Sample records for magmatic evolution processes

  1. Modulation of magmatic processes by CO2 flushing

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon

    2018-06-01

    Magmatic systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in magmatic systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within magmatic systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of magmatic systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal magmatic systems.

  2. Polyphase tectono-magmatic and fluid history related to mantle exhumation in an ultra-distal rift domain: example of the fossil Platta domain, SE Switzerland

    NASA Astrophysics Data System (ADS)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc

    2017-04-01

    Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.

  3. The Magmatic Budget of Rifted Margins: is it Related to Inheritance?

    NASA Astrophysics Data System (ADS)

    Manatschal, G.; Tugend, J.; Gillard, M.; Sauter, D.

    2017-12-01

    High quality reflection and refraction seismic surveys show a divergent style of margin architecture often referred to as magma-poor or magma-rich. More detailed studies show, however, that the evolution of these margins can be similar, despite the variable quantity and distribution of magmatism. These observations suggest that simple relations between magmatic and extensional systems are inappropriate to describe the magmatic history of rifted margins. Moreover, the study of magmatic additions indicates that they may occur, prior to, during or after lithospheric breakup. Furthermore, the observation that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far the inherited composition and temperature of the decompressing mantle may control the magmatic budget during rifting. In our presentation we will review examples from present-day and fossil rifted margins to discuss their structural and magmatic evolution and whether they are considered as magma-rich or magma-poor. The key questions that we aim to address are: 1) whether decompression melting is the driving force, or rather the consequence of extension, 2) how far the magmatic budget is controlled by inherited mantle composition and temperature, and 3) how important magma storage is during initial stages of rifting. Eventually, we will discuss to what extent the evolution of margins may reflect the interplay between inheritance (innate/"genetic code") and the actual physical processes (acquired/external factors).

  4. The Acoculco caldera magmas: genesis, evolution and relation with the Acoculco geothermal system

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.; Macías, J. L.; Avellán, D.

    2017-12-01

    The Acoculco Caldera Complex (ACC) is located at the eastern part of the Trans Mexican Volcanic Belt; México. This caldera complex have been active since 2.7 Ma through reactivations of the system or associated magmatism. Therefore the ACC is an excellent case scenario to investigate the relation between the magmatic heat supply and the evolution processes that modified magmatic reservoirs in a potential geothermal field. We investigated the origin and the magmatic processes (magma mixing, assimilation and crystallization) that modified the ACC rocks by petrography, major oxides-trace element geochemistry, and isotopic analysis. Magma mixing is considered as the heat supply that maintain active the magmatic system, whereas assimilation yielded insights about the depth at which processes occurred. In addition, we performed a series of hydrothermal experiments in order to constrain the storage depth for the magma tapped during the caldera collapse. Rocks from the ACC were catalogued as pre, syn and post caldera. The post caldera rocks are peralkaline rhyolites, in contrast to all other rocks that are subalkaline. Our investigation is focus to investigate if the collapse modified the plumbing system and the depth at which magmas stagnate and recorded the magmatic processes.

  5. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  6. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    NASA Astrophysics Data System (ADS)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of decompression melting onset and melting rates (magmatic processes) relative to crustal thinning (tectonic processes) appear equally, if not more important, than the magmatic budget for unravelling the evolution of rifted margins.

  7. Sink- or Source-driven Phanerozoic carbon cycle?

    NASA Astrophysics Data System (ADS)

    Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.

    2017-12-01

    The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.

  8. Mediterranean Magmatism: Bimodal Melting Patterns Inferred By Numerical Models

    NASA Astrophysics Data System (ADS)

    Gogus, O.; Ueda, K.; Gerya, T.

    2017-12-01

    Melt production by the decompression melting of the asthenospheric mantle occurs in the course of the lithospheric foundering process. The magmatic imprints of such foundering process are often described as anorogenic magmatism and this is usually followed by the orogenic magmatism, related to the subduction events in the Mediterranean region. Here, by using numerical geodynamic experiments we explore various styles of magmatism, their interaction with each other and the amount of magma production in the ocean subduction to slab peel away/delamination configuration. Model results show that the early stage of the ocean subduction under the continental lithosphere is associated with the short pulse of wet melting-orogenic magmatism and then the melting process is mostly dominated by dry melting-anorogenic magmatism, until the slab break-off occurs. While the melt types mixes/alternates during the evolution of the model, the wet melting facilitates the production of dry melting because of its uprising and emplacement under the crust where dry melting is present. The melt production pattern and the amount does not change significantly with different depths of the slab break-off (160-200 km). Model results can explain the transition from the calc-alkaline to alkaline volcanism in the western Mediterranean (Alboran domain) where ocean subduction to delamination has been interpreted.

  9. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    NASA Astrophysics Data System (ADS)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  10. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin

    USGS Publications Warehouse

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.

  11. Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective

    NASA Astrophysics Data System (ADS)

    England, R. W.; Cornwell, D. G.; Ramsden, A. M.

    2014-12-01

    One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.

  12. Detrital zircons and Earth system evolution

    NASA Astrophysics Data System (ADS)

    McKenzie, R.

    2016-12-01

    Zircon is a mineral commonly produced in silicic magmatism. Therefore, due to its resilience and exceedingly long residence times in the continental crust, detrital zircon records can be used to track processes associated with silicic magmatism throughout Earth history. In this contribution I will address the potential role of preservational biases in zircon record, and further discuss how zircon datasets can be used to help better understand the relationship between lithospheric and Earth system evolution. I will use large compilations of zircon data to trace the composition and weatherability of the continental crust, to evaluate temporal rates of crustal recycling, and finally to track spatiotemporal variation in continental arc magmatism and volcanic CO2 outgassing throughout Earth history. These records demonstrate that secular changes in plate tectonic regimes played a prominent role in modulating conditions of the ocean+atmosphere system and long-term climate state for the last 3 billion years.

  13. Isotopic evolution of the idaho batholith and Challis intrusive province, Northern US Cordillera

    USGS Publications Warehouse

    Gaschnig, Richard M.; Vervoort, J.D.; Lewis, R.S.; Tikoff, B.

    2011-01-01

    The Idaho batholith and spatially overlapping Challis intrusive province in the North American Cordillera have a history of magmatism spanning some 55 Myr. New isotopic data from the ???98 Ma to 54 Ma Idaho batholith and ???51 Ma to 43 Ma Challis intrusions, coupled with recent geochronological work, provide insights into the evolution of magmatism in the Idaho segment of the Cordillera. Nd and Hf isotopes show clear shifts towards more evolved compositions through the batholith's history and Pb isotopes define distinct fields correlative with the different age and compositionally defined suites of the batholith, whereas the Sr isotopic compositions of the various suites largely overlap. The subsequent Challis magmatism shows the full range of isotopic compositions seen in the batholith. These data suggest that the early suites of metaluminous magmatism (98-87 Ma) represent crust-mantle hybrids. Subsequent voluminous Atlanta peraluminous suite magmatism (83-67 Ma) results primarily from melting of different crustal components. This can be attributed to crustal thickening, resulting from either subduction processes or an outboard terrane collision. A later, smaller crustal melting episode, in the northern Idaho batholith, resulted in the Bitterroot peraluminous suite (66-54 Ma) and tapped different crustal sources. Subsequent Challis magmatism was derived from both crust and mantle sources and corresponds to extensional collapse of the over-thickened crust. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  14. Time and Geochemical Distribution of Central Italy Magmatism : Paleosubduction processes or Crustal Stretching?

    NASA Astrophysics Data System (ADS)

    Cadoux, A.; Aznar, C.; Pinti, D. L.; Chiesa, S.; Lefèvre, J. C.; Gillot, P. Y.

    2003-04-01

    Italian Plio-Quaternary magmatism is related to episodes of metasomatism produced by the subduction, rollback of the Adria Plate beneath Italy, and the opening of the Tyrrhenian back-arc basin. Authors interpret the space and time progression of the Cenozoic Italian volcanism as an indicator of the evolutionary history of the subduction processes or alternatively as local episodes of crustal stretching. Earlier magmatism (e.g.; Tuscan Magmatic Province; Pontine Islands) does not show a clear relationship between paleosubduction processes and its spatial and temporal distribution. At this regard, we started a study of the first magmatic manifestations in the northwestern Pontine Archipelago (located at the border of the continental shelf between Rome and Naples). In order to establish their relation with the known Italian magmatic provinces and better understand the magmatic processes at the source, we carried out a geochronological and geochemical combined study of the acidic lavas of the Ponza and Palmarola islands. Twenty-two new K/Ar ages show that the construction of these two islands has been relatively short. The island of Ponza has been built in less than 300 Ka, between 4.0 and 3.7 Ma, with the emplacement of rhyolitic domes, followed by ignimbrite-like flows, between 3.2 and 3.0 Ma. The volcanic activity has successively migrated westwards, forming the island of Palmarola in ca. 100 Ka, between 1.6 to 1.5 Ma. Previous hypothesis suggested Pliocene ages for these products. Final volcanic activity has been the trachytic dome south of Ponza, at 1Ma. Although separated by only few kilometers, Ponza and Palmarola have different geochemical signatures. Ponza rhyolites show an orogenic affinity whereas those of Palmarola and the Ponza trachyte, have a signature close to alkaline intraplate lavas. In terms of ages and trace elements distribution, the Ponza rhyolites could be related to some of the acidic manifestations of the Tuscan Magmatic Province, while Palmarola has some differences in the trace elements distribution. Although, Ponza and Palmarola show a predominant “orogenic“ character, it is attenuated with time, as shown by a decrease of the Th/Ta ratio, from 21 at 4.0 Ma to 11 at 1 Ma. This change seems to reflect an evolution of the geodynamical context: syn-collisional in the older products of Ponza to post-collisional, evoluting toward an intraplate magmatism, for the Palmarola products and the trachytic dome of Ponza. We are testing the hypothesis of a genetic link between earlier volcanic manifestations of the Tuscan Magmatic Province and the Pontine magmatism through a detailed geochronological and geochemical study of its products (Roccastrada, Amiata among others) and for which we will present preliminary data.

  15. A cross correlation method for chemical profiles in minerals, with an application to zircons of the Kilgore Tuff (USA)

    NASA Astrophysics Data System (ADS)

    Probst, L. C.; Sheldrake, T. E.; Gander, M. J.; Wallace, G.; Simpson, G.; Caricchi, L.

    2018-03-01

    Magmatic crystals are characterised by chemical zonation patterns that reflect the thermal and chemical conditions within magma reservoirs in which they grew. Crystals that exhibit similar patterns of zonation are often interpreted to have experienced similar conditions of growth. These patterns of zonation may represent continuous processes such as cooling, or more instantaneous events such as magma injection, and provide an insight into the structure and evolution of a magmatic system, both temporally and spatially. We have developed an algorithm that is objectively able to quantify the similarity within and between suites of magmatic crystals from different samples. Significantly, the algorithm is able to identify correlation that occurs between the interiors of two crystals, but does not extend to the rim, which provides an opportunity to understand the long-term evolution of magmatic systems. We develop and explain the mathematical basis for our algorithm and introduce its application using cathodoluminescence images of zircons from the Kilgore Tuff (USA). The results allow us to correlate samples from two different outcrops that are found over 80 km apart.

  16. The evolution of Yellowstone's magmatic system over the past 630 kyr: Insights from the crystal record

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.

    2017-12-01

    The Yellowstone Plateau volcanic field in northwestern Wyoming is one of the world's largest, active silicic volcanic centers, and has produced three caldera-forming "super eruptions" over the past 2.1 Myr. As a result, the petrologic evolution of Yellowstone's magmatic system has been the focus of numerous studies over the past 60 years. Early studies at Yellowstone focused on characterizing whole-rock chemical and isotopic variations observed in magmas erupted over Yellowstone's lifetime. While these have provided important insights into the source of Yellowstone magmas and the processes controlling their compositional evolution though time, whole-rock studies are limited in their ability to identify the mechanisms and timescales of rhyolite generation. In contrast, much of the recent work at Yellowstone has focused on applying micro-analytical techniques to characterize the age and composition of phenocrysts hosted in Yellowstone rhyolites. These studies have greatly advanced our understanding of the magmatic system at Yellowstone and have provided crucial new insights into the mechanisms and timescales of rhyolite generation. In particular, recent work has focused on applying micro-analytical techniques to study the age and origin of the [1] three caldera-forming eruptions that produced the Huckleberry Ridge, Mesa Falls, Lava Creek tuffs and [2] post-Lava Creek tuff intracaldera rhyolites that compose the Plateau Rhyolite. As a result, a wealth of crystal-chemical data now exists for rhyolites erupted throughout Yellowstone's 2.1 Myr history. These data provide a unique opportunity to create a detailed reconstruction of Yellowstone's magmatic system through time. In this contribution, I integrate available age, chemical, and isotopic data for phenocrysts hosted in Yellowstone rhyolites to construct a model for the evolution of Yellowstone's magmatic system from the caldera-forming eruption of the Lava Creek tuff at ca. 0.63 Ma to the present day. In particular, I highlight new insights into [1] the physical nature of Yellowstone's magmatic system, [2] the ways in which the mechanisms and timescales of rhyolite generation have changed though time, and [3] implications for the current state of the Yellowstone's magmatic system.

  17. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized spreading center. The interest of that definition is that it does not restrain the term oceanic crust to a basement composition and consequently does not exclude the creation of magma-poor oceanic crust, as observed at slow spreading ridges for example. Indeed, the initiation of steady state oceanic spreading is not necessarily magmatic (e.g. some segments of the Australian-Antarctic margins). In this case, drifting is accommodated by mantle exhumation. However, in this magma-poor transition, and without clear markers of a gradual increase of magmatism, it thus appears difficult to clearly differentiate an exhumed OCT basement and an exhumed oceanic basement. Some theoretical differences can be nevertheless considered: exhumed OCT basement should display a chemical evolution toward the ocean from a subcontinental to an oceanic signature. Moreover, extensional detachment faults are probably long-lived due to the poor influence of the asthenosphere at this stage. On the contrary, exhumed oceanic basement should only display an oceanic signature. In this case, extensional detachment faults are certainly short-lived, due to the strong influence of the asthenosphere, which tends to quickly re-localize the deformation above the spreading center.

  18. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  19. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    NASA Astrophysics Data System (ADS)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE-enriched carbonatites.

  20. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  1. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  2. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    NASA Astrophysics Data System (ADS)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra < 107, basaltic materials generated by the initial widespread magmatism accumulate in the deep mantle to form a layer; the basaltic layer is colder than the overlying shallow mantle. At Ra > 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  3. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry exists between these conjugate margins. The main implications from this work are that different processes may have operated during and after rifting on these conjugate margins. This concept should be carried forward when conducting conjugate margin studies elsewhere, particularly when exploring for hydrocarbons as prospectivity on one margin may not be predictive for its conjugate as different thermal and structural regimes may have been in operation during conjugate basin evolution.

  4. Efficient cooling of rocky planets by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  5. Les granitoïdes néoprotérozoïques de Khzama, Anti-Atlas central, Maroc: marqueurs de l'évolution d'un magmatisme d'arc à un magmatisme alcalineNeoproterozoic granitoids from Khzama, central Anti-Atlas, Morocco: evolution markers from arc magmatism to alkaline magmatism

    NASA Astrophysics Data System (ADS)

    El-Khanchaoui, T.; Lahmam, M.; El-Boukhari, A.; El-Beraaouz, H.

    2001-05-01

    Petrological study and zircon typology provide important information that is related to the classification and genesis of Neoproterozoic granitoids in the Khzama area (northeast Siroua). The Pan-African granitoids show a transition from island-arc magmatism to alkaline magmatism. A space and time zonation of magmatism from the north to the south is evident. Early Pan-African granitoids were generated from various magma sources through different petrogenetic mechanisms. The first association corresponds to the low-K calc-alkaline plutons of Ait Nebdas, the second one correponds to high-K calc-alkaline post-collisional granites (Tamassirte-Tiferatine and Ifouachguel). Finally, shoshonitic magmatism (Irhiri) ends the magmatic evolution of the region. Thus, the late Pan-African granitic plutonism began with calc-alkaline associations and ended with K-alkaline magmatism in a transtensional setting, heralding the onset of the Moroccan Palæozoic cycle.

  6. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment.

    PubMed

    Chiaradia, Massimo; Caricchi, Luca

    2017-03-15

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2-3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits.

  7. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment

    PubMed Central

    Chiaradia, Massimo; Caricchi, Luca

    2017-01-01

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2–3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits. PMID:28295045

  8. The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.

    2013-02-01

    The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.

  9. Magmatic evolution of a Cordilleran flare-up and its role in the creation of silicic crust.

    PubMed

    Ward, Kevin M; Delph, Jonathan R; Zandt, George; Beck, Susan L; Ducea, Mihai N

    2017-08-22

    The role of magmatic processes as a significant mechanism for the generation of voluminous silicic crust and the development of Cordilleran plateaus remains a lingering question in part because of the inherent difficulty in quantifying plutonic volumes. Despite this difficulty, a growing body of independently measured plutonic-to-volcanic ratios suggests the volume of plutonic material in the crust related to Cordilleran magmatic systems is much larger than is previously expected. To better examine the role of crustal magmatic processes and its relationship to erupted material in Cordilleran systems, we present a continuous high-resolution crustal seismic velocity model for an ~800 km section of the active South American Cordillera (Puna Plateau). Although the plutonic-to-volcanic ratios we estimate vary along the length of the Puna Plateau, all ratios are larger than those previously reported (~30:1 compared to 5:1) implying that a significant volume of intermediate to silicic plutonic material is generated in the crust of the central South American Cordillera. Furthermore, as Cordilleran-type margins have been common since the onset of modern plate tectonics, our findings suggest that similar processes may have played a significant role in generating and/or modifying large volumes of continental crust, as observed in the continents today.

  10. Zircon U-Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin

    NASA Astrophysics Data System (ADS)

    Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf

    2017-12-01

    The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern Magmatic Belt, Southern Puna, require a further study for new evidence towards the understanding of sources, magmatic processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf isotope analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of magmatic activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma magmatic event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern Magmatic Belt of the Puna was part of a long-lived magmatic event during Early Paleozoic times. Whereby the granitoids of the Eastern Magmatic Belt formed through intra-crustal recycling at an active continental margin, with minor contributions from juvenile material in the back-arc setting.

  11. Rare earth elements in Angra dos Reis and Lewis Cliff 86010, two meteorites with similar but distinct magma evolutions

    NASA Technical Reports Server (NTRS)

    Crozaz, Ghislaine; Mckay, Gordon

    1990-01-01

    Data are presented on ion microprobe measurements of REE and selected trace element abundances in individual grains of merrillite, fassaite, olivine, kirschsteinite, and plagioclase of Lewis Cliff 86010 (LEW 86010) meteorite and in merrillite and fassaite grains of Angra dos Reis (ADOR). Results show a close relationship between the two meteorites and support a magmatic origin for LEW 86010. However, the measurements indicate that, despite numerous common characteristics, the two meteorites must have been produced in separate magmatic events involving similar but distinct processes and parent melts.

  12. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.

    2011-01-01

    Present-day High Cascades arc magmatism was preceded by ~40 m.y. of nearly cospatial magmatism represented by the ancestral Cascades arc in Washington, Oregon, and northernmost California (United States). Time-space-composition relations for the ancestral Cascades arc have been synthesized from a recent compilation of more than 4000 geochemical analyses and associated age data. Neither the composition nor distribution of ancestral Cascades magmatism was uniform along the length of the ancestral arc through time. Initial (>40 to 36 Ma) ancestral Cascades magmatism (mostly basalt and basaltic andesite) was focused at the north end of the arc between the present-day locations of Mount Rainier and the Columbia River. From 35 to 18 Ma, initial basaltic andesite and andesite magmatism evolved to include dacite and rhyolite; magmatic activity became more voluminous and extended along most of the arc. Between 17 and 8 Ma, magmatism was focused along the part of the arc coincident with the northern two-thirds of Oregon and returned to more mafic compositions. Subsequent ancestral Cascades magmatism was dominated by basaltic andesite to basalt prior to the post–4 Ma onset of High Cascades magmatism. Transitional tholeiitic to calc-alkaline compositions dominated early (before 40 to ca. 25 Ma) ancestral Cascades eruptive products, whereas the majority of the younger arc rocks have a calc-alkaline affinity. Tholeiitic compositions characteristic of the oldest ancestral arc magmas suggest development associated with thin, immature crust and slab window processes, whereas the younger, calc-alkaline magmas suggest interaction with thicker, more evolved crust and more conventional subduction-related magmatic processes. Presumed changes in subducted slab dip through time also correlate with fundamental magma composition variation. The predominance of mafic compositions during latest ancestral arc magmatism and throughout the history of modern High Cascades magmatism probably reflects extensional tectonics that dominated during these periods of arc magmatism. Mineral deposits associated with ancestral Cascades arc rocks are uncommon; most are small and low grade relative to those found in other continental magmatic arcs. The small size, low grade, and dearth of deposits, especially in the southern two-thirds of the ancestral arc, probably reflect many factors, the most important of which may be the prevalence of extensional tectonics within this arc domain during this magmatic episode. Progressive clockwise rotation of the forearc block west of the evolving Oregon part of the ancestral Cascades magmatism produced an extensional regime that did not foster significant mineral deposit formation. In contrast, the Washington arc domain developed in a transpressional to mildly compressive regime that was more conducive to magmatic processes and hydrothermal fluid channeling critical to deposit formation. Small, low-grade porphyry copper deposits in the northern third of the ancestral Cascades arc segment also may be a consequence of more mature continental crust, including a Mesozoic component, beneath Washington north of Mount St. Helens.

  13. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the diffusivity ratio of 54Fe and 56Fe (i.e., D54Fe/D56Fe) is very similar to that of 24Mg and 26Mg, despite the smaller relative mass difference for the 54Fe-56Fe pair. This study demonstrates that a combined investigation of Fe-Mg chemical and isotopic zoning in olivine provides additional and more reliable information on magma evolution than chemical zoning alone.

  14. Paleo- and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay)

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Wagner-Eimer, Martin; Wemmer, Klaus; Schulz, Bernhard; Frei, Robert; Siegesmund, Siegfried

    2012-10-01

    The Isla Cristalina de Rivera crystalline complex in northeastern Uruguay underwent a multistage magmatic and metamorphic evolution. Based on SHRIMP U-Pb zircon, Th-U-Pb monazite (CHIME-EPMA method) and K-Ar age data from key units several events can be recognized: (1) multistage magmatism at 2,171-2,114 Ma, recorded on zircon of the granulitic orthogneisses and their 2,093-2,077 Ma overgrowths; (2) a distinct amphibolite facies metamorphism at ~1,980 Ma, recorded by monazite; (3) greenschist facies reworking and shearing at ca. 606 Ma (monazite and K-Ar on muscovite) along the Rivera Shear Zone, and finally (4) intrusion of the post-tectonic Sobresaliente and Las Flores granites at around 585 Ma. Lithological similarities, geographic proximity and coeval magmatic and metamorphic events indicate a similar tectonometamorphic evolution for the Isla Cristalina de Rivera, the Valentines Block in Uruguay and the Santa María Chico Granulitic Complex in southern Brazil, since at least 2.1 Ga.

  15. The influence of inherited structures on magmatic and amagmatic processes in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Lloyd, R.; Hodge, M.; Robertson, E.; Wilks, M.; Fagereng, A.; Kendall, J. M.; Mdala, H. S.; Lewi, E.; Ayele, A.

    2017-12-01

    The idea that crustal heterogeneities, particularly inherited structures, influence the initiation and evolution of continental rifts is not new, but now modern techniques allow us to explore these controls from a fresh perspective, over a range of lengthscales, timescales and depths. In amagmatic rifts, I will demonstrate that deep fault structure is controlled by the stress orientation during the earliest phase of rifting, while the surface expression exploits near-surface weaknesses. I will show that pre-existing structures control the storage and orientation of deeper magma reservoirs in magmatic rifts, while the tectonic stress regime controls intra-rift faulting and shallow magmatism and stresses related to surface loading and cycles of inflation and deflation dominate at volcanic edifices. Finally, I will show how cross-rift structures influence short-term processes such as deformation and seismicity. I will illustrate the talk throughout using examples from along the East African Rift, including Malawi, Tanzania, Kenya and Ethiopia.

  16. The effects of magmatic redistribution of heat producing elements on the lunar mantle evolution inferred from numerical models that start from various initial states

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaki

    2018-02-01

    To discuss how redistribution of heat producing elements (HPEs) by magmatism affects the lunar mantle evolution depending on the initial condition, I present two-dimensional numerical models of magmatism in convecting mantle internally heated by incompatible HPEs. Mantle convection occurs beneath a stagnant lithosphere that inhibits recycling of the HPE-enriched crustal materials to the mantle. Magmatism is modeled by a permeable flow of magma generated by decompression melting through matrix. Migrating magma transports heat, mass, and HPEs. When the deep mantle is initially hot with the temperature TD around 1800 K at its base, magmatism starts from the beginning of the calculated history to extract HPEs from the mantle. The mantle is monotonously cooled, and magmatism ceases within 2 Gyr, accordingly. When the deep mantle is initially colder with TD around 1100 K, HPEs stay in the deep mantle for a longer time to let the planet be first heated up and then cooled only slightly. If, in addition, there is an HPE-enriched domain in the shallow mantle at the beginning of the calculation, magma continues ascending to the surface through the domain for more than 3 Gyr. The low TD models fit in with the thermal and magmatic history of the Moon inferred from spacecraft observations, although it is not clear if the models are consistent with the current understanding of the origin of the Moon and its magnetic field. Redistribution of HPEs by magmatism is a crucial factor that must be taken into account in future studies of the evolution of the Moon.

  17. The Deep Crust Magmatic Refinery, Part 2 : The Magmatic Output of Numerical Models.

    NASA Astrophysics Data System (ADS)

    Bouilhol, P.; Riel, N., Jr.; Van Hunen, J.

    2016-12-01

    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To better constrain lower crust processes, we have built up a numerical model [see Riel et al. associated abstract for methods] to explore different parameters, unravelling the complex interplay between melt percolation / crystallization and degassing / re-melting in a so called "hot zone" model. We simulated the intrusion of water bearing mantle melts at the base of an amphibolitized lower crust during a magmatic event that lasts 5 Ma. We varied several parameters such as Moho depth and melt rock ratio to better constrain what controls the final melt / lower crust composition.. We show the evolution of the chemical characteristics of the melt that escape the system during this magmatic event, as well as the resulting lower crust characteristics. We illustrate how the evolution of melt major elements composition reflects the progressive replacement of the crust towards compositions that are dominated by the mantle melt input. The resulting magmas cover a wide range of composition from tonalite to granite, and the modelled lower crust shows all the petrological characteristic of observed lower arc-crust.

  18. Thermal and petrologic constraints on the lower crustal melt accumulation in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.

    2014-12-01

    Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source conditions for the dynamics of surface volcanism and the presence of a geothermal system, which modify the thermal and mechanical structure of the crust.

  19. How tectonics controlled post-collisional magmatism within the Dinarides: Inferences based on study of tectono-magmatic events in the Kopaonik Mts. (Southern Serbia)

    NASA Astrophysics Data System (ADS)

    Mladenović, Ana; Trivić, Branislav; Cvetković, Vladica

    2015-04-01

    In this study, we report evidence about coupling between tectonic and magmatic processes in a complex orogenic system. The study focuses on the Kopaonik Mts. situated between the Dinarides and the Carpatho-Balkanides (Southern Serbia), and a perfect area for investigating tectono-magmatic evolution. We combine a new data set on tectonic paleostress tensors with the existing information on Cenozoic magmatic rocks in the wider Kopaonik Mts. area. The paleostress study revealed the presence of four brittle deformational phases. The established link between fault mechanism and igneous processes suggests that two large tectono-magmatic events occurred in this area. The Late Eocene-Early Miocene tectono-magmatic event was generally characterized by transpressional tectonics that provided conditions for formation of basaltic underplating and subsequent lower crustal melting and generation of I-type magmas. Due to predominant compression in the first half of this event, these magmas could not reach the upper crustal levels. Later on, limited extensional pulses that occurred before the end of this event opened pathways for newly formed mantle melts to reach shallower crustal levels and mix with the evolving I-type magmas. The second event is Middle-Late Miocene in age. It was first associated with clear extensional conditions that caused advancing of basaltic melts to mid-crustal levels. This, in turn, induced the elevation of geotherms, melting of shallow crust and S-type granite formation. This event terminated with transpression that produced small volumes of basaltic melts and finally closed the igneous scene in this part of the Balkan Peninsula. Although we agree that the growth of igneous bodies is usually internally controlled and can be independent from the ambient structural pattern, we have strong reasons to believe that the integration of regional scale observations of fault kinematics with crucial petrogenetic information can be used for establishing spatial-temporal relationships between brittle tectonics and magmatism.

  20. Structure and degree of magmatism of North and South Atlantic rifted margins

    NASA Astrophysics Data System (ADS)

    Faleide, Jan Inge; Breivik, Asbjørn J.; Blaich, Olav A.; Tsikalas, Filippos; Planke, Sverre; Mansour Abdelmalak, Mohamed; Mjelde, Rolf; Myklebust, Reidun

    2014-05-01

    The structure and evolution of conjugate rifted margins in the South and North Atlantic have been studied mainly based on seismic reflection and refraction profiles, complemented by potential field data and plate reconstructions. All margins exhibit distinct along-margin structural and magmatic changes reflecting both structural inheritance extending back to a complex pre-breakup geological history and the final breakup processes. The sedimentary basins at the conjugate margins developed as a result of multiple phases of rifting, associated with complex time-dependent thermal structure of the lithosphere. A series of conjugate crustal transects reveal tectonomagmatic asymmetry, both along-strike and across the conjugate margin systems. The continent-ocean transitional domain along the magma-dominated margin segments is characterized by a large volume of flood basalts and high-velocity/high-density lower crust emplaced during and after continental breakup. Both the volume and duration of excess magmatism varies. The extrusive and intrusive complexes make it difficult to pin down a COB to be used in plate reconstructions. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower crustal levels. The transition is further constrained by comparing the mean P-wave velocity to the thickness of the crystalline crust. By this comparison we can also address the magmatic processes associated with breakup, whether they are convection dominated or temperature dominated. In the NE Atlantic there is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. It is likely that mantle plumes (Iceland in the NE Atlantic, Tristan da Cunha in the South Atlantic) may have influenced the volume of magmatism but they did not necessarily alter the process of rifted margin formation, implying that parts of the margins may have much in common with more magma-poor margins. Conjugate margin segments from the North and South Atlantic will be compared and discussed with particular focus on the tectonomagmatic processes associated with continental breakup.

  1. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    NASA Technical Reports Server (NTRS)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  2. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  3. From initiation to termination: a petrostratigraphic tour of the Ethiopian Low-Ti Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Rooney, T. O.; Kappelman, J.; Yirgu, G.; Ayalew, D.

    2018-05-01

    Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.

  4. ASTEROIDAL GRANITE-LIKE MAGMATISM 4.53 GYR AGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Kentaro; Bischoff, Addi

    Constraining the timescales for the evolution of planetary bodies in our solar system is essential for a complete understanding of planet-forming processes. However, frequent collisions between planetesimals in the early solar system obscured and destroyed much of the primitive features of the old, first-generation planetary bodies. The presence of differentiated, achondritic clasts in brecciated chondrites and of chondritic fragments in achondritic breccias clearly witness multiple processes such as metamorphism, magmatism, fragmentation, mixing, and reaccretion. Here, we report the results of ion microprobe Pb-Pb dating of a granite-like fragment found in a meteorite, the LL3-6 ordinary chondrite regolith breccia Adzhi-Bogdo. Eightmore » spot analyses of two phosphate grains and other co-genetic phases of the granitoid give a Pb-Pb isochron age of 4.48 {+-} 0.12 billion years (95% confidence) and a model age of 4.53 {+-} 0.03 billion years (1{sigma}), respectively. These ages represent the crystallization age of a parental granite-like magma that is significantly older than those of terrestrial (4.00-4.40 Gyr) and lunar granites (3.88-4.32 Gyr) indicating that the clast in Adzhi-Bogdo is the oldest known granitoid in the solar system. This is the first evidence that granite-like formation is not only a common process on Earth, but also occurred on primitive asteroids in the early solar system 4.53 Gyr ago. Thus, the discovery of granite magmatism recorded in a brecciated meteorite provides an innovative idea within the framework of scenarios for the formation and evolution of planetary bodies and possibly exoplanetary bodies.« less

  5. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  6. Deformation of volcanic materials by pore pressurization: analog experiments with simplified geometry

    NASA Astrophysics Data System (ADS)

    Hyman, David; Bursik, Marcus

    2018-03-01

    The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.

  7. Tectonomagmatic evolution of the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.; Bogatikov, O. A.

    2010-03-01

    The Earth and Moon evolved following a similar scenario. The formation of their protocrusts started with upward crystallization of global magmatic oceans. As a result of this process, easily fusible components accumulated in the course of fractional crystallization of melt migrating toward the surface. The protocrusts (granitic in the Earth and anorthositic in the Moon) are retained in ancient continents. The tectonomagmatic activity at the early stage of planet evolution was related to the ascent of mantle plume of the first generation composed of mantle material depleted due to the formation of protocrusts. The regions of extension, rise, and denudation were formed in the Earth above the diffluent heads of such superplumes (Archean granite-greenstone domains and Paleoproterozoic cratons), whereas granulite belts as regions of compression, subsidence, and sedimentation arose above descending mantle flows. The situation may be described in terms of plume tectonics. Gentle uplifts and basins ( thalassoids) in lunar continents are probable analogues of these structural elements in the Moon. The period of 2.3-2.0 Ga ago was a turning point in the tectonomagmatic evolution of the Earth, when geochemically enriched Fe-Ti picrites and basalts typical of Phanerozoic within-plate magmatism became widespread. The environmental setting on the Earth’s surface changed at that time, as well. Plate tectonics, currently operating on a global scale, started to develop about ˜2 Ga ago. This turn was related to the origination of thermochemical mantle plumes of the second generation at the interface of the liquid Fe-Ni core and silicate mantle. A similar turning point in the lunar evolution probably occurred 4.2-3.9 Ga ago and completed with the formation of large depressions ( seas) with thinned crust and vigorous basaltic magmatism. Such a sequence of events suggests that qualitatively new material previously retained in the planets’ cores was involved in tectonomagmatic processes at the middle stage of planetary evolution. This implies that the considered bodies initially were heterogeneous and were then heated from above to the bottom by propagation of a thermal wave accompanied by cooling of outer shells. Going through the depleted mantle, this wave generated thermal superplumes of the first generation. Cores close to the Fe + FeS eutectics in composition were affected by this wave in the last turn. The melting of the cores resulted in the appearance of thermochemical superplumes and corresponding irreversible rearrangement of geotectonic processes.

  8. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik

    2014-06-01

    We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be present below the district. Using the zircon Ce anomaly as a proxy for oxidation state of the magma through time, we show that the high oxidation state of the porphyries is not the result of upper-crustal processes but is rather controlled by magmatic processes occurring at deeper levels. A comparison of our data with available high-precision geochronologic data at other porphyry systems suggests that such deposits may form when injection rate, volume and heat of their long-lived upper crustal magmatic system reach their peaks. These features might be diagnostic of a productive deposit.

  9. Episodic melting and magmatic recycling along 50 Ma in the Variscan belt linked to the orogenic evolution in NW Iberia

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, G.; López-Carmona, A.; García Acera, G.; Martín Garro, J.; Fernández-Suárez, J.; Gärtner, A.; Hofmann, M.

    2017-12-01

    The advent of a large amount of more precise U-Pb age data on Variscan granitoids from NW Iberia in recent years has provided a more focused picture of the magmatic history of the Western European Variscan belt (WEVB). Based on these data, three main pulses of magmatic activity seem to be well established.

  10. The effect of giant flank collapses on magma pathways and location of volcanic vents

    NASA Astrophysics Data System (ADS)

    Maccaferri, Francesco; Richter, Nicole; Walter, Thomas

    2017-04-01

    Flank collapses have been identified at tall volcanoes and ocean islands worldwide. They are recurrent processes, significantly contributing to the morphological and structural evolution of volcanic edifices, and they often occur in interaction with magmatic activity. Moreover, it has been observed that the intrusion pathways and eruption's sites often differ before and after flank collapses. While it is understood that dyke intrusions might destabilise a volcano flank, and a moving flank might create the space needed for further intrusions, the effect of collapses on the magma pathways has been rarely addressed. Here we use a boundary element model for dyke propagation to study the effect of the stress redistribution due to a flank collapse on the location of eruptive vents. We use our model to simulate the path of magmatic intrusion after the collapse of the eastern flank of Fogo Volcano, Cabe Verde. We find that the competition between loading stress due to the volcanic edifice and unloading due to the collapse of a flank favours magmatic activity to cluster within the collapse scar, displaced with respect to the pre-collapse volcanic centre. Our results are compared with geomorphological observations at Fogo Island and are discussed in the general context of the long-term evolution intraplate volcanic ocean islands worldwide.

  11. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo

    2009-09-01

    The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres. The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north-northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated. The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE-SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE-WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene-Pleistocene boundary. Analysis of geological-geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere. Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.

  12. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  13. The tectono-sedimentary evolution of the Sivas ophiolite: Implications for pre to post-obduction processes in Anatolia

    NASA Astrophysics Data System (ADS)

    Legeay, Etienne; Mohn, Geoffroy; Callot, Jean-Paul; Ringenbach, Jean-Claude; Müntener, Othmar; Kavak, Kaan

    2016-04-01

    The Eastern Mediterranean in general and Turkey in particular preserve the remnants of several Neo-Tethysian oceanic basins consumed by north-dipping subductions during the Late Cretaceous prior to collision in the Paleogene. The Sivas basin, belonging to the Late Mesozoic to Cenozoic Central Anatolian basins, is located in a key position at the junction between 1) To the North, the Izmir-Ankara-Erzincan suture zone (IAESZ), 2) To the West, the Kırsehir block, 3) To the South, the Inner-Tauride suture zone (ITSZ). The obduction of ophiolite thrust sheets occurred during Campanian along the IAESZ, and ITSZ. We focus our study on the southern boundary of the Sivas basin, where an ophiolite sequence is capped by Late Cretaceous to Paleocene post-obduction sediments. We present new field observations, new U-Pb zircon dating on magmatic rocks and geochemistry analyses to unravel the pre-obduction nature and origin of the ophiolitic basement and to describe the post-obduction tectono-sedimentary evolution. The pre-obduction evolution show that: (i) the Southern Sivas ophiolite is characterized by highly serpentinized peridotites, with minor magmatic intrusions, (ii) the top of the ophiolite is marked by detachment faulting with ophicalcites, (iii) the U-Pb zircon ages of the magmatic intrusions are constrained at ˜90 Ma, (iv) geochemical data suggest a 'subduction signature' for the magmatic rocks. The, post-obduction evolution is characterized by the emplacement of Maastrichtian and Paleocene sediments carbonate platforms located on ophiolitic highs, associated to volcanoclastics turbidites in the trench northward in the Sivas Basin. These results show that the southern Sivas ophiolite represents magma starved system sharing similarities with present-day (ultra-)slow-spreading systems. This ophiolite belongs to the ITSZ, in contrast to ophiolites located 40km northward from the IAESZ. To resolve the complex paleogeographic framework of East-Anatolia during the Cenozoic, we integrated information from ophiolite related sedimentary data and propose a new interpretation of the Eastern Anatolian paleogeography based on forearc basin geometry, consistent with the development of adjacent supra-ophiolitic basins (Ulukisla, Darende and Hekimhan).

  14. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225-185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158-100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.

  15. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions. ?? 2005 Elsevier B.V. All rights reserved.

  16. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-07

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.

  17. The effect of giant lateral collapses on magma pathways and the location of volcanism.

    PubMed

    Maccaferri, Francesco; Richter, Nicole; Walter, Thomas R

    2017-10-23

    Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands.

  18. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume

    NASA Astrophysics Data System (ADS)

    Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.

    2013-08-01

    The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.

  19. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints on porphyry-Cu mineralization

    NASA Astrophysics Data System (ADS)

    Audétat, A.; Pettke, T.; Dolejš, D.

    2004-02-01

    A quartz-monzodioritic dike associated with the porphyry-Cu mineralized stock at Santa Rita, NM, has been studied to constrain physico-chemical factors ( P, T, fO 2, and volatile content) responsible for mineralization. The dike contains a low-variance mineral assemblage of amphibole, plagioclase (An 30-50), quartz, biotite, sphene, magnetite, and apatite, plus anhydrite and calcite preserved as primary inclusions within the major phenocryst phases. Petrographic relationships demonstrate that anhydrite originally was abundant in the form of phenocrysts (1-2 vol.%), but later was replaced by either quartz or calcite. Hornblende-plagioclase thermobarometry suggests that several magmas were involved in the formation of the quartz-monzodiorite, with one magma having ascended directly from ≥14 km depth. Rapid magma ascent is supported by the presence of intact calcite inclusions within quartz phenocrysts. The assemblage quartz+sphene+magnetite+Mg-rich amphibole in the quartz-monzodiorite constrains magmatic oxygen fugacity at log fO 2>NNO+1, in agreement with the presence of magmatic anhydrite and a lack of magmatic sulfides. The same reasoning generally applies for rocks hosting porphyry-Cu deposits, seemingly speaking against a major role of magmatic sulfides in the formation of such mineralizations. There is increasing evidence, however, that magmatic sulfides play an important role in earlier stages of porphyry-Cu evolution, the record of which is often obliterated by later processes.

  20. Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2018-03-01

    The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise-Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb-Sr-Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.

  1. The Las Matras tonalitic trondhjemitic pluton, central Argentina: Grenvillian-age constraints, geochemical characteristics, and regional implications

    NASA Astrophysics Data System (ADS)

    Sato, A. M.; Tickyj, H.; Llambías, E. J.; Sato, K.

    2000-12-01

    The N-S trending belt with Grenvillian-age rocks developed in central western Argentina represents the basement of an allochthonous terrane derived from Laurentia during the Early Paleozoic. The Las Matras pluton (36°46‧S, 67°07‧W) is located at the southern extension of this belt in the Las Matras Block. It consists of a low-Al tonalitic to trondhjemitic facies characteristic of an arc magmatism. Isotopic studies yielded Grenvillian Rb-Sr (1212±47 Ma) and Sm-Nd (1188±47 Ma) ages which, due to the undeformed and non-metamorphosed character of the pluton, are interpreted to represent a crystallization age of around 1200 Ma. Although this age is slightly older than available dates from other exposures of the same belt, and the undeformed feature is also distinctive for Las Matras, the depleted Sr and Nd isotopic signatures of the pluton agree with those from other magmatic rocks involved in that belt. The differences found between Las Matras and the northern exposures indicate that this belt with Grenvillian-age rocks comprises regions of non-homogeneous evolution. Although the correlation of the Lower Paleozoic platform carbonates from the sedimentary cover of the Grenvillian-age basement rocks suggests the surroundings of the Southern Grenville Province (Texas and northern Mexico) as the probable detachment site for the Argentine belt, comparison of magmatic and tectonic processes involved in these basement rocks does not indicate similar evolutions. This fact can suggest an independent evolution of the Argentine belt prior to amalgamation to the Laurentian Grenville orogen.

  2. Towards an integrated magmatic, structural and metamorphic model for the 1.1-0.9 Ga Sveconorwegian orogeny

    NASA Astrophysics Data System (ADS)

    Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.

    2013-04-01

    Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and juxtaposition of hot asthenosphere and lower crust. This is a plausible explanation for the UTH event, in contrast to simple crustal thickening and radiogenic self-heating that are generally considered unable to produce such PT conditions. 3) long-lived (990-920 Ma) ferroan magmatism, temporally associated with high-grade metamorphism and large-scale deformation, probably reflecting formation inboard of an alternating compressional/extensional continental margin. We have no known record of events after ca. 920 Ma, but it is conceivable that the active margin persisted well into the Neoproterozoic, possibly indicated by metamorphic and magmatic activity recorded in Grenville/Sveconorwegian orogen-derived sedimentary rocks.

  3. Various-scale controls of complex subduction dynamics on magmatic-hydrothermal processes in eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent

    2014-05-01

    In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at different scales of subduction dynamics and related mantle flow on the emplacement of mineralization and magmatic bodies. Indeed, besides a general southward migration of the magmatic-hydrothermal activity since the upper Cretaceous from the Balkans to the present-day Aegean volcanic arc, a secondary westward migration is observed during the Miocene from the Menderes massif to the Cyclades. This feature is a possible consequence of a slab tearing event and related mantle flow, as suggested notably by tomographic models below western Anatolia. To further test the effects of slab retreat and tearing on the flow and temperature field within the mantle, we performed 3D thermo-mechanical numerical modeling. Models suggest that the asthenospheric flow induced by the development of a slab tear controls the migration of magmatic products stored at the base of the crust, influencing the distribution of potentially fertile magmas within the upper crust.

  4. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  5. Tectonic affinities of the accreted basalts in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Yang, Huai-Jen; Liu, Yung-Hsin; Huang, Kuo-Fang; Takazawa, Eiichi

    2018-06-01

    Tectonic affinities of accreted basalts provide constraints on mass transport in convergent boundaries, improving our understandings on the evolution of regional geology. In this study, nineteen accreted basalts from the southernmost tip of Taiwan Island, which is on the convergent boundary between the Eurasian and Philippine Sea Plates, were analyzed for element concentrations as well as Sr, Nd, Hf, and Pb isotope ratios to investigate their tectonic affinities. All the samples contain > 3% LOI, reflecting post-magmatic alteration. LOI and Nb variation diagrams together with comparisons to oceanic basalt compositions indicated that the concentrations of most major elements and Rb, Sr, and Ba were modified by post-magmatic processes to varying extents, while P2O5, REE and HFSE remained immobile. Although some samples show Pb loss, most samples have Pb concentrations not affected by post-magmatic processes. Isotope ratios of Pb, Nd and Hf, generally reflect the mantle source characteristics. The εNd-εHf relationship and trace element abundance ratios indicated that the LREE-depleted samples were mostly scraped off the subducting South China Sea floor, reflecting the volumetric dominance of N-MORB on ocean floors. The overriding Philippine Sea Plate contributed both N-MORB and E-MORB to the accretionary prism. The tectonic affinities of the LREE-enriched samples, however, could not be unambiguously determined for the large geochemical variability of OIB from both subducting and overlying slabs. Based on our results, it is proposed that the tectonic affinity of the basalts in an accretionary prism can indicate the subduction polarity of the associated convergent boundary, providing a constraint for regional geology evolution.

  6. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2018-04-01

    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  7. Coupling Thermal and Chemical Signatures of Crustal Magma Bodies: Energy-Constrained Eruption, Recharge, Assimilation, and Fractional Crystallization (E'RAχFC)

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.

    2004-12-01

    Energy-Constrained Eruption, Recharge, Assimilation and Fractional Crystallization (E'RAχFC) tracks the evolution of an open-system magmatic system by coupling conservation equations governing energy, mass and species (isotopes and trace elements). By linking the compositional characteristics of a composite magmatic system (host magma, recharge magma, wallrock, eruptive reservoir) to its mass and energy fluxes, predictions can be made about the chemical evolution of systems characterized by distinct compositional and thermal characteristics. An interesting application of E'RAχFC involves documenting the influence distinct thermal regimes have on the chemical evolution of magmatic systems. Heat transfer between a magma-country rock system at epizonal depths can be viewed as a conjugate heat transfer problem in which the average country rock-magma boundary temperature, Tb, is governed by the relative vigor of hydrothermal convection in the country rock vs. magma convection. For cases where hydrothermal circulation is vigorous and magmatic heat is efficiently transported away from the boundary, contact aureole temperatures (~Tb) are low. In cases where magmatic heat can not be efficiently transported away from the boundary and hydrothermal cells are absent or poorly developed, Tb is relatively high. Simultaneous solution of the differential equations governing momentum and energy conservation and continuity for the coupled hydrothermal-magmatic conjugate heat transfer system enables calculation of the characteristic timescale for EC-RAFC evolution and development of hydrothermal deposits as a function of material and medium properties, sizes of systems and relative efficiency of hydrothermal vs. magmatic heat transfer. Characteristic timescales lie in the range 102-106 yr depending on system size, magma properties and permeability among other parameters. In E'RAχFC, Tb is approximated by the user-defined equilibration temperature, Teq, which is the temperature at which all parts of the composite magmatic system achieve thermal equilibrium. Comparison of the results of three EC-AFC simulations at different Teq (1150° C, 1050° C, 1000° C) for a mafic magma intruding middle-upper crust of mafic-intermediate composition illustrate the distinctions that can be imparted by a range of thermal regimes. Model parameters relevant to the following results include: initial Sr concentration, isotope composition and bulk D for host magma are 700 ppm, 0.7035, and 1.5, respectively; those for wallrock are 230 ppm, 0.7100, 0.05. The 1150° C case (i.e., high Tb) yields the least crust-like Sr isotope signatures. The mass of wallrock that reaches thermal equilibrium is relatively small (0.26, normalized to the mass of initial host magma), although the degree of melting is high (97%). In contrast, the 1000° C case (i.e., low Tb) yields the most crust-like Sr isotope signatures. This case is also characterized by the largest mass of wallrock (0.98, normalized to the mass of initial host magma) that achieves thermal equilibrium, but the degree to which this wallrock melts is small (10%). A fundamental issue that derives from these results is the relationship between the chemical evolution of the hydrothermal system and the chemical evolution of associated melt and cumulates. In particular, to what extent can predictions be made from the thermal interactions between magma and wallrock on the chemical signatures of the associated magmatic rocks and hydrothermal deposits?

  8. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  9. Progressive magmatism and evolution of the Variscan suture in southern Iberia

    NASA Astrophysics Data System (ADS)

    Braid, James A.; Murphy, J. Brendan; Quesada, Cecilio; Gladney, Evan R.; Dupuis, Nicolle

    2018-04-01

    Magmatic activity is an integral component of orogenic processes, from arc magmatism during convergence to post-collisional crustal melting. Southern Iberia exposes a Late Paleozoic suture zone within Pangea and where a crustal fragment of Laurussia (South Portuguese Zone) is juxtaposed with parautochthonous Gondwana (Ossa Morena Zone). Fault-bounded oceanic metasedimentary rocks, mélanges and ophiolite complexes characterize the suture zone and are intruded by plutonic rocks and mafic dykes. The generation and emplacement of these intrusive rocks and their relationship to development of the suture zone and the orogen are undetermined. Field evidence combined with U/Pb (zircon) geochronology reveals three main phases of plutonism, a pre-collisional unfoliated gabbroic phase emplaced at ca 354 Ma, crosscut by a syn-tectonic ca 345 Ma foliated granodiorite phase followed by a ca 335 Ma granitic phase. Geochemical analyses (major, trace, rare earth elements) indicate that the gabbro exhibits a calc-alkaline arc signature whereas the granodiorite and granite are typical of post-collisional slab break-off. Taken together, these data demonstrate a protracted development of the orogen and support a complex late stage evolution broadly similar to the tectonics of the modern eastern Mediterranean. In this scenario, the highly oblique closure of a small tract of oceanic lithosphere postdates the main collision event resulting in escape of parautochthonous and allochthonous terranes toward the re-entrant.

  10. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  11. Corrigendum to "Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines" [Geochim. Cosmochim. Acta 154 (2015) 130-150

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2018-05-01

    The authors regret that equations EA.4 and EA.5 in the Electronic Annex were incomplete. Please see the new, corrected version of the Electronic Annex for the complete formulations of these equations. Accordingly, the correct formulation of Eq. (2) on page 132 is as follows:

  12. Along-Strike Geochemical Variations in the Late Triassic Nikolai Magmatic System, Wrangellia, Central Alaska

    NASA Astrophysics Data System (ADS)

    Wypych, A.; Twelker, E.; Lande, L. L.; Newberry, R.

    2015-12-01

    The Nikolai Basalt and related mafic to ultramafic intrusions are one of the world's most complete and best exposed sections of a large igneous province (Amphitheater Mountains, Alaska), and have been explored for magmatic Ni-Cu-Co-PGE mineralization (Wellgreen deposit in the Kluane Ranges, Yukon Territory, and Eureka zone in the Eastern Alaska Range). The full extent of the basalts and the intrusions, as well as along-strike variations in the geochemical and petrological composition and the causes for those variations has yet to be fully established. To better understand the extent and magmatic architecture of this system, the Alaska Division of Geological & Geophysical Surveys conducted mapping and geochemical investigations of the province from 2013 through 2015 field seasons. We present major and trace element data from whole rock, olivine, and chromite from samples of Triassic basalts and intrusives collected over a 250 km along-strike transect. This data is used to answer questions about variations in magma generation, temperature of crystallization, and degree of fractional crystallization required to produce the Nikolai Basalts. Using chalcophile elements, we examine the history of sulfide solubility, further adding to our understanding of the processes of magma evolution and its influence on the formation of economic mineral deposits. Our initial findings corroborate the presence of two phases of magma generation and eruption, as well as along-strike variation in composition of these phases. We propose that the major along-strike variations are due to differences in amount of cumulate olivine and other late-stage processes. This magmatic architecture has important implications for exploration for magmatic sulfide deposits of nickel-copper and strategic and critical platinum group elements (PGEs) as it can help to better understand the occurrences and point to future possible deposits within the system.

  13. Birth, life, and demise of the Andean-syn-collisional Gissar arc: Late Paleozoic tectono-magmatic-metamorphic evolution of the southwestern Tian Shan, Tajikistan

    NASA Astrophysics Data System (ADS)

    Worthington, James R.; Kapp, Paul; Minaev, Vladislav; Chapman, James B.; Mazdab, Frank K.; Ducea, Mihai N.; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2017-10-01

    The amalgamation of the Central Asian Orogenic Belt in the southwestern Tian Shan in Tajikistan is represented by tectono-magmatic-metamorphic processes that accompanied late Paleozoic ocean closure and collision between the Karakum-Tarim and Kazakh-Kyrgyz terranes. Integrated U-Pb geochronology, thermobarometry, pseudosection modeling, and Hf geochemistry constrain the timing and petro-tectonic nature of these processes. The Gissar batholith and the Garm massif represent an eastward, along-strike increase in paleodepth from upper-batholith ( 21-7 km) to arc-root ( 36-19 km) levels of the Andean-syn-collisional Gissar arc, which developed from 323-288 Ma in two stages: (i) Andean, I-type granitoid magmatism from 323-306 Ma due to northward subduction of the Gissar back-arc ocean basin under the Gissar microcontinent, which was immediately followed by (ii) syn-collisional, I-S-type granitoid magmatism in the Gissar batholith and the Garm massif from 304-288 Ma due to northward subduction/underthrusting of Karakum marginal-continental crust under the Gissar microcontinent. A rapid isotopic pull-up from 288-286 Ma signals the onset of juvenile, alkaline-syenitic, post-collisional magmatism by 280 Ma, which was driven by delamination of the Gissar arclogite root and consequent convective asthenospheric upwelling. Whereas M-HT/LP prograde metamorphism in the Garm massif (650-750°C/6-7 kbar) from 310-288 Ma was associated with subduction-magma inundation and crustal thickening, HT/LP heating and decompression to peak-metamorphic temperatures ( 800-820°C/6-4 kbar) at 288 ± 6 Ma was driven by the transmission of a post-collisional, mantle-derived heat wave through the Garm-massif crust.

  14. Iron-sulfur mineralogy of Mars - Magmatic evolution and chemical weathering products

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1990-01-01

    Models are developed for the magmatic evolution and the oxidative weathering of sulfide minerals on Mars, based on petrogenetic associations among komatiitic rock types, Viking geochemical data, SNC meteorites, and terrestrial Fi-Ni deposits. The weathering model was tested by exposing komatiitic pyrrhotites and olivines to sulfuric acid solutions, with or without dissolved ferric iron, and identifying the reaction products by Moessbauer spectroscopy. The results suggest that, on Mars, acidic groundwater has induced oxidative weathering of pyrrhotite, yielding FeS2 and then FeOOH.

  15. Parallel Extension Tectonics (PET): Early Cretaceous tectonic extension of the Eastern Eurasian continent

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Ji, Mo; Ni, Jinlong; Guan, Huimei; Shen, Liang

    2017-04-01

    The present study reports progress of our recent studies on the extensional structures in eastern North China craton and contiguous areas. We focus on characterizing and timing the formation/exhumation of the extensional structures, the Liaonan metamorphic core complex (mcc) and the Dayingzi basin from the Liaodong peninsula, the Queshan mcc, the Wulian mcc and the Zhucheng basin from the Jiaodong peninsula, and the Dashan magmatic dome within the Sulu orogenic belt. Magmatic rocks (either volcanic or plutonic) are ubiquitous in association with the tectonic extension (both syn- and post-kinematic). Evidence for crustal-mantle magma mixing are popular in many syn-kinematic intrusions. Geochemical analysis reveals that basaltic, andesitic to rhyolitic magmas were generated during the tectonic extension. Sr-Nd isotopes of the syn-kinematic magmatic rocks suggest that they were dominantly originated from ancient or juvenile crust partly with mantle signatures. Post-kinematic mafic intrusions with ages from ca. 121 Ma to Cenozoic, however, are of characteristic oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions. Integrated studies on the extensional structures, geochemical signatures of syn-kinematic magmatic rocks (mostly of granitic) and the tectono-magmatic relationships suggest that extension of the crust and the mantle lithosphere triggered the magmatisms from both the crust and the mantle. The Early Cretaceous tectono-magmatic evolution of the eastern Eurasian continent is governed by the PET in which the tectonic processes is subdivided into two stages, i.e. an early stage of tectonic extension, and a late stage of collapse of the extended lithosphere and transformation of lithospheric mantle. During the early stage, tectonic extension of the lithosphere led to detachment faulting in both the crust and mantle, resulted in the loss of some of the subcontinental roots, gave rise to the exhumation of the mccs, and triggered plutonic emplacement and volcanic eruptions of hybrid magmas. During the late stage, the nature of mantle lithosphere in North China was changed from the ancient SCLM to the juvenile SCLM. Extensional structures in eastern Eurasian continent provide a general architecture of the extensional tectonics of a rifted continent. Progressive extension resulted a sudden collaps of the crust (lithosphere) at ca. 130 to 120 Ma, associated with exhumation of mcc's and giant syn-kinematic magmatism, and post-kinematic magmatism. Parallel extension of both the crust and the mantle resulted in detachment faulting and magmatism, and also contributed to inhomogeneous thinning of the NCC lithosphere. Paleo-Pacific plate subduction and roll-back of the subducting oceanic plate contributed to the PET tectonic processes.

  16. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the overlying country rock. These new constraints on magma ascent and volatile ponding in alkaline plutonic systems complement the deformation mechanisms and conceptual models developed for active systems in the Ethiopian Rift. Volcanic-plutonic pairs are rarely considered together but these data demonstrate the power of using constraints from 'fossil' magma chambers to infer sub-volcanic processes at active complexes and vice-versa.

  17. Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses

    NASA Astrophysics Data System (ADS)

    Albert, Capucine; Farina, Federico; Lana, Cristiano; Stevens, Gary; Storey, Craig; Gerdes, Axel; Dopico, Carmen Martínez

    2016-12-01

    In this study we present U-Pb and Hf isotope data combined with O isotopes in zircon from Neoarchean granitoids and gneisses of the southern São Francisco craton in Brazil. The basement rocks record three distinct magmatic events: Rio das Velhas I (2920-2850 Ma), Rio das Velhas II (2800-2760 Ma) and Mamona (2750-2680 Ma). The three sampled metamorphic complexes (Bação, Bonfim and Belo Horizonte) have distinct εHf vs. time arrays, indicating that they grew as separate terranes. Paleoarchean crust is identified as a source which has been incorporated into younger magmatic rocks via melting and mixing with younger juvenile material, assimilation and/or source contamination processes. The continental crust in the southern São Francisco craton underwent a change in magmatic composition from medium- to high-K granitoids in the latest stages, indicating a progressive HFSE enrichment of the sources that underwent anatexis in the different stages and possibly shallowing of the melting depth. Oxygen isotope data shows a secular trend towards high δ18O (up to 7.79‰) indicating the involvement of metasediments in the petrogenesis of the high potassium granitoids during the Mamona event. In addition, low δ18O values (down to 2.50‰) throughout the Meso- and Neoarchean emphasize the importance of meteoritic fluids in intra-crustal magmatism. We used hafnium isotope modelling from a compilation of detrital zircon compositions to constrain crustal growth rates and geodynamics from 3.50 to 2.65 Ga. The modelling points to a change in geodynamic process in the southern São Francisco craton at 2.9 Ga, from a regime dominated by net crustal growth in the Paleoarchean to a Neoarchean regime marked by crustal reworking. The reworking processes account for the wide variety of granitoid magmatism and are attributed to the onset of continental collision.

  18. Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Maxim; Ozerov, Alexey; Kyle, Philip R.; Carr, Michael J.; Nikulin, Alex; Vidito, Christopher; Danyushevsky, Leonid

    2016-07-01

    A series of large caldera-forming eruptions (361-38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700-361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ˜3 wt% H2O, and oxygen fugacity of ˜QFM + 1.5 log units. Magma temperatures of 1123-1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ˜5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ˜3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

  19. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  20. Magmatic evolution of lunar highland rocks estimated from trace elements in plagioclase: A new bulk silicate Moon model with sub-chondritic Ti/Ba, Sr/Ba, and Sr/Al ratios

    NASA Astrophysics Data System (ADS)

    Togashi, Shigeko; Kita, Noriko T.; Tomiya, Akihiko; Morishita, Yuichi

    2017-08-01

    The compositions of host magmas of ferroan anorthosites (FAN-host magmas) were estimated from secondary ion mass spectrometry analyses of plagioclase in lunar highland rocks. The evolution of the magmas was investigated by considering phase relations based on the MELTS algorithm and by re-examining partition coefficients for trace elements between plagioclase and melts. Data little affected by post-magmatic processes were selected by using plagioclase with relatively primitive Sc and Co contents. The FAN-host magma contained 90-174 ppm Sr, 40-119 ppm Ba and 0.5-1.3% TiO2, and had sub-chondritic Sr/Ba and Ti/Ba ratios. It is difficult to account for the formation of FAN-host magma on the basis of magma evolution processes of previously proposed bulk silicate Moon models with chondritic ratios for refractory elements at global scale. Therefore, the source of the FAN-host magma must have had primordial sub-chondritic Sr/Ba and Ti/Ba ratios. The FAN-host magmas were consistent in refractory elements with the estimated host mafic magma for feldspathic crust based on lunar meteorites, and some very-low-Ti mare rocks from lunar meteorites. Here, we propose an alternative bulk silicate Moon model (the cBSM model), which is enriched in crustal components of proto-bodies relative to the present whole Earth-Moon system.

  1. Two-stage magmatism during the evolution of the transitional Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Cornwell, D. G.; England, R. W.; Maguire, P. K.; Kendall, M.; Stuart, G. W.

    2008-12-01

    The Ethiopian rift marks the transition between continental rifting and incipient seafloor spreading. The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) included a 400 km-long cross-rift profile with 97 broadband passive seismometers with the aim to investigate the change from mechanical to magmatic extension by defining the lithospheric structure and extent of magmatism beneath the rift. Complimentary studies of P-wave receiver functions, shear-wave splitting and teleseismic earthquake arrival times show that the lithospheric structure is inherently different beneath the north-western rift flank, rift valley and south- eastern rift flank, with contrasting crustal thickness and composition, upper mantle velocity and lithospheric anisotropy. Two stages of magmatic addition are interpreted: 1) a 6--18 km-thick underplate lens at the base of the crust, which probably formed synchronous with an Oligocene flood basalt event (and therefore pre-dates the adjacent rifting by ~20 Myr); and 2) a 20--30 km-wide zone of intense dyking and partial melt, which most likely pervades the entire crust beneath the rift valley and marks the locus of current rift extension. Furthermore, Precambrian collision-related lithospheric fabric is proposed to be the main source of the strong anisotropy that is observed along the entire cross-rift profile, which may be augmented by magmatism beneath the rift. An active, followed by a passive magma-assisted rifting model that is controlled by a combination of far-field plate stresses, the pre-existing lithospheric framework and magmatism is invoked to explain the rift evolution.

  2. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Leeman, William P.

    1989-01-01

    The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.

  3. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1994-01-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  4. Morphometric and magmatic evolution at the Boset-Bericha Volcanic Complex in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Siegburg, Melanie; Gernon, Thomas; Bull, Jonathan; Keir, Derek; Taylor, Rex; Nixon, Casey; Abebe, Bekele; Ayele, Atalay

    2017-04-01

    Tectono-magmatic interactions are an intrinsic feature of continental rifting and break up in the Main Ethiopian Rift (MER). The Boset-Bericha volcanic complex (BBVC) is one of the largest stratovolcanoes in the MER (with a total area of ˜870 km2), with volcanism largely occurring over the last ˜2 Myr. Despite the fact that 4 million people live within 100 km of the volcano, little is known about its eruptive history and how the volcanic system interacts with rift valley tectonics. Here, we present a detailed relative eruption chronology combined with morphometric analyses of different elements of the volcanic complex and petrological analyses to constrain morphometric and magmatic evolution at the BBVC. Additionally, tectonic activity has been characterised around the BBVC, all based on field observations and mapping using high-resolution digital elevation data. The BBVC consists of the Gudda Volcano and the younger Bericha Volcano, two silicic eruption centres located along the NNE-SSW trending rift axis. The fault population predominantly comprises distributed extensional faults parallel to the rift axis, as well as localised discrete faults with displacements of up to 50 m in the rift centre, and up to 200 m in the NE-SW trending border fault system. Multiple cones, craters and fissure systems are also oriented parallel to the rift axis, i.e. perpendicular to the minimum compressive stress. The eruption history of BBVC can be differentiated into 5 main eruption stages, subdivided into at least 12 eruptive phases with a total of 128 mappable lava flows. Crosscutting relationships of lava flows provide a relative chronology of the eruptive history of the BBVC, starting with pre-BBVC rift floor basalts, pre-caldera and caldera activity, three post-caldera phases at the Gudda Volcano and two phases forming the Bericha Volcano. At least four fissure eruption phases occurred along the rift axis temporally in between the main eruptive phases. Morphometric analyses indicate a total corrected volume of eruptive material at the BBVC of ˜36 km3. The magmatic and morphometric evolution of the BBVC is spatially and temporally complex, showing a bimodal distribution of effusive basalts towards explosive peralkaline trachytic and rhyolitic lavas for the Gudda and Bericha Volcano, respectively, with rare intermediate lavas from fissure eruptions. Preliminary geochemical data suggest that fractional crystallisation may have played an important role in driving magmatic evolution the BBVC. This study emphasises the important role of tectono-magmatic interactions in the evolution of a continental rift system.

  5. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited

    USGS Publications Warehouse

    Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.

    2007-01-01

    Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.

  6. Construction of Continental Crust at the Central American and Philippines Arc Systems

    NASA Astrophysics Data System (ADS)

    Whattam, S. A.; Stern, R. J.

