Science.gov

Sample records for magmatic sources setting

  1. Basic Ordovician magmatism of the Spanish Central System: Constraints on the source and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Orejana, D.; Villaseca, C.; Merino Martínez, E.

    2017-07-01

    New geochemical and geochronological data obtained from metabasites intrusive into pre-Floian metasedimentary and metaigneous rocks of the Spanish Central System (Revenga and El Caloco sectors) represent a complex pre-Variscan magmatic event. Analysed samples exhibit tholeiitic affinity but relatively high incompatible element contents. These rocks can be distinguished from similar tholeiitic SCS metabasites because they represent more primitive liquids with higher metal (Cr, Ni) and LILE contents and display a slightly enriched isotopic (Sr, Nd) composition. These data point to the involvement of several mantle sources including lithospheric sections with a crustal imprint. Two samples yield Ordovician U-Pb zircon intrusion ages of 473.1 (+ 3.8/- 6.8) and 453.3 ± 4.6 Ma. This episode of basic magmatism is not coetaneous with the abundant Cambrian-Ordovician felsic orthogneisses of the Central Iberian Zone and likely represents a rifting context (Rheic Ocean opening) which started about 477 Ma. A comparison with Lower to Middle Paleozoic magmatic rocks from other west European terranes implies a heterogeneous evolution from the Ediacaran to Middle Paleozoic in the northern margin of Gondwana. While western terranes (e.g., Armorican Massif, Saxo-Thuringian Zone, Ossa-Morena Zone) display monotonous shelf sedimentation and magmatic quiescence from the Upper Ordovician to Variscan collision, eastern terranes (e.g., Central Iberian Zone, Corsica-Sardinia, Alps, Pyrenees) exhibit magmatism of contrasting geochemical affinity, including basic alkaline and tholeiitic series, indicative of a more complex tectonic evolution.

  2. Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.; Ashwal, L. D.; Shirey, S. B.; Horan, M.; Mock, T.; Andersen, T. B.

    2014-03-01

    from which the anorthosites are derived. Modeling of these anorthositic magmas with MELTS indicates that their ultramafic cumulates would have sunk in the magma and been sequestered at the Moho, where they may have sunk deeper into the mantle resulting in large-scale compositional differentiation. The HAOMs thus represent a rare example of part of a cumulate assemblage that was carried to the upper crust during anorthosite emplacement and, together with the anorthosites, illustrate the dramatic influence that magma ponding and differentiation at the Moho has on residual magmas traveling towards the surface. The new geochronologic and isotopic data indicate that the magmas were derived by melting of the mantle, forming magmatic systems that could have been long-lived (e.g. 80-100 m.y.). A geologic setting that would fit these temporal constraints is a long-lived Andean-type margin.

  3. Characteristics of mantle sources in Jurassic to Quaternary magmatic history of the territory of Armenia, as a guide to diverse geodynamic settings

    NASA Astrophysics Data System (ADS)

    Nikoghosyan, Igor; Meliksetian, Khachatur; van Bergen, Manfred; Mason, Paul; Jrbashyan, Ruben; Navasardyan, Gevorg; Ghukasyan, Yura; Melkonyan, Rafael; Karapetyan, Sergey

    2014-05-01

    Complex geological mosaic of the territory of Armenia is presented by units consisting by fragments of continental blocks of Gondwanaland origin, Mesozoic Tethian island arc and Mesozoic ophiolitic complexes. Extensive magmatic activity traced from Early Jurassic to Holocene developed in diverse geological settings, such as Jurassic Tethyian MORB lavas, Upper Cretaceous and Eocene rift-related magmas and post-collisional Pliocene-Quaternary volcanic series. Despite the remarkable existence of subduction, obduction and collisional orogenic processes, accompanied by extensional and compressional tectonics, little is known about the relation between geodynamics and magma generation conditions, as mantles sources types and primary melts characteristics during the evolution of the region. Current study is intended to get new information that help to fill the gaps between the geodynamical puzzle and conditions of the mantle sources melting within the selected key areas of the territory of Armenia and Lesser Caucasus in general. In this contribution we focus on discussion of results of detailed geochemical and petrological studies of representative, highest-MgO samples of Jurassic picrites within Vedi ophiolites, picrite dyke of Alaverdi cutting Mesozoic Tethian island arc complexes, Upper Cretaceous rift-related sub-alkaline/alkaline basaltic series of Idjevan and Gochas, Late Eocene alkaline basaltic dyke of Jajur cutting Eocene volcanic and sedimentary complexes and Pliocene - Quaternary post-collisional volcanism, presented by 1) rifting-related flood basalts (dolerites); 2) HKCA basaltic series of Aragats stratovolcano and Gegham monogenetic volcanic upland and 3) high-alkaline, silica-undersaturated basaltic series of Syunik and Kapan. Geochemical signatures of most studied samples are characterised by enrichments in LILE and LREE, but depleted in HFSE, reflecting to OIB/MORB-type mantle source that may have been modified by subduction-related processes. Exceptions

  4. Copahue volcano and its regional magmatic setting

    USGS Publications Warehouse

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  5. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    SciTech Connect

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  6. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Leeman, William P.

    1989-01-01

    The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.

  7. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Leeman, William P.

    1989-01-01

    The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.

  8. Magma sources during Gondwana breakup: chemistry and chronology of Cretaceous magmatism in Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    van der Meer, Quinten H. A.; Waight, Tod E.; Scott, James M.

    2013-04-01

    Cretaceous-Paleogene rifting of the Eastern Gondwana margin thinned the continental crust of Zealandia and culminated in the opening of the Tasman Sea between Australia and New Zealand and the Southern Ocean, separating both from Antarctica. The Western Province of New Zealand consists of a succession of metasedimentary rocks intruded by Palaeozoic and Mesozoic granitoids that formed in an active margin setting through the Phanerozoic. Upon cessation of subduction, the earliest stages of extension (~110-100 Ma) were expressed in the formation of metamorphic core complexes, followed by emplacement of granitoid plutons, the deposition of terrestrial Pororari Group sediments in extensional half-grabens across on- and offshore Westland, and the intrusion of mafic dikes from ~90 Ma. These dikes are concentrated in the swarms of the Paparoa and Hohonu Ranges and were intruded prior to and simultaneous with volumetrically minor A-type plutonism at 82 Ma. The emplacement of mafic dikes and A-type plutonism at ~82 Ma is significant as it coincides with the age of the oldest seafloor in the Tasman Sea, therefore it represents magmatism coincident with the initiation of seafloor spreading which continued until ~53 Ma. New 40Ar-39Ar ages indicate that the intrusion of mafic dikes in basement lithologies both preceded and continued after the initial opening of the Tasman Sea, including an additional population of ages at ~70 Ma. This indicates either a prolonged period of extension-related magmatism that continued >10 Ma after initial breakup, or two discrete episodes of magmatism during Tasman Sea spreading. Volumetrically minor Cenozoic within-plate magmatism continued sporadically throughout the South Island and bears a characteristic HIMU (high time integrated U/Pb) signature. A detailed geochemistry and chronological study of Cretaceous mafic and felsic magmatism is currently in progress and aims to better understand the transition of magma sources from a long lived active

  9. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, Graham; Cottle, John M.

    2016-10-01

    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (< 40), consistent with relatively shallow magma generation and differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal

  10. Magmatic Degassing in the Crust Is Mantle Source Dependent

    NASA Astrophysics Data System (ADS)

    Burnard, P.

    2014-12-01

    The 4He/40Ar* ratio (where 40Ar* is 40Ar corrected for atmospheric contamination) is known to be sensitive to magmatic degassing due to the different solubilities of He and Ar in silicate melts: 4He/40Ar* increases in the residual liquids because Ar is less soluble than He and therefore degasses more rapidly. Conversely, lithophile isotope ratios and incompatible trace element ratios (87Sr/86Sr, 143Nd/144Nd, La/Sm etc) are specifically chosen as these are largely insensitive to magmatic processes, including degassing (as far as mid-ocean ridges are concerned) but rather trace mantle heterogeneities. It is astonishing therefore that correlations between 4He/40Ar* and lithophile isotope ratios (such as 87Sr/86Sr or 143Nd/144Nd) exist in South East Indian Ridge basalts and basaltic glasses [1]. These correlations appear to be the result of enhanced degassing of magmas produced from enriched mantle: enriched mantle probably has higher C contents relative to depleted mantle, therefore degassing of 'enriched' compositions will start at higher pressure and the proportion of volatiles lost will be greater than for 'depleted' lavas. The 4He/40Ar* ratio of the erupted products depends on the proportion of volatiles lost, therefore 4He/40Ar* is higher in lavas derived from enriched as opposed to depleted magmas. Naturally, enriched lavas are also distinct from depleted lavas in their lithophile isotopic composition (high 87Sr/86Sr, low 143Nd/144Nd) and thus the observed correlations between lithophile isotopes and degassing (4He/40Ar*) is created. A simple degassing model suggests that, in order to generate the correlated variability in Sr and Nd isotopes and 4He/40Ar*, the mantle C concentration likely varies by factor ~2 [1]. Thus it is possible to link mantle C variability - which is difficult to asses due to shallow level degassing - with Sr isotopic composition, which is very commonly measured in mid-ocean ridge basalts: Sr isotopes can be used as a proxy for mantle C

  11. Mode of rifting in magmatic-rich setting: Tectono-magmatic evolution of the Central Afar rift system

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Leroy, Sylvie; Ayalew, Dereje

    2014-05-01

    Observation of deep structures related to break-up processes at volcanic passive margins (VPM) is often a troublesome exercise: thick pre- to syn-breakup seaward-dipping reflectors (SDR) usually mask the continent-ocean boundary and hide the syn-rift tectonic structures that accommodate crustal stretching and thinning. Some of the current challenges are about clarifying 1) if tectonic stretching fits the observed thinning and 2) what is the effect of continuous magma supply and re-thickening of the crust during extension from a rheological point of view? The Afar region in Ethiopia is an ideal natural laboratory to address those questions, as it is a highly magmatic rift that is probably close enough to breakup to present some characteristics of VPM. Moreover, the structures related to rifting since Oligocene are out-cropping, onshore and well preserved. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the Ethiopian Plateau, through the marginal graben down to the Manda-Hararo active rift axis. We mapped continent-ward normal fault array affecting highly tilted trapp series unconformably overlain by tilted Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. It is itself overlain by flat lying Pliocene series, including the Stratoid. Balanced cross-sections of those areas allow us to constrain a surface stretching factor of about 2.1-2.9. Those findings have the following implications: - High beta factor constrained from field observations is at odd with thinning factor of ~1.3 predicted by seismic and gravimetric studies. We propose that the continental crust in Central Afar has been re-thickened by the emplacement of underplated magma and SDR. - The deformation in Central Afar appears to be largely distributed through space and time. It has been accommodated in a 200-300 km wide strip being a diffuse incipient

  12. Towards a magmatic quartz database: tracing melt sources

    NASA Astrophysics Data System (ADS)

    Tailby, N. D.; Ackerson, M. R.; Watson, E. B.; Thomas, J. B.

    2014-12-01

    Quartz composition has seen increasing interest among the scientific community over the last decade due to new calibrations (e.g., Ti-in-quartz) and the proliferation of trace element analytical facilities. What is presently lacking in the field of quartz research is a quartz composition database. Such a single body of information can be used to evaluate whether variation seen in different crystallization environments is equally manifest in quartz composition. In this study we present >2000 new quartz analyses from >70 different granitoids and volcanic settings from around the globe (Lachlan Fold Belt, High Himalaya, French Massif, Cordilleran, Caledonian, White Mountains, Bishop, Toba, Snake River, Oman ophiolite and a number of other select locations). This dataset also combines data from a number of previous studies and together the data may collectively be used to determine which geochemical characteristics can be used to distinguish quartz from different magma types. A number of trace element concentrations or ratios (e.g., Al/Ti, Ge, Li, P and B) are notably useful when distinguishing peraluminous (e.g., cordierite-bearing granitoid) systems from more metaluminous systems (e.g., hornblende granodiorite) or plagiogranites.

  13. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (<10 km depth). The tomographic model reveals a low-velocity feature between 3 and 5 km depth that lies beneath the caldera, consistent with a magma body. In contrast to earlier tomographic studies, where elevated temperatures were sufficient to explain the recovered low velocities, the larger amplitude low-velocity anomalies in our joint tomography model require low degrees of partial melt (˜10%), and a minimum melt volume of ˜2.5 km3. Furthermore, synthetic tests suggest that even greater magnitude low-velocity anomalies, and by inference larger volumes of magma (up to 8 km3), are needed to explain the observed waveform variability. The lateral extent and shape of the inferred magma body indicates that the extensional tectonic regime at Newberry influences the emplacement of magmatic intrusions. Our study shows that jointly inverting active source and passive source seismic data improves tomographic imaging of the shallow crustal seismic structure of volcanic systems and that active source experiments would benefit from longer deployment times to also record teleseismic sources.

  14. Numerical study of conductive heat losses from a magmatic source at Phlegraean Fields

    NASA Astrophysics Data System (ADS)

    Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Scandone, R.

    2015-01-01

    The thermal evolution of the Phlegraean magmatic system (southern Italy) is studied by analyzing the influence of the thermal property variations on the solution of the heat conduction equation. The aim of this paper is to verify if appropriate choices of thermal parameters can reproduce, at least to greater depths, the high temperatures measured in the geothermal wells, drilled inside the caldera, under the assumption of heat loss from a magma chamber by conduction. Since the main purpose is to verify the plausibility of such an assumption, rather simple models of the magmatic system are adopted and only major volcanic events (i.e., the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions) are considered. The results of the simulated two-dimensional model scenarios show that by assuming an extended source region, whose emplacement time is longer than 40 ka, heat conduction mechanisms can provide temperatures as high as those measured at depths deeper than about 2000 m. On the other hand, the 1D simulations show that appropriate choices for the thermal conductivity depth profiles can reproduce the observed temperatures at depths deeper than about 1000 m. These findings question the apparent consensus that convection is the only dominant form of heat transfer at Phlegraean Fields and might motivate new research for reconstructing the thermal evolution of the Phlegraean magmatic system.

  15. Wave Propagation in Axi-Symmetrical Magmatic Conduits Due to an Internal Source

    NASA Astrophysics Data System (ADS)

    De Negri, R. S.; Sanchez-Sesma, F. J.; Arciniega-Ceballos, A.

