline geologic mapping (or remapping) and volcanic-hazards studies of selected volcanoes - generally those targeted for geophysical monitoring. This marks the largest sustained effort to study Aleutian volcanoes in half a century; AVO scientists have logged as many as 700 person-days per field season. Geologic studies have resulted in comprehensive suites of stratigraphically constrained samples and more than 3500 new whole-rock analyses by XRF and ICP/MS from more than 30 centers, more than doubling the number of previously published analyses. Examination of the data for regional and inter-volcano variations yields a number of first-order observations. (1) The arc can be broadly divided into an eastern segment (east of 158W) of calcalkaline andesite stratocones; a central segment dominated by large, mafic, tholeiitic shield volcanoes and stratocones; and a western segment (west of 175W) of smaller volcanoes with variable morphologies and generally more andesitic compositions. (2) There are NO significant first-order compositional signals that coincide with the transition from oceanic to continental basement. (3) Individual volcanoes are often subtly distinct from neighbors, and those distinctions persist for the lifetime of the centers. (4) All centers, notably including the large basaltic centers of the central arc, are strongly affected by open-system processes significantly more complicated than mixing among sibling-fractionates of parental mafic magmas. (5) Petrogenetic pathways are long-lived; individual batches of magma are (generally) not. (6) Calcalkaline andesites have

  10. Numerical simulation of magma chamber dynamics.

    NASA Astrophysics Data System (ADS)

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea

    2010-05-01

    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective

  11. Magma oceanography. II - Chemical evolution and crustal formation. [lunar crustal rock fractional crystallization model

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1977-01-01

    A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.

  12. Magma Mixing: Why Picrites are Not So Hot

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2010-12-01

    Oxide gabbros or ferrogabbros are the late, low-temperature differentiates of tholeiitic magma and usually form as cumulates that can have 2-30% of the magmatic oxides, ilmenite and magnetite. They are common in the ocean crust and are likely ubiquitous wherever extensive tholeiitic magmatism has occurred, especially beneath thick lava piles such as at Hawaii, Iceland, oceanic plateaus, island arcs and ancient continental crust. When intruded by hot primitive magma including picrite, the oxide-bearing portions of these rocks are readily partially melted or assimilated into the magma and contribute to it a degree of iron and titanium enrichment that is not reflective of the mantle source of the primitive magma. The most extreme examples of such mixing are meimechites and ferropicrites, but this type of end-member mixing is even common in MORB. To the extent this process occurs, the eruptive picrite cannot be used to estimate compositions of partial melts of mantle rocks, nor their eruptive or potential temperatures, using olivine-liquid FeO-MgO backtrack procedures. Most picrites have glasses with compositions approximating those expected from low-pressure multiphase cotectic crystallization, and olivine that on average crystallized from liquids of nearly those compositions. The hallmark of such rocks is the presence of minerals other than olivine among phenocrysts (plagioclase at Iceland, clinopyroxene at many oceanic islands), Fe- and Ti-rich chromian spinel (ankaramites, ferropicrites and meimichites), and in some cases the presence of iron-rich olivine (hortonolite ~Fo65 in ferropicrites), Ti-rich kaersutitic amphibole and even apatite (meimechites); the latter two derive from late-stage, hydrous and geochemically enriched metamorphic or alkalic assimilants. This type of mixing, however, does not necessarily involve depleted and enriched mixing components. To avoid such mixing, primitive melts have to rise primarily through upper mantle rocks of near-zero melt

  13. Controls on the iron isotopic composition of global arc magmas

    NASA Astrophysics Data System (ADS)

    Foden, John; Sossi, Paolo A.; Nebel, Oliver

    2018-07-01

    We determined the iron isotope composition of 130 mafic lavas from 15 arcs worldwide with the hypothesis that the results would reflect the relatively high oxidation state of arc magmas. Although this expectation was not realized, this Fe isotope data set reveals important insights into the geodynamic controls and style of the melting regimes in the sub-arc mantle. Samples are from oceanic arcs from the circum-Pacific, the Indonesian Sunda-Banda islands, Scotia and the Lesser Antilles as well as from the eastern Pacific Cascades. Their mean δ57Fe value is +0.075 ± 0.05‰, significantly lighter than MORB (+0.15 ± 0.03‰). Western Pacific arcs extend to very light δ57Fe (Kamchatka = -0.11 ± 0.04‰). This is contrary to expectation, because Fe isotope fractionation factors (Sossi et al., 2016, 2012) and the incompatibility of ferric versus ferrous iron during mantle melting, predict that melts of more oxidized sources will be enriched in heavy Fe isotopes. Subducted oxidation capacity flux may correlate with hydrous fluid release from the slab. If so, a positive correlation between each arc's thermal parameter (ϕ) and δ57Fe is predicted. On the contrary, the sampled arcs mostly contribute to a negative array with the ϕ value. High ϕ arcs, largely in the western Pacific, have primary magmas with lower δ57Fe values than the low ϕ, eastern Pacific arcs. Arcs with MORB-like Sr-, Nd- and Pb-isotopes, show a large range of δ57Fe from heavy MORB-like values (Scotia or the Cascades) to very light values (Kamchatka, Tonga). Although all basalts with light δ57Fe values have MORB-like Pb-, Nd- and Sr-isotope ratios some, particularly those from eastern Indonesia, have heavier δ57Fe and higher Pb- and Sr- and lower Nd-isotope ratios reflecting sediment contamination of the mantle wedge. Because basalts with MORB-like radiogenic isotopes range all the way from heavy to light δ57Fe values this trend is process-, not source composition-driven. Neither the slab

  14. Numerical Simulation of Magma Effects on Hydrothermal Venting at Ultra-Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zang, Hong; Niu, Xiongwei; Ruan, Aiguo; Li, Jiabiao; Meng, Lin

    2017-04-01

    Finite element method is used to numerically simulate oceanic crust thermal dynamics in order to understand the hydrothermal venting mechanism at ultra-slow spreading ridge, whether is the ancient magma chamber still living and supplying hot magma for vents or have surrounding hotspots been affecting on the ridge continually with melting and hot magma. Two models are simulated, one is a horizontal layered oceanic crust model and the other is a model derived from wide angle seismic experiment of OBS at the ultra-slow spreading Southwest Indian Ridge (50°E, Zhao et al., 2013; Li et al., 2015; Niu et al., 2015). For the former two cases are simulated: without magma from upper mantel or with continuous magma supply, and for the latter supposing magma supply occurs only once in short period. The main conclusions are as follows: (1) Without melt magma supply at the oceanic crust bottom, a magma chamber can live only thousands ten thousand years. According to the simulated results in this case, the magma chamber revealed by seismic data at the mid-east shallow section of the Southwest Indian Ridge could only last 0.8Ma, the present hydrothermal venting is impossible to be the caused by the magma activity occurred during 8-11Ma (Sauter et al., 2009). (2) The magma chamber can live long time with continuous hot magma supply beneath the oceanic crust due to the melting effects of surrounding ridge hotspots, and would result hydrothermal venting with some tectonic structures condition such as detachment faults. We suggest that the present hydrothermal activities at the mid-east shallow section of the Southwest Indian Ridge are the results of melting effects or magma supply from surrounding hotspots. This research was granted by the National Basic Research program of China (grant 2012CB417301) and the National Natural Science Foundation of China (grants 41176046, 91228205). References Zhao, M., Qiu, X., Li, J., et al., 2013. Three-dimensional seismic structure of the Dragon

  15. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective

    PubMed Central

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  16. Transfer Rates of Magma From Planetary Mantles to the Surface.

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Head, J. W.; Parfitt, E. A.

    2008-12-01

    We discuss the speed at which magma can be transferred to a planetary surface from the deep interior. Current literature describes a combination of slow percolation of melt in the mantle where convection-driven pressure-release melting is occurring, concentration of melt by source region deformation, initiation and growth of magma-filled brittle fractures (dikes) providing wider pathways for melt movement, additional growth and interconnection of dikes with decreasing depth, rise of magma to storage zones (reservoirs) located at levels of neutral buoyancy at the base of or within the crust, and transfer from the storage zones in dikes to feed eruptions or intrusions. We do not take issue with these mechanisms but think that their relative importance in various circumstances is poorly appreciated. On Earth, preservation of diamonds in kimberlites implies very rapid (hours) transfer of melts from depths of 100-300 km, and there is strong geochemical evidence that magmas at mid-ocean ridges reach shallow depths faster than is possible by percolation alone. On the Moon, the petrology of pyroclasts involved in dark-mantle-forming eruptions implies rapid (again probably hours) magma transfer from depths of up to 400 km. The ureilite meteorites, samples of the mantle of a disrupted asteroid 200 km in diameter, have compositions only consistent with the rapid (months) extraction of mafic melt from the mantle. All of these examples imply that brittle fractures (dikes) can sometimes be initiated at depths where mantle rheology would normally be expected to be plastic rather than elastic, and that melt can be fed into these dikes extremely efficiently. Further evidence for this is provided by the giant radial dike swarms observed on Earth, Mars and Venus. The dikes observed (on Earth) and inferred from the presence of radiating graben systems (Mars) and radiating fracture and graben systems (Venus) are so voluminous that they can only be understood if they are fed from

  17. Early lunar petrogenesis, oceanic and extraoceanic

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Wasson, J. T.

    1980-01-01

    An attempt is made to ascertain which (if any) pristine nonmare rocks, other than KREEPy ones, are not cumulates from the magma ocean. It is noted that the only pristine rocks having bulk densities low enough to have formed by floating above the magma ocean are the ferroan anorthosites, which are easily recognizable as a discrete subset of pristine rocks in general, on the basis of mineral composition relationships. The other class of pristine nonmare rocks, the Mg-rich rocks, did not form from the same magma that produced the ferroan anorthosites. It is suggested that they were formed in layered noritic-troctolitic plutons. These plutons, it is noted, were apparently intruded at, or slightly above, the boundary between the floated ferroan anorthosite crust and the underlying complementary mafic cumulates. It is thought that the parental magmas of the plutons may have arisen by partial melting of either deep mafic cumulates from the magma ocean or a still deeper, undifferentiated primordial layer that was not molten during the magma ocean period.

  18. The idea of magma mixing: History of a struggle for acceptance

    Wilcox, R.E.

    1999-01-01

    In 1851, chemist Robert Bunsen suggested that the mixing of two magmas, one mafic and the other felsic, in various proportions might account for the wide range of chemical compositions of igneous rocks. Based on flaws in several of its secondary provisions, the whole hypothesis was rejected by a succession of influential critics and remained in disrepute for a hundred years. Meanwhile, studies of composite dikes and sills indicated that, indeed, mafic and felsic magmas had coexisted at close quarters and had been emplaced in quick succession. This interpretation was also used by some investigators to explain the intimate association of mafic and felsic rock types in the commonly occurring igneous complexes. Others believed that the mafic components of these complexes were derived from geologically older mafic formations. By the early 1900s it had become apparent that mafic magmas crystallized at higher temperatures than felsic magmas. This knowledge was not immediately applied to the problem of magma mixing, however, due in part to the popularity of the newly validated process of fractional crystallization and to the implication that the diversity of igneous rocks could be accounted for by that process alone. Not until the 1950s was the attention of the geological community drawn to the fact that disparate magmas mix in a special manner: they mingle, the mafic magma being quenched to a fracturable solid upon contact with the cooler felsic magma. This explanation set in motion a series of studies of other igneous complexes, confirming the concept and adding other identifying features of the process.

  19. Taxonomy of Magma Mixing II: Thermochemistry of Mixed Crystal-Bearing Magmas Using the Magma Chamber Simulator

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Neilson, R.; Ghiorso, M. S.

    2013-12-01

    Magma recharge and magma mixing contribute to the diversity of melt and crystal populations, the abundance and phase state of volatiles, and thermal and mass characteristics of crustal magma systems. The literature is replete with studies documenting mixing end-members and associated products, from mingled to hybridized, and a catalytic link between recharge/mixing and eruption is likely. Given its importance and the investment represented by thousands of detailed magma mixing studies, a multicomponent, multiphase magma mixing taxonomy is necessary to systematize the array of governing parameters (e.g., pressure (P), temperature (T), composition (X)) and attendant outcomes. While documenting the blending of two melts to form a third melt is straightforward, quantification of the mixing of two magmas and the subsequent evolution of hybrid magma requires application of an open-system thermodynamic model. The Magma Chamber Simulator (MCS) is a thermodynamic, energy, and mass constrained code that defines thermal, mass and compositional (major, trace element and isotope) characteristics of melt×minerals×fluid phase in a composite magma body-recharge magma-crustal wallrock system undergoing recharge (magma mixing), assimilation, and crystallization. In order to explore fully hybridized products, in MCS, energy and mass of recharge magma (R) are instantaneously delivered to resident magma (M), and M and R are chemically homogenized and thermally equilibrated. The hybrid product achieves a new equilibrium state, which may include crystal resorption or precipitation and/or evolution of a fluid phase. Hundreds of simulations systematize the roles that PTX (and hence mineral identity and abundance) and the mixing ratio (mass of M/mass of R) have in producing mixed products. Combinations of these parameters define regime diagrams that illustrate possible outcomes, including: (1) Mixed melt composition is not necessarily a mass weighted mixture of M and R magmas because

  20. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  1. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  2. Developing the research hypothesis.

    PubMed

    Toledo, Alexander H; Flikkema, Robert; Toledo-Pereyra, Luis H

    2011-01-01

    The research hypothesis is needed for a sound and well-developed research study. The research hypothesis contributes to the solution of the research problem. Types of research hypotheses include inductive and deductive, directional and non-directional, and null and alternative hypotheses. Rejecting the null hypothesis and accepting the alternative hypothesis is the basis for building a good research study. This work reviews the most important aspects of organizing and establishing an efficient and complete hypothesis.

  3. Shear thinning behaviors in magmas

    NASA Astrophysics Data System (ADS)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  4. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  5. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  6. Examining shear processes during magma ascent

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  7. Crypto-magma chambers beneath Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Yasuda, Atsushi; Fujii, Toshitsugu; Yoshimoto, Mitsuhiro

    2010-06-01

    Mt. Fuji consists dominantly of basalt. A study of olivine-hosted melt-inclusions from layers of air-fall scoria, however, shows clear evidence of andesitic liquids. Whole rock compositions show a narrow range of SiO 2, but a wide range of FeO*/MgO and incompatible elements. Phenocrystic plagioclase generally shows bi-modal distributions in compositional frequency, while most olivine phenocrysts show uni-modal distribution with reverse zoning and often contain andesitic melt-inclusions. These suggest that magmas erupted from Fuji are generated through mixing between basaltic and more SiO 2-rich (often andesitic) end-members. We propose that Fuji's magmatic plumbing system consists of at least two magma chambers: a relatively deep (˜20 km) basaltic one and a relatively shallow (˜ 8-9 km) and more SiO 2-rich one. Evolved basalts with wide compositional ranges of incompatible elements are generated in the deep basaltic magma chamber by prevalent fractional crystallization of pyroxenes with olivine and calcic plagioclase at high pressure. Meanwhile basaltic magma left behind by the previous eruption in the conduit accumulates in a shallow magma chamber, and is differentiated to more SiO 2-rich composition by fractional crystallization of olivine, less-calcic plagioclase, and clinopyroxene. Shortly before a new eruption, a large amount of evolved basaltic magma containing calcic plagioclase rises from the deeper magma chamber and is mixed with the more SiO 2-rich magma in the shallow chamber, to generate the hybrid basaltic magma.

  8. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2004-01-01

    The research described in this progress report involved the study of petrological, geochemical, and volcanic processes that occur on the Moon and the SNC meteorite parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the types of magmas (magma compositions) present, the role of volatiles in magmatic processes, and on processes of magma evolution on these planets. We are also interested in how these processes and magma types varied over time.In earlier work on the A15 green and A17 orange lunar glasses, we discovered a variety of metal blebs. Some of these Fe-Ni metal blebs occur in the glass; others (in A17) were found in olivine phenocrysts that we find make up about 2 vol 96 of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption . They also yield important information about the composition of the gas phase present, the gas that drove the lunar fire-fountaining. During the tenure of this grant, we have continued to work on the remaining questions regarding the origin and evolution of the gas phase in lunar basaltic magmas, what they indicate about the lunar interior, and how the gas affects volcanic eruptions. Work on Martian magmas petrogenesis questions during the tenure of this grant has resulted in advances in our methods of evaluating magmatic oxidation state variations in Mars and some new insights into the compositional variations that existed in the SNC magmas over time . Additionally, Minitti has continued to work on the problem of possible shock effects on the abundance and distribution of water in Mars minerals.

  9. Geophysical Investigations of Crustal and Upper Mantle Structure of Oceanic Intraplate Volcanoes (OIVs)

    NASA Astrophysics Data System (ADS)

    Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.

    2016-12-01

    Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (<10 Ma) lithosphere, which aimed at characterising the along-ridge crustal structure. The wide-angle seismic crustal model, generated by independent forward and inverse travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.

  10. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  11. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    of dacitic composition of ~67 wt.% SiO2. The melt flowed up the borehole, quenched, and was repeatedly re-drilled over a depth interval of ~8 m, producing several kilograms of clear, colorless vitric cuttings. The melt is of low crystallinity, vesicle-free, at a minimum temperature of ~865°C, and with an apparent viscosity of ~106.5 Pa-s. The magma is separated from the deepest hydrothermal regime at 356°C by 526 m of sealed rock. Heat flux from the magma into the overlying geothermal reservoir at ~2784 mW/m2 is an order of magnitude greater than that for mid-ocean ridges. Typical Hawaiian basalt contains ~0.25 wt.% water. The dacite melt contains ~2.44 wt.% water, and is of normal magmatic δ18O (5.4 ‰) and δD (-61.8‰), which is in contrast to the surrounding hydrothermal waters. A similar preliminary analysis of the water content in the altered basalt just outside the sealed zone shows it to heavily hydrated (~4.94 wt.%) and altered by the hydrothermal field. This suggests that volatile under-saturated magmas are sealed with respect to hydrothermal fields and deeper systems may be even more strongly sealed.

  12. Magma beneath Yellowstone National Park

    Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.

    1975-01-01

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  13. Water content in intraplate basalt magmas from the Longgang area, NE China

    NASA Astrophysics Data System (ADS)

    Mizobuchi, F.; Kuritani, T.; Yoshida, T.; Miyamoto, T.; Nagahashi, Y.; Taniguchi, H.