    2016-12-01

    Whether or not magmatic arcs evolve compositionally with time and the processes responsible remain controversial. Resolution of this question requires reconstructing arc geochemical evolution at the level of discrete arc systems, as has been done for IBM, Central America, and the Greater Antilles. Emphasis should be on arcs built on oceanic crust because interaction with continental crust complicates interpretations. The Philippines are a particularly attractive target because this may be the best example where proto-continental crust has been generated and processed in Cretaceous and younger time. Here, we show how this question could be addressed for the Philippines using the well-studied Central American Volcanic Arc System (CAVAS) as an example. For the CAVAS, we avoided the northern arc segment because these are (Guatemala) or maybe (El Salvador) sections built on continental crust. Geochemical and isotopic data were compiled for 1031 samples of lavas and intrusive rocks from the 1100 km-long segment built on thickened, initially plume-derived oceanic crust over its 75 million year lifespan (Panama, Costa Rica, Nicaragua) . The most striking observation is the overall evolution of the CAVAS to more incompatible element enriched and ultimately continental-like compositions with time. Models entailing progressive arc magmatic enrichment are generally supported by the CAVAS record. Progressive enrichment of the oceanic CAVAS with time reflects changes in mantle wedge composition and decreased melting due to arc crust thickening, which was kick-started by the involvement of enriched plume mantle. Progressive crustal thickening and associated changes in the sub-arc thermal regime resulted in decreasing degrees of partial melting over time, which allowed for progressive enrichment of the CAVAS and ultimately the production of continental-like crust in Panama and Costa Rica by 16-10 Ma. Our similar study of the Philippine Arc system is in its infancy but earlier studies have shown that older magmatic rocks are tholeiitic and MORB-like whereas younger ones are invariably calc-alkaline and arc-like. Results of the Philippines Arc study will be compared with the CAVAS and other magmatic arc systems comprised of continental crust.

  7. Life and Death of a Flood Basalt: Evolution of a Magma Plumbing System in the Ethiopian Low-Ti Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Rooney, T. O.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.

    2017-12-01

    Continental flood basalt provinces (CFBPs), which are thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insight into melt generation processes in Large Igneous Provinces (LIPs). Despite the utility of CFBPs in probing the composition of mantle plumes, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of this residence within the continental lithosphere provides additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well preserved stratigraphic section from flood basalt initiation to termination, and is thus an important target for study of CFBPs. We examine petrographic and whole rock geochemical variation within a stratigraphic framework and place these observations within the context of the magmatic evolution of the Ethiopian CFBP. We observe multiple pulses of magma recharge punctuated by brief shut-down events and an overall shallowing of the magmatic plumbing system over time. Initial flows are fed by magmas that have experienced deeper fractionation (clinopyroxene dominated and lower CaO/Al2O3 for a given MgO value), likely near the crust-mantle boundary. Subsequent flows are fed by magmas that have experienced shallower fractionation (plagioclase dominated and higher CaO/Al2O3 for a given MgO value) in addition to deeper fractionated magmas. Broad changes in flow thickness and modal mineralogy are consistent with fluctuating changes in magmatic flux through a complex plumbing system and indicate pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. Pulses of less differentiated magmas (MgO > 8 wt%) and high-An composition of plagioclase megacrysts (labradorite to bytownite) suggest a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of flood volcanism, though the magnitude of flux changes, reaching an apex prior to flood basalt termination. The origin of these pulses remains enigmatic and may relate to heterogeneities in plume composition, upwelling rate, or mantle potential temperature. The results of this study provide first order modeling constraints for future modeling of plume-lithosphere interactions.

  8. Antarctica: A Keystone in a Changing World

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Luyendyk, Bruce P.; Wilson, Terry J.

    2008-01-01

    10th International Symposium on Antarctic Earth Sciences; Santa Barbara, California, 26 August to 1 September 2007; The 10th International Symposium on Antarctic Earth Sciences was convened at the University of California, Santa Barbara, where 350 researchers presented talks and posters on topics including climate change, biotic evolution, magmatic processes, surface processes, tectonics, geodynamics, and the cryosphere. The symposium resulted in 335 peer-reviewed papers, 225 of which are published online (http://pubs.usgs.gov/of/2007/1047/). A proceedings book will also be published by the National Academies Press.

  9. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China

    NASA Astrophysics Data System (ADS)

    Wang, Maojiang; Liu, Shuwen; Wang, Wei; Wang, Kang; Yan, Ming; Guo, Boran; Bai, Xiang; Guo, Rongrong

    2016-12-01

    Tonalitic-trondhjemitic-granodioritic (TTG) gneisses are dominant lithological assemblages in Archean high grade metamorphic terranes in the world. These TTG gneisses preserve important information in formation and evolution of Archean continental crust. Tangtu-Majuanzi microblock in North Liaoning Province (NLP) is one of the major Neoarchean metamorphic basement terranes in the northeastern margin of the North China Craton (NCC). The Tangtu-Majuanzi microblock is composed mainly of Neoarchean tonalitic-trondhjemitic (TT) gneisses, subordinate granodioritic to monzogranitic association (GMA) and minor supracrustal rocks. The tonalitic-trondhjemitic gneisses are divided into high MgO Group (HMG) and low MgO Group (LMG) based on their chemical compositions. Detailed petrogenetic investigations suggest that the magmatic precursors of the HMG samples were derived from partial melting of subducted slabs and contaminated by the overlying mantle wedge during its ascent; whereas, magmatic precursors of the LMG samples were derived from the juvenile lower crust. LA-ICPMS zircon U-Pb isotopic dating analyses reveal that the magmatic precursors of the HMG samples were formed at 2553-2531 Ma. An older HMG tonalitic gneiss sample was discovered at Sandaoguan in the southmost of the studied area, with its magmatic precursor emplaced at 2680 Ma. The magmatic precursors of the LMG samples emplaced at 2595-2583 Ma. Combined with previous credible chronological data, our newly obtained zircon U-Pb dating and Lu-Hf isotopic data indicate that three episodes of magmatism at ∼2700-2680 Ma, ∼2600-2570 Ma and ∼2550-2510 Ma occurred in the Tangtu-Majuanzi microblock, and the TT gneisses in this microblock were subjected to generally amphibolite-facies metamorphism at ∼2520-2470 Ma. Based on the above Neoarchean crust-mantle thermal-dynamic processes, we propose that the Neoarchean magmatism and metamorphism in the Tangtu-Majuanzi microblock of North Liaoning Province occurred in an active continental margin.

  10. The origin and evolution of silicic magmas during continental rifting: new constraints from trace elements and oxygen isotopes from Ethiopian volcanoes

    NASA Astrophysics Data System (ADS)

    Hutchison, W.; Boyce, A.; Mather, T. A.; Pyle, D. M.; Yirgu, G.; Gleeson, M. L.

    2017-12-01

    The petrologic diversity of rift magmas is generated by two key processes: interaction with the crust via partial melting or assimilation; and closed-system fractional crystallization of the parental magma. It is not yet known whether these two petrogenetic processes vary spatially between different rift settings, and whether there are any significant secular variations during rift evolution. The Ethiopian Rift is the ideal setting to test these hypotheses because it captures the transition from continental rifting to sea-floor spreading and has witnessed the eruption of large volumes of mafic and silicic volcanic rocks since 30 Ma. We use new oxygen isotope (δ18O) and trace element data to fingerprint fractional crystallisation and partial crustal melting processes in Ethiopia and evaluate spatial variations between three active rift segments. δ18O measurements are used to examine partial crustal melting processes. We find that most δ18O data from basalts to rhyolites fall within the bounds of modelled fractional crystallization trajectories (i.e., 5.5-6.5 ‰). Few samples deviate from this trend, emphasising that fractional crystallization is the dominant petrogenetic processes and that little fusible Precambrian crustal material (δ18O of 7-18 ‰) remain to be assimilated beneath the magmatic segments. Trace element systematics (e.g., Ba, Sr, Rb, Th and Zr) further underscore the dominant role of fractional crystallization but also reveal important variations in the degree of melt evolution between the volcanic systems. We find that the most evolved silicic magmas, i.e., those with greatest peralkalinity (molar Na2O+K2O>Al2O3), are promoted in regions of lowest magma flux off-axis and along rift. Our findings provide new information on the nature of the crust beneath Ethiopia's active magmatic segments and also have relevance for understanding ancient rift zones and the geotectonic settings that promote genesis of economically-valuable mineral deposits.

  11. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  12. Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic tephras through submicron-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zellmer, Georg; Sakamoto, Naoya; Hwang, Shyh-Lung; Matsuda, Nozomi; Iizuka, Yoshiyuki; Moebis, Anja; Yurimoto, Hisayoshi

    2016-09-01

    Crystal nucleation and growth are first order processes captured in volcanic rocks and record important information about the rates of magmatic processes and chemical evolution of magmas during their ascent and eruption. We have studied glass-rich andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by electron- and ion-microbeam imaging techniques to investigate down to sub-micrometre scale the potential effects of compositional boundary layers (CBLs) of melt around crystals on the nucleation and growth of mineral phases and the chemistry of crystal growth zones. We find that CBLs may influence the types of mineral phases nucleating and growing, and growth textures such as the development of swallowtails. The chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of nanometre-scale bands of different phases in rapidly growing crystals, resulting in what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has implications for the interpretation of microprobe compositional data, and the resulting inferences made on the conditions of magmatic evolution. Identification of cryptic phase zoning may in future lead to more accurate thermobarometric estimates and thus geospeedometric constraints. In future, a more quantitative characterization of CBL formation and its effects on crystal nucleation and growth may contribute to a better understanding of melt rheology and magma ascent processes at the onset of explosive volcanic eruptions, and will likely be of benefit to hazard mitigation efforts.

  13. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  14. Late Eocene volcanism in North Patagonia (42°30‧-43°S): Arc resumption after a stage of within-plate magmatism

    NASA Astrophysics Data System (ADS)

    Fernández Paz, Lucía; Litvak, Vanesa D.; Echaurren, Andrés; Iannelli, Sofía B.; Encinas, Alfonso; Folguera, Andrés; Valencia, Víctor

    2018-01-01

    Mid-Cenozoic widespread arc magmatism in North Patagonia extends from the forearc to the retroarc zones, representing an anomalous large volume when compared to the present-day arc zone and even other past arc configurations. It represents a crucial stage in Andean arc evolution as was developed after a period of arc waning and within plate magmatism. Controversies exist regarding the origin of these volcanic sequences, with scarce integrated field, geochemical and geochronological analyses. We focused our study on the El Maitén Belt, located in the present-day retroarc zone, particularly on a poorly studied section corresponding to the southern outcrops of this volcanic belt. This volcanism consists of basaltic and andesitic lava flows and interbedded pyroclastic deposits, whose emplacement was controlled by extensional tectonics as indicated by the occurrence of wedge-like strata associated with normal faults. A U-Pb age on the basal part of this section shows that magmatic activity started by 37 Ma, earlier than previous studies that considered this volcanism as Oligocene. Geochemically, these rocks are part of the subalkaline and particularly tholeiitic series. All samples show trace element enrichments, depletions and ratios characteristic of arc magmas, though fluids and sediment imprint seem limited. On these bases, we propose decompression melting as the main process associated with the genesis of this volcanism. Therefore, this magmatic association constrained to the late Eocene represents the earliest evidence of arc volcanism in the Patagonian Andes, under an extensional regime, after a Paleogene waning of arc activity.

  15. Continental extension, magmatism and elevation; formal relations and rules of thumb

    USGS Publications Warehouse

    Lachenbruch, A.H.; Morgan, P.

    1990-01-01

    To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a surface maintained 2 1 2km below sea level (e.g., an ocean ridge) B is about 5 km; for continental extension the ratio may be much greater. The frequent association of volcanism with continental extension, the high elevation (and buoyancy) of some appreciably extended terrains, and the oceanic spreading analog all suggest that magmatism may play an important role in continental extension. Better estimates of total extension and elevation change in extended regions can help to identify that role. ?? 1990.

  16. Beating the Heat: Magmatism in the Low-Temperature Thermochronologic Record

    NASA Astrophysics Data System (ADS)

    Murray, K. E.; Reiners, P. W.; Braun, J.; Karlstrom, L.; Morriss, M. C.

    2017-12-01

    The low-temperature thermochronology community was quick to recognize upper-crustal complexities in the geotherm that reflect landscape evolution, but the complex effects of crustal magmatism on thermochronometers can be difficult to independently document and remain underexplored. Because magmatism is common in many regions central to our understanding of tectonics, this is a significant gap in our ability to robustly interpret rock cooling. Here, we use several different numerical approaches to examine how local and regional crustal magmatism affects cooling age patterns and present examples from the western US that demonstrate the importance—and utility—of considering these effects. We modified the finite-element code Pecube to calculate how thermochronometers document the emplacement of simple hot bodies at different crustal levels. Results demonstrate the potential for mid-crustal plutons, emplaced at 10-15 km depth, to reset cooling ages in the overlying rocks at partial-retention depths at the time of magmatism. Permo-Triassic sandstones from the Colorado Plateau's Canyonlands region have apatite cooling ages that exemplify the resulting ambiguity: Oligocene rock cooling can be attributed to either 1 km of erosion or relaxation of a geothermal gradient transiently doubled by mid-crustal magmatism. Despite these complexities, there are compelling reasons to target rocks with magmatic histories. Shallowly emplaced plutons can usefully reset cooling ages in country rocks with protracted near-surface histories, as we have demonstrated in the Colorado Plateau's Henry Mountains. Cooling age patterns are also useful for quantifying magmatic processes themselves. In an ongoing project, we use the pattern of thermochronometer resetting around individual dikes that fed the Columbia River flood basalts, which are exposed in the Wallowa Mountains, to identify long-lived feeder dikes and model their thermal aureoles to further constrain eruptive dynamics. The pattern of resetting around dikes compliments higher-temperature constraints on the longevity of magma flow from phase equilibria in partially melted wall rocks. In principal, this technique should also resolve along-strike variability in flow localization, providing novel constraints on eruptive flux in large igneous provinces.

  17. The Moon: Keystone to Understanding Planetary Geological Processes and History

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.

  18. Analogue and numerical modelling in Volcanology: Development, evolution and future challenges

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine; Annen, Catherine

    2015-04-01

    Since the inception of volcanology as a science, analogue modelling has been an important methodology to study the formation and evolution of the volcanic system. With the development of computing capacities numerical modelling has become a widely used tool to explore magmatic process quantitatively and try to predict eruptive behaviour. Processes of interest include the development and establishment of the volcanic plumbing system, the propagation of magma to the surface to feed eruptions, the construction of a volcanic edifice and the dynamics of eruptive processes. An important ultimate aim is to characterise and measure the experimental volcanic and magmatic phenomena, to inform and improve eruption forecasting for hazard assessments. In nature, volcanic activity is often unpredictable and in an environment that is highly changeable and forbidding. Volcanic or magmatic activity cannot be repeated at will and has many (often unconstrained) variables. The processes of interest are frequently hidden from view, for example occurring beneath the Earth's surface or within a pyroclastic flow or plume. The challenges of working in volcanic terrains and gathering 'real' volcano data mean that analogue and numerical models have gained significant importance as a method to study the geometrics, kinematics, and dynamics of volcano growth and eruption. A huge variety of analogue materials have been used in volcanic modelling, often bringing out the more creative side of the scientific mind. As with all models, the choice of appropriate materials and boundary conditions are critical for assessing the relevance and usefulness of the experimental results. Numerical simulation has proved a useful tool to test the physical plausibility of conceptual models and presents the advantage of being applicable at different scales. It is limited however in its predictive power by the number of free parameters needed to describe geological systems. In this special symposium we will attempt to review the use and significance of analogue and numerical modelling in volcanological research over the past century to the present day. We introduce some of the new techniques being developed through a multidisciplinary approach, and offer some perspectives on how these might be used to help shape the direction of future research in volcanology.

  19. Neoarchean arc magmatism followed by high-temperature, high-pressure metamorphism in the Nilgiri Block, southern India

    NASA Astrophysics Data System (ADS)

    Samuel, Vinod O.; Sajeev, K.; Hokada, T.; Horie, K.; Itaya, T.

    2015-11-01

    The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite ± orthopyroxene ± rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm- 1, 479 cm- 1, 287 cm- 1 and 177 cm- 1. It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite facies (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 °C and ~ 9 kbar followed by high-pressure granulite facies metamorphism (M2 stage) at 850-900 °C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 2539.2 ± 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 ± 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton.

  20. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    Magmatic-hydrothermal ore deposits are important economic Cu, Au, Mo and Sn resources (Sillitoe, 2010, Kesler, 1994). The ore formation is a result of superimposed enrichment processes and metals can precipitate due to fluid-rock interaction and/or temperature drop caused by convection or mixing with meteoric fluid (Heinrich and Candela 2014). Microthermometry and LA-ICP MS trace element analyses of fluid inclusions of a well-characterized quartz sample from the Yankee Lode quartz-cassiterite vein deposit (Mole Granite, Australia) suggest that tin precipitation was driven by dilution of hot magmatic water by meteoric fluids (Audétat et al.1998). High resolution in situ oxygen isotope measurements of quartz have the potential to detect changing fluid sources during the evolution of a hydrothermal system. We analyzed the euhedral growth zones of this previously well-studied quartz sample. Growth temperatures are provided by Audétat et al. (1998) and Audétat (1999). Calculated δ 18O values of the quartz- and/or cassiterite-precipitating fluid show significant variability through the zoned crystal. The first and second quartz generations (Q1 and Q2) were precipitated from a fluid of magmatic isotopic composition with δ 18O values of ˜ 8 - 10 ‰. δ 18O values of Q3- and tourmaline-precipitating fluids show a transition from magmatic δ 18O values of ˜ 8 ‰ to ˜ -5 ‰. The outermost quartz-chlorite-muscovite zone was precipitated from a fluid with a significant meteoric water component reflected by very light δ 18O values of about -15 ‰ which is consistent with values found by previous studies (Sun and Eadington, 1987) using conventional O-isotope analysis of veins in the distal halo of the granite intrusion. Intense incursion of meteoric water during Q3 precipitation (light δ 18O values) agrees with the main ore formation event, though the first occurrence of cassiterite is linked to Q2 precipitating fluid with magmatic-like isotope signature. This apparent discrepancy can be explained by the presence of a fluid of meteoric origin that was isotopically equilibrated with a hot, but already solidified and fractured granitic intrusion under rock-dominated conditions prior their transfer to the cold ore deposition site (Heinrich, 1990). Conversely, in porphyry copper systems meteoric fluid incursion has been assumed to participate in formation of peripheral or post-mineralization processes (Bowman et al., 1987; Sillitoe, 2010; Williams-Jones and Migdisov, 2014). However, recent numerical simulations of porphyry copper systems identify a significant role of meteoric fluids for the enrichment process, providing a cooling mechanism for metal-rich fluids expelled from an upper crustal magma chamber (Weis et al. 2012, Weis 2015). Furthermore, new petrographic and fluid inclusion work of ore-mineralized quartz veins (Landtwing et al., 2010; Stefanova et al., 2014) indicates lower (˜ 450r{ }C) than magmatic fluid temperatures for copper precipitation. Given that the Yankee Lode study validated the capability of high resolution, in situ δ 18O analysis to trace meteoric water incursion, we will apply this method to hydrothermal quartz samples from two significant porphyry copper deposits (Bingham Canyon, USA and Elatsite, Bulgaria). By this we intend to better constrain a potential role of meteoric water incursion in porphyry copper ore precipitation. REFERENCES Audétat, A., Günther, D., Heinrich, C. A. 1998: Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions: Science, 279, 2091-2094. Audétat, A. 1999: The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (Eastern Australia): PhD Thesis, 211. Bowman, J. R., Parry, W. T., Kropp, W. P., and Kruer, S. A., 1987: Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah: Economic Geology, 82, 395-428. Heinrich, C.A. 1990: The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition: Economic Geology, 85, 457-481. Heinrich, C. A., and Candela, P. A. 2014: 13.1 - Fluids and Ore Formation in the Earth's Crust, in Holland, H. D., and Turekian, K. K., eds., Treatise on Geochemistry (Second Edition): Oxford, Elsevier, 1-28. Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Sillitoe, R. H., 2010: Porphyry copper systems: Economic Geology (Invited Special Paper), 105, 3-41. Sun, S. and Eadington, J. 1987: Oxygen Isotope Evidence for the Mixing of Magmatic and Meteoric Waters during Tin Mineralization in the Mole Granite, New South Wales, Australia: Economic Geology, 82, 43-52. Weis, P., Driesner, T., & Heinrich, C.A. 2012: Porphyry-Copper Ore Shells Form At Stable Pressure Temperature Fronts Within Dynamic Fluid Plumes: Science, 338, 1613-1616. Williams-Jones, A. E., and Migdisov, A. A., 2014: Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems: Economic Geology, Special Publication, 18, 77-95.

  1. A record of igneous evolution in Elysium, a major martian volcanic province

    PubMed Central

    Susko, David; Karunatillake, Suniti; Kodikara, Gayantha; Skok, J. R.; Wray, James; Heldmann, Jennifer; Cousin, Agnes; Judice, Taylor

    2017-01-01

    A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading. PMID:28233797

  2. Birth of an oceanic spreading center at a magma-poor rift system.

    PubMed

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto

    2017-11-08

    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  3. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  4. Influence of Intrusive vs. Extrusive Magmatism on Venus' Tectonics and long-term Mantle Evolution: 2D and 3D Simulations

    NASA Astrophysics Data System (ADS)

    Tackley, Paul

    2014-05-01

    Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature approximately a rheological temperature scale lower than T_CMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive magmatism as an alternative to the purely extrusive magmatism assumed in [1]. Intrusive magmatism warms and weakens the crust, resulting in substantial surface deformation and a thinner crust. This is further enhanced by using a basaltic rheology for the crust instead of assuming the same rheological parameters as for the mantle. Here we quantitatively analyse the resulting surface deformation and other signatures, and compare to observations in order to constrain the likely ratio of intrusive to extrusive magmatism. [1] Armann, M., and P. J. Tackley (2012), Simulating the thermochemical magmatic and tectonic evo- lution of Venus's mantle and lithosphere: Two-dimensional models, J. Geophys. Res., 117, E12003, doi:10.1029/2012JE004231.

  5. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields

    NASA Astrophysics Data System (ADS)

    Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli

    2018-06-01

    A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.

  6. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields

    NASA Astrophysics Data System (ADS)

    Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli

    2017-11-01

    A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.

  7. Tectono-magmatic evolution at distal magma-poor rifted margins: insights of the lithospheric breakup at the Australia-Antarctica margins.

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Autin, Julia; Manatschal, Gianreto

    2015-04-01

    The discovery of large domains of hyper-extended continental crust and exhumed mantle along many present-day magma-poor rifted margins questions the processes that play during the lithospheric breakup and the onset of seafloor spreading. In particular, the amount of magma and its relation to tectonic structures is yet little understood. Trying to find answers to these questions asks to work at the most distal parts of rifted margins where the transition from rifting to steady state seafloor spreading occurred. The Australian-Antarctic conjugated margins provide an excellent study area. Indeed, the central sector of the Great Australian Bight/Wilkes Land developed in a magma-poor probably ultra-slow setting and displays a complex and not yet well understood Ocean-Continent Transition (OCT). This distal area is well imaged by numerous high quality seismic lines covering the whole OCT and the steady-state oceanic crust. The deformation recorded in the sedimentary units along these margins highlights a migration of the deformation toward the ocean and a clear polyphase evolution. In particular, the observation that each tectono-sedimentary unit downlaps oceanwards onto the basement suggests that final rifting is associated with the creation of new depositional ground under conditions that are not yet those of a steady state oceanic crust. These observations lead to a model of evolution for these distal margins implying the development of multiple detachment systems organizing out-of-sequence, each new detachment fault developing into the previously exhumed basement. This spatial and temporal organization of fault systems leads to a final symmetry of exhumed domains at both conjugated margins. Magma appears to gradually increase during the margin development and is particularly present in the more distal domain where we can observe clear magma/fault interactions. We propose that the evolution of such rifted margins is linked to cycles of delocalisation/re-localisation of the deformation which could be mainly influenced by magma and by the decoupling between the upper brittle deformation and the asthenospheric uplift. In this context, the lithospheric breakup appears to be triggered by progressive syn-extensional thermal and magmatic weakening. However, the observation of continentward dipping reflectors interpreted as flip-flop detachment systems suggests that the localisation of the spreading centre and the onset of the steady state oceanic spreading will not be necessarily associated with a clear magmatic oceanic crust. In case of a low magmatic budget we can rather observe the onset of steady state amagmatic oceanic spreading, similar to what is expected at ultra-slow spreading ridges. This model of evolution (Gillard, 2014, PhD thesis) could well explain the fact that most magma-poor margins display symmetric exhumed domains on conjugate margins. However it raises the question of the nature of magnetic anomalies in ocean-continent transitions and their value for the interpretation of the kinematic evolution of conjugate rifted margins.

  8. Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Naitza, Stefano; Skogby, Henrik; Secchi, Francesco; Conte, Aida M.; Cuccuru, Stefano; Hålenius, Ulf; De La Rosa, Nathaly; Kristiansson, Per; Charlotta Nilsson, E. J.; Ros, Linus; Andreozzi, Giovanni B.

    2018-05-01

    Tourmalines from the late-Variscan Arbus pluton (SW Sardinia) and its metamorphic aureole were structurally and chemically characterized by single-crystal X-ray diffraction, electron and nuclear microprobe analysis, Mössbauer, infrared and optical absorption spectroscopy, to elucidate their origin and relationships with the magmatic evolution during the pluton cooling stages. The Arbus pluton represents a peculiar shallow magmatic system, characterized by sekaninaite (Fe-cordierite)-bearing peraluminous granitoids, linked via AFC processes to gabbroic mantle-derived magmas. The Fe2+-Al-dominant tourmalines occur in: a) pegmatitic layers and pods, as prismatic crystals; b) greisenized rocks and spotted granophyric dikes, as clots or nests of fine-grained crystals in small miaroles locally forming orbicules; c) pegmatitic veins and pods close to the contacts within the metamorphic aureole. Structural formulae indicate that tourmaline in pegmatitic layers is schorl, whereas in greisenized rocks it ranges from schorl to fluor-schorl. Tourmalines in thermometamorphosed contact aureole are schorl, foitite and Mg-rich oxy-schorl. The main substitution is Na + Fe2+ ↔ □ + Al, which relates schorl to foitite. The homovalent substitution (OH) ↔ F at the O1 crystallographic site relates schorl to fluor-schorl, while the heterovalent substitution Fe2+ + (OH, F) ↔ Al + O relates schorl/fluor-schorl to oxy-schorl. Tourmaline crystallization in the Arbus pluton was promoted by volatile (B, F and H2O) enrichment, low oxygen fugacity and Fe2+ activity. The mineralogical evolutive trend is driven by decreasing temperature, as follows: sekaninaite + quartz → schorl + quartz → fluor-schorl + quartz → foitite + quartz. The schorl → foitite evolution represents a distinct trend towards (Al + □) increase and unit-cell volume decrease. These trends are typical of granitic magmas and consistent with Li-poor granitic melts, as supported by the absence of elbaite and other Li-minerals in the Arbus pluton. Tourmaline-bearing rocks reflect the petrogenetic significance of contribution from a metapelitic crustal component during the evolution of magmas in the middle-upper crust.

  9. Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective

    DOE PAGES

    Shearer, C. K.; Elardo, S. M.; Petro, N. E.; ...

    2014-12-23

    The Mg-suite represents an enigmatic episode of lunar highlands magmatism that presumably represents the first stage of crustal building following primordial differentiation. This review examines the mineralogy, geochemistry, petrology, chronology, and the planetary-scale distribution of this suite of highlands plutonic rocks, presents models for their origin, examines petrogenetic relationships to other highlands rocks, and explores the link between this style of magmatism and early stages of lunar differentiation. Of the models considered for the origin of the parent magmas for the Mg-suite, the data best fit a process in which hot (solidus temperature at ≥2 GPa = 1600 to 1800more » °C) and less dense (r ~3100 kg/m3) early lunar magma ocean cumulates rise to the base of the crust during cumulate pile overturn. Some decompressional melting would occur, but placing a hot cumulate horizon adjacent to the plagioclase-rich primordial crust and KREEP-rich lithologies (at temperatures of <1300 °C) would result in the hybridization of these divergent primordial lithologies, producing Mg-suite parent magmas. As urKREEP (primeval KREEP) is not the “petrologic driver” of this style of magmatism, outside of the Procellarum KREEP Terrane (PKT), Mg-suite magmas are not required to have a KREEP signature. Evaluation of the chronology of this episode of highlands evolution indicates that Mg-suite magmatism was initiated soon after primordial differentiation (<10 m.y.). Alternatively, the thermal event associated with the mantle overturn may have disrupted the chronometers utilized to date the primordial crust. Petrogenetic relationships between the Mg-suite and other highlands suites (e.g., alkali-suite and magnesian anorthositic granulites) are consistent with both fractional crystallization processes and melting of distinctly different hybrid sources.« less

  10. Relating stress models of magma emplacement to volcano-tectonic earthquakes

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D.; Neuberg, J.

    2007-12-01

    Among the various types of seismic signals linked to volcanic processes, volcano-tectonic earthquakes are probably the earliest precursors of volcanic eruptions. Understanding their relationship with magma emplacement can provide insight into the mechanisms of magma transport at depth and assist in the ultimate goal of forecasting eruptions. Volcano-tectonic events have been observed to occur on faults that experience increases in Coulomb stress changes as the result of magma intrusions. To simulate stress changes associated with magmatic injections, we test different models of volcanic sources in an elastic half-space. For each source model, we look at several aspects that influence the stress conditions of the magmatic system such as the regional tectonic setting, the effect of varying the elastic parameters of the media, the evolution of the magma with time, as well as the volume and rheology of the ascending magma.

  11. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    USGS Publications Warehouse

    Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.

    1990-01-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth. 

  12. Permanent uplift in magmatic systems with application to the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Sleep, N. H.; Banerdt, W. B.

    1990-04-01

    A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.

  13. Permanent uplift in magmatic systems with application to the Tharsis region of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Sleep, Norman H.; Banerdt, W. Bruce

    1990-01-01

    A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.

  14. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon

    NASA Astrophysics Data System (ADS)

    Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.

    2007-02-01

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  15. Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya

    2013-04-01

    Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid of sediment origins, subducted sediments etc.) with high Rb/Sr ratio.

  16. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic-hydrothermal or magmatic-steam fluids. Thus, the oxidation of SO2 to aqueous sulfate in the magmatic-steam fluids did not result from mixing with atmospheric oxygen. Both of the fluid types are characterized by high H2 contents that range from 0.2 mol% to the extraordinarily large amounts (66 mol%) observed in some magmatic-steam fluids. Modeling of gas speciation using SOLVGAS requires most of the gas species to have been in disequilibrium at the time of their trapping in the fluid inclusions. The origin of such extreme H2 concentrations, although problematic, is thought to be largely related to accumulation of H2 from the reaction of water with ferrous iron during the rise of magma and probably even after exsolution of fluid from a magma. The large contents of reduced gases in the inclusion fluids are far in excess of those observed in volcanic emanations, and are thought to reflect the close "sampling position" of the host alunite relative to the location of the magma. Isotope ratios of He and Ne indicate largely crustal sources for these gases in the alunite parental fluids derived from Tertiary magmas, but a greater mantle component for the gases in alunite parental fluids derived from Proterozoic magmas.

  17. Stratal stacking patterns and tectono-sedimentary evolution of hyperextended magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Ribes, C.; Gillard, M.; Epin, M. E.; Ghienne, J. F.; Manatschal, G.; Karner, G. D.; Johnson, C. A.

    2016-12-01

    Research on the formation and evolution of deep-water rifted margins has undergone a major paradigm shift in recent years. An increasing number of studies of present-day and fossil rifted margins allow us to identify and characterize the structural architecture of the most distal parts of rifted margins, the so-called hyperextended, magma-poor rifted margins. However, at present, little is known about the depositional environments, sedimentary facies, stacking patterns, subsidence and thermal history within these domains. In this context, characterizing the stratal stacking patterns and understanding their spatial and temporal evolution is a new challenge. The major difficulty comes from the fact that the observed stratigraphic geometries and facies relationships are a result of the complex interplay between sediment supply and available accommodation, which is controlled by not only the regional generation of accommodation, but also by local tectono-magmatic processes. These parameters are poorly constrained or even sufficiently known in these tectonic settings. Indeed, the complex structural evolution of hyperextended magma-poor rifted margins, including the development of poly-phase in-sequence and out of sequence extensional detachment faults and associated mantle exhumation and magmatic activity, can generate complex accommodation patterns over a highly structured top basement. The presentation summarizes early results concerning the controlling parameters on ultra-deep water stratigraphic stacking patterns and to provide a conceptual framework. This observation-driven approach combines fieldwork from fossil Alpine Tethys margins exposed in the Alps and the analysis of seismic reflection data from present-day deep water rifted margins such as the Australian-Antarctic, East India and Iberia-Newfoundland margins.

  18. Tourmaline as a recorder of ore-forming processes

    USGS Publications Warehouse

    Slack, John F.; Trumbull, Robert B.

    2011-01-01

    Tourmaline occurs in diverse types of hydrothermal mineral deposits and can be used to constrain the nature and evolution of ore-forming fl uids. Because of its broad range in composition and retention of chemical and isotopic signatures, tourmaline may be the only robust recorder of original mineralizing processes in some deposits. Microtextures and in situ analysis of compositional and isotopic variations in ore-related tourmaline provide valuable insights into hydrothermal systems in seafl oor, sedimentary, magmatic, and metamorphic environments. Deciphering the hydrothermal record in tourmaline also holds promise for aiding exploration programs in the search for new ore deposits.

  19. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  20. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui

    2018-05-01

    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2 varying from 324 to 673 Ma. The fourth magmatic pulse is represented by K-feldspar granite with zircon U-Pb ages from 283.2 ± 1.9 Ma to 280.0 ± 1.4 Ma, and typical alkalic A-type granite geochemistry. These rocks possess positive εHf (t) values in the range of 9.7 to15.2, and a restricted range of Hf model age from 327 to 684 Ma. The magmatic rocks from the four stages show comparable εHf (t) and T2DM, suggesting that the magmas were derived from the same evolving mantle-derived source. We propose a tectonic model linking the evolution of the magmatism with the closure of the Paleo Asian Ocean that involved the following stages. The andesites were formed during the initial oceanic subduction stage with magma sourced from the metasomatized lithospheric mantle. Stage 2 adakite-like rocks were derived from subduction-induced thickened crust. Subsequent slab rollback resulted in asthenospheric upwelling and melting of residual juvenile crust to generate the I- and A- type syenogranite, rhyolite and dacite suite, finally followed by the A-type K-feldspar granite.

  1. Devonian volcanic rocks of the southern Chinese Altai, NW China: Petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis

    NASA Astrophysics Data System (ADS)

    Ma, Xiaomei; Cai, Keda; Zhao, Taiping; Bao, Zihe; Wang, Xiangsong; Chen, Ming; Buslov, M. M.

    2018-07-01

    Ridge-trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate "slab-window" magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3-58.3 wt%), low K2O (0.02-0.07 wt%) and total alkaline contents (2.16-5.41 wt%), as well as Fe2O3T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90-2.57) and (Ga/Yb)N = 0.97-1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26-3.69), Dy/Yb (1.51-1.77) and Sm/Yb (0.83-1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin.

  2. The arc arises: The links between volcanic output, arc evolution and melt composition

    NASA Astrophysics Data System (ADS)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of wedge replenishment by corner flow does not overwhelm the rate of magma extraction.

  3. Evolution of the Campanian Ignimbrite Magmatic System II: Trace Element and Th Isotopic Evidence for Open-System Processes

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Fowler, S.; Belkin, H.; de Vivo, B.

    2005-12-01

    The Campanian Ignimbrite, a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite was deposited at ~39.3 ka and represents the largest of a number of highly explosive volcanic events in the region near Naples, Italy. Thermodynamic modeling of the major element evolution using the MELTS algorithm (see companion contribution by Fowler et al.) provides detailed information about the identity of and changes in proportions of solids along the liquid line of descent during isobaric fractional crystallization. We have derived trace element mass balance equations that explicitly accommodate changing mineral-melt bulk distribution coefficients during crystallization and also simultaneously satisfy energy and major element mass conservation. Although major element patterns are reasonably modeled assuming closed system fractional crystallization, modeling of trace elements that represent a range of behaviors (e.g. Zr, Nb, Th, U, Rb, Sm, Sr) yields trends for closed system fractionation that are distinct from those observed. These results suggest open-system processes were also important in the evolution of the Campanian magmatic system. Th isotope data yield an apparent isochron that is ~20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open-system at the time of eruption. Because open-system processes can profoundly change isotopic characteristics of a magma body, these results illustrate that it is critical to understand the contribution that open-system processes make to silicic magma bodies prior to assigning relevance to age or timescale information derived from isotope systematics. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggest large-scale fluid-melt interaction at liquidus temperatures is unlikely. In the case of the magma body associated with the Campanian Ignimbrite, the most likely source of open-system signatures is assimilation of partial melts of compositionally heterogeneous basement composed of older cumulates and intrusive equivalents of volcanic activity within the Campanian region. Additional trace element modeling, explicitly evaluating the mass and energy balance effects that fluid, solids, and melt have on trace element evolution, will further elucidate the contributions of open vs. closed system processes within the Campanian magma body.

  4. Numerical modeling of continental lithospheric weak zone over plume

    NASA Astrophysics Data System (ADS)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of the weakened area with a small decrease in porosity occurs due to the increase of inelastic stresses. The longitudinal scale of the structure remain unchanged. The evolution of intraplate magmatic systems associated with weakened zones is accompanied by the formation of intermediate intracrustal magma chambers. This work was financially supported by the project #24.1.2, the program of RAS #24.

  5. Northeastern Brazilian margin: Regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling

    NASA Astrophysics Data System (ADS)

    Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge

    2008-10-01

    Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.

  6. Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California.

    USGS Publications Warehouse

    Bacon, C.R.; Macdonald, R.; Smith, R.L.; Baedecker, P.A.

    1981-01-01

    The high-silica rhyolite domes and lava flows of the bimodal Pleistocene part of the Coso volcanic field provide an example of the early stages of evolution of a silicic magmatic system of substantial size and longevity. Major and trace element compositions are consistent with derivation from somewhat less silicic parental material by liquid state differentiation processes in compositionally and thermally zoned magmatic systems. Seven chemically homogeneous eruptive groups can be distinguished on the basis of trace element and K/Ar data. The oldest two groups are volumetrically minor and geochemically distinct from the younger groups, all five of which appear to have evolved from the same magmatic system. Erupted volume-time relations suggest that small amounts of magma were bled from the top of a silicic reservoir at a nearly constant long-term rate over the last 0.24Ma. The interval of repose between eruptions appears to be proportional to the volume of the preceding eruptive group. This relationship suggests that eruptions take place when some parameter which increases at a constant rate reaches a critical value; this parameter may be extensional strain accumulated in roof rocks. Extension of the lithosphere favors intrusion of basalt into the crust, attendant partial melting, and maintenance of a long-lived silicic magmatic system. The Coso silicic system may contain a few hundred cubic kilometers of magma. The Coso magmatic system may eventually have the potential for producing voluminous pyroclastic eruptions if the safety valve provided by rapid crustal extension becomes inadequate to 1) defuse the system through episodic removal of volatile-rich magma from its top and 2) prohibit migration of the reservoir to a shallow crustal level.-from Authors

  7. Nature of the Mantle Sources and Bearing on Tectonic Evolution in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Rilling-Hall, S.; Marcano, M. C.; Wilson, T. J.; Lawver, L. A.; LeMasurier, W. E.

    2012-12-01

    We collected samples from subaerial lava flows and dredged some Neogene basanitic lavas from seven volcanic edifices in the Ross Sea, Antarctica - a part of the West Antarctic Rift System (WARS) and one of the world's largest alkaline magmatic provinces - for a study aimed at two principal objectives: (1) Geochemical interrogation of the most primitive magmatic rocks to try and understand the nature of the seismically abnormal mantle domain recently identified beneath the shoulder of the Transantarctic Mountains (TAM), the Ross Sea Embayment and Marie Byrd Land; and (2) Using 40Ar/39Ar geochronology to establish a temporal link between magmatism and tectonism, particularly in the Terror Rift. We have attempted to answer the questions of whether magmatism is due to a hot mantle or wet mantle, and whether rifting in the area triggered magmatic activity or vice versa. Results show that the area does not have an age-progressive hotspot track, and the magmatism post-dates the main phase of extension along the Terror Rift within the WARS, which supports a decompression-melting model without the benefit of a significant thermal anomaly. In fact, preliminary volatile measurements on olivine-hosted melt inclusions have yielded water concentrations in excess of 2 wt%, indicating that flux melting was an important complementary process to decompression melting. The major oxide compositions of lavas in the WARS are best matched to experimental melts of carbonated peridotite, though garnet pyroxenite can also be a minor source. The Pb and Nd isotopic systems are decoupled from each other, suggesting removal of fluid-mobile elements from the mantle source possibly during the long history of subduction along the Paleo-Pacific margin of Gondwana. Extremely unradiogenic 187Os/188Os ranging to as low as 0.1081 ± 0.0001 hints at the involvement of lithospheric components in generation of magmas in the WARS.

  8. Crustal growth and episodic reworking over one billion years in the Capricorn Orogen, Western Australia: evidence from Lu-Hf and O isotope data

    NASA Astrophysics Data System (ADS)

    Jahn, Inalee; Clark, Chris; Reddy, Steve; Taylor, Rich

    2017-04-01

    Fundamental to understanding the generation and evolution of a crustal block is knowledge of the relationship between additions of new material from the mantle, and the extent of crustal recycling [1]. Hafnium isotope ratios can be used to characterise relative contributions from mantle, crustal and recycled reservoirs within magmas. Oxygen isotopes can be used to constrain the extent of crustal interaction during magma emplacement. When used in conjunction, they can help unravel multiple crystallisation histories of a crustal block, and follow the source composition through magma evolution. The Capricorn Orogen records the Paleoproterozoic collision of the Yilgarn and Pilbara Cratons to form the West Australian Craton, and over one billion years of subsequent intracontinental crustal reworking. U-Pb zircon geochronology records three discrete tectono-magmatic events which resulted in voluminous granitic magmatism: the 2005-1975 Ma Glenburgh Orogeny, the 1820-1770 Ma Capricorn Orogeny, and the 1680-1620 Ma Durlacher Orogeny [2]. We present U-Pb, Lu-Hf and δ18O isotopic data from zircon from 50 samples of granites and granitoids from the Capricorn Orogen to provide constraints on the crustal evolution of the Paleoproterozoic crust. Our results confirm crustal growth by juvenile mantle input was limited to the Glenburgh Orogeny associated with the amalgamation of the West Australian Craton, while all subsequent Paleoproterozoic magmatism was primarily derived from significant reworking of the pre-existing crustal components. Time-sliced maps showing the variation in Hf and O isotopes can be used to image crustal evolution in space and time, and are particularly useful in constraining the spatial and temporal extent of juvenile magmatic additions to the crust. These maps suggest that crustal growth was concentrated along, or in the terranes adjacent to, the Yilgarn Craton margin. Our results are in agreement with previous isotopic studies [3], and provide additional constraints for the evolution of the Paleoproterozoic crust within the Capricorn Orogen. [1] Cawood et al. 2013. Geological Society of America Bulletin, 125(1-2), 14-32 [2] Sheppard et al. 2010. Geological Survey of Western Australia, Perth, Western Australia, 336 [3] Johnson et al. 2017. Lithos, 268, 76-86

  9. Recent advances on the tectonic and magmatic evolution of the Greater Tibetan Plateau: A special issue in honor of Prof. Guitang Pan

    NASA Astrophysics Data System (ADS)

    Zhu, Di-Cheng; Chung, Sun-Lin; Niu, Yaoling

    2016-02-01

    The Greater Tibetan Plateau, also known in China as the Qinghai-Tibet Plateau or the Qingzang Plateau, is a tectonic amalgamation of numbers of continental collision events from the northwest in the early Paleozoic to the southwest in the Cenozoic (cf. Dewey et al., 1988; Pan et al., 2012; Yin and Harrison, 2000). These collision events resulted in orogenic belts that record the prolonged albeit complex histories of opening and closing of Tethyan ocean basins and associated tectonic and magmatic responses (cf. Chung et al., 2005; Pan et al., 2012; Song et al., 2014; Yin and Harrison, 2000; Zhu et al., 2013, 2015). Although many aspects related to these events have been recently synthesized with elegance by Pan et al. (2012) and Zhu et al. (2013) using data and observations made available since 2000, many scientific questions, such as the duration of oceanic basins, the collisional and accretionary processes of different terranes, the processes responsible for crustal growth, and the mechanisms for economic mineralization, remain underdeveloped and require further investigations with additional data.

  10. Formation and evolution of magma-poor margins, an example of the West Iberia margin

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, Marta; Andres-Martinez, Miguel; Morgan, Jason P.; Ranero, Cesar R.; Reston, Tim

    2016-04-01

    The West Iberia-Newfoundland (WIM-NF) conjugate margins have been geophysically and geologically surveyed for the last 30 years and have arguably become a paradigm for magma-poor extensional margins. Here we present a coherent picture of the WIM-NF rift to drift evolution that emerges from these observations and numerical modeling, and point out important differences that may exist with other magma-poor margins world-wide. The WIM-NF is characterized by a continental crust that thins asymmetrically and a wide and symmetric continent-ocean transition (COT) interpreted to consist of exhumed and serpentinised mantle with magmatic products increasing oceanward. The architectural evolution of these margins is mainly dominated by cooling under very slow extension velocities (<~6 mm/yr half-rate) and a lower crust that most probably was not extremely weak at the start of rifting. These conditions lead to a system where initially deformation is distributed over a broad area and the upper, lower crust and lithosphere are decoupled. As extension progresses upper, lower, crust and mantle become tightly coupled and deformation localizes due to strengthening and cooling during rifting. Coupling leads to asymmetric asthenospheric uplift and weakening of the hanginwall of the active fault, where a new fault forms. This continued process leads to the formation of an array of sequential faults that dip and become younger oceanward. Here we show that these processes acting in concert: 1) reproduce the margin asymmetry observed at the WIM-NF, 2) explain the fault geometry evolution from planar, to listric to detachment like by having one common Andersonian framework, 3) lead to the symmetric exhumation of mantle with little magmatism, and 4) explain the younging of the syn-rift towards the basin centre and imply that unconformities separating syn- and post-rift may be diachronous and younger towards the ocean. Finally, we show that different lower crustal rheologies lead to different patterns of extension and to an abrupt transition to oceanic crust, even at magma-poor margins.

  11. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    NASA Astrophysics Data System (ADS)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing elements (e.g., Li and Cu).

  12. Early Mesozoic cooling from low temperature thermochronology in N Spain and N Africa

    NASA Astrophysics Data System (ADS)

    Grobe, R.; Alvarez-Marrón, J.; Glasmacher, U. A.; Menéndez-Duarte, R.

    2009-04-01

    In the western prolongation of the Pyrenees, the substratum of the Cantabrian Mountains consists of an E-W crustal section of the Gondwana continental margin involved in the Variscan collision. In Mesozoic times, the region was modified by rifting and the opening of the Atlantic and the Bay of Biscay, while in Paleogene-Neogene times it was affected by the convergence of the Iberian Plate with the Eurasian Plate resulting in the present mountains. Our thermochronological data and modelled time-temperature histories suggest an earlier, relative fast cooling period during Early Triassic to Early Jurassic. This cooling event coincides temporally with the process of rifting that caused Pangaea continental break-up and the opening of the North Atlantic. Other authors report similar cooling histories from Early Triassic to Middle Jurassic from other parts of the Iberian Peninsula (Juez-Larré, 2003; Barbero et al., 2005) as well as from the Moroccan Meseta, in N Africa (Ghorbal et al., 2008). Furthermore, the time span of this cooling event includes the period of main activity of the Central Atlantic Magmatic Province (CAMP) magmatism at around 200 Ma (Marzoli et al., 1999). Wilson (1997) postulates a relationship between this magmatic activity and upwelling of a large-scale mantle plume (super-plume) beneath the West African craton. Correlatives of this province have been identified as far as the southern Iberian Peninsula, Newfoundland, and possibly in Brittany, among other European areas (Pe-Piper et al., 1992; Jourdan et al., 2003). The current presentation aims to discuss possible African far-field effects on thermochronological data in the Cantabrian Mountains of NW Spain. References: Barbero, L.; Glasmacher, U. A.; Villaseca, C.; López García, J. A.; Martín-Romera, C. (2005). Long-term thermo-tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): constraints from apatite fission-track analysis. International Journal of Earth Sciences , Volume 94, Issue 2, pp.193-203. Ghorbal, B.; Bertotti, G.; Foeken, J.; Andriessen, P. (2008). Unexpected Jurassic to Neogene vertical movements in ‘stable' parts of NW Africa revealed by low temperature geochronology. Terra Nova, Volume 20, Number 5, October 2008 , pp. 355-363(9). Jourdan, F.; Marzoli, A.; Bertrand, H.; Cosca, M.; Fontignie, D. (2003). The Northernmost CAMP: 40Ar/39Ar Age, petrology and Sr-Nd-Pb isotope geochemistry of the Kerforne Dike, Brittany, France. In: Hames, W.E., McHone, J.G., Renne, P.R., Ruppel, C. (Eds.), The Central Atlantic Magmatic Province: Insights From Fragments of Pangea. AGU, Geophys. Mon., vol. 136, pp. 209-226. Juez-Larré, J. (2003). Post Late Paleozoic tectonothermal evolution of the northeastern margin of Iberia, assessed by fission-track and (U-T)/He analysis: a case history from the Catalan Coastal Ranges. Ph.D. thesis, Free University of Amsterdam. 200 pp. Marzoli, A.; Renne, P.R.; Piccirillo, E.M.; Ernesto, M.; Bellieni, G.; De Min, A. (1999). Extensive 200-million-year-old continental food basalts of the Central Atlantic magmatic province. Science 284, 616-618. Pe-Piper, G.; Jansa, L.F.; Lambert, R.St.-J. (1992). Early Mesozoic magmatism of the Eastern Canadian margin. In: Puffer, J.H., Ragland, P.C. (Eds.), Eastern North American Mesozoic magmatism. Geol. Soc. Am., Spec. Paper, vol. 268, pp. 13-36. Wilson, M. (1997). Thermal evolution of the Central Atlantic passive margins: continental break-up above a Mesozoic super-plume. J. Geol. Soc. (Lond.) 154, 491-495.

  13. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  14. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia

    In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less

  15. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    DOE PAGES

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...

    2016-11-11

    In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less

  16. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Sujuan; Hu, Jianmin; Ren, Minghua; Gong, Wangbin; Liu, Yang; Yan, Jiyuan

    2014-11-01

    The Bayanwulashan Metamorphic Complex (BMC) exposes along the eastern margin of the Alxa Block, the westernmost part of the North China Craton (NCC). BMC is principally composed of metamorphic rocks with amphibole plagiogneiss, biotite plagioclase gneiss and granitic gneiss. Our research has been focused on the petrography and zircon U-Pb geochronology of the BMC to better understand the evolution of the Alxa Block and its relationship with the NCC. Evidences from field geology, petrography, and mineral chemistry indicate that two distinct metamorphic assemblages, the amphibolite and greenschist facies, had overprinted the preexisting granitic gneiss and suggest that the BMC experienced retrograde metamorphic episodes. The LA-ICP-MS zircon U-Pb ages reveal that the primary magmatic activities of BMC were at ca. 2.30-2.24 Ga and the two metamorphic events were at ca. 1.95-1.91 Ga and ca. 1.88-1.85 Ga respectively. These ages indicate that BMC initially intruded during Paleoproterozoic, not as previously suggested at Archean period. The Early Paleoproterozoic metamorphic records and the magmatic thermochronological data in BMC exhibit different evolution paths between the Alxa Block and the NCC. The Alxa Block was most likely an independent Early Paleoproterozoic terrain. Following different amalgamation processes, The Alxa Block combined with Western Block at ca. 1.95 Ga and then united with NCC at ca. 1.85 Ga.

  17. Zirconium and hafnium fractionation in differentiation of alkali carbonatite magmatic systems

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2016-05-01

    Zirconium and hafnium are valuable strategic metals which are in high demand in industry. The Zr and Hf contents are elevated in the final products of magmatic differentiation of alkali carbonatite rocks in the Polar Siberia region (Guli Complex) and Ukraine (Chernigov Massif). Early pyroxene fractionation led to an increase in the Zr/Hf ratio in the evolution of the ultramafic-alkali magmatic system due to a higher distribution coefficient of Hf in pyroxene with respect to Zr. The Rayleigh equation was used to calculate a quantitative model of variation in the Zr/Hf ratio in the development of the Guli magmatic system. Alkali carbonatite rocks originated from rare element-rich mantle reservoirs, in particular, the metasomatized mantle. Carbonated mantle xenoliths are characterized by a high Zr/Hf ratio due to clinopyroxene development during metasomatic replacement of orthopyroxene by carbonate fluid melt.

  18. Evolution of tholeiitic diabase sheet systems in the eastern United States: examples from the Culpeper Basin, Virginia-Maryland, and the Gettysburg Basin, Pennsylvania

    USGS Publications Warehouse

    Woodruff, L.G.; Froelich, A.J.; Belkin, H.E.; Gottfried, D.

    1995-01-01

    High-TiO2, quartz-normative (HTQ) tholeiite sheets of Early Jurassic age have intruded mainly Late Triassic sedimentary rocks in several early Mesozoic basins in the eastern US. Field observations, petrographic study, geochemical analyses and stable isotope data from three HTQ sheet systems were used to develop a general model of magmatic differentiation and magmatic-hydrothermal interaction for HTQ sheets. The three sheet systems have remarkably similar major-oxide and trace-element compositions. Cumulus and evolved diabase in comagmatic sheets separated by tens of kilometers are related by igneous differentiation. Differentiated diabase in all three sheets have petrographic and geochemical signatures and fluid inclusions indicating hydrothermal alteration beginning near magmatic temperatures and continuing to relatively low temperatures. Sulfur and oxygen isotope data are consistent with a magmatic origin for the hydrothermal fluid. -from Authors

  19. Recording the transition from flare-up to steady-state arc magmatism at the Purico-Chascon volcanic complex, northern Chile

    NASA Astrophysics Data System (ADS)

    Burns, Dale H.; de Silva, Shanaka L.; Tepley, Frank; Schmitt, Axel K.; Loewen, Matthew W.

    2015-07-01

    The long-term evolution of continental magmatic arcs is episodic, where a few transient events of high magmatic flux or flare-ups punctuate the low-flux magmatism or "steady state" that makes up most of the arc history. How this duality manifests in terms of differences in crustal architecture, magma dynamics and chemistry, and the time scale over which transitions occur is poorly known. Herein we use multiscale geochemical and isotopic characteristics coupled with geothermobarometry at the Purico-Chascon Volcanic Complex (PCVC) in the Central Andes to identify a transition from flare-up to steady state arc magmatism over ∼800 kyr during which significant changes in upper crustal magmatic dynamics are recorded. The PCVC is one of the youngest volcanic centers related to a 10-1 Ma ignimbrite flare-up in the Altiplano-Puna Volcanic Complex of the Central Andes. Activity at the PCVC initiated 0.98 ± 0.03 Ma with the eruption of a large 80-100 km3 crystal-rich dacite ignimbrite. High, restricted 87Sr/86Sr isotope ratios between 0.7085 and 0.7090 in the bulk rock and plagioclase crystals from the Purico ignimbrite, combined with mineral chemistry and phase relationships indicate the dacite magma accumulated and evolved at relatively low temperatures around 800-850 °C in the upper crust at 4-8 km depth. Minor andesite pumice erupted late in the ignimbrite sequence records a second higher temperature (965 °C), higher pressure environment (17-20 km), but with similar restricted radiogenic bulk rock 87Sr/86Sr = 0.7089-0.7091 to the dacites. The compositional and isotopic characteristics of the Purico ignimbrite implicate an extensive zone of upper crustal mixing, assimilation, storage and homogenization (MASH) between ∼30 and 4 km beneath the PCVC ∼1 Ma. The final eruptions at the PCVC < 0.18 ± 0.02 Ma suggest a change in the magmatic architecture beneath the PCVC. These eruptions produced three small <6 km3 crystal-rich dacite lava domes with radiogenic bulk rock 87Sr/86Sr ratios ranging from 0.7075 to 0.7081, that contain abundant basaltic-andesite inclusions with relatively low bulk rock 87Sr/86Sr ratios of 0.7057-0.7061. Plagioclase and amphibole in the host lava of Cerro Chascon, the largest of the domes, record two distinct magmatic environments; an upper crustal environment identical to that recorded in the Purico ignimbrite, and a second deeper, ∼15-20 km depth, higher temperature (∼922-1001 °C) environment. This deeper environment is recorded in textures and compositions of distinct mineral phases, and in intracrystalline isotope ratios. Plagioclase cores in the host dacite lava and mafic inclusions have in situ87Sr/86Sr isotopic compositions of 0.7083 to 0.7095, broadly similar to plagioclase from the Purico ignimbrite. In contrast, plagioclase rims and microphenocrysts in the mafic inclusions are isotopically distinct with lower 87Sr/86Sr isotope ratios (0.7057 to 0.7065 and 0.7062 to 0.7064, respectively) that overlap with the regional isotopic "baseline" compositions that are parental to the modern arc lavas. The textural and compositional characteristics of the PCVC attest to two distinct stages in its history. At ∼1 Ma the system was broadly homogeneous and dominantly dacitic recording extensive upper crustal magmatism. By ∼0.2 Ma the PCVC had transitioned to a more compositionally heterogeneous, smaller volume, mixed dacite to basaltic-andesite system, coinciding with the appearance of less-enriched "baseline" compositions. The evolution of PCVC is a microcosm of the Central Andean arc in this region where, from 10 to 1 Ma, upper crustal MASH processes resulted in the production and eruption of large volumes of homogeneous crystal-rich dacite during a regional ignimbrite flare-up. Since ∼1 Ma, decreasing explosivity, smaller eruptive volumes, increasing heterogeneity, and the emergence of less isotopically enriched basaltic-andesite to dacite composite volcanoes signal a return to steady-state arc volcanism. We posit that the transition from flare-up to steady state captured at the PCVC tracks the waning of the arc scale "thermal engine". High magmatic fluxes during the flare-up would lead to elevated geothermal gradients and efficient crustal processing leading to a dominantly "crustal" magmatism feeding the large volume Purico ignimbrite. This upper crustal MASH zone would act as an efficient filter to any parental compositions precluding them from the eruption record. As magmatic flux and thermal energy wanes, crustal isotherms would relax leading to greater thermal contrast between parental magmas, upper crust, and remnant felsic magmas stored in the upper crust. These changes are manifested in the preservation of textural and compositional heterogeneity and the survival of less isotopically enriched magmas in the upper crust. The chemical imprint of these arc-scale changes in magma dynamics is recorded at all scales from bulk rock to intra-crystalline. The distinct magma dynamics and chemical signatures of the two modes of arc magmatism detailed here should provide a model for investigations of mature continental arc evolution through time and space.

  20. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume influence on the SEIR formation occurred 70-50 mln years ago, when the process of primary magma generation happened at high degrees of melting (up to 30%), which is not typical for spreading ridges of the Atlantic and Pacific Oceans. According to geochemical characteristics of the Kerguelen Plateau and SEIR magma sources close to each other, and have an enriched source of more typical for Kerguelen plume magmas and diluted by depleted substance for SEIR melts. Appearance of magmatism on the Antarctic margin about 56 thousand years ago, in the form of a stratovolcano Gaussberg indicates sublithospheric Kerguelen plume distribution in the south-west direction. The source of primary magmas (lamproite composition) is an ancient Gondwana lithosphere, has undergone repeated changes in the early stages of evolution during which it was significantly enriched in volatile and lithophile elements, and radiogenic Sr and Pb.

  1. Two distinct origins for Archean greenstone belts

    NASA Astrophysics Data System (ADS)

    Smithies, R. Hugh; Ivanic, Tim J.; Lowrey, Jack R.; Morris, Paul A.; Barnes, Stephen J.; Wyche, Stephen; Lu, Yong-Jun

    2018-04-01

    Applying the Th/Yb-Nb/Yb plot of Pearce (2008) to the well-studied Archean greenstone sequences of Western Australia shows that individual volcanic sequences evolved through one of two distinct processes reflecting different modes of crust-mantle interaction. In the Yilgarn Craton, the volcanic stratigraphy of the 2.99-2.71 Ga Youanmi Terrane mainly evolved through processes leading to Th/Yb-Nb/Yb trends with a narrow range of Th/Nb ('constant-Th/Nb' greenstones). In contrast, the 2.71-2.66 Ga volcanic stratigraphy of the Eastern Goldfields Superterrane evolved through processes leading to Th/Yb-Nb/Yb trends showing a continuous range in Th/Nb ('variable-Th/Nb' greenstones). Greenstone sequences of the Pilbara Craton show a similar evolution, with constant-Th/Nb greenstone evolution between 3.13 and 2.95 Ga and variable-Th/Nb greenstone evolution between 3.49 and 3.23 Ga and between 2.77 and 2.68 Ga. The variable-Th/Nb trends dominate greenstone sequences in Australia and worldwide, and are temporally associated with peaks in granite magmatism, which promoted crustal preservation. The increasing Th/Nb in basalts correlates with decreasing εNd, reflecting variable amounts of crustal assimilation during emplacement of mantle-derived magmas. These greenstones are typically accompanied in the early stages by komatiite, and can probably be linked to mantle plume activity. Thus, regions such as the Eastern Goldfields Superterrane simply developed as plume-related rifts over existing granite-greenstone crust - in this case the Youanmi Terrane. Their Th/Nb trends are difficult to reconcile with modern-style subduction processes. The constant-Th/Nb trends may reflect derivation from a mantle source already with a high and constant Th/Nb ratio. This, and a lithological association including boninite-like lavas, basalts, and calc-alkaline andesites, all within a narrow Th/Nb range, resembles compositions typical of modern-style subduction settings. These greenstones are very rare, and were probably only preserved when fortuitously stabilised by granitic magmatism related to the evolution of later variable-Th/Nb greenstones. The rarity of constant-Th/Nb trends suggests that either processes forming them never dominated Archean greenstone evolution, or that such greenstones simply were rarely preserved. Metamorphic mobility of Th renders the Th/Yb-Nb/Yb plot inappropriate for interpreting Eoarchean greenstone units worldwide. Nevertheless, such sequences appear dominated by volcanic rocks that, in modern settings, reflect only the embryonic or initiation stages of subduction. They probably record subduction failure rather than anything resembling modern-style subduction.

  2. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  3. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    NASA Astrophysics Data System (ADS)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  4. Controls on mid-ocean ridge segmentation and transform fault formation from laboratory experiments using fluids of complex rheology.

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Mittelstaedt, E. L.; Davaille, A.

    2017-12-01

    Mid-ocean ridges are tectonically segmented at scales of 10s to 100s of kilometers by several types of offsets including transform faults (TF), overlapping spreading centers (OSC), and slow-spreading non-transform offsets (NTO). Differences in segmentation along axis have been attributed to changes in numerous processes including magma supply from the upwelling mantle, viscous flow in the asthenosphere, ridge migration, and plate spreading direction. The wide variety of proposed mechanisms demonstrate that the origin of tectonic offsets and their relationship to segment-scale magmatic processes remain actively debated; each of the above processes, however, invoke combinations of tectonic and magmatic processes to explain changes in segmentation. To address the role of tectonic deformation and magmatic accretion on the development of ridge offsets, we present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Experiments are performed in a Plexiglas tank with two Plexiglas plates suspended above the base of the tank. The tank is filled with the colloidal fluid to just above the suspended plates, a thin layer of saline water is spread across the surface, and spreading initiated by moving the suspended Plexiglas plates apart at a fixed rate. Results show formation of OSCs, NTOs, and TFs. For parameters corresponding to the Earth, TF offsets are < 5 mm and form at all spreading velocities, corresponding to transform offsets of < 100 km on Earth. Measured TF offset size and ridge segment lengths exhibit a Poisson-type distribution with no apparent dependence on spreading rate. Observations of TF offset size on Earth show a similar distribution for TFs <100 km long and supports the hypothesis that TFform spontaneously through a mechanical instability of the axis. Here, we present an analysis of the magmatic and tectonic controls on axis instability leading to the formation of TFs, OSCs, and NTOs, and their implications for the evolution of mid-ocean ridges.

  5. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean

    NASA Astrophysics Data System (ADS)

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina

    2017-10-01

    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the subducting plate.

  6. Crustal-scale magmatism and its control on the longevity of magmatic systems

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-04-01

    Constraining the duration and evolution of crustal magma reservoirs is crucial to our understanding of the eruptive potential of magmatic systems, as well as the volcanic:plutonic ratios in the crust, but estimates of such parameters vary widely in the current literature. Although no consensus has been reached on the lifetime of magma reservoirs, recent studies have revealed about the presence, location, and melt fraction of multi-level (polybaric) storage zones in the crust. If magma accumulates at different crustal levels, it must redistribute significant enthalpy within the crustal column and therefore must influence the lifetime of magma plumbing systems. However, an evaluation of the mass and heat budget of the entire crustal column is lacking. Here, we use a two-dimensional thermal model to determine the thermal conditions under which both lower and upper crustal magma bodies form. We find that large lower crustal mush zones supply heat to the upper crust and reduce the amount of thermal energy necessary to form subvolcanic reservoirs. This indicates that the crust is thermally viable to sustain partially molten magma reservoirs over long timescales (>10^5-106 yr) for a range of magma fluxes (10^-4 to 10^-2 km^3/yr). Our results reconcile physical models of crustal magma evolution and field-based estimates of intrusion rates in numerous magmatic provinces (which include both volcanic and plutonic lithologies). We also show that young magmatic provinces (< 105 yr old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (> 106 yr) can accumulate magma and build reservoirs capable of triggering supereruptions, even with intrusion rates as low as ≤10^-2 km^3/yr. Hence, the total duration of magmatism is critical in determining the size of the magma reservoirs, and should be combined with the magma intrusions rates to assess the capability of volcanic systems to form the largest eruptions on Earth.

  7. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific

    NASA Astrophysics Data System (ADS)

    Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.

    2015-12-01

    Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line. This mode of crustal growth seems to require broad zones of melt transport through the lithosphere and across the Moho.

  8. Determining the physical and chemical processes behind four caldera-forming eruptions in rapid succession in the San Juan caldera cluster, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Curry, A. C.; Caricchi, L.; Lipman, P. W.

    2017-12-01

    A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.

  9. The Afar-Red Sea-Gulf of Aden volcanic margins system : early syn-rift segmentation and tectono-magmatic evolution

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled

    2017-04-01

    The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.

  10. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  11. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Holm, Robert J.; Spandler, Carl; Richards, Simon W.