    2014-12-01

    The classical Trefftz's method is implemented to simulate wave propagation in and around axi-symmetrical magmatic conduits. In this fluid-solid system the fluid (magma) is confined by an elastic unbounded medium that represents the surrounding rock. Our aim is to associate wave behavior with mechanical and geometrical conduit characteristics. The source is assumed to be at a point along the conduit centered axis medium are constructed in both cases as linear combinations of particular solutions.Within the fluid such solutions are spherical standing waves that are smooth at the origins. In the elastic solid region the field is constructed with monopoles and dipoles for the P waves and spheroidal dipoles for SV waves. The particular solutions satisfy the elastodynamic equations that govern the wave motion at those media and are associated to origins (selected points) distributed along the conduit axis. For the surrounding rock the solutions are sources that satisfy Sommerfeld's radiation condition. These sets of solutions are assumed to be complete. This conjecture is exact in 2D acoustic problems. The conduit can be closed or open at the ends and the surrounding elastic domain is unbounded. In order to find the coefficients of Trefftz's wave expansions, boundary conditions at the fluid-solid interface (null shear and continuity of pressures and normal velocities) are satisfied in the least squares sense. The solution is obtained in the frequency domain and the source time function can be introduced using Fourier analysis.Regardless the low order of the formulation our results display a rich variety of behaviors. For a uniform infinite cylinder we reproduced the exact analytical solution. In addition, this approach allows identifying some important effects of the conduit geometry, including changes of sections. Lateral and longitudinal resonances of irregular axi-symmetric conduits are well resolved. The stiffness of the solid domain with respect to the fluid

  16. Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides), Northern Turkey: A geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Genç, Ş. Can; Tüysüz, Okan

    2010-07-01

    The Lower to Middle Jurassic Mudurnu formation of the Sakarya Zone (Northern Turkey) was deposited in an extensional basin. This unit crops out along the southern Pontide range and consists of marine sedimentary rocks including debris flows, lignite-bearing clastic rocks and Ammonitico Rosso horizons alternating with mafic and felsic volcanic and volcaniclastic rocks. Magmatic rocks of the Mudurnu formation comprise two compositionally different groups; 1) a mafic group including diabase-microgabbro-basaltic lavas and their pyroclastic equivalents, and 2) a felsic group including granite porphyries and felsic pyroclastic rocks. All the magmatic members of the Mudurnu formation are subalkaline and display a calc-alkaline affinity. They are bimodal, with a significant silica gap between the mafic and felsic members with the exception of a few samples. These magmatic rocks display enrichment in LILE and depletion in Nb, Ta, P and Ti, implying a subduction-related magmatic signature. Melting modelling for the mafic rocks indicates that they originated possibly from subcontinental lithospheric mantle (SCLM) composed of spinel lherzolite. ɛNd(i) values (+ 1.5 to + 4.3) imply that the mafic volcanic and hypabyssal rocks were possibly derived from a time-integrated LREE-depleted mantle source. The initial Sr and Nd isotope values, and ɛNd(i) of the felsic hypabyssal rocks are comparable to the mafic ones. The isotope data point to a genetic relationship between the felsic and mafic members. Results obtained from the geochemical modelling of incompatible versus compatible trace elements show that the felsic rocks were derived from the mafic melts by fractional crystallization (FC) process. In the light of their regional geological setting and these geochemical characteristics, we propose that the magmatic rocks of the Mudurnu formation formed in an extensional basin situated on an active and/or just ended subduction zone during the Jurassic period. The Mudurnu formation

  17. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    NASA Astrophysics Data System (ADS)

    van der Meer, Q. H. A.; Waight, T. E.; Scott, J. M.; Münker, C.

    2017-07-01

    Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i) = 18.6, 207Pb/204Pb(i) = 15.62, 208Pb/204Pb(i) = 38.6, 87Sr/86Sr(i) = 0.7063-0.7074, εNd(i) = -2.1 - +0.1 and εHf(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i) = 18.7 to 19.4, 207Pb/204Pb(i) = 15.60 to 15.65, 208Pb/204Pb(i) = 38.6 to 39.4, 87Sr/86Sr(i) = 0.7031 to 0.7068, εNd(i) = +4.5 to +8.0 and εHf(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i) ≈ 20.5, 207Pb/204Pb(i) ≈ 15.7, 208Pb/204Pb(i) ≈ 40.0, εNd(i) ≈ 4.5 and εHf(i) ≈ 4.0). In contrast to the inboard HIMU-like magmas, the

  18. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  19. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-07-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  20. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  1. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  2. Enriched mantle source for the Central Atlantic magmatic province: New supporting evidence from southwestern Europe

    NASA Astrophysics Data System (ADS)

    Callegaro, Sara; Rapaille, Cedric; Marzoli, Andrea; Bertrand, Hervé; Chiaradia, Massimo; Reisberg, Laurie; Bellieni, Giuliano; Martins, Línia; Madeira, José; Mata, João; Youbi, Nasrrddine; De Min, Angelo; Azevedo, Maria Rosário; Bensalah, Mohamed Khalil

    2014-02-01

    Remnants of the Central Atlantic magmatic province (CAMP), emplaced ca. 201 Ma during the rifting phases leading to Pangaea breakup, are still preserved in southwestern Europe (SWE) in the form of sills, dykes and lava flows. Low-Ti (TiO2 0.48-1.46 wt.%) tholeiitic basalts and basaltic andesites crop out as sills only in the Pyrenean area, as dykes (especially the Messejana-Plasencia dyke) from central Spain to the Atlantic coast, and as lava flows within sedimentary basins in Southern Portugal. Here we present new geochemical data (major and trace elements, mineral chemistry and combined Sr-Nd-Pb-Os analyses) on 132 samples, aiming to investigate the mantle source of these rocks and correlate them with magmatism from other areas of the CAMP. Crustal-like signatures in incompatible element patterns (Nb-Ta troughs, Pb peaks, generally shared by most CAMP rocks) and the enriched Sr-Nd-Pb isotopic characters (87Sr/86Sr200 Ma 0.70529-0.70657; 143Nd/144Nd200 Ma 0.51238-0.51225; 206Pb/204Pb200 Ma 18.15-18.48; 207Pb/204Pb200 Ma 15.57-15.68; 208Pb/204Pb200 Ma 37.99-38.52) apparently argue in favor of crustal assimilation playing an important role in the evolution of these magmas. However, the low initial 187Os/188Os values (0.1298 ± 0.0056) as well as the restricted geochemical variations shown by SWE-CAMP rocks over such a large area limit the crustal assimilation of various Iberian lithologies to small amounts. We thus locate this enrichment in the mantle source, in the form of upper and lower crustal material recycled during earlier subduction-related events. This process, while imparting crustal signatures to incompatible elements and Sr-Nd-Pb isotopes, would not alter the Os isotopic signature, dominated by the peridotite. The mixed contribution of 3-7% of local upper (pelitic) and lower (felsic granulitic) crust is sufficient to enrich a depleted mantle source, which can be either the sub-SWE lithosphere or the upper depleted asthenosphere. Similar processes of

  3. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  4. Source and tectonic implications of tonalite-trondhjemite magmatism in the Klamath Mountains

    USGS Publications Warehouse

    Barnes, C.G.; Petersen, S.W.; Kistler, R.W.; Murray, R.; Kays, M.A.

    1996-01-01

    In the Klamath Mountains, voluminous tonalite-trondhjemite magmatism was characteristic of a short period of time from about 144 to 136 Ma (Early Cretaceous). It occurred about 5 to l0 m.y. after the ??? 165 to 159 Ma Josephine ophiolite was thrust beneath older parts of the province during the Nevadan orogeny (thrusting from ??? 155 to 148 Ma). The magmatism also corresponds to a period of slow or no subduction. Most of the plutons crop out in the south-central Klamath Mountains in California, but one occurs in Oregon at the northern end of the province. Compositionally extended members of the suite consist of precursor gabbroic to dioritic rocks followed by later, more voluminous tonalitic and trondhjemitic intrusions. Most plutons consist almost entirely of tonalite and trondhjemite. Poorlydefined concentric zoning is common. Tonalitic rocks are typically of the Iow-Al type but trondhjemites are generally of the high-Al type, even those that occur in the same pluton as low-Al tonalite??. The suite is characterized by low abundances of K2O, Rb, Zr, and heavy rare earth elements. Sr contents are generally moderate ( ???450 ppm) by comparison with Sr-rich arc lavas interpreted to be slab melts (up to 2000 ppm). Initial 87Sr/ 86Sr, ??18O, and ??Nd are typical of mantle-derived magmas or of crustally-derived magmas with a metabasic source. Compositional variation within plutons can be modeled by variable degrees of partial melting of a heterogeneous metabasaltic source (transitional mid-ocean ridge to island arc basalt), but not by fractional crystallyzation of a basaltic parent. Melting models require a residual assemblage of clinopyroxene+garnet??plagioclase??amphibole; residual plagioclase suggests a deep crustal origin rather than melting of a subducted slab. Such models are consistent with the metabasic part of the Josephine ophiolite as the source. Because the Josephine ophiolite was at low T during Nevadan thrusting, an external heat source was probably

  5. Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian Orogenic Belt: Age and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Kotov, A. B.; Kudryashov, N. M.; Kovach, V. P.

    2016-09-01

    Early Mesozoic granitoids and volcanic rocks are widespread throughout the structures of all of the continental massifs in the eastern part of the Central Asian Orogenic Belt, although its tectonic setting is not yet clear. Generally, they are associated with subduction and plume processes or rifting. Such uncertainty is mostly explained by the unequal investigation of Early Mesozoic magmatism. This paper presents the results of geochemical, Sm-Nd isotope, and U-Pb geochronologic (ID-TIMS) studies of "key-type" Early Mesozoic magmatic rock complexes of the Bureya Terrane. This is one of the largest continental massifs in the eastern Central Asian Orogenic Belt and knowledge of its geological structure is of fundamental importance in understanding the history of its formation. It has been established that the leucogranites of the Altakhtinsky Complex and the trachyrhyolites of the Talovsky Complex are practically coeval ( 209-208 Ma). The subalkaline leucogranites of the Kharinsky Complex have a slightly younger age of 199 Ma. These data correspond to the general stage of Early Mesozoic magmatic and metamorphic events (236-180 Ma) in most continental massifs in the eastern Central Asian Orogenic Belt. We believe that large-scale Early Mesozoic events were related to the amalgamation of the continental massifs of the eastern Central Asian Orogenic Belt into a single continental structure (the Amur superterrane or microcontinent Amuria) and collision with the North Asian Craton. It should be noted that the collision processes were followed by crustal thickening, thus creating the conditions for metamorphism and formation of magmatic rock complexes of various geochemical types.

  6. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  7. Modes of rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël.; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2016-01-01

    Recent research in Afar (northern Ethiopia) has largely focused on the formation of the present-day ocean-continent transition at active segments (e.g., Manda Hararo). However, the Oligo-Miocene history of extension, from the onset of rifting at ~25 Ma to the eruption of the massive Stratoïd flood basalts at ~4 Ma, remains poorly constrained. Here we present new structural data and radiometric dating from Central Afar, obtained along a zone stretching from the undeformed Oligocene Ethiopian plateau to the Manda Hararo and Tat'Ale active volcanic segments. Basaltic and rhyolitic formations were mapped in two key areas corresponding to the proximal and distal parts of a half-rift. We present a balanced composite cross section of Central Afar, reconstructed using our new data and previously published geophysical data on the crustal structure. Our main findings are as follows: (1) Extension during the Mio-Pliocene corresponds to a "wide rift" style of rifting. (2) The lower crust has been underplated/intruded and rethickened during rifting by magmatic injection. (3) Our restoration points to the existence of midcrustal shear zones that have helped to distribute extension in the upper crust and to localize extension at depth in a necking zone. Moreover, we suggest that there is a close relationship between the location of a shear zone and the underplated/intruded material. In magma-rich environments such as Central Afar, breakup should be achieved once the initial continental crust has been completely replaced by the newly, magmatically accreted crust. Consequently, and particularly in Afar, crustal thickness is not necessarily indicative of breakup but instead reflects differences in tectono-magmatic regimes.

  8. Tracking magmatic intrusions in real-time by means of free-shaped volcanic source modelling

    NASA Astrophysics Data System (ADS)

    Cannavo', Flavio; Camacho, Antonio G.; Scandura, Danila; González, Pablo J.; Mattia, Mario; Fernández, José

    2014-05-01

    Nowadays continuous measurements of geophysical parameters provide a general real-time view of current state of the volcano. Nonetheless, a current challenge is to localize and track in real-time the evolution of the magma source beneath the volcano. Here we present a new methodology to rapidly estimate magmatic sources from surface geodetic data and track their evolution in time without any a priori assumption about source geometry. Indeed, the proposed approach takes the advantages of fast calculation from the analytical models and adds the capability to model free-shape distributed sources. Assuming homogenous elastic conditions, the approach can determine general geometrical configurations of pressured and/or density source and/or sliding structures corresponding to prescribed values of anomalous density, pressure and slip. These source bodies are described as aggregation of elemental point sources for pressure, density and slip, and they fit the whole data (keeping some 3D regularity conditions). In this work we show an application of the methodology to model the real-time evolution of the volcanic source for 2008 eruption of Mount Etna (Italy). To this aim the High-Rate GPS data, coming from the Continuous GPS network, are processed in real-time to obtain sub-daily solutions for tracking the fast dynamics of the magma migration. In our test case we reproduced the real-time scenario of the eruption. Though the data of the test were processed after data collection, real-time operation was emulated. From the results, it is possible to extrapolate the dynamic of a deep and a shallow magma source and the dyke intrusion. In particular, results show at 5 am UTC a magma batch likely migrating towards the surface leaving behind a deflating volume at about 2 km bsl and a deep elongated body from 2 km bsl to 10 km bsl which runs along the High Vp Body and likely represents the deep conduit from where the magma rises up. We demonstrate that the proposed methodology is

  9. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  10. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  11. Isotopic Constraints on Magmatic Sources at Nyiragongo and Nyamulagira Volcanoes, Virunga Volcanic Province, DR Congo

    NASA Astrophysics Data System (ADS)

    Phillips, E. H. W.; Sims, K. W. W.; Tedesco, D.; Blichert-Toft, J.; Scott, S. R.; Reagan, M. K.

    2015-12-01

    The active volcanoes Nyiragongo and Nyamulagira in the DR Congo have very different physical and geochemical characteristics, despite being situated a mere 15 km apart. Nyiragongo's foiditic lavas are some of the most silica-undersaturated on earth, whereas the highly effusive Nyamulagira erupts primarily basanites and tephrites. To determine the extent and scale of mantle heterogeneities and gain insight into the magmatic sources beneath this portion of the East African Rift, we have measured Hf and Pb isotope compositions for 43 samples from Nyiragongo and Nyamulagira. The Nd and Sr isotope data for the same sample dissolutions are forthcoming. Nyiragongo lavas are clearly distinct from Nyamulagira lavas in terms of their Hf and Pb isotope compositions, suggesting that a long-lived and small-scale heterogeneous mantle source exists beneath these two volcanoes. Nyiragongo lavas have ɛHf ranging from +1.8 to +5.5 with an average of +2.9 (n=29) and 206Pb/204Pb ranging from 19.4049 to 19.7252 with an average of 19.6329 (n=29). Nyamulagira lavas have ɛHf ranging from -0.5 to +1.5 with an average of +0.5 (n=14) and 206Pb/204Pb ranging from 19.2518 to 19.2828 with an average of 19.2663 (n=13). Nyiragongo lavas erupted in 2002 or later have amongst the highest 206Pb/204Pb within this suite of samples. We note that Chakrabarti et al. (2009, Chem Geol 259) measured bulk silicate earth-like Nd and Sr isotope compositions for Nyiragongo lavas and proposed a primitive mantle/bulk-earth plume source for this volcano. Our new Hf isotope compositions for Nyiragongo, however, are higher than bulk silicate earth, suggesting a more depleted source for these highly alkaline lavas. We also note that the He isotope compositions of olivine and clinopyroxene from Nyiragongo lavas (R/Ra = 6.7-8.5; Pik et al., 2006, Chem Geol 226; Tedesco et al., 2010, J Geophys Res 115) are inconsistent with a long-term bulk silicate earth-like source.

  12. Rapid Rejuvenation of the Source of a Backarc Sheeted Magmatic Complex (Torres del Paine, Patagonia): Evidence From Hf isotopes in Zircon

    NASA Astrophysics Data System (ADS)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Chiaradia, M.; Baumgartner, L. P.; Putlitz, B.