    2009-12-01

    In northeastern China, intraplate magmatism has been active, and Cenozoic basalts are widely distributed. Beneath the area, the subducted Pacific slab is stagnant in the mantle transition zone, and some previous studies have inferred that the magmatism may have been affected by fluid phases released from the stagnant slab. To test this hypothesis, it is important to know the water content in the source mantle. In this context, the water content in the intraplate magma was estimated using primitive scoria samples from the Longgang area, NE China. Because of the absence of glass inclusions in phenocrysts that enables direct measurement of water content, it was estimated by thermodynamic constraints. During ascent of water-bearing magmas, the water solubility tends to decrease, and water saturation is achieved at depth. Then, crystals can grow rapidly by an increase in the liquidus temperature resulting from water exsolution. Because the microlites in our samples can be regarded as such crystals, the water content in the magma in which the microlites occured was estimated by thermodynamic analyses using the compositions of the microlites and glass. In the calculations, thermodynamic solution models of e.g. Ghiorso&Sack(1995) were used. The calculated water content and the temperature of the magma were about 0.6 wt.% and 1110 degC, respectively. The water content is slightly higher than those of primitive intraplate magmas such as from Hawaii (0.4 wt.%, Wallace & Anderson,1998) and Iceland (0.1-0.4 wt.%, Nichols et al., 2002). Assuming that the degree of melting was 1-2%, the water content of the source asthenospheric mantle was 110-170 ppm. The magma temperature at 80-120 km depth (garnet stability field) was also estimated as 1160-1180 degC, assuming adiabatic ascent. Using the constraints obtained in this study, the effect of stagnant-slab-derived fluids on the magma generation will be evaluated as a future study.

  14. Process for forming hydrogen and other fuels utilizing magma

    DOEpatents

    Galt, John K.; Gerlach, Terrence M.; Modreski, Peter J.; Northrup, Jr., Clyde J. M.

    1978-01-01

    The disclosure relates to a method for extracting hydrogen from magma and water by injecting water from above the earth's surface into a pocket of magma and extracting hydrogen produced by the water-magma reaction from the vicinity of the magma.

  15. Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record

    NASA Astrophysics Data System (ADS)

    Erlund, E. J.; Cashman, K. V.; Wallace, P. J.; Pioli, L.; Rosi, M.; Johnson, E.; Granados, H. Delgado

    2010-11-01

    The birth of Parícutin Volcano, Mexico, in 1943 provides an unprecedented opportunity to document the development of a monogenetic cinder cone and its associated lava flows and tephra blanket. Three 'type' sections provide a complete tephra record for the eruption, which is placed in a temporal framework by comparing both bulk tephra and olivine phenocryst compositions to dated samples of lava and tephra. Our data support the hypothesis of Luhr (2001) that the first four months of activity were fed by a magma batch (Phase 1) that was distinct from the magma that supplied the subsequent eight years of activity. We further suggest that the earliest erupted (vanguard) magma records evidence of temporary residence at shallow levels prior to eruption, suggesting early development of a dike and sill complex beneath the vent. Depletion of this early batch led to diminished eruptive activity in June and July of 1943, while arrival of the second magma batch (Phase 2) reinvigorated activity in late July. Phase 2 fed explosive activity from mid-1943 through 1946, although most of the tephra was deposited by the end of 1945. Phase 3 of the eruption began in mid-1947 with rapid evolution of magma compositions from basaltic andesite to andesite and dominance of lava effusion. The combined physical and chemical characteristics of the erupted material present a new interpretation of the physical conditions that led to compositional evolution of the magma. We believe that syn-eruptive assimilation of wall rock in a shallow complex of dikes and sills is more likely than pre-eruptive assimilation within a large magma chamber, as previously assumed. We further suggest that waning rates of magma supply from the deep feeder system allowed evolved, shallowly stored magma to enter the conduit in 1947, thus triggering the rapid observed change in the erupted magma composition. This physical model predicts that assimilation should be observable in other monogenetic eruptions, particularly

  16. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  17. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  18. Final report - Magma Energy Research Project

    SciT

    Colp, J.L.

    1982-10-01

    Scientific feasibility was demonstrated for the concept of magma energy extraction. The US magma resource is estimated at 50,000 to 500,000 quads of energy - a 700- to 7000-yr supply at the current US total energy use rate of 75 quads per year. Existing geophysical exploration systems are believed capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled well into buried molten rock at temperatures up to 1100/sup 0/C. Engineering materials compatiblemore » with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments. Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations. Downhole heat extraction equipment was designed, built, and demonstrated successfully in buried molten rock and in the very hot margins surrounding it. Two methods of generating gaseous fuels in the high-temperature magmatic environment - generation of H/sub 2/ by the interaction of water with the ferrous iron and H/sub 2/, CH/sub 4/, and CO generation by the conversion of water-biomass mixtures - have been investigated and show promise.« less

  19. Zinc isotope systematics of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, X. C.; Huang, F.; Yu, H.

    2016-12-01

    Subduction-zone magmas are generated by partial melting of mantle wedge triggered by addition of fluids derived from subducted hydrothermally altered oceanic lithosphere. Source of the fluids may be sediment, altered oceanic crust and serpentinized peridotite/serpentinite. Knowledge of the exact fluid source can facilitate our better understanding of the mechanism of fluid flux, element cycling and crust-mantle interaction in subduction zones. Zinc isotopes have the potential to place a constraint on this issue, because (1) Zn has an intermediate mobility during fluid-rock interaction and is enriched in subduction-zone fluids (e.g., Li et al., 2013); (2) sediment, altered oceanic crust and serpentinite have distinct Zn isotopic compositions (Pons et al., 2011); and (3) the mantle has a homogeneous Zn isotope composition (δ66Zn = 0.28 ± 0.05‰, Chen et al., 2013). Thus, the Zn isotopic composition of subduction-zone magmas reflects the characteristics of slab-derived fluids of different sources. Here, high-precision Zn isotope analyses were conducted on igneous rocks from arcs of Central America, Kamchatka, South Lesser Antilles, and Aleutian. One rhyolite with 75.1 wt.% SiO2 and 0.2 wt.% FeOT displays the heaviest δ66Zn value of 0.394‰ (relative to JMC Lyon) that probably results from the crystallization of Fe-Ti oxides during the late-stage differentiation. The rest of rocks have Zn isotopic compositions (0.161 to 0.339‰) similar to or lighter than those of the mantle. In an individual arc, the δ66Zn values of rocks show broad negative correlations with Ba/Th and 87Sr/86Sr ratios, suggesting that the slab-derived fluids should have lighter δ66Zn as well as higher Ba/Th and 87Sr/86Sr ratios relative to the mantle. These features are in accordance with those of serpentinites. Thus, addition of serpentinite-derived 66Zn-depleted fluids into the mantle wedge can explain the declined δ66Zn of subduction-zone magmas. ReferenceChen et al. (2013) EPSL 369

  20. Slab melting and magma formation beneath the southern Cascade arc

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  1. Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Oglialoro, E.; Frezzotti, M. L.; Ferrando, S.; Tiraboschi, C.; Principe, C.; Groppelli, G.; Villa, I. M.

    2017-10-01

    At active volcanoes, petrological studies have been proven to be a reliable approach in defining the depth conditions of magma transport and storage in both the mantle and the crust. Based on fluid inclusion and mineral geothermobarometry in mantle xenoliths, we propose a model for the magma plumbing system of the Island of El Hierro (Canary Islands). The peridotites studied here were entrained in a lava flow exposed in the El Yulan Valley. These lavas are part of the rift volcanism that occurred on El Hierro at approximately 40-30 ka. The peridotites are spinel lherzolites, harzburgites, and dunites which equilibrated in the shallow mantle at pressures between 1.5 and 2 GPa and at temperatures between 800 and 950 °C (low-temperature peridotites; LT), as well as at higher equilibration temperatures of 900 to 1100 °C (high-temperature peridotites; HT). Microthermometry and Raman analyses of fluid inclusions reveal trapping of two distinct fluid phases: early type I metasomatic CO2-N2 fluids ( X N2 = 0.01-0.18; fluid density (d) = 1.19 g/cm3), coexisting with silicate-carbonate melts in LT peridotites, and late type II pure CO2 fluids in both LT (d = 1.11-1.00 and 0.75-0.65 g/cm3) and HT ( d = 1.04-1.11 and 0.75-0.65 g/cm3) peridotites. While type I fluids represent metasomatic phases in the deep oceanic lithosphere (at depths of 60-65 km) before the onset of magmatic activity, type II CO2 fluids testify to two fluid trapping episodes during the ascent of xenoliths in their host mafic magmas. Identification of magma accumulation zones through interpretation of type II CO2 fluid inclusions and mineral geothermobarometry indicate the presence of a vertically stacked system of interconnected small magma reservoirs in the shallow lithospheric mantle between a depth of 22 and 36 km (or 0.67 to 1 GPa). This magma accumulation region fed a short-lived magma storage region located in the lower oceanic crust at a depth of 10-12 km (or 0.26-0.34 GPa). Following our model

  2. Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors

    NASA Astrophysics Data System (ADS)

    Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.

    2014-12-01

    The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351

  3. Physiopathological Hypothesis of Cellulite

    PubMed Central

    de Godoy, José Maria Pereira; de Godoy, Maria de Fátima Guerreiro

    2009-01-01

    A series of questions are asked concerning this condition including as regards to its name, the consensus about the histopathological findings, physiological hypothesis and treatment of the disease. We established a hypothesis for cellulite and confirmed that the clinical response is compatible with this hypothesis. Hence this novel approach brings a modern physiological concept with physiopathologic basis and clinical proof of the hypothesis. We emphasize that the choice of patient, correct diagnosis of cellulite and the technique employed are fundamental to success. PMID:19756187

  4. Are the Clast Lithologies Contained in Lunar Breccia 64435 Mixtures of Anorthositic Magmas

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Mittlefehldt, D. W.; Peng, Z. X.; Nyquist, L. E.; Shih, C.-Y.; Yamaguchi, A.

    2015-01-01

    The anorthositic crust of the Moon is often used as the archtypical example of a primary planetary crust. The abundance and purity of anorthosite in the Apollo sample collection and remote sensing data are generally attributed to an early global magma ocean which produced widespread floating plagioclase cumulates (the ferroan anorthosites; FANs. Recent geochronology studies report evidence of young (less than 4.4 Ga) FAN ages, which suggest that either some may not be directly produced from the magma ocean or that the final solidification age of the magma ocean was younger than previous estimates. A greater diversity of anorthositic rocks have been identified among lunar meteorites as compared to returned lunar samples. Granted that these lithologies are often based on small clasts in lunar breccias and therefore may not represent their actual whole rock composition. Nevertheless, as suggested by the abundance of anorthositic clasts with Mg# [Mg/(Mg+Fe)] less than 0.80 and the difficulty of producing the extremely high plagioclase contents observed in Apollo samples and the remote sensing data, modification of the standard Lunar Magma Ocean (LMO) model may be in order. To ground truth mission science and to further test the LMO and other hypotheses for the formation of the lunar crust, additional coordinated petrology and geochronology studies of lunar anorthosites would be informative. Here we report new mineral chemistry and trace element geochemistry studies of thick sections of a composite of FAN-suite igneous clasts contained in the lunar breccia 64435 in order to assess the significance of this type of sample for petrogenetic studies of the Moon. This work follows recent isotopic studies of the lithologies in 64435 focusing on the same sample materials and expands on previous petrology studies who identified three lithologies in this sample and worked on thin sections.

  5. Life Origination Hydrate Hypothesis (LOH-Hypothesis)

    PubMed Central

    Ostrovskii, Victor; Kadyshevich, Elena

    2012-01-01

    The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis), according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides), DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor. PMID:25382120

  6. Elemental fingerprints of isotopic contamination of hebridean Palaeocene mantle-derived magmas by archaean sial

    NASA Astrophysics Data System (ADS)

    Thompson, R. N.; Dickin, A. P.; Gibson, I. L.; Morrison, M. A.

    1982-06-01

    5% and 10%. These estimates may be reconciled by postulating that the contaminants were large-fraction cotectic partial melts of Lewisian leucogneisses, leaving plagioclase residua. A corollary of this hypothesis is that it is necessary to postulate that the “magma chambers” where the sialic contamination occurred were, in fact, dykes or (more probably) sills. The very large surface-to-volume ratios of such magmas bodies would permit the systematic stripping, by partial melting, of the most-easily-fusible leucogneisses and pegmatites from the Lewisian crust, whilst failing to melt its major rock types. A present-day analogue to this situation may be the extensive sill-like magma bodies detected by geophysical methods within the continental crust beneath the Rio Grande Rift, southwestern U.S.A.

  7. The Nebular Hypothesis - A False Paradigm Misleading Scientists

    NASA Astrophysics Data System (ADS)

    Myers, L. S.

    2005-05-01

    Science has reached a turning point in history after being misled for 250 years by Immanuel Kant's nebular hypothesis, the most fundamental assumption in science. The nebular hypothesis assumes all nine planets were created 4.5 billion years ago (Ga) as molten bodies that cooled with the same size and chemical composition they have today. Reevaluation of the nebular hypothesis proves it has been wrong since its inception. The proof has lain in plain sight for centuries-coal beds that could not have existed at the assumed time of creation because they formed on Earth's surface after creation of the planet when forests and swamps were exposed to solar energy. The coal beds were subsequently buried under overburden accreted in later millennia, steadily increasing Earth's mass and diameter. The coal beds and layers of overburden are proof Earth was not created 4.5 Ga but is growing and expanding by accretion of extraterrestrial mass and core expansion-a process termed "Accreation" (creation by accretion). Each process accelerates over time, but internal expansion exceeds the rate of external accretion. Because the nebular hypothesis is erroneous researchers assumed Earth's diameter never changes, and, faced with the possibility the Earth might be expanding after the Atlantic basin was discovered to be widening, this assumption led to the unworkable concept of subduction to maintain a constant diameter Earth. Subduction will prove to be one of the greatest errors in the history of science. Nullification of the nebular hypothesis also nullifies subduction and rejuvenates Carey's earth expansion theory. Accreation provides Carey's missing energy source and mechanism of expansion. Expansion is proved by morphologic evidence today's continents were once a single planetary landmass on a smaller Earth when today's oceans, covering 70% of the planet, did not exist 200-250 Ma. Despite hundreds of tons of meteorites and dust known to accrete daily, its cumulative effect has been

  8. Radiographic visualization of magma dynamics in an erupting volcano.

    PubMed

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  9. Radiographic visualization of magma dynamics in an erupting volcano

    PubMed Central

    Tanaka, Hiroyuki K. M.; Kusagaya, Taro; Shinohara, Hiroshi

    2014-01-01

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures. PMID:24614612

  10. Rapid Crystallization of the Bishop Magma

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  11. Magma genesis in the lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C. J.; Powell, M.

    1980-12-01

    143Nd/ 144Nd, 87Sr/ 86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [ 2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas. Along the arc 87Sr/ 86Sr ratios range from 0.7037 on St. Kitts, to 0.7041-0.7047 on Dominica, and 0.7039-0.7058 on Grenada [ 5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths. 143Nd/ 144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264-0.51308 on Grenada [ 5], and all these samples have relatively high 87Sr/ 86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and 87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.

  12. Attenuation in gas-charged magma

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J. W.; Lensky, N.; Lyakhovsky, V.; Navon, O.

    2006-05-01

    Low frequency seismic events observed on volcanoes, such as Soufriere Hills Volcano, Montserrat, are thought to be caused by a resonating system. The modelling of seismic waves in gas-charged magma is critical for the understanding of seismic resonance effects in conduits, dykes and cracks. Seismic attenuation, which depends mainly on magma viscosity, gas and crystal content, is an essential factor in such modelling attempts. So far only two-phase gas-melt systems with the assumption of no diffusion and transport of volatiles between the melt and the gas bubbles have been considered. In this study, we develop a method of quantifying attenuation within gas-charged magma, including the effects of diffusion and exsolution of gas into the bubbles. The results show that by including such bubble growth processes attenuation levels are increased within magma. The resulting complex behaviour of attenuation with pressure and frequency indicates that two factors are controlling attenuation, the first due to viscous hindrance or the melt, and the second due diffusion processes. The level of attenuation within a gas-charged magma conduit suggests an upper limit on the length of a resonating conduit section of just a few hundred meters.

  13. Multiple Magma Batches Recorded in Tephra Deposits from the Toba Complex, Sumatra.

    NASA Astrophysics Data System (ADS)

    Pearce, N. J. G.; Westgate, J.; Gatti, E.

    2015-12-01

    The Toba Caldera Complex is the largest Quaternary caldera on Earth, and has generated three voluminous and compositionally similar rhyolitic tuffs, viz. the Oldest (OTT, 800 ka), Middle (MTT, ~500 ka) and Youngest Toba Tuffs (YTT, 75 ka). These tephra deposits are widespread across Indonesia, Malaysia, South China Sea, Sea of Bengal, India and Indian Ocean and provide useful stratigraphic markers in oceanic, lacustrine and terrestrial environments. Single shard trace element analysis of these deposits reveals the changing availability of different batches of magma through time, with Sr, Ba and Y contents defining 5 discrete magma populations in YTT, 4 populations in MTT and only a single, low Ba population in OTT. Within an individual eruption these populations are clearly distinct, but between eruptions (e.g. MTT and YTT) some of these populations overlap while others do not, indicating both the longevity (and/or continuous supply of fresh material) and evolution of these magma batches in the Toba Complex. Major element compositions of the different groups show equilibration at different pressures (based on Q'-Ab'-Or'), with the equilibration of low Ba populations at ~160 MPa, increasing to depths of ~210 MPa for the highest Ba population. The proportions of different populations of glass in distal YTT shows that relatively little of the high Ba population makes it into the distal record across India, and that this population appears to be over-represented in the proximal free glass and pumice from the caldera walls. This data may shed light on magma availability and tephra dispersal during the YTT eruption. Similarly, the glass composition of individual pumices from proximal deposits record regional, compositional and temporal differences in the erupted products. These show, for example, the apparent mingling of some of the magma batches and also that the high Ba population appears early (i.e. stratigraphically lower) in the northern caldera wall.

  14. Magma Fertility is the First-Order Factor for the Formation of Porphyry Cu±Au Deposits

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Campbell, I. H.; Malaviarachchi, S. P. K.; Cocker, H.; Nakamura, E.; Kay, S. M.

    2017-12-01

    Magma fertility, the metal abundance in magma, has been considered to be one of the key factors for the formation of porphyry Cu±Au deposits. In this study we provide clear evidence to support the hypothesis that the platinum group element (PGE) can be used to distinguish barren from ore-bearing Cu±Au felsic suites. We determined the PGE contents of three barren volcanic and subvolcanic suites from Argentina and Japan, and compare the results with two porphyry Cu-bearing subvolcanic suites from Chile and two porphyry Cu-Au-bearing suites from Australia. The barren suites are significantly depleted in PGE abundances by the time of fluid exsolution, which is attributed to early sulfide saturation at mid to lower crust depths or assimilation of chalcophile element-poor crustal materials. Barren magma, produced by melting continental crust, may have been initially deficient in chalcophile elements. In contrast, the Cu±Au ore-bearing suites contain at least an order of magnitude higher PGE contents than those of the barren suites by the time of fluid saturation. They are characterized by late sulfide saturation in a shallow magma chamber, which allows the chalcophile elements to concentrate in the fractionating magma from which they are sequestered by ore-forming fluids. We suggest the Pd/MgO and Pd/Pt ratios of igneous rocks can be used as magma fertility indicators, and to distinguish between barren, porphyry Cu and porphyry Cu-Au magmatic systems.