    2013-09-01

    Understanding the evolution of the mid-Cenozoic Melanesian arc is critical for our knowledge of the regional tectonic development of the Australian-Pacific plate margin, yet there have been no recent studies to constrain the nature and timing of magmatic activity in this arc segment. In particular, there are currently no robust absolute age constraints at the plate margin related to either the initiation or cessation of subduction and arc magmatism. We present the first combined U-Pb zircon geochronology and geochemical investigation into the evolution of the Melanesian arc utilizing a comprehensive sample suite from the Simuku Igneous Complex of West New Britain, Papua New Guinea. Development of the embryonic island arc from at least 40 Ma and progressive arc growth was punctuated by distant collision of the Ontong Java Plateau and subduction cessation from 26 Ma. This change in subduction dynamics is represented in the Melanesian arc magmatic record by emplacement of the Simuku Porphyry Complex between 24 and 20 Ma. Petrological and geochemical affinities highlight genetic differences between 'normal' arc volcanics and adakite-like signatures of Cu-Mo mineralized porphyritic intrusives. The contemporaneous emplacement of both 'normal' arc volcanics and adakite-like porphyry intrusives may provide avenues for future research into the origin of diverse styles of arc volcanism. Not only is this one of few studies into the geology of the Melanesian arc, it is also among the first to address the distant tectono-magmatic effects of major arc/forearc collision events and subduction cessation on magmatic arcs, and also offers insight into the tectonic context of porphyry formation in island arc settings.

  12. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb <1.5) are consistent with δ18 O data and emphasize limited interaction with Pan-African crust. However, there are important regional variations in melt evolution revealed by incompatible elements (e.g., Th and Zr) and peralkalinity (molar Na2 O +K2 O /Al2O3). The most chemically-evolved peralkaline compositions are associated with the MER volcanoes (Aluto, Gedemsa and Kone) and an off-axis volcano of the Afar Rift (Badi). On-axis silicic volcanoes of the Afar Rift (e.g., Dabbahu) generate less-evolved melts. While at Erta Ale, the most mature rift setting, peralkaline magmas are rare. We find that melt evolution is enhanced in less mature continental rifts (where parental magmas are of transitional rather than tholeiitic composition) and regions of low magma flux (due to reduced mantle melt productivity or where crustal structure inhibits magma ascent). This has important implications for understanding the geotectonic settings that promote extreme melt evolution and, potentially, genesis of economically-valuable mineral deposits in ancient rift-settings. The limited isotopic evidence for assimilation of Pan-African crustal material in Ethiopia suggests that the pre-rift crust beneath the magmatic segments has been substantially modified by rift-related magmatism over the past ∼45 Ma; consistent with geophysical observations. We argue that considerable volumes of crystal cumulate are stored beneath silicic volcanic systems (>100 km3), and estimate that crystal cumulates fill at least 16-30% of the volume generated by crustal extension under the axial volcanoes of the MER and Manda Hararo Rift Segment (MHRS) of Afar. At Erta Ale only ∼1% of the volume generated due to rift extension is filled by cumulates, supporting previous seismic evidence for a greater role of plate stretching in mature rifts at the onset of sea-floor spreading. We infer that ∼45 Ma of magmatism has left little fusible Pan-African material to be assimilated beneath the magmatic segments and the active segments are predominantly composed of magmatic cumulates with δ18 O indistinguishable from mantle-derived melts. We predict that the δ18 O of silicic magmas should converge to mantle values as the rift continues to evolve. Although current data are limited, a comparison with ∼30 Ma ignimbrites (with δ18 O up to 8.9‰) supports this inference, evidencing greater crustal assimilation during initial stages of rifting and at times of heightened magmatic flux.

  13. Evolution of the earth's crust: Evidence from comparative planetology

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1973-01-01

    Geochemical data and orbital photography from Apollo, Mariner, and Venera missions were combined with terrestrial geologic evidence to study the problem of why the earth has two contrasting types of crust (oceanic and continental). The following outline of terrestrial crustal evolution is proposed. A global crust of intermediate to acidic composition, high in aluminum, was formed by igneous processes early in the earth's history; portions survive in some shield areas as granitic and anorthositic gneisses. This crust was fractured by major impacts and tectonic processes, followed by basaltic eruptions analogous to the lunar maria and the smooth plains of the north hemisphere of Mars. Seafloor spreading and subduction ensued, during which portions of the early continental crust and sediments derived therefrom were thrust under the remaining continental crust. The process is exemplified today in regions such as the Andes/Peru-Chile trench system. Underplating may have been roughly concentric, and the higher radioactive element content of the underplated sialic material could thus eventually cause concentric zones of regional metamorphism and magmatism.

  14. Magmatic sulphides in Quaternary Ecuadorian arc magmas

    NASA Astrophysics Data System (ADS)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus

    2018-01-01

    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a different range of values with respect to those in previously investigated magmatic sulphides. MSIs that are Cu- and PGE/Cu-rich are found in less evolved rocks (i.e., lower SiO2 contents) that also display a lower amount of sulphide inclusions. Cu-rich sulphide phases (chalcopyrite ± bornite) are mostly hosted by magnetite, whereas PGE-rich ones consist of a Cu-poor phase (pyrrhotite) hosted by plagioclase. However, no systematic changes in the chemistry of the host silicate mineral are observed in coincidence with the occurrence of MSIs. We use the results of our study to draw some implications on Cu (and other chalcophile elements) behavior during arc magmatic processes potentially associated with the formation of porphyry-type deposits.

  15. Insights from analog gelatin experiments on the effect of bedding dip on sill morphology and crystal load

    NASA Astrophysics Data System (ADS)

    Currier, R. M.; Marsh, B. D.; Mittal, T.

    2010-12-01

    The profusion of sills the world over offers a wide spectrum of geologic conditions under which to study emplacement mechanisms and the establishment of the initial conditions governing the subsequent magmatic evolution. Many diabase/dolerite sills are featureless bodies whose only record of solidification is contained in the variation of crystal size. But other sills formed of magma containing crystals entrained from earlier crystallization episodes often show a rich history of interaction between settling crystals and solidification fronts such that the physical history of differentiation can be readily observed. This work explores this aspect of sills using visco-elastic gelatin as country rock, molten wax as magma and tiny particles as phenocrysts. Magmatic sills form mechanically, when an ascending dike encounters a more rigid layer, is diverted laterally, and systematically inflates as guided along by the interface. In this manner, sills grow about the injection site, and can do so symmetrically or asymmetrically. The degree of asymmetry is affected by the dip angle of the interface. An angled interface implies a directional pressure gradient, and magma flows preferentially in the direction of decreasing pressure, in this case, up tilt. So, the greater the tilt, the greater the asymmetry. By experimentally producing sills in layered, tilted, media, we have investigated the influence of bed dip on sill morphology. Experiments were performed by injecting wax and particles into gelatin where the layers were poured at set angles to mimic tilted bedding. In addition to its visco-elastic properties, gelatin also has the added benefit of transparency, allowing for direct observation during the experiment and can be washed away later to reveal the exact details of the remaining solid. To emulate magma as a multi-phase slurry, a magmatic analog was used consisting of a mixture of molten wax near its liquidus and ultrafine glitter. Wax solidifies in response to thermal loss, as does the liquid portion of magma, affecting emplacement characteristics itself and preserving transient features that would otherwise be lost. The particles act as crystal cargo, and track magmatic flow within the sill. Surprisingly, even though the injection process is a single pulse, the wax-particle combination intimately records several internal lobes that might otherwise be interpreted as a multiple-pulse style emplacement. The end product is a handheld magmatic plumbing system that can be examined in full detail. There are many cases of sills in the geologic record where the original host rock bedding dip at the time of emplacement is unknown due perhaps to subsequent tectonism. In addition to the experiments providing insights on the magmatic evolution of slurries, they may thus also prove useful in inferring the original bed orientation.

  16. Early Miocene rapid exhumation in southern Tibet: Insights from P-T-t-D-magmatism path of Yardoi dome

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi

    2018-04-01

    Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.

  17. Seismic imaging of Late Cretaceous magmatic system in the northern margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Xia, S.; Xu, H.; Sun, J.; Zhao, F.; Fan, C.

    2017-12-01

    The origin and evolution of magmatism in the rifting margins are the fundamentally geological subjects, and remain the focus of intense study. Different from the classical volcanic or nonvolcanic rifting margins, the northern margin of South China Sea (SCS) experienced uniquely regional tectonic processes, and formed plentiful intraplate seamounts mainly at the postrift period. There is considerable controversy over what caused the intensively postrift intraplate volcanism. Here we combine a new crustal structure with previously systematic petrologic and seismic tomographic results to first provide importantly new insights into a mantle plume origin and complex multilevel plumbing system of intraplate seamounts in the northern margin of SCS. Large amounts of active melts from the lower mantle migrated upward and reached the base of the lithosphere. The volatile-rich and overheated magmas continued ascending along the weak zone through the lithosphere and intruded into the lower crust. The intrusion magmas then ascended forward along the faults formed during the rifting, and supplied the magma source for the formation of intraplate seamounts in the northern margin of SCS. It supplies an important implication for the volume and range of late Cenozoic basaltic magmatism deriving from the Hainan mantle plume. Keywords: South China Sea; Late Cretaceous; Magmatic System; Hainan Plume AcknowledgementsThe field work of this study was assisted by the captain and crew of the R/V Shiyan 2. Prof. Xuelin Qiu supplied great helps for the successful implementation of the cruise. This work was partially supported by grants from the National Natural Science Foundation of China (Grant Nos. 91328206 and 41576041).

  18. A review of laboratory and numerical modelling in volcanology

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.

    2018-04-01

    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

  19. Crustal processes cause adakitic chemical signatures in syn-collision magmatism from SE Iran

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Kheirkhah, Monireh; Neill, Iain

    2015-04-01

    We report new elemental and Nd-Sr isotopic analyses for Late Cenozoic intrusive and extrusive rocks emplaced in SE Iran as part of the wider syn-collision magmatic province within the Turkish-Iranian Plateau. The sample sites are near the town of Dehaj in Kerman Province. Most of the rocks are from stocks and batholiths, interpreted as the roots of central volcanoes. Age controls are not precise, but the rocks are likely to be Late Miocene-Quaternary in age. Basaltic to andesitic lavas crop out nearby; their relationships to the intrusive rocks are uncertain. Geochemically, the entire range of rocks from basalt lavas through to rhyolitic intrusives ranges from 51-71 wt.% silica and isotopic signatures are similar to Bulk Earth, without any clear evidence for large-scale crustal contamination. The basaltic to andesitic lavas appear to have variable and often high La/Yb and Sr/Y such that they range from calc-alkaline arc-like rocks to adakitic compositions depending on the degree of fractionation. The intrusive rocks seem to form a separate suite, with clear indications of increasing Sr/Y and Dy/Yb with fractionation. Previous interpretations relate adakitic magmatism to Tethyan oceanic slab break-off and slab melting beneath the collision zone. However, as the 'adakitic signature' is increasingly apparent in more evolved magmas, at least in the intrusives, adakite generation is more likely to have occurred during melt evolution from an initial low Sr/Y and low La/Yb parent. This parental melt may have been similar in starting composition to proposed non-adakitic basaltic melts from elsewhere in the collision zone. The high Sr/Yb and La/Yb signatures are best explained by the suppression of plagioclase fractionation by high magmatic water contents, promoting incompatible behaviour of Sr. Conversely, Y and Yb are compatible during amphibole and garnet fractionation at crustal or uppermost mantle levels. Rather than a localised slab break-off or melting effect, the Dehaj magmatism may have developed its geochemical signature during deep fractionation as the ascent of the magmas was impeded by thick orogenic crust. The rocks may be seen as just another part of the widespread syn-collision magmatism that has affected widespread areas of Turkey, Iran, Armenia and neighbouring countries in the last ~10-15 Ma, and need not be used as markers for debateable geodynamic events such as break-off. Adakites are also present in NE Iran without any obvious association with subduction processes. We argue that magmatism across much of the plateau is linked at least in part to mantle upwelling following Miocene slab break-off, but also to small-scale convection beneath the collision zone, as predicted by numerical modelling. Particular compositions such as those at Dehaj are influenced by local sources and differentiation processes, but there is no need for independent triggers for initial melting across disparate locations.

  20. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian volcano-sedimentary basins. Our approach permits to better identify different processes operating on volcanic edifices and to constrain the depositional environment and thus geodynamic setting of Precambrian continental volcanic belts. Acknowledgments: We acknowledge CAPES/CNPq project n° 402564/2012-0 (Programa Ciências sem Fronteiras), CNPq/CT-Mineral (Proc. 550.342/2011-7) and INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS.

  1. Coupling Fluid Dynamics and Multiphase Disequilibria: Applications to Eutectic and Peritectic Systems

    NASA Astrophysics Data System (ADS)

    Tweed, L. E. L.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    Computational thermodynamics has yielded great insights into petrological processes. However, on its own it cannot capture the inherently dynamic nature of many of these processes which depend on the interaction between time-dependent processes including advection, diffusion and chemical reaction. To understand this interplay, and to move away from a purely equilibrium view, requires the integration of computational thermodynamics and fluid mechanics. A key aspect of doing this is the treatment of chemical reactions as time-dependent, irreversible processes. Such a development is integral to understanding a host of petrological questions from the open system evolution of magma chambers to the dynamics of melt migration beneath mid-ocean ridges and flux melting of the mantle wedge in subduction zones. A simple thermodynamically consistent reactive model is developed that can be integrated with conservation equations for mass, momentum and energy. The model rests on the thermodynamic characterization of an independent set of reactions and has the advantage of being completely general and easily extensible to systems comprising multiple solid and liquid phases. The underlying theory is described in detail in another contribution in this session. Here we apply the framework to experimentally constrained simple systems of petrological interest including the fo-qz binary and the fo-qz-k2o ternary. These systems contain a variety of phase topologies including eutectic and peritectic reactions. As the model allows for the seamless exhaustion and stabilization of phases, we can explore the effect that these discontinuous changes have on the compositional and dynamic evolution of the system. To do this we track how the systems respond to sudden changes in intensive variables that perturb them from equilibrium. Such changes are rife in crustal magmatic systems. Simulations for decompression melting are also run to explore the interplay between reactive and advective fluxes. Buffering between the multiple reactions can result in surprising reaction paths highlighting that micro-mechanics could play a significant role in magmatic evolution. By building up the complexity of the problems gradually, we develop an intuition for the effect of model choices including the kinetic law and the set of reactions used.

  2. CrystalMoM: a tool for modeling the evolution of Crystals Size Distributions in magmas with the Method of Moments

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Landi, Patrizia

    2016-04-01

    It is well known that nucleation and growth of crystals play a fundamental role in controlling magma ascent dynamics and eruptive behavior. Size- and shape-distribution of crystal populations can affect mixture viscosity, causing, potentially, transitions between effusive and explosive eruptions. Furthermore, volcanic samples are usually characterized in terms of Crystal Size Distribution (CSD), which provide a valuable insight into the physical processes that led to the observed distributions. For example, a large average size can be representative of a slow magma ascent, and a bimodal CSD may indicate two events of nucleation, determined by two degassing events within the conduit. The Method of Moments (MoM), well established in the field of chemical engineering, represents a mesoscopic modeling approach that rigorously tracks the polydispersity by considering the evolution in time and space of integral parameters characterizing the distribution, the moments, by solving their transport differential-integral equations. One important advantage of this approach is that the moments of the distribution correspond to quantities that have meaningful physical interpretations and are directly measurable in natural eruptive products, as well as in experimental samples. For example, when the CSD is defined by the number of particles of size D per unit volume of the magmatic mixture, the zeroth moment gives the total number of crystals, the third moment gives the crystal volume fraction in the magmatic mixture and ratios between successive moments provide different ways to evaluate average crystal length. Tracking these quantities, instead of volume fraction only, will allow using, for example, more accurate viscosity models in numerical code for magma ascent. Here we adopted, for the first time, a quadrature based method of moments to track the temporal evolution of CSD in a magmatic mixture and we verified and calibrated the model again experimental data. We also show how the equations and the tool developed can be integrated in a magma ascent numerical model, with application to eruptive events occurred at Stromboli volcano (Italy).

  3. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust. Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.

  4. Compositional Zoning in Kilauea Olivine: A Geochemical Tool for Investigating Magmatic Processes at Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Lynn, Kendra J.

    Olivine compositions and zoning patterns have been widely used to investigate the evolution of magmas from their source to the Earthfs surface. Modeling the formation of compositional zoning in olivine crystals has been used to retrieve timescales of magma residence, mixing, and transit. This dissertation is composed of three projects that apply diffusion chronometry principles to investigate how zoned olivine phenocrysts record magmatic processes at Hawaiian volcanoes. Olivine phenocrysts from K.lauea, the most active and thoroughly studied volcano in Hawaiei, are used to develop a better understanding of how Hawaiian olivine crystals record magmatic histories. This work begins by examining how crustal processes such as magma mixing and diffusive reequilibration can modify olivine compositions inherited from growth in parental magmas (Chapter 2). Diffusive re-equilibration of Fe-Mg, Mn, and Ni in olivine crystals overprints the chemical relationships inherited during growth, which strongly impacts interpretations about mantle processes and source components. These issues are further complicated by sectioning effects, where small (400 ƒEm along the c-axis) olivine crystals are more susceptible to overprinting compared to large (800 ƒEm) crystals. Olivine compositions and zoning patterns are then used to show that magmas during K.laueafs explosive Keanak.koei Tephra period (1500-1823 C.E.) were mixed and stored in crustal reservoirs for weeks to months prior to eruption (Chapter 3). Fe-Mg disequilibrium between olivine rims and their surrounding glasses show that a late-stage mixing event likely occurred hours to days prior to eruption, but the exact timescale is difficult to quantify using Fe-Mg and Ni diffusion. Lithium, a rapidly diffusing trace element in olivine, is modeled for the first time in a natural volcanic system to quantify this late-stage, short-duration mixing event (Chapter 4). Lithium zoning in olivine records both growth and diffusion processes that are affected by charge balancing requirements with growth zoning of P. Timescales from modeling diffuse Li zoning range from a few hours to three weeks, but most record short storage durations of four days or less. These timescales correspond to short storage periods after mixing. Thus, Li probably records the final perturbation of a magmatic system prior to eruption.

  5. IODP Expedition 351 Lithostratigraphy: Volcaniclastic Record of Izu-Bonin-Mariana (IBM) Arc Initiation

    NASA Astrophysics Data System (ADS)

    Barth, A. P.; Brandl, P. A.; Li, H.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Tepley, F. J., III; Yogodzinski, G. M.

    2014-12-01

    The destruction of lithospheric plates by subduction is a fundamentally important process leading to arc magmatism and the creation of continental crust, yet subduction initiation and early magmatic arc evolution remain poorly understood. For many arc systems, onset of arc volcanism and early evolution are obscured by metamorphism or the record is deeply buried; however, initial products of arc systems may be preserved in forearc and backarc sedimentary records. IODP Expedition 351 recovered this history from the dispersed ash and pyroclast record in the proximal rear-arc of the northern IBM system west of the Kyushu-Palau Ridge. Drilling at Site U1438 in the Amami Sankaku Basin recovered a thick volcaniclastic record of subduction initiation and the early evolution of the Izu-Bonin Arc. A 160-m thick section of Neogene sediment overlies 1.3 kilometers of Paleogene volcaniclastic rocks with andesitic average composition; this volcaniclastic section was deposited on mafic volcanic basement rocks. The thin upper sediment layer is primarily terrigenous, biogenic and volcaniclastic mud and ooze with interspersed ash layers. The underlying Eocene to Oligocene volcaniclastic rocks are 33% tuffaceous mudstone, 61% tuffaceous sandstone, and 6% conglomerate with volcanic and rare sedimentary clasts commonly up to pebble and rarely to cobble size. The clastic section is characterized by repetitive conglomerate and sandstone-dominated intervals with intervening mudstone-dominated intervals, reflecting waxing and waning of coarse arc-derived sediment inputs through time. Volcanic lithic clasts in sandstones and conglomerates range from basalt to rhyolite in composition and include well-preserved pumice, reflecting a lithologically diverse and compositionally variable arc volcanic source.

  6. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Ďurišová, Jana; Hrstka, Tomáš; Korbelová, Zuzana; Hložková Vaňková, Michaela; Vašinová Galiová, Michaela; Kanický, Viktor; Rambousek, Petr; Knésl, Ilja; Dobeš, Petr; Dosbaba, Marek

    2017-11-01

    The Cínovec rare-metal granite in the eastern segment of the Krušné Hory/Erzgebirge (Czech Republic/Germany) formed in the final stage of the magmatic evolution of the late Variscan volcano-plutonic system known as the Teplice caldera. The granite is slightly peraluminous; enriched in F, Li, Rb, Cs, Nb, Ta, Sn, W, Sc and U; and poor in P, Mg, Ti, Sr and Ba. The uppermost part of the granite cupola hosts a greisen-type Sn-W-Li deposit. Borehole CS-1 permits to study vertical evolution of the pluton to a depth of 1597 m. A combination of textural and chemical methods was applied to whole-rock and mineral samples to identify the extent of magmatic and metasomatic processes during the differentiation of the pluton and formation of the deposit. As indicated by textural and chemical data, the Cínovec pluton consists of two cogenetic intrusive bodies: a relatively homogeneous biotite granite at depths greater than 735 m, and a strongly differentiated zinnwaldite granite above this level. The pronounced differentiation of the zinnwaldite granite magma resulted in further increases in F, Li, Rb, Nb and Ta. A high degree of magmatic fractionation is documented by decreases in the K/Rb ratio from 25 to 15 and in the Zr/Hf ratio from 10 to 5. The increasing influence of the fluid is highlighted by a decrease in the Y/Ho ratio from 29 to 17. The following genetic scenario is proposed: the intrusion of the zinnwaldite granite magma reached subvolcanic conditions and a hem of fine-grained porphyritic granite crystallized along the upper contact. Separation of the first portion of fluid from the oversaturated melt promoted explosive degassing and the origin of breccia pipes. Subsequently, the zinnwaldite granite magma crystallized simultaneously from the upper contact and the footwall inwards. The residual melt between the two crystallizing fronts became enriched in water and volatiles to reach second saturation ("second boiling"). Segregated fluids escaped upwards, causing hydrofracturing of the overlying granite, while the water-poor residuum crystallized in situ in the form of mica-free granite. F- and Li-rich fluids invoked greisenization and created quartz-zinnwaldite veins. Alkalis liberated from feldspars destroyed during the greisenization induced local albitization in the uppermost part of the cupola and K-feldspathisation in its deeper part. The distribution of Sn and W was controlled by fluid processes, while Nb and Ta mainly crystallized from the melt. The results from Cínovec are universally applicable to shallow-intruded rare-metal granites regardless of A- or S-types of the primary magma.

  7. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.

  8. Progress integrating ID-TIMS U-Pb geochronology with accessory mineral geochemistry: towards better accuracy and higher precision time

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Samperton, K. M.; Crowley, J. L.; Cottle, J. M.

    2012-12-01

    It is increasingly common that hand samples of plutonic and volcanic rocks contain zircon with dates that span between zero and >100 ka. This recognition comes from the increased application of U-series geochronology on young volcanic rocks and the increased precision to better than 0.1% on single zircons by the U-Pb ID-TIMS method. It has thus become more difficult to interpret such complicated datasets in terms of ashbed eruption or magma emplacement, which are critical constraints for geochronologic applications ranging from biotic evolution and the stratigraphic record to magmatic and metamorphic processes in orogenic belts. It is important, therefore, to develop methods that aid in interpreting which minerals, if any, date the targeted process. One promising tactic is to better integrate accessory mineral geochemistry with high-precision ID-TIMS U-Pb geochronology. These dual constraints can 1) identify cogenetic populations of minerals, and 2) record magmatic or metamorphic fluid evolution through time. Goal (1) has been widely sought with in situ geochronology and geochemical analysis but is limited by low-precision dates. Recent work has attempted to bridge this gap by retrieving the typically discarded elution from ion exchange chemistry that precedes ID-TIMS U-Pb geochronology and analyzing it by ICP-MS (U-Pb TIMS-TEA). The result integrates geochemistry and high-precision geochronology from the exact same volume of material. The limitation of this method is the relatively coarse spatial resolution compared to in situ techniques, and thus averages potentially complicated trace element profiles through single minerals or mineral fragments. In continued work, we test the effect of this on zircon by beginning with CL imaging to reveal internal zonation and growth histories. This is followed by in situ LA-ICPMS trace element transects of imaged grains to reveal internal geochemical zonation. The same grains are then removed from grain-mount, fragmented, and analyzed by U-Pb TIMS-TEA. In situ trace element transects are used to model predicted TIMS-TEA trace element concentrations to test whether complicated trace element profiles undermine U-Pb TIMS-TEA data. We find good agreement between predicted and measured TIMS-TEA data, and can argue that the measured ID-TIMS U-Pb date corresponds to the time at which the geochemical signature measured by TIMS-TEA was acquired. Thus, in a hypothetical magma that is differentiating through AFC processes on timescales resolvable by geochronology, U-Pb TIMS-TEA should usually be a robust indicator of magma evolution through time. We present data from two ca. 40-30 Ma alpine intrusions from northern Italy: the southern Adamello batholith and the Bergell intrusion. The relatively young age of these intrusions permits uncertainties on individual zircon or zircon fragments as good as 10 ka, while zircon populations from individual hand samples often record zircon growth of >200 ka. Using the methodologies described above, we explore whether these zircons record in situ magmatic differentiation or introduction of antecrystic zircon to magma batches, and integrate these data to gain a better understanding of magma storage, differentiation and emplacement as a function of pressure, temperature, and time. These methods are a promising step towards interpreting complicated geochronologic data in ashbed samples as well through a better understanding of magmatic processes that precede eruption.

  9. The relationship between plutonism and volcanism: zircon ages from granitoid clasts in recent pyroclastic deposits from Tarawera volcano

    NASA Astrophysics Data System (ADS)

    Shane, P. A.; Storm, S.; Schmitt, A. K.; Lindsay, J.

    2011-12-01

    In Quaternary magmatic systems that have not undergone extensive uplift that would expose their intrusive roots, co-magmatic (and xenolithic) plutonic clasts entrained in eruptive deposits are an important source of information on the temporal relationship between plutonism and volcanism. Granitoid clasts in pyroclastic deposits of the 0.7 ka (Kaharoa) eruption from the Tarawera volcano of the Okataina Volcanic Centre (OVC), New Zealand, provide a rare insight to the plutonic processes beneath one of the most productive Quaternary rhyolite centers on Earth. SIMS U-Th and U-Pb data on 79 granitoid zircon crystals from six clasts reveal a unimodal age spectrum yielding a weighted average model age of 211 ± 4 ka (MSWD = 1.1). This crystallization event coincides with relative quiescence in OVC volcanism. A few outlier antecrysts date back to ~700 ka, a period significantly longer than the known volcanic record at OVC (probably ~330 ka). In contrast, zircon crystallization in co-erupted pumice and lava of the 0.7 ka Kaharoa event, and that of the three preceding rhyolite eruptions, occurred mostly during 0-50 ka. Thus, the granitoid clasts represent part of the system immediately beneath the volcano that survived assimilation and/or destruction in subsequent eruption and caldera collapse episodes. Brittle deformation features, incipient alteration and low-d18O whole-rock compositions (+3%) are consistent with a shallow solid carapace that has interacted with hydrothermal fluids. However, d18O SIMS analyses of zircons (+5.4 ± 0.2 %; n = 11) are consistent with magmatic compositions, and thus meteoric interaction occurred post-emplacement. The Kaharoa granitoids contrast with those ejected in the ~60 ka caldera-forming Rotoiti event, that were partly molten and display zircon age spectra indistinguishable from that in co-erupted pumices, suggesting the latter were derived from contemporaneous crystal mush. The 0.7 ka Kaharoa case shows that, over time, eruptible parts of a magmatic reservoir can become armored by a solidified intrusive carapace that minimizes interaction with other parts of the magmatic system and the surrounding wall-rocks. Thus, plutonic and volcanic evolution can diverge even in close proximity of the same magmatic system.

  10. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas suggest that evolved calc-alkaline arc magmatism may extend to the late Eocene, at least 10 million years earlier than previously estimated. The crystallisation ages for intrusive rocks associated with mineralisation at Cobre Panama imply that the deposit formed in the early Oligocene, between a period of late Cretaceous to Eocene magmatism (ca. 66-42 Ma; Chagres-Bayano arc) and Cordilleran arc magmatism (22-7 Ma). Similarities in the timing of intrusive suite emplacement and the fingerprinting of magmatic fractionation processes between the Cobre Panama porphyry deposit and the Cerro Colorado porphyry deposit in western Panama (ca. 5.3 Ma) suggest that these features provide favourable geodynamic and geochemical prerequisites for the formation of porphyry deposits along the Panamanian magmatic arc during the Cenozoic.

  11. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.

  12. The role of water in generating Fe-depletion and the calc-alkaline trend

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.

    2006-12-01

    Describing a magmatic suite as calc-alkaline (CA) or tholeiitic (TH) is a first order characterization, but existing classification schemes (AFM ternary plots and FeO*/MgO vs. SiO2) may convolute magmatic processes and can result in contradictory classification. The salient feature of TH vs. CA evolution is the extent of Fe enrichment or depletion in the magma. A plot of FeO* vs. MgO provides the most straightforward way to quantify Fe enrichment and to develop models for its origin. We present a new quantitative classification utilizing the FeO*-MgO plot, the tholeiitic index (THI) = Fe3-5/Fe8 (Fe3-5=average FeO* at 3-5 wt% MgO; Fe8=FeO* at 8 wt% MgO). THI of 1.2 indicates 20% FeO* enrichment from a magma's starting composition at Fe8, while THI of 0.8 indicates 20% depletion in FeO*. A magmatic suite is CA if THI is <1, and TH if THI is >1. Arcs range from 0.6 to 1.1, back arc basins from 1.1-1.3, and MORBs are \\ge1.6. This classification allows comparison of magmatic evolution on a global basis, regardless of starting composition, and is useful for quantitative comparison to liquid line of descent models. Hypotheses for generating CA magmas include high water contents, high pressure of crystallization, high oxygen fugacity, and high Mg# andesitic starting compositions. In order to test the control of H2O, we compare the THI to average magmatic water contents from undegassed melt inclusions and glasses (S>1000 ppm or CO2>50 ppm) from twenty-eight arc volcanoes and back arc basins, including new water contents from seven Aleutian volcanoes. The resulting negative correlation (R2=0.8) between water concentration and THI (with end-members at 0.8 wt% H2O, THI =1.3 and 6.1 wt% H2O, THI = 0.6) suggests water plays a fundamental role in generating the CA fractionation trend. MORB data plot off the trend at a higher THI, possibly related to lower oxygen fugacity during melting and/or crystallization. Models using the pMelts program are consistent with experimentally- and observationally-demonstrated effects of water on suppression of plagioclase and early formation of oxides relative to silicates during magma fractionation, and the resulting FeO* depletion with respect to decreasing MgO.

  13. High resolution 2D numerical models from rift to break-up: Crustal hyper-extension, Margin asymmetry, Sequential faulting

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan

    2013-04-01

    Numerical modelling is a powerful tool to integrate a multitude of geological and geophysical data while addressing fundamental questions of passive margin formation such as the occurrence of crustal hyper-extension, (a-)symmetries between conjugate margin pairs, and the sometimes significant structural differences between adjacent margin segments. This study utilises knowledge gathered from two key examples of non-magmatic, asymmetric, conjugate margin pairs, i.e. Iberia-New Foundland and Southern Africa-Brazil, where many published seismic lines provide solid knowledge on individual margin geometry. While both margins involve crustal hyper-extension, it is much more pronounced in the South Atlantic. We investigate the evolution of these two margin pairs by carefully constraining our models with detailed plate kinematic history, laboratory-based rheology, and melt fraction evaluation of mantle upwelling. Our experiments are consistent with observed fault patterns, crustal thickness, and basin stratigraphy. We conduct 2D thermomechanical rift models using the finite element code SLIM3D that operates with nonlinear stress- and temperature-dependent elasto-visco-plastic rheology, with parameters provided by laboratory experiments on major crustal and upper mantle rocks. In our models we also calculate the melt fraction within the upwelling asthenosphere, which allows us to control whether the model indeed corresponds to the non-magmatic margin type or not. Our modelling highlights two processes as fundamental for the formation of hyper-extension and margin asymmetry at non-magmatic margins: (1) Strain hardening in the rift center due to cooling of upwelling mantle material (2) The formation of a weak crustal domain adjacent to the rift center caused by localized viscous strain softening and heat transfer from the mantle. Simultaneous activity of both processes promotes lateral rift migration in a continuous way that generates a wide layer of hyper-extended crust on one side of the rift basin. This mechanism implies that syn-rift deformation at the distal margin postdates faulting at the proximal margin by several million years. The succession of events holds intriguing implications not only for peak heat flow migration but also for processes like serpentinization and magmatic underplating.

  14. The volcanism of the Comores archipelago: mantle plume or lithosperic deformation?

    NASA Astrophysics Data System (ADS)

    Michon, Laurent

    2015-04-01

    The development of the Comores archipelago in the Mozambique channel has been diversely interpreted since the 1970's. The two end-members causes are, on the one hand, a deep mantle plume that developed a hotspot track from the Seychelles Plateau to the Grande Comore, and, on the other hand, a lithospheric deformation that reactivated transform faults and controlled the magma path. The present work first surveys the sparse geological, geophysical and geochronological data available for this archipelago, re-evaluates the age of the magmatic activity and integrates this evolution at a regional scale. Combining realistic magma production rates, the volume of each edifice and the geochronological, it is showed that the magmatic activity started first in Mayotte about 20 Ma and second, almost simultaneously, in Anjouan, Mohéli and Grande Comore about 10 Ma ago. This magmatism, coeval with magmatic periods in areas surrounding the Mozambic channel, the southern East African rift and Madagascar, is organised in three periods since Late Oligocene. Magmatic provinces are now superimposed with seismic zones and graben structures. In consequence, the Comores archipelago is tentatively interpret as part of the East African rift rather than related to a distinct deep mantle plume.

  15. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings

    NASA Astrophysics Data System (ADS)

    Klöcking, M.; White, N. J.; Maclennan, J.; Fitton, J. G.

    2016-12-01

    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration into fractures but low-temperature (<150 °C) mineral precipitation. This comparison of spatially and temporally unrelated vein systems contributes to the understanding of post-magmatic structural and geochemical processes in SSZ. This study was granted by the Austrian Science Fund (FWF-P 27982-N29).

  16. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings

    NASA Astrophysics Data System (ADS)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.

    2017-12-01

    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration into fractures but low-temperature (<150 °C) mineral precipitation. This comparison of spatially and temporally unrelated vein systems contributes to the understanding of post-magmatic structural and geochemical processes in SSZ. This study was granted by the Austrian Science Fund (FWF-P 27982-N29).

  17. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    NASA Astrophysics Data System (ADS)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the Gop Rift axis. We propose that the conspicuous buoyant central part of the Gop Rift is likely associated with a continental C-Block as described in a recent paper on conjugated VPMs8, at least in the southern part of the Gop Rift. The crust below the Laxmi basin is probably transitional continental i.e. strongly intruded. West of India and west of the Laxmi Ridge, the transition to the Carlsberg Basin occurs along a clearly-expressed transform fault, not through an extended and thinned continental margin. We reinterpret the whole system based on those observations and propositions, giving some explanations on controversial magnetic anomalies based on similar observations from the southern Atlantic Ocean. 1: Collier et al., 2008. Age of the Seychelles-India break-up. Earth and Planetary Science Letters. 2: Minshull et al., 2008. The relationship between riftingand magmatism in the northeastern Arabian Sea. Nature Geoscience. 3 : Armitage et al., 2010. The importance of rift history for volcanic margin. Nature. 4 : Krishna et al., 2006. Nature of the crust in the Laxmi Basin (14 degrees-20 degrees N), western continental margin of India. Tectonics. 5 : Misra et al., 2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology. 6 : Biswas, 1982. Rift basins in the western margin of India and their hydrocarbon prospects. Bull. Am. Assoc. Pet. Geol. 7 : Chatterjee et al., 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research. 8 : Geoffroy et al., 2015. Volcanic passive margins: anotherway to break up continents. Scientific Reports.

  18. Magmatic versus tectonic influence in the Eolian arc: the case of Vulcano and Lipari islands revisited

    NASA Astrophysics Data System (ADS)

    Ruch, Joel; Di Lorenzo, Riccardo; Vezzoli, Luigina Maria; De Rosa, Rosanna; Acocella, Valerio; Catalano, Stefano; Romagnoli, Gino

    2014-05-01

    The prevalent influence of magma versus tectonics for the edification and the evolution of volcanic zones is matter of debate. Here we focus on Vulcano and Lipari, two active volcanic islands located in the central sector of the Eolian arc (North of Sicily). Both systems are influenced by regional tectonics and affected by historical magmatic events taking place along a NS oriented structure, connecting both islands. We revisit and implement previous structural studies performed during the 1980's considering several new geophysical, geochemical and geodynamical findings. Four extensive structural campaigns have been performed on both islands and along the shorelines in 2012-2013 covering about 80% of the possible accessible outcrops. We collected ~500 measurements (e.g. faults, fractures and dikes) at 40 sites. Overall, most of the observed structures are oriented N-S and NNW-SSE, confirming previous studies, however, almost all features are strikingly dominated by an EW-oriented extensive regime, which is a novelty. These findings are supported by kinematic indicators and suggest a predominant dip-slip component (pitch from 80 and 130°) with alternating left and right kinematics. Marginal faulting in most recent formations have been observed, suggesting that the deformation may occur preferentially during transient deformation related to periods of magmatic activity, instead of resulting from continuous regional tectonic processes. Overall, fault and dike planes are characterized by a dominant eastward immersion, suggesting an asymmetric graben-like structure of the entire area. This may be explained by the presence of a topographic gradient connecting both islands to the deep Gioia basin to the East, leading to a preferential ample gravitational collapse. Finally, we propose a model in which the stress field rotates northward. It transits from a pure right lateral strike-slip regime along the Tindari fault zone (tectonic-dominant) to an extensive regime explained by the presence of magma at depth inducing a local magmatic stress field affecting structures on Vulcano and Lipari islands (magmatic dominant).

  19. Scales of magmatic replenishment and differentiation on an intermediate spreading mid-ocean ridge segment: Endeavour, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Dreyer, B. M.; Gill, J.; Clague, D. A.

    2016-12-01

    The aggregate chemistry of mid-ocean ridge (MOR) basalts cannot be produced by fractional crystallization alone. Recent modeling suggests that repeated magmatic replenishment is required (O'Neill and Jenner, 2012; Coogan and O'Hara, 2015; Shorttle, 2015). Does this inference hold when considering recent advancements in characterizing geological/volcanological context, geochemical variability, and temporal parameters on the scale of individual lava units (Rubin et al., 2009)? We evaluate the scales of magmatic replenishment through examination of compositionally diverse lavas from the Endeavour segment of the Juan de Fuca (JdF) MOR interpreted as comagmatic or coeruptive based on robust geological (Clague et al., 2014), geochemical (Gill et al., 2016), and geochronological (Jamieson et al., 2013; Clague et al., 2014) evidence. This approach is similar to that used for historical MOR eruptions (Rubin et al., 2001). We identified 15 "chemomagmatic" units that are spatially proximate and chemically relatable and separable that collectively represent eruptions since 11ka. Some units may be single lava flows. Other units appear to have erupted batches intermittently over hundreds to thousands of years during which chemically dissimilar lava also erupted. Melt evolution was modeled using MELTS for units with reasonably broad major element variations. Fractional crystallization models can adequately reproduce most of the major and incompatible trace element behavior observed within each unit. Consistent differences in trace element ratios between units argue against intermixing. Thus, magmatic batches typically lie within analytical resolution of fractional crystallizing systems, notwithstanding growing evidence that magmatic systems are repeatedly replenished at the segment scale. Melting and mixing of heterogeneous mantle sources are responsible for the overall compositional diversity at Endeavour. Chemomagmatic units, in contrast, reflect smaller scale processing of magma after exiting the melt column during ascent through the crust. Age and spatial relationships among the chemomagmatic units reflect fluctuations in productivity and composition during assembly of primitive mantle melts and the geometry of networked magma-hosting reservoirs.

  20. Exposure of a late cretaceous layered mafic-felsic magma system in the central Sierra Nevada batholith, California

    USGS Publications Warehouse

    Coleman, D.S.; Glazner, A.F.; Miller, J.S.; Bradford, K.J.; Frost, T.P.; Joye, J.L.; Bachl, C.A.

    1995-01-01

    New U-Pb zircon ages for the Lamarck Granodiorite, associated synplutonic gabbro and diorite plutons, and two large mafic intrusive complexes that underlie them in the Sierra Nevada batholith are 92??1 Ma. These ages establish the Late Cretaceous as a period of extensive mafic-felsic magmatism in the central part of the batholith, and confirm the significance of mafic magmatism in the evolution of the voluminous silicic plutions in the Sierran arc. The lack of significant zircon inheritance in any of the units analyzed supports isotopic evidence that the Lamarck and other Late Cretaceous Sierran plutons were derived predominantly from young crust. Recognition of an extensive mafic-felsic magma system in the Sierra Nevada batholith emphasizes the importance of basaltic liquids in the evolution of continental crust in arc settings. ?? 1995 Springer-Verlag.

  1. Illuminating magma shearing processes via synchrotron imaging

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  2. Modelling the role of magmatic intrusions in the post-breakup thermal evolution of Volcanic Passive Margins

    NASA Astrophysics Data System (ADS)

    Peace, Alexander; McCaffrey, Ken; Imber, Jonny; van Hunen, Jeroen; Hobbs, Richard; Gerdes, Keith

    2013-04-01

    Passive margins are produced by continental breakup and subsequent seafloor spreading, leaving a transition from continental to oceanic crust. Magmatism is associated with many passive margins and produces diagnostic criteria that include 1) abundant breakup related magmatism resulting in a thick igneous crust, 2) a high velocity zone in the lower crust and 3) seaward dipping reflectors (SDRs) in seismic studies. These Volcanic Passive Margins (VPMs) represent around 75% of the Atlantic passive margins, but beyond this high level description, these magma-rich settings remain poorly understood and present numerous challenges to petroleum exploration. In VPMs the extent to which the volume, timing, location and emplacement history of magma has played a role in controlling heat flow and thermal evolution during margin development remains poorly constrained. Reasons for this include; 1) paucity of direct heat flow and thermal gradient measurements at adequate depth ranges across the margins, 2) poor onshore exposure 3) highly eroded flood basalts and 4) poor seismic imaging beneath thick offshore basalt sequences. As a result, accurately modelling the thermal history of the basins located on VPMs is challenging, despite the obvious importance for determining the maturation history of potential source rocks in these settings. Magmatism appears to have affected the thermal history of the Vøring Basin on the Norwegian VPM, in contrast the effects on the Faeroe-Shetland Basin was minimal. The more localised effects in the Faeroe-Shetland Basin compared to Vøring Basin may be explained by the fact that the main reservoir sandstones appear to be synchronous with thermal uplift along the basin margin and pulsed volcanism, indicating that the bulk of the magmatism occurred at the basin extremities in the Faeroe-Shetland Basin, where its effect on source maturation was lessened. Our hypothesis is that source maturation occurs as a result of regional temperature and pressure increases, and the effects of even a large singular magmatic event are small beyond the immediate vicinity, therefore quantifying cumulative regional heat flow is of utmost importance. The apparently complex relationships between source rock maturation and magmatism are not limited to the north-east Atlantic margins. Other VPMs of interest include the regions between West Greenland and Eastern Canada (Labrador Sea, Davis Strait and Baffin Bay), East Greenland, NW Australia, Western India and segments of the Western African and Eastern South American margins. This project utilises 1D numerical modelling of magmatic intrusions into a sedimentary column to gain an understanding into the thermal influence of post-breakup magmatic activity on source rock maturation in representative VPMs. Considerations include the timing, periodicity of intrusions, thickness, spacing and background heat in the basin.

  3. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener; Santosh, M.; Yi, Keewook; Bektaş, Osman; Kwon, Sanghoon

    2012-08-01

    The Cenozoic magmatic record within the ca. 500 km long eastern Pontides orogen, located within the Alpine metallogenic belt, is critical to evaluate the tectonic history and geodynamic evolution of the eastern Mediterranean region. In this paper we report for the first time late Miocene adakitic rocks from the southeastern part of the eastern Pontides belt and present results from geochemical and Sr-Nd isotopic studies as well as zircon U-Pb geochronology. The Tavdagi dacite that we investigate in this study is exposed as round or ellipsoidal shaped bodies, sills, and dikes in the southeastern part of the belt. Zircons in the dacite show euhedral crystal morphology with oscillatory zoning and high Th/U values (up to 1.69) typical of magmatic origin. Zircon LA-ICPMS analysis yielded a weighted mean 206Pb/238U age of 7.86 ± 0.15 Ma. SHRIMP analyses of zircons with typical magmatic zoning from another sample yielded a weighted mean 206Pb/238U age of 8.79 ± 0.19 Ma. Both ages are identical and constrain the timing of dacitic magmatism as late Miocene. The Miocene Tavdagi dacite shows adakitic affinity with high SiO2 (68.95-71.41 wt.%), Al2O3 (14.88-16.02 wt.%), Na2O (3.27-4.12 wt.%), Sr (331.4-462.1 ppm), Sr/Y (85-103.7), LaN/YbN (34.3-50.9) and low Y (3.2-5 ppm) values. Their initial 143Nd/144Nd (0.512723-0.512736) and 87Sr/86Sr (0.70484-0.70494) ratios are, respectively, lower and higher than those of normal oceanic crust. The geological, geochemical and isotopic data suggest that the adakitic magmatism was generated by partial melting of the mafic lower crust in the southeastern part of the eastern Pontide belt during the late Miocene. Based on the results presented in this study and a synthesis of the geological and tectonic information on the region, we propose that the entire northern edge of the eastern Pontides-Lesser Caucasus-Elbruz magmatic arc was an active continental margin during the Cenozoic. We identify a migration of the Cenozoic magmatism towards north over time resulting from the roll-back of the southward subducted Tethys oceanic lithosphere. Slab break-off during Pliocene is proposed to have triggered asthenospheric upwelling and partial melting of the subduction-modified mantle wedge which generated the alkaline magmatic rocks exposed in the northern part of the magmatic arc.

  4. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  5. The evolution of the magmatic arc of Southern Peru (200-60 Ma), Arequipa area: insight from geochemical modeling

    NASA Astrophysics Data System (ADS)

    Demouy, S.; Benoit, M.; De Saint Blanquat, M.; Brunet, P.

    2012-12-01

    Cordilleran-type batholiths are built by prolonged arc activity along continental margins and may provide detailed magmatic records of the subduction system evolution. The magmas produced in subduction context involve both mantellic and crustal end members and are subject to various petrological processes. The MASH zones (Hildreth and Moorbath, 1988), at the basis of the continental crust, are the best places for the genesis of such hybrid magmas. The various geochemical signatures observed in the plutonic rocks, may also be attributed to source heterogeneities or generated by subsequent petrological processes. This study has focused in the Arequipa section of the Coastal Batholith of Southern Peru (200-60 Ma), in an area extending over 80x40 km. Major and trace elements as well as Sr and Nd isotopic analyses were performed in a set of 100 samples ranging from gabbro to granite. The obtained data highlight the wide heterogeneity of the geochemical signatures that is not related to the classification of the rocks. In first step, Rb/Sr systematic was used to isolate a set of samples plotting along a Paleocene isochron and defining a cogenetic suite. This suite appears to have evolved by simple fractional crystallization. By using reverse modeling, the parameters controlling the fractional crystallization process were defined, as partition coefficients, initial concentrations and amount of fractional crystallization. The other magmatic suites display a wide range of isotopic and geochemical signatures. To explain this heterogeneity, a model involving competition between fractional crystallization and magma mixing into MASH zones was proposed. A large range of hybrid magma types is potentially generated during the maturation of the system, but this range tends to disappear as fractionation and mixing occurs. Finally the model predicts the genesis of a homogeneous reservoir created at depth, from which magmas may evolve only by fractional crystallization. Therefore stabilization of this reservoir is directly related to the thermal conditions present at the basis of the continental crust, and allows the production of large volumes at the batholiths level, known as flare-up events. These results are critical in order to estimate the amount of crustal growth and thickening in the Arequipa area, as they provide the basis for the estimation of the mantle versus crustal contribution during the magma genesis.

  6. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan

    2018-01-01

    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  7. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12-14°S)

    NASA Astrophysics Data System (ADS)

    Li, Bing; Shi, Xuefa; Wang, Jixin; Yan, Quanshu; Liu, Chenguang; DY125-21 (Leg 3) Science Party; DY125-22 (Legs 2-5) Science Party; DY125-26 (Leg 3) Science Party

    2018-05-01

    Systematic hydrothermal exploration and multi-beam bathymetry mapping have been conducted along a 220-km-long section of the Southern Mid-Atlantic Ridge (SMAR) from 12°S (Bode Verde Fracture Zone) to 14°S (Cardno Fracture Zone), and previously reported deposits (Tao et al., 2011) are now being thoroughly investigated. Here, we present the characterization of three possible hydrothermal fields, a complete bathymetry data set of the ridge segment, gravity data, and the petrologic characteristics of collected rock samples. The magmatism characteristics, evolution of the ridge segment, and the local geological controls of the possible hydrothermal fields are then discussed. The studied segment can be divided into two segments by a Non-Transform Discontinuity (NTD). Our morphotectonic analysis shows significant along-axis heterogeneity in the surveyed segments: three distinctive cross-axis grabens were identified in the northern segment, and two were identified in the southern segment. Moreover, based on the gravity data (a relatively low spherical Bouguer anomaly) and petrologic data (low Mg# values and relatively low FeO and relatively high Al2O3 and CaO contents compared to nearby seafloor samples), a volcanic feature, the ZouYu seamount, on this segment is considered to be associated with strong magmatic activity, and the magmatic activity of the inside corner at the southern end of the segment has increased and decreased. The three possible hydrothermal fields occur in different local geological settings: a shallow magmatic seamount (ZouYu), an NTD (TaiJi), and an inside-corner high (CaiFan). These potential hydrothermal fields are significantly different from other fields in similar tectonic settings in terms of local geologic controls and products. The ZouYu field is primarily related to a newly formed cone, resulting in the production of sulfides, and differs from other fields on shallow magmatic seamounts. The TaiJi field is largely controlled by the tectonic evolution of the NTD and is based on mafic rocks. The inside corner containing the CaiFan field is a magmatic seamount rather than an Ocean Core Complex, making it strikingly different from other inside corner-related fields.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsumi, Yoshiyuki; Kimura, Nobukazu; Itaya, Tetsumaru

    K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of themore » Gregory Rift.« less

  9. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  10. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico

    USGS Publications Warehouse

    Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; Wooden, J.L.

    2008-01-01

    New U-Pb zircon ages, geochemistry, and Nd isotopic data are presented from three localities in the Paleoproterozoic Mazatzal province of southern New Mexico, United States. These data help in understanding the source regions and tectonic setting of magmatism from 1680 to 1620 Ma, the timing of the Mazatzal orogeny, the nature of postorogenic maginatism, Proterozoic plate tectonics, and provide a link between Mazatzal subblocks in Arizona and northern New Mexico. The data indicate a period from 1680 to 1650 Ma in which juvenile felsic granitoids were formed, and a later event between 1646 and 1633 Ma, when these rocks were deformed together with sedimentary rocks. No evidence of pre-1680 Ma rocks or inherited zircons was observed. The igneous rocks have ENd(t) from -1.2 to +4.3 with most between +2 and +4, suggesting a mantle source or derivation from similar-aged crust. Nd isotope and trace element concentrations are consistent with models for typical are magmatism. Detrital zircon ages from metasedimentary rocks indicate that sedimentation occurred until at least 1646 Ma. Both local and Yavapai province sources contributed to the detritus. All of the samples older than ca. 1650 Ma are deformed, whereas undeformed porphyroblasts were found in the contact aureole of a previously dated 1633 Ma gabbro. Regionally, the Mlazatzal orogeny occurred mainly between 1654 and 1643 Ma, during final accretion of a series of island arcs and intervening basins that may have amalgamated offshore. Rhyolite magmatism in the southern Mazatzal province was coeval with gabbro intrusions at 1633 Ma and this bimodal magmatism may have been related to extensional processes following arc accretion. ?? 2007 Geological Society of America.

  11. Oxygen isotope compositions of selected laramide-tertiary granitoid stocks in the Colorado Mineral Belt and their bearing on the origin of climax-type granite-molybdenum systems

    USGS Publications Warehouse

    Hannah, J.L.; Stein, H.J.

    1986-01-01

    Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield ??18O values less than 10.4???, with most values between 9.3 and 10.4???. An average magmatic value of about 8.5??? is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust. Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock ??18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low ??18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases. Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx. ?? 1986 Springer-Verlag.

  12. Temporal Evolution of Surface Deformation and Magma Sources at Pacaya Volcano, Guatemala Revealed by InSAR

    NASA Astrophysics Data System (ADS)

    Wnuk, K.; Wauthier, C.

    2016-12-01

    Pacaya Volcano, Guatemala is a persistently active volcano whose western flank is unstable. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, shows magmatic deformation before and during major eruptions in January and March 2014. Inverse modeling of InSAR surface displacements suggest that three magma bodies are responsible for observed deformation: (1) a 3.7 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit that provides the primary transport pathway for erupted materials. Periods of heightened activity are brought on by magma pulses at depth, which result in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss, and do not always result in an eruption. Periods of increased activity culminate with larger dike fed eruptions. Large eruptions are followed by inter eruptive periods marked by a decrease in crater explosions and a lack of deformation. A full understanding of magmatic processes at Pacaya is required to assess potential impacts on other aspects of the volcano such as the unstable western flank. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induces flank motion

  13. Spatiotemporal model of Kīlauea's summit magmatic system inferred from InSAR time series and geometry-free time-dependent source inversion

    NASA Astrophysics Data System (ADS)

    Zhai, Guang; Shirzaei, Manoochehr

    2016-07-01

    Kīlauea volcano, Hawai`i Island, has a complex magmatic system including summit reservoirs and rift zones. Kinematic models of the summit reservoir have so far been limited to first-order analytical solutions with predetermined geometry. To explore the complex geometry and kinematics of the summit reservoir, we apply a multitrack wavelet-based InSAR (interferometric synthetic aperture radar) algorithm and a novel geometry-free time-dependent modeling scheme. To map spatiotemporally distributed surface deformation signals over Kīlauea's summit, we process synthetic aperture radar data sets from two overlapping tracks of the Envisat satellite, including 100 images during the period 2003-2010. Following validation against Global Positioning System data, we invert the surface deformation time series to constrain the spatiotemporal evolution of the magmatic system without any prior knowledge of the source geometry. The optimum model is characterized by a spheroidal and a tube-like zone of volume change beneath the summit and the southwest rift zone at 2-3 km depth, respectively. To reduce the model dimension, we apply a principal component analysis scheme, which allows for the identification of independent reservoirs. The first three PCs, explaining 99% (63.8%, 28.5%, and 6.6%, respectively) of the model, include six independent reservoirs with a complex interaction suggested by temporal analysis. The data and model presented here, in agreement with earlier studies, improve the understanding of Kīlauea's plumbing system through enhancing the knowledge of temporally variable magma supply, storage, and transport beneath the summit, and verify the link between summit magmatic activity, seismicity, and rift intrusions.

  14. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  15. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are interpreted to result from roll-back and break-off of the subducted Neo-Tethyan slab that occurred in the early stage of the India-Asian collision, respectively. The late Oligocene adakitic rocks resulted from the break-off of the subducted Indian continental crust starting at ~ 25 Ma.

  16. Multi-stage evolution of xenotime-(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J.

    2016-12-01

    The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime-(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid-borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U-Th-Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.

  17. The effect of oxygen fugacity on the rheological evolution of crystallizing basaltic melts

    NASA Astrophysics Data System (ADS)

    Kolzenburg, S.; Di Genova, D.; Giordano, D.; Hess, K. U.; Dingwell, D. B.

    2018-04-01

    Storage and transport of silicate melts in the Earth's crust and their emplacement on the planet's surface occur almost exclusively at sub-liquidus temperatures. At these conditions, the melts undergo crystallization under a wide range of cooling-rates, deformation-rates, and oxygen fugacities (fO2). Oxygen fugacity is known to influence the thermodynamics and kinetics of crystallization in magmas and lavas. Yet, its influence on sub-liquidus rheology remains largely uncharted. We present the first rheological characterization of crystallizing lavas along natural cooling paths and deformation-rates and at varying fO2. Specifically, we report on apparent viscosity measurements for two crystallizing magmatic suspensions 1) at log ⁡ fO2 of -9.15 (quartz-fayalite-magnetite buffer, QFM, -2.1) and 2) in air. These fugacities span a range of reduced to oxidized conditions pertinent to magma migration and lava emplacement. We find that: 1) crystallization at constant cooling-rates results in a quasi-exponential increase in the apparent viscosity of the magmatic suspensions until they achieve their rheological cut off temperature (Tcutoff), where the melt effectively solidifies 2) the rheological departure and Tcutoff increase with increasing fO2 and 3) increasing fO2 results in decreased crystallization-rates. Based on the experimental results and by comparison with previous rheological isothermal studies we propose a generalisation of the effect of fO2 on the dynamic rheological evolution of natural magmatic and volcanic suspensions. We further discuss the implications for magmatic transport in plumbing and storage systems (e.g. conduits, dikes and magma chambers) and during lava flow emplacement.

  18. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2004-01-01

    The research described in this progress report involved the study of petrological, geochemical, and volcanic processes that occur on the Moon and the SNC meteorite parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the types of magmas (magma compositions) present, the role of volatiles in magmatic processes, and on processes of magma evolution on these planets. We are also interested in how these processes and magma types varied over time.In earlier work on the A15 green and A17 orange lunar glasses, we discovered a variety of metal blebs. Some of these Fe-Ni metal blebs occur in the glass; others (in A17) were found in olivine phenocrysts that we find make up about 2 vol 96 of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption . They also yield important information about the composition of the gas phase present, the gas that drove the lunar fire-fountaining. During the tenure of this grant, we have continued to work on the remaining questions regarding the origin and evolution of the gas phase in lunar basaltic magmas, what they indicate about the lunar interior, and how the gas affects volcanic eruptions. Work on Martian magmas petrogenesis questions during the tenure of this grant has resulted in advances in our methods of evaluating magmatic oxidation state variations in Mars and some new insights into the compositional variations that existed in the SNC magmas over time . Additionally, Minitti has continued to work on the problem of possible shock effects on the abundance and distribution of water in Mars minerals.

  19. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue?

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher

    2015-04-01

    Myanmar (Burma) is richly endowed in precious and base metals, having one of the most diverse collections of natural resources in SE Asia. Its geological history is dominated by the staged closing of Tethys and the suturing of Gondwana-derived continental fragments onto the South China craton during the Mesozoic-Cenozoic. The country is located at a crucial geologic juncture where the main convergent Tethyan collision zone swings south around the Namche Barwa Eastern Himalayan syntaxis. However, despite recent work, the geological and geodynamic history of Myanmar remains enigmatic. Plate margin processes, magmatism, metasomatism and the genesis of mineral deposits are intricately linked, and there has long been recognized a relationship between the distribution of certain mineral deposit types, and the tectonic settings which favour their genesis. A better knowledge of the regional tectonic evolution of a potential exploration jurisdiction is therefore crucial to understanding its minerals prospectivity. This strong association between tectonics and mineralization can equally be applied in reverse. By mapping out the spatial, and temporal, distribution of presumed co-genetic mineral deposits, coupled with an understanding of their collective metallogenetic origin, a better appreciation of the tectonic evolution of a terrane may be elucidated. Identification and categorization of metallotects within a geodynamically-evolving terrane thus provides a complimentary tool to other methodologies (e.g. geochemical, geochronological, structural, geophysical, stratigraphical), for determining the tectonic history and inferred geodynamic setting of that terrane through time. Myanmar is one such study area where this approach can be undertaken. Here are found two near-parallel magmatic belts, which together contain a significant proportion of that country's mineral wealth of tin, tungsten, copper, gold and silver. Although only a few 100 km's apart, these belts exhibit a contrasting minerals endowment. The Mogok-Mandalay-Mergui (MMM) Belt hosts crustal-melt S-type granites with significant tin-tungsten mineralization, and contains the historically major tungsten deposit of Mawchi. The Wuntho-Popa Arc comprises I-type granites and granodiorites with porphyry-type copper-gold and epithermal gold mineralization, and includes the world-class Monywa copper mine. Recent U-Pb radiometric age dating has shown the potential for the two belts to be both active from the Late Cretaceous to Eocene. The spatial juxtaposition of these two sub-parallel belts, the implication of contemporary magmatism, and their distinct but consistent metallogenic endowment bears strong similarities to the metallogenic belts of the South American Cordillera. Here we investigate whether they together represent the magmatic and metallogenic expression of an Andean-type setting in Myanmar during the subduction of Neo-Tethys. In this analogue the Wuntho-Popa Arc represents a proximal I-type magmatic belt sited immediately above the eastwards-verging Neo-Tethys subduction zone. Exhibiting porphyry-type copper-gold and epithermal gold mineralization, this would therefore be the Myanmar equivalent of the Andean coastal copper belts. Conversely, the parallel MMM Belt, comprised of more distal crustal-melt S-type tin granites, would have an analogue in the Bolivian tin belt.

  20. Quantifying crustal thickness over time in magmatic arcs

    NASA Astrophysics Data System (ADS)

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; Decelles, Peter G.

    2015-12-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

  1. Quantifying crustal thickness over time in magmatic arcs

    PubMed Central

    Profeta, Lucia; Ducea, Mihai N.; Chapman, James B.; Paterson, Scott R.; Gonzales, Susana Marisol Henriquez; Kirsch, Moritz; Petrescu, Lucian; DeCelles, Peter G.

    2015-01-01

    We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens. PMID:26633804

  2. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Christiansen, Robert L.

    2001-01-01

    This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.

  3. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  4. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  5. Analogue modelling on the interaction between shallow magma intrusion and a strike-slip fault: Application on the Middle Triassic Monzoni Intrusive Complex (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias

    2017-04-01

    The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and the deformational pattern of the evolving system.

  6. Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa)

    NASA Astrophysics Data System (ADS)

    Soltys, Ashton; Giuliani, Andrea; Phillips, David

    2018-06-01

    We present petrographic and mineral chemical data for a suite of samples derived from the De Beers dyke, a contemporaneous, composite intrusion bordering the De Beers pipe (Kimberley, South Africa). Petrographic features and mineral compositions indicate the following stages in the evolution of this dyke: (1) production of antecrystic material by kimberlite-related metasomatism in the mantle (i.e., high Cr-Ti phlogopite); (2) entrainment of wall-rock material during ascent through the lithospheric mantle, including antecrysts; (3) early magmatic crystallisation of olivine (internal zones and subsequently rims), Cr-rich spinel, rutile, and magnesian ilmenite, probably on ascent to the surface; and (4) crystallisation of groundmass phases (i.e., olivine rinds, Fe-Ti-rich spinels, perovskite, apatite, monticellite, calcite micro-phenocrysts, kinoshitalite-phlogopite, barite, and baddeleyite) and the mesostasis (calcite, dolomite, and serpentine) on emplacement in the upper crust. Groundmass and mesostasis crystallisation likely forms a continuous sequence with deuteric/hydrothermal modification. The petrographic features, mineralogy, and mineral compositions of different units within the De Beers dyke are indistinguishable from one another, indicating a common petrogenesis. The compositions of antecrysts (i.e., high Cr-Ti phlogopite) and magmatic phases (e.g., olivine rims, magnesian ilmenite, and spinel) overlap those from the root zone intrusions of the main Kimberley pipes (i.e., Wesselton, De Beers, Bultfontein). However, the composition of these magmatic phases is distinct from those in `evolved' intrusions of the Kimberley cluster (e.g., Benfontein, Wesselton water tunnel sills). Although the effects of syn-emplacement flow processes are evident (e.g., alignment of phases parallel to contacts), there is no evidence that the De Beers dyke has undergone significant pre-emplacement crystal fractionation (e.g., olivine, spinel, ilmenite). This study demonstrates the requirement for detailed petrographic and mineral chemical studies to assess whether individual intrusions are in fact `evolved'; and that dykes are not necessarily produced by differentiated magmas.

  7. Strategies for Investigating Early Mars Using Returned Samples

    NASA Technical Reports Server (NTRS)

    Carrier, B. L.; Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E. M.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; hide

    2017-01-01

    The 2011 Visions & Voyages Planeary Science Decadal Survey identified making significant progress toward the return of samples from Mars as the highest priority goal for flagship missions in next decade. Numerous scientific objectives have been identified that could be advanced through the potential return and analysis of martian rock, regolith, and atmospheric samples. The analysis of returned martian samples would be particularly valuable in in-creasing our understanding of Early Mars. There are many outstanding gaps in our knowledge about Early Mars in areas such as potential astrobiology, geochronology, planetary evolution (including the age, context, and processes of accretion, differentiation, magmatic, and magnetic history), the history of water at the martian surface, and the origin and evolution of the martian atmosphere. Here we will discuss scientific objectives that could be significantly advanced by Mars sample return.

  8. Off- and Along-Axis Slow Spreading Ridge Segment Characters: Insights From 3d Thermal Modeling

    NASA Astrophysics Data System (ADS)

    Gac, S.; Tisseau, C.; Dyment, J.

    2001-12-01

    Many observations along the Mid-Atlantic Ridge segments suggest a correlation between surface characters (length, axial morphology) and the thermal state of the segment. Thibaud et al. (1998) classify segments according to their thermal state: "colder" segments shorter than 30 km show a weak magmatic activity, and "hotter" segments as long as 90 km show a robust magmatic activity. The existence of such a correlation suggests that the thermal structure of a slow spreading ridge segment explains most of the surface observations. Here we test the physical coherence of such an integrated thermal model and evaluate it quantitatively. The different kinds of segment would constitute different phases in a segment evolution, the segment evolving progressively from a "colder" to a "hotter" so to a "colder" state. Here we test the consistency of such an evolution scheme. To test these hypotheses we have developed a 3D numerical model for the thermal structure and evolution of a slow spreading ridge segment. The thermal structure is controlled by the geometry and the dimensions of a permanently hot zone, imposed beneath the segment center, where is simulated the adiabatic ascent of magmatic material. To compare the model with the observations several geophysic quantities which depend on the thermal state are simulated: crustal thickness variations along axis, gravity anomalies (reflecting density variations) and earthquake maximum depth (corresponding to the 750° C isotherm depth). The thermal structure of a particular segment is constrained by comparing the simulated quantities to the real ones. Considering realistic magnetization parameters, the magnetic anomalies generated from the same thermal structure and evolution reproduce the observed magnetic anomaly amplitude variations along the segment. The thermal structures accounting for observations are determined for each kind of segment (from "colder" to "hotter"). The evolution of the thermal structure from the "colder" to the "hotter" segments gives credence to a temporal relationship between the different kinds of segment. The resulting thermal evolution model of slow spreading ridge segments may explain the rhomboedric shapes observed off-axis.

  9. Mineralized and unmineralized calderas in Spain; Part I, evolution of the Los Frailes Caldera

    USGS Publications Warehouse

    Cunningham, C.G.; Arribas, A.; Rytuba, J.J.; Arribas, A.