    2014-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a spectacularly exposed example of a bimodal shallow crustal laccolith, made up of a sill complex and a subvertical feeder system. The TPIC was emplaced in a back-arc setting, but slightly older arc-related intrusive units in this area testify to an earlier shift from an arc to a backarc setting. The entire ~88 km3 main complex was emplaced over short time scales of 162 ± 11 ka between ~12.4 and 12.6 Ma, with mafic units from the feeder zone found to be older than mafic units from the sill complex1,2. We aim to assess whether successive pulses of mafic magmatism can tap different geochemical reservoirs in sheeted magmatic complexes emplaced on such short timescales. Hf isotope compositions of individual zircons from mafic units from both the feeder zone and the sill complex were determined by solution MC-ICPMS. Zircons from all units have Hf isotope compositions that indicate a slightly enriched mantle source. Zircons from the mafic sill complex units have higher (more juvenile) initial ɛHf than zircons from feeder zone mafic units. The shift towards more depleted Hf isotope compositions in the sill complex units, which are younger, demonstrates the rapid input of new juvenile material into the source region between ~12.6 Ma and ~12.5 Ma. A similar shift is also seen in bulk rock Nd and Sr isotope data for related samples3. The Hf isotope data demonstrate that significant variability in source geochemistry is possible for sheeted magmatic complexes built up on very short timescales. Analysis of zircons from a range of dikes and intrusive bodies external to the main Torres del Paine complex, with ages that span ~12-29 Ma, will provide a more complete picture in time and space of the geochemical evolution of this magmatic system as it switches between an arc and backarc setting. 1Leuthold et al., 2012, EPSL, 325: 85-92 2Michel et al., 2008, Geology, 36: 459-462 3Leuthold et al., 2013, JPET, 54

  13. The magmatic source of the Tristan da Cunha hotspot: Implication from electrical conductivity

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Baba, Kiyoshi; Jegen, Marion; Utada, Hisashi; Geissler, Wolfram; Jokat, Wilfried

    2016-04-01

    Tristan da Cunha Island is one of the classical hot spots in the Atlantic Ocean, situated at the western end of the aseismic Walvis Ridge which forms a connection to the Cretaceous Etendeka flood basalt province in northwestern Namibia. The discussion about its source (in shallow asthenosphere or deeper mantle) have not reached consensus yet because of lack of the geophysical observations in the area. A marine magnetotelluric (MT) experiment was conducted together with seismological observations in the area in 2012-2013 through a German-Japanese collaboration with the goal to constrain the physical state of the mantle beneath the area. A total of 26 MT seafloor stations were deployed around the Tristan da Cunha Islands and available data were retrieved and processed from 24 stations. We applied iterative topographic effect correction and one-dimensional (1-D) conductivity structure inversion to the data. Then, three-dimensional (3-D) inversion analysis incorporating the topographic effect was carried out, using the 1-D model as the initial model. The local small-scale topography and the far continental coast effects are incorporated as the distortion term in the 3-D inversion. The preliminary result of our analysis shows no evidence of a significant conductive anomaly arising from the mantle transition zone, suggesting that the current magmatic source (major place of melting) of the hotspot activity is in the shallow upper mantle. This is in contrast to results from geochemical analysis, in which samples along the Tristan track exhibit an ocean-island-basalt-type incompatible element pattern pointing to a deep mantle source of the melt. Our findings therefore might indicate that the deep mantle up-welling underneath Tristan da Cunha Islands may be almost dead. A conductive anomaly at approx. 100 km depth in our derived conductivity model to the southwest of Tristan da Cunha Islands suggests an interaction between the mid-ocean ridge and/or up-welling further south

  14. Origin of fumarolic fluids from Tupungatito Volcano (Central Chile): interplay between magmatic, hydrothermal, and shallow meteoric sources

    NASA Astrophysics Data System (ADS)

    Benavente, Oscar; Tassi, Franco; Gutiérrez, Francisco; Vaselli, Orlando; Aguilera, Felipe; Reich, Martin

    2013-08-01

    Tupungatito is a poorly known volcano located about 100 km eastward of Santiago (Chile) in the northernmost sector of the South Volcanic Zone. This 5,682 m high volcano shows intense fumarolic activity. It hosts three crater lakes within the northwestern portion of the summit area. Chemical compositions of fumarolic gases and isotopic signatures of noble gases (3He/4He and 40Ar/36Ar are up to 6.09 Ra and 461, respectively), and steam (δ18O and δD) suggest that they are produced by mixing of fluids from a magmatic source rich in acidic gas compounds (SO2, HCl, and HF), and meteoric water. The magmatic-hydrothermal fluids are affected by steam condensation that controls the outlet fumarolic temperatures (<83.6 °C), the gas chemical composition, and the steam isotopic values. The δ13C-CO2 values (ranging from 0.30 and -8.16 ‰ vs. V-PDB) suggest that CO2 mainly derives from (1) a mantle source likely affected by significant contamination from the subducting slab, (2) the sedimentary basement, and (3) limited contribution from crustal sediments. Gas geothermometry based on the kinetically rapid H2-CO equilibria indicates equilibrium temperatures <200 °C attained in a single vapor phase at redox conditions slightly more oxidizing than those commonly characterizing hydrothermal reservoirs. Reactions in the H2O-CO2-H2-CO-CH4 system and C2-C3 alkenes/alkanes pairs, which have relatively slow kinetics, seem to equilibrate at greater depth, where temperatures are >200 °C and redox conditions are consistent with those inferred by the presence of the SO2-H2S redox pair, typical of fluids that have attained equilibrium in magmatic environment. A comprehensive conceptual geochemical model describing the circulation pattern of the Tupungatito hydrothermal-magmatic fluids is proposed. It includes fluid source regions and re-equilibration processes affecting the different gas species due to changing chemical-physical conditions as the magmatic-hydrothermal fluids rise up

  15. Age and tectonic setting of the early Paleozoic magmatism of the Mamyn Terrane, Central Asian Orogenic Belt, Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Kudryashov, N. M.; Kotov, A. B.; Kovach, V. P.

    2017-08-01

    This paper presents new geochemical, U-Pb geochronological, and Sm-Nd isotopic data for early Paleozoic granitoids and acidic volcanic rocks within the Mamyn Terrane that constrain the early Paleozoic tectonic evolution of the eastern central Asian orogenic belt (CAOB). The Mamyn Terrane is usually considered part of the Argun Massif, although our new geochronological data indicate the presence of two magmatic events within the terrane that occurred at the Ediacaran-Cambrian boundary (∼541 Ma) and the late Cambrian-Early Ordovician boundary (507-488 Ma). Field observations indicate that all of the late Ediacaran-Early Cambrian (∼541 Ma) volcanic rocks are deformed whereas the Late Cambrian-Early Ordovician (507-488 Ma) intrusive and volcanic rocks are either deformed or undeformed. The ∼541 Ma magmatic event in the study area produced rhyodacite, trachyrhyodacite, and trachyrhyolite units that are either high-K calc-alkaline or shoshonitic. These units have εNd(t) values from -7.4 to -8.7, tNd(DM) ages of 1.9-1.8 Ga, and formed from primary magmas generated by the partial melting of Mesoproterozoic continental crustal material in a suprasubduction zone setting. The Late Cambrian-Early Ordovician (507-488 Ma) magmatic event in this area formed gabbrodiorite, diorite, granodiorite, granite, trachyrhyodacite, and rhyodacite units that are medium-K and calc-alkaline, and have arc-like trace element compositions that are enriched in the large ion lithophile elements (LILEs) and depleted in the high field strength elements (HFSEs). These units have initial 87Sr/86Sr(i) ratios and εNd(t) values that range from 0.7048 to 0.7067 and from -3.3 to -0.2, respectively, yielding tNd(DM) ages of 1.6-1.1 Ga. These features indicate that the magmas that formed these units were generated in a subduction zone setting, most likely by the partial melting of Mesoproterozoic crustal material with the addition of some younger juvenile material. In addition, the Late Cambrian

  16. Early Paleognene alkaline magmatism in western Romania (Poiana Rusca) - Evidence for two different sources?

    NASA Astrophysics Data System (ADS)

    Tschegg, C.; Ntaflos, Th.; Seghedi, I.; Harangi, S.; Coltorti, M.

    2009-04-01

    Small volume alkaline basalts from Poiana Rusca (Romania) were studied in order to get new insights into petrogenesis and tectonic environment of early stage alkaline volcanism in the south Carpathian-Pannonian region. The occurrence of the sampled outcrops is limited to the southern Apuseni mountains (Inner Carpathian mountain belt) representing the oldest alkaline volcanism in the south-eastern Carpathian region. Peridotite-bearing basanites (SiO2, MgO, CaO and Na2O range between 42.9-45.4, 9.8-13.1, 10.3-11.4 and 3.6-5 wt. %) indicate according to their trace element chemistry a deep magmatic source. Primitive Mantle (PM) normalized trace elements have similar to OIB patterns with high incompatible element abundances and a negative K anomaly. Thorium shows a slight negative anomaly relative to Ba and Nb. Shifted but parallel patterns of PM normalized REE [(La/Yb)N: 18-23] suggest minor en-route Ol fractionation. The absence of negative Nb and Ta anomalies excludes any influence from subduction related processes. Their high (La/Yb)N ratios indicate partial melting in the garnet peridotite field with garnet in the residue. Slightly higher evolved trachybasalts have a very homogeneous bulk major and trace element chemistry (SiO2, MgO, CaO and Na2O: 49.1-49.6, 7.9-8.6, 8.6-9.1 and 3.6-4.1 wt. %). In contrast to the basanites, the trachybasalts in the PM-normalized trace elements diagram show significantly lower incompatible element abundances without any K anomaly. Besides this, the trachybasalts, compared to the basanites, have considerably lower Ba/La ratios (basanites 18-33; trachybasalts 12-20) suggesting different sources and apparently different degrees of partial melting at different depths. Older data from the area show similar trace element patterns for these early Paleogene rocks; however, the petrogenesis of the youngest (Pliocene/Pleistocene) alkaline volcanism at least in Romania indicates subduction-enriched lithosphere interaction. Small basanite

  17. Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: Age, geochemistry, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Larin, A. M.

    2009-06-01

    Rapakivi granites characteristic practically of all old platforms are greatly variable in age and irregularly distributed over the globe. Four types of magmatic associations, which include rapakivi granites, are represented by anorthosite-mangerite-charnockite-rapakivi granite, anorthosite-mangerite-rapakivi-peralkaline granite, gabbro-rapakivi granite-foidite, and rapakivi granite-shoshonite rock series. Granitoids of these associations used to be divided into the following three groups: (1) classical rapakivi granites from magmatic associations of the first three types, which correspond to subalkaline high-K and high-Fe reduced A2-type granites exemplifying the plumasitic trend of evolution; (2) peralkaline granites of the second magmatic association representing the highly differentiated A1-type reduced granites of Na-series, which are extremely enriched in incompatible elements and show the agpaitic trend of evolution; and (3) subalkaline oxidized granites of the fourth magmatic association ranging in composition from potassic A2-type granites to S-granites. Magmatic complexes including rapakivi granites originated during the geochronological interval that spanned three supercontinental cycles 2.7-1.8, 1.8-1.0 and 1.0-0.55 Ga ago. The onset and end of each cycle constrained the assembly periods of supercontinents and the formation epochs of predominantly anorthosite-charnockite complexes of the anorthosite-mangerite-charnockite-rapakivi granite magmatic association. Peak of the respective magmatism at the time of Grenvillian Orogeny signified the transition from the tectonics of small lithospheric plates to the subsequent plate tectonics of the current type. The outburst of rapakivi granite magmatism was typical of the second cycle exclusively. The anorthosite-mangerite-charnockite-rapakivi granite magmatic series associated with this magmatism originated in back-arc settings, if we consider the latter in a broad sense as corresponding to the rear parts of

  18. Discovery of a Triassic magmatic arc source for the Permo-Triassic Karakaya subduction complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, Petek; Ustaömer, Timur; Gerdes, Axel; Robertson, Alastair H. F.; Zulauf, Gernold

    2014-05-01

    The Permo-Triassic Karakaya Complex is well explained by northward subduction of Palaeotethys but until now no corresponding magmatic arc has been identified in the region. With the aim of determining the compositions and ages of the source units, ten sandstone samples were collected from the mappably distinct Ortaoba, Hodul, Kendirli and Orhanlar Units. Zircon grains were extracted from these sandstones and >1300 were dated by the U-Pb method and subsequently analysed for the Lu-Hf isotopic compositions by LA-MC-ICPMS at Goethe University, Frankfurt. The U-Pb-Hf isotope systematics are indicative of two different sediment provenances. The first, represented by the Ortaoba, Hodul and Kendirli Units, is dominated by igneous rocks of Triassic (250-220 Ma), Early Carboniferous-Early Permian (290-340 Ma) and Early to Mid-Devonian (385-400 Ma) ages. The second provenance, represented by the Orhanlar Unit, is indicative of derivation from a peri-Gondwanan terrane. In case of the first provenance, the Devonian and Carboniferous source rocks exibit intermediate eHf(t) values (-11 to -3), consistent with the formation at a continental margin where juvenile mantle-derived magmas mixed with (recycled) old crust having Palaeoproterozoic Hf model ages. In contrast, the Triassic arc magma exhibits higher eHf(t) values (-6 to +6), consistent with the mixing of juvenile mantle-derived melts with (recycled) old crust perhaps somewhat rejuvanated during the Cadomian period. We have therefore identified a Triassic magmatic arc as predicted by the interpretation of the Karakaya Complex as an accretionary complex related to northward subduction (Carboniferous and Devonian granites are already well documented in NW Turkey). Possible explanations for the lack of any outcrop of the source magmatic arc are that it was later subducted or the Karakaya Complex was displaced laterally from its source arc (both post 220 Ma). Strike-slip displacement (driven by oblique subduction?) can also

  19. The Oxidation State of Global Subduction Zone Basalts and its Relationship to Volatiles, Magmatic Processes, and Source Composition

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Cottrell, E.

    2008-12-01

    Oxidation state is a central variable in magmatic systems. In subduction zones, the mantle wedge is exposed to hydrous fluids from an oxidized subducting plate, potentially driving a fundamental shift in the oxidation states of arc and back-arc basin magmas and their sources. Despite its importance, however, magmatic oxidation state and its relationship to conditions in the mantle source can be difficult to constrain. Here, we present new, in-situ μ-XANES analyses of Fe+3/ΣFe ratios, as an indicator of melt oxidation state, in natural, primitive pillow glasses from the Mariana, Lau, and Manus back-arc basins (MgO>6 wt.%; n=31) and a global suite of olivine-hosted arc melt inclusions (MI; MgO>4 wt.%; n=16). These new data show that back-arc basin basalts preserve Fe+3/ΣFe ratios of 0.14-0.21, more oxidized than MORB (Fe+3/ΣFe=0.11-0.17), and arc basalts range to even higher ratios of 0.17-0.36. Analysis of MI equilibrium with host olivine compositions indicates that either post-entrapment crystallization or outward Fe+2 diffusion may have occurred in the MI's studied, but the magnitude of these effects is small (9±5% change in FeO; see also Cottrell & Kelley, this mtg.). Coupled with new and existing major element, volatile (H2O±CO2, S, Cl, F), and trace element data, we also test the variation of melt oxidation state with indicators of extent of crystal fractionation and of mantle source composition. The arc and back-arc glasses capture a full range of natural, undegassed magmatic H2O concentrations (0.1-5.3 wt.%), and show a general, global increase in Fe+3/ΣFe with increasing H2O content, although the Mariana trough defines a trend distinct from the Manus and Lau basins. The Fe+3/ΣFe ratio does not correlate with Mg#, suggesting that the melt oxidation states are not controlled by the extent of crystal fractionation. In the Mariana trough, Fe+3/ΣFe does increase with increasing Ba and Sr concentrations, suggesting a direct link between melt oxidation

  20. Paraná Magmatic Province Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic considerations and alternative heat sources

    NASA Astrophysics Data System (ADS)

    Ernesto, M.; Marques, L. S.; Piccirillo, E. M.; Molina, E. C.; Ussami, N.; Comin-Chiaramonti, P.; Bellieni, G.