  15. Vesiculation of basaltic magma during eruption

    Mangan, Margaret T.; Cashman, Katharine V.; Newman, Sally

    1993-01-01

    Vesicle size distributions in vent lavas from the Pu'u'O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (≤120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events ⋅ cm-3 ⋅ s-1 and growth rates of 3.2 x 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. This empirical approach is not subject to the limitations inherent in classical nucleation and growth theory and provides the first direct measurement of vesiculation kinetics in natural settings. In addition, perturbations in the measured size distributions are used to examine bubble escape, accumulation, and coalescence prior to the eruption of magma.

  16. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  17. Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture

    SciT

    Sanfilippo, Antonio P; Cowell, Andrew J; Gregory, Michelle L

    Hypothesis analysis methods, hypothesis analysis devices, and articles of manufacture are described according to some aspects. In one aspect, a hypothesis analysis method includes providing a hypothesis, providing an indicator which at least one of supports and refutes the hypothesis, using the indicator, associating evidence with the hypothesis, weighting the association of the evidence with the hypothesis, and using the weighting, providing information regarding the accuracy of the hypothesis.

  18. Magma wagging and whirling in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  19. A specific hygiene hypothesis.

    PubMed

    Shunsheng Han, Cliff

    2016-08-01

    Allergic diseases have reached epidemic proportions in Western populations in the last several decades. The hygiene hypothesis proposed more than twenty years ago has helped us to understand the epidemic and has been verified with numerous studies. However, translational measures deduced from these studies to prevent allergic diseases have not proven effective. Recent studies on immigrants' allergies and any potential association between oral infection and allergic diseases prompt me to propose a specific hygiene hypothesis to explain how oral hygiene practices might have contributed to the uprising of hay fever, the most common allergic disease. The historic oral hygiene level in US is closely associated with the emerging allergic epidemic. Future studies to test the hypothesis are needed and verification of the hypothesis can potentially yield highly effective measures to prevent allergic diseases. Published by Elsevier Ltd.

  20. Iron Redox Systematics of Martian Magmas

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  1. Unusual Iron Redox Systematics of Martian Magmas

    NASA Technical Reports Server (NTRS)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  2. Probing magma reservoirs to improve volcano forecasts

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  3. Volcanology: Look up for magma insights

    Segall, Paul; Anderson, Kyle

    2014-01-01

    Volcanic plumes can be hazardous to aircraft. A correlation between plume height and ground deformation during an eruption of Grímsvötn Volcano, Iceland, allows us to peer into the properties of the magma chamber and may improve eruption forecasts.

  4. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  5. Io: Loki Patera as a Magma Sea

    NASA Technical Reports Server (NTRS)

    Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C.

    2006-01-01

    We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (approx.540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 x 10(exp 6) kg per second, with a total solidified volume averaging 100 cu km per year. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera's SW quadrant toward the NE at a rate of approx.1 km per day. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a 'heat deficit' which promotes the solidification of additional magma onto the sinking plate ("bulking up"). In the limiting case, the mass of sinking material can increase to a mass of approx.3 times that of the foundering plate. With all this solid matter sinking, there is a compensating upward motion in the liquid magma. This can be in excess of 2 m per year. In this manner, solid-liquid convection is occurring in the sea.

  6. 210Pb-226Ra disequilibria in young gas-laden magmas

    NASA Astrophysics Data System (ADS)

    Reagan, Mark; Turner, Simon; Handley, Heather; Turner, Michael; Beier, Christoph; Caulfield, John; Peate, David

    2017-03-01

    We present new 238U-230Th-226Ra-210Pb and supporting data for young lavas from southwest Pacific island arcs, Eyjafjallajökull, Iceland, and Terceira, Azores. The arc lavas have significant 238U and 226Ra excesses, whereas those from the ocean islands have moderate 230Th and 226Ra excesses, reflecting mantle melting in the presence of a water-rich fluid in the former and mantle melting by decompression in the latter. Differentiation to erupted compositions in both settings appears to have taken no longer than a few millennia. Variations in the (210Pb/226Ra)0 values in all settings largely result from degassing processes rather than mineral-melt partitioning. Like most other ocean island basalts, the Terceira basalt has a 210Pb deficit, which we attribute to ~8.5 years of steady 222Rn loss to a CO2-rich volatile phase while it traversed the crust. Lavas erupted from water-laden magma systems, including those investigated here, commonly have near equilibrium (210Pb/226Ra)0 values. Maintaining these equilibrium values requires minimal persistent loss or accumulation of 222Rn in a gas phase. We infer that degassing during decompression of water-saturated magmas either causes these magmas to crystallize and stall in reservoirs where they reside under conditions of near stasis, or to quickly rise towards the surface and erupt.

  7. Sea otter health: challenging a pet hypothesis

    Lafferty, Kevin D.

    2015-01-01

    A recent series of studies on tagged sea otters (Enhydra lutris nereis) challenges the hypothesis that sea otters are sentinels of a dirty ocean, in particular, that pet cats are the main source of exposure to Toxoplasma gondii in central California. Counter to expectations, sea otters from unpopulated stretches of coastline are less healthy and more exposed to parasites than city-associated otters. Ironically, now it seems that spillover from wildlife, not pets, dominates spatial patterns of disease transmission.

  8. Sea otter health: Challenging a pet hypothesis

    PubMed Central

    Lafferty, Kevin D.

    2015-01-01

    A recent series of studies on tagged sea otters (Enhydra lutris nereis) challenges the hypothesis that sea otters are sentinels of a dirty ocean, in particular, that pet cats are the main source of exposure to Toxoplasma gondii in central California. Counter to expectations, sea otters from unpopulated stretches of coastline are less healthy and more exposed to parasites than city-associated otters. Ironically, now it seems that spillover from wildlife, not pets, dominates spatial patterns of disease transmission. PMID:26155464

  9. The gender similarities hypothesis.

    PubMed

    Hyde, Janet Shibley

    2005-09-01

    The differences model, which argues that males and females are vastly different psychologically, dominates the popular media. Here, the author advances a very different view, the gender similarities hypothesis, which holds that males and females are similar on most, but not all, psychological variables. Results from a review of 46 meta-analyses support the gender similarities hypothesis. Gender differences can vary substantially in magnitude at different ages and depend on the context in which measurement occurs. Overinflated claims of gender differences carry substantial costs in areas such as the workplace and relationships. Copyright (c) 2005 APA, all rights reserved.

  10. Magma differentiation in volcanic conduits - the clinopyroxenite body of Fuerteventura (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Tornare, Evelyne; Bussy, François

    2014-05-01

    Fractionation processes and magma differentiation/mixing occur at various levels during magma transportation through the crust. These processes are usually thought to occur in magmatic chambers or reservoirs into which magma stagnates before continuing to ascent and/or erupt. Here we discuss dynamic fractionation and magma differentiation processes in the plumbing system of an ocean island volcano. Fuerteventura, Canary Island, allows insight into the root-zone of an alkaline ocean island volcano. The PX1 pluton is a 22 Ma-old vertically layered mafic intrusion emplaced at ca. 0.1 GPa. This body shows large- and small-scale alternations of cumulate assemblages evolving from ol-rich wehrlite to clinopyroxenite to gabbro. These cumulates are intruded by numerous dykes of various compositions and veins of more evolved melt. Dykes, veins, and the large scale lithological variations define a general NNE-SSW vertical layering within the pluton. In some areas free of layering, numerous wehrlitic and clinopyroxenitic enclaves appear in a slightly more evolved matrix revealing clear mixing features of crystal mushes. Neither horizontal layering nor marginal facies are observed within PX1. Thus, clinopyroxenites do not represent accumulation of crystals through gravitational settling in a magma chamber. Compositions of cpx define a clear differentiation trend among all lithologies, from sp-bearing dunite (average cpx mg#: 85.99) to plg-ol- or kst-clinopyroxenites (mg#: 75.4). Chemically zoned cpx are present in all coarse-grained lithologies. They are characterised by a rather primitive resorbed core (higher Cr and Mg content), surrounded by a more evolved rim (higher Ti, Al and REE contents, similar to cpx in the matrix). Rims sometimes preserve clear oscillatory zoning and resorbtion features. Cores are interpreted as inherited crystals from deeper levels, whereas rims are considered to have crystallized at the final emplacement level in the root zone of the volcano. We

  11. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Bindeman, Ilya N.; Barth, Andrew P.

    2011-10-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions.

  12. Gabbroic xenoliths from the northern Gorda Ridge: implications for magma chamber processes under slow spreading centers

    Davis, A.S.; Clague, D.A.

    1990-01-01

    Abundant gabbroic xenoliths in porphyritic pillow basalt were dredged from the northern Gorda Ridge. The host lava is a moderately fractionated, normal mid-ocean ridge basalt with a heterogeneous glass rind (Mg numbers 56-60). Other lavas in the vicinity range from near primary (Mg number 69) to fractionated (Mg number 56). On the basis of textures and mineral compositions, the xenoliths are divided into five types. The xenoliths are not cognate to the host lava, but they are genetically related. Chemistry of mineral phases in conjunction with textural features suggests that the xenoliths formed in different parts of a convecting magma chamber that underwent a period of closed system fractionation. The chamber was filled with a large proportion of crystalline mush when new, more primitive, and less dense magma was injected and mixed incompletely with the contents in the chamber, forming the hybrid host lava. -from Authors

  13. The Gender Similarities Hypothesis

    ERIC Educational Resources Information Center

    Hyde, Janet Shibley

    2005-01-01

    The differences model, which argues that males and females are vastly different psychologically, dominates the popular media. Here, the author advances a very different view, the gender similarities hypothesis, which holds that males and females are similar on most, but not all, psychological variables. Results from a review of 46 meta-analyses…

  14. Volcanic conduit failure as a trigger to magma fragmentation

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.

    2012-01-01

    In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.

  15. Experimental Study of Lunar and SNC Magmas

    NASA Astrophysics Data System (ADS)

    Rutherford, Malcolm J.

    2000-08-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. During the tenure of the present grant, we discovered a variety of metal blebs in the A17 orange glass. Some of these Fe-Ni metal blebs occur in the glass; others were found in olivine phenocrysts which we find make up about 2 vol % of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption. They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. In an Undergraduate senior thesis project, Nora Klein discovered a melt inclusion that remained in a glassy state in one of the olivine phenocrysts. Analyses of this inclusion gave additional information on the CO2, CO and S contents of the orange glass magma prior to its reaching the lunar surface. The composition of lunar volcanic gases has long been one of the puzzles of lunar magmatic processes. One of the more exciting findings in our research over the past year has been the study of magmatic processes linking the SNC meteorite source magma composition with the andesitic composition rocks found at the Pathfinder site. In this project, graduate student Michelle Minitti showed that there was a clear petrologic link between these two magma types via fractional removal of crystals from the SNC parent melt, but the process only worked if there was at least 1 wt

  16. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2000-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. During the tenure of the present grant, we discovered a variety of metal blebs in the A17 orange glass. Some of these Fe-Ni metal blebs occur in the glass; others were found in olivine phenocrysts which we find make up about 2 vol % of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption. They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. In an Undergraduate senior thesis project, Nora Klein discovered a melt inclusion that remained in a glassy state in one of the olivine phenocrysts. Analyses of this inclusion gave additional information on the CO2, CO and S contents of the orange glass magma prior to its reaching the lunar surface. The composition of lunar volcanic gases has long been one of the puzzles of lunar magmatic processes. One of the more exciting findings in our research over the past year has been the study of magmatic processes linking the SNC meteorite source magma composition with the andesitic composition rocks found at the Pathfinder site. In this project, graduate student Michelle Minitti showed that there was a clear petrologic link between these two magma types via fractional removal of crystals from the SNC parent melt, but the process only worked if there was at least 1 wt

  17. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity

    Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp

    2012-01-01

    Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic

  18. The location and timing of magma degassing during Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.

    2014-12-01

    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  19. The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas

    NASA Astrophysics Data System (ADS)

    Luffi, P. I.; Lee, C.

    2012-12-01

    It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and

  20. El Hierro's floating stones as messengers of crust-magma interaction at depth

    NASA Astrophysics Data System (ADS)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up

  1. Europium anomalies in plagioclase-free deep arc cumulates constrain the redox evolution of arc magmas

    NASA Astrophysics Data System (ADS)

    Tang, M.; Erdman, M.; Eldridge, G.; Lee, C. T.

    2017-12-01

    Arc lavas are generally more oxidized than mid-ocean-ridge basalts, but how arc lavas acquire their oxidized signatures remains poorly understood. Iron oxidation state in melts have been used to suggest that fluids released from subducted slab may oxidize the sub-arc mantle and produce oxidized arc magmas from the source (e.g., Carmichael, 1991; Kelley and Cottrell), but redox-sensitive trace element and Fe isotope signatures of basalts also suggest that oxidation may happen during magma differentiation (e.g., Dauphas et al., 2009; Lee et al., 2005, 2010). One potential problem, however, is that all of these studies, represent indirect constraints on the primary, pre-erupted magma oxidation state. Here, we examine the Eu systematics of primitive, deep-seated (>45-80 km) arc cumulates, which provide the most direct constraint on arc magmas before they rise into the crust. The ratio of Eu2+/Eu3+ is a function of fo2, temperature and composition. Eu2+ is more incompatible than Eu3+ except in plagioclase. Combining Eu partitioning in minerals and experimentally calibrated Eu oxybarometer (Burnham et al., 2015) allows the application of mineral Eu anomalies in constraining magma redox conditions. The cumulates are represented by garnet-bearing pyroxenites from Arizona, USA and are arc cumulates. Because they derive from depths > 60 km, plagioclase was never present during their petrogenesis, hence any Eu anomalies reflect the effects of oxygen fugacity. We find that the most primitive cumulates have negative Eu anomalies in garnet and clinopyroxene (Eu/Eu*<1), despite the fact that depths of differentiation were too high to stabilize plagioclase. We further show that garnet and clinopyroxene Eu/Eu* increases with differentiation (decreasing Mg#), consistent with Eu2+ being more incompatible than Eu3+. Based on the Eu oxybarometer calibrated by Burnham et al. (2015), the Eu deficits in the most primitive cumulate (Mg# = 77) suggest crystallization at Dlogfo2 of FMQ-1

  2. Illuminating magma shearing processes via synchrotron imaging

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  3. Transient rheology of crystallizing andesitic magmas

    NASA Astrophysics Data System (ADS)

    de Biasi, L. J.; Chevrel, M. O.; Hanson, J. B.; Cimarelli, C.; Lavallée, Y.; Dingwell, D. B.

    2012-04-01

    The viscosity of magma strongly influences its rheological behaviour, which is a key determinant of magma transport processes and volcanic eruptions. Understanding the factors controlling the viscosity of magma is important to our assessment of hazards posed by active volcanoes. In nature, magmas span a very wide range in viscosity (10-1 to 1014 Pa s), depending on chemical composition (including volatile content), temperature, and importantly, crystal fraction, which further induces a complex strain rate dependence (i.e. non-Newtonian rheology). Here, we present results of transient viscosities of a crystallizing andesitic melt (57 wt.% SiO2) from Tungurahua volcano (Ecuador). We followed the experimental method developed by Vona et al. (2011) for the concentric cylinder apparatus, but optimized its implementation by leaving the spindle in situ before quenching the experimental products, to preserve the complete developed texture of the sample. The viscosity is investigated under super-liquidus (1400 ° C) and sub-liquidus temperatures (1162 and 1167 ° C). For each temperature increment, thermal equilibrium is achieved over a period of days while the spindle constantly stirs the magma. Simultaneous monitoring of the torque is used to calculate the apparent viscosity of the transient suspension. To get a better understanding of the nucleation and crystal growth processes that are involved at sub-liquidus conditions, further time-step experiments were carried out, where the samples were quenched at various equilibration stages. The mineralogical assemblage, as well as the crystal fraction, distribution and preferential alignment were then quantitatively analyzed. At temperatures below the liquidus, the suspension shows a progressive, but irregular increase of the relative shear viscosity. First, the viscosity slightly increases, possibly due to the crystallization of small, equant oxides and the formation of plagioclase nuclei. After some time (1.5-2.5 days

  4. Insights Into Magma Ascent During Shallow-Level Crustal Shortening From Magnetic Fabrics of the Philipsburg Batholith, SW Montana

    NASA Astrophysics Data System (ADS)

    Naibert, T. J.; Geissman, J. W.

    2007-12-01

    Latest Cretaceous development of the Sevier fold and thrust belt in SW Montana overlapped spatially with silicic magmatism. In the fold thrust belt, large volumes of magma were emplaced well east of the main magmatic arc, now exposed as the Idaho Batholith. Hypothesized mechanisms for emplacement of magma within the overthrust belt often involve magma ascent along shallow, west-dipping faults. The ~ 74 Ma (K-Ar method) Philipsburg Batholith is a 122 km2 tabular granodiorite emplaced into deformed Precambrian Belt Supergroup through Cretaceous strata. The Philipsburg Batholith lies in the upper plate of the Georgetown- Princeton Thrust, NW of Anaconda, Montana and cross-cuts two other previously mapped faults. Anisotropy of magnetic susceptibility (AMS) measurements of 122 sites from the Philipsburg Batholith define magnetic foliations and/or lineations to test magma ascent along the Georgetown-Princeton Thrust. AMS fabrics in the Philipsburg Batholith, dominantly defined by magnetite, are generally oblate or triaxial and are typically very consistent at the site level. Preliminary fabric data show subhorizontal foliations across most of the batholith, with steeply dipping foliations near the margins and a minor increase in foliation dip near the inferred fault trace. The hypothesis of magma ascent along fault surfaces will be supported if further data confirm the concentration of relatively steep foliation orientations across the trace of the Georgetown-Princeton thrust.

  5. Pressure waves in a supersaturated bubbly magma

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  6. Yamato 980459: Crystallization of Martian Magnesian Magma

    NASA Technical Reports Server (NTRS)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  7. Bayesian Hypothesis Testing

    SciT

    Andrews, Stephen A.; Sigeti, David E.

    These are a set of slides about Bayesian hypothesis testing, where many hypotheses are tested. The conclusions are the following: The value of the Bayes factor obtained when using the median of the posterior marginal is almost the minimum value of the Bayes factor. The value of τ 2 which minimizes the Bayes factor is a reasonable choice for this parameter. This allows a likelihood ratio to be computed with is the least favorable to H 0.

  8. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  9. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  10. Mafic intrusion remobilising silicic magma under El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.; Laporte, D.; Marti, J.; Devouard, B.; Cluzel, N.