    1990-01-01

    The Cabo de Gata volcanic field of southeastern Spain contains several recently-recognized calderas. Some of the calderas are mineralized with epithermal gold, alunite, and base metal deposits, and others are barren, and yet they formed under generally similar conditions. Comparison of the magmatic, geochemical, and physical evolution of the Los Frailes, Rodalquilar, and Lomilla calderas provides insight into the processes of caldera evolution that led to precious-metal mineralization. The Los Frailes caldera formed at 14.4 Ma and is the oldest caldera. It formed in response to multiple eruptions of hornblende dacite magma. Following each eruption, the area collapsed and the caldera was invaded by the sea. Dacite domes fill the lower part of the caldera. Pyroxene andesites were erupted through the solidified core of the caldera and were probably initially responsible for magma generation. The Los Frailes caldera did not evolve to rhyolites nor was it subjected to the amount of structural development that the younger, mineralized Rodalquilar and Lomilla calderas were. ?? 1990 Springer-Verlag.

  10. Numerical model for the evaluation of Earthquake effects on a magmatic system.

    NASA Astrophysics Data System (ADS)

    Garg, Deepak; Longo, Antonella; Papale, Paolo

    2016-04-01

    A finite element numerical model is presented to compute the effect of an Earthquake on the dynamics of magma in reservoirs with deformable walls. The magmatic system is hit by a Mw 7.2 Earthquake (Petrolia/Capo Mendocina 1992) with hypocenter at 15 km diagonal distance. At subsequent times the seismic wave reaches the nearest side of the magmatic system boundary, travels through the magmatic fluid and arrives to the other side of the boundary. The modelled physical system consists in the magmatic reservoir with a thin surrounding layer of rocks. Magma is considered as an homogeneous multicomponent multiphase Newtonian mixture with exsolution and dissolution of volatiles (H2O+CO2). The magmatic reservoir is made of a small shallow magma chamber filled with degassed phonolite, connected by a vertical dike to a larger deeper chamber filled with gas-rich shoshonite, in condition of gravitational instability. The coupling between the Earthquake and the magmatic system is computed by solving the elastostatic equation for the deformation of the magmatic reservoir walls, along with the conservation equations of mass of components and momentum of the magmatic mixture. The characteristic elastic parameters of rocks are assigned to the computational domain at the boundary of magmatic system. Physically consistent Dirichlet and Neumann boundary conditions are assigned according to the evolution of the seismic signal. Seismic forced displacements and velocities are set on the part of the boundary which is hit by wave. On the other part of boundary motion is governed by the action of fluid pressure and deviatoric stress forces due to fluid dynamics. The constitutive equations for the magma are solved in a monolithic way by space-time discontinuous-in-time finite element method. To attain additional stability least square and discontinuity capturing operators are included in the formulation. A partitioned algorithm is used to couple the magma and thin layer of rocks. The magmatic system is highly disturbed during the maximum amplitude of the seismic wave, showing random to oscillatory velocity and pressure, after which it follows the natural dynamic state of gravitational destabilization. The seismic disturbance remarkably triggers propagation of pressure waves at magma sound speed, reflecting from bottom to top, left and right of the magmatic system. A signal analysis of the frequency energy content is reported.

  11. New insights and questions about the Meso-Cenozoic Tectonic evolution of Eastern Black Sea and Caucasus.

    NASA Astrophysics Data System (ADS)

    Sosson, Marc; Rolland, Yann; Hässig, Marc; Meijers, Maud; Smith, Brigitte; Muller, Carla; Adamia, Shota; Melkonian, Rafael; Kangarli, Talat; Sahakyan, Lilit; Sadradze, Nino; Avagyan, Ara; Galoyan, Ghazar; Alania, Victor; Enukidze, Onice; Sheremet-Korniyenko, Yevgeniya; Yegorova, Tamara

    2014-05-01

    Since last decade a lot of new field researches (supported by MEBE and DARIUS programmes) were carried out in order to clarify the tectonic evolution of the South Caucasus and Eastern Black Sea regions. A summary of these improvements are as following: 1. Evidence of only one suture zone in the Lesser Caucasus: the Sevan-Akera suture zone as the eastward continuity of the Izmir-Ankara-Erzincan one. 2. Timing and modalities of the Upper Cretaceous obduction process of the Sevan-Akera back-arc basin. 3. Paleolatitude reconstruction of the Taurides-Anatolides-South Armenia microplate (TASAM) since the Late Cretaceous 4. Paleocene to Miocene tectonic evolution of the collision zone between Eurasia and the TASAM. 5. Structures and propagation of the Lesser Caucasus and Greater Causasus foreland basins from Paleocene to Miocene. 6. Structures of the inverted Paleocene-Eocene Adjara-Trialeti basin of the Eurasian margin and timing of deformations from Lesser Caucasus to Greater Caucasus. 7. New stratigraphic data from the Crimea Mountain which argues for a Lower Cretaceous rifting of the Eastern Black Sea. According to aforementioned results and previous studies, this widespread zone (from the Eastern Black Sea to the Lesser Caucasus) appears act as a large puzzle of heterogeneous lithospheres (continental, oceanic, arc, back-arc basins) since the Early Cretaceous. This is probably why this area has differently reacted in time and space to the northward collision of the TASAM with Eurasia since the Late Cretaceous and then of Arabian plate since the Oligo-Miocene. It seems that some lithospheres which have cold mantellic behavior (especially the Black Sea) react as rigid blocks, while others with a continental origin, reheated by magmatism, (as the Taurides-Anatolides) were extruded to the west or bended as an orocline (as the Lesser Caucasus, the Pontides). This is why some main questions remain, are not solved and are still debated. 1. The continuity of main structures of the belt to the Est. The obduction front observed in the Lesser Caucasus is not well localized in NW Iran. This question is really a key point in the reconstruction of the obduction and collision processes which occurred in the northern branch of the Neotethys during the Late Cretaceous. 2. The changes in space and time of geodynamic processes responsible for the closure of the northern branch of Neotethys (subductions-obductions-collisions) and how these changes are related to the opening and inversion of back arc basins. 3. What processes are involved in the thickening of the crust, melting and magmatism all along the Caucasus region, and that support the present-day topography? What is the role of a possible fragmentation of the subducted slabs, or delamination of the continental lithosphere in the changes of topography? Is a mantle plume involved (as some geochemical data from Late Mesozoic and Cenozoic magmatic rocks indicate it)? What crust/mantle coupling supports the present day stress and strain field?

  12. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises.

    PubMed

    Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-06-09

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.

  13. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    PubMed Central

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  14. The diverse crustal structure and magmatic evolution of the Manihiki Plateau, central Pacific

    NASA Astrophysics Data System (ADS)

    Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.

    2014-07-01

    The Manihiki Plateau is a Large Igneous Province (LIP) in the central Pacific. It was emplaced as part of the "Super-LIP" Ontong Java Nui and experienced fragmentation into three sub-plateaus, possibly during the break-up of Ontong Java Nui. The Manihiki Plateau is presumably the centerpiece of this "Super-LIP" and its investigation can therefore decipher the break-up mechanisms as well as the evolution of the plateau after its initial emplacement. By analyzing two seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the High Plateau and the Western Plateaus, we give new insights into their crustal structure and magmatic evolution. The High Plateau shows a crustal structure of 20 km thickness and a seismic P wave velocity distribution, which is comparable to other LIPs. The High Plateau experienced a strong secondary volcanism, which can be seen in relicts of seamount chain volcanism. The Western Plateaus on the other hand show no extensive secondary volcanism and are mainly structured by fault systems and sedimentary basins. A constant decrease in Moho depth (9-17 km) is a further indicator of crustal stretching on the Western Plateaus. Those findings lead to the conclusion, that the two sub-plateaus of the Manihiki Plateau experienced a different magmatic and tectonic history. Whereas the High Plateau experienced a secondary volcanism, the Western Plateaus underwent crustal stretching during and after the break-up of Ontong Java Nui. This indicates, that the sub-plateaus of the Manihiki Plateau play an individual part in the break-up history of Ontong Java Nui.

  15. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle

    NASA Astrophysics Data System (ADS)

    Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.

    2018-02-01

    The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

  16. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  17. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  18. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    NASA Astrophysics Data System (ADS)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to engineering and meteorological monitoring problems.

  19. Deportment of PGE and semimetals in the Volspruit deposit: the most ultramafic PGE horizon of the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Tanner, D.; McDonald, I.; Harmer, R. E. J.; Hughes, H. S. R.; Muir, D. D.

    2017-12-01

    The Volspruit deposit is a zone of disseminated magmatic sulphides carrying Ni-PGE (platinum-group element) mineralization in the Northern Limb of the Bushveld Complex, South Africa. It is one of the few known PGE prospects hosted by the lower ultramafic portion of a layered intrusion and the only known example in the Bushveld Complex. Volspruit therefore provides a unique insight into the processes governing mineralisation early in the Bushveld magmatic system. This study presents a detailed analysis from the northern portion of the Volspruit orebody combining mineralogical and textural observations with sulphide mineral trace element compositions. Electron microscopy reveals a diverse assemblage of Pt-, Pd- and Rh- dominant platinum-group minerals (PGM), electrum, Ag tellurides, Pb-chlorides, Pb-sulphides, U-oxide and monazite. Laser ablation ICP-MS has demonstrated that the Volspruit base metal sulphides have elevated PGE tenors but a range of S/Se values 1414-19319 - greater than other magmatic sulphide deposits in the northern Bushveld. The S/Se values are typical of crustal S and in agreement with previous S isotope data. These data imply a magma with initially high tenor sulphide liquid experienced local contamination from sedimentary S, leading to reduced tenors and elevated S/Se in sulphides coupled with a propensity of Pb- and Zn-bearing minerals (e.g., Pb-sulphide, Pb-chloride and sphalerite) in association with archetypal orthomagmatic sulphide assemblages. Our data demonstrate that assimilation of sedimentary rocks can modify sulphide melt evolution through the addition of metals such as Pb and Zn, not just contamination by sulphur. The Volspruit deposit illustrates the complexity of multi-stage processes governing mineralisation in the ultramafic portions of layered mafic intrusions.

  20. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Garrido, Carlos J.; Harvey, Jason; González-Jiménez, José María; Hidas, Károly; Lorand, Jean-Pierre; Gervilla, Fernando

    2013-11-01

    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20'N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.

  1. Evidences of Multiple Magma Injections in Quaternary Balerang and Rajabasa Volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasibuan, R. F.; Ohba, T.; Abdurrachman, M.

    2016-12-01

    Quaternary Balerang and Rajabasa volcanoes are situated along the nearly north-south lineament with a most explosive Krakatau volcanic complex in the south and effusive Sukadana basalt plateau in the north. Some studies have elucidated that Krakatau volcano has multiple magma storage regions beneath together with evidences of magma mixing process. By considering these circumstances, it is necessary to know lateral variations of magmas and to characterize volcanic rocks from Rajabasa volcanic complex which is located between these distinct magmatic systems, in terms of magmatic processes and evolution. Methodologies we used are X-ray fluorescence to determine the whole rock chemistry, K-Ar isotope dating to determine the lifespan of the volcano, as well as EPMA analysis to obtain the chemical composition of minerals. The rock chemistry or TAS plot shows a linear trend, ranging from basaltic (51 wt.%) to rhyolitic (75 wt.%), indicating a chemical heterogeneity of magma. When SiO2 contents are correlated with the relative ages, we found a broad tendency that SiO2 contents progressively decrease with age. The Rajabasa volcano lifespan is known formed at 0.31 Ma while one of the youngest lava is identified erupted at 0.12 Ma. Some plagioclase crystals exhibit disequilibrium textures, like highly sieved core and clear rim regions, also overgrowth rim on the plagioclase and pyroxene crystals whose composition more primitive than the core's composition, indicating magmatic recharge events. Reverse zoning and resorption textures associated with compositional step zoning or progressive zoning are quite common as well in clinopyroxene and plagioclase crystals. By considering these evidences, we conclude that injection of a hotter basaltic magma into colder and more felsic magma occurred beneath the volcanoes.

  2. Numerical modeling perspectives on zircon crystallization and magma reservoir growth at the Laguna del Maule volcanic field, central Chile

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Dufek, J.; Singer, B. S.

    2017-12-01

    Magma reservoirs in the middle to upper crust are though to accumulate incrementally over 104 -105 years. Coupled crystallization ages and compositions of zircon are a potentially powerful tracer of reservoir growth and magma evolution. However, complex age distributions and disequilibrium trace element partitioning complicate the interpretation of the zircon record in terms of magmatic processes. In order to make quantitative predictions of the effects of magmatic processes that contribute reservoir growth and evolution—such as cooling and crystallization, magma recharge and mixing, and rejuvenation and remelting of cumulate-rich reservoir margins—we develop a model of zircon saturation and growth within a numerical framework of coupled thermal transfer, phase equilibrium, and magma dynamics. We apply this model to the Laguna del Maule volcanic field (LdM), located in central Chile. LdM has erupted at least 40 km3 of rhyolite from 36 vents distributed within a 250 km2 lake basin. Ongoing unrest demonstrates the large, silicic magma system beneath LdM remains active to this day. Zircon from rhyolite erupted between c. 23 and 1.8 ka produce a continuous distribution of 230Th-238U ages ranging from eruption to 40 ka, as well as less common crystal domains up to 165 ka and rare xenocrysts. Zircon trace element compositions fingerprint compositionally distinct reservoirs that grew within the larger magma system. Despite the dominantly continuous distributions of ages, many crystals are characterized by volumetrically substantial, trace element enriched domains consistent with rapid crystal growth. We utilize numerical simulations to assess the magmatic conditions required to catalyze these "blooms" of crystallization and the magma dynamics that contributed to the assembly of the LdM magma system.

  3. Experimental Study of Lunar and SNC Magmas

    NASA Astrophysics Data System (ADS)

    Rutherford, Malcolm J.

    2000-08-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. During the tenure of the present grant, we discovered a variety of metal blebs in the A17 orange glass. Some of these Fe-Ni metal blebs occur in the glass; others were found in olivine phenocrysts which we find make up about 2 vol % of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption. They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. In an Undergraduate senior thesis project, Nora Klein discovered a melt inclusion that remained in a glassy state in one of the olivine phenocrysts. Analyses of this inclusion gave additional information on the CO2, CO and S contents of the orange glass magma prior to its reaching the lunar surface. The composition of lunar volcanic gases has long been one of the puzzles of lunar magmatic processes. One of the more exciting findings in our research over the past year has been the study of magmatic processes linking the SNC meteorite source magma composition with the andesitic composition rocks found at the Pathfinder site. In this project, graduate student Michelle Minitti showed that there was a clear petrologic link between these two magma types via fractional removal of crystals from the SNC parent melt, but the process only worked if there was at least 1 wt % dissolved water in the melt.

  4. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2000-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. During the tenure of the present grant, we discovered a variety of metal blebs in the A17 orange glass. Some of these Fe-Ni metal blebs occur in the glass; others were found in olivine phenocrysts which we find make up about 2 vol % of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption. They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. In an Undergraduate senior thesis project, Nora Klein discovered a melt inclusion that remained in a glassy state in one of the olivine phenocrysts. Analyses of this inclusion gave additional information on the CO2, CO and S contents of the orange glass magma prior to its reaching the lunar surface. The composition of lunar volcanic gases has long been one of the puzzles of lunar magmatic processes. One of the more exciting findings in our research over the past year has been the study of magmatic processes linking the SNC meteorite source magma composition with the andesitic composition rocks found at the Pathfinder site. In this project, graduate student Michelle Minitti showed that there was a clear petrologic link between these two magma types via fractional removal of crystals from the SNC parent melt, but the process only worked if there was at least 1 wt % dissolved water in the melt.

  5. Magmatism evolution on the last Neoproterozoic development stage of the western Siberian active continental margin

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.

    2017-04-01

    Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.

  6. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Wang, Christina Yan

    2017-02-01

    The world class Ni-Cu-PGE sulfide deposits associated with the Sudbury Igneous Complex (SIC) are quite unique on earth in the sense that the energy source and origin were triggered by a large meteorite impact event. The ore deposits in the SIC make up one of the largest Ni-Cu-PGE sulfide deposit camps in the world and have now been mined for over 100 years. This is the first complete reference book that focuses entirely on the SIC and covers the fields of economic geology, petrology, geochemistry and geophysics. The purpose of this book is to explore the linkage between sulfide and silicate magmas generated by the 1.85 Ga Sudbury impact event and to unite an understanding of the process of crustal melt sheet evolution with the formation of the magmatic sulfide mineralization. The author, Peter Lightfoot, has been based in Sudbury for 25 years. As a top scientist on magmatic Ni-Cu-PGE sulfide deposits and a Chief Geologist with the Brownfield Exploration group at Vale Base Metals, Peter has been positioned to develop and assemble the ideas presented in this book, which are perfectly balanced between industry and academia.

  7. Discussion on final rifting evolution and breakup : insights from the Mid Norwegian - North East Greenland rifted system

    NASA Astrophysics Data System (ADS)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per

    2016-04-01

    In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual model that proposes a combined influence of tectonic and magmatic processes on the outbuilding of the distal, outer and oceanic domains.

  8. Vertically extensive and unstable magmatic systems: A unified view of igneous processes.

    PubMed

    Cashman, Katharine V; Sparks, R Stephen J; Blundy, Jonathan D

    2017-03-24

    Volcanoes are an expression of their underlying magmatic systems. Over the past three decades, the classical focus on upper crustal magma chambers has expanded to consider magmatic processes throughout the crust. A transcrustal perspective must balance slow (plate tectonic) rates of melt generation and segregation in the lower crust with new evidence for rapid melt accumulation in the upper crust before many volcanic eruptions. Reconciling these observations is engendering active debate about the physical state, spatial distribution, and longevity of melt in the crust. Here we review evidence for transcrustal magmatic systems and highlight physical processes that might affect the growth and stability of melt-rich layers, focusing particularly on conditions that cause them to destabilize, ascend, and accumulate in voluminous but ephemeral shallow magma chambers. Copyright © 2017, American Association for the Advancement of Science.

  9. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs

    NASA Astrophysics Data System (ADS)

    de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil

    2011-03-01

    The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One consequence of this observation is that plutonic magmatic fluxes seem to be comparable from one geodynamic setting to another and also over various geologic time spans. A second consequence of this correlation is that small plutons, which are constructed in a geologically short length of time, commonly record little about tectonic conditions, and result only from the interference between magma dynamics and the local geologic setting. The fast rate of magma transfer in the crust (on the order of cm/s) relative to tectonic rates (on the order of cm/yr) explain why the incremental process of pluton construction is independent of - but not insensitive to - the tectonic setting. However, in large plutonic bodies, which correspond to longer duration magmatic events, regional deformation has time to interact with the growing pluton and can be recorded within the pluton-wall rock structure. Magma transfer operates at a very short timescale (comparable to volcanic timescales), which can be sustained over variable periods, depending on the fertility of the magma source region and its ability to feed the system. The fast operation of magmatic processes relative to crustal tectonic processes ensures that the former control the system from below.

  10. Volcanic evolution of an active magmatic rift segment on a 100 Kyr timescale: exposure dating of lavas from the Manda Hararo/Dabbahu segment of the Afar Rift

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Williams, A.; Pik, R.; Burnard, P.; Vye, C.; France, L.; Ayalew, D.; Yirgu, G.

    2012-12-01

    In the Afar depression (Ethiopia), extension is already organised along rift segments which morphologically resemble oceanic rifts. Segmentation here results from interactions between dyke injection and volcanism, as observed during the well documented 2005 event on the Dabbahu rift segment. During this tectono-volcanic crisis, a megadyke was injected, followed by 12 subsequent dike intrusions, sometimes associated with fissure flow eruptions. Despite the accurate surveying of the magmatic and tectonic interplay during this event via remote sensing techniques, there is a lack of data on timescales of 1 to 100 kyr, the period over which the main morphology of a rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. It is possible to constrain the timing of fault growth relative to the infilling of the rift axial depression by lava flows, and to assess the influence of the different magma bodies involved in lava production along the rift-segment. We use cosmogenic nuclides (3He) to determine the ages of young (<100 kyr) lava flows and to date the initiation and movement of fault scarps which cut the lavas. Combined with major & trace element compositions, field mapping and digital cartography (Landsat, ASTER and SPOT imagery), the rift geomorphology can be linked to the magmatic and tectonic history defined by surface exposure dating. The results show that over the last 100 ka the Northern part of the Dabbahu segment was supplied by two different magma reservoirs which can be identified based on their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano, and has been supplied with magma for at least 72 ka. This magmatic centre supplies magma to most of the northern third of the rift segment. The second reservoir is located further south, on the axis, close to the current mid-segment magma chamber, which was responsible for the 2005 rifting episode. This second magmatic centre supplies magma to the remaining 2/3 of the segment, but scarcely impacts its Northern termination (where the Dabbahu activity predominates) - except during extraordinary events when dykes are long enough to reach those parts, as in 2005. The eruption ages of the different lava units correlates with their degrees of differentiation, allowing different magmatic cycles of about a few tens of years each to be distinguished. During the first recorded magmatic cycle (~70 ka to ~55 ka), Dabbahu is built of wide-spreading pāhoehoe flows around localised eruptive centres. The resulting topography of the volcanic edifice remains low, and is only slightly affected by rift-related fault activity, with the development of minor scarps. The second recorded magmatic cycle (~50 ka to ~20 ka) coincides with a strong development of Dabbahu topography - underlined by the change in lava morphology with well channelized 'a'ā flows since 50 ka. Tectonic activity also clearly increases over this period, with the initiation of the major fault scarps of the rift, which have been dated at around 35 ka. Our study underlines the role of the magma supply and availability beneath Dabbahu in the evolution both topographies of Dabbahu volcano and of the rift depression morphology.

  11. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    USGS Publications Warehouse

    Lipman, Peter W.

    2007-01-01

    Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.

  12. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks

    USGS Publications Warehouse

    Wray, James J.; Hansen, Sarah T.; Dufek, Josef; Swayze, Scott L.; Murchie, Scott L.; Seelos, Frank P.; Skok, John R.; Irwin, Rossman P.; Ghiorso, Mark S.

    2013-01-01

    Rocks dominated by the silicate minerals quartz and feldspar are abundant in Earth’s upper continental crust. Yet felsic rocks have not been widely identified on Mars, a planet that seems to lack plate tectonics and the associated magmatic processes that can produce evolved siliceous melts on Earth. If Mars once had a feldspar-rich crust that crystallized from an early magma ocean such as that on the Moon, erosion, sedimentation and volcanism have erased any clear surface evidence for widespread felsic materials. Here we report near-infrared spectral evidence from the Compact Reconnaissance Imaging Spectrometer for Mars onboard the Mars Reconnaissance Orbiter for felsic rocks in three geographically disparate locations on Mars. Spectral characteristics resemble those of feldspar-rich lunar anorthosites, but are accompanied by secondary alteration products (clay minerals). Thermodynamic phase equilibrium calculations demonstrate that fractional crystallization of magma compositionally similar to volcanic flows near one of the detection sites can yield residual melts with compositions consistent with our observations. In addition to an origin by significant magma evolution, the presence of felsic materials could also be explained by feldspar enrichment by fluvial weathering processes. Our finding of felsic materials in several locations on Mars suggests that similar observations by the Curiosity rover in Gale crater may be more widely applicable across the planet.

  13. Greenstone belts: Their boundaries, surrounding rock terrains and interrelationships

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.

    1986-01-01

    Greenstone belts are an important part of the fragmented record of crustal evolution, representing samples of the magmatic activity that formed much of the Earth's crust. Most belts developed rapidly, in less than 100 Ma, leaving large gaps in the geological record. Surrounding terrains provide information on the context of greenstone belts. The effects of tectonic setting, structural geometry and evolution, associated plutonic activity and sedimentation are discussed.

  14. Origin of heavy REE mineralisation in carbonatites: Constraints form the Huanglongpu Mo-HREE deposit, Qinling, China.

    NASA Astrophysics Data System (ADS)

    Smith, Martin; Cheng, Xu; Kynicky, Jindrich; Cangelosi, Delia; Wenlei, Song

    2017-04-01

    The carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. Carbonatite monazite (208.9±4.6 Ma to 213.6±4.0; Song et al., 2016) gives a comparable U-Pb radiometric age to molybdenite (220Ma; Stein et al., 1997), confirming interpretations that Mo is derived from the carbonatite, and not a subsequent overprint from regional porphyry-style mineralisation ( 141Ma). The sulphides in the carbonatites have mantle-like 34S ( 1‰) and low δ26Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution in their mantle sources that may be responsible for the Mo and HREE enrichment (Song et al., 2016). The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Monazite-(Ce) was subsequently altered to produce apatite, which was in turn replaced by britholite-(Ce), accompanied by the formation of allanite-(Ce). The REE-fluorcarbonates where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered initially to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, through to more silica-rich conditions during the magmatic-hydrothermal transition, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate that the HREE enrichment could not be a passive process, and that hydrothermal fluids must have contributed HREE to the system. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid, and so breakdown of HREE-enriched calcite may have been the HREE source. Solubility products are lower for LREE minerals compared to HREE minerals, so leaching in the presence of strong, LREE-selective ligands (Cl-, CO32-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during late stage alteration, and hence sulphate complexation may have been important for preferential HREE transport, as sulphate has been shown to be non-LREE selective during the formation of complex ions. The combination of mantle source with a recycled oceanic sediment component, and REE enrichment during magmatic processes, and late stage alteration with non-LREE selective ligands such as sulphate may be critical in forming HREE-enriched carbonatites. Song et al., (2016) Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Scientific Reports, 6:37377 | DOI: 10.1038/srep37377. Stein et al. (1997) Highly precise and accurate Re-Os ages for molybdenite from the East Qinling-Dabie molybdenum belt, Shaanxi province, China. Econ. Geol. 92, 827-835 (1997)

  15. The Last Gasp - the Terminal Magmatic Stages of the Keweenaw LIP

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Brown, E.; Moucha, R.; Stein, C. A.; Stein, S.

    2016-12-01

    The Keweenaw Flood Basalts, which represent the magmatic record of the best preserved example of a Precambrian Large Igneous Province (LIP), erupted contemporaneously with the development of the failed Mid-Continent Rift ca. 1.1 Ga. At 2 x 106 km3 in volume, the Keweenaw LIP is roughly equivalent in scale to the Parana-Etendeka LIP, but the origin and evolution of the magmatic source of the Keweenaw LIP remains poorly constrained. Specifically, while modern LIPs have a primary magmatic pulse lasting <5Ma, followed by a long phase of waning activity, the Keweenaw LIP underwent significant flood basalt eruptions for ca. 21 Myr. Here we examine the geochemical characteristics of the final phases of magmatic activity within the Keweenaw LIP - the Lake Shore Traps - which erupted ca. 1087 Ma within an alluvial fan sequence (Copper Harbor Conglomerate). The Lake Shore Traps are best exposed at High Rock Bay, where 62 flows ( 1-30m thick) are observed intercalated with thin paleosols over a 530m thickness. Thus, while this late-stage activity might represent a waning phase of magmatism, the thickness represents some half of the total average thickness of modern continental flood basalt provinces. Our initial data suggests a dominantly tholeiitic magma series spanning an unexpectedly wide and continuous range of compositions from basalt to andesite; rare alkaline lavas are also evident. Distinctive geochemical stratigraphic patterns were observed suggesting crystal fractionation and recharge events dominated the magma system. Our initial data do not show any unambiguous parallels between the geochemical characteristics of the Lake Shore Traps and prior phases of magmatic activity in the province. We explore the potential source characteristics of these lavas to refine the source and conditions of melt generation during the terminal phase of activity in the region.

  16. Thermal anomalies and magmatism due to lithospheric doubling and shifting

    NASA Astrophysics Data System (ADS)

    Vlaar, N. J.

    1983-11-01

    We present some thermal and magmatic consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours magmatism. We speculate about the magmatic consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence magmatic processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on magmatism in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.

  17. Permian magmatic sequences of the Bilihe gold deposit in central Inner Mongolia, China: Petrogenesis and tectonic significance

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Nie, Fengjun

    2015-08-01

    The Bilihe gold deposit is located in the eastern section of the Ondor Sum-Yanji Suture at the southern margin of the Xing'an-Mongolian Orogenic Belt (XMOB) and the northern margin of the North China Craton (NCC), central Inner Mongolia. The magmatic rocks in the ore district are generally high-K calc-alkaline, enriched in LREE, Zr, and Hf, and depleted in HREE, Nb, Ta, and P. The magmatic evolution sequences are norite gabbro → granodiorite porphyry → granite or norite gabbro → andesite → dacite porphyry → granodiorite, which show a trend of decreasing TiO2, FeO, MgO, CaO, and P2O5 with increasing SiO2. In the Bilihe ore district, hydrothermal processes were coeval with granitic magmatism for a period of ~ 17 Myr (272-255 Ma). The ages of the granite, granodiorite porphyry, granodiorite, and dacite porphyry are 271.5-264.1 Ma, 269.8-255.8 Ma, 268.3 Ma, and 268.6-259.4 Ma, respectively. The magmatic rocks contain magmatic, hydrothermal, and magmatic-hydrothermal zircons. The magmatic zircons have δCe > 4, La < 3 ppm, and SmN/LaN > 2.5; the hydrothermal zircons have δCe < 4, La > 3 ppm, and SmN/LaN < 2.5. The Nb/Ta and Zr/Hf ratios of granodiorite are 12.7-14.99 and 40.2-46.56, respectively. The Zr/Hf ratios successively increase in the sequence of granite (27.4-29.02) → granodiorite porphyry (29.19-32.18) → dacite porphyry (33.54-38.5) → norite gabbro (36.75-38.37), and their Nb/Ta ratios are 9.09-12.38. Zircons in granodiorite yield ε Hf (t) values of - 0.29 to - 56 (n = 13) and 2.07-7.62 (n = 5), and they give a Hf two-stage model age (tDM2) of 807-4765 Ma. The ε Hf (t) values of the zircons in granite, granodiorite porphyry, and dacite porphyry are - 0.46 to 8.03, 3.17 to 10.32, and - 0.78 to 6.58, respectively, and their Hf tDM2 ages are 787-1324 Ma, 638-1091 Ma, and 868-1343 Ma, respectively. Dehydration partial melting of subducted oceanic crust resulted in the formation of dacite porphyry; partial melting of depleted mantle resulted in the formation of norite gabbro; mixing of depleted mantle and lower crust resulted in the formation of granodiorite porphyry; partial melting of lower crust resulted in the formation of granite; and mixing of lower crust and old upper crust resulted in the formation of granodiorite. Magmatic rocks in the ore district with ages of 272-255 Ma were formed during the late stages of closure of the Paleoasian Ocean; i.e., during the transformation from a collisional to extensional setting.

  18. Compositional spatial zonation and 2005-2013 temporal evolution of the hydrothermal-magmatic fluids from the submarine fumarolic field at Panarea Island (Aeolian Archipelago, southern Italy)

    NASA Astrophysics Data System (ADS)

    Tassi, Franco; Capaccioni, Bruno; Vaselli, Orlando

    2014-05-01

    The November 2002 submarine gas blast at Panarea Island (Sicily, southern Italy) was an unexpected reactivation event able to locally affect this hydrothermal-magmatic system whose the youngest eruptive products were dated at 20,000 ± 2000 years BP. The presence of magmatic gases (SO2 and HF) in the fumarolic gas discharges after the violent exhalative event was indicative of a magmatic input that temporary displaced the hydrothermal system. A few months later these acidic gases were indeed not detected in any of the studied fumaroles. Nevertheless, new geochemical data obtained by periodical sampling up to June 2013 suggest that the chemical-physical conditions of the hydrothermal-magmatic system at Panarea were not completely restored with respect to the geochemical data obtained in the early nineties. Thus, the 2002 gas burst has unequivocally caused a permanent modification to the fluid circulation system feeding the submarine fumaroles. In addition, strong compositional differences were observed by the 46 gases collected in 2012-2013 from submarine fumaroles located in different sites of the studied area, allowing to distinguish three different groups of fumaroles: A) H2- and CO-rich gases, which also show relatively low Ar concentrations, B) H2S-rich gases, having variable CO/CH4 ratios, and C) Ar-rich gases, having relatively low H2 concentrations. Gases from group A are distributed along NW- and NE-trending fault systems, whereas those of groups B and C discharge at increasing distance from the intersection of the two fault systems, indicating a spatial and compositional control by the local tectonic setting. The H2/CO ratios of groups A and B gases are significantly lower than those measured prior to 2012. This would imply an increase of gas pressure at depth, possibly caused by continuous addition of gas and energy from the magmatic source to the hydrothermal reservoir. Continuation of this process may lead to the occurrence of gas burst events in the next future, a hypothesis that is supported by the strong ongoing degassing activity at the surface notwithstanding a decrease of temperatures at depth. A geochemical, seismological and ground deformation monitoring of the Panarea submarine fumarolic field is highly recommended to obtain precursory signals of new strong degassing phenomena.

  19. Role of tectonomagmatic processes for surface environmental changes and evolution of biosphere on terrestrial planets: Evidence for evolution of the life on the Earth

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria

    It is known that ecological systems on the Earth in the Middle Paleoproterozoic was experienced fundamental change, which finally led to the appearance of multicellular organisms. Though life has been already existed in the Paleoarchean (Harris et al., 2009 and references herein), the multicellular organisms appeared only in the middle Paleoproterozoic about 1.6 Ga ago. It was preceded by fundamental change of tectononagmatic processes at period from 2.35 to 2.0 Ga, when early Precambrian high-Mg magmas, derived from depleted mantle, were gradually changed by geochemical-enriched Fe-Ti picrites and basalts, similar to Phanerozoic within-plate magmas. A drastic change of the tectonic pattern occurred at ca. 2 Ga when plate-tectonics changed plume-tectonics of the early Precambrian. Since that time tectonomagmatic processes irretrievably changed over the whole Earth and gradually change of ancient continental crust for secondary oceanic (basaltic) crust has occurred. New type of magmatic melts, appeared in the Middle Paleoproterozoic, was characterized by elevated and high contents of Fe, Ti, Cu, P, Mn, alkalis, LREE, and other incompatible elements (Zr, Ba, Sr, U, Th, F, etc.). A large-scale influx of alkalis in the World Ocean presumably neutralized its water, making it more suitable for the life, while input of Fe-group metals, P, and other trace elements, which are required for metabolism and fermentation, rapidly expanded the possibility for the development of bio-sphere. This caused a rapid evolution of organic life, especially photosynthesizing cyanobacteria and, subsequently, the emergence of oxidizing atmosphere, marked by formation of cupriferous red beds at all Precambrian shields and generation of first hydrocarbon deposits (Melezhik et al., 2005). A drop in atmospheric CO2 presumably suppressed the greenhouse effect, while significant intensification of relief ruggedness caused by wide development of plate tectonics after 2 Ga resulted in the change of atmospheric circulation. All these processes finally led to the global glaciations. The latters commenced earlier, in the Paleoproterozoic, simultaneously with first manifestations of Fe-Ti basaltic magmatism, which came into force only in the middle Paleoproterozoic. Thus, a fundamental change in tectonomagmatic activity acted as the trigger for environmental changes and biospheric evolution, supplying a qualitatively new material on the Earth's surface. Data available on Venus and Mars suggest that their tectonomagmatic evolution also occurred at the close scenario. Two major types of morphostructures, which are vast plains, composed by young basaltic flows, and older lightweight uplifted segments with a complicated topography (tesseras on the Venus and earths (terras) on the Mars), can evidence about two-stage evolution of these planets. Presence of drainage systems on Mars and valles on Venus assumes existence of liquid water on early stages of their development. Like on the Earth, red beds and global glacials appeared on the Mars at the middle stage of it's evolu-tion, and may be at this period ancient microorganisms existed on Mars (McKay et al., 1996). Powerful eruptions of gigantic volcanoes of Tharsis and Elysium, probably, led to fall of tem-perature and disappearance of liquid water on Mars. In contrast to Mars, on Venus appeared speeded up greenhouse effect, which also led to dry and very hot surface. So, development of tectonomagmatic processes was favourable for the biosphere evolution only on the Earth.

  20. The Role of Crustal Strength in Controlling Magmatism and Melt Chemistry During Rifting and Breakup

    NASA Astrophysics Data System (ADS)

    Armitage, John J.; Petersen, Kenni D.; Pérez-Gussinyé, Marta

    2018-02-01

    The strength of the crust has a strong impact on the evolution of continental extension and breakup. Strong crust may promote focused narrow rifting, while wide rifting might be due to a weaker crustal architecture. The strength of the crust also influences deeper processes within the asthenosphere. To quantitatively test the implications of crustal strength on the evolution of continental rift zones, we developed a 2-D numerical model of lithosphere extension that can predict the rare Earth element (REE) chemistry of erupted lava. We find that a difference in crustal strength leads to a different rate of depletion in light elements relative to heavy elements. By comparing the model predictions to rock samples from the Basin and Range, USA, we can demonstrate that slow extension of a weak continental crust can explain the observed depletion in melt chemistry. The same comparison for the Main Ethiopian Rift suggests that magmatism within this narrow rift zone can be explained by the localization of strain caused by a strong lower crust. We demonstrate that the slow extension of a strong lower crust above a mantle of potential temperature of 1,350 °C can fit the observed REE trends and the upper mantle seismic velocity for the Main Ethiopian Rift. The thermo-mechanical model implies that melt composition could provide quantitative information on the style of breakup and the initial strength of the continental crust.

  1. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera

    NASA Astrophysics Data System (ADS)

    Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro

    The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.

  2. Trench curvature initiation: Upper plate strain pattern and volcanism Insights from the Lesser Antilles arc, St Barthélemy Island, FWI.

    NASA Astrophysics Data System (ADS)

    Philippon, M. M.; Legendre, L.; Münch, P.; Léticée, J. L.; Lebrun, J. F.; Maincent, G.; Mazabraud, Y.

    2017-12-01

    Upper plate deformation pattern reflect the mechanical behavior of subduction zones. In this study, we focus on the consequence of the entrance of a buoyant plateau within the Caribbean subduction zone during Eocene by studying the oldest cropping out rocks of the Lesser Antilles volcanic arc. Based on novel geochronological ages and available bio-stratigraphic data we show that St Barthélemy Island was built during three successive volcanic events over the Mid- Eocene to Oligo-Miocene time span. We show that magmatism is mainly Oligocene, not Eocene. Moreover, we demonstrate that tholeitic and calc-alkaline magmatism co-existed all along the arc activity. And ultimately we evidence a westward migration of the volcanism at the island scale. Furthermore, We demonstrate that during 21 Ma, the built of theses volcanoes, the stress regime evolves from pure to radial extension with a sub-horizontal σ3 showing N30° mean trend. To conclude, our novel results invalidate the chronological, geochemical and spatial evolution of the island arc magmatism formerly proposed in the early eighties. Indeed, arc magmatism in St Barthélemy was mainly related to the West-dipping Lesser Antilles subduction zone and not to the South-dipping Greater Antilles subduction and upper plate deformation evolution observed at local scale reflects large scale mechanical behavior of the Lesser Antilles subduction zone. A two steps restoration of the regional deformation shows that the switch from pure parallel to the trench extension to radial extension within the Caribbean upper plate reflects trench curvature that followed the entrance of the Bahamas bank in the Greater Antilles subduction zone and its collision.

  3. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    NASA Astrophysics Data System (ADS)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  4. Evidence of magmatic degassing in Archean komatiites: Insights from the Wannaway nickel-sulfide deposit, Western Australia

    NASA Astrophysics Data System (ADS)

    Caruso, Stefano; Fiorentini, Marco L.; Moroni, Marilena; Martin, Laure A. J.

    2017-12-01

    Magmatic degassing from komatiite lava flows potentially influenced the geochemical evolution of the Archean atmosphere and hydrosphere. We argue that the escape of SO2-rich volatiles from komatiites impacted on the mineralogical, geochemical and isotopic composition of associated nickel-sulfide mineralization leaving behind detectable and measurable footprints that can be best observed where the polarity of the magmatic sequence is clearly recognizable. Here we focus on the ore-bearing sequence of the Archean komatiite-hosted N01 nickel-sulfide orebody at Wannaway, Yilgarn Craton, Western Australia. This deposit displays a volcanic sequence with a well-defined succession of stratigraphically-correlated facies comprising a massive sulfide horizon at the base of the channelized komatiite flow, overlain by matrix and disseminated sulfide mineralization. Pyrrhotite is the dominant sulfide phase in the lower part of the ore profile. The amount of troilite gradually increases from the base of the matrix ore over several meters up-sequence, eventually becoming dominant at the expense of pyrrhotite. In the upper portion of the mineralized sequence troilite is associated with accessory Mn sulfide alabandite (MnS), which is usually reported in reduced terrestrial and extra-terrestrial environments. Such mineralogical and volcanological features are consistent with upwards decreasing in fS2 and fO2 away from the basal contact of the komatiite flow. After evaluating the possible role of metamorphism, the pyrrhotite-troilite-alabandite assemblage and the progressive up-sequence decrease of the pyrrhotite/troilite ratio across the upper part of the mineralized sequence are interpreted as magmatic and indicative of progressive loss of sulfur with concomitant establishment of reducing conditions within the sulfide melt ponding at the base of the komatiite lava. In this context, the investigation of spatially constrained sulfur isotopic signatures allows to isolate the multiple sulfur fractionation processes that impacted on sulfide mineralization and ultimately permits the identification of the isotopic shift associated with magmatic degassing. Following this approach we recognize two distinct sulfur isotope exchanges processes triggered by 1) assimilation of sulfidic shales during emplacement of the komatiite flow, and 2) equilibration between the sulfide melt and the sulfur dissolved in the silicate melt. We finally correlate the remaining δ34S depletion up-stratigraphy with the loss of heavy sulfur isotopes through magmatic degassing of SO2-rich volatiles from the ultramafic flow. The emission of SO2 upon emplacement and cooling of the magma flow would also explain the progressive reducing fO2 and fS2 conditions indicated by variations in mineral assemblages from the base of the komatiite upwards.

  5. SHRIMP U-Pb in zircon geochronology of granitoids from Myanmar: temporal constraints on the tectonic evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Barley, M. E.; Zaw, Khin

    2009-04-01

    The Mesozoic to Tertiary tectonic evolution of Southeast Asia is the result of the convergence and collision of fragments of Gondwanaland with Eurasia culminating in the collision of India. A rapidly growing geochronological database is placing tight constraints on the timing and duration of magmatic episodes, metallogenic and tectonic events in the Himalayas, Tibet and eastern Indochina. However, there is little comparable geochronology for Myanmar. This SHRIMP U-Pb in zircon geochronology focuses on granitoids from the Mogok Metamorphic Belt (MMB, a belt of high grade metamorphic rocks at the edge of the Shan-Thai Terrane), the Myeik Archipelago (Shan-Thai Terrane) and the west Myanmar Terrane. Strongly deformed granitic orthogneisses in the MMB near Mandalay contain Jurassic (~170 Ma) zircons that have partly recrystallised during ~43 Ma high-grade metamorphism. A hornblende syenite from Mandalay also contains Jurassic zircons with evidence of Eocene metamorphism rimmed by thin zones of 30.9 ±0.7 Ma magmatic zircon. The relative abundance of Jurassic zircons in these rocks is consistent with suggestions that southern Eurasia had an Andean-type margin at that time. Mid-Cretaceous to earliest Eocene (120 to 50 Ma). I-type granitoids in the MMB, Myeik Archipelago and west Myanmar confirm that prior to the collision of India, an up to 200km wide magmatic belt extended along the Eurasian margin. The primitive I-type Khanza Chaung granodiorite in the Wuntho batholith in the west Myanmar terrane hosts porphyry-style mineralisation and has a magmatic age of 94  1 Ma. Triassic (~240 Ma), Jurassic (~170 Ma) and Early Cretaceous xenocryst zircons in this granitoid correspond with peaks of granitoid magmatism in the Shan-Thai terrane and establish that west Myanmar was part of the margin of Eurasia during the Mesozoic. A suite of highly fractionated metaluminous to peraluminous I-type granitoids with associated Sn-W-Ta mineralisation emplaced in the Myeik Archipelago of southern Myanmar (Shan-Thai terrane) have magmatic ages of 82  1.4 Ma (Kawthoung), 62  1.2 Ma (Hermyngi) and 50  0.5 Ma (Auk Bok). Xenocryst zircons in these granitoids are either Proterozoic or derived from older members of the suite. This suite which extends into adjacent peninsular Thailand and was emplaced into thickened continental crust well inboard of the subduction zone during rapid convergence and subduction of the India-Australia plate. The primitive I-type Shangalon granodiorite in the Wuntho Batholith of west Myanmar has a magmatic age of 38.5  0.6 Ma indicating subduction continued until ~40 Ma. Metamorphic overgrowths to zircons in the MMB orthogneiss near Mandalay date a period of Eocene (~43 Ma) high-grade metamorphism possibly during crustal thickening related to the initial collision between India and Eurasia (65 to 55 Ma). This was followed by emplacement of syn-tectonic hornblende syenites and leucogranites between 35 and 23 Ma. Comparison of the geochronology of Myanmar granitoids with the Hymalayas, Tibet and other parts of Southeast Asia indicates that Myanmar played a key role linking the Hymalayan Orogen to the tectonic evolution of Southeast Asia.

  6. Looking through the Zircon Kaleidoscope: Durations, Rates, and Fluxes in Silicic Magmatic System

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Wotzlaw, J. F.

    2014-12-01

    The crystallization rate of zircon in a cooling magma depends on the cooling rate through the saturation interval in addition to compositional and kinetic factors. Repeated influx of hot magma over 10-20 ka leads to short-amplitude temperature oscillations, which are recorded by resorption/crystallization cycles of zircon. Plotting the number of dated zircons versus their high-precision U-Pb date results in curves that qualitatively relate to the evolution of magma temperature over time [1], [2]. The trace elemental, O and Hf isotopic composition of zircon gives indications about the degree of magma homogenization and thermal evolution. Zircons from systems with small volumes and magma fluxes record non-systematic chemical and Hf isotopic heterogeneity, suggesting crystallization in non-homogenized ephemeral magma batches. Such systems typically lead to small, mid-upper crustal plutons [3]. Zircons from large-volume crystal-poor rhyolites record initial heterogeneities and rapid amalgamation of smaller magma batches over 10 ka [4], while zircons from monotonous intermediates record magma evolution over several 100 ka with coherent fractionation trends suggesting homogenization and a coherent thermal evolution [2]. In both cases, volumes and flux rates were sufficient to produce large volumes of eruptible magma on very contrasting time scales. Zircon is therefore recording cyclic crystallization-rejuvenation processes during temperature fluctuations in intermediate to upper crustal magma reservoirs but may not relate to the physical pluton emplacement or eruption. We can quantify volumes, rates of magma influx, rates of cooling and crystallization, and the degree of convective homogenization from zircon data, and infer reservoir assembly and eruption trigger mechanisms. These parameters largely control the evolution of long-lived, low-flux silicic magmatic system typical for mid-to-upper crustal plutons, monotonous intermediates are characterized by intermediate durations and fluxes while short-lived, high-flux systems preferentially produce crystal-poor rhyolites. References: [1] Caricchi et al. (2014) Nature 511, 457-461; [2] Wotzlaw et al. (2013) Geology 41, 867-870; [3] Broderick (2013) PhD thesis, Univ. of Geneva; [3] Wotzlaw et al. (2014) Geology, doi:10.1130/G35979.1

  7. Zirconology of lherzolites in the Nurali Massif

    NASA Astrophysics Data System (ADS)

    Krasnobaev, A. A.; Rusin, A. I.; Anfilogov, V. N.; Valizer, P. M.; Busharina, S. V.; Medvedeva, E. V.

    2017-06-01

    The age trend (SHRIMP U/Pb) of the evolution of zircon is obtained for the first time in lherzolites of the Nurali Massif. Zircons are subdivided into groups by the crystallomorphological and geochemical features. These specific features in zircon development are confirmed by the age dates. Precambrian dates (no younger than 1190 Ma) correspond to mantle sources of the lherzolite block. The Early Silurian (445-448 and 439-440 Ma) wass the time of lherzolite magmatism of 10-15 Ma in duration. The Middle Devonian (382.9 ± 8.7 Ma) corresponded to postmagmatic processes related to the effect of gabbro-diorite intrusions crowning in the Nurali Massif.

  8. Water content, speciation and isotopic composition in volcanic glass: an open window on magma degassing processes or paleoclimate?

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit

    2016-04-01

    The content, speciation and isotopic composition of water in volcanic glass have been used for decades as recorder of magma degassing or late glass rehydration processes. Magmatic or paleoclimate information are derived depending on the primary (magmatic) or meteoric (secondary) origin of water. In this study, we attempt to discriminate residual magmatic from secondary meteoric water in volcanic glass. Using samples from different geological settings and different climatic conditions, we show that the H-isotope composition and water content measured via a TC/EA-MAT253 system in volcanic glass alone are not always sufficient to provide clear distinction between magmatic and meteoric origin. However, it is quite easy to resolve δD evolution during post-deposit rehydration by meteoric water from magma degassing when volcanic glass have a δD <-100‰ or >-50‰ and [H2O]tot >1.5-2wt.%. Water speciation inferred from near-infrared spectroscopy also provides valuable information complementary to isotopic and total water measurements. During magma degassing (typically with [H2O]tot decreasing from 6wt.% to ~0wt.% water) H2O/OH is expected to decrease from 2 to close to 0. However, our dataset shows the opposite trend with an increase of H2O/OH from 2 to ~5. We interpret it as post deposit rehydration of the volcanic glass. Overall our results show that the discrimination of the water origin is essential to discuss magma degassing processes or paleoclimatic reconstitutions. The present study of hydrous glass supports the use of H-isotopes of volcanic glass to discuss paleoclimate reconstitution in a specific region. To this purpose, the volcanic glass has to be almost fully rehydrated in order to fingerprint the isotopic composition of the rehydration water. A sharp time constrain can be obtained if the full rehydration occurs quickly after the eruption. This is most likely to occur in meters thick volcanic pyroclast deposits that undergo slow cooling rates and thus can stay at few hundreds °C for a time long enough to ensure complete chemical reaction (few to hundreds of years) after the eruption but still short on a geological scale.

  9. Some ideas on the rock cycle: 1788-1988

    NASA Astrophysics Data System (ADS)

    Gregor, Bryan

    1992-08-01

    Hutton's procrastination on the subject of unconformities left his cyclic vision of geology in the shadows, while his success in demonstrating the igneous origin of granite led on to Classical Magmatism, a paradigm of secular evolution that reigned practically unchallenged for almost a century. When radiometric dating revealed the true extent of geologic time, a neo-Huttonian, cyclic view gained strength in Europe because of its ability to explain the salt content of the ocean and the sodium fixed in metamorphism of sediments to paragneiss, both of which had become embarrassing to the magmatists. Meantime, in North America, a quite independent movement was afoot to claim for sediments and cyclic processes their rightful place in geologic theory. It led to the acknowledgment that the cyclic and secular views of the Earth are complementary and not contradictory, and that geologic materials are recycled on varying time scales against a background of slow, secular evolution of the Earth.

  10. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to parallel to the continental margin during the Early Cretaceous.

  11. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean island basalt source. Melting of the subcontinental metasomatized lithosphere is tentatively related to small-scale shallow mantle upwelling and asthenospheric uprise at the triple junction between the western High Atlas, the Middle Atlas and the eastern High Atlas domains during a period of relative tectonic quiescence.

  12. Temporal and Spatial Fluctuations in Ancestral Northern Cascade Arc Magmatism from New LA-ICP-MS U-Pb Zircon Dating

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; Mullen, E.; Jean-Louis, P.; Tepper, J. H.

    2015-12-01

    Mt. Baker and the adjacent Chilliwack batholith (MBC focus) in NW Washington preserve the longest magmatic record in the Cascade Arc, providing an excellent natural laboratory for examining the spatial, temporal and geochemical evolution of Cascade magmatism and links to tectonic processes. We present new U-Pb zircon LA-ICP-MS ages for 14 samples from MBC and neighboring regions of the north Cascades. The new results are up to 8 Myr different from previous K-Ar ages, illustrating the need for new age determinations in the Cascades. A maximum age of 34.74±0.24 Ma (2σ) (Post Creek stock) is consistent with 35-40 Ma ages for arc inception in the southern Cascades. The most voluminous MBC plutons cluster at 32-29 Ma, consistent with an early flare-up that also coincides with intrusion of the Index batholith farther south (2 samples at 33.26±0.19, 33.53±0.15 Ma). This flare-up is absent in the northernmost Cascades where the oldest pluton (Fall Creek stock) is 6.646±0.046 Ma, 4 Myr younger than previously cited. Earliest Cascade magmatism is progressively younger to the north of MBC, possibly tracing the northerly passage of the slab edge. MBC activity was continuous to 22.75±0.17 Ma (Whatcom Arm), marking the initiation of an 11 Myr hiatus. Magmatism resumed at 11.33±0.08 Ma (Indian Creek) and continued to the modern Mt. Baker cone, defining a pattern of southwesterly migration over ~55 km that may be attributable to slab rollback and arc rotation (e.g. Wells & McCaffrey 2013). Uniformity of the rate and direction of migration implies that rollback and rotation began at least 11 Myr ago. Post-hiatus magmas show distinct geochemical and petrologic characteristics including a major Pb isotopic shift. The 2.430±0.016 Ma Lake Ann stock contains 4.2 Ma zircon antecrysts, recording prolonged activity in that area. The 1.165±0.013 Ma Kulshan caldera ignimbrite contains ~200 Ma inherited zircons that may provide the first direct record of Wrangellian basement beneath the arc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichelberger, J.C.

    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by whichmore » recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.« less

  14. Melt recharge, f O2-T conditions, and metal fertility of felsic magmas: zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China

    NASA Astrophysics Data System (ADS)

    Meng, Xuyang; Mao, Jingwen; Zhang, Changqing; Zhang, Dongyang; Liu, Huan

    2018-06-01

    The magmatic hydrothermal Pulang Cu deposit (Triassic) and the Beiya Au-Cu deposits (Eocene) are located in the Sanjiang copper porphyry belt, southwest China. Zircon chemistry was used to constrain the magmatic evolution and oxidation state of the porphyries. The results show that porphyries of the Beiya district formed from an early oxidized melt and a later relatively reduced and more evolved magma, whereas Pulang experienced a normal Cu porphyry evolutionary trend. The Pulang porphyries crystallized from more oxidized magma (ΔFMQ + 2.9-4.6, average = 4.0 ± 1.0, n = 3) with an average temperature of 709 ± 6 °C compared to the Beiya porphyries (ΔFMQ + 0.6-3.5, average = 1.9 ± 1.3, n = 5) with a mean magmatic temperature of 780 ± 22 °C. These data, combined with data from other Cu- and Au-rich porphyries in the Sanjiang belt (i.e., Machangjing Cu, Yao'an Au), are consistent with previous experimental work showing that elevated Cu and Au solubilities in magma require oxidizing conditions. A compilation of existing geochemical data for magmatic zircons from fertile and barren porphyry systems worldwide establishes an optimal diagnostic interval on CeIV/CeIII-TTi-in-zircon and (Eu/Eu*)N plots for generating magmatic hydrothermal Cu-Au deposits.

  15. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Jiyuan; Guo, Lin; Li, Jianxing; Li, Yanguang; Smithies, Robert H.; Wingate, Michael T. D.; Meng, Yong; Chen, Shefa

    2016-07-01

    Ordovician to Devonian sodic granites dominate the newly recognized Luotuojuan composite granite in the Lebaquan-Luotuojuan-Niujuanzi region of Beishan, along the southern margin of the Central Asian Orogenic Belt in NW China. The granites include sodic (K2O/Na2O > 0.5) tonalites with low Y (< 7 ppm), Yb (< 0.7 ppm), high Sr/Y (> 68) that formed during at least two events at c. 435 and c. 370-360 Ma. Their compositions are consistent with high-pressure melting of basaltic crust, although relatively non-radiogenic Nd isotope compositions (εNd(t) + 0.9) require some crustal assimilation. The interpretation that these granites reflect melts of a subducted slab (i.e. adakite) is supported by independent local and regional geological evidence for an oceanic subduction-accretion setting, including a long history of calc-alkaline magmatism and the identification of a series of early Paleozoic ophiolite belts. Other sodic granites forming the Luotuojuan composite granite are mainly quartz-diorite and granodiorite formed between c. 391 and c. 360 Ma. These rocks are not adakites, having Sr concentrations and Sr/Y ratios too low and Y and Yb concentrations too high. They are low- to medium-K calc-alkaline rocks more typical of magmas derived through melting in a subduction modified mantle wedge. Compositional changes from sodic to potassic granites, over time frames consistent with subduction processes, suggest at least two separate cycles, or pulses, of hot subduction in the Lebaquan-Luotuojuan-Niujuanzi region. Although early Paleozoic adakites have been inferred to exist elsewhere in the Beishan region, many of the reported adakitic rocks have compositions inconsistent with melting of subducted oceanic lithosphere and so tectonic interpretation of hot subduction might not be valid in these cases. A study of regional granite data also shows not only that adakite magmatism does not extend into the Permian but that if subduction-accretion processes extended into the late Paleozoic, no typical subduction-related magmatism was preserved. New and published Nd isotope data from regional granites also requires at least the local presence of Proterozoic basement, or microcontinental slivers, in the evolution of the Beishan region.

  16. The changing shapes of active volcanoes: History, evolution, and future challenges for volcano geodesy

    USGS Publications Warehouse

    Poland, Michael P.; Hamburger, Michael W.; Newman, Andrew V.

    2006-01-01

    At the very heart of volcanology lies the search for the 'plumbing systems' that form the inner workings of Earth’s active volcanoes. By their very nature, however, the magmatic reservoirs and conduits that underlie these active volcanic systems are elusive; mostly they are observable only through circumstantial evidence, using indirect, and often ambiguous, surficial measurements. Of course, we can infer much about these systems from geologic investigation of materials brought to the surface by eruptions and of the exposed roots of ancient volcanoes. But how can we study the magmatic processes that are occurring beneath Earth’s active volcanoes? What are the geometry, scale, physical, and chemical characteristics of magma reservoirs? Can we infer the dynamics of magma transport? Can we use this information to better forecast the future behavior of volcanoes? These questions comprise some of the most fundamental, recurring themes of modern research in volcanology. The field of volcano geodesy is uniquely situated to provide critical observational constraints on these problems. For the past decade, armed with a new array of technological innovations, equipped with powerful computers, and prepared with new analytical tools, volcano geodesists have been poised to make significant advances in our fundamental understanding of the behavior of active volcanic systems. The purpose of this volume is to highlight some of these recent advances, particularly in the collection and interpretation of geodetic data from actively deforming volcanoes. The 18 papers that follow report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.

  17. Contemporaneous alkaline and tholeiitic magmatism in the Ponta Grossa Arch, Paraná-Etendeka Magmatic Province: Constraints from U-Pb zircon/baddeleyite and 40Ar/39Ar phlogopite dating of the José Fernandes Gabbro and mafic dykes

    NASA Astrophysics Data System (ADS)

    Almeida, Vidyã V.; Janasi, Valdecir A.; Heaman, Larry M.; Shaulis, Barry J.; Hollanda, Maria Helena B. M.; Renne, Paul R.

    2018-04-01

    We report the first high-precision ID-TIMS U-Pb baddeleyite/zircon and 40Ar/39Ar step-heating phlogopite age data for diabase and lamprophyre dykes and a mafic intrusion (José Fernandes Gabbro) located within the Ponta Grossa Arch, Brazil, in order to constrain the temporal evolution between Early Cretaceous tholeiitic and alkaline magmatism of the Paraná-Etendeka Magmatic Province. U-Pb dates from chemically abraded zircon data yielded the best estimate for the emplacement ages of a high Ti-P-Sr basaltic dyke (133.9 ± 0.2 Ma), a dyke with basaltic andesite composition (133.4 ± 0.2 Ma) and the José Fernandes Gabbro (134.5 ± 0.1 Ma). A 40Ar/39Ar phlogopite step-heating age of 133.7 ± 0.1 Ma from a lamprophyre dyke is identical within error to the U-Pb age of the diabase dykes, indicating that tholeiitic and alkaline magmatism were coeval in the Ponta Grossa Arch. Although nearly all analysed fractions are concordant and show low analytical uncertainties (± 0.3-0.9 Ma for baddeleyite; 0.1-0.4 Ma for zircon; 2σ), Pb loss is observed in all baddeleyite fractions and in some initial zircon fractions not submitted to the most extreme chemical abrasion treatment. The resulting age spread may reflect intense and continued magmatic activity in the Ponta Grossa Arch.

  18. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    NASA Astrophysics Data System (ADS)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the onset of the subduction of the Paleo-Pacific Plate beneath the East Asian continental margin probably took place during the latest Triassic (ca. 215 Ma); (3) changes in the drifting direction of the Paleo-Pacific Plate were responsible for the intermittent magmatic activities; and (4) roll-back of the subducted plate resulted in the oceanwards migration of the magmatic arc and large-scale back-arc extension throughout NE China during the Early Cretaceous.

  19. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia

    NASA Astrophysics Data System (ADS)

    Soloviev, Serguei G.; Kryazhev, Sergey G.

    2017-08-01

    The Skrytoe deposit (>145 Kt WO3, average grade 0.449% WO3) in the Sikhote-Alin orogenic system (Eastern Russia) is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in a late to post-collisional tectonic environment after cessation of active subduction. It is localized within a mineralized district of reduced-type skarn W and veined Au (±W) deposits and occurrences related to the Early Cretaceous ilmenite-series plutonic suite. The deposit incorporates large stockworks of scheelite-bearing veinlets related to propylitic (amphibole, chlorite, quartz) and phyllic (quartz, sericite, albite, apatite, and carbonate) hydrothermal alteration. The stockwork cuts flat-lying mafic volcanic rocks and limestone partially replaced by pyroxene skarn that host the major W orebodies. Scheelite is associated with pyrrhotite and/or arsenopyrite, with minor chalcopyrite and other sulfide minerals; the late phyllic stage assemblages hosts Bi and Au mineralization. The fluid evolution included low-salinity moderate-temperature, moderate-pressure (˜370-390 °C, ˜800 bars) methane-dominated carbonic-aqueous fluids that formed post-skarn propylitic alteration assemblages. Then, at the phyllic stage, there has been an evolution from methane-dominated, moderate-temperature (330-360 °C), low-salinity (<12.3 wt% NaCl equiv.) fluids forming the early quartz-sericite-albite-arsenopyrite assemblage, through lower temperature (290-330 °C) methane-dominated, low-salinity (˜9-10 wt% NaCl equiv.) fluids forming the intermediate quartz-sericite-albite-scheelite-pyrrhotite assemblage, to yet lower temperature (245-320 °C) CO2-dominated carbonic-aqueous low-salinity (˜1-7 wt% NaCl equiv.) fluids forming the late quartz-sericite-sulfide-Bi-Au assemblage. Recurrent fluid immiscibility (phase separation) and cooling probably affected W solubility and promoted scheelite deposition. The stable isotope data support a sedimentary source of carbon (δ13Cfluid = ˜-21 to -10 ‰), a magmatic source for water (δ18OH2O = +7.4 to +7.7 ‰), and dominantly crustal-derived source of sulfur (δ34S = -4.6 to -2.9 ‰) in the hydrothermal fluids. This is consistent with the development of larger, longer crystallizing crustal intermediate to felsic magma chambers in the late to post-collisional tectonic environment, with their protracted magmatic evolution advancing magmatic differentiation and partitioning of W into magmatic-hydrothermal fluid. The dominating role of the crustal-derived magmatic water, sulfur, and carbon appears to be an important feature of reduced W skarn deposits related to ilmenite-series granitoids.

  20. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.

  1. Shift from magmatic to phreatomagmatic explosion controlled by the evolution of lateral fissure eruption in Suoana Crater, Miyakejima

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Nemeth, Karoly; Noguchi, Rina; Oikawa, Teruki

    2016-04-01

    Combined analysis of the proximal deposit and exposed feeder-diatreme structure of the Suoana Crater of Miyakejima reveals the process of magma-water interaction controlled by the evolution of lateral fissure eruption in a stratovolcanic edifice. The Suoana Crater, an oval maar with 400 x 300 m across is one of the craters of the Suoana-Kazahaya crater chain which is formed during a fissure eruption in the 7th Century. The eruption fissure extends ~3 km from the summit area (~700 m asl) to the lower-flank area (~200m asl). The eruption fissure consists of upper maar-chain (>450 m asl) and lower scora-cone chain. As the wall of the 2000 AD caldera truncated at near the center of the Suoana Crater, the vertical section of the feeder dike - diatreme - maar system of the Suoana Crater is exposed in the caldera wall (Geshi et al., 2011). The ejected materials from the Suoana crater indicate the transition of eruption style from magmatic to phreatomagmatic. The juvenile clasts in the lower half of the deposit exhibit spatter-like shape, indicating the typical deposit from a vigorous fire fountain. Contrary, the juvenile clasts in the upper half are less vesiculated and exhibit cauliflower-shape, indicating the typical phreatomagmatic activity. This transition indicates that the magma-water interaction started at the middle of the eruption. Judging from the ratio of the thickness of the lower and upper parts, the contrast of the content of juvenile clasts, and bulk density of the deposit, the total ejected volume of magma is larger in the lower part compare to the upper part. The transition from magmatic to phreatomagmatic occurred only in the upper half of the eruption fissure, including the Suoana crater, whereas the lower half of the fissure continued dry magmatic eruption throughout their activity. The limited distribution of phreatomagmatic activity can be resulted by the magma extraction from the upper feeder dike system to the lower eruption fissure as it contributed to the general drop of magmatic pressure in the upper section of the fissure-fed conduit. The cross section of the Suoana diatreme indicates that the phreatomagmatic explosion occurred ~260 m below the original ground surface, corresponding to ~400 m above the present sea level. This elevation is clearly higher than that of the lower part of the eruption fissure which reached to the point ~ 200 m above sea level. The drop of magma flux and the general gravitational instability of the conduit resulted that ground water was able to access the still hot feeder dikes and initiate phreatomagmatic explosive eruptions (e.g., Geshi and Neri, 2014). The existence of buried summit caldera that can host large quantity of groundwater also contributes the limited distribution of phreatomagmatic activity in the summit area. We propose that this seemingly reversal trend from early magmatic to later phreatomagmatic explosive eruption style in top of large mafic caldera volcanoes in fissure fed volcanic islands is probably a far more common eruption mechanism and hence it needs to be considered in volcanic hazard scenario descriptions.

  2. History of the Magmatic Feeding System of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Orsi, G.; Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.

    2007-12-01

    The definition of the magmatic feeding system of active volcanoes, in terms of composition, time-scale of crystallization, relation between composition of the erupted magma and structural position of vents, magma chamber processes and architecture, is of extreme importance for the hazard evaluation. The studies that are carried out for the definition of the magmatic systems include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb). The Campi Flegrei caldera magmatic structure is characterized by deep and shallow magma chambers. In the deep reservoir (20-10 km depth) mantle derived magmas differentiate and are contaminated with continental crust. In the shallow reservoirs isotopically distinct magmas further differentiate, mix and mingle before the eruptions. These processes generated isotopically distinct components that were variably involved along different structures of the Campi Flegrei caldera during time. At Campi Flegrei caldera the relation between the structural position of the eruptive vent, for the last 14 ka of activity, and the isotopic composition of the emitted magma allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition, and the magma chamber location and processes, of the future eruption, according to the position of the vent

  3. The Age of Rift-Related Basalts in East Antarctica

    NASA Astrophysics Data System (ADS)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  4. Magmatic zircon Lu-Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia

    NASA Astrophysics Data System (ADS)

    Reid, Anthony J.; Payne, Justin L.