    2002-11-01

    Paleomagnetic reconstructions demonstrate that the Tristan da Cunha (TC) plume, which is usually related to the genesis of the high- and low-Ti flood tholeiites of the Paraná Magmatic Province (PMP), was located ˜1000 km south of the Paraná Province at the time of the magma eruptions. Assuming plume mobility, and considering the low-velocity zone identified in the northern portion of the PMP as the TC 'fossil' plume (˜20° from the present TC position), the plume migrated southward from 133-132 (main volcanic phase) to 80 Ma at a rate of about 40 mm/yr. From 80 Ma to Present the plume remained virtually fixed, leaving a track (Walvis Ridge) compatible with the African plate movement. However, geochemical and Sr-Nd-Pb isotopic data do not support that the tholeiites from Walvis Ridge, Rio Grande Rise and Paraná can result from mixing dominated by the TC plume and mid-ocean ridge basalt components. The similarity among the high-Ti basalts from Rio Grande Rise, part of Walvis Ridge (525A) and the Paraná Province suggests that delaminated subcontinental lithospheric mantle must be considered in their genesis. Regional thermal anomalies in deep mantle mapped by geoid and seismic tomography data offer an alternative non-plume-related heat source for the generation of intracontinental magmatic provinces.

  1. Temporal Variations of Yellowstone Ground Deformation, 2004-2011, from Geodetic Observations and Magmatic Source Modeling

    NASA Astrophysics Data System (ADS)

    Chang, W.; Smith, R. B.; Farrell, J.; Puskas, C.

    2011-12-01

    In mid-2004, GPS and InSAR measurements of Yellowstone revealed the initiation of accelerated uplift of the Yellowstone caldera, with maximum rates of ~7 cm/yr near the Sour Creek resurgent dome in the northeastern caldera. From mid-2006 to 2010, the ground uplift rates declined in two distinct phases: in 2006-2009 from 7 to 5 cm/yr in the northeast caldera and from 4 to 2 cm/yr in the southwest, and in 2009-2010 to 2 cm/yr and 0.5 cm/yr at the same areas. Elastic dislocation modeling of the GPS and InSAR data suggest that magmatic intrusions at 7- 10 km beneath the caldera have been responsible for the uplift, and that a decreasing rate of magmatic replenishment from beneath the northeast caldera and an increase of seismic moment release can plausibly account for reduced rates of caldera uplift. Furthermore, geodetic measurements, including three campaign-mode GPS surveys from 2008 to 2010, revealed that the caldera-wide vertical motion reverted to subsidence in 2010, with an average rate of 2-3 cm/yr (see the attached figure). The initiation of the reversal in vertical deformation was coincident with the occurrence of a large earthquake swarm (a total moment of ~3×1022 dyne-cm) that occurred in January 2010 at the northwestern caldera boundary. With new geodetic measurements in 2011, we expect to present key information for decadal-scale observations and modeling of the Yellowstone caldera deformation that provide insight on temporal variations in the context of Yellowstone magma reservoir replacement and transport.

  2. Tectonic implications of Early Miocene OIB magmatism in a near-trench setting: The Outer Zone of SW Japan and the northernmost Ryukyu Islands

    NASA Astrophysics Data System (ADS)

    Kiminami, Kazuo; Imaoka, Teruyoshi; Ogura, Kazuki; Kawabata, Hiroshi; Ishizuka, Hideo; Mori, Yasushi

    2017-03-01

    The Outer Zone of the SW Japan and northernmost Ryukyu arcs was affected by intense igneous activity during the Miocene, characterized by MORB-like basalts, alkaline basalts, and S-type (with subordinate I-type) felsic to intermediate volcano-plutonic complexes. These igneous rocks are inferred to be the products of near-trench magmatism. Early Miocene (∼18 Ma) alkaline basalt dikes from the Shingu-Otoyo area in central northern Shikoku, and an alkaline lamprophyre dike from Tanegashima, one of the northernmost Ryukyu Islands, pre-date the Middle Miocene felsic to intermediate igneous rocks. The basalts and lamprophyre have compositions of basanite, basalt, trachybasalt and phonotephrite. They are characterized by elevated large-ion lithophile elements (LILEs; e.g., Sr, Ba, and Th) and high concentrations of high-field strength elements (HFSEs; e.g., TiO2, Nb, and Zr). The geochemical signatures of the basalts and lamprophyre suggest an ocean island basalt-type (OIB-type) mantle source. The occurrence of alkaline basalts and lamprophyre with OIB-type, intraplate geochemical signatures in a near-trench setting is unusual with regard to plate tectonic processes. We propose that trench-ward motion of the overriding plate during the period around the Early Miocene resulted in a shallowly dipping slab, and interplate coupling between the subducting Philippine Sea Plate (PSP) and the overlying crust beneath most of the Outer Zone in the western part of SW Japan and the northernmost Ryukyu Islands. The OIB-type magmatism in the near-trench environment is most plausibly explained by the upwelling of asthenospheric material from beneath the subducting slab, which migrated through fractures and/or tears in the slab. We envisage two possible scenarios for the formation of these fractures or tears: (1) the shallowing dip angle of the subducted PSP resulted in concave-upwards flexure of the slab, generating fractures in the flexed region; and (2) differential motion within

  3. The southern margin of the Caribbean Plate in Venezuela: tectono-magmatic setting of the ophiolitic units and kinematic evolution

    NASA Astrophysics Data System (ADS)

    Giunta, Giuseppe; Beccaluva, Luigi; Coltorti, Massimo; Siena, Franca; Vaccaro, Carmela

    2002-07-01

    The southern Caribbean Plate margin in Venezuela consists of a W-E elongated deformed belt, composed of several tectonic units dismembered along the northern part of the South America continental Plate since the Late Cretaceous. The present review, based on petrology and tectono-magmatic significance of each unit, makes it possible to define the main geotectonic elements and to reconstruct the paleogeographic domains from Late Jurassic to Tertiary: (a) Mid-Ocean Ridge Basalt (MORB) proto-Caribbean oceanic basin (Loma de Hierro Unit); (b) oceanic plateau (Dutch and Venezuelan Islands basement); (c) rifted continental margin (Cordillera de La Costa and Caucagua-El Tinaco Units) with Within Plate Tholeiitic (WPTh) magmatism; (d) an intra-oceanic subduction zone represented by Island Arc Tholeiitic (IAT) magmatism (Villa de Cura and Dos Hermanas Units) of Early Cretaceous age; (e) an Early Cretaceous ocean-continent subduction trench filled by melange (Franja Costera); (f) a new intra-oceanic subduction zone, represented by the tonalitic arc magmatism of Late Cretaceous age (Dutch and Venezuelan Islands). Regional tectonic constraints and coherent kinematic reconstruction suggest an original "near-Mid America" location of the Jurassic-Cretaceous "proto-Caribbean" oceanic realm. From Early to Late Cretaceous one sub-continental subduction with melanges (Franja Costera Unit) and two main stages of intra-oceanic arc magmatism are recorded in the so-called "eo-Caribbean" phases. The first consists of generally metamorphosed and deformed volcano-plutonic sequences with IAT affinity (Villa de Cura and Dos Hermanas Units), probably in relation to a southeastward-dipping subduction. The second is mainly represented by generally unmetamorphosed tonalitic intrusives cutting the oceanic plateau in the Dutch and Venezuelan Islands, and related to the new intra-oceanic subduction with reverse lithospheric sinking. The latter probably marked the onset of the Aves/Lesser Antilles arc

  4. Insights Into the Workings of Rhyolitic Explosive Eruptions and Their Magmatic Sources

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.

    2011-12-01

    The nature, role and significance of rhyolitic volcanism and its associated crustal magmatism have been widely recognised and documented over the past ~50 years. The products of such volcanism include the largest Quaternary eruptions on Earth, and these 'supereruptions' represent the largest terrestrial long-term hazard to humanity as well as reflecting resource-rich magmatic systems. Only three rhyolitic eruptions of any size have occurred over the last 100 years (Novarupta, Tuluman, Chaiten) and so patterns of rhyolitic volcanism have been inferred almost entirely from the products of past events. Numerous models for the dynamics of explosive activity have been generated from the resulting deposits, but many questions remain about the eruptions and their parental magma bodies. Central to understanding how rhyolitic systems operate is two suites of questions. First, what are the timescales of large explosive eruptions? Are they short-lived catastrophic events ('hours or days') or can they be prolonged over years to decades? How and why do large eruptions stop and start? Prehistoric large eruptions seem to show a great variety of timings, varying from days (e.g. Bishop Tuff) through months (e.g. Oruanui) to a decade or more (e.g. Huckleberry Ridge Tuff), with periods of high output alternating with hiatuses of minutes to years. Eruption rates, where they can be assessed, do not necessarily scale with the volume of the deposit. Large eruptions may be internally modulated by external (tectonic) forces, implying that eruption styles and products may be influenced by something that leaves no geological presence. Tectonic processes may control whether the evacuation of more than one magma body occurs, or trigger pairings of independent eruptions. The second suite of questions centres on the time periods over which the bodies of erupted magma accumulate and how they are assembled. Do tens to hundreds to thousands of cubic kilometres of eruptible magma collect over a time

  5. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses

    NASA Astrophysics Data System (ADS)

    Frey, F. A.; Pringle, M.; Meleney, P.; Huang, S.; Piotrowski, A.

    2011-03-01

    The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.

  6. An assessment of the record in compositional variations from mantle source to magmatism at East Island, Crozet archipelago

    NASA Astrophysics Data System (ADS)

    Meyzen, C. M.; Marzoli, A.; Bellieni, G.

    2013-12-01

    The Crozet archipelago, located midway between Madagascar and Antarctica, constitutes the emerged part of the easternmost bank of the Crozet plateau, which lies upon upper Cretaceous oceanic seafloor derived from the Southeast Indian Ridge. It forms an elongated chain of five islands and islets, divided into two groups: an older eastern island group (< 9 Ma) composed by large-scale volcanic landmasses (i.e. East and Possession islands) and a younger western one (< 5.5 Ma) with pint-sized islands. The whole region exhibits some of the most typical gravimetric, seismic and bathymetric characteristics associated with upwelling hotter than average mantle including: a geoid high, a topographic swell, a deep low-velocity zone (up to 2350 km), an anomalous heat flow and a thickened crust (10-16.5 km). Most of these features are exacerbated by the near stationary absolute motion of the Antarctic plate. However, since thirty years, the chemical composition of Crozet archipelago magmas has beneficiated from little interest compared to that of other Earth's hotspots. Because of the occurrence of both a thick and old lithosphere and of a near stagnant absolute plate motion, new data from the Crozet archipelago magmatic record will provide new critical perspective on oceanic island building processes. The data presented here are based on a basaltic suite of ~ 25 samples collected by a 'Terres Australes et Antarctiques Francaises' expedition in 1969 from the northern part of East Island. Our alkali basalts from the Crozet archipelago are distinct from other oceanic within-plate magmatic rocks in showing ubiquitous large depletions in LILE with respect to other incompatible elements, although these rocks constitute one of the most incompatible-element-enriched suites among Earth's oceanic island basalts (OIB). The similarity of their trace element ratios and parallelism of their rare earth element patterns indicate: (1) a mantle source homogeneity over at least 1 Ma; (2) an

  7. The Ezhimala Igneous Complex, southern India: Possible imprint of Late Cretaceous magmatism within rift setting associated with India-Madagascar separation

    NASA Astrophysics Data System (ADS)

    Mohan, M. Ram; Shaji, E.; Satyanarayanan, M.; Santosh, M.; Tsunogae, T.; Yang, Qiong-Yan; Dhanil Dev, S. G.

    2016-05-01

    The gabbro-granophyre-granite complex of Ezhimala emplaced along the western rifted continental margin of India preserves evidence for bimodal magmatism, with related magma mixing and mingling processes. Here we report petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data from the Ezhimala Igneous Complex (EIC) that provide insights into the Late Cretaceous magmatic activity. Field investigations and petrographic observations in Zircon U-Pb data from the granophyres show emplacement ages of 93.21 ± 0.6 Ma and 94.26 ± 0.92 Ma. The evolved Lu-Hf isotopic systematics for these rocks are indicative of the involvement of older crustal material during magma genesis. The geochemical systematics together with isotopic data suggest magma generation in a rift-related setting, and interaction with or melting of Neoproterozoic basement rocks. The timing of magmatism broadly correlates with the Late Cretaceous Marion hotspot activity which is considered to be responsible for the break-up of India and Madagascar. We thus interpret the EIC to be one of the rare signatures in southern India for the final phase of rifting of Gondwana.

  8. EXCITATION OF A BURIED MAGMATIC PIPE: A SEISMIC SOURCE MODEL FOR VOLCANIC TREMOR.

    USGS Publications Warehouse

    Chouet, Bernard

    1985-01-01

    A model of volcanic tremor is presented in which the modes of vibration of a volcanic pipe are excited by the motion of the fluid within the pipe in response to a short-term perturbation in pressure. The model shows the relative importance of the various parts constituting this composite source in the radiated elastic field at near and intermediate distances. The paper starts with the presentation of the elastic field radiated by the source, and proceeds with an analysis of the energy balance between hydraulic and elastic motions. Next, the hydraulic excitation of the source is addressed and, finally, the ground response to this excitation is analyzed in the simple case of a pipe buried in a homogeneous half space.

  9. A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites

    NASA Astrophysics Data System (ADS)

    Ellam, R. M.; Cox, K. G.

    1989-03-01

    Highly magnesian Jurassic picrite basalts from the Nuanetsi area of southeastern Zimbabwe are close to primary mantle melts, not substantially modified by high level fractionation processes. The lavas display a wide variation in isotope ratios and incompatible trace element abundances, which may be attributed to a heterogeneous mantle source. Sm sbnd Nd isotope results, on samples carefully selected to be thoroughly representative of the chemical variation within the whole suite, reveal a late Proterozoic isochron. One possibility is that this represents a mantle isochron corresponding to the last episode of Sm sbnd Nd fractionation within a lithospheric source. Alternatively, binary mixing might explain the apparent isochron, but there are problems identifying a mantle reservoir with sufficiently high Sm/Nd ratios. In either case a significant role for an ancient sub-crustal lithospheric source is implied. Rb sbnd Sr data do not lie on a well-defined isochron, and probably reflect Rb sbnd Sr fractionation at, or close to, the time of eruption. Pb isotope data are broadly consistent with the late Proterozoic age. The apparent age of the mantle isochron is similar to that of a crust-forming event in the Natal-Namaqualand belt, which may indicate coupled evolution of the continental crust and lithospheric mantle.

  10. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    are attributes of the ancient North American cratonic margin that appear to be essential prerequisites to this style of postcollisional magmatism and associated gold-rich fluid exsolution. This type of magmatic hydrothermal activity occurs in a very specific tectonic setting that typically sets intrusion-related gold deposits apart from orogenic gold deposits, which are synorogenic in timing and have no consistent direct relationship to such diverse and contemporaneous lithospheric mantle-derived magmas, although they too are commonly sited adjacent to lithospheric boundaries.