    2012-04-01

    elevated incompatible element concentrations and primitive mantle normalised spectra characteristic for the Canary Island basanites (e.g. La is of 100 times higher concentration than primitive mantle with important LREE enrichments). In contrast, the trace element composition of the alkali rhyolite shows surprisingly low concentrations for all elements except the most incompatible ones (such as Rb, Ba, K and Th). All other measured incompatible LILE, HFSE and REE have significantly lower concentration than the basanitic counterpart. This differences increase with the atomic number of the REE reaching maximum for the MREE and thus forming an intriguing U-shaped rhyolite spectra. Furthermore, unusual U-depletion is observed in the rhyolite. Other negative spikes, such as those for Sr and P, are readily accounted for by the removal of plagioclase and apatite during magma evolution from a basanite to a more evolved melt. The results obtained so far suggest an intrusion of gas-rich basanitic melt at the base of an evolved intrusion remobilising a stagnant phonolitic melt present as late differentiate in the crust. Interaction with old oceanic crust and the volcanic edifice can be quantified and shown to have modified the phonolite melt composition and produced the alkali rhyolitic composition of the white floating pumice. Extensive gas exsolution shortly before the melt-glass transition explains the foam texture and the low volatile concentrations in the quenched alkali rhyolite.

  11. Magma deformation and emplacement in rhyolitic dykes

    NASA Astrophysics Data System (ADS)

    McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter

    2016-04-01

    Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle

  12. Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior

    NASA Astrophysics Data System (ADS)

    Leventhal, Janet A.; Reid, Mary R.; Montana, Art; Holden, Peter

    1995-05-01

    Mafic and ultramafic xenoliths entrained in lavas of the Cima volcanic field have Nd and Sr isotopic ratios indicative of a source similar to that of mid-ocean ridge basalt (MORB). Nd and Sr internal isochrons demonstrate a Late Cretaceous intrusion age. These results, combined with evidence for emplacement in the lower crust and upper mantle, indicate invasion of the lower crust by asthenospheric magmas in the Late Cretaceous. Constituting the first prima facie evidence for depleted-mantle magmatism in the Basin and Range province prior to late Cenozoic volcanism, these results lend key support to models suggesting crustal heating by ascent of asthenosphere in the Mesozoic Cordilleran interior.

  13. The role of magmas in the formation of hydrothermal ore deposits

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  14. The influence of magma viscosity on convection within a magma chamber

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  15. From Purgatory to Paradise: The Volatile Life of Hawaiian Magma

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2014-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other

  16. Using magma flow indicators to infer flow dynamics in sills

    NASA Astrophysics Data System (ADS)

    Hoyer, Lauren; Watkeys, Michael K.

    2017-03-01

    Fabrics from Anisotropy of Magnetic Susceptibility (AMS) analyses and Shape Preferred Orientation (SPO) of plagioclase are compared with field structures (such as bridge structures, intrusive steps and magma lobes) formed during magma intrusion in Jurassic sills. This is to constrain magma flow directions in the sills of the Karoo Igneous Province along the KwaZulu-Natal North Coast and to show how accurately certain structures predict a magma flow sense, thus improving the understanding of the Karoo sub-volcanic dynamics. The AMS fabrics are derived from magnetite grains and are well constrained, however the SPO results are commonly steeply inclined, poorly constrained and differ to the AMS fabrics. Both techniques resulted in asymmetrical fabrics. Successful relationships were established between the AMS fabric and the long axes of the magma flow indicators, implying adequate magma flow prediction. However, where numerous sill segments merge, either in the form of magma lobes or bridge structures, the coalescence process creates a new fabric between the segments preserving late-stage magma migration between the merged segments, overprinting the initial magma flow direction.

  17. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  18. Outgassing From Open And Closed Magma Foams

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  19. Special Relativity Derived from Spacetime Magma

    PubMed Central

    Greensite, Fred

    2014-01-01

    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components and Euclidean which is consistent with an “inversion symmetry” constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of “inverse norms” which play major roles with respect to various unital -algebras more generally. PMID:24959889

  20. Special relativity derived from spacetime magma.

    PubMed

    Greensite, Fred

    2014-01-01

    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  1. Dynamics of differentiation in magma reservoirs

    NASA Astrophysics Data System (ADS)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition

  2. [Dilemma of null hypothesis in ecological hypothesis's experiment test.

    PubMed

    Li, Ji

    2016-06-01

    Experimental test is one of the major test methods of ecological hypothesis, though there are many arguments due to null hypothesis. Quinn and Dunham (1983) analyzed the hypothesis deduction model from Platt (1964) and thus stated that there is no null hypothesis in ecology that can be strictly tested by experiments. Fisher's falsificationism and Neyman-Pearson (N-P)'s non-decisivity inhibit statistical null hypothesis from being strictly tested. Moreover, since the null hypothesis H 0 (α=1, β=0) and alternative hypothesis H 1 '(α'=1, β'=0) in ecological progresses are diffe-rent from classic physics, the ecological null hypothesis can neither be strictly tested experimentally. These dilemmas of null hypothesis could be relieved via the reduction of P value, careful selection of null hypothesis, non-centralization of non-null hypothesis, and two-tailed test. However, the statistical null hypothesis significance testing (NHST) should not to be equivalent to the causality logistical test in ecological hypothesis. Hence, the findings and conclusions about methodological studies and experimental tests based on NHST are not always logically reliable.

  3. Evidence for magma mixing within the Laacher See magma chamber (East Eifel, Germany)

    Worner, G.; Wright, T.L.

    1984-01-01

    The final pyroclastic products of the late Quaternary phonolitic Laacher See volcano (East Eifel, W.-Germany) range from feldspar-rich gray phonolite to dark olivine-bearing rocks with variable amounts of feldspar and Al-augite megacrysts. Petrographically and chemically homogeneous clasts occur along with composite lapilli spanning the compositional range from phonolite (MgO 0.9%) to mafic hybrid rock (MgO 7.0%) for all major and trace elements. Both a basanitic and a phonolitic phenocryst paragenesis occur within individual clasts. The phonolite-derived phenocrysts are characterized by glass inclusions of evolved composition, rare inverse zoning and strong resorption indicating disequilibrium with the mafic hybrid matrix. Basanitic (magnesian) clinopyroxene and olivine, in contrast, show skeletal (normally zoned) overgrowths indicative of post-mixing crystallization. In accord with petrographical and other chemical evidence, mass balance calculations suggest mixing of an evolved Laacher See phonolite containing variable amounts of mineral cumulates and a megacryst-bearing basanite magma. Magma mixing occurred just prior to eruption (hours) of the lowermost magma layer of the Laacher See magma chamber but did not trigger the volcanic activity. ?? 1984.

  4. Subsystem eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Lashkari, Nima; Liu, Hong

    2018-01-01

    Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.

  5. The qualitative similarity hypothesis.

    PubMed

    Paul, Peter V; Lee, Chongmin

    2010-01-01

    Evidence is presented for the qualitative similarity hypothesis (QSH) with respect to children and adolescents who are d/Deaf or hard of hearing. The primary focus is on the development of English language and literacy skills, and some information is provided on the acquisition of English as a second language. The QSH is briefly discussed within the purview of two groups of cognitive models: those that emphasize the cognitive development of individuals and those that pertain to disciplinary or knowledge structures. It is argued that the QSH has scientific merit with implications for classroom instruction. Future research should examine the validity of the QSH in other disciplines such as mathematics and science and should include perspectives from social as well as cognitive models.

  6. Lead isotope constraints on the origin of andesite and dacite magmas at Tungurahua volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Nauret, Francois; Ancellin, Marie-Anne; Vlastelic, Ivan; Tournigand, Pierre-Yves; Samaniego, Pablo; Le Pennec, Jean Luc; Gannoun, Mouhcine; Hidalgo, Silvana; Schiano, Pierre

    2016-04-01

    Understanding the occurrence of large explosive eruptions involving silica-rich magmas at mostly andesitic volcanoes is crucial for volcanic hazard assessment Here we focus on the well-known active Tungurahua volcano (Ecuador), specifically its eruptive sequence for the last 3000 years BP, which are characterized by VEI 3 explosive events involving mostly homogeneous andesitic compositions (56-59 wt.% SiO2). However, some large eruptions (VEI ≥ 4) involving andesitic and dacitic magmas (up to 66 wt.% SiO2) also occur at 3000 BP, 1250 BP and 1886 AD. An additional outburst of siliceous magmas occurred during the last eruptive eruption of this volcano in 2006 [1]. Volcanic products at Tungurahua are described as been generated by a binary mixing between a silica-rich and a silica-poor end-member, but the origin of these components was not discussed [2]. Major, trace elements and Sr-Nd-Pb isotopes were used to investigate the genesis of the andesites and dacites. Andesites are heterogeneous in terms of Pb isotopes (206Pb/204Pb: 18.189-19.154, 207Pb/204Pb:15.658-15.696, 208Pb/204Pb: 38.752-38.918, 207Pb/206Pb: 0.8240-0.8275) but homogeneous in terms of major-trace element. Dacite are characterized by homogenous and low 207Pb/206Pb (0.8235±0.0001), very low Nb/U (1.97 to 4.49) and Ce/Pb (2.52-2.99) and high Th/La ratios (0.24 to 0.49). Triangular distribution of data in major element or trace element ratio vs. Pb isotopes plots suggests that at least three components control geochemical variability at Tungurahua. We interpret andesite compositions as reflecting mainly a deep mixture of two mantle components, with small addition of crustal material. We suggest that dacite results from a mixing between various andesite compositions and a larger amount of a contaminant derived from the volcanic basement of the Tungurahua made of late Cretaceous to Palaeogene oceanic plateau basalts and volcano-sedimentary rocks volcanic. Since andesite and dacite occur during the same

  7. The role of water in the petrogenesis of Marina trough magmas

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Newman, Sally

    1994-02-01

    Most variations in composition among primitive basalts from the Mariana back-arc trough can be explained by melting mixtures of an N-type mid-ocean ridge basalt (NMORB) mantle source and an H2O rich component, provided the degree of melting is positively and approximately linearly correlated with the proportion of the H2O-rich component in the mixture. We conclude that the degrees of melting by which Mariana trough magmas are generated increase from magmas similar to NMORB, through more H2O-enriched basalts, to 'arc-like' basalts, and that this increase is due to the lowering of the solidus of mantle peridotite that accompanies addition of the H2O-rich component. The H2O-rich component is likely to be ultimately derived from fluid from a subducting slab, but we propose that by the time fluids reach the source regions of Mariana trough basalts, they have interacted with sufficient mantle material that for all but the most incompatible of elements (with respect to fluid-mantle interaction), they are in equilibrium with the mantle. In contrast, fluids added to the source regions of Mariana island-arc magmas have typically interacted with less mantle and thus retain the signature of slab-derived fluids to varying degrees for all but the most compatible elements. Primitive Mariana arc basalts can be generated by melting mixtures of such incompletely exchanged slab-derived fluids and sources similar to NMORB-type mantle sources, but the degrees of melting are typically higher than those of Mariana trough NMORB and the sources have been variably depleted relative to the back-arc sources by previous melt extraction. This depletion may be related to earlier extraction of back-arc basin magmas or may evolve by repeated fluxing of the sources as fluid is continually added to them in the regions of arc magma generation. If fluid with partitioning behavior relative to the solid mantle similar to that deduced for the H2O-rich component involved in the generation of Mariana

  8. Continental crustal formation and recycling: Evidence from oceanic basalts

    NASA Technical Reports Server (NTRS)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  9. Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952

    NASA Astrophysics Data System (ADS)

    Wright, T. L.; Klein, F.

    2011-12-01

    We trace the evolution of Kilauea from the time of the first oral records of an explosive eruption in 1790 to the long eruption in Halemaumau crater in 1952. The establishment of modern seismic and geodetic networks in the early 1960s showed that eruptions and intrusions were fed from two magma sources beneath the summit at depths of 2-6 and ~1 km respectively (sources 1 and 2), and that seaward spreading of the south flank took place on a decollement at 10-12 km depth at the base of the Kilauea edifice. A third diffuse, pressure-transmitting magma system (source 3) between the shallow East rift zone and the decollement was also identified. We test the null hypothesis that the volcano has behaved similarly throughout its lifetime, and conclude that the null hypothesis is not met for the period preceding the 1952 summit eruption because of changes in magma supply rate and differences in ground deformation patterns. The western missionaries arriving at Kilauea in 1823 were confronted with a caldera-wide lava lake. Filling rates determined by visual observation correspond to magma supply rates that averaged more than 0.3 km3/yr prior to 1840 and declined to 1894, when lava disappeared altogether at Halemaumau crater. The Hawaiian Volcano Observatory (HVO) was established by Thomas A. Jaggar in 1912 adjacent to the Volcano House Hotel on the rim of Kilauea. Instrumental observation at HVO began using a seismometer that doubled as a tiltmeter. A 1912-1924 magma supply rate of 0.024 km3/yr agreed with the rate of filling of Kilauea caldera from 1840-1894. 1924 was a critical year. An intrusion that moved down Kilauea's East rift zone beginning in February culminated beneath the lower East rift zone in April. In May, explosive eruptions accompanied a dramatic draining of Halemaumau. Triangulation results between 1912 and 1921 showed uplift extending far beyond Kilauea caldera and an equally large regional subsidence occurred between 1921 and 1927. HVO tilt narrows the

  10. Magma volumes and storage in the middle crust

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Barnes, C. G.; Paterson, S. R.

    2015-12-01

    Quantifying magma volumes in magma plumbing systems is mostly done through geophysical means or based on volcanic eruptions. Detailed studies of plutons, however, are useful in revealing depths and evolving volumes of stored magmas over variable lifetimes of magma systems. Knowledge of the location, volume, and longevity of stored magma is critical for understanding where in the crust magmas attain their chemical signature, how these systems physically behave and how source, storage levels, and volcanoes are connected. Detailed field mapping, combined with single mineral geochemistry and geochronology of plutons, allow estimates of size and longevity of melt-interconnected magma batches that existed during the construction of magma storage sites. The Tuolumne intrusive complex (TIC) recorded a 10 myr magmatic history. Detailed maps of the major units in different parts of the TIC indicate overall smaller scale (cm- to <1 km) compositional variation in the oldest, outer Kuna Crest unit and mainly larger scale (>10 km) changes in the younger Half Dome and Cathedral Peak units. Mineral-scale trace element data from hornblende of granodiorites to gabbros from the Kuna Crest lobe show distinct hornblende compositions and zoning patterns. Mixed hornblende populations occur only at the transition to the main TIC. This compositional heterogeneity in the first 1-2 myr points to low volume magmatism resulting in smaller, discrete and not chemically interacting magma bodies. Trace element and Sr- and Pb-isotope data from growth zones of K-feldspar phenocrysts from the two younger granodiorites indicate complex mineral zoning, but general isotopic overlap, suggesting in-situ, inter-unit mixing and fractionation. This is supported by hybrid zones between units, mixing of zircon, hornblende, and K-feldspar populations and late leucogranites. Thus, magma body sizes increased later resulting in overall more homogeneous, but complexly mixing magma mushes that fractionated locally.

  11. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  12. Novel numerical techniques for magma dynamics

    NASA Astrophysics Data System (ADS)

    Rhebergen, S.; Katz, R. F.; Wathen, A.; Alisic, L.; Rudge, J. F.; Wells, G.

    2013-12-01

    We discuss the development of finite element techniques and solvers for magma dynamics computations. These are implemented within the FEniCS framework. This approach allows for user-friendly, expressive, high-level code development, but also provides access to powerful, scalable numerical solvers and a large family of finite element discretisations. With the recent addition of dolfin-adjoint, FeniCS supports automated adjoint and tangent-linear models, enabling the rapid development of Generalised Stability Analysis. The ability to easily scale codes to three dimensions with large meshes, and/or to apply intricate adjoint calculations means that efficiency of the numerical algorithms is vital. We therefore describe our development and analysis of preconditioners designed specifically for finite element discretizations of equations governing magma dynamics. The preconditioners are based on Elman-Silvester-Wathen methods for the Stokes equation, and we extend these to flows with compaction. Our simulations are validated by comparison of results with laboratory experiments on partially molten aggregates.

  13. Barium isotope geochemistry of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.

    2017-12-01

    Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore

  14. Soliton-mediated conduit flow: Deep Hawaiian magma migration

    NASA Astrophysics Data System (ADS)

    Ryan, M.; Stanley, B.

    2006-12-01

    Solitons have first-order attributes that include shape- and volume-conserving packets of fluid that migrate with characteristic wavelengths, amplitudes, wave numbers, and pulse durations. For ascent in dike-like magma- filled fractures, the soliton pulse duration is directly proportional to the conduit wall region viscosity and inversely proportional to the density contrast that drives the flow. Second-order effects that modify pathways include heat loss to conduit wall rocks, and progressive crystallization episodes along conduit walls. Long-lived (and intermediate duration) historical eruption episodes of Kilauea volcano, Hawai'i, include the 1959 Kilauea summit series at Kilauea Iki, the 1969-1974 series at Mauna Ulu and the 1983-to-present series at Pu'u `O'o-Kupaianaha. For each locale, the eruptions display a variable time-series in their erupted volumes, as well as fountain heights and vent flow rates. Inter-episode repose periods, however, often show broad regularity over extended periods. We suggest that these dynamics represent serendipitous windows into the characteristic system dynamics of deep magma migration beneath Hawai'i: all made possible by the chance clearance of mechanical obstructions allowing virtually open-system behavior. The rhythmic `beat' of eruptive episodes within a long-lived series (and their roughly regular repose periods) arise directly from the soliton migration mechanism. For non-summit locales such as Mauna Ulu and Pu'u `O'o-Kupaianaha, the fluid contents of the sub-caldera reservoir and the shallow molten rift zone core modulate the observed intrusion- eruption dynamics as volumetric displacements transmit down-rift the pressure pulses first felt beneath Halemaumau and the summit caldera. Analytic calculations of wave speed, wave length, batch volume, parcel shapes and repose periods reveal the dependence on material properties appropriate for Kilauea intrusions and eruptions. Analogue laboratory experiments using stiff

  15. Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile

    Singer, Brad S.; Andersen, Nathan L.; Le Mével, Hélène; Feigl, Kurt L.; DeMets, Charles; Tikoff, Basil; Thurber, Clifford H.; Jicha, Brian R.; Cardonna, Carlos; Córdova, Loreto; Gil, Fernando; Unsworth, Martyn J.; Williams-Jones, Glyn; Miller, Craig W.; Fierstein, Judith; Hildreth, Edward; Vazquez, Jorge A.

    2014-01-01

    Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics.

  16. The Bergschrund Hypothesis Revisited

    NASA Astrophysics Data System (ADS)

    Sanders, J. W.; Cuffey, K. M.; MacGregor, K. R.