    2017-11-01

    New in situ zircon Lu-Hf isotopic data are presented from magmatic rocks distributed across the Gawler Craton, Australia. These rocks range in composition from granite to gabbro, with the majority being granite or granodiorite and moderately peraluminous in composition. The new Lu-Hf isotopic data, together with previously published data, provide insight into the magmatic evolution of the craton and crust and mantle interaction through time. Increased juvenile content of magmatic rocks correlate with periods of extensional tectonism, in particular basin formation and associated magmatism during the Neoarchean to earliest Paleoproterozoic (c. 2555-2480 Ma), Middle Paleoproterozoic (c. 2020-1710 Ma) and Late Paleoproterozoic (c. 1630-160 Ma). In contrast, magmatic rocks associated with periods of orogenic activity show greater proportions of crustal derivation, particularly the magmatic rocks generated during the c. 1730-1690 Ma Kimban Orogeny. The final two major magmatic events of the Gawler Craton at c. 1630-1604 Ma and c. 1595-1575 Ma both represent periods of juvenile input into the Gawler Craton, with εHf(t) values extending to as positive as + 8. However, widespread crustal melting at this time is also indicated by the presence of more evolved εHf(t) values to - 6.5. The mixing between crust and mantle sources during these two youngest magmatic events is also indicated by the range in two stage depleted mantle model ages (TDMc) between 1.76 Ga and 2.51 Ga. Significant mantle input into the crust, particularly during formation of the c. 1595-1575 Ma Hiltaba Suite and Gawler Range Volcanics, likely facilitated the widespread crustal magmatism of this time period. Viewed spatially, average εHf(t) and TDMc values highlight three of the major shear zones within the Gawler Craton as potentially being isotopic as well as structural boundaries. Differences in isotopic composition across the Coorabbie Shear Zone in the western Gawler Craton, the Middle Bore Fault in the northern Gawler Craton and, to a lesser extent, the Kalinjala Shear Zone in the southern Gawler Craton, broadly correspond to crustal and even lithospheric-scale discontinuities evident in geophysical studies. Therefore, these shear zones may approximate some of the first order crustal domains within the Gawler Craton.

  5. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei

    2018-01-01

    The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing S-type granites and associated W-Sn deposits.

  6. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    USGS Publications Warehouse

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but because of the nature of the ore and waste rock, the major environmental impacts documented at the mine sites are reported to be waste disposal issues and somewhat degraded water quality.

  7. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks

    NASA Astrophysics Data System (ADS)

    Müntener, Othmar; Ewing, Tanya; Baumgartner, Lukas P.; Manzini, Mélina; Roux, Thibaud; Pellaud, Pierre; Allemann, Luc

    2018-05-01

    The subduction system in southern Patagonia provides direct evidence for the variability of the position of an active continental arc with respect to the subducting plate through time, but the consequences on the arc magmatic record are less well studied. Here we present a geochemical and geochronological study on small plutons and dykes from the upper crust of the southern Patagonian Andes at 51°S, which formed as a result of the subduction of the Nazca and Antarctic plates beneath the South American continent. In situ U-Pb geochronology on zircons and bulk rock geochemical data of plutonic and dyke rocks are used to constrain the magmatic evolution of the retro-arc over the last 30 Ma. We demonstrate that these combined U-Pb and geochemical data for magmatic rocks track the temporal and spatial migration of the active arc, and associated retro-arc magmatism. Our dataset indicates that the rear-arc area is characterized by small volumes of alkaline basaltic magmas at 29-30 Ma that are characterized by low La/Nb and Th/Nb ratios with negligible arc signatures. Subsequent progressive eastward migration of the active arc culminated with the emplacement of calc-alkaline plutons and dikes 17-16 Ma with elevated La/Nb and Th/Nb ratios and typical subduction signatures constraining the easternmost position of the southern Patagonian batholith at that time. Geochemical data on the post-16 Ma igneous rocks including the Torres del Paine laccolith indicate an evolution to transitional K-rich calc-alkaline magmatism at 12.5 ± 0.2 Ma. We show that trace element ratios such as Nb/Ta and Dy/Yb systematically decrease with increasing SiO2, for both the 17-16 Ma calc-alkaline and the 12-13 Ma K-rich transitional magmatism. In contrast, Th/Nb and La/Nb monitor the changes in the source composition of these magmas. We suggest that the transition from the common calc-alkaline to K-rich transitional magmatism involves a change in the source component, while the trace element ratios, such as Nb/Ta and Dy/Yb, of derivative higher silica content liquids are controlled by similar fractionating mineral assemblages. Analysis of a global compilation of Nb/Ta ratios of arc magmatic rocks and simple geochemical models indicate that amphibole and variable amounts of biotite exert a major control on the low Dy/Yb and Nb/Ta of derivative granitic liquids. Lastly, we suggest that the low Nb/Ta ratio of silica-rich magmas is a natural consequence of biotite fractionation and that alternative models such as amphibolite melting in subduction zones and diffusive fractionation are not required to explain the Nb/Ta ratio of the upper continental crust.

  8. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.

    2005-12-01

    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving rise to various Hawaiian lithologies. This analysis indicates that the important magmatic process that links geologic mapping to volcanic stage is thermal state of the volcano, as manifest by depth of magma evolution. The only criterion for rejuvenation volcanism is the presence of a significant time break (more than several hundred thousand years) preceding eruption.

  9. Divergent Geophysical Evolution of Vesta and Ceres

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.; Ermakov, A.; Castillo, J. C.; Fu, R. R.; McSween, H. Y., Jr.; McCord, T. B.; Park, R. S.; Russell, C. T.; De Sanctis, M. C.; Jaumann, R.; Konopliv, A. S.

    2017-12-01

    The Dawn mission explored two massive protoplanets in the main asteroid belt, Vesta and Ceres, that are fossils from the earliest epoch of solar system formation. Dawn's data provide evidence that these bodies formed very early, within the first few million years after CAIs, yet they followed divergent evolutionary paths. Vesta formed <1.5 Myr after CAIs of volatile-depleted chondritic material. Dawn confirmed the HED-based prediction that Vesta melted, forming at least a partial magma ocean, that yielded a large iron core. Gravity and spectral data support a complex magmatic evolution, resulting in a compositionally stratified mantle, with olivine sequestered in the deep mantle, and eruption of evolved melts. Such complexity can explain the apparent distinct magmatic reservoirs implied by trace elements in the HED clan. Discovery of hydrated material on Vesta's surface implies that volatile delivery to the inner solar system was an important process. Thus, while the basic HED paradigm was confirmed, we learned that differentiation on a small planet is more complex than envisioned. Dwarf planet Ceres was known to be water-rich before Dawn arrived. However, contrary to the expected ice-rich, viscously-relaxed smooth surface resulting from physical differentiation and freezing of an ancient subsurface ocean, its surface has many craters, implying a mechanically strong thick crust. The lack of large craters and Ceres' gravitationally-relaxed shape at long wavelengths implies that a strong crust overlies a weaker deep interior. The globally homogeneous distribution of minerals across the surface indicates that Ceres' interior experienced pervasive alteration. Topography and morphology of the surface reveals smoother, apparently resurfaced areas, generally at lower elevation, and rougher areas with greater relief. Local morphology such as crater floor deposits, isolated mountains, and enigmatic bright areas indicate recently active processes on Ceres, likely driven by brine cryovolcanism. Causes of the divergent evolution of these bodies include their accretionary environment, timing of accretion and size. Acknowledgements: Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  10. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; von Quadt, A.; Heinrich, C. A.; Peytcheva, I.; Marchev, P.

    2012-12-01

    Eastern Srednogorie in Bulgaria is the widest segment of an extensive magmatic arc that formed by convergence of Africa and Europe during Mesozoic to Tertiary times. Northward subduction of the Tethys Ocean beneath Europe in the Late Cretaceous gave rise to a broad range of basaltic to more evolved magmas with locally associated Cu-Au mineralization along this arc. We used U-Pb geochronology of single zircons to constrain the temporal evolution of the Upper Cretaceous magmatism and the age of basement rocks through which the magmas were emplaced in this arc segment. High precision isotope dilution-thermal ionization mass spectrometry (ID-TIMS) was combined with laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) for spatial resolution within single zircon grains. Three tectono-magmatic regions are distinguished from north to south within Eastern Srednogorie: East Balkan, Yambol-Burgas and Strandzha. Late Cretaceous magmatic activity started at ~ 92 Ma in the northernmost East Balkan region, based on stratigraphic evidence and limited geochronology, with the emplacement of minor shallow intrusions and volcanic rocks onto pre-Cretaceous basement. In the southernmost Strandzha region, magmatism was initiated at ~ 86 Ma with emplacement of gabbroic to dioritic intrusions and related dikes into metamorphic basement rocks that have previously been overprinted by Jurassic-Lower Cretaceous metamorphism. The Yambol-Burgas region is an extensional basin between the East Balkan and the Strandzha regions, which broadens and deepens toward the Black Sea further east and is filled with a thick pile of marine sediments and submarine extrusive volcanic rocks accompanied by coeval intrusions. This dominantly mafic magmatism in the intermediate Yambol-Burgas region commenced at ~ 81 Ma and produced large volumes of potassium-rich magma until ~ 78 Ma. These shoshonitic to ultrapotassic basaltic to intermediate magmas formed by differentiation of ankaramitic (high Ca) parental melts, produced from partial remelting of amphibole clinopyroxenites upon interaction with subduction-modified mantle wedge melts, according to earlier petrological studies. This peak of dominantly extrusive activity in the Yambol-Burgas region extended into the Strandzha region further south, in the form of numerous tholeiitic, calc-alkaline and high-K intrusions emplaced in the same time period between 81 and 78 Ma. Granitic rocks from exposed basement of Eastern Srednogorie zone are dated as Permian/Carboniferous (~ 275-300 Ma). Zircons with similar ages occur in Upper Cretaceous rocks from the East Balkan and Strandzha regions, indicating local incorporation as xenocrysts. In contrast, magmatic rocks from the intermediate Yambol-Burgas region contain mostly Ordovician (~ 460 Ma) or older inherited zircons, suggesting a either a different basement history or, more likely, a different level of magma storage and crustal assimilation. Integrating these geochronological results with a synthesis of the regional geology, we propose a two-stage geodynamic evolution for the Eastern Srednogorie segment of the Tethyan arc. The earlier stage of normal arc magmatism was driven by a southward slab retreat, which formed the ~ 92 Ma calc-alkaline to high-K shallow intrusions and volcanics in the north (East Balkan), 87-86 Ma old tholeiitic and calc-alkaline intrusions in the south (Strandzha), and the voluminous 81-78 Ma old gabbroic to granitic intrusions with predominantly calc-alkaline to high-K composition throughout the Strandzha region. This stage continued westward into the Central Srednogorie zone, where the southward younging of calc-alkaline magmatism correlates well with an increased input of primitive mantle melts, indicating asthenospheric incursion into a widening mantle wedge as a result of slab roll-back. The second stage proceeded in the Eastern Srednogorie zone only, where more extreme extension associated with the opening of the Black Sea back-arc basin led to the formation of an intra-arc rift in the Yambol-Burgas region, which now separates the East Balkan region from the Strandzha region. In this extensional environment, crustal thinning lead to decompression and increased heat flow, facilitating large-scale melting of lower crustal rocks and the formation of 81-78 Ma magmas. The unusual calcic composition of the parent magmas, their isotopic character and distinct xenocrystic population are consistent with a component of re-melting of hydrous lower-crustal cumulates, which probably formed in part during the first stage of the evolving arc.

  11. Numerical models of the magmatic processes induced by slab breakoff

    NASA Astrophysics Data System (ADS)

    Freeburn, Rebecca; Bouilhol, Pierre; Maunder, Ben; Magni, Valentina; van Hunen, Jeroen

    2017-11-01

    After the onset of continental collision, magmatism often persists for tens of millions of years, albeit with a different composition, in reduced volumes, and with a more episodic nature and more widespread spatial distribution, compared to normal arc magmatism. Kinematic modelling studies have suggested that slab breakoff can account for this post-collisional magmatism through the formation of a slab window and subsequent heating of the overriding plate and decompression melting of upwelling asthenosphere, particularly if breakoff occurs at depths shallower than the overriding plate. To constrain the nature of any melting and the geodynamic conditions required, we numerically model the collision of two continental plates following a period of oceanic subduction. A thermodynamic database is used to determine the (de)hydration reactions and occurrence of melt throughout this process. We investigate melting conditions within a parameter space designed to generate a wide range of breakoff depths, timings and collisional styles. Under most circumstances, slab breakoff occurs deeper than the depth extent of the overriding plate; too deep to generate any decompressional melting of dry upwelling asthenosphere or thermal perturbation within the overriding plate. Even if slab breakoff is very shallow, the hot mantle inflow into the slab window is not sustained long enough to sufficiently heat the hydrated overriding plate to cause significant magmatism. Instead, for relatively fast, shallow breakoff we observe melting of asthenosphere above the detached slab through the release of water from the tip of the heating detached slab. Melting of the subducted continental crust during necking and breakoff is a more common feature and may be a more reliable indicator of the occurrence of breakoff. We suggest that magmatism from slab breakoff alone is unable to explain several of the characteristics of post-collisional magmatism, and that additional geodynamical processes need to be considered when interpreting magmatic observations.

  12. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola)

    NASA Astrophysics Data System (ADS)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.

    2017-12-01

    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they also allow us to place constraints on the types of magmatic processes that operate in the lower levels of other trans-crustal magmatic systems.

  13. Temporal evolution of the Western and Central volcanism of the Aeolian Island Arc (Italy, southern Tyrhhenian Sea)

    NASA Astrophysics Data System (ADS)

    Leocat, E.; Gillot, P.-Y.; Peccerillo, A.

    2009-04-01

    The Aeolian Archipelago is a volcanic arc in the Southern Tyrrhenian Sea located on the continental margin of the Calabro-Peloritan basement. The Aeolian volcanism occurs in a very complex geodynamic setting linked to the convergence of the European and African plates. For that reason, it is strongly related to regional tectonic lineaments, such as the NW-SE trending Tindari-Letojani (TL) fault. The archipelago consists of seven main islands and several seamounts, which extend around the Marsili Basin, forming a ring-like shape, typical for an island arc. While the seamounts began their activities around 1 Ma , the emerged part is active since about 400 ka. The magmatic products of the whole arc range from typical island arc calc-alkaline (CA) and shoshonitic series, to slightly silica undersaturated potassic alkaline series that are typical of post-collisional settings. Furthermore, the TL fault, along which the Lipari and Vulcano islands are developed, separates a calc-alkaline western sector (Alicudi, Filicudi and Salina islands) from the calc-alkaline to potassic eastern system (Panarea and Stromboli islands) (Peccerillo,1999). This makes of the Aeolian Islands a complex volcanism, with a still controversial origin. In this context, the aim of this work is to constrain the sources and spatio-temporal evolution of this magmatism. We present here new K-Ar ages based on the accurate Cassignol-Gillot technique devoted to the dating of very young rocks (Gillot et Cornette, 1986). These geochronological data were used together with new geochemical data on the same samples. In this study, we attempt to understand the origin of those magmatic events and the relationship between the deep processes and the shallow structures. Our results allow us to define specific periods of very quick geomechemical changes. In the case of Filicudi island, the first rocks range in composition from CA basalts to andesites. This period ended with the edification of the Mte Guardia at 189±4 ka. Then the activity was followed by the construction of the Mte Terrione at 168±4 ka (Gillot 1987), which is matched by High K-Ca andesites emplaced in the Chiumento crater. Therefore, two different magmatic series took place in only 15 ka. The last eruption of Filicudi built the High K-CA dacite lava dome of Mte Montagnola. For Lipari island, the same event is observed around 120-100 ka. In fact, the emitted products evolved from CA andesitic basalts, that emplaced from 256±8 ka (Monte Chirica) to 119±7 ka (Monterosa), to High K-CA andesite after 100 ka. The rocks becam more and more differentiated to achieve High K-CA rhyolite composition during the last 40 ka. At the same time, the Monte Fossa delle Felci of Salina island shows a geochemical "excursion" around 100 ka, characterised by High K-CA dacite. The lower limit of Pollara explosive eruption, that emitted High K-CA rhyolite products, is constrain by a Monte dei Porri lava flow affected by Pollara crater and dated at 13±2 ka. Thus, all these magmatic changes correlate with morphological and volcanic variations. Finally, our first results confirm that the Aeolian arc volcanism is generated in a complex source, with important roles of both arc-type and anorogenic-type compositions. Datings on key samples show that role of different mantle sources change within a very short time span, especially in the central portion of the arc, along the TL lithosheric fault system. This work also gives new geochronological constrains on the duration of magmatic evolution and eruptive phases.

  14. Comparative Investigation of the Geological Histories Among Alba Patera and Syria Planum, Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.; Haldemann, A. F. C.; Hare, T.

    2002-01-01

    To better understand the evolution of the Tharsis magmatic complex, we performed a comparative investigation of the geological histories among two of the largest centers observed for Tharsis, Syria Planum and Alba Patera. Additional information is contained in the original extended abstract.

  15. Magmatic plumbing system of Kilauea Volcano: Insights from Petrologic and Geochemical Monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Pietruszka, A. J.; Marske, J.; Greene, A.; Lynn, K. J.

    2016-12-01

    Monitoring the petrology and geochemistry of lavas from active volcanoes in near realtime affords the opportunity to formulate and evaluate models for magma transport, mixing, and storage to help predict eruption scenarios with greater confidence and better understand magmatic plumbing systems (e.g., Poland et al. 2012, Nat. Geosci. 5, 295-300). Continous petrologic and geochemical monitoring of two ongoing eruptions at the summit and east rift zone of Kilauea Volcano on the Island of Hawaii have revealed much about the dynamics of magmatic processes. When the composition of lava shifted to a more MgO-rich composition in April 1983, we predicted that the Puu Oo eruption would not be short-lived. We had no idea it would continue for over 33 years. Subsequent changes in lava composition have highlighted the interplay between mixing pockets of rift-zone stored magma with new mantle-derived magma and the cooling-induced crystal fractionation during brief (usually days) eruption hiatuses. Surprisingly, the mantle derived magma has continued to change in composition including several 10-year cycles in Pb isotope ratios superimposed on a progressive depletion in highly incompatible elements (Greene et al. 2013, G3, doi: 10.1002/ggge.20285). These compositional trends are contrary to those observed for sustained basaltic eruptions on continents and argue for melt extraction from a multi-component source with 1-3 km wide heterogeneities. Compositional zoning within olivine phenocrysts, created by diffusive re-equilibration, also provide insights into magma mixing, storage, and transport at Kilauea. Timescales modeling of Fe-Mg and Ni concentration gradients within Puu Oo olivine indicate that crystals can be stored at magmatic temperatures for months to a few years before eruption (Shea et al. 2015, Geology 43, 935-938). Kilauea's ongoing eruptions continue to provide a dynamic laboratory for positing and testing models for the generation and evolution of basaltic magma.

  16. Petrology, geochemistry and zircon U-Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation

    NASA Astrophysics Data System (ADS)

    Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke

    2016-11-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as xenocrysts from basement entrained in the magma through limited crustal reworking. The younger ages (807-667 Ma) might represent subsequent thermal events. The results of this study suggest that the ca. 850 Ma layered igneous complex in Akarui Point was derived from a magma chamber constructed through arc-related magmatism which included components from ca. 1.0 Ga felsic continental crustal basement. The geochemical characteristics and the timing of protolith emplacement from this complex are broadly identical to those of similar orthogneisses from Kasumi Rock and Tama Point in the LHC and the Kadugannawa Complex in Sri Lanka, which record Early Neoproterozoic (ca. 1.0 Ga) arc magmatism. Although the magmatic event in Akarui Point is slightly younger, the thermal event probably continued from ca. 1.0 Ga to ca. 850 Ma or even to ca. 670 Ma. We therefore correlate the Akarui Point igneous complex with those in the LHC and Kadugannawa Complex formed under similar Early Neoproterozoic arc magmatic events during the convergent margin processes prior to the assembly of the Gondwana supercontinent.

  17. Tracking the evolution of a giant magmatic system from assembly to supereruption

    NASA Astrophysics Data System (ADS)

    Wotzlaw, J. F.; Schaltegger, U.; Frick, D. A.; Dungan, M. A.; Gerdes, A.; Günther, D.

    2012-12-01

    The chemical and physical characteristics of large magma bodies prior to eruption are closely related consequences of the balance between the rate of magma influx and the rate of cooling. The products of caldera-related silicic supereruptions, and less voluminous associated precursor and post-caldera activity preserve information about the thermal and chemical states of the system at the moment of evacuation of the magma chamber. Numerous studies of the Oligocene Fish Canyon Tuff (5000 km3; Colorado, USA) and related eruptive products of the La Garita caldera have addressed the origin and evolution of large-volume crystal-rich magmas. We use the presence of zircon in all eruptive products of the Fish Canyon magmatic system to gain a high-resolution geochronologic control on the thermal evolution of the magmatic system by using the trace element composition of U-Pb dated zircons as a proxy for magma crystallinity. New analytical protocols permit to obtain age, chemical and isotopic information from the exact same volume of single zircons (Schoene et al., 2010, GCA) allowing us to trace magma crystallinity as a function of time. Zircon U-Pb dates record ~400,000 years of crystallization. Variations in trace element composition in U-Pb dated zircons can be attributed to trace element fractionation imposed by co-crystallization of titanite. Due to the relatively high modal abundance of titanite in Fish Canyon magma and the extreme compatibility of the rare earth elements (REE) in this phase, titanite is the major control on many trace element concentrations and ratios (e.g. Yb/Dy) in coexisting zircons via varying degrees of depletion of these elements in the host melt. Modeling of compositional variations as a result of fractional crystallization suggests that the range of zircon compositions can be explained by 50-70% crystallization of a fractionating assemblage containing 0.4-0.8 vol.% titanite. The period of cooling centered around 28.4 Ma and is marked by an apparent crystallinity that is ~30% higher than at the time of eruption, implying that the Fish Canyon magma was perilously close to complete solidification, hence 'plutonic death', prior to late reheating. We estimate the duration of the reheating event from the age difference of the chemically most evolved (highest Yb/Dy) and the youngest dated zircon to be ~170 ka. This duration for reactivation of the near solidus crystal mush is in excellent agreement with estimates derived from numerical modeling of remelting by upward percolation of a hot gas-phase derived from underplated mafic magma ('gas sparging'; Bachmann and Bergantz, 2003, Geology). This investigation, which is the first in which high resolution U-Pb zircon geochronology has been coupled with geochemical modeling of systematic compositional variations in an accessory mineral, ties together many of the threads which have been developed independently during previous studies of the Fish Canyon magmatic system and places related petrogenetic processes into an absolute time frame.

  18. The Santa Izabel Complex, Gavião Block, Brazil: Components, geocronology, regional correlations and tectonic implications

    NASA Astrophysics Data System (ADS)

    Medeiros, Eder Luis Mathias; Cruz, Simone Cerqueira Pereira; Barbosa, Johildo Salomão Figueiredo; Paquette, Jean Louis; Peucat, Jean Jacques; Jesus, Silvandira dos Santos Góes Pereira de; Barbosa, Rafael Gordilho; Brito, Reinaldo Santana Correia de; Carneiro, Mauricio Antônio

    2017-12-01

    Cratons, as well as the basement of their marginal orogens, may represent important sites of research regarding the formation and evolution of Archean continental crusts. The Gavião Block is one of the oldest terranes in South America with rocks aged up to 3.6 Ga. Among the Archean units that outcrop in the southern sector of this block is the Santa Izabel Complex, which for the most part is located in the São Francisco Craton, close to its limit with the Araçuaí-West Congo Orogen. This complex has generally been described as comprising ortho- and paraderived rocks that were metamorphosed in high amphibolite facies. Studies in the southern region of this complex have shown the main components: (i) orthogneisses, whose protoliths are the Mesoarchean rocks of the Santa Izabel Magmatic Suite; and (iii) migmatites. and (iv) amphibolitic and metaultramafic enclaves. U-Pb studies (LA-ICPMS and SHRIMP) performed on zircons of the paleosome in metatexites and inherited zircons in migmatites indicate crystallization ages between 3091 ± 24 and 3136 ± 8 Ma for the rocks of the Santa Izabel Magmatic Suite. Inherited zircons aged ca. 3.4 Ga in paleosomes demonstrate the influence of older continental crust in the formation of these rocks. For the Caraguatai Magmatic Suite, the alignment of zircons and monazites suggests a crystallization age around 2.6 Ga. The Rhyacian migmatites were divided into metatexites and diatexites. Diatexites were divided into: (i) discontinuous boudinated early diatexites, which are parallel to stromatic metatexites, composing the gneissic banding. These rocks have diffuse metamorphic banding and features that suggest the action of mylonitization processes; and (ii) late diatexites, forming more continuous bodies, which truncate the gneissic banding. The migmatization occurred in two stages, with time interval between ca. 2.1 Ga and 2.07 Ga. The structural framework reveal the existence of four progressive Rhyacian deformation phases (Dn to Dn+3), and one deformation phase assumed to be Ediacaran (Dn+4). Gneissic banding is the dominant structure and lithofacies of the Santa Izabel and Caraguatai Magmatic suites, in which metatexites and late diatexites alternate between themselves. This progressive deformation occurred in conditions of high amphibolite facies, with stress fields varying between NW-SE and WSW-ENE. The youngest phase, Dn+4, was associated with distal deformations related to the evolution of the intracontinental Araçuaí-West Congo Orogen with a WSW-ENE stress field. The combined data suggest a complex evolution for the Gavião Block, involving juvenile accretion, crustal reworking, deformation and metamorphism/migmatization from the Paleoarchean to the early Rhyacian. Almost all elements of the evolutionary stages of the Gavião Block can be recognized in the study area, setting it as a natural laboratory to unravel the evolutionary history of this sector of the South American continental crust.

  19. Magmatism in Lithosphere Delamination process inferred from numerical models

    NASA Astrophysics Data System (ADS)

    Göǧüş, Oǧuz H.; Ueda, Kosuke; Gerya, Taras

    2017-04-01

    The peel away of the oceanic/continental slab from the overlying orogenic crust has been suggested as a ubiquitous process in the Alpine-Mediterranean orogenic region (e.g. Carpathians, Apennines, Betics and Anatolia). The process is defined as lithospheric delamination where a slab removal/peel back may allow for the gradual uprising of sub-lithospheric mantle, resulting in high heat flow, transient surface uplift/subsidence and varying types of magma production. Geodynamical modeling studies have adressed the surface response to the delamination in the context of regional tectonic processes and explored wide range of controlling parameters in pre-syn and post collisional stages. However, the amount and styles of melt production in the mantle (e.g. decompression melting, wet melting in the wedge) and the resulting magmatism due to the lithosphere delamination remains uncertain. In this work, by using thermomechanical numerical experiments, designed in the configuration of subduction to collision, we investigated how melting in the mantle develops in the course of delamination. Furthermore, model results are used to decipher the distribution of volumetric melt production, melt extraction and the source of melt and the style of magmatism (e.g. igneous vs. volcanic). The model results suggest that a broad region of decompression melting occurs under the crust, mixing with the melting of the hydrated mantle derived by the delaminating/subducting slab. Depending on the age of the ocean slab, plate convergence velocity and the mantle temperature, the melt production and crust magmatism may concentrate under the mantle wedge or in the far side of the delamination front (where the subduction begins). The slab break-off usually occurs in the terminal stages of the delamination process and it may effectively control the location of the magmatism in the crust. The model results are reconciled with the temporal and spatial distribution of orogenic vs. anorogenic magmatism in the Mediterranean region in which the latter may have developed due to the delamination process.

  20. Degassing behavior of Mt. Etna volcano (Italy) before and during the 2008-2009 eruption, inferred from crater plume and soil gas measurements

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe; La Spina, Alessandro; Giammanco, Salvatore; Burton, Michael; Caltabiano, Tommaso; Murè, Filippo; Randazzo, Daniele; Lopez, Manuela; Bruno, Nicola; Longo, Vincenza

    2010-05-01

    The evolution of magmatic degassing that preceded and accompanied the 2008-2009 Mt. Etna eruption was monitored by using a combination of: i) near-daily SO2 flux measurements; ii) calculated HCl and HF fluxes, obtained combining the daily SO2 flux values with discrete FTIR measurements of SO2/HCl and SO2/HF molar ratios; iii) periodic soil CO2 flux measurements. Thanks to the differential release of magmatic gas species from an ascending magma body we were able to track the magma transfer process in the volcano plumbing system from depth (< 5 km) to the surface. Our data suggest that the intermittent paroxysmal activity that mainly affected the South-East Crater (SEC) during 2007, displayed the efficient but complex nature of Mt. Etna's plumbing system, with gas-rich magma ascending and degassing via the central conduit system prior to eruption at the peripheral SEC. Conversely, the 15 month long 2008-09 eruption event was characterized by quasi steady state magma supply. The calculated volume of magma required to produce the observed SO2 flux during the 2008-2009 eruption closely matches the volume of erupted magma. This "eruptive" steady-state would indicate an almost perfect process of magma migration and eruption at the surface, without substantial storage within the volcano plumbing system.

  1. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  2. Evolution of the Moon's Mantle and Crust as Reflected in Trace-Element Microbeam Studies of Lunar Magmatism

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Floss, C.

    Ion microprobe trace-element studies of lunar cumulates [ferroan anorthosites (FAN), highlands Mg suite (HMS), and highlands alkali suite (HAS)] and volcanic glasses have provided an additional perspective in reconstructing lunar magmatism and early differentiation. Calculated melt compositions for the FANs indicate that a simple lunar magma ocean (LMO) model does not account for differences between FANs with highly magnesian mafic minerals and “typical” ferroan anorthosites. The HMS and HAS appear to have crystallized from magmas that had incompatible trace-element concentrations equal to or greater than KREEP. Partial melting of distinct, hybridized sources is consistent with these calculated melt compositions. However, the high-Mg silicates with relatively low Ni content that are observed in the HMS are suggestive of other possible processes (reduction, metal removal). The compositions of the picritic glasses indicate that they were produced by melting of hybrid cumulate sources produced by mixing of early and late LMO cumulates. The wide compositional range of near-primitive mare basalts indicates small degrees of localized melting preserved the signature of distinct mantle reservoirs. The relationship between ilmenite anomalies and 182W in the mare basalts suggests that the LMO crystallized over a short period of time.

  3. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa

    NASA Astrophysics Data System (ADS)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter

    2013-01-01

    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  4. Claritas rise, Mars: Pre-Tharsis magmatism?

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.

    2009-01-01

    Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.

  5. Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania

    NASA Astrophysics Data System (ADS)

    Batki, Anikó; Pál-Molnár, Elemér; Jankovics, M. Éva; Kerr, Andrew C.; Kiss, Balázs; Markl, Gregor; Heincz, Adrián; Harangi, Szabolcs

    2018-02-01

    Clinopyroxene is a major constituent in most igneous rock types (hornblendite, diorite, syenite, nepheline syenite, camptonite, tinguaite and ijolite) of the Ditrău Alkaline Massif, Eastern Carpathians, Romania. Phenocryst and antecryst populations have been distinguished based on mineral zoning patterns and geochemical characteristics. Major and trace element compositions of clinopyroxenes reflect three dominant pyroxene types including primitive high-Cr Fe-diopside, intermediate Na-diopside-hedenbergite and evolved high-Zr aegirine-augite. Clinopyroxenes record two major magma sources as well as distinct magma evolution trends. The primitive diopside population is derived from an early camptonitic magma related to basanitic parental melts, whilst the intermediate diopside-hedenbergite crystals represent a Na-, Nb- and Zr-rich magma source recognised for the first time in the Ditrău magmatic system. This magma fractionated towards ijolitic and later phonolitic compositions. Field observations, petrography and clinopyroxene-melt equilibrium calculations reveal magma recharge and mingling, pyroxene recycling, fractional crystallisation and accumulation. Repeated recharge events of the two principal magmas resulted in multiple interactions between more primitive and more fractionated co-existing magma batches. Magma mingling occurred between mafic and felsic magmas by injection of ijolitic magma into fissures (dykes) containing phonolitic (tinguaite) magma. This study shows that antecryst recycling, also described for the first time in Ditrău, is a significant process during magma recharge and demonstrates that incorporated crystals can crucially affect the host magma composition and so whole-rock chemical data should be interpreted with great care.

  6. Continental margin subsidence from shallow mantle convection: Example from West Africa

    NASA Astrophysics Data System (ADS)

    Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair J.; Fishwick, Stewart; Goes, Saskia; Jarvis, Jerry

    2018-01-01

    Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (<23 Ma) upper mantle convection from the Cape Verde swell to West Africa. Residual ocean-age depths of +2 km and oceanic heat flow anomalies of +16 ± 4 mW m-2 are centered on Cape Verde. Residual depths decrease eastward to zero at the fringe of the Mauritania basin. Backstripped wells and mapped seismic data show that 0.4-0.8 km of water-loaded subsidence occurred in a ∼500 × 500 km region centered on the Mauritania basin during the last 23 Ma. Conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Calculated average excess temperatures beneath Cape Verde are > + 100 °C providing ∼103 m of support. Beneath the Mauritania basin average excess temperatures are < - 100 °C drawing down the lithosphere by ∼102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∼1/300 at a wavelength of ∼103 km during the last ∼23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins.

  7. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often observed seismically or exposed at the sea floor of passive margins, was formed prior to rifting in addition to syn-rift, fault-driven hydrothermal processes. Whether lower crustal and serpentinite bodies are produced previously or during rifting is of relevance for the estimation of thinning-factors of the pre-existing crust.

  8. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The generation of this belt was ascribed to subduction of the Paleo-Pacific Plate.

  9. Dual sources of water overprinting on the low zircon δ18O metamorphic country rocks: Disequilibrium constrained through inverse modelling of partial reequilibration

    PubMed Central

    Wei, Chun-Sheng; Zhao, Zi-Fu

    2017-01-01

    Since water is only composed of oxygen and hydrogen, δ18O and δ2H values are thus utilized to trace the origin of water(s) and quantify the water-rock interactions. While Triassic high pressure (HP) and ultrahigh pressure (UHP) metamorphic rocks across the Dabie-Sulu orogen in central-eastern China have been well documented, postcollisional magmatism driven hydrothermal systems are little known. Here we show that two sources of externally derived water interactions were revealed by oxygen isotopes for the gneissic country rocks intruded by the early Cretaceous postcollisional granitoids. Inverse modellings indicate that the degree of disequilibrium (doD) of meteoric water interactions was more evident than that of magmatic one (−65 ± 1o vs. −20 ± 2°); the partial reequilibration between quartz and alkali feldspar oxygen isotopes with magmatic water was achieved at 340 °C with a water/rock (W/R) ratio of about 1.2 for an open-hydrothermal system; two-stage meteoric water interactions were unraveled with reequilibration temperatures less than 300 °C and W/R ratios around 0.4. The lifetime of fossil magmatic hydrothermal system overprinted on the low zircon δ18O orthogneissic country rocks was estimated to maintain up to 50 thousand years (Kyr) through oxygen exchange modellings. Four-stage isotopic evolutions were proposed for the magmatic water interacted gneiss. PMID:28091552

  10. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  11. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  12. The Stillwater Complex and its anorthosites: an accident of magmatic underplating?

    USGS Publications Warehouse

    Czamanske, G.K.; Bohlen, S.R.

    1990-01-01

    The Stillwater Complex, emplaced 2700??40 Ma, is exposed at the edge of a 4000-km2 block of Late Archean rocks that formed 40 to 110 m.y. yearlier. Voluminous plagioclase cumulates (anorthosites) within the Middle Banded series of the complex are difficult to explain either by in situ fractionation of mafic magma or by popular models for mixing of two magma types. Current models for the evolution of the lowermost continental crust by magmatic underplating suggest that a major crust-forming event of about 100 m.y. duration would satisfy geologic and geochemical constraints for the formation of the Stillwater Complex and the related granitoids. -from Authors

  13. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance

    NASA Astrophysics Data System (ADS)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo

    2016-07-01

    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Colíder and Teles Pires suites). The Transamazonas Province corresponds to a N-S-trending orogenic belt, consolidated during the Transamazonian cycle (2.26-1.95 Ga), comprising the Lourenço, Amapá, Carecuru, Bacajá, and Santana do Araguaia tectonic domains. They show a protracted tectonic evolution, and are host to the pre-, syn-, and post-orogenic to anorogenic granitic magmatism. Gold mineralization associated with magmatic events is still unclear. Greisen and pegmatite Sn-Nb-Ta deposits are related to 1.84 to 1.75 Ga late-orogenic to anorogenic A-type granites. The Pitinga Tin Province includes the Madeira Sn-Nb-Ta-F deposit, Sn-greisens and Sn-episyenites. These are associated with A-type granites of the Madeira Suite (1.84-1.82 Ga), which occur within a cauldron complex (Iricoumé Group). The A-type magmatism evolved from a post-collisional extension, towards a within-plate setting. The hydrothermal processes (400 °C-100 °C) resulted in albitization and formation of disseminated cryolite, pyrochlore columbitization, and formation of a massive cryolite deposit in the core of the Madeira deposit. The Rondônia Tin Province hosts rare-metal (Ta, Nb, Be) and Sn-W mineralization, which is associated with the São Lourenço-Caripunas (1.31-1.30 Ga), related to the post-collisional stage of the Rondônia San Ignácio Province (1.56-1.30 Ga), and to the Santa Clara (1.08-1.07 Ga) and Younger Granites of Rondônia (0.99-0.97 Ga) A-type granites. The latter are linked to the evolution of the Sunsás-Aguapeí Province (1.20-0.95 Ga). Rare-metal polymetallic deposits are associated with late stage peraluminous granites, mainly as greisen, quartz vein, and pegmatite types.

  14. Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes

    NASA Astrophysics Data System (ADS)

    Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne

    2014-05-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.

  15. Lunar Geoscience: Key Questions for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Head, James

    2014-05-01

    Lunar Geoscience: Key Questions for Future Lunar Exploration James W. Head, Department of Geological Sciences, Brown University, Providence, RI 02912 USA. (Invited paper/solicited talk for EGU 2014 PS2.3 Lunar session, Bernard H. Foing, Convener EGU PS2.3) The last several decades of intensive robotic exploration of the Moon has built on early Apollo and Luna exploration to provide fundamental knowledge of Earth's satellite and an excellent perspective on the most well-documented planetary body other than Earth. This new planetological perspective has raised substantial new questions about the nature of the origin of the Moon, its early differentiation and bombardment history, its internal thermal evolution, the production of its secondary crust as exemplified by the lunar maria, and tertiary crust as potentially seen in steep-sided domes and impact melt differentiates, the abundance of interior volatiles and their role in volcanic eruptions, and the abundance of surface volatiles and their concentration in polar regions. On the basis of this new information, a series of specific outstanding geoscience questions can be identified that can serve as guides for future human and robotic exploration. These include: 1) What is the nature and abundance of impact melt seas and what rock types do they produce upon differentiation and solidification? 2) Where are lunar mantle samples located on the lunar surface and what processes are responsible for placing them there? 3) What processes are responsible for producing the silica-rich viscous domes, such as those seen at Gruithuisen? 4) What are the volatile species involved in the emplacement of lunar pyroclastic deposits and what clues do they provide about deep magmatic volatiles and shallow volatile formation processes? 5) How do we account for the differing characteristics of regional dark mantling pyroclastic deposits? 6) When did mare basalt volcanism begin (earliest cryptmaria) and how and where is it manifested? 7) Was there extensive volcanism and resurfacing prior to mare basalt volcanism; if so, what is its origin and how is it manifested? 8) Are there other shallow magmatic intrusions besides floor-fractured craters, and if so, what is their origin? 9) What clues can we derive from the geology and gravity structure of floor-fractured craters concerning the modes of emplacement and magmatic evolution of shallow intrusions; does differentiation and volatile build-up take place? 10) What are the factors that explain the formation of complex craters, peak-ring basins and multi-ring basins? 11) What are the ages of key multi-ring basin impact melt sheets and how do they help to determine lunar impact chronology and flux? 12) How can lunar crustal density and thickness structure revealed by GRAIL be related to geological impact, magmatic and tectonic processes? 13) What is the origin, distribution and mode of emplacement of polar and circum-polar volatile deposits? 14) What is the origin of central peaks and their often unusual mineralogy and how do we account for the evidence for heterogeneous melt composition and structure? These and other major geoscience questions form the basis for robust and exciting future international robotic and human exploration and sample return missions. A series of candidate sites of interest are identified that can address these questions.

  16. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America

    NASA Astrophysics Data System (ADS)

    Bahlburg, Heinrich; Vervoort, Jeffrey D.; Du Frane, S. Andrew; Bock, Barbara; Augustsson, Carita; Reimann, Cornelia

    2009-12-01

    Accretionary orogens are considered major sites of formation of juvenile continental crust. In the central and southern Andes this is contradicted by two observations: siliciclastic fills of Paleozoic basins in the central Andean segment of the accretionary Terra Australis Orogen consist almost exclusively of shales and mature sandstones; and magmatic rocks connected to the Famatinian (Ordovician) and Late Paleozoic magmatic arcs are predominantly felsic and characterized by significant crustal contamination and strongly unradiogenic Nd isotope compositions. Evidence of juvenile crustal additions is scarce. We present laser ablation (LA)-ICPMS U-Pb ages and LA-MC-ICPMS Hf isotope data of detrital zircons from seven Devonian to Permian turbidite sandstones incorporated into a Late Paleozoic accretionary wedge at the western margin of Gondwana in northern Chile. The combination with Nd whole-rock isotope data permits us to trace the evolution of the South American continental crust through several Proterozoic and Paleozoic orogenic cycles. The analyzed detrital zircon spectra reflect all Proterozoic orogenic cycles representing the step-wise evolution of the accretionary SW Amazonia Orogenic System between 2.0 and 0.9 Ga, followed by the Terra Australis Orogen between 0.9 and 0.25 Ga. The zircon populations are characterized by two prominent maxima reflecting input from Sunsas (Grenville) age magmatic rocks (1.2-0.9 Ga) and from the Ordovician to Silurian Famatinian magmatic arc (0.52-0.42 Ga). Grains of Devonian age are scarce or absent from the analyzed zircon populations. The Hf isotopic compositions of selected dated zircons at the time of their crystallization ( ɛHf ( T) ; T = 3.3-0.25 Ga) vary between - 18 and + 11. All sandstones have a significant juvenile component; between 20 and 50% of the zircons from each sedimentary rock have positive ɛHf ( T) and can be considered juvenile. The majority of the juvenile grains have Hf-depleted mantle model ages (Hf TDM) between 1.55 and 0.8 Ga, the time of the Rondonia-San Ignacio and Sunsas orogenic events on the Amazonia craton. The corresponding whole-rock ɛNd ( T) values fot these same rocks are between - 8 and - 3 indicating a mixture of older evolved and juvenile sources. Nd-depleted mantle model ages (Nd TDM*) are between 1.5 and 1.2 Ga and coincide broadly with the zircon Hf model ages. Our data indicate that the Paleo- and Mesoproterozoic SW Amazonia Orogenic System, and the subsequent Neoproterozoic and Paleozoic Terra Australis Orogen in the region of the central and southern Andes, developed following two markedly different patterns of accretionary orogenic crustal evolution. The SW Amazonia Orogenic System developed by southwestward growth over approximately 1.1 Ga through a combination of accretion of juvenile material and crustal recycling typical of the extensional or retreating mode of accretionary orogens. In contrast, the central Andean segment of the Terra Australis Orogen evolved from 0.9 to 0.25 Ga in the compressional or advancing mode in a relatively fixed position without the accretion of oceanic crustal units or large scale input of juvenile material to the orogenic crust. Here, recycling mainly of Mesoproterozoic continental crust has been the dominant process of crustal evolution.

  17. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  18. Tectono-Magmatic Cycles and Geodynamic Settings of Ore-Bearing System Formation in the Southern Cis-Argun Region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.; Kovalenko, D. V.

    2017-11-01

    The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu-Mo, Pb-Zn-Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo-U, Pb-Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn-W-Li-Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt-trachydacite series and rhyolite of the Turga Series, which fill the Strel'tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.

  19. Mantle Response to Collision, Slab Breakoff & Lithospheric Tearing in Anatolian Orogenic Belts, and Cenozoic Geodynamics of the Aegean-Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Altunkaynak, Safak

    2010-05-01

    The geochemical and temporal evolution of the Cenozoic magmatism in the Aegean, Western Anatolian and peri-Arabian regions shows that plate tectonic events, mantle dynamics, and magmatism were closely linked in space and time. The mantle responded to collision-driven crustal thickening, slab breakoff, delamination, and lithospheric tearing swiftly, within geologically short time scales (few million years). This geodynamic continuum resulted in lateral mantle flow, whole-sale extension and accompanying magmatism that in turn caused the collapse of tectonically and magmatically weakened orogenic crust. Initial stages of post-collisional magmatism (~45 Ma) thermally weakened the orogenic crust in Tethyan continental collision zones, giving way into large-scale extension and lower crustal exhumation via core complex formation starting around 25-23 Ma. Slab breakoff was the most common driving force for the early stages of post-collisional magmatism in the Tethyan mountain belts in the eastern Mediterranean region. Magmatic rocks produced at this stage are represented by calc-alkaline-shoshonitic to transitional (in composition) igneous suites. Subsequent lithospheric delamination or partial convective removal of the sub-continental lithospheric mantle in collision-induced, overthickened orogenic lithosphere caused decompressional melting of the upwelling asthenosphere that in turn resulted in alkaline basaltic magmatism (<12 Ma). Attendant crustal extension and widespread thinning of the lithosphere facilitated rapid ascent of basaltic (OIB) magmas without much residence time in the crust and hence the eruption of relatively uncontaminated, asthenosphere-derived magmas at the surface (i.e. Kula lavas in SW Anatolia). Subduction of the Tethyan mantle lithosphere northward beneath Eurasia was nearly continuous since the latest Cretaceous, only temporarily punctuated by the collisional accretion of several ribbon continents (i.e. Pelagonia, Sakarya, Tauride-South Armenian) to the southern margin of Eurasia, and by related slab breakoff events. Exhumation of middle to lower crustal rocks and the formation of extensional metamorphic domes occurred in the backarc region of this progressively southward-migrated trench and the Tethyan (Afro-Arabian) slab throughout the Cenozoic. Thus, slab retreat played a major role in the Cenozoic geodynamic evolution of the Aegean and Western Anatolian regions. However, the subducting African lithospheric slab beneath the Aegean-Western Anatolian region is delimited to the east by a subduction-transform edge propagator (STEP) fault, which corresponds to the sharp cusp between the Hellenic and Cyprus trenches whose surface expression is marked by the Isparta Angle in the Western Taurides. This lithospheric tear in the downgoing African plate allowed the mantle to rise beneath SW Anatolia, inducing decompressional melting of shallow asthenosphere and producing linearly distributed alkaline magmatism younging in the direction of tear propagation (southward). The N-S-trending potassic and ultra-potassic volcanic fields stretching from the Kirka and Afyon-Suhut region (~17 Ma) in the north to the Isparta-Gölcük area (4.6 Ma-Recent) in the south are the result of this melting of the sub-slab (asthenospheric) mantle, which was metasomatized by recent subduction events in the region. Asthenospheric low velocities detected through Pn tomographic imaging in this region support the existence of shallow asthenosphere beneath the Isparta Angle at present. These observations suggest that currently there is no active subduction underneath much of Western Anatolia.

  20. New chronological and geochemical constraints on the genesis and geological evolution of Ponza and Palmarola Volcanic Islands (Tyrrhenian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Cadoux, Anita; Pinti, Daniele L.; Aznar, Cyril; Chiesa, Sergio; Gillot, Pierre-Yves

    2005-04-01

    A new geochronological and geochemical study of the volcanic rocks of the Ponza and Palmarola Islands, Pontine Archipelago, has been carried out. This archipelago is located along the boundary between the Italian continental shelf and the opening Tyrrhenian basin. It is a key area to study volcanism related to the opening of the Tyrrhenian Sea. Ponza is the oldest felsic magmatic manifestation in the central Tyrrhenian area. Previous studies suggested that Ponza volcanic activity began before 5 Ma. Twenty-five new K-Ar ages constrain the volcanic activity (rhyolitic hyaloclastites and dykes) to the last 4.2 Ma, with two episodes of quiescence between 3.7 and 3.2 Ma and between 2.9 and 1.0 Ma. A new volcanic episode dated at 3.2-2.9 Ma has been identified on the central and southern Ponza, with emplacement of pyroclastic units. At 1.0 Ma, a trachytic episode ended the volcanic activity. The near island of Palmarola exhibits rhyolitic hyaloclastites and domes dated between 1.6 and 1.5 Ma, indicating that the island was entirely built during the Early Pleistocene in a short span of time of ca. 120 ka. Although only 6-8 km apart, the two islands display significantly different geochemical signatures. Ponza rhyolites show major and trace element compositions representative of orogenic magmas of subduction/collision zones: high-K calc-alkaline and metaluminous rhyolites (Agpaitic Index [AI] and Alumina Saturation Index [ASI] <1), high LILE/HFSE (Th/Ta=16-21) and LREE/HFSE ratios (La/Nb>3), and Nb-Ta negative anomalies. In Palmarola, the orogenic character is also present, but much less marked than in Ponza: rhyolites have a peralkaline character (AI>1), lower LILE/HFSE (Th/Ta=11-15), low LREE/HFSE ratios (La/Nb=1-2) close to those of anorogenic lavas, and the Nb-Ta negative anomalies are almost absent. Y/Nb ratios indicate different magmatic sources, one similar to island-arc or active continental margin basalts for Ponza rhyolites, and the others probably involving an OIB type component for Palmarola rhyolites and Ponza trachytes. Palmarola volcanics represent a transitional magmatism: although a preserved collisional geochemical imprint, they show geochemical features approaching those of anorogenic lavas erupted in a within-plate context. The change of magmatism evidenced in this study can be related to the tectonic evolution of the area. Indeed, Hf, Ta and Rb contents suggest that the oldest Pliocene rhyolites of Ponza would emplace in a syn- to late-collisional setting, while the younger Pleistocene rhyolites of Palmarola would be emplaced in a post-collisional setting in which the orogenic character (Th/Ta) decreases and mantle influence (Nb/Ta) increases. Geochemical modeling strongly suggests that the Palmarola rhyolites represent the waning stages of a subduction-related magmatism. The K-Ar datings allow us to estimate precisely the transition of magmatism to last less than 1.3 Ma. The transitional magmas may be the result of the upwelling of asthenospheric mantle inducing melting of a metasomatized lithospheric mantle and the mixing between these two sources. This upwelling could occur during the extension of the Tyrrhenian basin, caused by the slab retreat and steepening, or during a process of slab break-off starting in the Pliocene.

  1. Argon-40 as a Constraint on the Volcanic Degassing History and Thermal Evolution of Mars

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2017-12-01

    Models for the thermal and magmatic evolution of Mars are strongly controlled by the volcanic degassing of water from the interior. Water affects the mantle's viscosity and hence the vigor of convective flow. It also affects the mantle's solidus temperature and hence the rate of magma generation. This set of coupled feedback loops affects both the volume of crustal production and the possible production of a magnetic field via a core dynamo (e.g., Sandu and Kiefer, GRL 2012, 2011GL050225). Volcanic degassing also affects other atmospheric components. Argon-40, which is a radioactive decay product of potassium-40, can potentially serve as an additional test of thermal evolution models. As a noble gas, 40Ar is highly incompatible in mantle and crustal rocks and thus tends to degas to the atmosphere during magmatic events. 40K has a half-life of 1.25 billion years and thus 40Ar measures volcanic degassing throughout martian history. It is relatively insensitive to atmospheric loss processes during the earliest part of solar system history, and long-term loss of 40Ar from the atmosphere can be estimated from fractionation of the 38Ar/36Ar ratio relative to solar (MAVEN results indicate that 66% of 36Ar has been lost from the martian atmosphere, Jakosky et al., Science 2017). The noble gas composition of the martian atmosphere has been measured both in situ using the SAM mass spectrometer on NASA's Curiosity rover and via measurements of trapped atmospheric gases in martian meteorites. One important application of 40Ar degassing models is as a constraint on the bulk silicate composition of Mars. The most widely accepted composition model for Mars has a potassium abundance of 305-310 ppm, slightly higher than the bulk silicate Earth. However, several other models assume a bulk silicate Mars K of up to 1040 ppm. Preliminary Ar degassing modeling favors K in the lower half of this range, consistent with results from long-term and present-day magma production models. Constraints on the bulk silicate K abundance are important to understanding the thermal and magmatic history of Mars because 40K is a radioactive heat source. In addition, the expected abundances of K and Na are correlated and elevated values of Na act to lower the peridotite solidus and thus to enhance the magma production rate (Kiefer et al., Geochimica, 2015).

  2. Exploring tectonomagmatic controls on mid-ocean ridge faulting and morphology with 3-D numerical models

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.

    2016-12-01

    Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.

  3. In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite

    NASA Astrophysics Data System (ADS)

    Lee, Yuyoung; Cho, Moonsup; Yi, Keewook

    2017-05-01

    Isotopic and geochemical characteristics of Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite have long been used for tracing the mantle-crustal source and magmatic evolution. We analyzed Lu-Hf isotopic compositions of zircon from the Sancheong-Hadong AMCG complex, Yeongnam Massif, Korea, in order to understand tectonomagmatic evolution of the Paleoproterozoic AMCG suite occurring at the southeastern margin of the North China Craton (NCC). The anorthositic rocks in this complex, associated with charnockitic and granitic gneisses, were recrystallized to eradicate magmatic features. In situ SHRIMP (sensitive high-resolution ion microprobe) U-Pb analyses of zircon from a leuconorite and an oxide-bearing gabbroic dyke yielded weighted mean 207Pb/206Pb ages of 1870 ± 2 Ma and 1861 ± 6 Ma, respectively. Charnockitic, granitic, and porphyroblastic gneisses yielded weighted mean 207Pb/206Pb zircon ages of 1861 ± 6 Ma, 1872 ± 6 Ma, and 1873 ± 4 Ma, respectively. These crystallization ages, together with our previous geochronological data for anorthosites (1862 ± 2 Ma), are indicative of episodic AMCG magmatism over an ∼10 Ma interval. Initial εHf(t) values of zircon analyzed from five anorthositic rocks and four felsic gneisses range from +2.1 to -6.1 and -0.3 to -5.4, respectively. Zircon Hf isotopic data in combination with available whole rock Sr-Nd isotopic data suggest that anorthositic parental magma was most likely derived from a mantle source and variably affected by crustal contamination. This crustal component is also reflected in charnockitic-granitic magmas produced primarily by the melting of lower crust. Taken together, the AMCG magmatism at 1.87-1.86 Ga in the Yeongnam Massif is most likely a late orogenic product of Paleoproterozoic NCC amalgamation tectonically linked to assembly of the Columbia supercontinent.

  4. Volcanic Perspective on Plutonism based on Patterns in Evolution in Long-Lived Continental Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Grunder, A. L.; Harris, R. N.; Walker, B. A.; Giles, D.; Klemetti, E. W.

    2008-12-01

    Volcanic rocks represent a biased view of magmatism, but provide critical quenched samples and temporal constraints of magmatic evolution obscured in the plutonic record. We here draw on the records from the Aucanquilcha Volcanic Cluster (AVC; 10 to 0 Ma) in northern Chile and from the mid-Tertiary volcanic field in east-central Nevada (ECNVF; ~40-32 Ma) to consider how evolutionary patterns of intermediate composition volcanic systems bear on the magmatic reworking of the continental crust by plutons and batholiths. Despite disparate tectonic setting (subduction vs extension) and volumes (70 km crust for the ~300 km 3 AVC versus and ~40 km crust for the ~3000 km 3 ECNVF) both volcanic systems share a history of early compositionally diverse volcanism, followed by a stage of more centralized and voluminous dacitic volcanism, which in turn is followed by waning of volcanism. The compositional change and the rapid increase in magma output rate after about half the lifetime of the system is a characteristic pattern of long- lived continental volcanic systems based on a compilation of volume-composition data. The middle, voluminous stage corresponds to the hottest upper crustal conditions, deduced from Al-in-amphibole geothermobarometry and Ti-in-zircon thermometry of the AVC. The middle stage rocks also have textures indicating hybridization of mixed magmas. Simple thermal models of heat input via intraplating readily allow for generation of partially molten crust above the sill, but they do not emulate the rapid increase of magma after some incubation time. We propose that there is a feedback in which a critical thickness of partially molten crust, consisting in part of magmatic precursors, can be readily convectively stirred and mixed with magma of the underplating sill, rapidly creating a large, hybrid and relatively hot body of magma. Stirring facilitates separation of a liquid-enriched extract. The volume of liquid extracted may be small relative to residual crystal-liquid mush, so that compositional differences between plutons and eruptives are cryptic.

  5. Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Dyulgerov, Momchil; Ovtcharova-Schaltegger, Maria; Ulianov, Alexey; Schaltegger, Urs

    2018-06-01

    The Variscan orogen in southeast Europe is exposed in isolated remnants, affected by a subsequent Alpine tectono-magmatic overprint. Unlike the central European Variscides, in SE Europe the juxtaposition and correlation of the events and products are impeded by the scarcity of Variscan domains with preserved magmatic, metamorphic, sedimentological and structural characteristics. To reveal the particular evolution of the Variscan orogen in Balkan Mts, we present the results of ID-TIMS and LA-ICP-MS dating of three potassic-alkaline intrusions: Svidnya, Buhovo-Seslavtsi and Shipka. The age determinations from the plutons do not permit to establish their unequivocal ages, but they bracket the time interval of emplacements. Based on geochronological, tectonic and stratigraphic evidence the emplacement interval for plutons could be: 317-310 Ma for Svidnya, 330-310 Ma for Buhovo-Seslavtsi and 320-303 Ma for Shipka. These results show that the generation of potassic-alkaline magmas was post-Visean and is contemporaneous with the adjacent numerous calc-alkaline granitoid plutons. Thus, the Variscan orogen in the Balkan Mts is not characterized by a time-dependent geochemical evolution of magma generation. Hence, the observed differences in the rocks' compositions can be interpreted solely by distinction between the magma sources. The available data for both potassic-alkaline and calc-alkaline rocks indicate that the major episodes of crustal stacking and shearing in the Balkan part of the Variscan edifice are pre-Visean ( 330 Ma). The present study reveals that the potassic-alkaline rocks from the Balkan Mts are younger than the central European potassic granitoids (durbachites). It suggests that melting of enriched mantle source took place at different times throughout the Variscan orogen. In spite of the alkaline character of the magmas, the studied zircons show a complex nature, with inherited cores and magmatic overgrowths. The observed heterogeneities in the zircons imply the presence of much older materials in the petrogenesis of the rocks from the potassic-alkaline plutons.

  6. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu Rift has thicker crust than that beneath recent volcanic front, although crustal thinning with high velocity lower crust was detected beneath advanced rifted region. This suggests that the magmatic underplating play a role to make open the crust. The magmatic underplating accompanied with the initial rifting is one of important issues to discuss the crustal evolution.

  7. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic regimes and determining their physical and chemical properties; and (3) quantitatively understanding multiphase fluid flow behavior under dynamic volcanic conditions. To realize these goals, not only must we learn how to translate seismic observations into quantitative information about fluid dynamics, but we also must determine the underlying physics that governs vesiculation, fragmentation, and the collapse of bubble-rich suspensions to form separate melt and vapor. Refined understanding of such processes-essential for quantitative short-term eruption forecasts-will require multidisciplinary research involving detailed field measurements, laboratory experiments, and numerical modeling.

  8. A simple 2-D model for the evolution of an island-arc system

    NASA Astrophysics Data System (ADS)

    Zharinov, S. E.; Demin, S. S.

    1990-07-01

    Slow seismotectonic movements along inclined deep fault planes under compressive horizontal stresses are supposed to be the principal mechanism controlling the structure and processes in island-arc systems. In order to treat the stress variations caused by this mechanism, a simple geomechanical model is investigated. We consider a shearing surface crack embedded in a homogeneous elastic half-space. The key element of the model is viscous interaction between the sides of the crack, the viscosity varying with depth. The model differs from the classical steady-state mode of subduction by nonstationary creep processes on deep faults and possibly by cyclical evolution of island-arc systems. The results of our numerical analysis are in good agreement with geological, geophysical and seismological data. (i) Vertical displacements of the free surface in the model fit well with the typical topography of a trench—arc-basement rise—back-arc basin system. (ii) The Benioff seismic zone is supposed to be formed due to the concentration of shear stresses near the fault plane. The characteristic patterns of seismicity, the fine geometry of Benioff zones, and their double-planed structure can be explained in terms of our model. (iii) A zone of considerable heat generation caused by viscous dissipation along the fault plane is found within a narrow area in the depth range 100-200 km. Moreover, the island-arc basement rise is characterized in the model by a relative tension of a few tens or even hundreds of bars, while at depths of 100-150 km below the surface, additional compression of the same order of magnitude acts. The magmatic plumbing system may be visualised as a "toothpaste tube" or a sponge filled with magma which is squeezed from the depths to the surface due to the redistribution of the tectonic stresses only. This can explain the physical origin of island-arc magmatism and the typical position of volcanic belts.

  9. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially the lithospheric stresses imposed by increasing edifice load.

  10. Along-axis steps in Ethiopian rift Bouguer gravity anomalies: Implications for crustal thinning and melt emplacement prior to breakup

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Tiberi, C.; Fowler, M. R.; Hunegnaw, A.

    2001-12-01

    The southern Afar depression, Africa, is virtually the only area worldwide where the transition from continental rifting to seafloor spreading is exposed onshore. During mid-Miocene to Pleistocene time the rift valley was segmented along its length by long normal faults; since Pleistocene time, faulting and magmatism have jumped to a narrow ca. 60 km-long volcanic mound marked by small faults. These magmatic segments are structurally similar to slow-spreading mid-ocean ridges, yet the rift is floored by continental crust. As part of the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE), we examine new and existing Bouguer gravity anomaly data from the rift to study the modification of the lithosphere by extensional and magmatic processes. New and existing Bouguer gravity anomaly data also show an along-axis segmentation of elongate relative positive anomalies that coincide with the magmatic segments. These anomalies are superposed on a regionally eastward increasing field as one approaches true seafloor spreading in the Gulf of Aden, and crustal thickness decreases. Quite remarkably, the magmatic segment boundaries, where data coverage is good, are marked by 15-25 mGal steps. The amplitude of the along-axis steps, as well as their across-axis characteristics, indicate that magmatic intrusion and ca. 2 km relief at the crust-mantle interface contribute to the steps. We use inverse and forward models of gravity data constrained by existing seismic and petrological data to evaluate models for the along-axis steps. EAGLE seismic data will be acquired across and along the magmatic segments to improve our understanding of breakup processes.

  11. Mesozoic to Cenozoic magmatic history of the Pamir

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2018-01-01

    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 < 60 wt.%), alkaline, and isotopically juvenile (-2 to +2 zircon εHf(t)) than the South Pamir batholith. Late Cretaceous magmatism in the Pamir is interpreted here to be the result of extension associated with roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to 0.710 87Sr/86Sr(i), -3 to +1 zircon εHf(i), 6.0 to 7.6‰ zircon δ18OVSMOW), which reflects some juvenile mantle input and subsequent assimilation or mixing with the Central/South Pamir terrane lower crust. The Vanj complex is speculatively interpreted to be the consequence of a mantle drip or small delamination event that was induced by India-Asia collision. The age, geochemistry, outcrop pattern, and tectonic position of the Vanj magmatic complex suggest that it is part of a series of magmatic complexes that extend for >2500 km across the Pamir and northern Qiangtang terrane in Tibet. All of these complexes are located directly south of the Tanymas-Jinsha suture zone, an important lithospheric and rheological boundary that focused mantle lithosphere deformation after India-Asia collision. Miocene magmatism (20-10 Ma) in the Pamir includes: 1) isotopically evolved migmatite and leucogranite related to crustal anataxis and decompression melting within extensional gneiss domes, and; 2) localized intra-continental magmatism in the Dunkeldik/Taxkorgan complex.

  12. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  13. Aquifers as indicators of volcanic unrest - models of hydrological responses to magmatic activity and their geophysical signals

    NASA Astrophysics Data System (ADS)

    Strehlow, Karen; Gottsmann, Jo

    2014-05-01

    Aquifers respond to and modify the surface expressions of magmatic activity, and they can also become agents of unrest themselves. Therefore, monitoring the hydrology can provide a valuable window into subsurface processes in volcanic areas. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes. Changes in temperature and strain conditions, seismic excitation or the injection of magmatic fluids into hydrothermal systems are just a few of the proposed processes induced by magmatic activity that affect the local hydrology. Aquifer responses are described to include changes in water table levels, changes in temperature or composition of hydrothermal waters and pore pressure-induced ground deformation. We can observe these effects at the surface via geophysical and geochemical signals. To fully to utilise these indicators as monitoring and forecasting tools, however, it is necessary to improve our still poor understanding of the ongoing mechanisms in the interactions of hydrological and magmatic systems. An extensive literature research provided an overview on reported effects, which we investigate in detail using numerical modelling. The hydrogeophysical study uses finite element analysis to quantitatively test proposed mechanisms of aquifer excitation and the resultant geophysical signals. We present a set of generic models for two typical volcanic landforms - a stratovolcano and a caldera - that simulate the interaction between deeper magmatic systems with shallow-seated aquifers, focusing on strain and temperature effects. They predict pore pressure induced hydraulic head changes in the aquifer as well as changing groundwater temperatures and strain induced fluid migration. Volcano observatories can track these hydrological effects for example with potential field investigations or the monitoring of wells. The models allow us to explore the parameter space, contributing to a better understanding of the coupling of these two highly complex systems. Our results provide further insight into the subsurface processes at volcanic systems and will aid the evaluation of unrest signals with potential for improved eruption forecasting.

  14. Tectonic and Magmatic Controls on Extension and Crustalaccretion in Backarc Basins, Insights from the Lau Basin and Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Sleeper, Jonathan D.

    This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.

  15. History of the magmatic feeding system of the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Orsi, G.

    2007-05-01

    The definition of the magmatic feeding system of active volcanoes in terms of architecture, composition, crystallization time-scale, relationships between composition of the erupted magmas and structural position of the vents, and magma processes, is of paramount importance for volcanic hazards evaluation. Investigations aimed at defining the Campi Flegeri magmatic system, include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb, Th,U). The magmatic feeding system of the Campi Flegrei caldera is characterized by deep and shallow magma reservoirs. In the deep reservoirs (20-10 km depth) mantle- derived magmas differentiated and were contaminated by continental crust. In the shallow reservoirs isotopically distinct magmas, further differentiated, contaminated, and mixed and mingled before eruptions. These processes generated isotopically distinct components, variably interacting with the different structural elements of the Campi Flegrei caldera through time. The relationships between the structural position of the eruption vents, during the last 15 ka of activity, and the isotopic composition of the magmas erupted at the Campi Flegrei caldera allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition of the magma feeding a future eruption, according to vent position.