  11. Late orogenic mafic magmatism in the North Cascades, Washington: Petrology and tectonic setting of the Skymo layered intrusion

    USGS Publications Warehouse

    Whitney, D.L.; Tepper, J.H.; Hirschmann, M.M.; Hurlow, H.A.

    2008-01-01

    The Skymo Complex in the North Cascades, Washington, is a layered mafic intrusion within the Ross Lake fault zone, a major orogen-parallel structure at the eastern margin of the Cascades crystalline core. The complex is composed dominantly of troctolite and gabbro, both with inclusions of primitive olivine gabbro. Low-pressure minerals in the metasedimentary contact aureole and early crystallization of olivine + plagioclase in the mafic rocks indicate the intrusion was emplaced at shallow depths (<12 km). The Skymo rocks have trace-element characteristics of arc magmas, but the association of Mg-rich olivine (Fo88-80) with relatively sodic plagioclase (An75-60) and the Al/Ti ratios of clinopyroxene are atypical of arc gabbros and more characteristic of rift-related gabbros. A Sm-Nd isochron indicates crystallization in the early Tertiary (ca. 50 Ma), coeval with the nearby Golden Horn alkaline granite. Mantle melting to produce Skymo magma likely occurred in a mantle wedge with a long history of arc magmatism. The Skymo mafic complex and the Golden Horn granite were emplaced during regional extension and collapse of the North Cascades orogen and represent the end of large-scale magmatism in the North Cascades continental arc. ?? 2008 Geological Society of America.

  12. The origin of Triassic/Jurassic kimberlite magmatism, Canada: Two mantle sources revealed from the Sr-Nd isotopic composition of groundmass perovskite

    NASA Astrophysics Data System (ADS)

    Zurevinski, S. E.; Heaman, L. M.; Creaser, R. A.

    2011-09-01

    The crystallization ages and the Sr and Nd isotopic compositions of groundmass perovskite from a well-established, SE trending, Triassic-Jurassic corridor of kimberlite magmatism in central and eastern North America were determined to investigate the origin of this magmatism. The results obtained from kimberlite fields located along this corridor are interpreted to indicate that at least two distinct mantle sources contributed to this magmatism. The most primitive Rankin Inlet and Timiskaming kimberlites have a relatively unradiogenic strontium isotopic signature (0.7032-0.7036), interpreted to be derived from recycled and metasomatized oceanic lithosphere in the deep mantle. In contrast, the Attawapiskat and Kirkland Lake kimberlites have CHUR-like (Chondritic Uniform Reservoir) signatures (0.7040-0.7042) interpreted to have an origin in the asthenosphere. The progressive decrease in the age of magmatism from the Triassic Rankin Inlet kimberlites to the Miocene Great Meteor seamount, combined with the similarity in the isotopic composition of these diverse magmas along the proposed >3000 km long hot spot track, provides strong evidence in support of a common mantle plume origin for both the continental and oceanic components.

  13. Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.

    2006-01-01

    Initiation of the Cordilleran magmatic arc in the southwestern United States is marked by intrusion of granitic plutons, predominantly composed of alkali-calcic Fe- and Sr-enriched quartz monzodiorite and monzonite, that intruded Paleoproterozoic basement and its Paleozoic cratonal-miogeoclinal cover. Three intrusive suites, recognized on the basis of differences in high field strength element and large ion lithophile element abundances, contain texturally complex but chronologically distinctive zircons. These zircons record heterogeneous but geochemically discrete mafic crustal magma sources, discrete Permo-Triassic intrusion ages, and a prolonged postemplacement thermal history within the long-lived Cordilleran arc, leading to episodic loss of radiogenic Pb. Distinctive lower crustal magma sources reflect lateral heterogeneity within the composite lithosphere of the Proterozoic craton. Limited interaction between derived magmas and middle and upper crustal rocks probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin magmatic arc. ?? 2006 by The University of Chicago. All rights reserved.

  14. Exploring Cl, F and S in Apatite of the Ertsberg-Grasberg Mining District as a Potential Tracer of Magmatic Source and Metal Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Drew, D.; Barnes, J.; Wafforn, S.

    2016-12-01

    One of the critical stages of porphyry copper deposit (PCD) formation is the transport of ore metals, including Cu and Au, by complexation with Cl or S. Metal transport is dependent on the presence of metals, Cl, and S in the parental magma, volatile exsolution, partitioning of metals into the Cl-bearing volatile phase, and the transport of metals by available ligands (Cl or S). Despite the significance of Cl and S in PCDs, the role of these components during metal transport and their source remain poorly constrained. In this study we use the volatile (Cl, F, S), trace element, and stable isotope (Cl) chemistry of magmatic apatites from intrusions in the Ertsberg-Grasberg mining district, located in Indonesia, to trace the source of mineralizing fluids and identify zones of magmatic Cl degassing. Our comparison of the geochemistry of apatites from the mineralizing and non-mineralizing intrusions, constrains the longer-term chemical and isotopic evolution of the magmatic source. Initial results appear to indicate that apatites from the Ertsberg pluton and Grasberg Igneous Complex (GIC) are isotopically equivalent (δ37Cl value of 0.5±0.2‰). This suggests a single mantle-derived magmatic source for both intrusive phases with addition of some crustal Cl. Apatites from multiple intrusions within the GIC have uniformly low SO3 concentrations (≤0.6 wt.%), yet variable Cl concentrations (0.2-1.2 wt.%). Although Cl and S appear to be decoupled, the preliminary data do not support S fluxing from a deeper mafic body due to the overall low apatite SO3 concentrations. In addition, apatites from mineralizing intrusions have higher maximum F (up to 3.2 wt.%) and FeO (up to 0.3 wt.%) concentrations in comparison to non-mineralizing intrusions, and all intrusions have distinct MnO concentrations. These chemical variations suggest there may be differences in the magmatic volatile budget and/or oxidation state between magmatic phases.

  15. Cenozoic magmatism in the South China Basin: Decompression melting and implications of an enriched mantle source

    SciTech Connect

    Flower, M.F.J.; Kan Tu; Ming Zhang ); Guanghong Xie )

    1990-06-01

    A widespread eposide of interplate volcanism followed the cessation of seafloor spreading in the South China Basin (SCB), affecting the South China Sea, and fringing areas of southern China and Indochina. Geochemical data for basalts from South China Sea islands and seamounts, Hainan Island, and Taiwan define an enriched (Dupal-like) mantle domain yielding oceanic island basalt (OIB) suites with {Delta}7/4Pb = 2-13, {Delta}8/4Pb = 45-73, {sup 87}Sr/{sup 86}Sr > {approximately}0.70325, Th/Ta > 2, and Th/Ba > 0.02. Opening of the SCB resulted from disaggregation of the South China block in response to the Indo-Eurasian collision, a process involving at least one seafloor spreading episode, terminated by collision of microcontinents with the Philippines and Borneo. The lack of precursive flood basalt suggests that active mantle upwelling was not involved and that melting was a passive effect of lithosphere stretching. However, while mantle decompression at ambient stretching factors ({approximately}1.7-2.5) appears to permit melting on the observed scale, the enriched source may preclude such a simple mantle dynamic. Three alternatives are considered: (1) passive melting of a mature metasomatised boundary layer, (2) active melting of thermally eroded subcontinental lithosphere (deep enrichment) or metasomatised boundary layer (shallow enrichment), and (3) relict diapirs of pre-SCB and/or Java trench subduction slabs (intermediate/deep enrichment). These models are evaluated in terms of chemical and isotopic mass balances associated with the generation and movement of small melt fractions in depleted, nondepleted, and enriched mantle.

  16. Plume magmatism in the northeastern part of the Altai-Sayan region: Stages, source compositions, and geodynamics (exemplified by the Minusinsk Depression)

    NASA Astrophysics Data System (ADS)

    Vorontsov, A. A.; Perfilova, O. Yu.; Buslov, M. M.; Travin, A. V.; Makhlaev, M. L.; Dril, S. I.; Katraevskaya, Ya. I.

    2017-02-01

    The results of geochronological (U-Pb, Ar-Ar), geochemical, and isotopic (Sr, Nd) studies of the Ordovician and Devonian mafic volcanic-subvolcanic rock associations of the Minusinsk Depression are presented. The obtained ages of magmatic associations and the basite composition, considering previous studies, witness to the impact of two mantle plumes different in age (Late Cambrian-Ordovician and Devonian) on suprasubduction rock complexes in active continental margin settings.

  17. Geochemical Diversity of Near-Ridge Seamounts: Insights into Oceanic Magmatic Processes and Sources

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Wendt, R. E.; Lundstrom, C.; Clague, D. A.

    2009-12-01

    Geochemical studies of lavas erupted at seamounts that form in close proximity to active mid-ocean ridges provide an opportunity to better understand the composition of shallow mantle underneath spreading ridges and how it melts in order to form new oceanic crust. This is because while on-axis samples mostly reflect homogenization of melts within the axial magma lens, seamount lavas bypass this process providing a window into the diversity of melts produced in the melting column. We have analyzed lavas from small near-axis seamounts and two larger near-ridge seamount chains for trace elements and Sr-Nd-Pb isotopes: the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N and the Vance Seamounts next to the Juan de Fuca Ridge (JdFR) ~45°N. One purpose of the study is to test the hypothesis that near ridge seamount chains reflect focusing of melts by dunite channels in the upwelling asthenospheric mantle and that such conduits might affect melting in the shallow mantle (Lundstrom et al., 2000). Our results indicate that lavas from these seamounts have incompatible trace element patterns varying from very depleted to moderately enriched (found at the oldest, most distant Vance seamounts) relative to typical mid-ocean ridge basalts (MORB). Trace element compositions and Sr-Nd-Pb isotope data show that lava compositions vary significantly between seamounts in the chain as well as within individual seamounts. Overall, the Vance and Lamont seamount lavas are more primitive and diverse than associated ridge samples. These variations can be explained by multiple sources as well as different extents of melting, and are unlikely to reflect shallow level fractional crystallization. Sr-Nd-Pb isotope data also indicate some mixing between mantle end members. The significant variations in incompatible trace element and isotopic compositions that are somewhat correlated suggest that the mantle underneath the seamounts is heterogeneous on a small scale. The fact that

  18. Mid-Tertiary magmatism in western Big Bend National Park, Texas, U.S.A.: Evolution of basaltic source regions and generation of peralkaline rhyolite

    NASA Astrophysics Data System (ADS)

    Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.

    2012-07-01

    Tertiary magmatism in the Big Bend region of southwestern Texas spanned 47 to 17 Ma and included representatives of all three phases (Early, Main and Late) of the Trans-Pecos magmatic province. Early phase magmatism was manifested in the Alamo Creek Basalt, an alkalic lava series ranging from basalt to benmoreite, and silicic alkalic intrusions of the Christmas Mountains. Main phase magmatism in the late Eocene/early Oligocene produced Bee Mountain Basalt, a lava series ranging from hawaiite and potassic trachybasalt to latite, widespread trachytic lavas of Tule Mountain Trachyte and silicic rocks associated with the Pine Mountain Caldera in the Chisos Mountains. Late main phase magmatism produced trachyte lava and numerous dome complexes of peralkaline Burro Mesa Rhyolite (~ 29 Ma) in western Big Bend National Park. Late stage basaltic magmatism is sparsely represented by a few lavas in the Big Bend Park area, the adjacent Black Gap area and, most notably, in the nearby Bofecillos Mountains, where alkalic basaltic rocks were emplaced as lava and dikes concurrent with active normal faulting. Trace element modeling, Nd isotope ratios and calculated depths of segregation for estimated ancestral basaltic magmas suggest that Alamo Creek basalts (ɛNdt ~ 6.15 to 2.33) were derived from depths (~ 120 to 90 km) near the lithosphere/asthenosphere boundary at temperatures of ~ 1600 to1560 °C, whereas primitive Bee Mountain basalts (ɛNdt ~ 0.285 to - 1.20) may have been segregated at shallower depths (~ 80 to 50 km) and lower temperatures (~ 1520 to 1430 °C) within the continental lithosphere. Nb/La versus Ba/La plots suggest that all were derived from OIB-modified continental lithosphere. Late stage basaltic rocks from the Bofecillos Mountains may indicate a return to source depths and temperatures similar to those calculated for Alamo Creek Basalt primitive magmas. We suggest that a zone of melting ascended into the continental lithosphere during main-phase activity and

  19. The giant Pan-African Hook Batholith, Central Zambia: A-type magmatism in a syn-collisional setting

    NASA Astrophysics Data System (ADS)

    Milani, Lorenzo; Lehmann, Jérémie; Naydenov, Kalin V.; Saalmann, Kerstin; Kinnaird, Judith A.; Daly, J. Stephen; Frei, Dirk; Lobo-Guerrero Sanz, Alberto

    2015-04-01

    The Pan-African Hook Batholith formed during the assembly of the Gondwana supercontinent between 570 and 520 Ma (U-Pb on zircon) as a result of syn-collisional stage interaction between the Congo and Kalahari Cratons1. The extension of the batholith, exposed and undercover, is estimated to be between 25,000 and 30,000 km2. The bimodal magmatism (mafic to predominantly felsic) is characterized by both an alkali-calcic and an alkalic suite, with the felsic rocks featuring a typical A-type, metaluminous, high Fe/Mg and K/Na geochemical signature. The scattered outcrops of gabbroic rocks, both tholeiitic and alkaline, suggest periodic input of mantle material, which, in some cases, interacted with metasomatizing fluids. Fractional crystallization is invoked for the most differentiated products, while Sr-Nd isotopes rule out any significant contribution from crustal assimilation. Exceptionally highly radiogenic Pb isotopes have been measured on both unaltered and hydrothermally altered rocks, and attest to the radiogenic character of the batholith. The Pb isotopes indicate that the anomalous signature was acquired during, or soon after, magma emplacement, and was likely enhanced by metasomatizing fluids. An enrichment in Th and U, affecting large portions of the crust along the southern margin of the Congo Craton, is suggested by comparable anomalous Pb isotopes measured in basement gneisses in the Domes Region, Zambian Copperbelt. Geochemical and isotopic evidence support interaction between mantle components and portions of the deep crust at pressures of < 10 kbar, while decompression melting of rising asthenospheric mantle ponding at the base of the crust heated, and ultimately melted, crustal material. Low-pressure mineral phases in metasedimentary wall rocks along the eastern margin of the pluton indicate that the magma was subsequently emplaced at shallow crustal depths. A crucial contribution to the crustal melting was likely provided by internal radiogenic heat

  20. Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution

    NASA Astrophysics Data System (ADS)

    Marty, Bernard; Pik, Raphae¨l.; Gezahegn, Yirgu

    1996-10-01

    Oligocene Continental Flood Basalts (CFB) from Ethiopia exhibit a wide range of 3He/ 4He ratios, from 0.035 Ra in crust-contaminated Low-Ti lava to 19.6 Ra in plume-derived high-Ti lava (where Ra is the atmospheric ratio of 1.38 × 10 -6). Quaternary basalts sampled in the Main Ethiopian Rift and in Afar also display dramatic 3He/ 4He variations from 0.009 Ra to 16.9 Ra. Low isotopic ratios partly reflect crustal assimilation whereas 3He/ 4He values higher than the mean isotopic ratio of the upper mantle (8 ± 1 Ra as measured in Normal Mid-Ocean Ridge Basalts [N-MORB]) indicate the contribution of a lower mantle component. The geographical extension of plume-type He is consistent with an approximate radius of ˜ 1000 km for the flattened plume head. Helium isotopic data show that strong lower mantle signals were already apparent during early emissions of CFB and pre-dated by more than 15 Ma the major phases of rifting in the African Horn region, contrary to the view of passive decompression melting contemporary with large-scale rifting. The He-Sr composition of the plume component cannot result from a simple binary mixing between lower mantle and upper mantle end-members and requires the contribution of other component(s) such as recycled crust. The proportion of the lower mantle contribution to the total mass of material involved in the building of the Ethiopian magmatic province, as estimated from He contents and isotopic ratios in the respective mantle sources, is found to be small (< 5%). Except for He (and Ne), such contribution has no impact on the trace element and isotopic compositions of plume basalts, which are dominated by mixing between upper mantle, continental crust and recycled sources. If the thermal anomaly necessary to produce CFB originates in the lower mantle, as generally proposed, then there exists a dramatic decoupling between mass and heat transfers across the lower mantle-upper mantle boundary layer.