    2009-12-01

    After Willard Johnson descended into the Lyell Glacier bergschrund nearly 140 years ago, he proposed that the presence of the bergschrund modulated daily air temperature fluctuations and enhanced freeze-thaw processes. He posited that glaciers, through their ability to birth bergschrunds, are thus able to induce rapid cirque headwall retreat. In subsequent years, many researchers challenged the bergschrund hypothesis on grounds that freeze-thaw events did not occur at depth in bergschrunds. We propose a modified version of Johnson’s original hypothesis: that bergschrunds maintain subfreezing temperatures at values that encourage rock fracture via ice lensing because they act as a cold air trap in areas that would otherwise be held near zero by temperate glacial ice. In support of this claim we investigated three sections of the bergschrund at the West Washmawapta Glacier, British Columbia, Canada, which sits in an east-facing cirque. During our bergschrund reconnaissance we installed temperature sensors at multiple elevations, light sensors at depth in 2 of the 3 locations and painted two 1 m2 sections of the headwall. We first emphasize bergschrunds are not wanting for ice: verglas covers significant fractions of the headwall and icicles dangle from the base of bödens or overhanging rocks. If temperature, rather than water availability, is the limiting factor governing ice-lensing rates, our temperature records demonstrate that the bergschrund provides a suitable environment for considerable rock fracture. At the three sites (north, west, and south walls), the average temperature at depth from 9/3/2006 to 8/6/2007 was -3.6, -3.6, and -2.0 °C, respectively. During spring, when we observed vast amounts of snow melt trickle in to the bergschrund, temperatures averaged -3.7, -3.8, and -2.2 °C, respectively. Winter temperatures are even lower: -8.5, -7.3, and -2.4 °C, respectively. Values during the following year were similar. During the fall, diurnal

  17. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    NASA Astrophysics Data System (ADS)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  18. Variations in magma transport recorded by plagioclase ultraphyric basalts: Preliminary results from SWIR, Blanco and Juan de Fuca

    NASA Astrophysics Data System (ADS)

    Lange, A.; Tepley, F. J.; Nielsen, R. L.; Burleigh, A. W.; Kent, A. J.

    2011-12-01

    Plagioclase ultraphyric basalts (PUBs) have been sampled at slow to intermediate spreading oceanic centers worldwide. PUBs contain >15% (often anorthitic) plagioclase phenocrysts, with plagioclase making up > 90% of the phenocryst mode. The petrogenesis of PUBs has traditionally been attributed to inclusion of plagioclase from the crystal mush below spreading ridges. However, the conditions under which this occurs and the process of crystal sorting remain an enigma. To build a more complete model for PUB formation, we compiled published major and trace element data from the literature and PetDB for MORBs containing >15% plagioclase phenocrysts. While there is a clear connection between spreading rate and the occurrence of PUBs (more common at slow and intermediate rate ridges), we find that PUBs have no preferred erupted glass compositions. Therefore, we conclude that the generation of PUBs is dominantly a physical process rather than related to a specific magma type. One of our primary goals is to use information from the population of plagioclase phenocrysts to understand PUB magma differentiation and transport processes. In situ major and trace element and 87Sr/86Sr isotopic data were collected for plagioclase and its host glass from samples at the Southwest Indian Ridge (SWIR), Blanco Transform, and the Juan de Fuca Ridge in order to understand the relationship between the phenocrysts and their host lava suite. The plagioclase megacrysts record contrasting magma storage and transport conditions at different spreading ridges. Crystals from a single sample are often isotopically distinct from the magma they reside in and may or may not be distinct from other crystals in the same sample. Lavas from the East Blanco depression contain plagioclase phenocrysts that are more radiogenic than their host glass. Additionally, plagioclase-hosted melt inclusions have chemical signals that are more evolved than the ambient glass. This demonstrates that the plagioclase

  19. The role of volatiles in magma chamber dynamics.

    PubMed

    Huppert, Herbert E; Woods, Andrew W

    2002-12-05

    Many andesitic volcanoes exhibit effusive eruption activity, with magma volumes as large as 10(7)-10(9) m(3) erupted at rates of 1-10 m(3) x s(-1) over periods of years or decades. During such eruptions, many complex cycles in eruption rates have been observed, with periods ranging from hours to years. Longer-term trends have also been observed, and are thought to be associated with the continuing recharge of magma from deep in the crust and with waning of overpressure in the magma reservoir. Here we present a model which incorporates effects due to compressibility of gas in magma. We show that the eruption duration and volume of erupted magma may increase by up to two orders of magnitude if the stored internal energy associated with dissolved volatiles can be released into the magma chamber. This mechanism would be favoured in shallow chambers or volatile-rich magmas and the cooling of magma by country rock may enhance this release of energy, leading to substantial increases in eruption rate and duration.

  20. Zircons reveal magma fluxes in the Earth's crust.

    PubMed

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  1. Can the composition and structure of the lower ocean crust and upper mantle be known without deep ocean drilling?

    NASA Astrophysics Data System (ADS)

    Dick, H.; Natland, J.

    2003-04-01

    , and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.

  2. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.

    2018-01-01

    Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.

  3. Factors controlling the structures of magma chambers in basaltic volcanoes

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, James W.

    1991-01-01

    The depths, vertical extents, and lateral extents of magma chambers and their formation are discussed. The depth to the center of a magma chamber is most probably determined by the density structure of the lithosphere; this process is explained. It is commonly assumed that magma chambers grow until the stress on the roof, floor, and side-wall boundaries exceed the strength of the wall rocks. Attempts to grow further lead to dike propagation events which reduce the stresses below the critical values of rock failure. The tensile or compressive failure of the walls is discussed with respect to magma migration. The later growth of magma chambers is accomplished by lateral dike injection into the country rocks. The factors controlling the patterns of growth and cooling of such dikes are briefly mentioned.

  4. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.

    2015-09-01

    Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation state

  5. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    PubMed

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  6. Mineralogy and composition of the oceanic mantle

    Putirka, Keith; Ryerson, F.J.; Perfit, Michael; Ridley, W. Ian

    2011-01-01

    The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300°C) related to the Hawaiian mantle plume. DNi is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where DNi is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1·5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2

  7. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  8. Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Kaus, Boris J. P.; Paterson, Scott

    2016-06-01

    We conducted a 2-D thermomechanical modeling study of intrusion of granitic magma into the continental crust to explore the roles of multiple pulsing and dike-diapir interactions in the presence of visco-elasto-plastic rheology. Multiple pulsing is simulated by replenishing source regions with new pulses of magma at a certain temporal frequency. Parameterized "pseudo-dike zones" above magma pulses are included. Simulation results show that both diking and pulsing are crucial factors facilitating the magma ascent and emplacement. Multiple pulses keep the magmatic system from freezing and facilitate the initiation of pseudo-dike zones, which in turn heat the host rock roof, lower its viscosity, and create pathways for later ascending pulses of magma. Without diking, magma cannot penetrate the highly viscous upper crust. Without multiple pulsing, a single magma body solidifies quickly and it cannot ascent over a long distance. Our results shed light on the incremental growth of magma chambers, recycling of continental crust, and evolution of a continental arc such as the Sierra Nevada arc in California.

  9. Inclusions of Sulphide Immiscible Melts in Primitive Olivine Phenocrysts from Mantle-Derived Magmas; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.

    2001-12-01

    Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have

  10. Magma mixing during caldera forming eruptions

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Jellinek, M.; Stix, J.

    2006-12-01

    During explosive caldera-forming eruptions magma erupts through a ring dyke. Flow is driven, in part, by foundering of a magma chamber roof into underlying buoyant magma. One intriguing and poorly understood characteristic of deposits from calderas is that bulk ignimbrite, pumices, and crystals can show complex stratigraphic zonation. We propose that zonation patterns can be explained by different, and temporally evolving subsidence styles, and that the geometry imposed by subsidence can affect flow and cause mixing in the chamber and ring dyke. We use two series of laboratory experiments to investigate aspects of the mixing properties of flow in the chamber and ring dike during caldera collapse. In the first series, cylindrical blocks of height, h, and diameter, d, are released into circular analog magma chambers of diameter D and height H, containing buoyant fluids with viscosities that we vary. Subsidence occurs as a result of flow through the annular gap (ring dike) between the block and the wall of the surrounding tank of width, w = D-d. Three dimensionless parameters characterize the nature and evolution of the subsidence, and the resulting flow: A Reynolds number, Re, a tilt number, T = w/h and a subsidence number, S = w/H. Whereas Re indicates the importance of inertia for flow and mixing, T and S are geometric parameters that govern the extent of roof tilting, the spatial variation in w during collapse and the wavelength and structure of fluid motions. On the basis of field observations and theoretical arguments we fix T ≍ 0.14 and characterize subsidence and the corresponding flow over a wide range of Re - S parameter space appropriate to silicic caldera systems. Where S < 2 and Re < 103 the roof can rotate or tilt as it sinks and a spectrum of fluid mechanical behavior within the ring dike are observed. The combination of roof rotation and tilting drives unsteady, 3D overturning motions within the ring dike that are inferred to cause extensive mixing

  11. Chemical diffusion during isobaric degassing of magma

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Kennedy, Ben M.; Lavallée, Yan; Henton-de Angelis, Sarah; Oze, Christopher; Morgan, Daniel J.; Clesham, Steve

    2014-05-01

    During ascent of magma, volatiles exsolve and bubbles form. Volatiles can either escape through a permeable network of bubbles in an open system or be trapped in non-connected pores during closed system degassing. Geochemical studies have shown that in most cases both- open system and closed system degassing take place at the same time. During cooling of the melt, diffusion slows down and eventually diffusional gradients get frozen in, preserving a history of degassing and rehydration during bubble growth, bubble collapse and crystal growth. We present data from experiments in which natural obsidian was degassed at atmospheric pressures at 950ºC over timescales of 3-24h. During bubble growth, a skin formed, at the outer edge of the sample, effectively prohibiting any degassing of its interior. Diffusion gradients were measured across the glass surrounding vesicles, and across this impermeable skin. Water contents were analyzed with synchrotron sourced Fourier transform infrared spectroscopy and several major, minor and trace elements were mapped using synchrotron sourced X-ray fluorescence spectroscopy. The samples show a dimpled surface, as well as signs of oxidation and growth of submicroscopic crystals. Water contents around bubbles decrease in simple heating experiments (from ~0.13 wt. % down to ~0.1 wt. %), whereas slight rehydration of the vesicle wall can be observed when a second, cooler step at 850ºC follows the initial 950ºC. Water gradients towards the outside of the sample decrease linearly to a minimum of ~0.045 wt. %, far below the solubility of water in melts at these temperatures. We mapped the distribution of K, Ca, Fe, Ti, Mn, Rb, Sr, Y and Zr. Especially the trace elements show a decrease towards the outside of the sample, whereas K, Fe, Ca and Ti generally do not show significant partitioning between melt and gas/crystal phase. Several effects could attribute to the distribution of these elements, such as the crystal growth and exchange with

  12. Magma-poor and magma-rich segments along the hyperextended, pre-Caledonian passive margin of Baltica

    NASA Astrophysics Data System (ADS)

    Andersen, Torgeir B.; Alsaif, Manar; Corfu, Fernando; Jakob, Johannes; Planke, Sverre; Tegner, Christian

    2015-04-01

    The Scandinavian Caledonides constitute a more than 1850 km long 'Himalayan-type' orogen, formed by collision between Baltica-Avalonia and Laurentia. Subduction-related magmatism in the Iapetus ended at ~430 Ma and continental convergence continued for ~30 Myr until ~400 Ma. The collision produced a thick orogenic wedge comprising the stacked remnants of the rifted to hyperextended passive Baltican margin (Andersen et al. 2012), as well as suspect, composite and outboard terranes, which were successively emplaced as large-scale nappe complexes onto Baltica during the Scandian collision (see Corfu et al. 2014 for a recent review). Large parts (~800 km) of the mountain-belt in central Scandinavia, particularly in the Särv and Seve Nappes and their counterparts in Troms, are characterised by spectacular dyke complexes emplaced into continental sediments (e.g. Svenningsen 2001, Hollocher et al. 2007). These constitute a magma-rich segment formed along the margin of Baltica or within hyperextended continental slivers outboard of Baltica. The intensity of the pre-Caledonian magmatism is comparable to that of the present NE-Atlantic and other volcanic passive margins. The volumes and available U-Pb ages of 610-597 Ma (Baird et al. 2014 and refs therein) suggest that the magmatism was short lived, intense and therefore compatible with a large igneous province (LIP). By analogy with present-day margins this LIP may have been associated with continental break-up and onset of sea-floor spreading. The remnants of the passive margin both north and south of the magma-rich segment have different architectures, and are almost devoid of rift/drift related magmatic rocks. Instead, these magma-poor segments are dominated by heterogeneous sediment-filled basins characterised by the abundant presence of solitary bodies of variably altered mantle peridotites, also commonly present as detrital serpentinites. These basins are interpreted to have formed by hyperextension. We suggest that

  13. Permeability During Magma Expansion and Compaction

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  14. Drilling Magma for Science, Volcano Monitoring, and Energy

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known

  15. Variations in magma supply rate at Kilauea Volcano, Hawaii

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  16. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  17. Zircon Age Distributions Provide Magma Fluxes in the Earth's Crust

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Simpson, G.; Schaltegger, U.

    2014-12-01

    Magma fluxes control the growth of continents, the frequency and magnitude of volcanic eruptions and are important for the genesis of magmatic ore deposits. A significant part of the magma produced in the Earth's mantle solidifies at depth and this limits our capability of determining magma fluxes, which, in turn, compromises our ability to establish a link between global heat transfer and large-scale geological processes. Using thermal modelling in combination with high precision zircon dating we show that populations of zircon ages provide an accurate mean to retrieve magma fluxes. The characteristics of zircon age populations vary significantly and systematically as function of the flux and total volume of magma accumulated at depth. This new approach provides results that are identical to independent determinations of magma fluxes and volumes of magmatic systems. The analysis of existing age population datasets by our method highlights that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at characteristic average fluxes.

  18. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  19. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  20. The role of sublithospheric gravitational instability on oceanic intraplate volcanism

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; van Hunen, J.; Ito, G.; Tackley, P. J.; Bianco, T. A.

    2009-12-01

    Some intraplate volcano chains in the Pacific violate the predictions of the hotspot hypothesis for geographic age progressions. One mechanism invoked to explain these observations is small-scale sublithospheric convection (SSC). We explore this concept in fully thermo-chemical, 3D-numerical models. Melting due to SSC is shown to emerge along hot-lines of length >1000 km parallel to plate motion and not just at a fixed spot; therefore volcanism occurs in chains but not with hotspot-like linear age progressions. Our models predict many of the key observations along the Pukapuka ridges, and the volcano groups associated with the Marshalls, Gilberts, Cook-Australs, Wake seamounts and Marshall Islands. SSC volcanism may further play a role for volcanism at major mantle plumes - such as the Hawaiian plume. Plume models have successfully predicted most of the first-order observations at Hawaii hotspot. However, the details of plume-plate interaction and the origin of secondary volcanism still remain to be understood. Small-scale convection (SSC) in the 'pancake' of the Hawaii plume is a possible candidate for lithospheric thinning downstream Hawaii. Low asthenospheric viscosities and lateral density heterogeneity are triggers for SSC - and are both provided by the Hawaiian plume. SSC should also already be developed before the arrival of the Hawaiian plume, which hits mature oceanic lithosphere (of age ~90 Myrs) with important effects on plume-plate interaction and magma generation.

  1. Modeling the three-dimensional structure of macroscopic magma transport systems: Application to Kilauea volcano, Hawaii

    SciT

    Ryan, M.P.; Koyanagi, R.Y.; Fiske, R.S.

    1981-08-10

    We report the results of modeling the three-dimensional internal structure of Kilauea's magmatic passageways. The approach uses a clear plexiglass model containing equally-spaced levels upon which well-located seismic hypocenters are plotted. Application of constraining geologic and geophysical criteria to this distributed volume of earthquakes permits the interpretation of seismic structures produced by fracturing in response to locally high fluid pressures. Four magma transport and storage structures produce have been identified within and beneath Kilauea: (1) Primary conduit. The conduit transporting magma into Kilauea's summit storage reservoir rises from the model base (14.6 km) to 6.5 km depth level. It ismore » a zone of intense fracturing and inferred intrusion, whose horizontal sections are elliptical in planform. Over its height, the average major axis of component horizontal section is 3.3 km, with an average minor axis of 1.7 km. This yields an aspect ratio of xi = 0.52. At the 14.6 km level, the strike of the major axis is N67 /sup 0/E. During passage from the upper mantle through the oceanic crust, this axis rotates in a right-handed sense, until the strike is N41 /sup 0/W at the 6.5 km level. (2) Magma chamber complex floor. The interval from 6.5 to 5.7 km, immediately over the primary conduit, is aseismic. This suggests differentially high fluid-to-rock ratios, and relatively weak pathways for further vertical transport into higher levels of the storage complex, as well as lateral leakage eastward into the Mauna Ulu staging area: for later vertical ascent beneath the upper east rift zone. Seismicity within the immediately subjacent rocks that form the top of the primary conduit (at 6.5 km) suggests that this inferred magma-rich horizon forms the effective floor of the summit storage complex. (3) Magma chamber crown. Intense seismicity over the 1.1--1.9 km depth interval defines an elliptical region in plan view.« less

  2. Possible Time Dependent Deformation over Socorro Magma Body from GPS and InSAR

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Wdowinski, S.; Amelug, F.

    2015-12-01

    The Socorro Magma Body (SMB) is one of the largest, currently active magma intrusions in the Earth's continental crust. The area of Socorro is a segment of the Rio Grande Rift that display a broad seismic anomaly and ground deformation. The seismic reflector is imaged at 19 km depth coinciding with the occurrence of numerous small earthquake swarms. Broad crustal uplift was also observed above this reflector and led to the hypothesis of the presence of a large mid-crustal sill-like magma body. Previous geodetic studies over the area reveal ground deformation at the rate of 2-3 mm/yr from 1992 to 2006. The magma body was modeled as a penny-shaped crack of 21 km radius at 19 km depth based on InSAR results [Finnegan et. al., 2009]. In this study we expand the uplift measurement period over the SMB to two decades by using additional InSAR and GPS observations. We extended the InSAR observation record by analyzing 27 Envisat scenes acquired during the years 2006-2010. Continuous GPS observation acquired by the SC01 station since 2001 and three more recent Plate Boundary Observatory stations, which were installed between 2005 and 2011, provide high temporal record of uplift over the past decade and a half. We analyzed the InSAR data using ROI_PAC software package and calculated the temporal evolution of the vertical displacement using time series analysis. Preliminary results of 2006-2010 Envisat data show no significant deformation above the 1-2 mm noise level, which disagree with the previous ERS-1/2 results; 2-3 mm/yr during 1992-2006. This disagreement suggests a time dependent uplift of the SMB, which is also supported by GPS observations. The average uplift rate of the SC01 station is 0.9±0.02 mm/yr for 2001-2015 and 0.6±0.08 mm/yr for 2006-2010. Furthermore the SC01 time series exhibits episodic uplift events. The observed time dependent uplift suggests that magma supply in the middle crust may also occur episodically, as in shallow magmatic systems.

  3. Short-circuiting magma differentiation from basalt straight to rhyolite?

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  4. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  5. Estimating the magma supply rate at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, T. L.; Klein, F. W.