  16. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2004-05-01

    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these times comes from the observed durations and rates of volcanism. There can be little doubt that the temporal styles of volcanism are the same as those of magmatism in general. Volcano repose times, periodicity, eruptive fluxes, acoustic emission structures, lava volumes, longevity, etc. must also be characteristic of pluton-dominated systems. We must therefore give up some classical concepts (e.g., instantaneous injection of crystal-free magma as an initial condition) for any plutonic/chambered system and move towards an integrated concept of magmatism. Among the host of process-related time scales, probably the three most fundamental of any magmatic system are (1) the time scale associated with crystal nucleation (J) and growth (G) (tx}=C{1(G3 J)-{1}/4; Zieg & Marsh, J. Pet. 02') along with the associated scales for mean crystal size (L) and population (N), (2) the time scale associated with conductive cooling controlled by a local length scale (d) (tc}=C{2 d2/K; K is thermal diffusivity), and (3) the time scale associated with intra-crystal diffusion (td}=C{3 L2/D; D is chemical diffusivity). It is the subtle, clever, and insightful application of time scales, dovetailed with realistic system geometry and attention paid to the analogous time scales of volcanism, that promises to reveal the true dynamic integration of magmatic systems.

  17. New Zircon U-Pb Age Constrain of the Origin of Devil's River Uplift (SW Texas) and Insights into the Late Proterozoic and Paleozoic Evolution of the Southern Margin of Laurentia

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.

    2017-12-01

    The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show that it is part of the Grenville orogenic belt, characterized by 1230 Ma magmatism, and that it experienced Cryogenian-Eocambrian intraplate magmatism as well. Significant correlations between DRU and the Cuyania terrane imply that both participated in Rodinia rifting and creation of the southern Laurentian margin.

  18. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  19. The Tectonic-Magmatic Evolution of Galápagos Lineaments from Radiometric Dating and Bathymetry Along the Pinta-Marchena Ridge

    NASA Astrophysics Data System (ADS)

    Sinton, C.; Mittelstaedt, E. L.; Harpp, K. S.; Fornari, D. J.; Geist, D.; Soule, S. A.

    2016-12-01

    The Northern Galápagos Volcanic Province (NGVP), located north of the Galápagos Archipelago and centered across the 90° 50'W Galápagos transform fault (GTF) of the Galápagos Spreading Center (GSC), consists of a complex set of islands, seamount chains and ridges. The region is particularly important to deciphering the evolution of the Galápagos region as magmatism in this region is thought to be the result of interactions between the Galápagos mantle plume, the overlying lithosphere, and the GSC. To investigate the evolution of these interactions, we present seafloor images, bathymetry, and 40Ar-39Ar age data from a volcanic ridge that includes the islands of Pinta and Marchena. The most striking feature of this region is a flat-topped seamount, Banco Tuzo, with a shallow summit region reaching to 360-400 meters below sea level. Recovered basalt fragments from Banco Tuzo include sub-rounded rocks with morphologies that suggest exposure to a tidal environment. Ages of the lavas determined by 40Ar-39Ar dating vary from 2.0 Ma to 1.1 Ma (with 2σ error of ± 0.5 Ma). The subsidence rate calculated by the radiometric ages is similar to that estimated for young oceanic lithosphere. Our observations indicate that Banco Tuzo is an ancient, now submerged island. Other lavas recovered from the submarine flanks of Pinta and Marchena range in age from 1.4 to 0.6 Ma. These ages generally coincide with the westward propagation of the eastern GSC and the southward elongation of the GTF after a recent ridge jump ( 1 Ma), suggesting that magmatism along this ridge is related to the changing relative location of GSC and the upwelling Galapagos mantle plume.

  20. The pre-Atlantic Hf isotope evolution of the east Laurentian continental margin: Insights from zircon in basement rocks and glacial tillites from northern New Jersey and southeastern New York

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. Alex; Setera, Jacob; Mathez, Edmond; Vantongeren, Jill; Fossum, Ryanna

    2017-02-01

    This paper presents laser ablation U-Pb age and Hf isotope data for zircons from basement rocks and glacial deposits in northern New Jersey and southeastern New York. The purpose is to understand the eastern Laurentian continental margin's Hf isotope record in relation to its geologic evolution prior to the opening of the Atlantic Ocean. The basement samples encompass a Meso- to Neoproterozoic continental margin arc, an anatectic magmatic suite, as well as a Late Ordovician alkaline igneous suite emplaced during post-orogenic melting of the lithospheric mantle. Additional samples were collected from terminal moraines of two Quaternary continental ice sheets. Across the entire dataset, zircons with ages corresponding to the timing of continental margin arc magmatism ( 1.4 Ga to 1.2 Ga) have positive εHf(initial) values that define the more radiogenic end of a crustal evolution array. This array progresses towards more unradiogenic εHf(initial) values along a series of low 176Lu/177Hf (0.022 to 0.005) trajectories during subsequent anatectic magmatism ( 1.2 Ga to 1.0 Ga) and later metamorphic and metasomatic re-working ( 1.0 Ga to 0.8 Ga) of the continental margin arc crust. In contrast, nearly chondritic εHf(initial) values from the Late Ordovician alkaline magmas indicate that the Laurentian margin was underlain by a re-fertilized mantle source. Such a source may have developed by subduction enrichment of the mantle wedge beneath the continental margin during the Mesoproterozoic. Additionally, preliminary data from a metasedimentary unit of unknown provenance hints at the possibility that some of the sediments occupying this portion of the Laurentian margin prior to the Ordovician were sourced from crust older than 1.9 Ga.

  1. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low-degree partial melting of late-stage LMO cumulates to generate Fe-rich partial melts. Chapter 3 presents datasets from NWA 032 that document one of the only occurrences of oscillatory zoning in lunar minerals. A model is presented that explains the zoning patterns in olivine and pyroxene by convection in a differentially cooling magma chamber. Constraints from mineral chemistry and isotopic compositions show that magma mixing was not a factor during this convection. Lastly, chapter 4 presents the results of high-pressure, high-temperature petrologic experiments on the compositions of the LAP 02205 group basalts, and NEA 003A, the latter of which is also one of the youngest basalts from the Moon. These results show that the LAP group basalts are likely the result of extreme olivine fractionation, whereas NEA 003A not only has the deepest known multiple saturation point amongst crystalline mare basalts, but also may be a near-primary melt. Possible parental melt compositions are calculated for these basalts, and models are presents for the petrogenesis of these basalts and discussed in the context of a cooling lunar mantle. These studies illustrate the importance of different LMO cumulate source regions in lunar magmatism at very different points in the thermal and magmatic evolution of the Moon.

  2. Investigating the long-term geodetic response to magmatic intrusions at volcanoes in northern California

    NASA Astrophysics Data System (ADS)

    Parker, A. L.; Biggs, J.; Annen, C.; Houseman, G. A.; Yamasaki, T.; Wright, T. J.; Walters, R. J.; Lu, Z.

    2014-12-01

    Ratios of intrusive to extrusive activity at volcanic arcs are thought to be high, with estimates ranging between 5:1 and 30:1. Understanding the geodetic response to magmatic intrusion is therefore fundamental to large-scale studies of volcano deformation, providing insight into the dynamics of the inter-eruptive period of the volcano cycle and the building of continental crust. In northern California, we identify two volcanoes - Medicine Lake Volcano (MLV) and Lassen Volcanic Center (LaVC) - that exhibit long-term (multi-decadal) subsidence. We test the hypothesis that deformation at these volcanoes results from processes associated with magmatic intrusions. We first constrain the spatial and temporal characteristics of the deformation fields, establishing the first time-series of deformation at LaVC using InSAR data, multi-temporal analysis techniques and global weather models. Although the rates of deformation at the two volcanoes are similar (~1 cm/yr), our results show that the ratio of vertical to horizontal displacements is significantly different, suggesting contrasting source geometries. To test the origin of deformation, we develop modeling strategies to investigate thermal and viscoelastic processes associated with magmatic intrusions. The first model we develop couples analytical geodetic models to a numerical model of volume loss due to cooling and crystallization based upon temperature-melt fraction relationships from petrological experiments. This model provides evidence that magmatic intrusion at MLV has occurred more recently than the last eruption ~1 ka. The second model we test uses a finite element approach to simulate the time-dependent viscoelastic response of the crust to magmatic intrusion. We assess the magnitude and timescales of ground deformation that may result from these processes, exploring the model parameter space before applying the models to our InSAR observations of subsidence in northern California.

  3. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  4. How Irreversible Heat Transport Processes Drive Earth's Interdependent Thermal, Structural, and Chemical Evolution Providing a Strongly Heterogeneous, Layered Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2013-12-01

    Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a lateral component and preferred direction to upper mantle circulation. Mid-ocean magma production over ca. 4 Ga has deposited a slab volume at 670 km that is equivalent to the transition zone, thereby continuing differentiation by creating a late-stage chemical discontinuity near 400 km. This ongoing process has generated the observed lateral and vertical heterogeneity above 670 km.

  5. Plate break-up geometry in SE-Afar

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed

    2014-05-01

    New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion.

  6. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage.

    PubMed

    Saal, Alberto E; Hauri, Erik H; Van Orman, James A; Rutherford, Malcolm J

    2013-06-14

    Water is perhaps the most important molecule in the solar system, and determining its origin and distribution in planetary interiors has important implications for understanding the evolution of planetary bodies. Here we report in situ measurements of the isotopic composition of hydrogen dissolved in primitive volcanic glass and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. After consideration of cosmic-ray spallation and degassing processes, our results demonstrate that lunar magmatic water has an isotopic composition that is indistinguishable from that of the bulk water in carbonaceous chondrites and similar to that of terrestrial water, implying a common origin for the water contained in the interiors of Earth and the Moon.

  7. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    NASA Astrophysics Data System (ADS)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  8. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints.

    USGS Publications Warehouse

    Zen, E.

    1986-01-01

    The degree of Al saturation of an igneous rock may be given by its aluminium saturation index (ASI), defined as the molar ratio Al2O3/(CaO+K2O+Na2O). One suggested origin for mildly peraluminous granites (ASI 1-1.1) is fractional crystallization of subaluminous magmas (ASI 1. For hornblende to effectively cause a melt to evolve into a peraluminous composition, it must be able to coexist with peraluminous magmas; e.g. at = or <5 kbar hornblende can coexist with strongly peraluminous melts (ASI approx 1.5). Potentials and problems of using coarse-grained granitic rocks to prove courses of magmatic evolution are illustrated by a suite of samples from the Grayling Lake pluton, SW Montana. Such rocks generally contain a large cumulate component and should not be used as a primary test for the occurrence or efficacy of a fractionation process that might lead to peraluminous melts. The process is unlikely to give rise to peraluminous plutons of batholithic dimensions. A differential equation is presented which allows the direct use of mineral chemistry and modal abundance to predict the path of incremental evolution of a given magma.-R.A.H.

  9. The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz magmatic belt, Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Li, Xian-Hua; Wan, Bo; Honarmand, Maryam

    2017-11-01

    The geochemical and isotopic investigations were provided on the Upper Eocene Senj mafic intrusion and Mo-Cu mineralization to better understand the tectono-magmatic evolution and metallogeny of the central part of the Alborz magmatic belt. The Senj mafic intrusion is composed of gabbro to monzodiorite and monzonite in lithology, and intruded as a sill into volcano-sedimentary rocks of the Eocene Karaj Formation. The Karaj Formation consists of volcano-sedimentary rocks, such as altered crystalline to shaly tuffs. The Senj intrusion (39.7 ± 0.4 Ma) shows LILE and LREE enrichment and negative anomaly of Nb, Ta and Ti, the geochemical signatures similar to those from subduction-related mafic magmas. The Hf-O zircon analyses yield ɛHf(t) values of + 4.1 to + 11.1 and δ18O values of + 4.8 to + 6.2‰. The zircon isotopic signatures together with shoshonitic affinity in the Senj mafic samples suggest partial melting of an enriched lithospheric mantle that had already been metasomatized by slab-derived melts and fluids. The Mo-Cu mineralization mainly occurs as veins and veinlets in the volcano-sedimentary rocks of the Karaj Formation and is dominated by molybdenite with minor amounts of chalcopyrite, bornite, pyrite and tetrahedrite-tennantite. The associated gangue minerals are tremolite, actinolite, quartz, calcite, chlorite and epidote. The Senj Mo-Cu deposit formed in volcano-sedimentary rocks following the emplacement of the Late Eocene Senj sill. The source of molybdenite in the Senj deposit is dominantly from crustal materials as it is revealed by Re contents in the molybdenite minerals (0.5 to 0.7 ppm). In fact, the molybdenite occurrence may be a remobilization process related to the emplacement of the Senj mafic magma.

  10. Insights into the crustal structure and magmatic evolution of the High and Western Plateau of the Manihiki Plateau, Central Pacific

    NASA Astrophysics Data System (ADS)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele

    2014-05-01

    The Manihiki Plateau is a Large Igneous Province (LIP) located in the Central Pacific. It is assumed, that the formation of the Manihiki Plateau took place during the early Cretaceous in multiple volcanic stages as part of the "Super-LIP" Ontong-Java-Nui. The plateau consists of several sub-plateaus of which the Western Plateau und High Plateau are the largest. In addressing the plateau's magmatic evolutionary history, one of the key questions is whether all sub-plateaus experienced the same magmatic history or if distinct phases of igneous or tectonic processes led to its fragmentation. During the RV Sonne cruise SO-224 in 2012; we collected two deep crustal seismic refraction/wide-angle reflection lines, crossing the two main sub-plateaus. Modeling of P- and S-wave phases reveals the different crustal nature of both sub-plateaus. On the High Plateau, the 20 km thick crust is divided into four seismic units, interpreted to range from basaltic composition in the uppermost crust to peridotitic composition in the middle and lower crust. The Western Plateau on the other hand shows multiple rift structures and no indications of basalt flows. With a maximum of 17 km crustal thickness, the Western Plateau is also thinner than the High Plateau. The upper basement layers show relatively low P-wave velocities (3.0 - 5.0 km/s), which infers that on the Western Plateau these layers consist of volcanoclastic and carbonatic rocks rather than basaltic flow units. Later volcanic stages may be restricted to the High Plateau with a possible eastward trend in the center of volcanic activity. Extensive secondary volcanism does not seem to have occurred on the Western Plateau, and its later deformation is mainly caused by tectonic extension and rifting.

  11. Miocene silicic volcanism in southwestern Idaho: Geochronology, geochemistry, and evolution of the central Snake River Plain

    USGS Publications Warehouse

    Bonnichsen, B.; Leeman, W.P.; Honjo, N.; McIntosh, W.C.; Godchaux, M.M.

    2008-01-01

    New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone 'hotspot track'. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or 'events' appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW-NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. ?? Springer-Verlag 2007.

  12. A Synthesis of Experimental Data Describing the Partitioning of Moderately Volatile Elements in Major Rock Forming Minerals: Implications for the Moon

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey

    2017-01-01

    Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.

  13. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  14. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias

    2016-04-01

    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they display a clear magmatic carbon signature of -4.2 to -4.5 ‰. This provides compelling evidence that the magmatic and hydrothermal reservoirs of Aluto are physically connected. Bringing the new data sets together provides an integrated picture of the plumbing system of this restless rift volcano. Aluto's silicic magmas are generated and stored at depths of ~5 km. Magmatic intrusion and/or fluid injection in the cap of this magmatic reservoir drives edifice wide inflation while subsequent deflation is related to magmatic degassing and/or cooling of the geothermal reservoir at shallower depths. Tectonic faults that dissect the complex are a key component of this plumbing system and by connecting the deep reservoirs to the surface they not only provide important degassing pathways but will almost certainly be exploited during future eruptive events.

  15. Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Caricchi, Luca; Castelltort, Sebastien

    2016-04-01

    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking solid-Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated without considering the additional continental unloading associated with erosion. Current datasets relating to the evolution of erosion rates are typically limited by temporal resolutions that are too low or span too short time intervals to allow for direct comparisons between the contributions from ice melting and erosion to continental unloading at the timescale of the late Pleistocene glacial cycles. Yet, they provide a fundamental observational basis on which to calibrate numerical predictions. Here, we present and discuss numerical results involving synthetic but realistic topographies, ice caps and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading, sub-continental decompression melting and magma productivity. Thus, the timing and magnitude of deglaciation and erosion must be characterized if the forcing of climate change on the continental magmatic/volcanic activity is to be extracted from the remnants of eroded volcanic centers. Our study represents an additional step towards a more general understanding of the links between a changing climate, glacial processes and the melting of the solid Earth.

  16. Chondritic xenon in the Earth’s mantle

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  17. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  18. Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon)

    NASA Astrophysics Data System (ADS)

    Toteu, Sadrack Félix; Penaye, Joseph; Deloule, Etienne; Van Schmus, William Randall; Tchameni, Rigobert

    2006-04-01

    Ion microprobe U-Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700-665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100-950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa-Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west-central Africa.

  19. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Heng; Yang, Jin-Hui; Chen, Jing-Yuan; Wu, Fu-Yuan; Wilde, Simon A.

    2018-01-01

    Voluminous Mesozoic felsic volcanic rocks and granites in southeastern China provide a unique opportunity for studying the role of crustal magmatism in the evolution and modification of the crust in the eastern Cathaysia Block. The high-silica rhyolites of the upper volcanic sequence in eastern Zhejiang Province were investigated, focusing on their genesis and their relationship with contemporaneous granites. Rhyolites in the Tiantai, Yongkang and Liucheng basins were dated as late Early Cretaceous (from 111 Ma to 106 Ma in age). These rocks contain a large proportion of inherited zircons of ca. 130 Ma, corresponding to the age of the lower volcanic sequence in the area. However, the zircons of different ages have similar ranges of oxygen and Hf isotopes, implying similarities in the magmas from which they were generated. The rhyolites of the upper sequence also resemble those of the lower sequence in terms of their geochemistry. It is concluded that the former were derived by reworking of magma mush formed during the earlier magmatic episode via fractionation of feldspars and accessory minerals, e.g., zircon. Fractionation took place within the magma crystal mush by extraction of interstitial melts and accumulation of residual mineral phases, aided by the emplacement of contemporaneous basaltic magmas at the base of the crust. Overall, the geochemical features of the volcanic rocks in southeastern China indicate that episodic magmatism and reworking of crystal mush were essential mechanisms that drove the evolution of the igneous rocks and the hence crustal architecture in this area.

  20. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    NASA Astrophysics Data System (ADS)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  1. Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar

    NASA Astrophysics Data System (ADS)

    Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.

    2003-12-01

    The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.

  2. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies.

    NASA Astrophysics Data System (ADS)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.

    2007-05-01

    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites for magma generation may help understand the post-Laramide volcanism, commonly interpreted as a result of a fast return of a single magmatic arc to the trench, due to a progressive steepening of the subducted oceanic slab.

  3. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo

    2017-12-01

    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic-hydrothermal systems such as the Coroccohuayco Fe-Cu-Au porphyry-skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2- to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20-200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2-0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100-200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization.

  4. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  5. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  6. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  7. On the relation between crustal deformation and seismicity during the 2012-2014 magmatic intrusions in El Hierro island.

    NASA Astrophysics Data System (ADS)

    Domínguez Cerdeña, Itahiza; García-Cañada, Laura; Ángeles Benito Saz, María; Del Fresno, Carmen

    2017-04-01

    The last volcanic eruption in the Canary Islands took place in 2011 less than 2 km offshore El Hierro island, after 3 months of measuring surface deformation (up to 5 cm) and locating more than 10 000 earthquakes. In the two years following the end of the submarine eruption on 5 March 2012, six deep magmatic intrusions were recorded beneath the island. Despite the short time duration of these intrusions, these events have been more energetic that the 2011 pre-eruptive intrusive event but none of them ended in a new eruption. These post-eruptive reactivations are some of the few examples in the world of well monitored magmatic intrusions related with monogenetic volcanism. In order to understand these processes we have analyzed the geodetic and seismic data with different techniques. First, we did a joint hypocentral relocation of the six seismic swarms, including more than 6 300 events, to analyze the relative distribution of the earthquakes from different intrusions. The uncertainties of the earthquakes relocations was reduced to an average value of 300 m. New earthquakes' distribution shows the alignments of the different intrusions and a temporal migration of the events to larger depths. Moreover, we show the results of the ground deformation using GPS data from the network installed on the island (for each of the six intrusive events) and their inversion considering spherical models. In most of the intrusions the optimal source model was shallower and southern than the corresponding seismicity hypocenters. The intruded magma volume ranges from 0.02 to 0.13 km3. Finally, we also computed the b value from the Gutenberg Richter equation by means of a bootstrap method. The spatial and temporal evolution of the b value for the seismicity show a clear correlation with the temporal evolution of the crustal deformation. The six magma intrusions can be grouped, depending on their location, in three pairs each one associated with each of the three active rifts of El Hierro island. Although all intrusions show similar magma supply rate (60-90 m3/s) we found particular characteristic for each the three groups of intrusions, including the relation between seismic energy and deformation or the ratio between seismic and geodetic moment. We discuss the compatibility or not of these results with the possible triaxial nature of the origin of El Hierro island. As a conclusion, we have reviewed the historical seismic catalog and compared these post-eruptive intrusions with other possible magmatic intrusions in the Canary Islands. We found that a maximum of 50% of the volcanic unrests occurred in the Canary Islands in the last century ended in eruptions.

  8. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below 1400 °C during post-Archean times, probably sometime shortly after 2 Ga. At around this time kimberlites replace komatiites as the hallmark mantle-derived magmatic feature of continental shields worldwide. The remarkable Mesozoic-Cenozoic 'kimberlite bloom' between 250-50 Ma may represent the ideal circumstance under which the relatively cool and volatile-fluxed cratonic roots of the Pangea supercontinent underwent significant tectonic disturbance. This created more than 60% of world's known kimberlites in a combination of redox- and decompression-related low-degree partial melting. Less than 2% of world's known kimberlites formed after 50 Ma, and the tectonic settings of rare 'young' kimberlites from eastern Africa and western North America demonstrate that far-field stresses on cratonic lithosphere enforced by either continental rifting or cold subduction play a crucial role in enabling kimberlite magma transfer to Earth's surface.

  9. Petrology of eucrites, howardites and mesosiderites

    USGS Publications Warehouse

    Duke, M.B.; Silver, L.T.

    1967-01-01

    The eucrite and howardite calcium-rich achondrites and many mesosiderites are considered as a coherent meteorite assemblage, their silicates consisting essentially of calciumpoor monoclinic and orthorhombic pyroxenes and calcium-rich plagioclase feldspar. The achondrites can be grouped according to their brecciated structure as follows: eucrites-unbrecciated and monomict brecciated achondrites; howardites-polymict brecciated achondrites. Many mesosiderites contain brecciated structures; they are distinguished from the achondrites by their large metallic fraction. The structure and composition of rock fragments in the breccias indicate a complicated sequence of events including magmatic differentiation, brecciation, recrystallization and refragmentation, and ejection from the parent body. Detailed mineralogical and chemical data suggest that the magmatic differentiation proceeded primarily by the separation of pyroxene from an ultrabasic parent material that had a much lower alkali content than ordinary chondrites. Magmatic crystallization took place in environments ranging from extrusive to deep-seated intrusive. Polymict breccias contain fragments with a wide variety of magmatic and recrystallization textures, which suggests that the breccias were formed either in very large or repeated fragmentation events. Monomict breccias contain fragments with a small range of similar magmatic textures, which suggests that these breccias were formed by small or single events. Petrographic evidence suggests that many of the breccias are impact breccias. Either in their original magmatic crystallization sites or in the sites of breccia accumulation, most of these meteorites apparently had a near-surface location prior to ejection from the parent body. Evidence obtained from eucrites, howardites and mesosiderites forms an important part of our understanding of the early evolution of the surface regions of their parent body. Chemical and oxidation conditions were different from those presently found in the Earth's crust and upper mantle, but the necessary conditions may have been present in the early history of the Earth. A lunar origin for eucrites, howardites and mesosiderites is proposed, but an asteroidal origin can not be presently excluded. ?? 1967.

  10. Interaction Between Magmatism and Continental Extension, Insight From an Extensional Terrain in the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Malekpour Alamdari, A.; Axen, G. J.; Hassanzadeh, J.

    2014-12-01

    Our knowledge about the spatial and temporal relationship between continental extension and its related magmatism is mainly from the western US where removal of a flat subducting slab from under the continent controlled thermal weakening and some extensional collapse. The Iranian plateau, where flat-slab subduction and its subsequent rollback is suggested for the Tertiary magmatic evolution, is an ideal place to see if a similar interaction exists. Between the Late Cretaceous and, at least, the Early Eocene, large-scale continental extension affected the NE Iranian plateau. An ~100 km-long, SE tilted upper to mid-crustal section was exhumed by slip along a low-angle, NW-dipping detachment fault. From SE to NW (young to old) this section includes late Cretaceous pelagic limestones of the Kashmar ophiolites, Late and Early Cretaceous sedimentary rocks, and the Late Triassic and older crystalline rocks of the Biarjmand-Shotor Kuh metamorphic core complex. Little pre-extensional magmatic activity exists in the tilted sequence and in surrounding regions, as Late Jurassic and Early Cretaceous dikes. Similarly, syn-extensional magmatism is absent. In contrast, the tilted sequence is unconformably overlain by >4000 m of volcanic rocks with age ranging from the Middle Eocene (explosive, calc-alkaline?) to the Late Eocene (effusive, alkaline). The absence of considerable pre-extensional magmatism in the NE Iranian plateau does not support magma underplating, subsequent thermal weakening and collapse as a mechanism for the extension in this region. It also indicates that the models that consider waning of volcanism as a controlling mechanism for triggering of extensional faulting (Sonder & Jones, 1999) is not applicable for this region. The amagmatic extension may reflect magma crystallization at depth due to reduced confining pressure resulted from active normal faulting and fracturing (Gans & Bohrson, 1998). The extension and related asthenospheric rise may be developed in a back-arc system.

  11. Petrology and Physics of Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Parmentier, E. M.; Hess, P. C.

    2003-01-01

    Early Mars is thought to have been melted significantly by the conversion of kinetic energy to heat during accretion of planetesimals. The processes of solidification of a magma ocean determine initial planetary compositional differentiation and the stability of the resulting mantle density profile. The stability and compositional heterogeneity of the mantle have significance for magmatic source regions, convective instability, and magnetic field generation. Significant progress on the dynamical problem of magma ocean crystallization has been made by a number of workers. The work done under the 2003 MFRP grant further explored the implications of early physical processes on compositional heterogeneity in Mars. Our goals were to connect early physical processes in Mars evolution with the present planet's most ancient observable characteristics, including the early, strong magnetic field, the crustal dichotomy, and the compositional characteristics of the SNC meteorite's source regions as well as their formation as isotopically distinct compositions early in Mars's evolution. We had already established a possible relationship between the major element compositions of SNC meteorite sources and processes of Martian magma ocean crystallization and overturn, and under this grant extended the analysis to the crucial trace element and isotopic SNC signatures. This study then demonstrated the ability to create and end the magnetic field through magma ocean cumulate overturn and subsequent cooling, as well as the feasibility of creating a compositionally- and volumetrically-consistent crustal dichotomy through mode-1 overturn and simultaneous adiabatic melting.

  12. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.

  13. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0.5m/y. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones. These low-pressure differentiated liquids can potentially contribute to subaerial volcanic activity along the major shear-zones.

  14. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A compositional gap between circa 1160 Ma magnesian low-silica charnockite and penecontemporaneous higher silica lithologies likewise precludes a fractionation relationship among plutons intruded during Magmatic Interval I. Correspondence in timing of magmatic activity between the Blue Ridge and neighboring Mesoproterozoic terranes underscores the widespread nature of Grenvillian processes in the region.

  15. Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Maletic, E. L.; Darrah, T.

    2017-12-01

    Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.

  16. Late Triassic granitic rocks of the Central Qiangtang Orogenic Belt, northern Tibet: tracing crustal thickening through post-collisional silicic magmatism

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, J.

    2017-12-01

    The Central Qiangtang Orogenic Belt (CQOB) was formed through Triassic continental collision between the Southern and Northern Qiangtang terranes. Numerous granitic intrusions occur along the CQOB, forming a Late Triassic granitic belt that stretches 1000 km from west to east. This Central Qiangtang granitic belt was believed to constitute most of the CQOB. Therefore, the CQOB thus provides a typical composite orogen for the study of relationships between granitoid magmatism and orogenic processes. Recently, many studies have been carried out, and the close relationship of the magmatic belt with the evolutionary history of the CQOB is well established. Late Triassic intrusive rocks are widely exposed in the Riwanchaka area of Central Qiangtang, northern Tibet. In this study, new U-Pb zircon ages reveal that Late Triassic magmatism in Riwanchaka took place at ca 225-205 Ma, coeval with exhumation of the metamorphic rocks in Central Qiangtang. Our new and previously published data enable us to correlate the subduction-related volcanic arc rocks in the Riwanchaka area to a post-collisional extension setting related to slab break-off during northward subduction of the Paleo-Tethys Ocean seafloor. Geochemical characteristics suggested that the samples from CQOB can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios and (La/Yb)N (chondrite-normalized) ratios. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The crustal structure and evolution of the CQOB are considered on the basis of available data and variations in Sr/Y, La/Yb, and Hf isotopic ratios. Temporal geochemical and Hf isotopic changes, diagnostic of crustal thickening, indicate that the CQOB was greatly thickened (>50 km) within a short timespan ( 20 Myr). Our new data, together with recently published data, lead us to propose that basaltic underplating caused by slab break-off, contributed significantly to crustal thickening of the CQOB.

  17. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  18. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules

    PubMed Central

    Marrocchi, Yves; Chaussidon, Marc; Piani, Laurette; Libourel, Guy

    2016-01-01

    Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system. PMID:27419237

  19. Melt inclusion constraints on volatile systematics and degassing history of the 2014-2015 Holuhraun eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Bali, E.; Hartley, M. E.; Halldórsson, S. A.; Gudfinnsson, G. H.; Jakobsson, S.

    2018-02-01

    The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014-2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500-1700 ppm CO2, 0.13-0.16 wt% H2O, 60-80 ppm Cl, 130-240 ppm F and 500-800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures ≥ 0.4 GPa ( 12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000-4000 ppm, with the total magmatic CO2 budget estimated at 23-55 Mt. SO2 release commenced at 0.12 GPa ( 3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9-7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.

  20. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  1. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    NASA Astrophysics Data System (ADS)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz-sericite alteration zones. No Cl-bearing minerals were revealed in ore-metasomatic assemblages with the exception of extremely low Cl contents in secondary biotite and very rare low-Cl apatite in the early potassic alteration zone. In contrast, fluorine concentrates in chlorites and white micas; however, the F content in them is commonly lower than in dark minerals, especially in biotite from altered rocks. The highest F contents are typical of biotites related to potassic alteration (K-feldspar + biotite + quartz assemblage). For example, the F content at the Sora deposit ranges from 2.5-2.7 wt.% in the metasomatic biotite to 0.44-1.63 wt.% in the rock-forming biotite of host granitoids. At this deposit, fluorite is a major mineral of the ore-metasomatic assemblage. The Mo-rich Sora deposit drastically differs from the Cu-rich Erdenetiin Ovoo and Aksug deposits by extremely low (0.02-0.08 wt.%) Cl contents in dark minerals from all of the host rocks. The considerable quantity of chlorine released as a result of large-scale propylitic and phyllic alteration from halogen-bearing dark minerals at Cu-rich deposits considerably affected the general Cl budget in the ore-metasomatic system. This could significantly promote the generation of Cl-rich (up to 50-70 wt.% NaCl-equiv.) ore-forming solutions at such deposits. At the Sora deposit characterized by less concentrated ore-bearing solutions (12-20 wt.% NaCl-equiv.), the metasomatic alteration of host rocks was not accompanied by an appreciable removal of Cl. At the studied deposits, huge volumes of enclosing rocks were involved in metasomatism. The large amounts of halogens released during the metasomatic alteration of host rocks might have significantly influenced the balance of volatiles in the ore forming system, including the increase in the salinity of hydrothermal solutions.

  2. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    NASA Astrophysics Data System (ADS)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    Lunar floor-fractured craters are a class of 170 lunar craters with anomalously shallow, fractured floors. Two end-member processes have been proposed for the floor formation: viscous relaxation, and subcrater magmatic intrusion and sill formation. Recent morphometric analysis with new Lunar Reconnaissance Orbiter Laser Altimeter (LOLA) and image (LROC) data supports an origin related to shallow magmatic intrusion and uplift. We find that the distribution and characteristics of the FFC population correlates strongly with crustal thickness and the predicted frequency distribution of overpressurization values of magmatic dikes. For a typical nearside lunar crustal thickness, dikes with high overpressurization values favor surface effusive eruptions, medium values favor intrusion and sill formation, and low values favor formation of solidified dikes concentrated lower in the crust. We develop a model for this process, make predictions for the morphologic, morphometric, volcanic, and geophysical consequences of the process and then compare these predictions with the population of observed floor-fractured craters. In our model, the process of magmatic intrusion and sill formation begins when a dike propagates vertically towards the surface; as the dike encounters the underdense brecciated region beneath the crater, the magmatic driving pressure is insufficient to continue vertical propagation, but pressure in the stalled dike exceeds the local lithostatic pressure. The dike then begins to propagate laterally forming a sill which does not propagate past the crater floor region because increased overburden pressure from the crater wall and rim crest pinch off the dike at this boundary; the sill then continues to inflate, further raising and fracturing the brittle crater floor. When the intrusion diameter to intrusion depth ratio is smaller than a critical value, the intrusion assumes a laccolith shape with a domed central region. When the ratio exceeds a critical value, the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  3. Dynamic magmatic processes at a continental rift caldera, observed using satellite geodesy

    NASA Astrophysics Data System (ADS)

    Lloyd, Ryan; Biggs, Juliet; Birhanu, Yelebe; Wilks, Matt; Gottsmann, Jo; Kendall, Mike; Lewi, Elias

    2016-04-01

    Large silicic calderas are a key feature of developing continental rifts, such as the Main Ethiopian Rift (MER), and are often observed to be deforming. Corbetti is one such example of a Holocene caldera in the MER that is undergoing deformation. However, the cause of the unrest, and the relationship to rift processes such as magma storage, transport and extension remain poorly understood. To investigate, we use InSAR (ascending and descending Cosmo-SkyMed data) and continuous GPS to observe the temporal and spatial evolution of sustained uplift at the Corbetti Caldera. Within the caldera, which was thought to have formed ~200 ka, there is evidence for numerous periods of resurgent volcanism in the form of plinian eruptions as well as effusive obsidian flows. How the sources of these varying styles of volcanism are reconciled at depth and in time is currently poorly constrained. Previous research has shown that pre-rift structures have a significant influence on the strain field, and hence on the magmatic and hydrothermal processes which drive it. The Cosmo-SkyMed data used in this study was specifically chosen such that each ascending image has a corresponding descending image acquired as contemporaneously as possible. This is necessary, given the rate of uplift, so as to reduce the number of assumptions when constructing time-series from multiple look directions, and when incorporating GPS data. We decompose the ascending and descending line-of-site deformation signals into vertical and east-west components and use finite source modeling to constrain the depth and geometry of the source of deformation. These results are then compared to available seismic, dynamic microgravity and magnetotelluric data to better understand this system, and how it is related to the volcanic hazard and local geothermal resources.

  4. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    NASA Astrophysics Data System (ADS)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  5. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  6. Self-organizing maps in geothermal exploration-A new approach for understanding geochemical processes and fluid evolution

    NASA Astrophysics Data System (ADS)

    Brehme, Maren; Bauer, Klaus; Nukman, Mochamad; Regenspurg, Simona

    2017-04-01

    Understanding geochemical processes is an important part of geothermal exploration to get information about the source and evolution of geothermal fluids. However, in most cases knowledge of fluid properties is based on few parameters determined in samples from the shallow subsurface. This study presents a new approach that allows to conclude from the combination of a variety of these data on processes occurring at depth in a geothermal reservoir. The neural network clustering technique called "self-organizing maps" (SOMs) successfully distinguished two different geothermal settings based on a hydrochemical database and disclosed the source, evolution and flow pathways of geothermal fluids. Scatter plots, as shown in this study, are appropriate presentations of element concentrations and the chemical interaction of water and rock at depth. One geological setting presented here is marked by fault dominated fluid pathways and minor influence of volcanic affected fluids with high concentrations of HCO3, Ca and Sr. The second is a magmatically dominated setting showing strong alteration features in volcanic rocks and accommodates acidic fluids with high SO4 and Si concentrations. Former studies, i.e., Giggenbach (1988), suggested Cl, HCO3 and SO4 to be generally the most important elements for understanding hydrochemical processes in geothermal reservoirs. Their relation has been widely used to classify different water types in geothermal fields. However, this study showed that non-standard elements are at least of same importance to reveal different fluid types in geothermal systems. Therefore, this study is an extended water classification approach using SOM for element correlations. SOM have been proven to be a successful method for analyzing even relatively small hydrochemical datasets in geothermal applications.

  7. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Quinteros, J.; Sobolev, S. V.

    2015-12-01

    It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  8. The Evolution of Galápagos Volcanoes: An Alternative Perspective

    NASA Astrophysics Data System (ADS)

    Harpp, Karen S.; Geist, Dennis J.

    2018-05-01

    The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Moreover, the eastern islands tend to have been constructed by linear fissure systems and many are cut by faults. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. The exceptions are volcanoes at the leading edge of the hotspot, which have yet to develop mush columns, and volcanoes that are waning in activity, because they are being carried away from the plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. This is attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of hypersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates with the distance to the Galápagos Spreading Center (GSC). When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes, indicating that there was a relatively large volume of mush beneath them. Morphologically, however, they are more like the eastern volcanoes, and have erupted lavas with a large range in composition.

  9. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes

    NASA Astrophysics Data System (ADS)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.

    2018-01-01

    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore increasing the volume of magma and the amount of crustal melts involved in the magma. This is explains the crystallization of older and more primitive quartz-monzodiorite stocks in the west and the later crystallization of granitic bodies with batholitic dimensions in the east.

  10. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    NASA Astrophysics Data System (ADS)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  11. Geochemical and Isotopic Evidences of the Magmatic Sources in the Eastern Sector of the Trans-Mexican Volcanic Belt: Xihuingo-Chichicuautla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.

    2011-12-01

    The study of magmatism in the Trans-Mexican Volcanic Belt (TMVB) has great importance due to several features such as its obliquity with respect to the Middle American Trench and its petrological and geochemical variability, which are not common in most typical volcanic arcs. Although several papers have contributed significantly to the understanding of most important magmatic processes in this province, there are still several questions such as the characterization of magmatic sources. In the present work, we provide new stratigraphic, petrographic, geochemical and Sr, Nd and Pb isotopic data as well as some K-Ar age determinations from the Xihuingo-Chichicuautla volcanic field (XCVF), located at the eastern part of the TMVB, with the aim to identify the magmatic sources that produced the main volcanic rocks. The volcanic structures in the XCVF are divided in two main groups according to the petrographic and geochemical compositions: 1) dacitic domes, andesitic lava flows and some dacitic-rhyolitic ignimbrites and 2) scoria cones, shield volcanoes and associated lava flows of basalt to basaltic-andesite composition. Distribution of most volcanic structures is probably controlled by NE-SW fault and fractures system. This fault system was studied by other authors who established that volcanic activity started ca. 13.5 Ma ago, followed by a volcanic hiatus of ca. 10 Ma, and the late volcanic activity began ca. 3 to 1 Ma. In this work we dated 2 rock samples by K-Ar method, which yielded ages of 402 and 871 Ka, which correspond to the most recent volcanic activity in this study area. The volcanic rocks of the XCVF display compositions from basalts to rhyolites but in general all rocks show trace element patterns typical of magmatic arcs. However, we can identify two main magmatic sources: a depleted magmatic source represented by dacitic-andesitic rocks which present a LILE enrichment with respect to HFSE indicating that a magmatic source was modified by fluids derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.

  12. An alternative plate tectonic model for the Palaeozoic Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand Burma)

    NASA Astrophysics Data System (ADS)

    Ferrari, O. M.; Hochard, C.; Stampfli, G. M.

    2008-04-01

    An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan-Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous-Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous-Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian-Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko-Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.

  13. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible scenarios: 1) only deep gases enter the hydrothermal system, because the shallow magmatic body is now fully crystallized and degassed. 2) The shallow magmatic body, invested by the arrival of deep gases, starts remelting and releasing gases into the hydrothermal system. 3) Magma from the deep reservoir slowly rises to shallow depths, well below the ductile-fragile transition for this area. These three scenarios carry contrasting implications for the volcanic hazard assessment, and demand a comprehensive treatment of geochemical and geophysical data in a way coherent with the knowledge that we have of the 1982-85 unrest

  14. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations.

    NASA Astrophysics Data System (ADS)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar

    2015-04-01

    Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive hydrothermal system which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-hydrothermal systems. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the deformation of the volcanic edifice detected by GPS network. In this new eruptive process, the record of tremor was followed by particular seismic quiescence, as precursors of explosive activity which evolved from low acoustic energy signals toward more energetic signals with impulsive first arrivals and strong attenuation, joined to night incandescence in the main vent without evident juvenile material ejected, which could be associated to the temporal depression of the hydrothermal system located in the volcano system. The recent eruptive episode at Copahue Volcano is a good example of the complex temporal evolution of the interaction between magmatic and hydrothermal systems.

  15. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic composition is estimated at - 2.38‰ (from COP-2), but most samples show elemental fractionation due to boiling and steam separation followed by various degrees of atmospheric contamination. All these geochemical and isotopic characteristics are the direct consequence of tectonic particularities of the CCVC: NE faults promote the ascent of hydrothermal fluids in the geothermal area whereas WNW faults serve as preferential channels for meteoric water infiltration.

  16. Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englacial tephra

    NASA Astrophysics Data System (ADS)

    Iverson, Nels A.; Kyle, Philip R.; Dunbar, Nelia W.; McIntosh, William C.; Pearce, Nicholas J. G.

    2014-11-01

    A tephrostratigraphy of the active Antarctic Erebus volcano was determined from englacial tephra on the ice-covered flanks of Erebus and an adjacent volcano. The tephra are used to reconstruct the eruptive history and magmatic evolution of Erebus. More fine-grained and blocky particles define tephra formed in phreatomagmatic eruptions and larger fluidal shards are characteristic of magmatic eruptions and in some cases both eruptive types are identified in a single mixed tephra. The eruptions forming the mixed tephra likely started as phreatomagmatic eruptions which transitioned into Strombolian eruptions as the nonmagmatic water source was exhausted. We reconstructed the eruptive history of Erebus using the tephra layers stratigraphic position, 40Ar/39Ar ages, shard morphology, and grain size. Major and trace element analyses of individual glass shards were measured by electron probe microanalysis and LA-ICP-MS. Trachybasalt, trachyte, and phonolite tephra were identified. All phonolitic tephra are Erebus-derived with compositions similar to volcanic bombs erupted from Erebus over the past 40 years. The tephra show that Erebus magma has not significantly changed for 40 ka. The uniformity of the glass chemical composition implies that the phonolite magma has crystallized in the same manner without change throughout the late Quaternary, suggesting long-term stability of the Erebus magmatic system. Trachyte and trachybasalt tephra were likely erupted from Marie Byrd Land and the McMurdo Sound area, respectively. The trachytic tephra can be regionally correlated and could provide an important time-stratigraphic marker in Antarctic ice cores.

  17. U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: Implications for the magmatic evolution in central Patagonia

    NASA Astrophysics Data System (ADS)

    Hauser, N.; Cabaleri, N. G.; Gallego, O. F.; Monferran, M. D.; Silva Nieto, D.; Armella, C.; Matteini, M.; Aparicio González, P. A.; Pimentel, M. M.; Volkheimer, W.; Reimold, W. U.

    2017-10-01

    The Cañadón Asfalto basin, central Chubut, Argentina, comprises a volcano-sedimentary sequence related to the opening of the Atlantic Ocean during Mesozoic times. The Lonco Trapial, Cañadón Asfalto and Cañadón Calcáreo formations are the main units related to the evolution of this basin. The Las Chacritas and Puesto Almada members are distinguished in the Cañadón Asfalto Formation. LA-HR-ICP-MS U-Pb and Lu-Hf data on zircon were obtained on these units. The Lonco Trapial Formation gave a weighted average age of 172.3 ± 1.8 Ma. A pyroclastic level from the Las Chacritas Member gave a weighted average age of 168.2 ± 2.2 Ma. Two U-Pb concordant ages of 160.3 ± 1.7 Ma on a laminated tuffite and 158.3 ± 1.3 Ma on a pyroclastic level were obtained for the Puesto Almada Member. Two maximum depositional ages constrain the sedimentary provenance areas for the basin: 1) A sample from the Sierra de la Manea range, where a controversial unit related either to the Cañadón Asfalto or to the Cañadón Calcáreo formation occurs, gave an age of 176.6 ± 1.0 Ma. Two younger zircon crystals indicate that this unit may be related to the Cañadón Calcáreo Formation. 2) A sandstone with cross-stratification from the Puesto Almada Member gave a maximum depositional age of 173.6 ± 6.4 Ma. In terms of U-Pb and Lu-Hf isotopes, two magmatic events are identified in central Patagonia: the Mamil Choique magmatic event characterized by negative εHf values around -5.0 and representing recycling during Permian times of Mesoproterozoic crust (TDM of ∼1.5 Ga), and the Cañadón Asfalto magmatic event with negative (-8.2) to positive (+4) εHf values and Meso- to Neoproterozoic TDM between 1.5 and 0.8 Ga. The younger event is characterized by three main cycles: C1 related to the Lonco Trapial magmatism, C2 to the Las Chacritas volcanism, and C3 to the Puesto Almada volcanism. These cycles are related with Marifil, Chon Aike and El Quemado formations volcanics events of Patagonia and the Neuquén Basin during the Mesozoic.

  18. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (<5 μm) contain halite crystals indicating a saline environment during magnetite growth. The combination of these observations are consistent with a formation model for IOA deposits in northern Chile that involves crystallization of magnetite microlites from a silicate melt, nucleation of aqueous fluid bubbles on magnetite surfaces, and formation and ascent of buoyant fluid bubble-magnetite aggregates. Decompression of the fluid-magnetite aggregate during ascent along regional-scale transcurrent faults promotes continued growth of the magmatic magnetite microlites from the Fe-rich magmatic-hydrothermal fluid, which manifests in magnetite rims that have trace element abundances consistent with growth from a magmatic-hydrothermal fluid. Mass balance calculations indicate that this process can leach and transport sufficient Fe from a magmatic source to form large IOA deposits such as Los Colorados. Furthermore, published experimental data demonstrate that a saline magmatic-hydrothermal ore fluid will scavenge significant quantities of metals such as Cu and Au from a silicate melt, and when combined with solubility data for Fe, Cu and Au, it is plausible that the magmatic-hydrothermal ore fluid that continues to ascend from the IOA depositional environment can retain sufficient concentrations of these metals to form iron oxide copper-gold (IOCG) deposits at lateral and/or stratigraphically higher levels in the crust. Notably, this study provides a new discrimination diagram to identify magnetite from Kiruna-type deposits and to distinguish them from IOCG, porphyry and Fe-Ti-V/P deposits, based on low Cr (<100 ppm) and high V (>500 ppm) concentrations.

  19. Viscoelastic modeling of deformation and gravity changes induced by pressurized magmatic sources

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda

    2018-05-01

    Gravity and height changes, which reflect magma accumulation in subsurface chambers, are evaluated using analytical and numerical models in order to investigate their relationships and temporal evolutions. The analysis focuses mainly on the exploration of the time-dependent response of gravity and height changes to the pressurization of ellipsoidal magmatic chambers in viscoelastic media. Firstly, the validation of the numerical Finite Element results is performed by comparison with analytical solutions, which are devised for a simple spherical source embedded in a homogeneous viscoelastic half-space medium. Then, the effect of several model parameters on time-dependent height and gravity changes is investigated thanks to the flexibility of the numerical method in handling complex configurations. Both homogeneous and viscoelastic shell models reveal significantly different amplitudes in the ratio between gravity and height changes depending on geometry factors and medium rheology. The results show that these factors also influence the relaxation characteristic times of the investigated geophysical changes. Overall, these temporal patterns are compatible with time-dependent height and gravity changes observed on Etna volcano during the 1994-1997 inflation period. By modeling the viscoelastic response of a pressurized prolate magmatic source, a general agreement between computed and observed geophysical variations is achieved.

  20. Numerical modeling of crater lake seepage

    NASA Astrophysics Data System (ADS)

    Todesco, M.; Rouwet, D.

    2012-04-01

    The fate of crater lake waters seeping into the volcanic edifice is poorly constrained. Quantification of the seepage flux is important in volcanic surveillance as this water loss counterbalances the inflow of hot magmatic fluids into the lake, and enters the mass balance computation. Uncertainties associated with the estimate of seepage therefore transfer to the estimate of magmatic degassing and hazard assessment. Moreover, when the often acidic lake brines disperse into the volcanic edifice, they may lead to acid attack (stress corrosion) and eventually to mechanical weakening of the volcano flanks, thereby causing an indirect volcanic risk. Understanding of the features that control the underground propagation of lake waters and their interactions with the magmatic-hydrothermal system is therefore highly recommended in volcanic hazard assessment. In this work, we use the TOUGH2 geothermal simulator to investigate crater lake water seepage in different volcanic settings. Modeling is carried out to describe the evolution of a hydrothermal system open on a hot, pressurized reservoir of dry gas and capped by a volcanic lake. Numerical simulations investigate the role of lake morphology, system geometry, rock properties, and of the conditions applied to the lake and to the gas reservoir at depth.

  1. Neogene Uplift and Magmatism of Anatolia: New Insights from Drainage Analysis and Basalt Geochemistry

    NASA Astrophysics Data System (ADS)

    McNab, F.; Ball, P.; Hoggard, M.; White, N.

    2017-12-01

    The origin of Anatolia's high elevation and low relief plateaux has been the subject of much recent debate. Marine sedimentary rocks distributed across Central and Eastern Anatolia require significant regional uplift in Neogene times. This uplift cannot be explained by the present-day pattern of crustal deformation which, particularly across Central and Western Anatolia, is dominanted by strike-slip and extensional faulting. Positive long wavelength free-air gravity anomalies combined with slow upper mantle seismic wave speeds suggest that the sub-lithospheric mantle provides substantial topographic support. A range of geodynamic processes have been invoked, including complex slab fragmentation and lithospheric delamination. The temporal and spatial evolution of the Anatolian landscape should be recorded by drainage networks. Indeed, major catchments contain prominent knickzones with heights of hundreds of meters and length scales of several hundred kilometers. The stream power formulation for fluvial erosion permits these knickzones to be interpreted in terms of uplift history along a river's length. Here, we jointly invert an inventory of 1,844 river profiles to determine a spatial and temporal uplift rate history. When calibrated against independent observations of uplift rate, the resultant history provides significant new constraints for the evolution of Anatolian topography. In our model, the bulk of this topography appears to grow in Neogene times. Uplift initiates in Eastern Anatolia and propagates westward at uplift rates of up to 0.5 mm/yr. Coeval with this phase of uplift, abundant basaltic magmatism has occurred throughout Anatolia. We have compiled an extensive database of published geochemical analyses. Using this database, we analyse spatial and temporal patterns of basaltic compositions to discriminate between different modes of melt generation. Two independent techniques for estimating asthenospheric potential temperatures from the compositions of high-Mg basalts have been used. Elevated temperatures of c. 1380 ºC occur beneath Eastern Anatolia with a notable decrease towards the west. Overall, our results imply that the spatial and temporal evolution Anatolian topography is controlled by temperature variations within the asthenospheric mantle.

  2. Volcanoes of the passive margin: The youngest magmatic event in eastern North America

    USGS Publications Warehouse

    Mazza, Sarah E; Gazel, Esteban; Johnson, Elizabeth A; Kunk, Michael J.; McAleer, Ryan J.; Spotila, James A; Bizimis, Michael; Coleman, Drew S

    2014-01-01

    The rifted eastern North American margin (ENAM) provides important clues to the long-term evolution of continental margins. An Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia (USA) contains the youngest known igneous rocks in the ENAM. These magmas provide the only window into the most recent deep processes contributing to the postrift evolution of this margin. Here we present new 40Ar/39Ar ages, geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions on primitive basalts yielded an average temperature and pressure of 1412 ± 25 °C and 2.32 ± 0.31 GPa, corresponding to a mantle potential temperature of ∼1410 °C, suggesting melting conditions slightly higher than average mantle temperatures beneath mid-ocean ridges. When compared with magmas from Atlantic hotspots, the Eocene ENAM samples share isotopic signatures with the Azores and Cape Verde. This similarity suggests the possibility of a large-scale dissemination of similar sources in the upper mantle left over from the opening of the Atlantic Ocean. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. This process can also explain the Cenozoic dynamic topography and evidence of rejuvenation of the central Appalachians.

  3. Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin

    NASA Astrophysics Data System (ADS)

    Naipauer, Maximiliano; Tapia, Felipe; Mescua, José; Farías, Marcelo; Pimentel, Marcio M.; Ramos, Victor A.

    2015-12-01

    The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U-Pb (LA-MC-ICP-MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian-Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U-Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian-Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests cessation of the synrift magmatism. The later increase in magmatic activity during the Early Jurassic is attributed to the onset of Andean subduction, with maximum peaks at ca. 191 and 179 Ma. The trough at ca. 165 Ma and the later increase in the Late Jurassic could be explained by changes in the relative convergence rate in the Andean subduction regime, or by the shift to a more mafic composition of the magmatism with minor zircon fertility.

  4. Geochronology, geochemistry and isotope tracing of the Oligocene magmatism of the Buchim-Damjan-Borov Dol ore district: Implications for timing, duration and source of the magmatism

    NASA Astrophysics Data System (ADS)

    Lehmann, St.; Barcikowski, J.; von Quadt, A.; Gallhofer, D.; Peytcheva, I.; Heinrich, C. A.; Serafimovski, T.

    2013-11-01

    Timing, source and magmatic evolution of the intrusions in the Buchim-Damjan-Borov Dol ore district of the Former Yugoslav Republic of Macedonia (F.Y.R.O.M.) have been studied. They intrude the Circum Rhodope Unit close to the contact with the Vardar Zone and are a part of the Late Eocene-Oligocene Macedonian Rhodope-North Aegean belt. The magmatism at Buchim-Damjan-Borov Dol occurred between 24.04 ± 0.77 and 24.51 ± 0.89 Ma, as indicated by chemical-annealing (CA)-LA ICP-MS zircon dating. Major element, trace and rare earth element analyses have been performed on the various intrusive rocks. All ore bearing magmas were classified as trachyandesitic, except the youngest intrusion which is not associated with mineralization; the Black Hill locality (24.04 ± 0.77 Ma) shows a trachytic composition. The distribution of the trace elements, enrichment of large ion lithophile elements (LILE) and depletion in high field strength elements (HFSE), indicates subduction-related magmatism; most of the magmas follow a calc-alkaline fractionation trend with shoshonitic affinities; additionally, Sr/Y (10 to 90) and La/Yb values show some similarities to adakite-like magmas. Sr and Nd isotope ratios (Sri = 0.70658 to 0.70740 and Ndi = 0.512425-0.512497) show that the magmatic products were slightly contaminated by continental crust material, e.g., the Variscan/Cadomian basement. In the Late Eocene-Oligocene belt the magmatism between 29 and 35 Ma is dominated by crustal melting with an increase in the mantle contribution between 20 and 27 Ma. We suggest the following scenario for the magmatic history of the Buchim-Damjan-Borov Dol ore district: a slab rollback of an oceanic slab located further to the SW which led to extensional and compressional features in upper levels of the continental crust. In the middle to upper crust three consecutive crystallization stages occurred at variable depths as indicated by amphibole zonation. Mixing of newly formed crust with mantle-like affinities and continental crust material in variable degrees during the ascent of the magma can explain all geochemical characteristics. The magma crystallized as dykes or stocks near the Earth's surface (> 1 km) after its final emplacement and contemporaneous hydrothermal activity led to different mineralization styles depending on the lithology of the host rocks.

  5. Melt Inclusions Record Extreme Compositional Variability in Primitive Magmas at Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Kamenetsky, V. S.; Norman, M. D.; Garcia, M. O.

    2002-12-01

    Melt inclusions carry potentially unique information about magmatic processes and the compositional evolution of erupted lavas. Major element compositions of olivine-hosted melt inclusions in submarine tholeiitic picrites from the southwest rift zone of Mauna Loa volcano have been studied to examine the compositional variability of primitive magmas feeding the world's largest volcano. Approximately 600 naturally quenched inclusions were examined from 8 samples with 3-25 vol% olivine phenocrysts and 9-22 wt% MgO. Olivine compositions ranged from Fo91-Fo82. The inclusions show a continuous variation in FeO contents from near-magmatic values (9 to 11 wt%) in the most evolved olivines to extremely low values (3.5 to 7.0 wt%) in the most primitive olivines. This appears to reflect a complex magmatic history for these crystals involving extensive re-equlibration of melts trapped by early formed phenocrysts with their host olivine. Extreme compositional variability also characterizes incompatible elements that would not be affected by equilibration with the host olivine. Inclusions trapped in relatively primitive olivines (Fo88-91) show a large range of K2O contents (0.1 to 2.1 wt%), whereas inclusions in more evolved olivines converge on whole rock compositions with 0.3 to 0.4 wt% K2O. Similarly, TiO2/K2O, Na2O/K2O, and K2O/P2O5 ratios of inclusions in primitive olivines span a much larger range than do inclusions hosted by more evolved olivines, with TiO2/K2O ratios extending from enriched to depleted compositions (1.2 to 24.7) in primitive olivines, and converging on whole rock compositions (TiO2/K2O = 6-9) in more evolved host olivine. This points toward extreme compositional variability in melts feeding Mauna Loa, and effective mixing of these melt parcels in the shallower summit reservoir to produce the restricted range of whole rock compositions sampled by erupted lavas. Whole rock compositions, therefore provide an integrated view of melting and high-level mixing processes, whereas melt inclusions provide more detailed information about source characteristics.

  6. Quantifying dynamic rheology, phase interactions and strain localisation in deforming three phase magmas using high-speed x-ray tomography

    NASA Astrophysics Data System (ADS)

    Dobson, Katherine; Pistone, Mattia; Fife, Julie; Cordonnier, Benoit; Blundy, Jon; Dingwell, Don; Lee, Peter

    2015-04-01

    The crystal and bubble cargoes of magmas are critical to controlling magma mobility and rheology. These cargos vary in both time and space and the local, and bulk, rheological behaviour are correspondingly heterogeneous. Tracking how these heterogeneous cargoes evolve, and how crystals and bubbles interact with each other in deforming systems is a critical challenge in volcanology, as these processes control both the chemical and physical evolution of the magma, including phenomena such as melt-crystal segregation, strain localisation, and fragmentation. The only methodology available to track these processes in real time, and at the scale of individual melt-crystal-bubble interactions is high speed x-ray tomography. This non-destructive imaging technique allows the rapid acquisition of sequential 3D images that capture the physical, and to some degree chemical, microstructure of the sample during a deformation cycle. We utilise in situ tomographic methods developed in materials science to perfume magmatic deformation experiments on synthesized three phase systems at magmatic temperatures. Through a novel combination of a high temperature laser heating system [1] in situ micro-precision deformation apparatus [2] and the temporal and spatial resolution available at the TOMCAT beam line at the Swiss Light Source synchrotron facility we performed in situ observations of the microstructural evolution of a synthesized anhydrous borosilicate melt seeded with a variable concentration of non-reactive rutile crystals and air bubbles (30-70 volume %). The experiments were conducted at 800-1000C, under constant deformation rates of 0.25-5.00 microns/second. Each 3D image has 2D and 3D spatial resolution of approximately 3 microns per pixel, and each 3D image took ~3 seconds to acquire. Here we present this innovative high speed, high temperature, syn-deformation tomographic data , and show how it can be used to trace the location and local distribution of each crystal and bubble within a small volume cylindrical experimental charge (3mm diameter, 5mm length) undergoing shear along a single vertical plane. By qualitative and quantitative analysis of the sequential images collected over 5-15 minute deformation cycles we track the local bubble, crystal and melt concentrations on a range of spatial scales. From this we calculate a spatially heterogeneous and dynamic local viscosity [3] and assess our results against recently developed 3-phase rheological models [4]. We will present how this real time 4D information can be used to quantify the dynamics of magma motion, discuss the implications of spatially and temporally variable rheological behaviours, and show how this novel technique can be integrated with other volcanology methods to improve our understanding of volcanic and magmatic processes. [1] Fife et al. 2012. J. Synchrotron Rad. 19, 352-358 [2] Kareh et al. 2014 Nature Comm. 5 4464. [3] Giordano, et al. 2008 EPSL 271 123-134. [4] Truby et al. 2015 P.Roy.Soc.A. 2015471 20140557

  7. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage

    NASA Astrophysics Data System (ADS)

    Andersen, Nathan L.; Jicha, Brian R.; Singer, Brad S.; Hildreth, Wes

    2017-11-01

    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40Ar/39Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40Ar/39Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ˜475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40Ar/39Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ˜7 ky following the Matuyama‑Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40Ar/39Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  8. Basaltic maar-diatreme volcanism in the Lower Carboniferous of the Limerick Basin (SW Ireland)

    NASA Astrophysics Data System (ADS)

    Elliott, H. A. L.; Gernon, T. M.; Roberts, S.; Hewson, C.

    2015-05-01

    Lead-zinc exploration drilling within the Limerick Basin (SW Ireland) has revealed the deep internal architecture and extra-crater deposits of five alkali-basaltic maar-diatremes. These were emplaced as part of a regional north-east south-west tectonomagmatic trend during the Lower Carboniferous Period. Field relationships and textural observations suggest that the diatremes erupted into a shallow submarine environment. Limerick trace element data indicates a genetic relationship between the diatremes and extra-crater successions of the Knockroe Formation, which records multiple diatreme filling and emptying cycles. Deposition was controlled largely by bathymetry defined by the surrounding Waulsortian carbonate mounds. An initial non-diatreme forming eruption stage occurred at the water-sediment interface, with magma-water interaction prevented by high magma ascent rates. This was followed by seawater incursion and the onset of phreatomagmatic activity. Magma-water interaction generated poorly vesicular blocky clasts, although the co-occurrence of plastically deformed and highly vesicular clasts indicate that phreatomagmatic and magmatic processes were not mutually exclusive. At a later stage, the diatreme filled with a slurry of juvenile lapilli and country rock lithic clasts, homogenised by the action of debris jets. The resulting extra-crater deposits eventually emerged above sea level, so that water ingress significantly declined, and late-stage magmatic processes became dominant. These deposits, largely confined to the deep vents, incorporate high concentrations of partially sintered globular and large `raggy' lapilli showing evidence for heat retention. Our study provides new insights into the dynamics and evolution of basaltic diatremes erupting into a shallow water (20-120 m) submarine environment.

  9. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage.

    PubMed

    Andersen, Nathan L; Jicha, Brian R; Singer, Brad S; Hildreth, Wes

    2017-11-21

    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40 Ar/ 39 Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40 Ar/ 39 Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ∼475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40 Ar/ 39 Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ∼7 ky following the Matuyama-Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40 Ar/ 39 Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  10. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

    NASA Astrophysics Data System (ADS)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún

    2018-04-01

    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  11. Relationship between Famatinian Arc Magmatism and Recent Mafic Volcanism in Northwest Argentina: Implications for Lithospheric Composition and Evolution Beneath the Puna Plateau

    NASA Astrophysics Data System (ADS)

    Drew, S.; Schoenbohm, L.; Ducea, M.

    2008-12-01

    The tectonic and magmatic evolution of the Puna Plateau (NW Argentina) has generated much debate over the past two decades. This study focuses on the young (< 7 Ma), mafic magmatism that led to the creation of monogenetic and simple polygenetic volcanoes throughout the plateau. These volcanics provide a means to evaluate the recent petro-tectonic development of the plateau and, in combination with Ordovician intrusive rocks, determine the isotopic composition and long term evolution of the sub-continental lithospheric mantle (SCLM) beneath the Andean back-arc domain. Here we present new whole rock major and trace element data and isotopic values for volcanic samples collected from the Antofagasta and Pasto Ventura basins in the southern Puna Plateau. Major element chemistry shows most of our samples are basalt, trachybasalt, basaltic andesite and basaltic trachyandesites, some with < 50.0 wt% SiO2 and > 8.0 wt% MgO, which is indicative of a strong mantle component. The more primitive lavas likely have a sub-crustal origin and experienced minimal interaction with overlying crust during transport to the surface. Two of our samples with low wt% MgO, a silicic andesite and a dacite, indicate an extensive crustal component and possibly a lower crust origin for evolved magmas. All samples have light trace element enrichment compared to NMORB and elevated abundances of LIL and LRE elements compared to HFS and HRE elements, indicating the magmas originated from a metasomatized source region. The samples also have variable (low and high) Nb, Ta and Ti negative anomalies, which are interpreted to be a signature of the source region. Our samples do not have a lithospheric delamination (~OIB) trace element signature as proposed by previous workers in support of a delamination model. Additionally, the samples have isotopic values (e.g. 87Sr/86Sr >0.7055 and ɛNd <0) that are not comparable to depleted asthenosphere. It is impossible for asthenospheric magma to obtain these isotopic values through crustal assimilation or AFC processes while maintaining a basalt major element composition and high Ni and Cr concentrations. Therefore, we propose the mafic magmas are sourced from a SCLM that, in accord with the LIL and LRE element concentrations, has been metasomatized during dehydration and possibly melting of a subducting oceanic plate. The young volcanics have isotopic values nearly identical to those of Early Ordovician Famatinian gabbros and norites. We suggest the most primitive Puna volcanic and Famatinian samples originated from the same SCLM source region. This implies at least a thin portion of the SCLM has remained intact beneath NW Argentina for the last ~485 million years. Resultantly, the SCLM was likely thinned to its present thickness sometime between the Early Ordovician and the Late Miocene. Thinning may have occurred by long term mantle wedge processes. Steady shortening and thickening of the continental crust and gradual removal of the SCLM by convection is envisioned here. The occurrence of discrete, intermittent delamination events is not favored because removal and then regeneration of the SCLM would not have allowed for preservation of the Famatinian isotopic signature.