  1. Magmatic tritium

    SciTech Connect

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  2. Age, tectonic setting, and metallogenic implication of Phanerozoic granitic magmatism at the eastern margin of the Xing'an-Mongolian Orogenic Belt, NE China

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Ren, Yunsheng; Zhao, Hualei; Yang, Qun; Shang, Qingqing

    2017-08-01

    The eastern margin of the Xing'an-Mongolian Orogenic Belt is characterised by widespread Phanerozoic granitic magmatism, some of which is closely related to significant ore mineralisation. This paper presents new geochronological, petrogenetic, and tectonic data for selected intrusions. Zircon U-Pb geochronology for five granitoid plutons indicates they were emplaced during the middle-late Permian (264-255 Ma) and Cretaceous (106-94 Ma), and thus granitic magmatism occurred throughout the Phanerozoic, Permian (268-252 Ma), Early-Middle Triassic (248-240 Ma), Early Jurassic (183 Ma), and Cretaceous (112-94 Ma). The Permian granitoids consist of monzogranite, granodiorite, tonalite, and quartz diorite, characterised by enrichment in Na2O (3.60-4.72 wt.%), depletion in K2O (0.97-2.66 wt.%), and a negative correlation between P2O5 and SiO2. Together with the presence of hornblende, these geochemical features are indicative of an I-type affinity. The Permian granitic magmatism is associated with quartz-vein-type tungsten deposits (252 Ma; unpublished Sm-Nd isochron age), which formed in an active continental margin setting related to subduction of the Palaeo-Asian Ocean. The Cretaceous quartz diorites have an adakitic affinity, having relatively high Sr (374-502 ppm), low Yb (0.51-0.67 ppm) and Y (8.7-10.7 ppm), and high Sr/Y (39.4-46.8) and (La/Yb)N values (16.2-34.7), suggesting that they were related to the partial melting of subducted oceanic crust. In addition, they are associated with porphyry Au-Cu deposits. We conclude that the Cretaceous granitic rocks and associated porphyry Au-Cu mineralisation occurred in an extensional tectonic setting related to the subduction of the Palaeo-Pacific Plate beneath the Eurasian Plate. In addition, the large-scale Early-Middle Triassic syn-collisional granite belt at the eastern margin of the Xing'an-Mongolian Orogenic Belt extends from the middle of Jilin Province to the Wangqing-Hunchun region, constraining the timing of the

  3. Source and magmatic evolution inferred from geochemical and Sr-O-isotope data on hybrid lavas of Arso, the last eruption at Ischia island (Italy; 1302 AD)

    NASA Astrophysics Data System (ADS)

    Iovine, Raffaella Silvia; Mazzeo, Fabio Carmine; Arienzo, Ilenia; D'Antonio, Massimo; Wörner, Gerhard; Civetta, Lucia; Pastore, Zeudia; Orsi, Giovanni

    2017-02-01

    Geochemical and isotopic (87Sr/86Sr and 18O/16O) data have been acquired on whole rock and separated mineral samples from volcanic products of the 1302 AD Arso eruption, Ischia volcanic island (Gulf of Naples, Southern Italy), to investigate magmatic processes. Our results highlight petrographic and isotopic disequilibria between phenocrysts and their host rocks. Similar disequilibria are observed also for more mafic volcanic rocks from Ischia and in the Phlegraean Volcanic District in general. Moreover, 87Sr/86Sr and 18O/16O values suggest mixing between chemically and isotopically distinct batches of magma, and crystals cargo from an earlier magmatic phase. The radiogenic Sr isotope composition suggests that the mantle source was enriched by subduction-derived sediments. Furthermore, magmas extruded during the Arso eruption were affected by crustal contamination as suggested by high oxygen isotope ratios. Assimilation and fractional crystallization modelling of the Sr-O isotope compositions indicates that not more than 7% of granodioritic rocks from the continental crust have been assimilated by a mantle-derived mafic magma. Hence the recent volcanic activity of Ischia has been fed by distinct batches of magma, variably contaminated by continental crust, that mixed during their ascent towards the surface and remobilized phenocrysts left from earlier magmatic phases.

  4. Zircon Hf isotopic constraints on the mantle source of felsic magmatic rocks in the Phan Si Pan uplift and Tu Le basin, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Usuki, T.; Lan, C.; Tran, T.; Pham, T.; Wang, K.

    2013-12-01

    Permian plume-related rocks, such as picrites, flood basalts and silicic volcanic rocks occur in northern Vietnam. This area was displaced 600 km southeastward along the Ailao Shan-Red River fault during mid-Tertiary in response to the India-Eurasia collision. The original location of the area was situated at the central Emeishan Large Igneous Province (ELIP) in SW China before Tertiary. The picrites and flood basalts in northern Vietnam have been investigated by many authors and are comparable with the ELIP. While, felsic magmatisms in northern Vietnam has been poorly studied. Zircon U-Pb age and Hf isotopic data are useful to compare the felsic magmatism in northern Vietnam with that in the ELIP, because the magmatisms of the ELIP had a characteristic time period (260-250 Ma) and the Hf isotopes show a remarkable mantle signature. Therefore, this study carried out in-situ U-Pb ages and Hf isotopic compositions for 300 zircon grains in eighteen granitoids and rhyolites in Phan Si Pan uplift and Tu Le basin in northern Vietnam. Zircons from the granitoids and rhyolites occasionally show development of {101} pyramid and {100} prism crystal facies, suggesting typical zircons crystallized from high temperature alkaline granite. 206Pb/238U ages of granitoid and rhyolite yield consistently in a narrow range of 260 to 250 Ma, which coincides with those from peralkaline to metaluminous granites in the ELIP. ɛHf(t) values of zircons in rhyolites and granites of this study dominate in the range of +5 to +10, which is consistent with those from the ELIP. U-Pb ages and Hf isotopic compositions of zircons indicate that felsic magmatic rocks in the Phan Si Pan uplift and Tu La basin have been derived from the same mantle source with the ELIP.

  5. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  6. Sources of Error in an Angoff Type Standard Setting Process.

    ERIC Educational Resources Information Center

    McLean, James E.; Lockwood, Robert E.

    The sources of variability in the Angoff standard-setting procedure, when applied to the Alabama High School Graduation Examination (AHSGE), were examined. The sources of variability examined are judges, rounds (replications), competencies (items), and interactions among these three sources. After training, the judges were given a statement of a…

  7. Magmatic Enclaves

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2011-12-01

    Over the past three decades, the term "magmatic enclave" has become widely accepted for small (typically <1 m) spheroidal bodies of igneous rock that are compositionally distinct from their coeval lava or intrusive hosts (e.g., Didier and Barbarin, 1991). Certain magmatic enclaves are crystal cumulates but most are globs of magma more mafic and hotter than their host. Understanding the origins and scientific utility of enclaves is aided by their common occurrence in both plutonic and volcanic rocks. Enclaves were noticed and described by geologists and petrographers for decades (e.g., Lacroix, 1890; Pabst, 1928; Williams, 1931) before it was demonstrated that many enclaves were introduced into their hosts while both were in a magmatic state: For example, in plutons by Wager and Bailey (1953), Walker and co-workers (1960's), Didier (1973), Wiebe (1980), and Vernon (1984), and in volcanic rocks by Wilcox (1944), Eichelberger (1980), and Bacon (1986). Spheroidal forms, crenulated or fine-grained margins, and crystal textures of enclaves are evidence of magmatic behavior. On entrapment, an enclave rapidly loses heat to its host and grows groundmass crystals whose size and morphology reflect the degree of enclave undercooling that is closely related to compositional contrast. At depth, some of the water dissolved in enclave magma may enter hydrous silicates but much can exsolve, including during partial crystallization. Vapor exsolution creates spherical vesicles and irregular gas pockets between crystals that give most volcanic enclaves porous textures. A vapor pressure gradient between an incompletely crystallized rigid enclave interior and host magma can drive residual melt into segregation vesicles and even out of the enclave by gas-driven filter pressing. Such enclaves have cores with cumulate-like compositions. Felsic droplets in mafic inclusions in plutonic rocks are interpreted as crystallized segregation vesicles. Enclaves are samples of magma that may not

  8. Timing and sources of granite magmatism in the Ribeira Belt, SE Brazil: Insights from zircon in situ U-Pb dating and Hf isotope geochemistry in granites from the São Roque Domain

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; Andrade, Sandra; Vasconcellos, Antonio Carlos B. C.; Henrique-Pinto, Renato; Ulbrich, Horstpeter H. G. J.

    2016-07-01

    Eight new in situ U-Pb zircon age determinations by SHRIMP and LA-MC-ICPMS reveal that the main granitic magmatism in the São Roque Domain, which is largely dominated by metaluminous high-K calc-alkaline monzogranites with subordinate peraluminous leucogranites, occurred between 604 ± 3 and 590 ± 4 Ma. This small temporal range is ca. 20-30 Ma younger than previously admitted based on U-Pb TIMS dates from literature, some of which obtained in the same occurrences now dated. The observed discrepancy seems related to the presence of small Paleoproterozoic inherited cores in part of the zircon populations used for TIMS multigrain dating, which could also respond for the unusually high (up to 10 Ma) uncertainty associated with most of these dates. The younger age range now identified for the São Roque granite magmatism has important implications for the evolution of the Ribeira Fold Belt. Whilst previously admitted ages ca. 620-630 Ma substantiated correlations with the widespread and intensely foliated high-K calc-alkaline granitoid rocks of the neighbor Socorro-Guaxupé Nappe (potentially associated with an accretionary continental margin), the ˜600-590 Ma interval seems more consistent with a late deformation tectonic setting. Strongly negative ɛHf(t) characterize the magmatic zircons from the São Roque Domain granites. An eastward increase from -22 in the São Roque Granite to -11 in the Cantareira Granite and neighboring stocks suggests an across-domain shift in granite sources. Such eastward younging of sources, also indicated by Sm-Nd isotope data from granites and supracrustal sequences in neighboring domains, is suggestive that some of the first-order limits and discontinuities in this belt are not defined by the strike-slip fault systems traditionally taken to separate distinct domains. Although the negative ɛHf(t) and ɛNd(t) indicate sources with long crustal residence for all studied granite plutons, the observed range is more radiogenic than the

  9. Transition from adakitic to bimodal magmatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: Evidence from petrogenesis and tectonic setting of the dike swarms

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Xu, Xisheng; Liu, Lei

    2016-02-01

    The late Mesozoic magmatic record of SE China is dominated by felsic volcanics and intrusions. However, this magmatism mainly occurred in coastal areas at 110-80 Ma, in contrast to poorly researched dike swarms that were emplaced inland at 165-120 Ma. Here, we focus on Early Cretaceous mafic and felsic dike swarms that provide new insights into the tectono-magmatic evolution of SE China. The swarms were intruded into Neoproterozoic plutons and include granodioritic porphyry, granitic porphyry, and diabase dikes. The granodioritic porphyry (128 ± 2 Ma) dikes are geochemically similar to adakitic rocks, suggesting that inland adakitic magmatism occurred between ca. 175 and ca. 130 Ma. The majority of these adakitic rocks are calc-alkaline and have Sr-Nd-Hf-O isotopic compositions that are indicative of derivation from a Neoproterozoic magmatic arc source within the lower crust. The granitic porphyry and diabase dikes were emplaced coevally at ca. 130 Ma, and the former contain high alkali and high field strength element (HFSE; e.g., Zr, Nb, Ce, and Y) concentrations that together with their high Ga/Al and FeOT/(FeOT + MgO) ratios imply an A-type affinity. The widespread ca. 130 Ma magmatism that formed the A-type granites and coeval diabase dikes defines a NE-SW trending inland belt of bimodal magmatism in SE China. The presence of mafic enclaves in some of the A-type granites, and the Sr-Nd-Hf isotopic compositions of the latter are indicative of inadequate mixing between the basement sediment-derived and coeval mantle-derived basaltic melts that define the bimodal magmatism. The transition from adakitic rocks to bimodal magmatism in the inland region of SE China indicates a change in the prevailing tectonic regime. This change was associated with an increase in the dip angle of the northwestward-subducting paleo-Pacific Plate beneath SE China between the Middle Jurassic and the Early Cretaceous. This resulted in a transition from a local intra-plate extensional

  10. Discrimination between magmatic and hydrothermal nature of the sources responsible for the unrest phenomena at Yellowstone caldera via integrated model of InSAR time series, leveling and gravity measurements

    NASA Astrophysics Data System (ADS)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni

    2015-04-01

    We studied the Yellowstone caldera geological unrest between 1977 and 2010 by investigating temporal changes in differential InSAR, precise spirit leveling and gravity measurements. In particular, we start by investigating the InSAR results obtained through the Small BAseline Subset (SBAS) differential InSAR technique, applied to a data set of ERS-1/2 and ENVISAT SAR images spanning 18 years, from 1992 to 2010. Moreover, we analyze the leveling data, which cover an additional time period of about 19 years from 1976 to 1995, and the gravity measurements that span the interval from 1977 to 1993. Inverting InSAR, leveling and gravity measurements infer parameters of the caldera best-fitting deformation sources by using the dMODELS software package. Compared to previous work on Yellowstone caldera, (i) we present long-term deformation time series derived from InSAR and their comparison to GPS results, (ii) we identify and remove the tectonic signal from the retrieved time-series, (iii) we jointly exploit InSAR, leveling and gravity measurements to investigate the deformation sources geometric characteristics and their densities; to do this we search for the best fit deformation source identified by inverting more than one source geometry and we use statistical analysis to discriminate among different geometries. Our study indicates the existence of different distinct deformation sources within the caldera and we show that the detected sources have been intermittently active for the past three decades. We interpret the results of our inversions in view of the seismic tomography studies. This allows us to discriminate between the magmatic and the hydrothermal nature of the sources responsible for the unrest phenomena that affected the Sour Creek (SC) and Mallard (ML) Dome resurgent caldera domes during the last three decades. Our study indicates the existence of different distinct deformation sources within the caldera and we show that the detected sources have been

  11. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source

    NASA Astrophysics Data System (ADS)