    2006-12-01

    A frequent question is whether the magma supply rate to Kilauea is constant. Before seaward spreading of the south flank of Kilauea was demonstrated by the slip on a basal decollement that accompanied the M7.2 1975 south flank earthquake, the magma supply rate was equated to the identical eruption rates for three long-lived eruptions (3). Later, a continuous tilt record at Kilauea's summit was used to derive the volume of magma transported during deflations associated with rift eruptions (2), concluding that over a 30-year period about 38% of Kilauea's magma supply was left underground, but agreeing with the equivalency of overall magma supply and sustained eruption rates. Recent modeling of geodetic data gathered during Kilauea's current eruption (1) estimated a supply rate to accommodate spreading at 1.5 times the eruption rate. We approach the problem of magma supply, making two assumptions: 1. Eruption rates are controlled by the capacity of the underground transport paths to deliver magma to the surface. 2. Spreading of Kilauea's south flank is magma-driven and all space created during spreading is filled with new magma. On these premises, and in consideration of the physical properties of magma, eruption rates would have to be less than the supply rate; equivalence would imply a rigid edifice in which an open channel could deliver magma as if it were water. We are working to establish a third indicator of magma supply, the occurrence of seismic swarms in the stressed south flank. Many such swarms have been previously identified in association with documented eruptions and intrusions, but other swarms occur independently and may be associated with passive intrusion filling the room created during spreading. We contrast the seismic and geodetic data gathered during Kilauea's two longest monitored eruptions, Mauna Ulu (1969-1974) and Pu'u `O'o-Kupaianaha (1983-ongoing). For episodic high-fountaining episodes we calculate eruption efficiency as the ratio of

  6. Ocean Island Volcanoes—Just How Similar Are They?

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Peltier, A.; Bonforte, A.; Puglisi, G.

    2016-12-01

    Basaltic ocean island volcanoes are exceptional natural laboratories for volcanology. They present a range of eruptive styles, unrest and eruptions are frequent, and good accessibility facilitates detailed observation. The most important factors controlling the style and composition of volcanism at ocean islands are the tectonic setting and magma supply. Hawaíi represents an end member in this respect, located in the middle of an old and rapidly moving plate and with the highest magma supply of any ocean island hot spot. Hawaiian volcanoes are thus large, prone to collapse, and have a compositional evolution that reflects varying degrees of partial melt as they pass over the source hot spot. The Galápagos, in contrast, fall at the other end of the spectrum in most respects—the islands are on a young plate near a spreading center and have comparatively low magma supply. Collapse of Galápagos volcanoes is not common, the edifices are much smaller than their Hawaiian counterparts, and compositional evolution is spatially variable due to thin lithosphere and interaction between hot spot and mid-ocean ridge melts. La Réunion is something of a mix between these extremes, being located in the middle of an old but slow-moving plate and with a low magma supply. The resulting volcanoes have a straightforward compositional evolution, are relatively small in size but long-lived, and have unstable flanks. The broad context of magma supply and tectonic setting provides a useful means of interpreting the characteristics of ocean island volcanism. Gross similarities in volcano morphology (shield structure) and eruptive activity (effusive lava flows) create a perception that these volcanoes are analogs for one another. While it is certainly true that insights from Kīlauea have potential application at Piton de la Fournaise, for example, such lessons should not be applied without a good understanding of the substantial differences between volcanoes.

  7. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  8. Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Longpré, Marc-Antoine; Stix, John; Klügel, Andreas; Shimizu, Nobumichi

    2017-02-01

    Basaltic volcanoes transfer volatiles from the mantle to the surface of the Earth. The quantification of deep volatile fluxes relies heavily on estimates of the volatile content of primitive magmas, the best archive of which is provided by melt inclusions. Available data from volcanoes producing mafic alkaline lavas in a range of tectonic settings suggest high volatile fluxes, but information remains sparse, particularly for intraplate ocean islands. Here we present measurements of volatile and trace element concentrations, as well as sulphur speciation, in olivine-hosted melt inclusions and matrix glasses from quenched basanite lava balloon samples from the 2011-2012 submarine eruption at El Hierro, Canary Islands. The results reveal remarkably high concentrations of dissolved volatiles and incompatible trace elements in this magma, with ∼80 ppm Nb and up to 3420 ppm CO2, 3.0 wt.% H2O and 5080 ppm S. Reconstructed primitive CO2 contents, considering CO2/Nb systematics and possible CO2 sequestration in shrinkage bubbles, reach weight percent levels, indicating that carbon is a major constituent of Canary Island magmas at depth and that exsolution of a CO2-rich fluid begins in the mantle at pressures in excess of 1 GPa. Correlations between sulphur concentration, sulphur speciation and water content suggest strong reduction of an initially oxidised mantle magma, likely controlled by coupled H2O and S degassing. This late-stage redox change may have triggered sulphide saturation, recorded by globular sulphide inclusions in clinopyroxene and ulvöspinel. The El Hierro basanite thus had a particularly high volatile-carrying capacity and released a minimum of 1.3-2.1 Tg CO2 and 1.8-2.9 Tg S to the environment, causing substantial stress on the local submarine ecosystem. These results highlight the important contribution of alkaline ocean island volcanoes, such as the Canary Islands, to volatile fluxes from the mantle.

  9. Modeling Mantle Shear Zones, Melt Focusing and Stagnation - Are Non Volcanic Margins Really Magma Poor?

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Muntener, O.

    2011-12-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the

  10. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated

  11. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  12. The Role of Magma Mixing in Creating Magmatic Diversity

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Collins, S.; Morgan, D. J.

    2012-12-01

    Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual magmatic rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, magmatic rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. Magmatic diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. Evidence for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by isotopic fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling

  13. Preliminary considerations for extraction of thermal effect from magma

    NASA Astrophysics Data System (ADS)

    Hickox, C. E.; Dunn, J. C.

    Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counter-flow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net beat gain from the formation above a magma body is predicted. The analynes show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction.

  14. Implications of magma transfer between multiple reservoirs on eruption cycling.

    PubMed

    Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard

    2008-10-10

    Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).

  15. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  16. Conditions Leading to Sudden Release of Magma Pressure

    NASA Astrophysics Data System (ADS)

    Damjanac, B.; Gaffney, E. S.

    2005-12-01

    Buildup of magmatic pressures in a volcanic system can arise from a variety of mechanisms. Numerical models of the response of volcanic structures to buildup of pressures in magma in dikes and conduits provide estimates of the pressures needed to reopen blocked volcanic vents. They also can bound the magnitude of sudden pressure drops in a dike or conduit due to such reopening. Three scenarios are considered: a dike that is sheared off by covolcanic normal faulting, a scoria cone over a conduit that is blocked by in-falling scoria and some length of solidified magma, and a lava flow whose feed has partially solidified due to an interruption of magma supply from below. For faulting, it is found that magma would be able to follow the fault to a new surface eruption. A small increase in magma pressure over that needed to maintain flow prior to faulting is required to open the new path, and the magma pressure needed to maintain flow is lower but still greater than for the original dike. The magma pressure needed to overcome the other types of blockages depends on the details of the blockage. For example, for a scoria cone, it depends on the depth of the slumped scoria and on the depth to which the magma has solidified in the conduit. In general, failure of the blockage is expected to occur by radial hydrofracture just below the blocked length of conduit at magma pressures of 10 MPa or less, resulting in radial dikes. However, this conclusion is based on the assumption that the fluid magma has direct access to the rock surrounding the conduit. If, on the other hand, there is a zone of solidified basalt, still hot enough to deform plastically, surrounding the molten magma in the conduit, this could prevent breakout of a hydrofracture and allow higher pressures to build up. In such cases, pressures could build high enough to deform the overlying strata (scoria cone or lava flow). Models of such deformations suggest the possibility of more violent eruptions resulting from

  17. Magma ascent and lava flow emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing

    NASA Astrophysics Data System (ADS)

    Jones, M. R.; Soule, S. A.; Gonnermann, H. M.; Le Roux, V.; Clague, D. A.

    2018-07-01

    Quantitative metrics for eruption rates at mid-ocean ridges (MORs) would improve our understanding of the structure and formation of the uppermost oceanic crust and would provide a means to link volcanic processes with the conditions of the underlying magmatic system. However, these metrics remain elusive because no MOR eruptions have been directly observed. The possibility of disequilibrium degassing in mid-ocean ridge basalts (MORB), due to high eruptive depressurization rates, makes the analysis of volatile concentrations in MORB glass a promising method for evaluating eruption rates. In this study, we estimate magma ascent and lava flow emplacement rates during the 2011 eruption of Axial Seamount based on numerical modeling of diffusion-controlled bubble growth and new measurements of dissolved volatiles, vesicularity, and vesicle size distributions in erupted basalts. This dataset provides a unique view of the variability in magma ascent (∼0.02-1.2 m/s) and lava flow rates (∼0.1-0.7 m/s) during a submarine MOR eruption based on 50 samples collected from a >10 km long fissure system and three individual lava flow lobes. Samples from the 2011 eruption display an unprecedented range in dissolved CO2 concentrations, nearly spanning the full range observed on the global MOR system. The variable vesicularity and dissolved CO2 concentrations in these samples can be explained by differences in the extent of degassing, dictated by flow lengths and velocities during both vertical ascent and horizontal flow along the seafloor. Our results document, for the first time, the variability in magma ascent rates during a submarine eruption (∼0.02-1.2 m/s), which spans the global range previously proposed based on CO2 degassing. The slowest ascent rates are associated with hummocky flows while faster ascent rates produce channelized sheet flows. This study corroborates degassing-based models for eruption rates using comparisons with independent methods and documents the

  18. Ocean tides

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  19. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciT

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 valuesmore » between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.« less

  20. Solidification of basaltic magma during flow in a dike.

    Delaney, P.T.; Pollard, D.D.

    1982-01-01

    A model for time-dependent unsteady heat transfer from magma flowing in a dyke is developed. The ratio of solidification T to magma T is the most important parameter. Observations of volcanic fissure eruptions and study of dykes near Ship Rock, New Mexico, show that the low T at dyke margins and the rapidly advancing solidification front predicted by the model are qualitatively correct.-M.S.

  1. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  2. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    NASA Astrophysics Data System (ADS)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  3. Mid-Ocean Ridge Melt Supply and Glacial Cycles: A 3D EPR Study of Crustal Thickness, Layer 2A, and Bathymetry

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Aghaei, O.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Nedimovic, M. R.; Carton, H. D.; Canales, J. P.

    2017-12-01

    Recent studies suggest that eustatic sea level fluctuations induced by glacial cycles in the Pleistocene may influence mantle-melting and volcanic eruptions at mid-ocean ridges (MOR), with models predicting variation in oceanic crustal thickness linked to sea level change. Previous analyses of seafloor bathymetry as a proxy for crustal thickness show significant spectral energy at frequencies linked to Milankovitch cycles of 1/23, 1/41, and 1/100 ky-1, however the effects of faulting in seafloor relief and its spectral characteristics are difficult to separate from climatic signals. Here we investigate the hypothesis of climate driven periodicity in MOR magmatism through spectral analysis, time series comparisons, and statistical characterization of bathymetry data, seismic layer 2A thickness (as a proxy for extrusive volcanism), and seafloor-to-Moho thickness (as a proxy for total magma production). We utilize information from a three-dimensional multichannel seismic study of the East Pacific Rise and its flanks from 9°36`N to 9°57`N. We compare these datasets to the paleoclimate "LR04" benthic δ18O stack. The seismic dataset covers 770 km2 and provides resolution of Moho for 92% of the imaged region. This is the only existing high-resolution 3-D image across oceanic crust, making it ideal for assessing the possibility that glacial cycles modulate magma supply at fast spreading MORs. The layer 2A grid extends 9 km (170 ky) from the ridge axis, while Moho imaging extends to a maximum of 16 km (310 ky). Initial results from the East Pacific Rise show a relationship between sea level and both crustal thickness and sea floor depth, consistent with the hypothesis that magma supply to MORs may be modulated by glacial cycles. Analysis of crustal thickness and bathymetry data reveals spectral peaks at Milankovitch frequencies of 1/100 ky-1 and 1/41 ky-1 where datasets extend sufficiently far from the ridge. The layer 2A grid does not extend sufficiently far from the

  4. The effects of Venus' thermal structure on buoyant magma ascent

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1992-01-01

    The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.

  5. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  6. Formation and evolution of magma-poor margins, an example of the West Iberia margin

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, Marta; Andres-Martinez, Miguel; Morgan, Jason P.; Ranero, Cesar R.; Reston, Tim

    2016-04-01

    The West Iberia-Newfoundland (WIM-NF) conjugate margins have been geophysically and geologically surveyed for the last 30 years and have arguably become a paradigm for magma-poor extensional margins. Here we present a coherent picture of the WIM-NF rift to drift evolution that emerges from these observations and numerical modeling, and point out important differences that may exist with other magma-poor margins world-wide. The WIM-NF is characterized by a continental crust that thins asymmetrically and a wide and symmetric continent-ocean transition (COT) interpreted to consist of exhumed and serpentinised mantle with magmatic products increasing oceanward. The architectural evolution of these margins is mainly dominated by cooling under very slow extension velocities (<~6 mm/yr half-rate) and a lower crust that most probably was not extremely weak at the start of rifting. These conditions lead to a system where initially deformation is distributed over a broad area and the upper, lower crust and lithosphere are decoupled. As extension progresses upper, lower, crust and mantle become tightly coupled and deformation localizes due to strengthening and cooling during rifting. Coupling leads to asymmetric asthenospheric uplift and weakening of the hanginwall of the active fault, where a new fault forms. This continued process leads to the formation of an array of sequential faults that dip and become younger oceanward. Here we show that these processes acting in concert: 1) reproduce the margin asymmetry observed at the WIM-NF, 2) explain the fault geometry evolution from planar, to listric to detachment like by having one common Andersonian framework, 3) lead to the symmetric exhumation of mantle with little magmatism, and 4) explain the younging of the syn-rift towards the basin centre and imply that unconformities separating syn- and post-rift may be diachronous and younger towards the ocean. Finally, we show that different lower crustal rheologies lead to different

  7. Why do magmas stall? Insights from petrologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.

    2007-12-01

    Magmas stall at various depths in the crust due to their internal properties (magma viscosity, buoyancy) and external crustal controls (local stress regime, wallrock strength). Annen et al. (JPet 2006) propose a petrological model in which buoyant magma ascends through the crust until the depth of water saturation, after which it crystallizes catastrophically and stalls due to the large increase in magma viscosity. Magmas may erupt from this storage region, or viscous death may result in pluton formation. In order to test this model, and constrain magma storage depths, we combine petrological and geodetic data for several active volcanoes along the Aleutian-Alaska arc. We analyzed glassy, primarily olivine-hosted melt inclusions by SIMS in tephra samples for their pre-eruptive volatile contents, which can be related to the depth of entrapment via pressure-dependent H2O-CO2 solubility models (e.g., VolatileCalc). Melt inclusions are not in equilibrium with pure water vapor (all will contain S and C species), but >50% of the inclusion population are in equilibrium with a vapor containing >85% H2O. Geodetic data (InSAR, GPS) record surface deformation related to volcano inflation/deflation, and can be inverted to solve for the depths of volume change (magma storage) in the crust. In the Aleutians, we find that the maximum melt inclusion trapping depths and geodetic depths correlate, suggesting both techniques record crustal magma storage and crystallization. Melt inclusions from the 1997 Okmok eruption are trapped at ≤3 km; deformation during the eruption and subsequent inflation occurred at 3±0.5 km (Miyagi et al., EPSL 2004; Lu & Masterlark, JGR 2005). At Akutan, melt inclusions and GPS data indicate magma storage at ~5-7 km. Inclusions from flank cones of Makushin yield depths of 7 km, similar to inflation observed beneath the main edifice (6.8 km, Lu et al., JGR 2002). Pleistocene inclusions from Augustine volcano indicate magma storage at 10-18 km, in accord

  8. A refined model for Kilauea's magma plumbing system

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Miklius, A.; Montgomery-Brown, E. D.

    2011-12-01

    Studies of the magma plumbing system of Kilauea have benefitted from the volcano's frequent eruptive activity, ease of access, and particularly the century-long observational record made possible by the Hawaiian Volcano Observatory. The explosion of geophysical data, especially seismic and geodetic, collected since the first model of Kilauea's magmatic system was published in 1960 allows for a detailed characterization of Kilauea's magma storage areas and transport pathways. Using geological, geochemical, and geophysical observations, we propose a detailed model of Kilauea's magma plumbing that we hope will provide a refined framework for studies of Kilauea's eruptive and intrusive activity. Kilauea's summit region is underlain by two persistently active, hydraulically linked magma storage areas. The larger reservoir is centered at ~3 km depth beneath the south caldera and is connected to Kilauea's two rift zones, which radiate from the summit to the east and southwest. All magma that enters the Kilauea edifice passes through this primary storage area before intrusion or eruption. During periods of increased magma storage at the summit, as was the case during 2003-2007, uplift may occur above temporary magma storage volumes, for instance, at the intersection of the summit and east rift zone at ~3 km depth, and within the southwest rift zone at ~2 km depth. The east rift zone is the longer and more active of Kilauea's two rift zones and apparently receives more magma from the summit. Small, isolated pods of magma exist within both rift zones, as indicated by deformation measurements, seismicity, petrologic data, and geothermal drilling results. These magma bodies are probably relicts of past intrusions and eruptions and can be highly differentiated. Within the deeper part of the rift zones, between about 3 km and 9 km depth, magma accumulation is hypothesized based on surface deformation indicative of deep rift opening. There is no direct evidence for magma within

  9. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    NASA Astrophysics Data System (ADS)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  10. The Role of Spinel Minerals in Lunar Magma Evolution

    NASA Astrophysics Data System (ADS)

    Taylor, L. A.; Head, J. W.; Pieters, C. M.; Sunshine, J. M.; Staid, M.; Isaacson, P.; Petro, N. E.

    2009-12-01

    The Moon Mineralogy Mapper (M3), a NASA guest instrument on Chandrayaan-1, India’s first mission to the Moon, was designed to map the surface mineralogy of the Moon using reflected solar radiation at visible and near-infrared wavelengths, which contain highly diagnostic absorptions due to minerals. The M3 spectrometer has discovered several new and unexpected aspects of the geology and petrology of the Moon, some involving specific oxide phases. Spinel minerals, with the general formula, AB2O4, present clues as to the oxygen fugacity, the nature of magmatic systems, and their evolution, particularly during the early stages of crystallization. On the Moon, with its total lack of Fe3+ and minerals such as magnetite, observed spinels range between spinel, MgAl2O4; hercynite, FeAl2O4; Chromite, FeCr2O4; and ulvöspinel, Fe(FeTi)2O4. They manifest themselves in three distinctly different igneous rock types: highlands rocks of anorthosites/troctolites, gabbro-norites; mare basalts with various TiO2 contents; and basaltic pyroclastic volcanic glasses. Although spinels occur as minor minerals in the Apollo collection, unique rock types dominated by Mg-spinel (with olivine and pyroxene abundances below detection limits, assumed to be ~5%) have been identified by M3 on the Moon. Because the spinel-bearing rocks detected by M3 have no signature of a significant olivine component, they must be dominated by plagioclase and spinel. Pink Mg-spinels typically occur as a minor phase in troctolites (plagioclase + olivine), a highland rock formed after the initial Ferroan Anorthosite (FAN) crust, presumably by serial magmatism deep within the crust, with intrusion upward. FANs were formed by floatation of plagioclase in the lunar magma ocean (LMO), whereas spinels would sink due to their much higher density. Thus, a plagioclase-rich rock type with a strong Mg-spinel spectral signature would have to be part of later highland intrusives. The excess Mg-spinel could be the product of

  11. Tests of the lunar hypothesis

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1984-01-01

    The concept that the Moon was fissioned from the Earth after core separation is the most readily testable hypothesis of lunar origin, since direct comparisons of lunar and terrestrial compositions can be made. Differences found in such comparisons introduce so many ad hoc adjustments to the fission hypothesis that it becomes untestable. Further constraints may be obtained from attempting to date the volatile-refractory element fractionation. The combination of chemical and isotopic problems suggests that the fission hypothesis is no longer viable, and separate terrestrial and lunar accretion from a population of fractionated precursor planetesimals provides a more reasonable explanation.