  12. Magnetic property zonation in a thick lava flow

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  13. Structure and kinematics of segment-scale crustal accretion processes in Iceland and implications for analogous mid-ocean ridge systems

    NASA Astrophysics Data System (ADS)

    Siler, Drew Lorenz

    2011-12-01

    The sub-surface geologic structure of the crust is controlled by the magmatic and tectonic processes that construct the crust during plate spreading. As a result, geologic structure provides constraints on the processes that occur during plate spreading. The crust of the Skagi region of northern Iceland, where this study was focused, was accreted by magmatic construction to Iceland ˜7-10 Ma and subsequently glacially eroded, exhuming ˜1-3 km of structural relief. Continuous spreading-parallel and spreading-orthogonal mountain ranges expose the crust accreted at discrete spreading segments, the fundamental intervals upon which plate spreading and crustal accretion occur. As a result, Skagi is an ideal location to employ geologic structure analysis to study magmatic rifting processes. Within spreading segments structural patterns vary significantly between segment centers and distal fissure swarms. While segment centers are characterized by focused magmatic construction and km-scale sub-volcanic subsidence, fissure swarms are characterized by limited magmatic construction, minor sub-axial subsidence and lateral dike injection. Such along-strike variation indicates that both magma in the upper crust and gabbroic material in the lower crust must be redistributed along-strike within spreading segments during plate spreading. Material flow is directed from beneath segment centers towards distal fissure swarms. At the regional scale, each spreading segment is a structurally discrete interval of Iceland's Neovolcanic Zone. As a result of west-northwestward movement of Iceland relative to the Iceland hotspot, the rift zone axis has progressively relocated to the east-southeast with time, leaving a series of abandoned rift zones throughout western Iceland. A compilation of published K/Ar and 40Ar/39Ar age data and geologic data from across northern Iceland shows that rift relocation occurs via frequent (2-3 Ma), small-scale (˜20 km) rift propagations rather than rare, 100s of km 'rift jumps' as is conventional models suggest. The structure relationships we define in the Icelandic crust are similar to that of other magmatic rift systems including Mid-Ocean Ridges, continental rifts and ancient volcanic rift margins. As such, we suggest that many of the crustal accretion processes we have inferred from Icelandic data may be important in these analogous environments as well.

  14. Silver contents and Cu/Ag ratios in Martian meteorites and the implications for planetary differentiation

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2017-11-01

    Silver and Cu show very similar partitioning behavior in sulfide melt-silicate melt and metal-silicate systems at low and high pressure-temperature (P-T) experimental conditions, implying that mantle melting, fractional crystallization and core-mantle differentiation have at most modest (within a factor of 3) effects on Cu/Ag ratios. For this reason, it is likely that Cu/Ag ratios in mantle-derived magmatic products of planetary bodies reflect that of the mantle and, in some circumstances, also the bulk planet composition. To test this hypothesis, new Ag mass fractions and Cu/Ag ratios in different groups of Martian meteorites are presented and compared with data from chondrites and samples from the Earth's mantle. Silver contents in lherzolitic, olivine-phyric and basaltic shergottites and nakhlites range between 1.9 and 12.3 ng/g. The data display a negative trend with MgO content and correlate positively with Cu contents. In spite of displaying variable initial Ɛ143Nd values and representing a diverse spectrum of magmatic evolution and physiochemical conditions, shergottites and nakhlites display limited variations of Cu/Ag ratios (1080 ± 320, 1 s, n = 14). The relatively constant Cu/Ag suggests limited fractionation of Ag from Cu during the formation and evolution of the parent magmas, irrespectively of whether sulfide saturation was attained or not. The mean Cu/Ag ratio of Martian meteorites thus reflects that of the Martian mantle and constrains its Ag content to 1.9 ± 0.7 ng/g (1 s). Carbonaceous and enstatite chondrites display a limited range of Cu/Ag ratios of mostly 500-2400. Ordinary chondrites show a larger scatter of Cu/Ag up to 4500, which may have been caused by Ag redistribution during parent body metamorphism. The majority of chondrites have Cu/Ag ratios indistinguishable from the Martian mantle value, indicating that Martian core formation strongly depleted Cu and Ag contents, but probably did not significantly change the Cu/Ag ratio of the mantle compared to bulk Mars. Bulk Mars is richer in moderately volatile elements than Earth, however, the Martian mantle displays a much stronger depletion of the moderately volatile elements Cu and Ag, e.g., by a factor of 15 for Cu. This observation is consistent with experimental studies suggesting that core formation at low P-T conditions on Mars led to more siderophile behavior of Cu and Ag than at high P-T conditions as proposed for Earth. In contrast, Cu/Ag ratios of the mantles of Mars and Earth (Cu/AgEarth = 3500 ± 1000) display only a difference by a factor of 3, which implies restricted fractionation of Cu and Ag even at high P-T conditions. The concentration data support the notion that siderophile element partitioning during planetary core formation scales with the size of the planetary body, which is particularly important for the differentiation of large terrestrial planets such as Earth. Collectively, the Ag and Cu data on magmatic products from the mantles of Mars and Earth and the data on chondrites confirm experimental predictions and support the limited fractionation of Cu and Ag during planetary core formation and high-temperature magmatic evolution, and probably also in early solar nebular processes.

  15. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  16. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  17. High δ56Fe values in Samoan basalts

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Pietruszka, A. J.; Hanan, B. B.; Finlayson, V.

    2014-12-01

    Fe isotope fractionation spans ~0-0.4 permil in igneous systems, which cannot all be attributed to variable source compositions since peridotites barely overlap these compositions. Other processes may fractionate Fe isotopes such as variations in the degree of partial melting, magmatic differentiation, fluid addition related to the final stages of melt evolution, and kinetic fractionation related to diffusion. An important observation in igneous systems is the trend of increasing Fe isotope values against an index of magmatic fractionation (e.g. SiO2; [1]). The data strongly curve from δ56Fe >0.3 permil for SiO2 >70 wt% down to values around 0.09 permil from ~65 wt% down to 40 wt% SiO2 of basalts. However, ocean island basalts (OIBs) have a slightly larger δ56Fe variability than mid ocean ridge basalts (MORBs; [e.g. 2]). We present Fe isotope data on samples from the Samoan Islands (OIB) that have unusually high δ56Fe values for their SiO2 content. We rule out alteration by using fresh samples, and further test for the effects of magmatic processes on the δ56Fe values. In order to model the largest possible fractionation, unusually small degrees of melting with extreme fractionation factors are modeled with fractional crystallization of olivine alone, but such processing fails to fractionate the Fe isotopes to the observed values. Moreover, Samoan lavas likely also fractionated clinopyroxene, and its lower fractionation factor would limit the final δ56Fe value of the melt. We therefore suggest the mantle source of Samoan lavas must have had unusually high δ56Fe. However, there is no clear correlation with the highly radiogenic isotope signatures that reflect the unique source compositions of Samoa. Instead, increasing melt extraction correlates with lower δ56Fe values in peridotites assumed to be driven by the preference for the melt phase by heavy Fe3+, while high values may be related to metasomatism [3]. The latter would be in line with metasomatized xenoliths from Samoa [4]. [1] Heimann et al., 2008, doi:10.1016/j.gca.2008.06.009 [2] Teng et al., 2013, doi:10.1016/j.gca.2012.12.027 [3] Williams et al., 2004, doi: 10.1126/science.1095679 [4] Hauri et al., 1993, doi: 10.1038/365221a0

  18. Initial magmatism and evolution of the Izu-Bonin-Mariana Arc

    NASA Astrophysics Data System (ADS)

    Arculus, R. J.

    2016-12-01

    Expedition 351 of the IODP targeted site U1438 in the Amami Sankaku Basin, northwestern Philippine Sea , 70 km west of the northern Kyushu-Palau Ridge (KPR). The latter formed a chain of stratovolcanoes of the Izu-Bonin-Mariana (IBM) arc, and a remnant arc following migration of the volcanic front eastwards during Shikoku backarc basin formation in the Miocene. Unravelling causes of subduction initiation drove the primary aims of the Expedition involving recovery of igneous basement below the KPR, and a history of the magmatic evolution of the KPR preserved in a clastic record. All these aims were achieved, but with some surprises. Out of 1600m drilled in 4700m water depth, 150m of igneous oceanic crust comprising low-K, tholeiitic basalt lava flows were recovered at U1438. The lavas are variably glassy to microphyric, Cr-spinel-olivine-plagioclase-clinopyroxene-bearing, have high V/Ti, very low absolute rare earth element abundances and low La/Yb, and radiogenic Hf at a given 143/144Nd compared to basalts of mid-ocean ridges. The basement is geochemically and petrologically similar to so-called "forearc basalts" recovered trenchward of the active IBM volcanic front, and of similar or older age (≥52Ma). Highly melt-depleted mantle source(s) were involved and high-temperature, low-pressure dehydration of the subducting Pacific Plate. Compositions of glass (formerly melt) inclusions in clinopyroxene-bearing clasts and sandstones in sediments overlying the basement show a change from medium-Fe (aka "calcalkaline") to low-Fe (tholeiitic) magmas during the Eocene-Oligocene evolution of the KPR. Widespread magmatism along- and across-strike of the nascent IBM system coupled with geologic constraints from the western Philippine Sea, indicate subduction initiation at the IBM arc likely propagated adjacent to Mesozoic-aged arcs/basins to the west of the KPR, following plate reorganization subsequent to the demise of the Izanagi-Pacific Ridge along eastern Asia at 60Ma. Neither the spontaneous nor induced models of subduction initiation adequately capture the inception of the IBM arc. Geographic modifiers of basalt types such as "forearc" are overly restrictive and potentially misleading.

  19. Intraplate mafic magmatism: New insights from Africa and N. America

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.

    2017-12-01

    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread intraplate earthquakes and magmatism, across areas broader than the surface expression of rifting. Integrated geophysical, geological and geochemical studies reveal large volumes and rates of magmatism at rift zones, provoking re-evaluation of crustal accretion and carbon and water cycles, as well as earthquake and volcanic hazards.

  20. Synchronous partial melting, deformation, and magmatism: evidence from in an exhumed Proterozoic orogen

    NASA Astrophysics Data System (ADS)

    Levine, J. S. F.; Mosher, S.

    2017-12-01

    Older orogenic belts that now expose the middle and lower crust record interaction between partial melting, magmatism, and deformation. A field- and microstructural-based case study from the Wet Mountains of central Colorado, an exhumed section of Proterozoic rock, shows structures associated with anatexis and magmatism, from the grain- to the kilometer-scale, that indicate the interconnection between deformation, partial melting, and magmatism, and allow reconstructions of the processes occurring in hot active orogens. Metamorphic grade, along with the degree of deformation, partial melting, and magmatism increase from northwest to southeast. Deformation synchronous with this high-grade metamorphic event is localized into areas with greater quantities of former melt, and preferential melting occurs within high-strain locations. In the less deformed northwest, partial melting occurs dominantly via muscovite-dehydration melting, with a low abundance of partial melting, and an absence of granitic magmatism. The central Wet Mountains are characterized by biotite dehydration melting, abundant former melt and foliation-parallel inferred melt channels along grain boundaries, and the presence of a nearby granitic pluton. Rocks in the southern portion of the Wet Mountains are characterized by partial melting via both biotite dehydration and granitic wet melting, with widespread partial melting as evidenced by well-preserved former melt microstructures and evidence for back reaction between melt and the host rocks. The southern Wet Mountains has more intense deformation and widespread plutonism than other locations and two generations of dikes and sills. Recognition of textures and fabrics associated with partial melting in older orogens is paramount for interpreting the complex interplay of processes occurring in the cores of orogenic systems.

  1. Oxygen regime of Siberian alkaline-ultramafic magmas

    NASA Astrophysics Data System (ADS)

    Ryabchikov, Igor; Kogarko, Liya

    2017-04-01

    Regimes of S2 and O2 are decisive factors controlling behavior of chalcophile and siderophile elements in magmatic processes. These parameters play important role during magmagenesis and in the course of crystallization and fluid mass transfer in magma chamber. Alkaline-ultramafic magmatism in Maymecha-Kotuy Province (Polar Siberia) is represented by giant intrusive complexes as well as by volcanics and dyke rocks, which include a well-known variety - meimechites. The latter are considered primary magmas of alkaline-ultramafic plutons in the region like for instance Guli intrusive complex. Sulfur content in primitive magmas estimated from the analyses of melt inclusions in olivine megacrysts from meimechites is close to 0.1 %. fO2 values calculated using olivine+clinopyroxene+spinel and spinel+melt oxygen barometers (1, 2) are 2-3 log units above QFM buffer. The relatively high oxygen potential at the early magmatic stage of alkaline-ultramafic Guli pluton provide predominance of sulfates among other forms of sulfur in the melt. This leads to the almost complete absence of sulfides in highly magnesian rocks. The oxidizing conditions exert important effect on behavior of many ore metals. At the stage of magma generation absence of sulfides in mantle materialresults in the presence of siderophile elements in metallic form and saturation of primary magmas in respect of metallic phases at an early stage of injection of the melt into the magma chamber. Later, under favorable circumstances during magma crystallization nuggets of precious metals may be formed. During further evolution of magmatic system fO2 and activity of oxidized sulfur decrease due to intensive crystallization of magnetite during the formation of koswites, then oxygen fugacity becomes even lower as a result serpentinization at a postmagmatic stage. These serpentization processes are caused by the displacement of reactions in the aqueous phase due to cooling towards the formation of methane and other reduced components and, possibly, with their concentration in the gas phase due to boiling at lowered pressure. This leads to the appearance of late sulfides in the intergranular space of the investigated rocks. Sulfides are represented by pentlandite, monosulfide solid solution and heazlewoodite. Thermodynamic analysis of equilibria involving these minerals has shown that the oxygenpotential in the later stages is significantly reduced (up to three logarithmic units below QFM buffer at 300 ° C). The transition from an oxidizing to a reducing environment will contribute to the mobilization of many ore metals by aqueous fluids and then theirconcentrated deposition. This may be particularly important factor for gold, which is mobilized by fluid under oxidizing environment and precipitated due to the decreasing fO2. Au is present in placers on the territory of the Guli complex. Highly oxidized nature of the early phases of alkaline-ultramafic magmatic systems (high magnetite component of chrome spinel, high concentrations of ferric iron in pyroxene), and signs of the transition to a more reducing environment at a late stage (intensive crystallization of magnetite, occurrence of sulfur-deficient sulfides) can be considered as a potential prognostic signs of gold mineralization. Russian Science Foundation (grant 15-17-30019) has supported this work. 1. I. D. Ryabchikov, Oxygen potential of high-magnesium magmas. Doklady Earth Sciences 448, 149 (Jan, 2013). 2. I. D. Ryabchikov, L. N. Kogarko, A new version of the spinel-olivine-pyroxene oxybarometer and extreme redox differentiation in magmatic systems of mantle sources. Doklady Earth Sciences 430, 248 (Feb, 2010).

  2. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Wang, Ying; Li, Shu-Guang

    2014-10-01

    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between north and central or south Dabie zones during retro-grade metamorphism enhanced by the extensive magmatism in the Cretaceous has also been observed in the 207Pb/204Pb vs. 206Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb diagrams. A combined study of common Pb isotopic compositions of Dabie orthogneisses and Sulu UHPM rocks from the Chinese Continental Scientific Drilling project demonstrates that a slab marked by extremely unradiogenic Pb observed in the main hole was absent in the Dabie orogen. However, occurrence of some Mesozoic granitoids with such unradiogenic character in the Dabie orogen suggests that their source may be a buried unradiogenic unit underlying below north Dabie zone. This case study clearly shows that whether the position of the Dabie data relative to the orogen curve of the plumbotectonic model is helpful in understanding the Pb isotopic structure and evolution of subducted continental crust.

  3. A multidisciplinary study on the crustal architecture and tectonic evolution of the Biligiri Rangan Block, southern India: Implications for Neoarchean plate tectonics

    NASA Astrophysics Data System (ADS)

    Raveendran Thankamoni, Ratheesh Kumar

    2017-04-01

    Southern India is comprised of a collage of crustal blocks ranging in age from Archean to Neoproterozoic. Previous studies considered the Archean high-grade granulite terrain to the north of the Southern Granuilte Terrain (SGT) of southern India as the part of the Dharwar Craton and hence subdivided this craton into western, central and eastern provinces. This contribution presents my detailed examinations on the least studied Central Dharwar Province, comprising the Biligiri Rangan (BR) - Male Mahadeshwara (MM) Hills domain composed predominantly of charnockites. One of my recent study (Ratheesh-Kumar et al., 2016) for the first time provided necessary evidence for Neoarchean subduction-accretion-collision tectonic evolution of this domain as a separate crustal block which has been named as Biligiri Rangan Block (BRB) by using a multidisciplinary approach involving field investigation, petrography, mineral chemistry, thermodynamic modeling of metamorphic P-T evolution, and LA-ICPMS U-Pb and Lu-Hf analyses of zircons on representative rocks together with regional-scale crustal thickness model derived using isostatic gravimetric geophysical method. The important findings of this study are: (1) The BRB preserves the vestiges of a Mesoarchean primitive continental crust as indicated by the age (ca. 3207) and positive ɛHf value (+2.7) of quartzofeldspathic gneiss occurred in the central part of the block (2) The charnockites and associated mafic granulites and granites provide ages between ca. 2650 Ma and ca. 2498 Ma with large negative ɛHf values are suggestive of Neoarchean charnockitization and crustal remelting (3) New geochemical data of charnockites and mafic granulites from BRB are consistent with arc magmatic rocks generated through oceanic plate subduction (4) Delineation of a suture zone along the Kollegal structural lineament bounding the BRB and the Western Dharwar Craton surmised from the occurrences of quartzite-iron formation intercalations and also mafic-ultramafic lenses along this lineament with their evolution through a clockwise prograde and retrograde metamorphism in a subduction zone setting at a high-pressure of 18-19 kbar and temperature of ˜840°C (5) Spatial variation of crustal thickness data reveal high crustal thickness in the Biligiri Rangan and the Nilgiri Blocks, and are attributed to a more competently thickened crust resulted by the subduction and collision processes. Based on these results, this study proposes a new tectonic model for the evolution of the BRB that envisages eastward subduction of the Western Dharwar oceanic crust beneath the BRB along the Kollegal suture zone resulted in the arc magmatism during the Neoarchean. The relevance of this study relies on the fact that the proposed evolutionary model revises the existing debates on the tectonic framework and evolution of the Archean terranes of southern India.

  4. Surface Morphology of Active Normal Faults in Hard Rock: Implications for the Mechanics of the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Mignan, A.; King, G. C.

    2009-12-01

    Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  5. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  6. Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie

    2013-07-01

    Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.

  7. Some aspects of the role of rift inheritance on Alpine-type orogens

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien

    2017-04-01

    Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (<10 km) and/or exhumed serpentinized mantle with relatively minor magmatic additions) between unequivocal continental and oceanic domains. In this contribution, we compare the deep structure of the Pyrenean and Alpine belts to discuss some aspects of the relative role of rift-inherited hyperextension and collisional processes in building Alpine-type orogens. The Pyrenees and Western to Central Alps respectively result from the inversion of a Late Jurassic to Mid Cretaceous and an Early to Middle Jurassic rift system eventually floored by hyperextended crust, exhumed mantle and/or proto-oceanic crust. In spite of uncertainties on the initial width of the hyperextended and proto-oceanic domains, the rift-related pre-collisional architecture of the Alps shows many similarities with that proposed for the Pyrenees. Remnants of these domains occur in the internal parts of both orogens, but they are largely affected by orogeny-related deformation and show a HP-LT to HT-MP metamorphic overprint in the Alps as a result of a polyphase deformation history. Yet, recent high-resolution tomographic images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.

  8. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    Crater Lake caldera, Oregon, a structure produced by the 50 km3 eruption of Mount Mazama ~7.7 ka, is one of only three identified Quaternary calderas in the Cascades volcanic chain (Hildreth 2007). What were the conditions necessary to build a large volume magma chamber capable of producing this caldera-forming eruption at Mount Mazama? Using the well-documented >400,000 year volcanic history at Mazama (Bacon and Lanphere 2006), an approximation of vent locations for each eruptive unit (Bacon 2008), and a compilation of over 900 whole-rock compositions from Mount Mazama and regional volcanic rocks, we examine questions of magma chamber assembly in an active volcanic arc. These questions include: (1) is magmatic input approximately constant in composition between Mazama and regional monogenetic volcanic centers? (2) how did melt evolution differ in the two cases (Mazama vs. regional volcanism)? (3) is there spatiotemporal evidence in eruption data (including eruptive volume and chemistry) for a growing magma chamber at depth? and (4) does stability of that chamber require pre-warming of the surrounding country rock? An assumption of approximately constant major-element composition magmatic input is consistent with observed compositional overlap between basaltic to basaltic andesitic eruptive products at Mount Mazama and its vicinity (within 15 km of the volcano). MELTS modeling (Ghiorso and Sack 1995) from an initial composition of magnesian basaltic andesite of monogenetic Red Cone (erupted at a distance of ~8 km from the climactic vent) is consistent with water-saturated magmatic evolution at relatively shallow depths (<500 MPa, with the caveat that shallow pressure calibration data are largely lacking from MELTS models). Within this pressure range, differences in whole-rock compositions indicate that regional magmatic rocks evolved at shallower depths and/or drier conditions than those at the Mazama center. Observations of eruptive ages, compositions, vent locations, and volumes reveal spatiotemporal patterns that suggest either that melt flux into the system has varied, or that stress-induced focusing of rising magma by a Mazama-centered magma accumulation zone has occurred (cf. Karlstrom et al. 2009), or both. Combined with a non-monotonic increase in the maximum SiO2 content of erupted magma, these patterns suggest cyclic differentiation in a magmatic system that is increasingly affected by a centralized storage zone through time. Finally, we develop approximate melt fraction vs. temperature curves appropriate for Mazama melt evolution from MELTS simulations (at 300 MPa). These model results are combined with a thermomechanical model (Karlstrom et al. 2010) to examine the effect of crustal 'pre-warming' on chamber stability and the degree to which departure from a normal conductive geotherm is necessary to promote large-scale, shallow storage. Bacon, 2008, USGS, Scientific Investigations Map 2932. Bacon and Lanphere, 2006, GSA Bulletin 118: 1331-1359. Ghiorso and Sack, 1995, Contrib Mineral Petrol 119:197-212. Hildreth, 2007, USGS, Professional Paper 1744. Karlstrom et al., 2009, J Geophys Res 114: B10204. Karlstrom et al., 2010, J Volcanol Geotherm Res 190:249-270.