    Castro, Antonio; Aghazadeh, Mehraj; Badrzadeh, Zahra; Chichorro, Martim

    2013-11-01

    A potassic magmatic association in the Zagros hinterland of the Tethyan orogen in Iran is identified and characterized for relevant geochronologic and petrologic features. New data, including a combination of field relations, U-Pb zircon geochronology and rock geochemistry, come from seven plutons (Khankandi, Shaivar-Dagh, Yuseflu, Mizan, Saheb-Divan, Roudbar and Abhar) that form the Arasbaran-Taroum batholith (ATB), which forms part of the Alborz magmatic belt (AMB) of NW Iran. Zircon SHRIMP ages range from 38.32 ± 0.17 Ma, 38.94 ± 0.42 Ma and 37.78 ± 0.28 Ma for magma pulses of the Abhar pluton, at the East of the batholith, to 24.51 ± 0.27 Ma and 23.55 ± 0.47 Ma for pulses of the Mizan pluton at the West. Considering these ages and the previously published ones together, emplacement of the batholith took place during Late Eocene and Oligocene, from 38 to 23 Ma, with an age progression from SE to NW at a rate of 2 cm/year. The whole batholith is characterized by potassic rocks with K2O > 2 wt.% in gabbros and diorites (SiO2 < 50 wt.%). Higher contents of K2O, of up to > 6 wt.%, are normally found in rocks with intermediate silica contents of about 60 wt.% SiO2. These intermediate silica rocks are truly monzonites and are the most abundant in each pluton. With regard to trace elements, the monzonitic rocks of the ATB show some of the typical signatures of arc magmatism (depletion in Nb and Ti). Most samples contain moderate contents of Sr (500-800 ppm), close to similar potassic magmas forming Cenozoic complexes in Central Iran. The relatively moderate Sr/Y and La/Yb ratios suggest that ATB magmas retain some adakitic signatures from the source region. Geochemical modeling is performed by using melt compositions and phase relations calculated with MELTS software, combined with experimental data and trace element signatures. We conclude that monzonitic and shoshonitic magmas of some plutons of the ATB (Shaivar-Dagh, Kahnkandi and Yuseflu) have an adakitic

  12. Petrogenesis and geochemistry of circa 2.5 Ga granitoids in the Zanhuang Massif: Implications for magmatic source and Neoarchean metamorphism of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Junpeng; Kusky, Timothy; Wang, Lu; Polat, Ali; Wang, Songjie; Deng, Hao; Fu, Jianmin; Fu, Dong

    2017-01-01

    The tectonic framework of the North China Craton (NCC) during late Archean to early Paleoproterozoic (circa 2.5 Ga) is still lacking comprehensive understanding due to subsequent strong deformation and metamorphic overprinting events. Circa 2.5 Ga magmatic and metamorphic activities are widely spread throughout the NCC, which can be used as an efficient target to better understand the tectonic evolution at this period. In this study, based on a detailed field, structural, geochemical, geochronological and Sm-Nd isotopic study, we focus our work on the Haozhuang granitoids in the Zanhuang Massif located at the eastern margin of the Central Orogenic Belt of the NCC. The granitoids mainly include undeformed pegmatite and granodiorite. One pegmatite and two granodiorite samples yield zircon 207Pb/206Pb ages of 2513 ± 29 Ma, 2511 ± 36 Ma and 2528 ± 18 Ma, respectively. The granodiorites show metaluminous and shoshonitic to high-K calc-alkaline series characteristics with A-type granite affinity. The circa 2.5 Ga granodiorites have highly negative εNd(t) values (- 29.22 - 33.12) and TDM model ages between 2671 Ma and 3151 Ma. This work shows clearly, from whole-rock major and trace elements and Sm-Nd isotopic studies, that the Haozhuang granodiorites were derived from partial melting of old and thickened TTG crust rather than mantle sources, and formed in a subduction-related tectonic setting. With geochemical comparison studies to other similar-aged granitic rocks in the Zanhuang Massif, we suggest that these granitic rocks possibly have a certain correlation during the magma evolution. Coupled with our previous geochemical and isotopic studies on circa 2.5 Ga mafic dike swarms, we propose that the similar-aged granitic rocks and mafic dike swarms were produced by an east-dipping subduction polarity reversal event following an arc-continent collision between the Fuping/Wutai island arc and Eastern Block of the NCC above a west-dipping slab. The east

  13. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Guo, Lei; Zhang, Lei; Yang, Qidi; Zhang, Jianjun; Tong, Ying; Ye, Ke

    2015-01-01

    The Mongol-Okhotsk belt and adjacent areas are key areas to study the relationship between the Okhotsk and Paleo-Pacific tectonic regimes and their superposition on the older Paleo-Asian regimes during late Mesozoic times. This paper summarizes the spatial-temporal evolution of Late Mesozoic (Jurassic-Cretaceous) granitoids and related intrusions in these areas, and interprets the magmatic evolution in terms of a transition from contractional crustal thickening to extensional thinning. According to 407 published zircon ages, these granitoids were mainly emplaced during the intervals 200-180 Ma, 180-165 Ma, 165-145 Ma, 145-135 Ma and 135-100 Ma. Jurassic granitoids (200-145 Ma) predominately occur in the Baikal-NE Mongolia (BNEM) and Great Xing'an Range. Early Cretaceous (145-100 Ma) granitoids are mainly occur in the Great Xing'an Range, and display a southward-younging migration. Significantly, Early Cretaceous granitoids also extend into the Trans-Baikal area across the Mongol-Okhotsk suture, far away from the Paleo-Pacific plate margin (in NE China); thus they were more plausibly related to post-orogenic collapse of the Mongol-Okhotsk orogen. From the Late Jurassic to Early Cretaceous, the granitoids evolved compositionally from calc-alkaline and high-K calc-alkaline, I-type, with some adakite-like features, to high-K calc-alkaline and shoshonitic, highly fractionated I-, transitional I-A or, A-type, characterized by a significant decrease in their Sr/Y ratios. This evolution coincided with a tectonic transition from contractional crustal thickening to extensional thinning. Combined with regional geology, we speculate that the Jurassic granitoids were likely derived from melting of the deep-seated, thickened lower continental crustal (LCC) sources, whereas the Cretaceous granitoids produced through crustal melting from an extensional thinning setting. Our results provide a case study demonstrating that the petrogenesis of granitic magmatism was closely

  14. Volcanic cycles and setting in the Neoproterozoic III to Ordovician Camaquã Basin succession in southern Brazil: characteristics of post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Wildner, W.; Lima, E. F.; Nardi, L. V. S.; Sommer, C. A.

    2002-11-01

    The Camaquã Basin comprises a volcano-sedimentary succession, located in southernmost Brazil, and represents a molasse basin formed at the post-collisional stage of the Brasiliano/Pan-African orogenic cycle in the Neoproterozoic III to Ordovician period. This basin is one of the most well-preserved ancient volcano-sedimentary sequences undeformed and unmetamorphic in the world, dominantly developed on a continental setting under subaerial conditions. It is composed of five major stratigraphic units, four of them with a distinct volcanic character from the bottom to the top, as: (1) Maricá; (2) Bom Jardim; (3) Acampamento Velho; (4) Santa Bárbara; and (5) Guaritas Allogroups. A concise sight of geochemical and isotopic rock data is presented, as well as stratigraphic correlation and description of rock structures and textures that lead to the identification of their genetic processes, the aim of this paper, indicating a relation with a coeval plutonism, and volcanism that evolved from high-K calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, with a crustal component represented by peraluminous granites. Volcanic deposits from bottom to top are made mostly of volcanogenic sedimentary deposits, succeeded by basic to intermediate lava and pyroclastic flows of shoshonitic affinity, followed by intermediate and acid lava flows and ignimbrites of sodic alkaline affinity. The last volcanic event is represented by basalt pahoehoe flows, probably of mildly alkaline sodic affinity.

  15. Petrologic observations and multiphase dynamics in highly-crystalline magmatic mushes sourcing Galápagos Island volcanoes

    NASA Astrophysics Data System (ADS)

    Schleicher, J.; Bergantz, G. W.; Geist, D.

    2013-12-01

    The inability to directly observe magma chambers makes it difficult to understand their dynamics. Yet conditions within the chamber determines whether an eruption will occur, or if the magma is allowed to cool to complete crystallization. Eruption styles are also conditioned by these dynamics, as the amount of overpressure within the chamber regulates effusive or explosive eruptions. Plutons and volcanoes appear to share similar states: magma reservoirs that are temporally and spatially dominated by crystal-rich states, known as magmatic mushes. To explore the dynamics of mushes, we turn to the relatively simple ocean island end-member of magmatic systems. Ocean island porphyritic basalt flows provide a snapshot of the mush conditions prior to eruption. The Galápagos Islands are a system of ocean islands displaying spatial and temporal variation in their eruption styles and deposits. We have collected porphyritic basalt samples from Rábida Island of the Galápagos Archipelago which contains deposits ranging in ages from 0.7-1.0 Ma. Chemical zoning within phenocrysts indicates intermittent efficient mixing occurs within the mush, despite high viscosities and corresponding low-Reynolds number conditions. To further explore the dynamics of mixing, we present preliminary Eulerian-Lagrangian multiphase models using the fluids modeling software MFIX (Multiphase Flow with Interphase eXchanges). This computational fluid dynamics-discrete element method (CFD-DEM) allows for individual crystal tracking within the system and monitors interactions between the fluid and solid phases. Of special interest is the open-system dynamical response of a mush to a reintrusion event. Unlike high-Reynolds number flows, such as air or water systems, magmatic mushes have high viscosities, indicating that turbulent motion is not the primary mixing mechanism. Instead, mixing appears to be caused by mechanical unlocking from an increase in pore pressure as additional magma is injected. The

  16. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low

  17. Source-inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Fiannacca, Patrizia; Cirrincione, Rosolino; Bonanno, Fiorenza; Carciotto, Manuele Mario

    2015-11-01

    magma source. Mantle-derived magmas do not appear to have played a role in the geochemical diversity of the Serre Batholith granitoids; their inherited arc signature resulted from partial melting of crustal material of magmatic arc derivation, such as magnesian igneous rocks and sediments derived from their rapid erosion. This study suggests that post-collisional granitoid magmatism is likely not to be associated with the direct generation of new continental crust; all the granitoid rock types appear to represent recycled and reworked crustal material.

  18. Magmatic gas source for the stratospheric SO[sub 2] cloud from the June 15, 1991, eruption of Mount Pinatubo

    SciTech Connect

    Westrich, H.R. ); Gerlach, T.M. )

    1992-10-01

    A water-rich magmatic gas phase escaped explosively from Mount Pinatubo on June 15, 1991, taking with it a load of crystalline and molten material sufficient to form pumice and tephra deposits with an estimated total dense-rock-equivalent volume of 3-5 km[sup 3], and carrying in it enough sulfur to form a 20 Mt SO[sub 2] cloud in the stratosphere. Application of the petrologic method for estimating sulfur degassing during the climatic event from the sulfur content of trapped glass inclusions and matrix glasses in the pumice deposits requires an unacceptably large volume of erupted magma to account for SO[sub 2] in the stratospheric cloud. The ubiquitous presence of primary vapor bubbles in glass inclusions and unaltered anhydrite phenocrysts in the pumice suggest that sulfur was present in a separate H[sub 2]O-rich gas phase of the Pinatubo magma before eruption. Thus, for this eruption, and perhaps others, the petrologic method for estimating sulfur degassing is prone to substantial underestimation of sulfur release and the potential climatic impact of past explosive eruptions.

  19. Examining Student Factors in Sources of Setting Accommodation DIF

    ERIC Educational Resources Information Center

    Lin, Pei-Ying; Lin, Yu-Cheng

    2014-01-01

    This exploratory study investigated potential sources of setting accommodation resulting in differential item functioning (DIF) on math and reading assessments for examinees with varied learning characteristics. The examinees were those who participated in large-scale assessments and were tested in either standardized or accommodated testing…

  20. Examining Student Factors in Sources of Setting Accommodation DIF

    ERIC Educational Resources Information Center

    Lin, Pei-Ying; Lin, Yu-Cheng

    2014-01-01

    This exploratory study investigated potential sources of setting accommodation resulting in differential item functioning (DIF) on math and reading assessments for examinees with varied learning characteristics. The examinees were those who participated in large-scale assessments and were tested in either standardized or accommodated testing…

  1. N-MORB and IAT sources in the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton: Evidence for evolving tectonic settings

    NASA Astrophysics Data System (ADS)

    Deng, H.; Peng, S., Sr.; Polat, A.; Kusky, T. M.; Wang, L.; Jiang, X., Sr.

    2016-12-01

    The Miaowan Ophiolite Complex in the Northern Yangtze Craton consists mainly of layered fine-grained metabasites, pillow lavas, sheeted dikes, gabbros, sepentinized harzburguite, and sepentinized dunite, with rare metasedimentary rocks in the metabasite section. In this study, we divide the Miaowan Ophiolite Complex into two groups including the Miaowan Ophiolite Suite and a Late Magmatic Suite. The Miaowan Ophiolite Suite (MOS) mainly consists of ductily deformed serpentinized harzburgite, sepentinized dunite, gabbro, sheeted dikes, basalt, plagiogranite, and layered metasedimentary rocks. All these units were then intruded by the Late Magmatic Suite (LMS) consisting of pegmatitic-isotropic gabbro and massive diabase. The formation age of the MOS is interpreted to be ca. 1115 Ma. Harzburgites in the MOS are characterized by smooth LREE-depleted and flat MREE-HREE patterns; whereas dunites in the MOS display U-shape REE patterns. Deformed gabbro and basalt in the MOS display flat to slightly LREE enriched patterns, and low Th/Yb ratios and a lack of Nb anomalies, showing N-MORB affinities. The average values of initial ɛNd (t) of rock units in the MOS are +7.0±1.3, indicating that the MOS was derived from a strongly depleted mantle source. Accordingly, the harzburgite, gabbro and basalt in the MOS are interpreted to have formed in an oceanic spreading center and the dunites in the MOS were formed by reaction between the harzburgites and the subduction-related boninitic melts when the MOS was trapped with the harzburgites as a part of the mantle wedge above a subduction zone. The LMS was intruded between ca. 1000 Ma and ca. 970 Ma, consistent with their whole-rock Sm-Nd errochron age (1007±62 Ma). Pegmatitic-isotropic gabbro and diabase in the LMS are characterized by enriched-LREE patterns with high Th/Yb ratios and negative Nb and Zr anomalies, consistent with a subduction-related setting. The average values of initial ɛNd (t) of rock units in the LMS are +6

  2. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  3. Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U-Pb dating of syn-magmatic, inherited, and detrital zircon

    USGS Publications Warehouse

    Dusel-Bacon, C.; Williams, I.S.

    2009-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses of igneous zircons from the Lake George assemblage in the eastern Yukon-Tanana Upland (Tanacross quadrangle) indicate both Late Devonian (???370 Ma) and Early Mississippian (???350 Ma) magmatic pulses. The zircons occur in four textural variants of granitic orthogneiss from a large area of muscovite-biotite augen gneiss. Granitic orthogneiss from the nearby Fiftymile batholith, which straddles the Alaska-Yukon border, yielded a similar range in zircon U-Pb ages, suggesting that both the Fiftymile batholith and the Tanacross orthogneiss body consist of multiple intrusions. We interpret the overall tectonic setting for the Late Devonian and Early Mississippian magmatism as an extending continental margin (broad back-arc region) inboard of a northeast-dipping (present coordinates) subduction zone. New SHRIMP U-Pb ages of inherited zircon cores in the Tanacross orthogneisses and of detrital zircons from quartzite from the Jarvis belt in the Alaska Range (Mount Hayes quadrangle) include major 2.0-1.7 Ga clusters and lesser 2.7-2.3 Ga clusters, with subordinate 3.2, 1.4, and 1.1 Ga clusters in some orthogneiss samples. For the most part, these inherited and core U-Pb ages match those of basement provinces of the western Canadian Shield and indicate widespread potential sources within western Laurentia for most grain populations; these ages also match the detrital zircon reference for the northern North American miogeocline and support a correlation between the two areas.