  12. The Early Anthropogenic Hypothesis: Challenges and Responses

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.

    2007-12-01

    Ruddiman (2003) proposed that late Holocene anthropogenic intervention caused CH4 and CO2 increases that kept climate from cooling and that preindustrial pandemics caused CO2 decreases and a small cooling. Every aspect of this early anthropogenic hypothesis has been challenged: the timescale, the issue of stage 11 as a better analog, the ability of human activities to account for the gas anomalies, and the impact of the pandemics. This review finds that the late Holocene gas trends are anomalous in all ice timescales; greenhouse gases decreased during the closest stage 11 insolation analog; disproportionate biomass burning and rice irrigation can explain the methane anomaly; and pandemics explain half of the CO2 decrease since 1000 years ago. Only ˜25% of the CO2 anomaly can, however, be explained by carbon from early deforestation. The remainder must have come from climate system feedbacks, including a Holocene ocean that remained anomalously warm because of anthropogenic intervention.

  13. Experimental Study into the Stability of Whitlockite in Basaltic Magmas

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Srinivasan, P.; Whitson, E. S.; Vander Kaaden, K. E.; Boyce, J. W.

    2017-01-01

    latter treatment resulted in the dehydrogenation of whitlockite to form merrillite. The presence of merrillite vs. whitlockite was widely thought to serve as an indication that magmas were anhydrous [e.g., 6-7]. However, McCubbin et al., [8] determined that merrillite in the martian meteorite Shergotty had no discernible whitlockite component despite its coexistence with OH-rich apatite. Consequently, McCubbin et al., (2014) speculated that the absence of a whitlockite component in Shergotty merrillite and other planetary merrillites may be a consequence of the limited thermal stability of H in whitlockite (stable only at T less than1050degC), which would prohibit merrillite-whitlockite solid-solution at high temperatures. In the present study, we have aimed to test this hypothesis experimentally by examining the stability of whitlockite in basaltic magmas at 1.2 GPa and a temperature range of -1000- 1300degC.

  14. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    The rheology of magmas controls not only eruption dynamics but also the rate of transport of magmas through the crust and to a large extent the rate of magma differentiation and degassing. Magma bodies stalled in the upper crust are known to spend most of their lifespan above the solidus at a high crystal content (Cooper and Kent, 2014; Huber et al., 2009), where the probability of melt extraction (crystal fractionation) is the greatest (Dufek and Bachmann, 2010). In this study, we explore a new theoretical framework to study the viscosity of crystal bearing magmas. Since the seminal work of A. Einstein and W. Sutherland in the early 20th century, it has been shown theoretically and tested experimentally that a simple self-similar behavior exist between the relative viscosity of dilute (low crystal content) suspensions and the particle volume fraction. The self-similar nature of that relationship is quickly lost as we consider crystal fractions beyond a few volume percent. We propose that the relative viscosity of crystal-bearing magmas can be fully described by two state variables, the intrinsic viscosity and the crowding factor (a measure of the packing threshold in the suspension). These two state variables can be measured experimentally under different conditions, which allows us to develop closure relationships in terms of the applied shear stress and the crystal shape and size distributions. We build these closure equations from the extensive literature on the rheology of synthetic suspensions, where the nature of the particle shape and size distributions is better constrained and apply the newly developed model to published experiments on crystal-bearing magmas. We find that we recover a self-similar behavior (unique rheology curve) up to the packing threshold and show that the commonly reported break in slope between the relative viscosity and crystal volume fraction around the expected packing threshold is most likely caused by a sudden change in the state

  15. Ocean Fertilization and Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cao, L.; Caldeira, K.

    2008-12-01

    It has been suggested that ocean fertilization could help diminish ocean acidification. Here, we quantitatively evaluate this suggestion. Ocean fertilization is one of several ocean methods proposed to mitigate atmospheric CO2 concentrations. The basic idea of this method is to enhance the biological uptake of atmospheric CO2 by stimulating net phytoplankton growth through the addition of iron to the surface ocean. Concern has been expressed that ocean fertilization may not be very effective at reducing atmospheric CO2 concentrations and may produce unintended environmental consequences. The rationale for thinking that ocean fertilization might help diminish ocean acidification is that dissolved inorganic carbon concentrations in the near-surface equilibrate with the atmosphere in about a year. If ocean fertilization could reduce atmospheric CO2 concentrations, it would also reduce surface ocean dissolved inorganic carbon concentrations, and thus diminish the degree of ocean acidification. To evaluate this line of thinking, we use a global ocean carbon cycle model with a simple representation of marine biology and investigate the maximum potential effect of ocean fertilization on ocean carbonate chemistry. We find that the effect of ocean fertilization on ocean acidification depends, in part, on the context in which ocean fertilization is performed. With fixed emissions of CO2 to the atmosphere, ocean fertilization moderately mitigates changes in ocean carbonate chemistry near the ocean surface, but at the expense of further acidifying the deep ocean. Under the SRES A2 CO2 emission scenario, by year 2100 simulated atmospheric CO2, global mean surface pH, and saturation state of aragonite is 965 ppm, 7.74, and 1.55 for the scenario without fertilization and 833 ppm, 7.80, and 1.71 for the scenario with 100-year (between 2000 and 2100) continuous fertilization for the global ocean (For comparison, pre-industrial global mean surface pH and saturation state of

  16. Selective Methylation: an Incorrect Hypothesis

    PubMed Central

    Shugart, Lee

    1976-01-01

    “Selective methylation,” a hypothesis proposed to explain the discrepancy found in the degree of methyl deficiency of transfer ribonucleic acid, cannot be explained on the basis of some biological phenomenon. PMID:770445

  17. Evaluating the Stage Learning Hypothesis.

    ERIC Educational Resources Information Center

    Thomas, Hoben

    1980-01-01

    A procedure for evaluating the Genevan stage learning hypothesis is illustrated by analyzing Inhelder, Sinclair, and Bovet's guided learning experiments (in "Learning and the Development of Cognition." Cambridge: Harvard University Press, 1974). (Author/MP)

  18. Conduit magma convection of a rhyolitic magma: Constraints from cosmic-ray muon radiography of Iwodake, Satsuma-Iwojima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Tanaka, Hiroyuki K. M.

    2012-10-01

    Quantitative re-evaluation of the muon radiography data obtained by Tanaka et al. (2009) was conducted to constrain conduit magma convection at the Iwodake rhyolitic cone of Satsuma-Iwojima volcano, Japan. Re-evaluation of the measurement error considering topography and fake muon counts confirms the existence of a low-density body of 300 m in diameter and with 0.9-1.0 g cm-3 at depths of 135-190 m from the summit crater floor. The low-density material is interpreted as rhyolitic magma with 60% vesicularity on average, and existence of this unstable highly vesiculated magma at shallow depth without any recent eruptive or intrusive activity is considered as evidence of conduit magma convection. The structure of the convecting magma column top was modeled based on density calculations of vesiculated ascending and outgassed descending magmas, compared with the observed density anomaly. The existence of the low-density anomaly was confirmed by comparison with published gravity measurements, and the predicted degassing at the shallow magma conduit top agrees with observed heat discharge anomaly distribution localized at the summit area. This study confirms that high viscosity of silicic magmas can be compensated by a large size conduit to cause the conduit magma convection phenomena. The rare occurrence of conduit magma convection in a rhyolitic magma system at Iwodake is suggested to be due to its specific magma features of low H2O content and high temperature.

  19. Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, Marcos; Stevens, Gary

    2017-04-01

    Several fractional crystallization processes (flow segregation, gravitational settling, filter-pressing), as well as batch crystallization, have been investigated in this study using thermodynamic modelling (pseudosections) to test whether they are able to reproduce the compositional trends shown by S-type granites. Three starting compositions comprising a pure melt phase and variable amounts of entrained minerals (0, 20 and 40 wt.% of the total magma) have been used to study a wide range of likely S-type magma compositions. The evolution of these magmas was investigated from the segregation from their sources at 0.8 GPa until emplacement at 0.3 GPa in an adiabatic path, followed by isobaric cooling until the solidus was crossed, in a closed-system scenario. The modelled magmas and the fractionated mineral assemblages are compared to the S-type granites of the Peninsula pluton, Cape Granite Suite, South Africa, which have a composition very similar to most of the S-type granites. The adiabatic ascent of the magmas digests partially the entrained mineral assemblage of the magmas, but unless this entrained assemblage represents less than 1 wt.% of the original magma, part of the mineral fraction survives the ascent up to the chosen pressure of emplacement. At the level of emplacement, batch crystallization produces magmas that only plot within the composition of the granites of the Peninsula pluton if the bulk composition of the original magmas already matched that of the granites. Flow segregation of crystals during the ascent and gravitational settling fractional crystallization produce bodies that are generally more mafic than the most mafic granites of the pluton and the residual melts have an almost haplogranitic composition, producing a bimodal compositional distribution not observed in the granites. Consequently, these two processes are ruled out. Filter-pressing fractional crystallization produces bodies in an onion-layer structure that become more felsic

  20. Why large porphyry Cu deposits like high Sr/Y magmas?

    PubMed Central

    Chiaradia, Massimo; Ulianov, Alexey; Kouzmanov, Kalin; Beate, Bernardo

    2012-01-01

    Porphyry systems supply most copper and significant gold to our economy. Recent studies indicate that they are frequently associated with high Sr/Y magmatic rocks, but the meaning of this association remains elusive. Understanding the association between high Sr/Y magmatic rocks and porphyry-type deposits is essential to develop genetic models that can be used for exploration purposes. Here we present results on a Pleistocene volcano of Ecuador that highlight the behaviour of copper in magmas with variable (but generally high) Sr/Y values. We provide indirect evidence for Cu partitioning into a fluid phase exsolved at depths of ~15 km from high Sr/Y (>70) andesitic magmas before sulphide saturation. This lends support to the hypothesis that large amounts of Cu- and S-bearing fluids can be accumulated into and released from a long-lived high Sr/Y deep andesitic reservoir to a shallower magmatic-hydrothermal system with the potential of generating large porphyry-type deposits. PMID:23008750

  1. Why large porphyry Cu deposits like high Sr/Y magmas?

    PubMed

    Chiaradia, Massimo; Ulianov, Alexey; Kouzmanov, Kalin; Beate, Bernardo

    2012-01-01

    Porphyry systems supply most copper and significant gold to our economy. Recent studies indicate that they are frequently associated with high Sr/Y magmatic rocks, but the meaning of this association remains elusive. Understanding the association between high Sr/Y magmatic rocks and porphyry-type deposits is essential to develop genetic models that can be used for exploration purposes. Here we present results on a Pleistocene volcano of Ecuador that highlight the behaviour of copper in magmas with variable (but generally high) Sr/Y values. We provide indirect evidence for Cu partitioning into a fluid phase exsolved at depths of ~15 km from high Sr/Y (>70) andesitic magmas before sulphide saturation. This lends support to the hypothesis that large amounts of Cu- and S-bearing fluids can be accumulated into and released from a long-lived high Sr/Y deep andesitic reservoir to a shallower magmatic-hydrothermal system with the potential of generating large porphyry-type deposits.

  2. Inflation of a magma chamber surrounded by poroelastic mush shell

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Soule, S. A.; Jones, M.

    2017-12-01

    Recent studies have highlighted the importance of crystal-rich mush in crustal magmatic system [Cashman et. al. 2017]. This potential paradigm shift from isolated melt bodies in elastic crust poses new challenges to our previous understanding of igneous processes. Existing models describing the physical processes in a conventional magma plumbing system may require modification to account for the properties of mush. In this study, we demonstrate that the abundance of very crystalline mush between magma lenses and the crustal rocks influences the mechanical coupling between pressurized magma lenses and their surroundings with regard to deformation and melt transport. We develop a conceptual model invoking a simplified geometry and presumed rheological properties of liquid magma, mush and country rock. In our preliminary study, a magma chamber is modeled as a spherical liquid core enveloped by a shell of poroelastic, magma-(and/or)-gas-bearing mush in an infinite domain of elastic country rock. We interrogate the effect of varying physical properties of the system (e.g., geometry) and mush material (e.g., elastic moduli) on the deformation in the liquid core, mush shell and host rock, as well as pressure built-up in the chamber, upon injection of magma into the liquid core. When we allow the pore spaces to be connected in the mush shell, melt can migrate within the permeable matrix, thereby promoting melt segregation or `leaking' from the core to the shell. These initial results highlight the importance of constraining the physical properties of crystal mush in order for us to properly evaluate the mechanics of magmatic system.

  3. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Eichelberger, J. C.; Plechov, P.

    2016-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Augustine and Cleveland Volcanoes in Alaska, Sakurajima Volcano in Japan, Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, as well as from the drilling into an active magma body at Krafla, Iceland.

  4. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  5. Magma storage prior to the 1912 eruption at Novarupta, Alaska

    Hammer, J.E.; Rutherford, M.J.; Hildreth, W.

    2002-01-01

    New analytical and experimental data constrain the storage and equilibration conditions of the magmas erupted in 1912 from Novarupta in the 20th century's largest volcanic event. Phase relations at H2O+CO2 fluid saturation were determined for an andesite (58.7 wt% SiO2) and a dacite (67.7 wt%) from the compositional extremes of intermediate magmas erupted. The phase assemblages, matrix melt composition and modes of natural andesite were reproduced experimentally under H2O-saturated conditions (i.e., PH2O=PTOT) in a negatively sloping region in T-P space from 930 ??C/100 MPa to 960 ??C/75 MPa with fO2???N NO + 1. The H2O-saturated equilibration conditions of the dacite are constrained to a T-P region from 850 ??C/ 50 MPa to 880 ??C/25 MPa. If H2O-saturated, these magmas equilibrated at (and above) the level where coerupted rhyolite equilibrated (???100 MPa), suggesting that the andesite-dacite magma reservoir was displaced laterally rather than vertically from the rhyolite magma body. Natural mineral and melt compositions of intermediate magmas were also reproduced experimentally under saturation conditions with a mixed (H2O + CO2) fluid for the same range in PH2O. Thus, a storage model in which vertically stratified mafic to silicic intermediate magmas underlay H2O-saturated rhyolite is consistent with experimental findings only if the intermediates have XH2Ofl=0.7 and 0.9 for the extreme compositions, respectively. Disequilibrium features in natural pumice and scoria include pristine minerals existing outside their stability fields, and compositional zoning of titanomagnetite in contact with ilmenite. Variable rates of chemical equilibration which would eliminate these features constrain the apparent thermal excursion and re-distribution of minerals to the time scale of days.

  6. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  7. Megacrystals track magma convection between reservoir and surface

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Oppenheimer, Clive; Scaillet, Bruno; Buisman, Iris; Kimball, Christine; Dunbar, Nelia; Burgisser, Alain; Ian Schipper, C.; Andújar, Joan; Kyle, Philip

    2015-03-01

    Active volcanoes are typically fed by magmatic reservoirs situated within the upper crust. The development of thermal and/or compositional gradients in such magma chambers may lead to vigorous convection as inferred from theoretical models and evidence for magma mixing recorded in volcanic rocks. Bi-directional flow is also inferred to prevail in the conduits of numerous persistently-active volcanoes based on observed gas and thermal emissions at the surface, as well as experiments with analogue models. However, more direct evidence for such exchange flows has hitherto been lacking. Here, we analyse the remarkable oscillatory zoning of anorthoclase feldspar megacrystals erupted from the lava lake of Erebus volcano, Antarctica. A comprehensive approach, combining phase equilibria, solubility experiments and melt inclusion and textural analyses shows that the chemical profiles are best explained as a result of multiple episodes of magma transport between a deeper reservoir and the lava lake at the surface. Individual crystals have repeatedly travelled up-and-down the plumbing system, over distances of up to several kilometers, presumably as a consequence of entrainment in the bulk magma flow. Our findings thus corroborate the model of bi-directional flow in magmatic conduits. They also imply contrasting flow regimes in reservoir and conduit, with vigorous convection in the former (regular convective cycles of ∼150 days at a speed of ∼0.5 mm s-1) and more complex cycles of exchange flow and re-entrainment in the latter. We estimate that typical, 1-cm-wide crystals should be at least 14 years old, and can record several (from 1 to 3) complete cycles between the reservoir and the lava lake via the conduit. This persistent recycling of phonolitic magma is likely sustained by CO2 fluxing, suggesting that accumulation of mafic magma in the lower crust is volumetrically more significant than that of evolved magma within the edifice.

  8. Petrology of the 1995/2000 Magma of Copahue, Argentina

    NASA Astrophysics Data System (ADS)

    Goss, A.; Varekamp, J. C.

    2001-05-01

    Phreatomagmatic eruptions of Copahue in July/August,1995 and July/August 2000 produced mixed juvenile clasts, silica-rich debris from the hydrothermal system, and magmatic scoria with 88 percent SiO2. These high-SiO2 clasts carry an as yet unidentified (crystobalite?), euhedral silica phase in great abundance, which is riddled with tan, primary melt inclusions. The mixed clasts have bands of mafic material with small euhedral olivine, clinopyroxene, and plagioclase that are mixed with an intermediate magma with coarser, resorbed phenocrysts of olivine, plagioclase, clino- and ortho- pyroxene, and rare occurrences of the silica phase. These ejecta are intimate mixtures of a relatively felsic magma similar to Pleistocene Copahue lavas and a mafic basaltic andesite, with minor contributions of a magma contaminated with silica-rich hydrothermal wallrock material. Two-pyroxene geothermometry indicates crystallization temperatures of 1020 deg - 1045 deg C. Glass inclusions (59-63 percent SiO2) in plagioclase and olivine crystals yield very low volatile contents in the melt (0.4-1.5 percent H2O). The 1995/2000 magmas resided at shallow level and degassed into the active volcano-hydrothermal system which discharges acid fluids into the Copahue crater lake and hot springs. More mafic magma intruded this shallow batch and the mixture rose into the hydrothermal system and assimilated siliceous wall rock. A Ti-diffusion profile in a magnetite crystal suggests that the period between magma mixing and eruption was on the order of 4-10 weeks, and the temperature difference between resident and intruding magma was about 50-60 oC.

  9. Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Weller, D. J.; Stern, C. R.

    2018-01-01

    Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion

  10. PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus

    NASA Astrophysics Data System (ADS)

    Herzberg, C.; Asimow, P. D.