  9. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore deposits, and their implications for global climate change, considering the heat transport, maturation of organic matter and the release of carbon-rich fluids associated to these systems. Hydrothermal vent complexes have been found all over the world in the fossil record related to large igneous provinces as those found in the North Atlantic margins. Nevertheless, studies focused on modern deep water magmatic hydrothermal systems are generally confined to ocean spreading centers, while scarce works address their study in deep oceanic intraplate basins. This study reports and documents for the first time the discovery of a recent deep water system of magmatic-induced hydrothermal vents at 4800-5200 m depth in an unexplored area of the Canary Basin (eastern central Atlantic), located about 500 km west of the Canary Islands. The analysis and interpretation of the newly acquired data set has shown that the study area is characterized by the presence of a huge magmatic complex of sills that intrudes the sedimentary sequence and exceptionally deep volcanoes so far unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2090A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2090A"><span>Granitoids of different geodynamic settings of Baikal region (Russia) their geochemical evolution and origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antipin, Viktor; Sheptyakova, Natalia</p> <p>2016-04-01</p> <p>In the southern folded framing of the Siberian craton the granitoid magmatism of different ages involves batholiths, small low-depth intrusions and intrusion-dyke belts with diverse mineral and geochemical characteristics of rocks. Granitoid formation could be related to the Early Paleozoic collision stage and intra-plate magmatism of the Late Paleozoic age of the geologic development of Baikal area. The Early Paleozoic granitoids of Khamar-Daban Ridge and Olkhon region revealed their closeness in age and composition. They were referred to syncollision S-type formations derived from gneiss-schistose substratum of metamorphic sequences. The magmatic rocks were classified into various geochemical types comprising formations of normal Na-alkalinity (migmatites and plagiogranites), calc-alkaline and subalkaline (K-Na granitoids, granosyenites and quartz syenites) series. It is significant, that plagiomigmatites and plagiogranites in all elements repeat the shape of the chart of normalized contents marked for trend of K-Na granitoids, but at considerably lower level of concentrations of all elements. This general pattern of element distribution might indicate similar anatectic origin of both granitoid types, but from crustal substrata distinguished by composition and geochemical features. Comparative geochemical analysis pointed out that the source of melts of the Early Paleozoic granitoids of the Olkhon (505-477 Ma) and Khamar-Daban (516-490 Ma) complexes of the Baikal region could be the crustal substratum, which is obviously the criterion for their formation in the collisional geodynamic setting. Using the Late Paleozoic subalkaline magmatism proceeding at the Khamar-Daban Range (Khonzurtay pluton, 331 Ma) as an example, it was found that the formation of monzodiorite-syenite-leucogranite series was considerably contributed by the processes of hybridism and assimilation through mixing of the upper mantle basaltoid magma derived melts of granitic composition. The involvement of the deep source is indicated by low Rb/Sr ratios and 87Sr/86Sr ratio (0.70592±0.00021) in rocks (Kazimirovskiy, 2006). The intra-plate biotite granites and leucogranites are represented by rare-metal geochemical type of rocks (311-321 Ma). Geochemical evolution promoted an increase of F, Li, Rb, Cs, Sn, Be, Ta, and Pb and a decrease of Ba, Sr, Zn, Zr, Th, and U contents in rare-metal granites, that reflects their formation from deeply differentiated residual magma. The substance of the lower crust could have the composition of biotite-bearing granulites rich in lithophyle rare elements. It is noteworthy, that the composition and isotope-geochemical features of the supposed magma-forming substratum correspond to the characteristics of the ancient Precambrian continental crust of the Southern Baikal region. These conclusions agree with the results of preceding studies of rare-metal granites in the other regions of Central Asia (Kovalenko et al, 1999). Research has been supported by RNF grant № 15-17-10010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018631','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018631"><span>U-Pb and K-Ar geochronology in Paleozoic and Mesozoic intrusive rocks of the Coastal Cordillera, Valparaiso, Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gana, Paulina; Tosdal, Richard M.</p> <p>1996-01-01</p> <p>The U-Pb and K-Ar geochronology applied to intrusive rocks from the Coastal Batholith of Central Chile, demonstrates the existence of a basement block of the Mirasol Unit, with a crystallization age of 299??10 Ma, exposed in the northern block of the Melipilla Fault. The age of 214??1 Ma obtained in the 'Dioritas Gne??isicas de Cartagena Unit', indicates that a Late Triassic magmatism took place in this region; it coincides with the end of an extensive crustal melting period, proposed for northern Chile. The ages of the Jurassic plutonic units (Laguna Verde, Sauce, Pen??uelas and Limache) are restricted to the 156-161 Ma interval, showing in certain cases, inherited zircons from an unknown source. The difference between ages obtained using both chronological methods is a few million years, indicating that a short time passed between the crystallization and the cooling of the plutonic bodies, as well as a fast magmatic differentiation process. The Laguna Verde and Sauce Units, experienced a fast uplift, probably as a result of an extensional tectonic process in the magmatic arc, or induced by the magmatic pressure through fracture zones during Middle Jurassic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51C2925P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51C2925P"><span>Geochemical Insights Into Lithospheric Melting and Instability in the Bufumbira Volcanic Field of the Western Rift, Uganda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pitcavage, E.; Furman, T.; Nelson, W. R.</p> <p>2016-12-01</p> <p>The East African Rift System (EARS) is the earth's largest continental divergent boundary and is an unparalleled natural laboratory for understanding magmatic processes related to continental rifting. A fundamental unresolved question in EARS magmatism is the degree to which volcanism and rifting are influenced by Cenozoic plume-related melting rather than older, tectonically-driven metasomatism. In the latter scenario, metasomatism by carbonatite or silicate magmas and/or fluids that accompanies tectonic events such as the Proterozoic Pan-African Orogeny will create geochemical heterogeneities and rheological weaknesses in the sub-continental lithospheric mantle (SCLM). In the Western Rift, abundant alkaline mafic lavas record significant contributions from metasomatized SCLM. Modification, destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide. Lithospheric drip magmatism occurs when foundered lithosphere devolatilizes and melts on descent. Lithospheric thinning is one consequence of this process, and may play a role in physical aspects of rifting. Geochemical and geophysical evidence that drip magmatism has occurred in several areas of the EARS, including Turkana, Chyulu Hills, and Oligocene HT2 flood basalts in Afar, suggests that this process is fundamentally related to the onset of successful rifting. We use geochemical characteristics of primitive lavas from the Bufumbira volcanic field in the Western Rift's Virunga Province to demonstrate that ancient, tectonically-driven metasomatism modified the SCLM and contributes to recent volcanism. Further, we identify geochemical signatures which indicate that lithospheric drip melting is the primary petrogenetic process generating these lavas. Sr-Nd-Pb-Hf isotopic data show that the northern portion of the Western Rift, including Bufumbira, requires magma sources distinct from the rest of the EARS. Trace element data show that Bufumbira lavas are derived from depths within the garnet stability field and that source mineralogy includes phlogopite with potential amphibole and zircon; and that extent of melting increased with depth of melting, a signature of lithospheric drip.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16943836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16943836"><span>Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel</p> <p>2006-08-31</p> <p>Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194528','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194528"><span>Petrology and geochronology of Mesoproterozoic basement of the Mount Rogers area of southwestern Virginia and northwestern North Carolina: Implications for the Precambrian tectonic evolution of the southern Blue Ridge province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tollo, Richard P.; Aleinikoff, John N.; Dickin, Alan P.; Radwany, Molly S.; Southworth, C. Scott; Fanning, C. Mark</p> <p>2017-01-01</p> <p>Results from new geologic mapping, SHRIMP U-Pb geochronology, and petrologic studies indicate that Mesoproterozoic basement in the northern French Broad massif near Mount Rogers consists of multiple, mostly granitic plutons, map- and outcrop-scale xenoliths of pre-existing crustal rocks, and remnants of formerly overlying meta-sedimentary lithologies. Zircon and titanite ages demonstrate that these rocks collectively record nearly 350 m.y. of tectonic evolution including periods of igneous intrusion at ca. 1190 to 1130 Ma (Early Magmatic Suite) and ca. 1075 to 1030 Ma (Late Magmatic Suite) and three episodes of regional metamorphism at ca. 1170 to 1140, 1070 to 1020, and 1000 to 970 Ma. The existence of ca. 1.3 Ga age crust is indicated by (1) orthogranofels of ca. 1.32 Ga age in a map-scale xenolith, (2) inherited zircons of ca. 1.33 to 1.29 Ga age in Early Magmatic Suite plutons, and (3) ca. 1.36 to 1.30 Ga age detrital zircons in meta-sedimentary lithologies. Mineral assemblages developed in amphibolites and granofelses indicate that metamorphism during both Mesoproterozoic episodes occurred at upper amphibolite- to lower granulite-facies conditions. Syn-orogenic Early Magmatic Suite plutons emplaced at ca. 1190 to 1145 Ma are characterized by high-K, variably magnesian, dominantly calc-alkalic compositions, and have trace-element characteristics indicative of continental-arc magmatic origin involving melting of thick continental crust. In contrast, ca. 1140 Ma age quartz syenite displays A-type features indicating derivation from depleted crustal sources with increased mantle input during waning stages of regional contraction. Plutons of the compositionally bimodal Late Magmatic Suite include (1) ca. 1060 Ma meta-granite with geochemical characteristics transitional between silicic rocks of arc systems and post-collisional granites of A-type lineage, and (2) ca. 1055 Ma monzodioritic rocks with A-type compositional characteristics that likely reflect derivation from fertile, mafic sources in the lower crust. Collectively, these data suggest that Mesoproterozoic rocks of the study area preserve evidence of multiple orogenic episodes that likely involved continental-arc development and deformation at ca. 1150 Ma followed by crustal thickening at ca. 1060 Ma. Field relations and geochronologic data indicate that regional uplift and sedimentation occurred at ca. 1100 Ma between the two episodes of overlapping magmatism and orogenesis. The nature and timing of Mesoproterozoic events recorded in basement rocks of the study area illustrate significant differences in the lithologic assemblages and geologic history preserved by Mesoproterozoic basement of the adjacent Shenandoah and French Broad massifs, suggesting that the Blue Ridge massifs occupied different locations within the regional Grenville-age orogen until about 1070 Ma when the effects of Ottawan-age tectonics began to affect both areas. The near ubiquity of Ottawan-age orogenic activity recorded in Mesoproterozoic rocks of the Blue Ridge, other Appalachian inliers such as the New Jersey Highlands, and the Grenville province of Canada, including the Adirondacks, suggests that these formerly disparate terranes were amalgamated to form a common, regional orogen by this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IzAOP..51..667F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IzAOP..51..667F"><span>Seismic processes and migration of magma during the Great Tolbachik Fissure Eruption of 1975-1976 and Tolbachik Fissure Eruption of 2012-2013, Kamchatka Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedotov, S. A.; Slavina, L. B.; Senyukov, S. L.; Kuchay, M. S.</p> <p>2015-12-01</p> <p>Seismic and volcanic processes in the area of the northern group of volcanoes (NGV) in Kamchatka Peninsula that accompanied the Great Tolbachik Fissure Eruption (GTFE) of 1975-1976 and the Tolbachik Fissure Eruption (TFE, or "50 let IViS" due to anniversary of the Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences) of 2012-2013 and the seismic activity between these events are considered. The features of evolution of seismic processes of the major NGV volcanoes (Ploskii Tolbachik, Klyuchevskoy, Bezymannyi, and Shiveluch) are revealed. The distribution of earthquakes along depth, their spatial and temporal migration, and the relation of seismic and volcanic activity are discussed. The major features of seismic activity during the GTFE preparation and evolution and a development of earthquake series preceding the origin of the northern and southern breaks are described. The character of seismic activity between the GTFE and TFE is shown. The major peculiarities of evolution of seismic activity preceding and accompanying the TFE are described. The major magma sources and conduits of the NGV volcanoes are identified, as is the existence of a main conduit in the mantle and a common intermediate source for the entire NGV, the depth of which is 25-35 km according to seismic data. The depth of a neutral buoyancy layer below the NGV is 15-20 km and the source of areal volcanism of magnesian basalts northeast of the Klyuchevskoy volcano is located at depth of ~20 km. These data support the major properties of a 2010 geophysical model of magmatic feeding system of the Klyuchevskoy group of volcanoes. The present paper covers a wider NGV area and is based on the real experimental observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035465','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035465"><span>Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Akinin, V.V.; Miller, E.L.; Wooden, J.L.</p> <p>2009-01-01</p> <p>Petrologic, geochemical, and metamorphic data on gneissic xenoliths derived from the middle and lower crust in the Neogene Bering Sea basalt province, coupled with U-Pb geochronology of their zircons using sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG), yield a detailed comparison between the P-T-t and magmatic history of the lower crust and magmatic, metamorphic, and deformational history of the upper crust. Our results provide unique insights into the nature of lithospheric processes that accompany the extension of continental crust. The gneissic, mostly maficxenoliths (constituting less than two percent of the total xenolith population) from lavas in the Enmelen, RU, St. Lawrence, Nunivak, and Seward Peninsula fields most likely originated through magmatic fractionation processes with continued residence at granulite-facies conditions. Zircon single-grain ages (n ??? 125) are interpreted as both magmatic and metamorphic and are entirely Cretaceous to Paleocene in age (ca. 138-60 Ma). Their age distributions correspond to the main ages of magmatism in two belts of supracrustal volcanic and plutonic rocks in the Bering Sea region. Oscillatory-zoned igneous zircons, Late Cretaceous to Paleocene metamorphic zircons and overgrowths, and lack of any older inheritance in zircons from the xenoliths provide strong evidence for juvenile addition of material to the crust at this time. Surface exposures of Precambrian and Paleozoic rocks locally reached upper amphibolite-facies (sillimanite grade) to granulite-facies conditions within a series of extension-related metamorphic culminations or gneiss domes, which developed within the Cretaceous magmatic belt. Metamorphic gradients and inferred geotherms (??30-50 ??C/km) from both the gneiss domes and xenoliths aretoo high to be explained by crustal thickening alone. Magmatic heat input from the mantle is necessary to explain both the petrology of the magmas and elevated metamorphic temperatures. Deep-crustal seismic-reflection and refraction data reveal a 30-35-km-thick crust, a sharp Moho and refl ective lower and middle crust. Velocities do not support a largely mafic (underplated) lower crust, but together with xenolith data suggest that Late Cretaceous to early Paleocene maficintrusions are likely increasingly important with depth in the crust and that the elevated temperatures during granulite-facies metamorphism led to large-scale flow of crustal rocks to produce gneiss domes and the observed subhorizontal refl ectivity of the crust. This unique combined data set for the Bering Shelf region provides compelling evidence for the complete reconstitution/re-equilibration of continental crust from the bottom up during mantle-driven magmatic events associated with crustal extension. Thus, despite Precambrian and Paleozoic rocks at the surface and Alaska's accretionary tectonic history, it is likely that a significant portion of the Bering Sea region lower crust is much younger and related to post-accretionary tectonic and magmatic events. ?? 2009 The Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70059178','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70059178"><span>Melt inclusions: Chapter 6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>,; Lowenstern, J. B.</p> <p>2014-01-01</p> <p>Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70145955','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70145955"><span>Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>du Bray, Edward A.; John, David A.; Cousens, Brian L.</p> <p>2013-01-01</p> <p>Although rocks in the two arc segments have similar metal abundances, they are metallogenically distinct. Small porphyry copper deposits are characteristic of the northern segment whereas significant epithermal precious metal deposits are most commonly associated with the southern segment. These metallogenic differences are also fundamentally linked to the tectonic settings and crustal regimes within which these two arc segments evolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022809','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022809"><span>Dilational processes accompanying earthquakes in the Long Valley Caldera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dreger, Douglas S.; Tkalcic, Hrvoje; Johnston, M.</p> <p>2000-01-01</p> <p>Regional distance seismic moment tensor determinations and broadband waveforms of moment magnitude 4.6 to 4.9 earthquakes from a November 1997 Long Valley Caldera swarm, during an inflation episode, display evidence of anomalous seismic radiation characterized by non-double couple (NDC) moment tensors with significant volumetric components. Observed coseismic dilation suggests that hydrothermal or magmatic processes are directly triggering some of the seismicity in the region. Similarity in the NDC solutions implies a common source process, and the anomalous events may have been triggered by net fault-normal stress reduction due to high-pressure fluid injection or pressurization of fluid-saturated faults due to magmatic heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032517','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032517"><span>Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.</p> <p>2011-01-01</p> <p>Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034945','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034945"><span>Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans</p> <p>2009-01-01</p> <p>Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.4000G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.4000G"><span>Understanding Copper Isotope Behavior in the High Temperature Magmatic-Hydrothermal Porphyry Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, Melissa J.; Mathur, Ryan</p> <p>2017-11-01</p> <p>Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Litho.182...33O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Litho.182...33O"><span>Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owen-Smith, T. M.; Ashwal, L. D.; Torsvik, T. H.; Ganerød, M.; Nebel, O.; Webb, S. J.; Werner, S. C.</p> <p>2013-12-01</p> <p>Silhouette and North Islands in the Seychelles represent an alkaline plutonic-volcanic complex, dated at 63 to 63.5 Ma by U-Pb zircon and 40Ar/39Ar methods. This magmatism coincides with the final stages of the cataclysmic Deccan Traps continental flood volcanism in India (67 to 63 Ma), and thus a causal link has been suggested. Recent reconstructions have placed the Seychelles islands adjacent to the Laxmi Ridge and at the western margin of the Réunion mantle plume at the time of formation of the complex. Here we present geochemical evidence in support of the notion that the Seychelles alkaline magmatism was initiated by the peripheral activity of the Réunion mantle plume and is thus part of the Deccan magmatic event. Positive εNd (0.59 to 3.76) and εHf (0.82 to 6.79) and initial Sr of 0.703507 to 0.705643 at 65 Ma indicate derivation of the Seychelles alkaline magmas from a Réunion-like mantle source with an additional minor enriched component, suggesting entrainment of sub-continental lithospheric mantle. The similarity in trace element composition between the Seychelles suite and Deccan alkaline felsic and mafic rocks provides additional evidence for a common mantle source for the Seychelles and Deccan magmatism. Furthermore, we demonstrate the role of fractional crystallisation in the evolution of the alkaline suite. Modelling using major elements suggests that fractional crystallisation and varying degrees of accumulation of olivine, plagioclase, ilmenite, clinopyroxene, alkali feldspar and apatite can describe the spectrum of rock types, from gabbro, through syenite, to granite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41B2496S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41B2496S"><span>Archean crustal evolution of the Narryer Gneiss Terrane, Western Australia, as revealed by the U-Pb age and Hf-isotope compositions of zircon from the granitic gneisses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sylvester, P.; Souders, K.; Crowley, J. L.; Myers, J.</p> <p>2011-12-01</p> <p>The Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, is an important area for studies of early crustal evolution because of the preservation of (1) detrital zircons of Hadean to Archean age in the Jack Hills and Mt. Narryer metasedimentary belts, and (2) several widespread units of granitic gneisses emplaced between ca. 3.7 and 2.6 Ga. We have analyzed the U-Pb geochronology and Hf-isotope geochemistry of magmatic zircons from 38 samples of the granitic gneisses using laser ablation - (multicollector) - ICPMS. The sample suite is dominated by the Meeberrie gneiss, a banded quartz-microcline-oligoclase-biotite gneiss of monzogranite to granodiorite composition, and the Dugel gneiss, a leucocratic, pegmatite-layered syenogranite gneiss, but gneisses of dioritic to tonalitic composition, as well as less deformed granite sheets, are also represented. Magmatic zircons were identified on the basis of the preservation of oscillatory zoning in BSE and CL images, igneous Th/U ratios (>0.2), and concordant U-Pb isotopic systematics with low common Pb contents. The results indicate many of the gneisses are composed of the products of multiple magmatic events, as has been reported previously for samples of the Meeberrie gneiss (Kinny & Nutman, 1996, Precambrian Res. 78, 165-178). Major ages of magmatism preserved in the gneisses occurred at ca. 3685-3665 Ma, 3620-3565 Ma, 3495-3440 Ma, 3375-3330 Ma, and 3300-3260 Ma. The late granite sheets crystallized at 2710-2645 Ma. Hf-isotope compositions of the zircons trend to less radiogenic values with decreasing age, with ɛHf values of ca. 0 to -5 for 3.7-3.4 Ga gneisses, ca. -1 to -9 for 3.4-3.2 Ga gneisses and ca. -5 to -20 for the late granite sheets. The array of the Hf isotopic compositions with time for the entire sample set are fit well by a regression indicating a source reservoir with a 176Lu/177Hf of 0.022 extracted from the depleted mantle at 3.9 Ga. This suggests that the Narryer gneisses and late granite sheets were derived by repeated partial melting of an Eoarchean mafic to intermediate crustal source that persisted throughout the Archean. The ɛHf evolution trend for the Narryer gneisses plots distinctly above the ɛHf trend of the Hadean mafic crustal reservoir inferred for the source of the Hadean detrital zircons from the Jack Hills. The implication is that the inferred Hadean crustal reservoir was not an important source of the Narryer gneisses, either because it was largely isolated from zones of melting in the crust of the Narryer Gneiss Terrane during the Archean, or because it was simply of limited volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.284..730M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.284..730M"><span>Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: Clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melo, Marilane G.; Lana, Cristiano; Stevens, Gary; Pedrosa-Soares, Antônio C.; Gerdes, Axel; Alkmin, Leonardo A.; Nalini, Hermínio A.; Alkmim, Fernando F.</p> <p>2017-07-01</p> <p>The Carlos Chagas batholith (CCB) is a very large ( 14,000 km2) S-type granitic body formed during the syn-collisional stage of the Araçuaí orogen (southeastern Brazil). Zircons extracted from the CCB record a wide range of U-Pb ages (from 825 to 490 Ma), indicating a complex history of inheritance, magmatic crystallization and partial melting during the evolution of the orogeny. Magmatic zircons (ca. 578-588 Ma) are marked by similar Hf isotope compositions and REE patterns to those of inherited cores (ca. 825-600 Ma), indicating that these aspects of the chemical signature of the magmatic zircons have likely been inherited from the source. The U-Pb ages and initial 176Hf/177Hf ratios from anatectic and metamorphic zircon domains are consistent with a two-stage metamorphic evolution marked by contrasting mechanisms of zircon growth and recrystallization during the orogeny. Ti-in-zircon thermometry is consistent with the findings of previous metamorphic work and indicates that the two metamorphic events in the batholith reached granulite facies conditions (> 800 °C) producing two generations of garnet via fluid-absent partial melting reactions. The oldest metamorphic episode (ca. 570-550 Ma) is recorded by development of thin anatectic overgrowths on older cores and by growth of new anatectic zircon crystals. Both domains have higher initial 176Hf/177Hf values compared to relict cores and display REE patterns typical of zircon that grew contemporaneously with peritectic garnet through biotite-absent fluid partial melting reactions. Hf isotopic and chemical evidences indicate that a second anatectic episode (ca. 535-500 Ma) is only recorded in parts from the CCB. In these rocks, the growth of new anatectic zircon and/or overgrowths is marked by high initial 176Hf/177Hf values and also by formation of second generation of garnet, as indicated by petrographic observations and REE patterns. In addition, some rocks contain zircon crystals formed by solid-state recrystallization of pre-existing zircon, which exhibit similar Hf isotope composition to those of inherited/magmatic core domains. The first anatectic event is interpreted as result of crustal thickening after the intrusion of the batholith. This introduced the batholith to a depth in excess of 30 km and produced widespread anatexis throughout the batholith. The second event was associated with asthenospheric upwelling during extensional thinning and gravitational collapse of the orogen, this produced anatexis in parts from the CCB that had been re-fertilized for anatexis by retrogression along shear zones following the first granulite facies event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T43G..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T43G..02P"><span>Quantifying strain partitioning between magmatic and amagmatic portions of the Afar triple junction of Ethiopia and Djibouti through use of contemporary and late Quaternary extension rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polun, S. G.; Hickcox, K.; Tesfaye, S.; Gomez, F. G.</p> <p>2016-12-01</p> <p>The central Afar rift in Ethiopia and Djibouti is a zone of accommodation between the onshore propagations of the Gulf of Aden and Red Sea oceanic spreading centers forming part of the Afar triple junction that divides the Arabia, Nubia, and Somalia plates. While extension in the onshore magmatic propagators is accommodated through magmatism and associated faulting, extension in the central Afar is accommodated solely by large and small faults. The contributions of these major faults to the overall strain budget can be well characterized, but smaller faults are more difficult to quantify. Sparse GPS data covering the region constrain the total extension budget across the diffuse triple junction zone. Late Quaternary slip rates for major faults in Hanle, Dobe, Guma, and Immino grabens were estimated using the quantitative analysis of faulted landforms. This forms a nearly complete transect from the onshore propagation of the Red Sea rift in Tendaho graben and the onshore propagation of the Gulf of Aden rift at Manda Inakir. Field surveying was accomplished using a combination of electronic distance measurer profiling and low altitude aerial surveying. Age constraints are provided from the Holocene lacustrine history or through terrestrial cosmogenic nuclide (TCN) dating of the faulted geomorphic surface. Along this transect, late Quaternary slip rates of major faults appear to accommodate 25% of the total horizontal stretching rate between the southern margin of Tendaho graben and the Red Sea coast, as determined from published GPS velocities. This constrains the proportion of total extension between Nubia and Arabia that is accommodated through major faulting in the central Afar, compared to the magmatism and associated faulting of the magmatic propagators elsewhere in the triple junction. Along the transect, individual fault slip rates decrease from the southeast to the northwest, suggesting a `Crank-Arm' model may be more applicable to explain the regional kinematics and the evolution of the triple junction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T13B2708W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T13B2708W"><span>Time-dependent changes in magmatic and hydrothermal activity at the Costa Rica Rift recorded by variations in oceanic crustal structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, D. J.; Peirce, C.; Hobbs, R. W.; Gregory, E. P. M.; Zhang, L.</p> <p>2016-12-01</p> <p>Geophysical studies of crustal structure at a diverse range of ridges have provided evidence that the balance between spreading rate and magma supply determines whether spreading predominantly occurs by magmatic accretion of new oceanic crust or through tectonic stretching of the whole lithosphere. Asymmetric spreading, patterns of on- and off-axis volcanism, the evolution of oceanic core complexes and the distribution of hydrothermal systems all indicate that the process of spreading is not constant over geologically short timescales. The structure of the resulting crust reflects this complexity in origin. Studies along flow-lines across ridges spreading at intermediate rates suggest variations in topographic style and crustal structure have periodically occurred, controlled by the interplay between magmatic accretion and tectonic stretching, and coupled to the degree of hydrothermal activity. Seismic reflection images and tomographic models derived from wide-angle seismic data have enabled a detailed examination of the oceanic crust that formed at the fast-to-intermediate-spreading (36 mm yr-1) Costa Rica Rift over the last 6 Ma, to look for any temporal variation in basement topography, upper crust (layer 2) P-wave velocity/density structure and crustal thickness. Coincident marine gravity and magnetic data not only allow us to test the validity of the final velocity-density model but also review variability in half-spreading rate, respectively. Collectively our analyses allow us to investigate the timescale and cyclicity of crustal structure variations and, having determined the spreading rate over time, consider how this may reflect changes in magma supply and/or hydrothermal activity at the Costa Rica Rift, using borehole 504B as the ground-truth. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51B0460S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51B0460S"><span>Central Atlantic Break-up: A competition between CAMP Hotspot and thinning rate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sapin, F.; Maurin, T.</p> <p>2017-12-01</p> <p>The break-up of the Central Atlantic is known to have ended at about 190Myrs while the CAMP (Central Atlantic Magmatic Province) was still active. Several seismic lines, acquired recently in the deep offshore Senegal and Mauritanian domain, provide detailed images of continent-ocean transition and the oceanic crust architecture. Their interpretation is the opportunity to describe the progressive interaction between the hot spot activity, the architecture and timing of break up and the oceanic crust production. In the North, seismic data and gravity/magnetic inversions suggest an extremely thinned continental crust with possible mantle exhumation. In the South, the continental crust is thick and the transition to oceanic crust is sharp. In addition, three oceanic crust facies were described along the margin in an extremely slow spreading ridge setting ( 0.8cm/yr during the first 20Myrs): facies (1) with a poorly imaged Moho and a strongly faulted thin oceanic crust or exhumed mantle; facies (2) with an extensively faulted 6km thick oceanic crust; facies (3) with abnormally thick (9km) oceanic crust marked by SDR-type reflections. They are diachronous from North to South and the two first one disappear southwards and (facies 3) being younger toward the North. Only a single very thick oceanic crust (12-14km) remains in front of the Guinea Plateau. We concluded that, in the South, the break-up had been forced through a thick or thickened continental crust due to the remnant activity of the CAMP Hotspot. In the North, the magmatic pulse arrived far after the break-up during the spreading and the thinning of the continental crust could lead to hyper extension. This evolution emphasizes that the architecture, and thus processes leading to the break-up can vary a lot considering the influence of thermal vertical forces (mantle dynamics/hotspot/magmatism) and mechanical horizontal forces (plate movement/faulting/spreading), both of them being necessary for a rift to succeed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMNG23A1365A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMNG23A1365A"><span>Reactive multiphase flow at the pore-scale: the melting of a crystalline framework during the injection of buoyant hot volatiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.</p> <p>2010-12-01</p> <p>Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CEJG....2..207L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CEJG....2..207L"><span>Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lexa, Jaroslav; Seghedi, Ioan; Németh, Karoly; Szakács, Alexandru; Koneĉny, Vlastimil; Pécskay, Zoltan; Fülöp, Alexandrina; Kovacs, Marinel</p> <p>2010-09-01</p> <p>Neogene to Quaternary volcanic/magmatic activity in the Carpathian-Pannonian Region (CPR) occurred between 21 and 0.1 Ma with a distinct migration in time from west to east. It shows a diverse compositional variation in response to a complex interplay of subduction with rollback, back-arc extension, collision, slab break-off, delamination, strike-slip tectonics and microplate rotations, as well as in response to further evolution of magmas in the crustal environment by processes of differentiation, crustal contamination, anatexis and magma mixing. Since most of the primary volcanic forms have been affected by erosion, especially in areas of post-volcanic uplift, based on the level of erosion we distinguish: (1) areas eroded to the basement level, where paleovolcanic reconstruction is not possible; (2) deeply eroded volcanic forms with secondary morphology and possible paleovolcanic reconstruction; (3) eroded volcanic forms with remnants of original morphology preserved; and (4) the least eroded volcanic forms with original morphology quite well preserved. The large variety of volcanic forms present in the area can be grouped in a) monogenetic volcanoes and b) polygenetic volcanoes and their subsurface/intrusive counterparts that belong to various rock series found in the CPR such as calc-alkaline magmatic rock-types (felsic, intermediate and mafic varieties) and alkalic types including K-alkalic, shoshonitic, ultrapotassic and Na-alkalic. The following volcanic/subvolcanic forms have been identified: (i) domes, shield volcanoes, effusive cones, pyroclastic cones, stratovolcanoes and calderas with associated intrusive bodies for intermediate and basic calclkaline volcanism; (ii) domes, calderas and ignimbrite/ash-flow fields for felsic calc-alkaline volcanism and (iii) dome flows, shield volcanoes, maars, tuffcone/tuff-rings, scoria-cones with or without related lava flow/field and their erosional or subsurface forms (necks/ plugs, dykes, shallow intrusions, diatreme, lava lake) for various types of K- and Na-alkalic and ultra-potassic magmatism. Finally, we provide a summary of the eruptive history and distribution of volcanic forms in the CPR using several sub-region schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28489866','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28489866"><span>Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farris, David W; Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos</p> <p>2017-01-01</p> <p>Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision with South America forming the observed Canal extensional zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JVGR..140..157D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JVGR..140..157D"><span>Crustal forensics in arc magmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.</p> <p>2005-01-01</p> <p>The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases contained in magmas; and (3) constrain rates of differentiation by applying diffusion-controlled timescales to element profiles. An example from Nguaruhoe Volcano, New Zealand, underscores the importance of such a microsampling approach, showing that mineral isotopic compositions encompass wide ranges, that whole-rock isotopic compositions are consequently simply element-weighted averages of the heterogeneous crystal cargo, and that open-system evolution is proved by core-rim variations in Sr isotope ratios. Nguaruhoe is just one of many systems examined through microanalytical approaches. The overwhelming conclusion of these studies is that crystal cargoes are not truly phenocrystic, but are inherited from various sources. The implication of this realization is that the interpretation of whole-rock isotopic data, including the currently popular U-series, needs careful evaluation in the context of petrographic observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V13F..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V13F..02M"><span>On the Principles of Building a Layered Intrusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marsh, B. D.</p> <p>2009-12-01</p> <p>An accurate and realistic understanding of all magmatic processes involves knowing the combined physical and chemical fundamentals governing the overall process. Magmatic processes involve such a vast array of sub-processes (e.g., heat and mass transfer, crystal growth, slurry transport and sorting, annealing, resorbtion, etc.) that rarely is there any single feature or measurement that can be safely inverted to solve the problem. And each event as in the formation of an intrusion must at some level for heuristic purposes be defined as an isolated event. This is commonly done without much forethought, as is the absolutely critical assumption of the initial conditions defining the beginning of the event. Almost without exception, it is the initial conditions that determine the outcome of the entire process in all physical and biological systems. Automobile factories produce motorized vehicles not water melons or chimpanzees. Nucleosynthesis of H and He always gives the same set of elements. The initial conditions of the magma giving rise to the end product for mafic layered systems are especially difficult to discern and must be bounded by observing simpler, real time magmatic and volcanic processes. Initial conditions come from posing a series of questions: What was the style and duration of filling? What was the rate of influx and final volume of each delivery of magma? What was the compositional variation and phenocryst content of the individual magmatic deliveries? If phenocrysts are present, were they sorted prior to injection during ascension? What was the original and ongoing shape of the magmatic reservoir? A failure to appreciate or answer such basic questions leads to vastly untenable evolutionary scenarios. Unrealistic initial conditions necessarily lead to unrealistic magmatic scenarios. There are certain safe starting points. Eruptive and emplacement fluxes are limited. The larger an intrusion is the longer it took to build and the longer to build the more varied are the deliveries in time, volume, and constitution. Instantaneous emplacement of crystal free magma are unlikely initial conditions for a large intrusion. The most realistic initial conditions are that intrusions are made of a combination of crystal poor and crystal-rich inputs. Examples abound of the outcomes of systems with clearly known initial conditions. The huge Sudbury magma was produced in 5 minutes at a temperature of 1700C. Clearly crystal free, it produced no layering whatsoever. Sills worldwide, regardless of size, approaching these initial conditions are similarly featureless. At the other extreme are the lava outputs of large volcanic systems like Kilauea. The ensuing lava lakes produced over months are filled with magma containing varied amounts of phenocrysts/xenocrysts and ultramafic layers are produced. Intrusions abound of all sizes that show the same characteristics. Ponding in crystal-laden sills forms layered systems with many of the features of large bodies. Rapid cooling preserves diagnostic textural relations lost to annealing in large bodies. Slow cooling promotes annealing to sharpen and accentuate the initial modal and cryptic layering. Initial conditions are fundamental to understanding the final product. Physical processes buttressed by chemistry mainly dominate magmatic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911512G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911512G"><span>Contrasting Cu-Au and Sn-W Granite Metallogeny through the Zircon Geochemical and Isotopic Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardiner, Nicholas; Hawkesworth, Chris; Robb, Laurence; Whitehouse, Martin; Roberts, Nick; Kirkland, Chris</p> <p>2017-04-01</p> <p>Magmatic genesis and evolution - mediated by geodynamic setting - exert a primary control on the propensity of granites to be metal fertile. A revolution in our understanding of these petrogenetic processes has been made through a range of mineral-based tools, most notably the common accessory mineral zircon. There is consequently considerable interest in whether the geochemical and isotopic compositions of zircon can be applied to metallogenic problems. The paired magmatic belts of Myanmar have broadly contrasting metallogenic affinities (Sn-W versus Cu-Au), and are interpreted to have formed on the accretionary margin of the subducting Neo-Tethys Ocean. They therefore present the opportunity to geochemically compare and contrast the zircon compositions in two end-member types of granite-hosted mineral deposits generated in collisional settings. We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset that fingerprint: (a) source; (b) redox conditions; and (c) degree of fractionation. These variables all impact on magma fertility, and our key question to address is whether they can be reliably traced and calibrated within the Myanmar zircon record. Granitoid-hosted zircons from the I-type copper arc have juvenile ɛHf (+7 to +12) and mantle-like δ18O (5.3 ‰), whereas zircons from the S-type tin belt have low ɛHf (-7 to -13) and heavier δ18O (6.2-7.7 ‰). Plotting Hf versus U/Yb reaffirms that the tin belt magmas contain greater crustal contributions than the copper arc rocks. Links between whole rock Rb/Sr and zircon Eu/Eu* highlights that the latter can be used to monitor magma fractionation in systems that crystallize plagioclase (low Sr/Y). Ce/Ce* and Eu/Eu* in zircon are thus sensitive to redox and fractionation respectively, and can be used to evaluate the sensitivity of zircons to the metallogenic affinity of their host rocks. Tin contents that exceed the solubility limit are required in order to make a magmatic-hydrothermal deposit, and empirical observations suggest that this threshold may be marked by zircon Eu/Eu* values of ca. < 0.08. The isotope and trace element signatures of both magmatic and detrital zircons can be developed into a useful exploration tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6697C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6697C"><span>Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Keda; Sun, Min; Xiao, Wenjiao</p> <p>2014-05-01</p> <p>The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition which is likely due to basaltic magma that underplated the lower crust. Our data combined with evidence of the regional geology enable us to conclude that the Gorny Altai and Altai-Mongolian terranes possibly have similar tectonic natures, but represent two separate accretionary systems before Devonian collision. The accretion and amalgamation processes resulted in the Paleozoic granitoid magmatism and caused the two terranes to merge as a composite tectonic domain at the Siberian continental margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRE..121.1753H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRE..121.1753H"><span>Assessing the geologic evolution of Greater Thaumasia, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hood, Don R.; Judice, Taylor; Karunatillake, Suniti; Rogers, Deanne; Dohm, James M.; Susko, David; Carnes, Lorraine K.</p> <p>2016-09-01</p> <p>The Greater Thaumasia region consists of three chemical provinces that include Syria, Solis, and Thaumasia Planae, the Corprates Rise, part of the Thaumasia Highlands, and the transition zone northwest of the Argyre basin. Chemical signatures obtained from the Mars Odyssey Gamma Ray Spectrometer suggest low abundances of K and Th to the west, with low H abundances and high Si abundances to the east, relative to the bulk Martian crust at midlatitudes. These observations are confirmed and quantified with a modified box and whisker analysis that simultaneously captures the degree of deviation and significance of the regionally anomalous chemistry. Motivated by regionally unique chemistry, as well as its diverse geological history, we characterize Greater Thaumasia in terms of chemistry, mineralogy, and mapped geology to determine how such complementary data record the evolution of this region. Our observations are inconsistent with a proposed salt-lubricated landslide origin, particularly given the lack of chemical or mineralogical signatures to support near-surface salt deposits that should arise over geological timescales. Our observations instead support magmatic processes, such as mantle evolution over geological time, which may impart the Si-enriched signature of the eastern portion of Greater Thaumasia as well as the K and Th depletion of the southeastern flank of Syria Planum. While the observed trend of decreasing K and Th from Noachian to Hesperian lavas is inconsistent with previous models of Martian mantle evolution, we see an increase in Ca content at the Noachian-Hesperian boundary, consistent with predictions from thermodynamic modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030001107&hterms=Sulfur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DSulfur','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030001107&hterms=Sulfur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DSulfur"><span>Biogeochemical Cycles of Carbon and Sulfur</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DesMarais, David J.; DeVincenzi, D. (Technical Monitor)</p> <p>2002-01-01</p> <p>The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V31A3058C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V31A3058C"><span>New approach on volatile contents determination in silicate melt inclusions: A coupling X-ray microtomography and geochemical approach in Los Humeros caldera complex (Eastern Mexican Volcanic Belt)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Creon, L.; Levresse, G.; Carrasco Nuñez, G.</p> <p>2016-12-01</p> <p>Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.260..178T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.260..178T"><span>Thermochronological evolution of an intra-plate magmatic event inferred from an integrated modeling approach: A case study in the Westerwald, Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tirone, M.; Rokitta, K.; Schreiber, U.</p> <p>2016-09-01</p> <p>A lava sample from the Tertiary Westerwald volcanic field was selected for a detailed study using various analytical techniques in combination with petrological, thermodynamic and diffusion modeling to extract information related to the thermochronological evolution of a magmatic event before eruption. The lava sample contains large olivine phenocrysts which are compositionally zoned and two coexisting but chemically distinct melts, a host melt with basaltic composition and small spherical pockets of a less abundant trachytic melt (globules). The sample was analyzed by electron microprobe, x-ray fluorescence (XRF) X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The primary melt of the host lava was determined using the program PRIMELT2.XLS. Partial fractional crystallization of olivine was modeled using the program alphaMELTS. Timescale and cooling rate were retrieved by fitting the measured Fe-Mg zoning along two directions in four olivine grains from the host lava using a 3-D numerical diffusion model. The measured variation of Ca is also consistent with a chemical diffusion process, while a numerical growth model applied to the same olivines does not appear to explain the Fe-Mg zoning. Chemical zoning of major elements in the melt globules were reproduced with a multicomponent diffusion model. The results of this study show that the host magma fractionated about 9% of olivine in a first stage, then the crystallization proceeded without further separation of mineral phases. Modeling of diffusion in the olivine crystals suggests that this second stage lasted at least 5 yrs and the temperature of the melt decreased from 1120-1150 °C to 1090 °C during this time. According to the results of the multicomponent diffusion model applied to the melt globules, the coexistence of the two melts was extremely short (less than few hours), possibly recording the assimilation of the globules during eruption or cooling of the whole system on the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V43F..07J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V43F..07J"><span>Towards true 3D textural analysis; using your crystal mush wisely.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerram, D. A.; Morgan, D. J.; Pankhurst, M. J.</p> <p>2014-12-01</p> <p>The crystal cargo that is found in volcanic and plutonic rocks contains a wealth of information about magmatic mush processes, crystallisation history, crystal entrainment and recycling. Phenocryst populations predominantly record episodes of growth/nucleation and bulk geochemical changes within an evolving crystal-melt body. Ante- and xeno-crysts provide useful clues to the nature of mush interaction with wall rock and with principal magma(s). Furthermore, crystal evolutions (core to rim) record pathways through pressure, temperature and compositional space. These can often illustrate complex recycling within systems, describing the plumbing architecture. Understanding this architecture underpins our knowledge of how igneous systems can interact with the crust, grow, freeze, re-mobilise and prime for eruption. Initially, 2D studies produced corrected 3D crystal size distributions to help provide information about nucleation and residence times. It immediately became clear that crystal shape is an important factor in determining the confidence placed upon 3D reconstructions of 2D data. Additionally studies utilised serial sections of medium- to coarse-grain-size populations which allowed 3D reconstruction using modelling software to be improved, since size and shape etc. can be directly constrained. Finally the advent of textural studies using X-ray tomography has revolutionised the way in which we can inspect the crystal cargo in mushy systems, allowing us to image in great detail crystal packing arrangements, 3D CSDs, shapes and orientations etc. The latest most innovative studies use X-ray micro-computed tomography to rapidly characterise chemical populations within the crystal cargo, adding a further dimension to this approach, and implies the ability to untangle magmatic chemical components to better understand their individual and combined evolution. In this contribution key examples of the different types of textural analysis techniques in 2D and 3D, including texture movie animations, are used from both plutonic and volcanic systems to highlight the roll of this approach towards a goal of true 3D textural analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.272..232L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.272..232L"><span>Petrogenesis and tectonic implications of the Early Carboniferous to the Late Permian Barleik plutons in the West Junggar (NW China)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Bo; Han, Bao-Fu; Ren, Rong; Chen, Jia-Fu; Wang, Zeng-Zhen; Zheng, Bo</p> <p>2017-02-01</p> <p>The Paleozoic accretionary orogenesis and continental crustal growth in Central Asia are thought to have close relationship with the evolution of the Paleo-Asian Ocean (PAO). The well-exposed plutons in the northern Barleik Mountains of the West Junggar region, NW China, may provide essential insights into the evolution of the Junggar Ocean, a branch of the PAO, and mechanism of continental crustal growth. Our work on the Barleik plutons indicates an early suite of 324-320 Ma diorite and a late suite of 314-259 Ma quartz syenite and granitic porphyry. All the plutons are characterized by high-K calc-alkaline to shoshonitic signatures, varying depletion in Nb, Ta, Sr, P, Eu, and Ti, low initial 87Sr/86Sr ratios (0.70241-0.70585), strongly positive εNd(t) values (+ 5.7-+7.7), and young one-stage Nd model ages (390-761 Ma), suggesting that they resulted from different batches of magma that were produced by fractional crystallization of a metasomatized mantle source with minor crustal contamination. The diorite is coeval with the youngest arc magmatic rocks, indicating a subduction-related origin. By contrast, the quartz syenite and granitic porphyry are geochemically similar to A2-type granites, with high Zr, Ga, and FeOT/[FeOT + MgO], and are coeval with the widespread plutons in the West Junggar. This, together with the occurrence of Late Carboniferous fluvial deposits and the lack of < 320 Ma ophiolitic and subduction-related metamorphic lithologies, definitively indicates a post-collisional setting after the closure of the Junggar Ocean. Slab breakoff accompanied by asthenospheric upwelling and basaltic underplating is a possible geodynamic process that is responsible for the post-collisional magmatism and vertical crustal growth in the region. Thus a tectonic switch from subduction to post-collision started at the end of the Early Carboniferous ( 320 Ma), probably as a result of the final closure of the Junggar Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V31A3061R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V31A3061R"><span>C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.</p> <p>2016-12-01</p> <p>Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918682G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918682G"><span>Lithospheric convective removal related post-collisional middle Eocene magmatism along the Izmir-Ankara-Erzincan suture zone (NE Turkey).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can</p> <p>2017-04-01</p> <p>Obliteration of the Mesozoic Neo-Tethyan Ocean and succeeding collision of the micro plates along the northern part of Turkey lead the development of the İzmir-Ankara-Erzincan suture zone (IAESZ). The suturing and collision stages terminate with the amalgamation of the three different crustal blocks (Pontides, Central Anatolian Crystalline Complex and Anatolide-Tauride Block) in the Paleocene-Early Eocene period. After the collisional stage; a new phase of extension and magmatism concomitantly developed at the both sides and as well as along the IAESZ during the Middle Eocene period. However, the origin, mechanism and driving force of the post-collisional magmatism is still enigmatic. To understand and better constrain the syn-to post collisional evolutionary stages, we have carried out volcano-stratigraphy and geochemistry based study on the middle Eocene magmatic associations along a transect ( 100 km) from Pontides to the Central Anatolian Crystalline Complex (CACC) at the NE part of the Turkey. Middle Eocene magmatic activity in the region has been represented by calc-alkaline, alkaline, shoshonitic volcanic and granitic rocks together with scarce gabbroic intrusions. We particularly focused on middle Eocene volcano-sedimentary successions (MEVSS) to constrain the tectono-magmatic evolution of the abovementioned transect. The volcano-sedimentary succsessions are coevally developed and cover the crustal blocks (Pontides and CACC) and the IAESZ with a region wide unconformity. We have differentiated three lava series (V1-V2-V3) and their sub-groups (V1a-V1b; V2a-V2b) in MEVSS. Generally, all lava series have middle-K to shoshonitic composition with distinct subduction characteristics. V1 series is marked by presence of hydrous phenocrysts such as amphibole+biotite. V1a sub-group constitute the first volcanic product and characterized by the high Mg# (42-69); alkaline basaltic andesite, and hawaiites. V1b sub-group is represented by calc-alkaline, low Mg# (24-57) andesite and dacites. V2 series made up of the olivine+pyroxene rich anhydrous lavas. V2a sub-group displays calc-alkaline/mildly alkaline character, moderate Mg# (33-54) and represented by basaltic andesites. Furthermore, V2b sub-group has mildly alkaline/alkaline in character and represented by more Mg# rich (40-62) basalt and trachy-basalt lavas. Final products, V3 series, cut the older units and made up of high-K - shoshonitic trachyte and trachy-andesites. The V1a sub-group, showing the alkali nature and high Mg#, is probably derived from the partial melting of a hydrous spinel lherzolitic source with minor garnet and amphibole while the V1b sub-group is a fractionated (FC) derivative of them. The V2 series are mixed products of varying amounts of magma sources similar to V1b type with a high Mg#, deep-seated magma source and their fractionated assemblages. The V3 series developed independently from the other series in shallow magma chambers, displaying the large amounts of crustal assimilation and constitutes the final product of the Middle Eocene volcanism. The data presented above shown that volcanic units; (i) are rich in potassium, (ii) have subduction-related signatures, (iii) display fluctuant alkalinity and Mg# during the course of volcanism, (iv) coevally developed on both amalgamated continental blocks after the cessation of subduction. These characteristics imply that, lithospheric convective removal related processes can be the most plausible driving mechanism of the middle Eocene magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Litho.146...48B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Litho.146...48B"><span>Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boekhout, Flora; Spikings, Richard; Sempere, Thierry; Chiaradia, Massimo; Ulianov, Alexey; Schaltegger, Urs</p> <p>2012-08-01</p> <p>A high-resolution U-Pb zircon geochronological study of plutonic units along the south Peruvian margin between 17° and 18°S allows the integration of the geochemical, geodynamic and tectonic evolution of this part of the Andean margin. This study focuses on the composite Jurassic-early Cretaceous Ilo Batholith that was emplaced along the southern Peruvian coast during two episodes of intrusive magmatism; a first period between 173 and 152 Ma (with a peak in magmatic activity between roughly 168 and 162 Ma) and a second period between 110 and 106 Ma. Emplacement of the Jurassic part of the composite Ilo Batholith shortly post-dated the accumulation of the volcanosedimentary succession it intruded (Chocolate formation), which allows to estimate a subsidence rate for this unit of ~ 3.5 km/Ma. The emplacement of the main peak of Jurassic plutonism of the Ilo Batholith was also closely coeval with widespread and repeated slumping (during deposition of the Cachíos Formation) in the back-arc region, suggesting a common causal link between these phenomena, which is discussed in the context of an observed 100 km trenchward arc migration at ~ 175 Ma, and the relation with extensional tectonics that prevailed along the Central Andean margin during Pangaea break-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016363&hterms=magma&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmagma','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016363&hterms=magma&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmagma"><span>The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Treiman, A. H.</p> <p>1993-01-01</p> <p>The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6894S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6894S"><span>Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio</p> <p>2017-04-01</p> <p>The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit with suprasubduction extrusive and intrusive events. Volcanogenic complexes are characterized by variable lateral and vertical regional stratigraphic relationships and are subdivided into several formations, dominated by volcanic rocks: basalts, andesites, dacites, and rhyolites of calc-alkaline-subalkaline series. Volcanic rocks are of shallow-marine to subaerial type. The peculiarities of magmatic activity and geodynamic development of the region stipulated synchronous formation of significant base and precious metals deposits of the Bolnisi ore district.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8915S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8915S"><span>Thermal evolution and core formation of planetesimals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suwa, Taichi; Nagahara, Hiroko</p> <p>2017-04-01</p> <p>Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent bodies for 4 Vesta and angrites. The conditions for the four types of planetesimals are throuly investigated as a function of the three parameters, accretion time, accreting duration, and palnetesimal size. We found that the planetesimal interior is strongly controlled by the formation time: planetesimals formed after 3 Ma after CAIs would be undifferentiated (Type A) regardless of the planetary size, whereas most of them formed within 1 Ma are Type D (differentiated bodies with magmatically formed core). Types B and C bodies are preferentially formed between 1 and 3 Ma after CAIs. Longer accretion duration tends to be resulted in formation of Types A, B and C. The present work predicts the planetesimal interior structure if we know the formation age with the isotopic measurements of samples and the size of the body, which would be a very powerful tool for future explorations of small bodies except for very small (< 20 km) bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P41A..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P41A..04M"><span>Water in the Lunar Interior and the Apparent KREEP-Mare Dichotomy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCubbin, F. M.; Nekvasil, H.</p> <p>2010-12-01</p> <p>Recent SIMS analysis of lunar apatite has shown that hydroxyl is structurally bound within lunar apatite from a number of different lunar lithologic types (McCubbin et al., 2010a, 2010b; Boyce et al., 2010; Greenwood et al., 2010). These studies along with previous SIMS analyses of lunar fire fountain glasses (Saal et al., 2008) confirm that there is at least some water in the lunar interior, with abundance estimates in magmatic source regions ranging from 64 ppb to 5 ppm water (McCubbin et al., 2010a). Surprisingly, apatite from rocks with KREEP-rich incompatible trace element signatures are depleted in hydroxyl in comparison to apatite from typical mare basalts. This result is counter-intuitive to the lunar magma ocean model, which predicts that incompatible constituents (e.g., water) would have been concentrated in the last dregs of liquid referred to as “urKREEP”. The mare basalts, which formed by partial melting of earlier LMO cumulates, are typically depleted in these incompatible constituents. Complicating the issue further, chlorine, another incompatible magmatic volatile element in apatite, follows the predicted trend with apatite from KREEP-rich rocks containing significant chlorine concentrations in comparison to apatite from mare basalts (McCubbin et al., 2009). The preceding results imply one of two scenarios 1) Water did not behave incompatibly during LMO crystallization and was preferentially stored within the LMO cumulate minerals 2) A secondary process such as degassing has perturbed the initial volatile contents of the urKREEP liquid or of the secondary magmas that have KREEP-rich incompatible trace element signatures. In regards to the first scenario, the mineral melt partition coefficients for water would need to have exceeded unity at the very low water concentrations of the LMO liquid. This scenario is consistent with the behavior of chlorine, as chlorine is not typically stored in nominally anhydrous phases like pyroxene or olivine, likely due to its large ionic radius. However, there is no empirical or experimental evidence to support the elevated D values for water. Regarding the second scenario, if significant degassing of the urKREEP liquid or KREEP-rich secondary magmas occurred, water would have certainly been lost preferentially to the other volatile constituents in apatite (fluorine and chlorine); however chlorine isotopes analyzed in lunar apatites are highly fractionated (Sharp et al., 2010), indicating degassing of chlorine in the absence of water. Therefore, this scenario only works if degassing on the Moon was a multi-stage and complex process where water and chlorine degassing are decoupled, which is not typically the case for terrestrial systems (Aiuppa et al., 2009, Webster and De Vivo, 2002; Webster et al., 1999). Solving this apparent KREEP-mare dichotomy regarding magmatic volatiles in the lunar interior is the next important step in figuring out the importance, relevance, and implications of water in the lunar interior. Moreover, it will lend insight into the roles of the other magmatic volatiles during the thermal and magmatic evolution of the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V53B2626F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V53B2626F"><span>Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farmer, G.</p> <p>2011-12-01</p> <p>Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred in Archean mantle lithosphere. Given the correlation between increasing Sr/Y and decreasing 87Sr/86Sr in the basaltic andesites, one possible trigger mechanism for lithospheric mantle melting is the influx into the thick Archean mantle keel of slab fluids (possibly including high Sr/Y slab melts) derived from oceanic lithosphere underthrust beneath this region in the Late Cretaceous. In this case, the Sliderock Mountain Volcano could, in fact, represent an example of continental interior "arc" magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1602/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1602/report.pdf"><span>Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Du Bray, E.A.; Harlan, Stephen S.</p> <p>1998-01-01</p> <p>The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047395"><span>Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.</p> <p>2012-01-01</p> <p>Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T22D..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T22D..08H"><span>Imaging the Magmatic System of Erebus Volcano, Antarctica using the Magnetotelluric Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, G.; Wannamaker, P. E.; Stodt, J. A.; Unsworth, M. J.; Maris, V.; Bedrosian, P.; Wallin, E.; Kordy, M. A.; Ogawa, Y.; Kyle, P. R.; Uhlmann, D. F.</p> <p>2017-12-01</p> <p>Erebus volcano, on Ross Island, Antarctica, in the south west Ross Sea, offers a unique opportunity to understand the magmatic system of an active alkaline volcano, and rifting within the West Antarctica Rift System. Erebus has the world's only persistent phonolite lava lake in its summit crater, and thus provides a window into the heart of a degassing volcano's magmatic system. Phonolite magmas like those at Erebus have been responsible for devastating eruptions (e.g. Pompeii 79 AD; Tambora 1815). Petrologic models suggest that Erebus is undergoing fractional crystallisation of deep mantle-derived parental basanite magma in one or more crustal magma chambers. We are using magnetotelluric (MT) methods and instrumentation, especially developed for use in Antarctica, to image the resistivity structure (magmatic system) of Erebus and the older volcanoes forming Ross Island. In addition, we mapping the rifted crustal structure and examining the mantle source of the magma and the role that the Terror Rift system plays in the active volcanism. Data collection occurred over three field seasons from 2014-2017. Measurements were made at 129 locations on Ross Island and vicinity. A pool of 11 Phoenix Geophysics V5 systems coupled with Numeric Resources high impedance preamplifiers were used. A primary goal of this work is to constrain the distribution of melt within and beneath the volcanic edifice. In addition, we are imaging the interpreted mantle source region for Erebus magmas and investigating the role that the Terror Rift system plays in generating and focusing magmatism. Preliminary modelling suggests that we are able to resolve the crustal residence zones and the path taken by the magma as it ascends from the mantle to the surface. Our work provides new insight into the formation of phonolite magma and has implications for understanding the magmatic process occurring in rift systems globally. It further provides an opportunity to compare volcanic processes in both compressional and extensional tectonics settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27774371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27774371"><span>Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Moor, J Maarten; Aiuppa, A; Avard, G; Wehrmann, H; Dunbar, N; Muller, C; Tamburello, G; Giudice, G; Liuzzo, M; Moretti, R; Conde, V; Galle, B</p> <p>2016-08-01</p> <p>Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO 2 -rich gas (CO 2 /S total  > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10 km deep, whereas the shallow magmatic gas source is at ~3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H 2 S/SO 2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO 2 and H 2 S/SO 2  > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H 2 S/SO 2  < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5054823','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5054823"><span>Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high‐frequency gas monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V.; Galle, B.</p> <p>2016-01-01</p> <p>Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. PMID:27774371</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.5761D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.5761D"><span>Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Moor, J. Maarten; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; Conde, V.; Galle, B.</p> <p>2016-08-01</p> <p>Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is 8-10 km deep, whereas the shallow magmatic gas source is at 3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2530Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2530Y"><span>A relatively reduced Hadean continental crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno</p> <p>2014-05-01</p> <p>Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary processes such as metamorphism, weathering and erosion. Thus, zircons in granites of shallow crust may record the chemical/isotopic composition of the deep crust that is otherwise inaccessible, and offer robust records of the magmatic and crust-forming events preserved in the continental crust. In fact, due to the absence of suitable rock records (in particular for periods older than ~4.0 Ga), studies in recent years concerning the nature, composition, growth and evolution of the continental crust, and especially the Hadean crust, have heavily relied on inherited/detrital zircons. Natural igneous zircons incorporate rare-earth elements (REE) and other trace elements in their structure at concentrations controlled by the temperature, pressure, fO2 and composition of their crystallization environment. Petrological observations and recent experiments have shown that the concentration of Ce relative to other REE in igneous zircons can be used to constrain the fO2 during their growth. By combining available trace-elements data of igneous zircons of crustal origin, we show that the Hadean continental crust was significantly more reduced than its modern counterpart and experienced progressive oxidation till ~3.6 billions years ago. We suggest that the increase in the oxidation state of the Hadean continental crust is related to the progressive decline in the intensity of meteorite impacts during the late veneer. Impacts of carbon- and hydrogen-rich materials during the formation of Hadean granitic crust must have favoured strongly reduced magmatism. The conjunction of cold, wet and reduced granitic magmatism during the Hadean implies the degassing of methane and water. When impacts ended, magma produced by normal decompression melting of the mantle imparted more oxidizing conditions to erupted lavas and the related crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V23D0662M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V23D0662M"><span>Tracking Down Batholith Construction Through Time Using Lobes From The Tuolumne Batholith, Sierra Nevada, CA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Memeti, V.; Paterson, S. R.</p> <p>2006-12-01</p> <p>Data gained using various geologic tools from large, composite batholiths, such as the 95-85 Ma old Tuolumne Batholith (TB), Sierra Nevada, CA, indicate complex batholithic processes at the chamber construction site, in part since they record different increments of batholith construction through time. Large structural and compositional complexity generally occurs throughout the main batholith such as (1) geochemistry, (2) internal contacts between different units (Bateman, 1992; Zak &Paterson, 2005), (3) batholith/host rock contacts, (4) geochronology (Coleman et al., 2004; Matzel et al., 2005, 2006), and (5) internal structures such as schlieren layering and fabrics (Bateman, 1992; Zak et al., 2006) leading to controversies regarding batholith construction models. By using magmatic lobes tongues of individual batholithic units that extend into the host rock away from the main batholith we avoid some of the complexity that evolved over longer times within the main batholith. Magmatic lobes are "simpler" systems, because they are spatially separated from other units of the batholith and thus ideally represent processes in just one unit at the time of emplacement. Furthermore, they are shorter lived than the main batholith since they are surrounded by relatively cold host rock and "freeze in" (1) "snapshots" of batholith construction, and (2) relatively short-lived internal processes and resulting structures and composition in each individual unit. Thus, data from lobes of all batholith units representing different stages of a batholith's lifetime, help us to understand internal magmatic and external host rock processes during batholith construction. Based on field and analytic data from magmatic lobes of the Kuna Crest, Half Dome, and the Cathedral Peak granodiorites, we conclude that (1) the significance of internal processes in the lobes (fractionation versus mixing versus source heterogeneity) is unique for each individual TB unit; (2) emplacement mechanisms such as stoping, downward flow or ductile deformation of host rock act in a very short period of time (only a few 100,000 yrs); and (3) a variety of different magmatic fabrics, formed by strain caused by magma flow, marginal effects, or regional stress, can be found in each lobe. These data lead to the conclusion that the size of the studied lobes indicate the minimum pulse size for TB construction and that fractionation crystallization, even though slightly varying in its magnitude, is an important internal process in each individual TB unit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880020858&hterms=jerusalem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Djerusalem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880020858&hterms=jerusalem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Djerusalem"><span>Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stein, M.</p> <p>1988-01-01</p> <p>The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019704','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019704"><span>Igneous evolution of a complex laccolith-caldera, the Solitario, Trans-Pecos Texas: Implications for calderas and subjacent plutons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Henry, C.D.; Kunk, Michael J.; Muehlberger, W.R.; McIntosh, W.C.</p> <p>1997-01-01</p> <p>The Solitario is a large, combination laccolith and caldera (herein termed "laccocaldera"), with a 16-km-diameter dome over which developed a 6 x 2 km caldera. This laccocaldera underwent a complex sequence of predoming sill, laccolith, and dike intrusion and concurrent volcanism; doming with emplacement of a main laccolith; ash-flow eruption and caldera collapse; intracaldera sedimentation and volcanism; and late intrusion. Detailed geologic mapping and 40Ar/39Ar dating reveal that the Solitario evolved over an interval of approximately 1 m.y. in three distinct pulses at 36.0, 35.4, and 35.0 Ma. The size, duration, and episodicity of Solitario magmatism are more typical of large ash-flow calderas than of most previously described laccoliths. Small volumes of magma intruded as abundant rhyolitic to trachytic sills and small laccoliths and extruded as lavas and tuffs during the first pulse at 36.0 Ma. Emplacement of the main laccolith, doming, ash-flow eruption, and caldera collapse occurred at 35.4 Ma during the most voluminous pulse. A complex sequence of debris-flow and debris-avalanche deposits, megabreccia, trachyte lava, and minor ash-flow tuff subsequently filled the caldera. The final magmatic pulse at 35.0 Ma consisted of several small laccoliths or stocks and numerous dikes in caldera fill and along the ring fracture. Solitario rocks appear to be part of a broadly cogenetic, metaluminous suite. Peralkaline rhyolite lava domes were emplaced north and west of the Solitario at approximately 35.4 Ma, contemporaneous with laccolith emplacement and the main pulse in the Solitario. The spatial and temporal relation along with sparse geochemical data suggest that the peralkaline rhyolites are crustal melts related to the magmatic-thermal flux represented by the main pulse of Solitario magmatism. Current models of laccolith emplacement and evolution suggest a continuum from initial sill emplacement through growth of the main laccolith. Although the Solitario laccocaldera followed this sequence of events, our field and 40Ar/39Ar data demonstrate that it developed through repeated, episodic magma injections, separated by 0.4 to 0.6 m.y. intervals of little or no activity. This evolution requires a deep, long-lived magma source, well below the main laccolith. Laccoliths are commonly thought to be small, shallow features that are not representative of major, silicic magmatic systems such as calderas and batholiths. In contrast, we suggest that magma chambers beneath many ashflow calderas are tabular, floored intrusions, including laccoliths. Evidence for this conclusion includes the following: (1) many large plutons are recognized to be laccoliths or at least tabular, (2) the Solitario and several larger calderas are known to have developed over laccoliths, and (3) magma chambers beneath calderas, which are as much as 80 km in diameter, cannot be as deep as they are wide or some would extend into the upper mantle. The Solitario formed during a tectonically neutral period following Laramide deformation and preceding Basin and Range extension. Therefore, space for the main laccolith was made by uplift of its roof and possibly subsidence of the floor, not by concurrent faulting. Laccolith-type injection is probably a common way that space is made for magma bodies of appreciable areal extent in the upper crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CoMP..166.1335J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CoMP..166.1335J"><span>Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jolis, E. M.; Freda, C.; Troll, V. R.; Deegan, F. M.; Blythe, L. S.; McLeod, C. L.; Davidson, J. P.</p> <p>2013-11-01</p> <p>We simulated the process of magma-carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt-carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt-carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma-carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T32C..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T32C..07K"><span>Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.</p> <p>2015-12-01</p> <p>During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSM.S41B..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSM.S41B..05S"><span>Tectonic map of Uruguay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez Bettucci, L.; Oyhantcabal, P.</p> <p>2008-05-01</p> <p>A compilation of available data about the geology of Uruguay allowed the definition of its main events and tectonic units. Based on a critical revision of different tectonic hypothesis found in the literature, a parsimonious tectonic evolution schema is presented, in the context of Western Gondwana. The tectonic map illustrates the general features of the structure and main tectonic units of Uruguay. The Precambrian shield, cropping out in the South and Southeast of the country is an Archean to Paleoprtoerozoic basement divided in three main tectonostratigraphic terrranes: the Piedra Alta (PAT) a juvenile Paleoproterozoic unit not reworked by later events; the Nico Pérez (NPT) a complex unit composed of several blocks where Archean to Mesoproterozoic events are recognised. The NPT was strongly reworked by Neoproterozoic (Brasiliano) orogeny. The Dom Feliciano Belt cropping out in eastern Uruguay is related to Western Gondwana amalgamation. Different tectonic settings are considered: pre-Brasiliano Basement inliers; supracrustal successions representing the evolution from a back- arc to a foreland basin; a magmatic arc; and post-collisional basins and related magmatism. In lower Paleozoic the Paraná foreland basin was generated as a consequence of orogenic events. The sedimentary successions in Uruguay include continental to shallow marine deposits where the influence of carboniferous to Permian glacial episode is recorded. The Mesozoic record is characterised by the influence of extension related to the break-up of Gondwana and the formation of the Atlantic Ocean: huge amounts of tholeiitic basalt were erupted (near 30.000 km3 in Uruguay), followed by cretaceous sediments in the northern area of the country while in the south-east, bimodal magmatism and sediments of the same age are associated to rift basins. The Cenozoic is characterised by tectonic quiescence. Subsidence is only observed in the western region (Chaco-Paraná Basin) and in the east (Laguna Merín Basin).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T32A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T32A..01H"><span>Model for the Evolution of an Oceanic Core Complex and its Hydrothermal Vent on the Ultraslow-Spreading Mid Cayman Spreading Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.</p> <p>2016-12-01</p> <p>The Mid Cayman Spreading Center (MCSC) is an ultraslow-spreading center (15 mm yr-1 full rate) along the Caribbean-North American plate boundary. Despite the paradigm that ultraslow-spreading centers are amagmatic and cold, two hydrothermal vent fields have recently been discovered along the MCSC. The Beebe Vent Field is a black smoker in the northern axial deep, and the Von Damm Vent Field (VDVF) is a moderate-temperature, talc precipitating vent found atop an oceanic core complex (OCC). This OCC, "Mt. Dent", is a large (3 km high) massif that formed beneath a detachment fault, which exhumed lower crustal and upper mantle material. The CaySeis Experiment was conducted in April, 2015 in order to collect wide-angle refraction data of the MCSC crust and upper mantle. We modeled the across-axis crustal structure of Mt. Dent as well as the surrounding lithosphere using 2.5D P-wave tomography. Using this tomographic model, along with geochemistry, we propose a model for the formation and evolution of the OCC Mt. Dent and the VDVF. A detachment fault formed in a magma-poor environment due to a pulse of magmatism, producing a large gabbro body that was then exhumed and rotated into the OCC footwall. Once magmatism waned and the gabbroic body cooled, the OCC was faulted and fractured due to plate flexure and increased tectonic extensional stress in the naturally cold and thick lithosphere. These faults provide a permeable and deep network of hydrothermal pathways that mine deep lithospheric heat and expose gabbro and fresh mantle peridotite. This model is consistent with the basalt geochemistry, hydrothermal fluid geochemistry, and the distribution of brittle vs. ductile structures along the detachment shear zone. The VDVF is therefore a product of a pulse of magmatism in an overall melt-poor environment, conditions that may be found at other ultraslow-spreading ridges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolE....5.1341M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolE....5.1341M"><span>Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moussallam, Y.; Peters, N.; Ramírez, C.; Oppenheimer, C.; Aiuppa, A.; Giudice, G.</p> <p>2014-12-01</p> <p>The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 gases of 94.16, 4.03, 1.56, 0.23, 0.003 and 0.009% respectively by open-path Fourier transform infrared (FTIR) spectrometry and a multi-species gas-sensing system. Together, these data imply fluxes of 88, 8, 0.44, 5 × 10-3 and 1 × 10-3 kg s-1 for H2O, CO2, HCl, CO and H2 respectively. Although H2S was detected, its concentration could not be resolved. HF was not detected. The chemical signature of the gas from both vents was found to be broadly similar. Following the opening of the 2010 and 2012 vents we found limited to negligible interaction of the magmatic gas with the hydrothermal system has occurred and the gas composition of the volcanic plume is broadly representative of equilibrium with the magma. The time evolution of the gas composition, the continuous emission of large quantities of SO2, and the physical evolution of the summit area with new vent openings and more frequent eruptions all point towards a continuous drying of the hydrothermal system at Turrialba's summit at an apparently increasing rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3099H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3099H"><span>Peering into the deep: Illuminating the crustal evolution of the Eucla basement and its relationship to the Albany-Fraser Orogen of southwest Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartnady, Michael; Kirkland, Chris; Clark, Chris; Spaggiari, Catherine; Smithies, Hugh</p> <p>2017-04-01</p> <p>The Albany-Fraser Orogen is a 1200 km long east to northeasterly trending Palaeoproterozoic to Mesoproterozoic orogenic belt that defines the southern to southeastern margin of the West Australian Craton (WAC). The belt records a long and complex geological history spanning the break-up of Nuna between 2000 and 1700 Ma and amalgamation of Rodinia between 1300 and 1000 Ma. Recent geochronological, geochemical and isotopic work has shown that the Albany-Fraser Orogen formed through a protracted period of reworking of the margin of the Archean Yilgarn Craton (part of the WAC) with various additions of mantle-derived material. The Cretaceous Bight and Cenozoic Eucla Basins partially overlie the northeastern part of the Albany-Fraser Orogen and completely cover 1000 km of crystalline basement (the Eucla basement) that separates the belt from the South Australian Craton. This basement constitutes the glue between the major building blocks of Proterozoic Australia, yet, its geological history is poorly understood. New drill cores penetrating the basement have intersected interlayered granitic and gabbroic rocks that yield U-Pb zircon dates that are dissimilar to any magmatic ages from units within the adjoining Albany-Fraser Orogen, with the exception of the youngest, 1190-1125 Ma magmatic suite. In addition, mantle-like hafnium and neodymium isotopic signatures indicate that the rocks of the Eucla basement are dominated by new juvenile addition, and may represent an allochthonous terrane of oceanic heritage. New ɛHf contour maps for the Albany-Fraser Orogen and Eucla basement highlight this difference. Time-slicing the isotopic dataset reveals a pattern of Palaeoproterozoic juvenile magmatism sub-perpendicular to the present day structural grain in the belt. If this marks the presence of an older lithospheric structure then it demonstrates the power that time-constrained isotopic mapping provides for illuminating lithospheric architecture through time. This may be particularly useful for unravelling crustal evolution in regions with complex tectonic histories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BVol...72..397V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BVol...72..397V"><span>Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaselli, O.; Tassi, Franco; Duarte, E.; Fernandez, E.; Poreda, R. J.; Huertas, A. Delgado</p> <p>2010-05-01</p> <p>Turrialba (10°02'N, 83°45'W) is a 3,349-m high stratovolcano belonging to the Holocene “Cordillera Central” volcanic belt of Costa Rica. The summit consists of three EW-oriented craters (East, Central, and West). Since its last eruptive phase (1864-1866), the Central and West craters have displayed modest fumarolic activity, with outlet temperatures clustering around 90°C. In 2001, seismic swarms, ground deformation, and increasing fumarolic activity occurred. From 2005 to 2008, new fumarolic vents opened between and within the Central and West craters, and along the western and southwestern outer flanks of the volcanic edifice. These physical changes were accompanied by a drastic modification in the gas chemistry that can be divided in three stages: (1) hydrothermal (from 1998 to autumn 2001), characterized by the presence of H2O, CO2, H2S, and, to a very minor extent, HCl and HF; (2) hydrothermal/magmatic (autumn 2001-2007), with the appearance of SO2 and a significant increase of HCl and HF; and (3) magmatic-dominated (2007-2008), characterized by increased SO2 content, SO2/H2S > 100, and temperatures up to 282°C. Accordingly, gas equilibrium in the CO2-CH4-H2 system suggests a progressive evolution of the deep fluid reservoir toward higher temperatures and more oxidizing conditions. The chemical-physical modifications of Turrialba in the last decade can be interpreted as part of a cyclic mechanism controlling the balance between the hydrothermal and the magmatic systems. Nevertheless, the risk of rejuvenation of the volcanic activity cannot be excluded, and an appropriate seismic, ground deformation, and geochemical monitoring program is highly recommended. Turrialba lies at a distance of 35 and 15 km from San José and Cartago, respectively, the two largest cities in Costa Rica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188339','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188339"><span>Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.</p> <p>2017-01-01</p> <p>Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910153C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910153C"><span>Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coppola, Diego; Di Muro, Andrea; Peltier, Aline; Villeneuve, Nicolas; Ferrazzini, Valerie; Favalli, Massimiliano; Bachèlery, Patrick; Gurioli, Lucia; Harris, Andrew; Moune, Séverine; Vlastélic, Ivan; Galle, Bo; Arellano, Santiago; Aiuppa, Alessandro</p> <p>2017-04-01</p> <p>During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system and resulted in collapse of the summit crater. Following the 2007 eruption, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system to provoke four small (<5 × 10 6 m3) eruptions from vents located close to the summit cone. Progressive increase in output rate between each eruption culminated, with the fifth, longest-lasting (August-October 2015) and largest-volume (45 ± 15 × 10 6 m3) eruption of the cycle. Activity observed in 2014 and 2015 points to a phase of shallow system rejuvenation and discharge, whereby continuous magma supply provoked eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continued until unloading of the deepest, least differentiated magma triggered an "effusive paroxysm" that emptied the main shallow reservoir and terminated the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29765056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29765056"><span>Anatomy of a fumarolic system inferred from a multiphysics approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Roux, Philippe; Rinaldi, Antonio Pio; Wathelet, Marc; Ricci, Tullio; Letort, Jean; Petrillo, Zaccaria; Tuccimei, Paola; Lucchetti, Carlo; Sciarra, Alessandra</p> <p>2018-05-15</p> <p>Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Litho.230..121B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Litho.230..121B"><span>Evolution of late stage differentiates in the Palisades Sill, New York and New Jersey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Block, Karin A.; Steiner, Jeffrey C.; Puffer, John H.; Jones, Kevin M.; Goldstein, Steven L.</p> <p>2015-08-01</p> <p>The Palisades Sill at Upper Nyack, NY contains evolved rocks that crystallized as ferrodiabase and ferrogranophyre and occupy 50% to 60% of the local thickness. 143Nd/144Nd isotope values for rocks representing Palisades diversity range between 0.512320 and 0.512331, and indicate a homogeneous source for the Palisades and little or no contamination from shallow crustal sediments. Petrographic analysis of ferrodiabase suggests that strong iron enrichment was the result of prolonged quiescence in cycles of magmatic input. Ferrogranophyres in the updip northern Palisades at Upper Nyack are members of a suite of cogenetic rocks with similar composition to 'sandwich horizon' rocks of the southern Palisades at Fort Lee, NJ, but display distinct mineralogical and textural features. Differences in textural and mineralogical features are attributed to a) updip (lateral) migration of residual liquid as the sill propagated closer to the surface; b) deformation caused by tectonic shifts; and c) crystallization in the presence of deuteric hydrothermal fluids resulting in varying degrees of alteration. A model connecting multiple magmatic pulses, compaction and mobilization of residual liquid by compositional convection, closed-system differentiation, synchronous with tapping of the sill for extrusion of coeval basaltic subaerial flows is presented. The persistence of a low-temperature mushy layer, represented by ferrogranophyres, supports the possibility of a long-lived conduit subject to reopening after periods of quiescence in magmatic input, leading to the extrusion of the multiple flows of the Orange Mountain Basalt and perhaps even subsequent Preakness Basalt flows, depending on solidification conditions. A sub-Newark Basin network of sills subjected to similar protracted input of pulses as hypothesized for the Palisades was likely responsible for 600 ka of magmatic activity required to emplace a third set of Watchung flood basalts, the Hook Mountain Basalt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/617825-low-delta-sup-magma-isle-skye-scotland-evidence-from-zircons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/617825-low-delta-sup-magma-isle-skye-scotland-evidence-from-zircons"><span>Low {delta}{sup 18}O magma, Isle of Skye, Scotland: Evidence from zircons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gilliam, C.E.; Valley, J.W.</p> <p>1997-12-01</p> <p>Zircons in Tertiary granitic rocks from the Isle of Skye, Scotland were resistant to measurable oxygen isotope exchange during intense hydrothermal activity in the subvolcanic environment. Five granite bodies from the Western Red Hills complex were investigated; four have {sup 18}O (Zrc) = 4.1 {+-} 0.2{per_thousand} (VSMOW) while the fifth, which intruded before major cauldron subsidence, is 2{per_thousand} lower. Zircons from Lewisian gneiss are visually and isotopically distinct indicating that zircons in the granite are not xenocrysts from the Lewisian basement. Analysis of different magnetic and size fractions of zircon shows no significant correlation to {delta}{sup 18}O supporting the conclusionmore » that these values represent the true magmatic compositions and that the Western Red Hills granites intruded as low {delta}{sup 18}O magmas with a whole rock {delta}{sup 18}O {le} 6.0%. Quartz separates from four granites are close to the calculated magmatic values in {delta}{sup 18}O, but in the fifth, values are 5% lower indicating variable exchange of quartz with low {delta}{sup 18}O heated meteoric waters. These results might be explained by magmatic interaction with hydrothermally altered crust early in the evolution of the granites, before crystallization of zircon, followed by interaction with later hydrothermal fluids. Alternatively, independent evidence for low {delta}{sup 18}O mafic magmatism in NW Scotland suggests the presence of large quantities of low {delta}{sup 18}O subducted ocean crust in the subcontinental lithosphere that could contaminate or be the source of low {delta}{sup 18}O mantle-derived melts. 31 refs., 4 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JGR...102.2645G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JGR...102.2645G"><span>Vertical movements following intracontinental magmatism: An example from southern Israel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gvirtzman, Zohar; Garfunkel, Zvi</p> <p>1997-02-01</p> <p>We present a quantitative thermal model for vertical movements following continental magmatism, focusing on how the associated elevation changes depend on the depth of intrusion. When an intrusion is emplaced within the lithosphere, its buoyancy causes a quick initial movement which is followed by long-term movements caused by thermal relaxation. Intrusions emplaced within the gabbro stability field produce initial uplifting which is about 12% of their thickness. Subsequent thermal relaxation reduces the uplift to a residual value of 9-10% of the intrusion thickness. In contrast, intrusions emplaced within the eclogite stability field produce a small subsidence from the very beginning which is slowly increased by thermal relaxation and may reach a residual value of some 4% of the intrusion thickness. In both cases the rates of the thermal subsidence depend on the depth of intrusion: it is relatively fast when the intrusions are shallow but considerably slower when the intrusions are deep. The model enables us to infer volumes and depths of intrusions from amplitudes and rates of vertical movements. As an example we apply the model to analyze the geodynamic evolution of the central Negev, southern Israel, during the Early Cretaceous. Two distinct magmatic pulses that were recognized there represent the two basic situations envisaged by the model, i.e., shallow magma emplacement in the gabbro field associated with uplifting, and deep intrusion in the eclogite field associated with subsidence. In a wider context we think that this model may help in understanding intracratonic basins in nonextensional settings. In particular, deep and thick eclogite intrusions can explain subsidence of regions which were not extended nor uplifted and in regions where crustal magmatism and heating were not observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJEaS.100.1181S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJEaS.100.1181S"><span>Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schefer, Senecio; Cvetković, Vladica; Fügenschuh, Bernhard; Kounov, Alexandre; Ovtcharova, Maria; Schaltegger, Urs; Schmid, Stefan M.</p> <p>2011-07-01</p> <p>Two age groups were determined for the Cenozoic granitoids in the Dinarides of southern Serbia by high-precision single grain U-Pb dating of thermally annealed and chemically abraded zircons: (1) Oligocene ages (Kopaonik, Drenje, Željin) ranging from 31.7 to 30.6 Ma (2) Miocene ages (Golija and Polumir) at 20.58-20.17 and 18.06-17.74 Ma, respectively. Apatite fission-track central ages, modelling combined with zircon central ages and additionally, local structural observations constrain the subsequent exhumation history of the magmatic rocks. They indicate rapid cooling from above 300°C to ca. 80°C between 16 and 10 Ma for both age groups, induced by extensional exhumation of the plutons located in the footwall of core complexes. Hence, Miocene magmatism and core-complex formation not only affected the Pannonian basin but also a part of the mountainous areas of the internal Dinarides. Based on an extensive set of existing age data combined with our own analyses, we propose a geodynamical model for the Balkan Peninsula: The Late Eocene to Oligocene magmatism, which affects the Adria-derived lower plate units of the internal Dinarides, was caused by delamination of the Adriatic mantle from the overlying crust, associated with post-collisional convergence that propagated outward into the external Dinarides. Miocene magmatism, on the other hand, is associated with core-complex formation along the southern margin of the Pannonian basin, probably associated with the W-directed subduction of the European lithosphere beneath the Carpathians and interfering with ongoing Dinaridic-Hellenic back-arc extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009MinPe..96..177U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009MinPe..96..177U"><span>Lutetian arc-type magmatism along the southern Eurasian margin: New U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ustaömer, P. Ayda; Ustaömer, Timur; Collins, Alan S.; Reischpeitsch, Jörg</p> <p>2009-07-01</p> <p>The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6 ± 2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the İzmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989JGR....94.4255P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989JGR....94.4255P"><span>Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plafker, George; Nokleberg, W. J.; Lull, J. S.</p> <p>1989-04-01</p> <p>The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.127...16H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.127...16H"><span>The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African Craton, Morocco) and its relationship to the alkaline magmatism of Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haissen, Faouziya; Cambeses, Aitor; Montero, Pilar; Bea, Fernando; Dilek, Yildirim; Mouttaqi, Abdellah</p> <p>2017-03-01</p> <p>More than 40% of the known alkaline complexes are reported from Africa. Most are ring complexes composed of syenites and associated or not, lithotypes as carbonatites, granites and mafic rocks. Radiometric dating indicates the presence of alkaline complexes with ages spanning from Precambrian to the present. In terms of outcrops, alkaline complexes are reported from cratonic zones and from belts embedded between cratonic areas. Because of the high economic potential for associated REE deposits, these alkaline complexes have received much attention from Earth scientists. These studies aim mainly to constrain the role of the mantle and the crust (and the interaction between them) in the genesis of this peculiar magmatism, and also to explain the variability observed in lithotypes and geotectonic settings. Among those alkaline complexes, Precambrian occurrences are rare. Up-to-date only a few Proterozoic examples were cited in Africa. The recently studied Awsard complex in Southern Morocco is a peculiar one with a crystallization age of 2.46 Ga and an unusual rock assemblages. This paper is a first approximation to a comparison of geochemical and isotopic fingerprints of the Awsard magmatism (as the oldest one) with other known different ages African complexes from different geotectonic settings, aiming to detect if there is any evolution in this alkaline magmatism through time. A first conclusion is that magma sources for this alkaline magmatism has been probably evaluating over geological time, from parental magmas compositions close to that of primitive mantle in these early geological time to compositions holding more and more depleted mantle and continental crust components. However, to go further in this debate more modern isotopic, geochemical and geochronological data from all these complexes are needed. Nevertheless, this comparison highlighted the peculiar character of the Awsard magmatism with an isotopic composition very close to that of Primitive mantle (values of εNd(2.46Ga) range from -3.5 to 1.2, Nd model ages range from ca.2.5 Ga to 3.0 Ga (the hosting TTG gneiss crystallization age)); an ultrapotassic composition (K2O/Na2O>>10); the oldest crystallization age 2.46 Ga reported until the date in Africa and the unusual occurrence of kalsilite-rich syenites "synnyrites".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JVGR..129..321R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JVGR..129..321R"><span>The nature of magmatism at Palinpinon geothermal field, Negros Island, Philippines: implications for geothermal activity and regional tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rae, Andrew J.; Cooke, David R.; Phillips, David; Zaide-Delfin, Maribel</p> <p>2004-01-01</p> <p>The Palinpinon geothermal field, Negros Island, Philippines is a high-temperature, liquid-dominated geothermal system in an active island-arc volcanic setting. This paper presents a regional context for the Palinpinon geology, discusses the petrogenetic evolution of magmatism in the district and assesses the genetic relationships between intrusion and geothermal circulation. The oldest rock formation, the Lower Puhagan Volcanic Formation (Middle Miocene), is part of a volcanic sequence that is traceable throughout the Visayas region and is related to subduction of the Sulu Sea oceanic basin in a southeasterly direction beneath the Sulu arc. Late Miocene to Early Pliocene times mark a period of regional subsidence and marine sedimentation. A thick sequence of calcareous sediments (Okoy Formation) was deposited during this period. Magmatism in Early Pliocene to Recent times coincided with commencement of subduction at the Negros-Sulu Arc. This produced basaltic andesites and andesites belonging to the Southern Negros and Cuernos Volcanic Formations. During this time the Puhagan dikes and the Nasuji Pluton intruded Middle Miocene, Late Miocene and Early-Late Pliocene formations. Based on radiogenic ( 40Ar/ 39Ar) dating of hornblende, the Puhagan dikes are 4.1-4.2 Ma and the Nasuji Pluton 0.3-0.7 Ma. This age difference confirms these intrusions are not genetically related. The Early Pliocene age of the Puhagan dikes also confirms they are not the heat source for the current geothermal system and that a much younger intrusion is situated beyond drill depths. Igneous rock formations in southern Negros are the products of regional island-arc magmatism with medium K, calc-alkaline, basaltic to dacitic compositions. Their adakitic affinity implies that the melting of subducted oceanic basalt has influenced magmatism in this region. Considering the regional tectonic history the most likely scenarios for the generation of slab melts are: (1) during the Middle Miocene, by the melting of relatively young (<20 Ma) oceanic crust; (2) during Early Pliocene times, by the initiation of subduction along the Negros-Sulu Trench; and (3) during Late Pliocene times, by the melting of young (<10-20 Ma) oceanic crust. The adakitic composition of the magmas at Palinpinon has promoted the formation of a porphyry copper-style magmatic-hydrothermal system that is comparable to mineralised porphyry deposits elsewhere in the Philippines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.135..212Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.135..212Z"><span>Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun</p> <p>2017-03-01</p> <p>The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sciencedirect.com/science/journal/03770273/150/1','USGSPUBS'); return false;" href="http://www.sciencedirect.com/science/journal/03770273/150/1"><span>Special issue: The changing shapes of active volcanoes: Recent results and advances in volcano geodesy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poland, Michael P.; Newman, Andrew V.</p> <p>2006-01-01</p> <p>The 18 papers herein report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Icar..195..523L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Icar..195..523L"><span>Regional fracture patterns around volcanoes: Possible evidence for volcanic spreading on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López, I.; Lillo, J.; Hansen, V. L.</p> <p>2008-06-01</p> <p>Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001949','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001949"><span>Dawn and the Vesta-HED Connection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McSween, H. Y.; Mittlefehldt, D. W.; Beck, A. W.; McCoy, T.; Marchi, S.; DeSanctis, M. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.</p> <p>2012-01-01</p> <p>Although it is difficult to explain exactly how eucrites and diogenites are related through simple magmatic processes, their shared oxygen isotopic compositions and the common occurrence of clasts of both lithologies in howardite breccias support derivation from a common parent body. For decades, HED meteorites have been linked to asteroid 4 Vesta, based on spectral similarities [1] and the discovery of a dynamical family (Vestoids) that provides a bridge between Vesta and nearby resonance escape hatches [2]. Although recently derived constraints on the rapidity of HED parent body differentiation, based on measurements of Al-26 in diogenites, have been used to argue against the Vesta-HED connection [3], new thermal evolution models [e.g., 4] appear to be heated and melted fast enough to account for this constraint. Data from the Dawn orbiter strengthen the Vesta - HED linkage and provide new insights into petrogenetic interpretations of these meteorites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.260..457M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.260..457M"><span>The Grizzly Lake complex (Yellowstone Volcano, USA): Mixing between basalt and rhyolite unraveled by microanalysis and X-ray microtomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald B.</p> <p>2016-09-01</p> <p>Magma mixing is a widespread petrogenetic process. It has long been suspected to operate in concert with fractional crystallization and assimilation to produce chemical and temperature gradients in magmas. In particular, the injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic event chain leading to such hazardous events is a scientific goal of high priority. Here we investigate a mingling event via the evidence preserved in mingled lavas using a combination of X-ray computed microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau volcanic field (YVF). We observe evidence that both magmatic viscous inter-fingering of magmas and disequilibrium crystallization/dissolution processes occur. Furthermore, these processes constrain the timescale of interaction between the two magmatic components prior to their eruption. X-ray microtomography images show variegated textural features, involving vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in conventional 2D observations and analyses. Although our central effort was applied to the determination of mixing end members, analysis of the hybrid portion has led to the discovery that mixing in the Grizzly Lake system was also characterized by the disintegration and dissolution of mafic crystals in the rhyolitic magma. The presence of mineral phases in both end member, for example, forsteritic olivine, sanidine, and quartz and their transport throughout the magmatic mass, by a combination of both mixing dynamics and flow imposed by ascent of the magmatic mass and its eruption, might have acted as a "geometric perturbation" of flow fields further fuelling mass exchange between magmas in terms of both chemical diffusion and crystal transfer. These results illuminate the complexity of mixing in natural magmatic systems, identifying several reaction-related textural factors that must be understood more deeply in order to advance our understanding of this igneous process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4599627','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4599627"><span>Magmatism at the Eurasian–North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V.; Ntaflos, Theodoros</p> <p>2011-01-01</p> <p>The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian−North American continental plate. The geodynamic evolution of this continent−continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr–Nd–Pb–Hf isotopes of the alkaline suite of rocks combined with new precise K–Ar and 40Ar/39Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively ‘dry’ conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This suggests that at that time, rift tectonics in the Mid-Arctic Ocean most likely had also affected the North-Asian continent, causing volcanic activity in the Chersky belt, before the regional geodynamic regime changed from a tensional to compressional. Our conclusions contribute not only to the understanding of volcanism in the Chersky seismic belt (NE-Russia) but also to general aspects of plate dynamics between the Eurasian and North American continent. PMID:26523071</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26523071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26523071"><span>Magmatism at the Eurasian-North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V; Ntaflos, Theodoros</p> <p>2011-07-01</p> <p>The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr-Nd-Pb-Hf isotopes of the alkaline suite of rocks combined with new precise K-Ar and 40 Ar/ 39 Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively 'dry' conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle at 37 Ma. This suggests that at that time, rift tectonics in the Mid-Arctic Ocean most likely had also affected the North-Asian continent, causing volcanic activity in the Chersky belt, before the regional geodynamic regime changed from a tensional to compressional. Our conclusions contribute not only to the understanding of volcanism in the Chersky seismic belt (NE-Russia) but also to general aspects of plate dynamics between the Eurasian and North American continent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GGG.....811003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GGG.....811003B"><span>Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAχFC): A Visual Basic computer code for calculating trace element and isotope variations of open-system magmatic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bohrson, Wendy A.; Spera, Frank J.</p> <p>2007-11-01</p> <p>Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53D3135V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53D3135V"><span>Monogenetic Arc Volcanism in the Central Andes: The "Hidden" Mafic Component in the Land of Andesite and Ignimbrite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Alderwerelt, B. M.; Ukstins Peate, I.; Ramos, F. C.</p> <p>2016-12-01</p> <p>Faulting in the upper crust of the Central Andes has provided passage for small volumes of mafic magma to reach the surface, providing a window into petrogenetic processes in the region's deep crust and upper mantle. Mafic lavas are rare in the Central Andean region dominated by intermediate-composition arc volcanism and massive sheets of silicic ignimbrite, and provide key data on magmatic origin, evolution, and transport. This work characterizes fault-controlled, within-arc monogenetic eruptive centers representative of the most mafic volcanism in the Altiplano-Puna region of the Andes since (at least) the Mesozoic. Olivine-phyric basaltic andesite (54 wt% SiO2, 7.3 wt% MgO) at Cerro Overo maar and associated dome, La Albóndiga Grande, and an olivine-clinopyroxene flow (53 wt% SiO2, 6.7 wt% MgO) from Cordón de Puntas Negras have been erupted at the intersection of regional structural features and the modern volcanic arc. Bulk magma chemistry, radiogenic isotopes, and microanalyses of mineral and melt inclusion composition provide insight on the composition(s) of mafic magmas being delivered to the lowermost crust and the deep crustal processes which shape central Andean magma. Bulk major and trace elements follow regional arc differentiation trends and are clearly modified by crustal magmatic processes. In contrast, microanalyses reveal a much richer history with olivine-hosted melt inclusions recording multiple distinct magmas, including potential primary melts. Single crystal olivine 87Sr/86Sr from Cerro Overo (0.7041-0.7071) define a broader range than whole rock (0.7062-0.7065), indicating preservation of juvenile melt in olivine-hosted inclusions lost at the whole rock scale. Mineral chemistry (via EMPA) P-T calculations define a petrogenetic history for these endmember lavas. Field mapping, bulk chemistry, and microanalyses outline the generation, storage, transportation, and eventual eruption of the "hidden" mafic component of the Andean arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5705S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5705S"><span>the role of magmatism and segmentation in the structural evolution of the Afar Rift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie</p> <p>2015-04-01</p> <p>A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn-rift magmatic supply. The difference in tectono-magmatic style between Central Afar (distributed extension and thick crust) and Northern Afar Erta Ale segment (narrow graben, thin crust) may be explained by the difference of magma volume (extruded & underplated) brought to the crust during extension. Magma supply in Central Afar thus allows the crust to be stretched without extreme thinning despite high degree of divergence. Thus, break-up may occur in both Central and Northern Afar, not depending on the apparent thickness of the crust but rather on the ability of the system to localize deformation. - There appears to be a link between early-rift transform zones and distribution of magmatic activity that affects in turn the structural style. We suggest that the closest feature from the SDR at mature VPM is the Stratoid series. The difference of volume between the Stratoid and the enormous volume of SDR imaged in seismic studies (e.g South Atlantic) is probably best explained by an initial low mantle potential temperature in Afar. Contrasted structural styles in Afar are the product of magma supply and segmentation, controlling thinning and extension distribution in the rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V53A0605B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V53A0605B"><span>The Physical and Petrologic Evolution of a Multi-vent Volcanic Field Associated With Yellowstone-Newberry Volcanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brueseke, M. E.; Hart, W. K.</p> <p>2004-12-01</p> <p>The Santa Rosa-Calico volcanic field (SC) of northern Nevada is perhaps the most chemically and physically diverse of all volcanic fields associated with mid-Miocene northwestern USA volcanism. SC volcanism occurred from 16.5 to 14 Ma and was characterized by the eruption of a complete compositional spectrum from basalt through high-Si rhyolite. Locally derived tholeiitic lava flows and shallow intrusive bodies are chemically and isotopically identical to the Steens Basalt (87/86Sri=<0.7040), the Oregon Plateau-wide mid-Miocene flood basalt. Andesite-dacite lava flows are exposed as at least four geographically and chemically distinct packages representing products of multiple, discrete magmatic systems. The most voluminous of these is calc-alkaline and characterized by abundant granitoid and mafic xenoliths/xenocrysts and radiogenic Sr isotopic ratios. Subalkaline silicic lava flows, domes, and shallow intrusive bodies define three diffuse north-south trending zones. Textural, chemical, and isotopic variability within the silicic units is linked to their spatial and temporal distribution, again necessitating the existence of multiple magmatic systems. The youngest locally derived silicic units are ash flows exposed in the central portion of the SC that erupted in actively forming sedimentary basins at ˜15.4 Ma. Underlying the 400-1500m thick package of SC volcanic rocks are temporally ( ˜103 and ˜85 Ma), chemically, and isotopically (87/86Sr at 16 Ma= 0.7045 to 0.7058 and 0.7061 to >0.7070) heterogeneous granitoid plutons and a package of ˜20-23 Ma calc-alkaline, arc-related intermediate lava flows. The observed disequilibrium textures, xenoliths, and chemical/isotopic diversity suggests that upwelling Steens magma interacted with local crust, siliceous crustal melts, and the mafic plutonic roots of early Miocene arc volcanism in multiple magmatic systems characterized by heterogeneous open system processes. The formation of these systems is tectonically controlled as evidenced by magma eruption/ascent along active zones of lithospheric extension. Thus, the observed physical and chemical diversity in this volcanic field is attributed to a combination of factors; tectonic setting, availability of upwelling mafic magma(s), nature of pre-Miocene crustal addition and lithospheric modification, and the resulting array of magma sources and petrogenetic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70094778','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70094778"><span>Santorini Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.</p> <p>1999-01-01</p> <p>Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991pggp.rept...10N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991pggp.rept...10N"><span>An assessment of the crustal remelting hypothesis for volcanism in the Freyja Montes deformation zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Namiki, Noriyuki; Solomon, Sean C.</p> <p>1991-06-01</p> <p>The linear mountain belts of Ishtar Terra on Venus are notable for their topographic relief and slope and for the intensity of surface deformation. The mountains surround the highland plain Lakshmi Planum, the site of two major paterae and numerous other volcanic features and deposits, and evidence is widespread for volcanism within the mountains and in terrain immediately outward of the mountain belt units. While two hypotheses for magmatism can be distinguished on the basis of the chemistry of the melts, chemical data are presently lacking for the Ishtar region. The competing hypotheses for magmatism in Western Ishtar Terra can also be tested with thermal models, given a kinematic or dynamic model for the evolution of the region. The crustal remelting hypothesis is assessed, using the kinematic scenario of Head for the evolution of Freyja Montes. In that scenario, Freyja Montes formed by a sequence of large scale underthrusts of the lithosphere of the North Polar Plains beneath Ishtar Terra, with successive blocks of underthrust crust sutured in imbricate fashion onto the thickened crust of Lakshmi Planum and the mantle portion of underthrusting lithosphere episodically detached. The numerical experiments thus show that volcanic activity associated with the formation of the Frejya Montes deformation zone can be explained by crustal melting, due either to direct contact of crustal material with the hot asthenosphere or to heat generation in a thickened crustal layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..81...78R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..81...78R"><span>Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riel, Nicolas; Jaillard, Etienne; Martelat, Jean-Emmanuel; Guillot, Stéphane; Braun, Jean</p> <p>2018-01-01</p> <p>We present a new conceptual model to explain the first order Permian-Triassic evolution of the whole > 30 000 km long Pangea margin facing the Panthalassa ocean. Compilation of available geological, geochemical, geochronogical and paleomagnetic data all along this system allowed us to distinguish three part of the margin: western Laurentia, western Gondwana and eastern Gondwana. These segments record distinct tectonic and magmatic events, which all occur synchronously along the whole margin and correlate well with the main geodynamic events of this period, i.e. subduction of the Paleotethys mid-ocean ridge at 310-280 Ma, opening of the Neotethys at 280-260 Ma, counterclockwise rotation of Pangea at 260-230 Ma and closure of the Paleotethys at 230-220 Ma. Between 260 and 230 Ma, the reorganization of the Tethyan realm triggered the up to 35° rotation of Pangea around an Euler pole located in northernmost South America. This implied both an increase and a decrease of the convergence rate between the margin and the Panthalassa ocean, north and south of the Euler pole, respectively. Thus, the Permian-Triassic Pangean margin was marked: in western Laurentia by marginal sea closure, in western Gondwana by widespread bimodal magmatic and volcanic activity, in eastern Gondwana by transpressive orogenic phase. Therefore, we propose that the Permian-Triassic evolution of the outward margin of Pangea was controlled by the Tethyan realm reorganization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028100','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028100"><span>Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.</p> <p>2006-01-01</p> <p>Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...46M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...46M"><span>Magmatic gas percolation through the old lava dome of El Misti volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moussallam, Yves; Peters, Nial; Masias, Pablo; Apaza, Fredy; Barnie, Talfan; Ian Schipper, C.; Curtis, Aaron; Tamburello, Giancarlo; Aiuppa, Alessandro; Bani, Philipson; Giudice, Gaetano; Pieri, David; Davies, Ashley Gerard; Oppenheimer, Clive</p> <p>2017-06-01</p> <p>The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V11A0556L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V11A0556L"><span>The Magmatic Plumbing System of the Campi Flegrei Caldera.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucia, C.; Ilenia, A.; Massimo, D.; Valeria, D.; Mauro, D.; Giovanni, O.</p> <p>2006-12-01</p> <p>The Campi Flegrei caldera is a nested and resurgent structure generated by at least two major collapses. Large sectors of the structural boundary of both calderas resulted from partial reactivation of pre-existing faults generated by regional tectonism. Its magmatic system is still active with the last eruption occurring in 1538 A.D. (Monte Nuovo), widespread fumaroles and hot springs activity, and the unrest episodes in the last 35 years, with a maximum net uplift of about 3.5 m in the Pozzuoli area. The definition of the history of the magmatic feeding system of this caldera, in terms of composition, time- scale and depth of crystallization, relation between composition of the erupted magma and structural position of the vent, and magma chamber processes, is of extreme importance for a better understanding of the dynamic conditions of the present day magma chamber and for evaluating of the extent to which the behavior of the magmatic system can be predicted. The Campi Flegrei caldera magmatic plumbing system is characterized by deep and shallow reservoirs. Campi Flegrei magmas originated in a subduction modified mantle source, stagnate at mid crustal level (20- 10 km depth), where they differentiated and are contaminated with the continental crust. From the "deep reservoir" shoshonitic to latitic magmas rise towards the surface along the NE aligned regional fault reactivated during the caldera collapse, whereas trachytic magmas rise mostly along faults and fractures bordering the resurgent block and the southern part of the Campi Flegrei caldera. Repeated arrival of trachytic to phonolitic magmas form shallow reservoirs at 4-3 km depth, in which differentiation and mixing processes occur before and during the eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V13C0395W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V13C0395W"><span>Magmatic and Volcanic Processes Interpreted from Recent Ash Emissions from Nevado del Ruiz, Colombia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wall, K. T.; Harpel, C. J.; Martinez, L. M.; Ceballos, J. A.; Cortés, G. P.</p> <p>2017-12-01</p> <p>Nevado del Ruiz is a composite volcano located in the Colombian Central Cordillera. It is the modern edifice of the Nevado del Ruiz Volcanic Complex that has been active since 1.8 Ma. Through historic times, Ruiz has exhibited decades-long eruptive stages that include minor explosions and fumarolic activity bracketing one major magmatic event. Modern eruptive activity began with seismic unrest in 1984, a small explosive eruption on September 11, 1985, and the catastrophic lahar-generating eruption of November 13, 1985. Since then, Ruiz has periodically erupted plumes up to a few kilometers above the crater, including a phreatomagmatic eruption on September 1, 1989, eruptions on May 29 (1 km plume) and June 30 (8 km plume) 2012, and frequent minor ash emissions from 2015 through the present. We have examined a suite of samples from the 1985, 1989, 2012, and 2015 eruptions to assess the origin of erupted materials (juvenile vs. non-juvenile) and nature of eruptive and subvolcanic processes (e.g. fresh intrusion, phreatic explosion). The November 1985 ash is dominated by beige to light gray pumice and free crystals, while samples from September 1985 and the 1989 through 2015 eruptions contain other fresh looking angular to subangular particles, including dense glassy to microcrystalline chips and vesicular glass shards. If juvenile, as we suspect, these components indicate phreatomagmatic to magmatic eruptive processes. Vesicular glass ranges from colorless to brown, often within the same sample, suggesting that bimodal magmatic sources, as recorded by mingled pumices of November 1985, have continued to play a role in eruptions at Ruiz. In particular, ash from 1989 contains vesicular glass that is 65% colorless to beige and 35% brown. Sparse, very dark brown vesicular glass appears in ash from June 2012—a larger eruption than that of May 2012—and is also observed in some 2015 samples, suggesting a more prominent mafic component. In addition to our observations from binocular microscopy, we will present results from SEM and electron microprobe analyses that further clarify the magmatic conditions that produced these dense and vesicular glassy components, and that test our hypothesis that these particles represent juvenile material from continued phreatomagmatic to magmatic eruptions at Ruiz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970025445','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970025445"><span>Studies of Magmatic Inclusions in the Basaltic Martian Meteorites Shergotty, Zagami, EETA 79001 and QUE 94201</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harvey, Ralph P.; McKay, Gordon A.</p> <p>1997-01-01</p> <p>Currently there are 12 meteorites thought by planetary scientists to be martian samples, delivered to the Earth after violent impacts on that planet's surface. Of these 12 specimens, 4 are basaltic: Shergotty, Zagami, EETA 79001 and QUE 94201. Basalts are particularly important rocks to planetary geologists- they are the most common rocks found on the surfaces of the terrestrial planets, representing volcanic activity of their parent worlds. In addition, because they are generated by partial melting of the mantle and/or lower crust, they can serve as guide posts to the composition and internal processes of a planet. Consequently these four meteorites can serve as 'ground-truth' representatives of the predominant volcanic surface rocks of Mars, and offer researchers a glimpse of the magmatic history of that planet. Unfortunately, unraveling the parentage of a basaltic rock is not always straightforward. While many basalts are simple, unaltered partial melts of the mantle, others have undergone secondary processes which change the original parental chemistry, such as assimilation of other crustal rocks, mixing with other magmas, accumulation, re-equilibration between mineral species after crystallization, loss of late-stage magmatic fluids and alteration by metamorphic or metasomatic processes. Fortunately, magmatic inclusions can trap the evolving magmatic liquid, isolating it from many of these secondary processes and offering a direct look at the magma during different stages of development. These inclusions form when major or minor phases grow skeletally, surrounding small amounts of the parental magma within pockets in the growing crystal. The inclusion as a whole (usually consisting of glass with enclosed crystals) continues to represent the composition of the parental magma at the time the melt pocket closed, even when the rock as a whole evolves under changing conditions. The four basaltic martian meteorites contain several distinct generations of melt inclusions; those found within early-forming pigeonite, intermediate and late-forming Ti, Fe-oxides and sulfides, and intermediate to late-forming phosphates. In this summer' s study we have made a detailed study of all of the various forms of inclusions found within the 4 basaltic martian meteorites listed above. Glasses and minerals within the inclusions were analyzed using the Camera SX-100 Electron Microprobe in Building 31. The mineralogy and textural context of the inclusions will then be used to explore the crystallization history of these specimens, and to investigate any differences in crystallization history or parental magma compositions between these rocks. In this manner, the magmatic inclusions provide a road map backwards toward the 'parental' compositions for the basaltic martian meteorites and provide significant insight into the igneous processes found within the crust of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V41B4809S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V41B4809S"><span>Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.</p> <p>2014-12-01</p> <p>Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V51C2685K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V51C2685K"><span>The differentiation process of the I-type granitoids in southwest Japan and New South Wares in Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawakatsu, K.; Iwamoto, Y.; Ebisu, S.; Hasegawa, M.; Hiraiwa, N.; Kawakatsu, T.; Kitano, A.; Masuta, T.; Ootsubo, H.; Wakazono, R.</p> <p>2013-12-01</p> <p>Cretaceous-Paleogene Granitoids in the inner zone of southwest Japan have been divided into two series: the magnetite series that is distributed mainly in the San-in belt and the ilmenite series that is distributed mainly in San-yo belt. For 8 years, we have been investigating the two series to clear their processes of magmatic differentiation. Recently, we discovered oscillatory zoned structure, exsolution lamellae of amphibole, and relics of pyroxene left in the core of amphibole from Harima granodiorite, Nunobiki granodiorite (San-yo belt) and Daito-Yokota quartz diorite (San-in belt). The amphibole that has microstructure coexists with magnetite, ilmenite and pyrrhotite. We compared the two series for crystallization and re-equilibrium by ion substitution using the microstructure of the amphibole as 'time measure' during the differentitation process of acidic magma. While magnetites and ilmenites coexist with the core of the amphiboles, the oxygen fugacity of the San-yo belt magma was low until the later stage of magmatic differentiation where H2S from the Earth's crust mixed with it. In the subsolidus process, hydrothermal solutions circulated. On the other hand, the oxygen fugacity of the San-in belt magma began to rise in the early stage of magmatic differentiation. In the later stage, mafic magma was contaminated with SO2. The rims of amphiboles coexist with pyrrhotites in both of belts. Furthermore, the re-equilibrium of minerals underwent progressive oxidation and hydrothermal fluid circulated actively in the subsolidus process. Bingie Bingie Point at New South Wares (Eurobodalla National Park) is a peninsula about a meter around. The plutonic rocks were formed in the Devonian period and belong to the magnetite series. They are classified I-type granitoids such as those found in the inner zone of southwest Japan. They have only trace amounts of oxide minerals and pyrrhotite. The amphiboles of the granitoids have oscillatory zoned structures at pale green rims. The structures are formed by the fluid circulations of intruded granodiorite magma. The relic pyroxene is left in the core of amphibole. These minerals were crystallized under stable conditions and the microstructures were developed in the amphiboles under the subsolidus conditions. These researches contribute to clarifying magmatic differentiation and are the foundation of understanding the exchange of substances in magmatic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22622575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22622575"><span>Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keller, C Brenhin; Schoene, Blair</p> <p>2012-05-23</p> <p>The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.144....1X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.144....1X"><span>The eastern Central Asian Orogenic Belt: formation and evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Bei; Xu, Wenliang</p> <p>2017-08-01</p> <p>The Central Asian Orogenic Belt (CAOB) extends from the northern Eurasian continent in the west via Mongolia, Inner Mongolia and northeast part of China to the Russia Far East in the east. It is characterized by complex trench-arc-basin subduction system, exotic terrane (microcontinents) accretion, massive generation of juvenile crust during the Neoproterozoic-Phanerozoic (e.g., Jahn et al., 2000, 2004; Sengör et al., 1993). A lot of papers about formation and evolution of the CAOB have been published and new field observations and geochemical data for key areas of the CAOB challenge to previous assessments. Several areas previously defined as juvenile are now shown to have mixed crustal compositions. For example, Kröner et al. (2014, in press) estimated that the distribution of various crustal provinces is truly juvenile crustal material ca. 20%, mixed crust ca. 30%, old crust ca. 50%,respectively, in the CAOB, similar to those in other accretionary orogens through Earth history. A two-stage model for the evolution of the CAOB has been suggested based on recent data from the Eastern Tianshan and Beishan (Gao et al., 2011; Su et al., 2011; Chen et al., 2016; Wang et al., 2017), which suggests the process of the formation and evolution of the CAOB includes closure of the Paleo Asian ocean (PAO), formation of orogenic belt before the late Paleozoic and crustal extension and magmatism resulted from plume upon the young orogenic belt after the late Paleozoic. This new model changes previous concept that the CAOB developed through the Paleozoic and is supported by recent researches on the eastern CAOB.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>