    2015-02-01

    An upgrade of the PRIMELT algorithm for calculating primary magma composition is given together with its implementation in PRIMELT3 MEGA.xlsm software. It supersedes PRIMELT2.xls in correcting minor mistakes in melt fraction and computed Ni content of olivine, it identifies residuum mineralogy, and it provides a thorough analysis of uncertainties in mantle potential temperature and olivine liquidus temperature. The uncertainty analysis was made tractable by the computation of olivine liquidus temperatures as functions of pressure and partial melt MgO content between the liquidus and solidus. We present a computed anhydrous peridotite solidus in T-P space using relations amongst MgO, T and P along the solidus; it compares well with experiments on the solidus. Results of the application of PRIMELT3 to a wide range of basalts shows that the mantle sources of ocean islands and large igneous provinces were hotter than oceanic spreading centers, consistent with earlier studies and expectations of the mantle plume model.

  11. The effect of giant lateral collapses on magma pathways and the location of volcanism.

    PubMed

    Maccaferri, Francesco; Richter, Nicole; Walter, Thomas R

    2017-10-23

    Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands.

  12. Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components

    PubMed Central

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Hauff, Folkmar; Gurenko, Andrey; Garbe-Schönberg, Dieter; Werner, Reinhard; Turner, Simon

    2017-01-01

    The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes. PMID:28181497

  13. Evidence for refertilization of the Pacific plate: implications for the seismic and geochemical properties of the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Müntener, O.; Duretz, T.; Hetényi, G.

    2017-12-01

    Garnet xenocryst sampled by petit-spot lavas offshore Japan provides evidence for the formation of gabbroic cumulates within the Pacific lithosphere. The trace element signature indicates that garnet probably formed subsolidus from plagioclase-bearing cumulates during off-axis cooling of the oceanic lithosphere. The specific P-T conditions required for garnet subsolidus formation (0.7 - 1.2 GPa) indicate that melt percolation to produce plagioclase-bearing cumulate occurs at more than 150 km off-axis. Although mantle refertilization in periphery of mid-ocean ridge has been previously shown for (ultra-) slow spreading ridges, our finding indicates that similar processes also occur in portions of the Pacific lithospheric mantle formed at intermediate spreading rates. Recent numerical simulations of melting and melt transport at mid-ocean ridges in presence of volatiles1 support our hypothesis. These simulations suggest that volatile extraction at mid ocean ridges is limited and up to 50% of deep, volatile-rich melt is not focused to the axis but percolated along the LAB. Magma evolution at lithospheric pressure2 predicts that these distal volatile-rich melts will cool and crystallize producing anhydrous and hydrous metasomatic cumulates within the base of the lithosphere. As the lithosphere cools, the hydrous metasomatic cumulates will stay close to their solidus temperature. Any thermo-mechanical perturbation at the base of the lithosphere could potentially reactivate melts and remobilize hydrous phases, which may explain the formation of small-scale seamounts characterized by alkaline magma composition. The presence of hydrous phases and residual CO2 -rich melt at depths around 40 to 70 km could also explain the seismic and electric anomalies observed within the Pacific lithosphere4. Addition of 1-2% volatile-rich melt to the base of the lithosphere predicted by the geochemical simulation3 is sufficient to modify the composition of the oceanic lithospheric mantle

  14. Magma Plumbing System at a Young Back-Arc Spreading Center: The Marsili Volcano, Southern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Trua, T.; Marani, M. P.; Gamberi, F.

    2018-01-01

    Although spreading rate is commonly taken as a proxy for decompression mantle melting at mid-ocean ridges (MORs), magmatism at back-arc spreading centers (BASCs) is further influenced by the subduction-related flux melting of the mantle. These regions consequently show a diversity of crustal structures, lava compositions, and morphologies not typically found in MORs. Here we investigate the crustal plumbing system of the small-scale, Marsili back-arc spreading center of the Southern Tyrrhenian Sea using plagioclase data from a wide spectrum of lavas (basalts to andesites) dredged from its summit and flanks. We employ petrological modeling to identify the plagioclase populations carried in the individual lavas, allocate them to plausible magmatic components present within the plumbing system, and trace the processes occurring during magma ascent to the surface. The properties of the system, such as mush porosity and abundance of the melt bodies, vary from one magma extraction zone to another along the BASC, evidencing the local variability of melt supply conditions. The plagioclase crystals document a range of relationships with the host lavas, indicating magma extraction from a composite, vertically extensive mush and melt-lens system resembling that of MORs. At the same time, however, in small BASCs, such as in the case of the Marsili Basin, crustal accretion and resulting morphology are significantly influenced by the three-dimensional setting of the basin margins. This is an important deviation from the conventional model based on the linear continuity and essentially two-dimensional framework of MORs.

  15. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Brewer, Aaron W.; Teng, Fang-Zhen; Mullen, Emily

    2018-03-01

    Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being -0.33 ± 0.07‰) to heavier compositions (as heavy as -0.15 ± 0.06‰). The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  16. Eddy Flow during Magma Emplacement: The Basemelt Sill, Antarctica

    NASA Astrophysics Data System (ADS)

    Petford, N.; Mirhadizadeh, S.

    2014-12-01

    The McMurdo Dry Valleys magmatic system, Antarctica, forms part of the Ferrar dolerite Large Igneous Province. Comprising a vertical stack of interconnected sills, the complex provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle macrostructure of a congested magma slurry1. Image-based numerical modelling where the intrusion geometry defines its own unique finite element mesh allows simulations of the flow regime to be made that incorporate realistic magma particle size and flow geometries obtained directly from field measurements. One testable outcome relates to the origin of rhythmic layering where analytical results imply the sheared suspension intersects the phase space for particle Reynolds and Peclet number flow characteristic of macroscopic structures formation2. Another relates to potentially novel crystal-liquid segregation due to the formation of eddies locally at undulating contacts at the floor and roof of the intrusion. The eddies are transient and mechanical in origin, unrelated to well-known fluid dynamical effects around obstacles where flow is turbulent. Numerical particle tracing reveals that these low Re number eddies can both trap (remove) and eject particles back into the magma at a later time according to their mass density. This trapping mechanism has potential to develop local variations in structure (layering) and magma chemistry that may otherwise not occur where the contact between magma and country rock is linear. Simulations indicate that eddy formation is best developed where magma viscosity is in the range 1-102 Pa s. Higher viscosities (> 103 Pa s) tend to dampen the effect implying eddy development is most likely a transient feature. However, it is nice to think that something as simple as a bumpy contact could impart physical and by implication chemical diversity in igneous rocks. 1Marsh, D.B. (2004), A

  17. Magma Transport from Deep to Shallow Crust and Eruption

    NASA Astrophysics Data System (ADS)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  18. The Quench Control of Water Estimates in Convergent Margin Magmas

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Krawczynski, M.; Ruprecht, P.

    2017-12-01

    Mineral-hosted glassy melt inclusions (MIs) have been used to quantify magma volatile contents for several decades. Despite the growing number of volatile studies utilizing MIs, it has not been tested whether there is a physical limit on how much dissolved volatiles a glassy MI can contain. We explored the limits of MIs as hydrous magma recorders in an experimental study, showing that there is a limit of dissolved H2O that glassy MIs cannot exceed. These results show there is potential bias in the glassy MI data set; they can only faithfully record pre-eruptive H2O contents in the upper-most part of the Earth's crust where H2O-solubility is low. The current MI database cannot be used to robustly estimate the full range of arc magmas and therefore assess volatile budgets in primitive or evolved compositions. Such magmas may contain much larger amounts of H2O than currently recognized and the diversity of magma evolutionary pathways in subduction zones is likely being significantly underappreciated.

  19. Linking magma transport structures at Kīlauea volcano

    Wech, Aaron G.; Thelen, Weston A.

    2015-01-01

    Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.

  20. Understanding which parameters control shallow ascent of silicic effusive magma

    NASA Astrophysics Data System (ADS)

    Thomas, Mark E.; Neuberg, Jurgen W.

    2014-11-01

    The estimation of the magma ascent rate is key to predicting volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. Linking potential changes of such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models Soufrière that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. We show that variability in the rate of low frequency seismicity, assumed to correlate directly with the rate of magma movement, can be used as an indicator for changes in ascent rate and, therefore, eruptive activity. The results indicate that conduit diameter and excess pressure in the magma chamber are amongst the dominant controlling variables, but the single most important parameter is the volatile content (assumed as only water). Modeling this parameter in the range of reported values causes changes in the calculated ascent velocities of up to 800%.

  1. Laboratory studies of crystal growth in magma

    NASA Astrophysics Data System (ADS)

    Hammer, J. E.; Welsch, B. T.; First, E.; Shea, T.

    2012-12-01

    The proportions, compositions, and interrelationships among crystalline phases and glasses in volcanic rocks cryptically record pre-eruptive intensive conditions, the timing of changes in crystallization environment, and the devolatilization history of eruptive ascent. These parameters are recognized as important monitoring tools at active volcanoes and interpreting geologic events at prehistoric and remote eruptions, thus motivating our attempts to understand the information preserved in crystals through an experimental appoach. We are performing laboratory experiments in mafic, felsic, and intermediate composition magmas to study the mechanisms of crystal growth in thermochemical environments relevant to volcanic environments. We target features common to natural crystals in igneous rocks for our experimental studies of rapid crystal growth phenomena: (1) Surface curvature. Do curved interfaces and spongy cores represent evidence of dissolution (i.e., are they corrosion features), or do they record the transition from dendritic to polyhedral morphology? (2) Trapped melt inclusions. Do trapped liquids represent bulk (i.e., far-field) liquids, boundary layer liquids, or something intermediate, depending on individual species diffusivity? What sequence of crystal growth rates leads to preservation of sealed melt inclusions? (3) Subgrain boundaries. Natural phenocrysts commonly exhibit tabular subgrain regions distinguished by small angle lattice misorientations or "dislocation lamellae" and undulatory extinction. Might these crystal defects be produced as dendrites undergo ripening? (4) Clusters. Contacting clusters of polymineralic crystals are the building blocks of cumulates, and are ubiquitous features of mafic volcanic rocks. Are plagioclase and clinopyroxene aligned crystallographically, suggesting an epitaxial (surface energy) relationship? (5) Log-normal size distribution. What synthetic cooling histories produce "natural" distributions of crystal sizes, and

  2. Ridge Jumps Associated with Plume-Ridge Interaction 1: Off-axis Heating due to Lithospheric Magma Penetration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2005-12-01

    In many hot spot-ridge systems, changes in the ridge axis geometry occur between the hot spot centers and nearby mid-ocean ridges in the form of ridge jumps. Such ridge jumps likely occur as a result of anomalous lithospheric stresses associated with mantle plume-lithosphere interaction, as well as weakening of the hot spot lithosphere due to physical and thermal thinning caused by rising buoyant asthenosphere and magma transport through the lithosphere. In this study, we use numerical models to quantify the effects of excess magmatism through the near-ridge lithosphere. Hot spot magmatism can weaken the lithosphere both mechanically through fracturing and thermally through conduction and advection of heat into the plate. Here we focus on the effects of thermal weakening. Using a plane-strain approximation, we examine deformation in a 2-D cross section of a visco-elastic-plastic lithosphere with the finite element code FLAC. The model has isothermal top and bottom boundaries and a prescribed velocity equal to the half spreading rate is imposed on the sides to drive seafloor spreading. The initial condition, as predicted for normal mid-ocean ridges, is a square root of lithospheric age cooling curve with a corner flow velocity field symmetric about the ridge axis. A range of heat inputs are introduced at various plate ages and spreading rates to simulate off-axis magma transport. To reveal the physical conditions that allow for a ridge jump and control its timing, we vary 4 parameters: spreading rate, lithospheric age, crustal thickness and heat input. Results indicate that the heating rate required to produce a ridge jump increases as a function of lithospheric age at the location of magma intrusion. The time necessary for a ridge jump to develop in lithosphere of a particular age decreases with increasing crustal thicknesses. For magma fluxes comparable to those estimated for Galapagos and Iceland, lithospheric heating by the penetrating magma alone is sufficient

  3. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  4. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    influence on the SEIR formation occurred 70-50 mln years ago, when the process of primary magma generation happened at high degrees of melting (up to 30%), which is not typical for spreading ridges of the Atlantic and Pacific Oceans. According to geochemical characteristics of the Kerguelen Plateau and SEIR magma sources close to each other, and have an enriched source of more typical for Kerguelen plume magmas and diluted by depleted substance for SEIR melts. Appearance of magmatism on the Antarctic margin about 56 thousand years ago, in the form of a stratovolcano Gaussberg indicates sublithospheric Kerguelen plume distribution in the south-west direction. The source of primary magmas (lamproite composition) is an ancient Gondwana lithosphere, has undergone repeated changes in the early stages of evolution during which it was significantly enriched in volatile and lithophile elements, and radiogenic Sr and Pb.

  5. Constraining the timescale of magma stagnation beneath Mauna Kea volcano, Hawaii,using diffusion profiles in olivine phenocrysts

    NASA Astrophysics Data System (ADS)

    Bloch, E. M.; Ganguly, J.

    2009-12-01

    Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of

  6. Action perception as hypothesis testing.

    PubMed

    Donnarumma, Francesco; Costantini, Marcello; Ambrosini, Ettore; Friston, Karl; Pezzulo, Giovanni

    2017-04-01

    We present a novel computational model that describes action perception as an active inferential process that combines motor prediction (the reuse of our own motor system to predict perceived movements) and hypothesis testing (the use of eye movements to disambiguate amongst hypotheses). The system uses a generative model of how (arm and hand) actions are performed to generate hypothesis-specific visual predictions, and directs saccades to the most informative places of the visual scene to test these predictions - and underlying hypotheses. We test the model using eye movement data from a human action observation study. In both the human study and our model, saccades are proactive whenever context affords accurate action prediction; but uncertainty induces a more reactive gaze strategy, via tracking the observed movements. Our model offers a novel perspective on action observation that highlights its active nature based on prediction dynamics and hypothesis testing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cathedral Peak Granodiorite, Sierra Nevada Batholith, California: A Big, Mushy, Magma System?

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Miller, J. S.; Matzel, J. P.

    2006-12-01

    The Cathedral Peak Granodiorite (Kcp) is the largest mapped unit of the >1200 km2 Tuolumne Batholith (TB), which is one of a belt of Cretaceous zoned intrusions within the Sierra Nevada Batholith. Previous workers [1,2] proposed that the zonation in the TB was mainly produced in-situ either by inward differentiation of a large mass of magma and/or large-scale magma mixing between compositionally distinct map units. Recent geochronology has shown that the entire TB was intruded over 8-9 Ma, leading to the hypothesis that it was constructed continuously over this time period by many small increments [3], with variations in chemical and isotopic composition attributed to processes in the melt source. This hypothesis is also supported by scatter in trace elements vs. longitude from the margins to inner TB and appreciable variability in Nd and Sr isotopic data between the mapped units of the TB [e.g., 4]. Thus attributing chemical variations between major intrusive units to simple closed system fractionation or binary magma mixing is precluded. New field, geochemical and geochronologic work along a 5 km transect from the porphyritic Half Dome Granodiorite (Khdp) margin to the innermost Kcp, and approximately perpendicular to the Kcp-Khdp contact shows that: (1) magmatic foliation is moderately- to steeply-dipping (>60°); (2) zircon ages at each end of the transect are indistinguishable; (3) bulk composition varies only modestly but trace elements show variable degrees of scatter with greatest scatter observed among feldspar-compatible and highly incompatible elements (Sr, Ba, Th); (5) ɛNd(t) is invariant (Sr(i) has small variation); (6) abundant field evidence for transport and mixing of melt and crystals is observed (multiple generations of steep planar, tube- like, and chaotically folded schlieren, rafts and monomineralic clusters of K-feldspar, irregular and mingled contacts between sheets of texturally variable granite and schlieren). The broad geochemical and

  8. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    NASA Astrophysics Data System (ADS)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  9. A Magma Genesis Model to Explain Growth History of Hawaiian Volcanoes: Perspectives of 2001-2002 JAMSTEC Hawaii Cruises

    NASA Astrophysics Data System (ADS)

    Takahashi, E.

    2003-12-01

    The 2001 and 2002 JAMSTEC Hawaii cruises have been carried out using RV-Kairei with ROV-Kaiko and RV-Yokosuka with submersible Shinaki-6500, respectively. The main focus of these cruises is 1) to clarify the growth history of Hawaiian volcanoes through geological study on deep submarine exposures, 2) to understand the nature of submarine rifts, 3) to understand the nature of magmas erupted on the deep ocean floor away from the center of the Hawaiian plume. The geologic reconstruction of gigantic landslides (Moore et al., 1989) provided opportunities to study the long-term growth history of Hawaiian volcanoes, approaches complimentary to those by HSDP. Using this approach, we studied the growth histories of Kilauea (Lipman et al., 2002), Koolau (Moore & Clague, 2002; Yokose, 2002), and Mauna Loa (Yokose et al, this conference). The geochemical reconstruction of Koolau volcano showed a secular variation in basalt magma types; from Kilauea-like to Mauna Loa-like and finally the silica-rich Koolau-type tholeiites (Shinozaki et al. 2002). These chemical changes are associated with significant changes in Sr, Nd and Pb isotopes (Tanaka et al., 2002). Similar changes in basalt magma types have been found in the growth history of Haleakala volcano (Ren et al., 2003) and in HSDP cores representing the growth history of Mauna Kea. Accordingly, it is plausible that the basalt magma types found among Hawaiian shield volcanoes are not representing geographic trends (e.g., Kea-trend and Loa trend) but are representing different growth stages. In order to elucidate secular changes in the geochemistry of Hawaiian volcanoes newly revealed by this project, I have carried out high-pressure melting studies at 2-3 GPa with eclogite/peridotite composite starting materials (experimental detail will be given by Takahashi, this conference V03). In eclogite/peridotite reactive melting, magmas produced above the solidus of peridotite (1480C at 2.8 GPa) are silica deficient alkalic picrites

  10. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Ripley, Edward M.

    2005-03-01

    Empirical equations to predict the sulfur content of a mafic magma at the time of sulfide saturation have been developed based on several sets of published experimental data. The S content at sulfide saturation (SCSS) can be expressed as: ln X_{text S} = 1.229 - 0.74(10^4/T) - 0.021(P) - 0.311 ln X_{{text{FeO}}} - 6.166X_{{text{SiO}}_{text{2}}} - 9.153X_{{text{Na}}_{text{2}} {text{O + K}}_{text{2}} {text{O}}} - 1.914X_{{text{MgO}}} + 6.594X_{{text{FeO}}} where T is in degrees Kelvin, X is mole fraction and P is in kbar. The squared multiple correlation coefficient ( r 2) for the equation is 0.88. Application of the equation to data from sulfide-saturated mid-ocean ridge basalts (MORB) samples show that the SCSS is closely predicted for primitive MORBs, but that accuracy decreases for lower T (<1,130°C) and more evolved MORB samples. This suggests that because the calibrations are based on anhydrou