  4. Post-rift magmatic evolution of the eastern North American "passive-aggressive" margin

    NASA Astrophysics Data System (ADS)

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizimis, Michael; McAleer, Ryan; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ˜152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a "passive-aggressive" margin that records multiple magmatic events long after rifting ended.

  5. Secular Changes in Lava/Magma Channelization and the Volcanic/Subvolcanic/Plutonic Settings of Magmatic Ni-Cu-PGE and Chromite Mineralization on Earth

    NASA Astrophysics Data System (ADS)

    Lesher, C. M.

    2015-12-01

    The degree of channelization in magmatic systems is controlled by magma density, viscosity, and flux; environment of emplacement (subaerial/submarine) and substrate topography if volcanic; and country rock density/rheology/structure and degree/orientation of differential stress if subvolcanic/plutonic. Lower viscosity Archean komatiites ascended rapidly, producing lava channels (e.g., Kambalda) and subvolcanic feeder sills (e.g., Mt. Keith). Higher viscosity Proterozoic komatiitic basalts/ferropicrites/picrites had more difficulty ascending through the crust and produced subvolcanic feeder dikes (e.g., Eagle-Tamarack, Voisey's Bay) and sills (e.g., Thompson, Pechenga) and fewer lava channels (e.g., Raglan). Phanerozoic picrites/basalts produced mainly dikes (e.g., Kalatongke) and feeder sills (e.g., Noril'sk, Jinchuan). All were capable of eroding S-rich substrates/wall rocks and generating magmatic Ni-Cu-PGE deposits. Some chromite deposits appear to have formed in channelized magmatic systems, and although typically finer-grained chromite is much easier to transport than typically larger sulfide melt droplets, almost all known volcanic Ni-Cu-PGE deposits formed during lava emplacement and no volcanic chromite deposits have yet been identified. This suggests that Fe-Ni-Cu-(PGE) sulfides and chromite are more easily transported horizontally within sills and lava channels, but less easily transported vertically. If magmatic Fe-Ni-Cu-(PGE) deposits can form by partial melting of Fe sulfide-rich sediments underneath lava/magma channels and dynamic upgrading of sulfide xenomelts by reaction with the magma (the prevailing model), then magmatic chromite deposits can form by partial melting of Fe oxide-rich sediments underneath lava/magma channels and dynamic upgrading of oxide xenocrysts by reaction with the magma. The anomalously thick (up to 100m) Black Thor-Blackbird, Inyala, Ipueira-Medrado, Kemi, Nkomati, and Sukinda chromite deposits may be examples of this process.

  6. The lower Paleozoic granitoids from the central part of the Qilian block, NW China: An example of granitoid magmatism in a continental backarc setting

    NASA Astrophysics Data System (ADS)

    Tung, kuo-an; Yang, Houng-yi; Yang, Huai-jen; Liu, Dunyi; Zhang, Jianxin; Wu, Cailai; Shau, Yen-hong; Tseng, Chien-yuan

    2016-04-01

    The petrology, geochemistry, geochronology, and Sr-Nd-Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402-447 Ma for the S-type and 419-451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18-0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71-1.16). The initial (87Sr/86Sr) values are 0.708848-0.713651 for the S-type and 0.704230-0.718108 for the I-type granitoids. The ɛNd(450 Ma) values are -8.9-~-4.1 and -9.7~+1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5-2.4 Ga for the S-type and 1.0-2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.

  7. Constraining Slab Breakoff Induced Magmatism through Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Freeburn, R.; Van Hunen, J.; Maunder, B. L.; Magni, V.; Bouilhol, P.

    2015-12-01

    Post-collisional magmatism is markedly different in nature and composition than pre-collisional magmas. This is widely interpreted to mark a change in the thermal structure of the system due to the loss of the oceanic slab (slab breakoff), allowing a different source to melt. Early modelling studies suggest that when breakoff takes place at depths shallower than the overriding lithosphere, magmatism occurs through both the decompression of upwelling asthenopshere into the slab window and the thermal perturbation of the overriding lithosphere (Davies & von Blanckenburg, 1995; van de Zedde & Wortel, 2001). Interpretations of geochemical data which invoke slab breakoff as a means of generating magmatism mostly assume these shallow depths. However more recent modelling results suggest that slab breakoff is likely to occur deeper (e.g. Andrews & Billen, 2009; Duretz et al., 2011; van Hunen & Allen, 2011). Here we test the extent to which slab breakoff is a viable mechanism for generating melting in post-collisional settings. Using 2-D numerical models we conduct a parametric study, producing models displaying a range of dynamics with breakoff depths ranging from 150 - 300 km. Key models are further analysed to assess the extent of melting. We consider the mantle wedge above the slab to be hydrated, and compute the melt fraction by using a simple parameterised solidus. Our models show that breakoff at shallow depths can generate a short-lived (< 3 Myr) pulse of mantle melting, through the hydration of hotter, undepleted asthenosphere flowing in from behind the detached slab. However, our results do not display the widespread, prolonged style of magmatism, observed in many post-collisional areas, suggesting that this magmatism may be generated via alternative mechanisms. This further implies that using magmatic observations to constrain slab breakoff is not straightforward.

  8. Insights from and in-depth analysis of CGPS time series at Mt.Etna: evolution of magmatic sources between 2003 and 2012

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Valentina, Bruno; Flavio, Cannavò; Carmelo, Ferlito; Mario, Mattia; Daniele, Pellegrino; Mario, Pulvirenti; Massimo, Rossi; Danila, Scandura

    2013-04-01

    The detection and monitoring of crustal deformation on Mt. Etna is performed through the Etn@net continuous GPS network that is currently one of the largest worldwide in an active volcano, with its 40 stations. Knowledge of the ground deformation of Mt. Etna with a good spatial and temporal resolution allows inferences to be made about the physics of the underlying deformation. In particular, we propose a modelling of the magmatic sources acting inside the volcano between 2003 and 2012 and their temporal evolution. We performed an analysis of the CGPS long time series in order to investigate time spans characterized by coherent crustal deformation patterns. The analysed period has been divided into different coherent inflation/deflation phases and two phases characterized by a more complex deformation pattern. In particular, during the period 02 August 2008 - 14 June 2009 we observed the coexistence of a deflation of the summit area and an inflation at lower heights while the period 21 May 2010 - 31 December 2010 was characterized by an inflation at medium height without significant areal deformation changes at the summit. Analytical models indicate a non-uniform deformation style revealing spaced sources acting at different time on different segments of a multi-level magma reservoir. The imaged Etnean plumbing system is depicted as an elongated magma reservoir that extends from the volcano body downwards to about 8.0 km below sea level (b.s.l.), sloping slightly towards the North-West, with storage volumes located at about 8.0, 4.0 and 2.0 km (b.s.l.). The high quality of data collected on the dense configuration of the Etn@net CGPS network permits a detailed analysis of the mechanisms of magma migration from depth and, therefore, allows a fast and accurate evaluation of volcanic hazard. In particular, the analysis proposed here highlights some significant characteristics: 1) the inflation pressure sources are located between the eastern border of the low vp

  9. Source rock potential of shallow-water evaporitic settings

    SciTech Connect

    Warren, J.K.

    1986-05-01

    In the major evaporitic environments on the world's surface today, most organic matter accumulates in shallow subaqueous to seasonally subaerially exposed, algal-mat sediments. Given the present depositional setting, this organic matter probably could not be preserved to form source rocks. However, if the authors place such evaporite deposition into a geologic context, source rocks could have formed in shallow-water settings in the past. Such settings were characterized by hydrologic conditions that allowed the retention of hypersaline, anoxic pore water to depths where the organic material was buried deep enough to generate hydrocarbons. When deep-basin, shallow-water, evaporite successions were laid down in basins such as the Mediterranean during the late Miocene, the Michigan basin during the Silurian, and in other large saline giants, conditions were right for source rocks to form within shallow-water and salt-flat evaporitic environments. The evaporites in these saline giants were deposited under conditions of relatively shallow water (< 50 m); the basin never appears to have dried out, but water levels changed quickly (approx. 10,000 years) from shallow to deep. Continual water saturation coupled with saline pore fluids prevented the inflow of fresh, oxidizing ground water into the basin center of shallow-water organic-rich evaporites. Immature hydrocarbons derived from such rocks today drip from the 5.5-m.y. old evaporites of Sicily in active salt and sulfur mines. Organic-rich sediments could also be preserved to generate hydrocarbons in rapidly subsiding rift basins. In such basins, rapid burial has prevented the entrance of fresher oxygenated waters and the associated degradation and destruction of the organic matter. The early continental rift stage generates the source rocks; the ephemeral streams, wadis, and dune fields become the reservoirs, and the subsequent evaporite stage seals the reservoir.

  10. Comprehensive, Multi-Source Cyber-Security Events Data Set

    SciTech Connect

    Kent, Alexander D.

    2015-05-21

    This data set represents 58 consecutive days of de-identified event data collected from five sources within Los Alamos National Laboratory’s corporate, internal computer network. The data sources include Windows-based authentication events from both individual computers and centralized Active Directory domain controller servers; process start and stop events from individual Windows computers; Domain Name Service (DNS) lookups as collected on internal DNS servers; network flow data as collected on at several key router locations; and a set of well-defined red teaming events that present bad behavior within the 58 days. In total, the data set is approximately 12 gigabytes compressed across the five data elements and presents 1,648,275,307 events in total for 12,425 users, 17,684 computers, and 62,974 processes. Specific users that are well known system related (SYSTEM, Local Service) were not de-identified though any well-known administrators account were still de-identified. In the network flow data, well-known ports (e.g. 80, 443, etc) were not de-identified. All other users, computers, process, ports, times, and other details were de-identified as a unified set across all the data elements (e.g. U1 is the same U1 in all of the data). The specific timeframe used is not disclosed for security purposes. In addition, no data that allows association outside of LANL’s network is included. All data starts with a time epoch of 1 using a time resolution of 1 second. In the authentication data, failed authentication events are only included for users that had a successful authentication event somewhere within the data set.

  11. Joint analysis of geodetic and earthquake fault-plane solution data to constrain magmatic sources: A case study from Kīlauea Volcano

    USGS Publications Warehouse

    Wauthier, Christelle; Roman, Diana C.; Poland, Michael

    2016-01-01

    A joint analysis of geodetic and seismic datasets from Kīlauea Volcano during a period of magmatic unrest in 2006 demonstrates the effectiveness of this combination for testing and constraining models of magma dynamics for a complex, multi-source system. At the end of 2003, Kīlauea's summit began a four-year-long period of inflation due to a surge in magma supply to the volcano. In 2006, for the first time since 1982, Kīlauea's Southwest Rift Zone (SWRZ) also experienced inflation. To investigate the characteristics of active magma sources and the nature of their interactions with faults in the SWRZ during 2006, we integrate, through Coulomb stress modeling, contemporary geodetic data from InSAR and GPS with a new catalogue of double-couple fault-plane solutions for volcano-tectonic earthquakes. We define two periods of inflation during 2006 based on the rate of deformation measured in daily GPS data, spanning February to 15 March 2006 (Period 1) and 16 March to 30 September 2006 (Period 2). InSAR data for these two periods are inverted to determine the position, change in size, and shape of inflation sources in each period. Our new models are consistent with microseismic activity from each period. They suggest that, during Period 1, deformation in the SWRZ can be explained by pressurization of magma in a spherical reservoir beneath the south caldera, and that, during Period 2, magma was also aseismically intruded farther to the southwest into the SWRZ along a sub-horizontal plane. Our Coulomb stress analysis shows that the microseismicity recorded in the SWRZ is induced by overpressurization of the south caldera reservoir, and not by magma intrusion into the SWRZ. This study highlights the importance of a joint analysis of independent geophysical datasets to fully constrain the nature of magma accumulation.

  12. Joint analysis of geodetic and earthquake fault-plane solution data to constrain magmatic sources: A case study from Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Wauthier, Christelle; Roman, Diana C.; Poland, Michael P.

    2016-12-01

    A joint analysis of geodetic and seismic datasets from Kīlauea Volcano during a period of magmatic unrest in 2006 demonstrates the effectiveness of this combination for testing and constraining models of magma dynamics for a complex, multi-source system. At the end of 2003, Kīlauea's summit began a four-year-long period of inflation due to a surge in magma supply to the volcano. In 2006, for the first time since 1982, Kīlauea's Southwest Rift Zone (SWRZ) also experienced inflation. To investigate the characteristics of active magma sources and the nature of their interactions with faults in the SWRZ during 2006, we integrate, through Coulomb stress modeling, contemporary geodetic data from InSAR and GPS with a new catalogue of double-couple fault-plane solutions for volcano-tectonic earthquakes. We define two periods of inflation during 2006 based on the rate of deformation measured in daily GPS data, spanning February to 15 March 2006 (Period 1) and 16 March to 30 September 2006 (Period 2). InSAR data for these two periods are inverted to determine the position, change in size, and shape of inflation sources in each period. Our new models are consistent with microseismic activity from each period. They suggest that, during Period 1, deformation in the SWRZ can be explained by pressurization of magma in a spherical reservoir beneath the south caldera, and that, during Period 2, magma was also aseismically intruded farther to the southwest into the SWRZ along a sub-horizontal plane. Our Coulomb stress analysis shows that the microseismicity recorded in the SWRZ is induced by overpressurization of the south caldera reservoir, and not by magma intrusion into the SWRZ. This study highlights the importance of a joint analysis of independent geophysical datasets to fully constrain the nature of magma accumulation.

  13. An overview of the Mesozoic-Cenozoic magmatism and tectonics in Eastern Paraguay and central Andes (Western Gondwana): Implications for the composition of mantle sources

    NASA Astrophysics Data System (ADS)

    Omarini, Ricardo H.; Gasparon, Massimo; De Min, Angelo; Comin-Chiaramonti, Piero

    2016-12-01

    The amalgamation of the Western Gondwana (including the Greater Gondwana supercraton) occurred at 600 Ma during the Brazilian - Pan African orogeny. A plate junction related to this event is marked by the Transbrazilian lineament which separates the South American continent into two sectors: the Eastern Paraguay-Brazilian and Central Andean domains. An overview of the geodynamic data from these two sectors indicates that the two domains were subjected to distinct evolutions from the Proterozoic to the present. The Andean domain is characterized by long-lived subduction processes linked to the convergence and consequent collision of microplates since the Middle Proterozoic (western Amazonian Craton) with a peak at about 600-580 Ma. The Paraguay-Brazilian domain remained relatively stable but was affected by extension episodes that reactivated ancient (Early and Middle Proterozoic) suture zones. These different geodynamic evolutions seem to reflect broadly distinct mantle compositions. In the subduction zones of the Andean domain the mantle was deeply modified by metasomatic processes following the subduction of oceanic plates. Consequently, the Andean type magma sources show a clear HIMU imprint inherited from the MORB, whereas the Paraguay-Brazilian sector shows a prevalent EMI and subordinate EMII character. The petrological data mainly from Mesozoic and Cenozoic magmatic events in the two sectors are reviewed to investigate the current mantle plume and mantle dome models for the uprising of the asthenospheric (or sub-lithospheric) material.

  14. The Banhadão Alkaline Complex, Southeastern Brazil: source and evolution of potassic SiO2-undersaturated high-Ca and low-Ca magmatic series

    NASA Astrophysics Data System (ADS)

    Ruberti, Excelso; Enrich, Gaston E. R.; Azzone, Rogério G.; Comin-Chiaramonti, Piero; de Min, Angelo; Gomes, Celso B.

    2012-01-01

    The Cretaceous Banhadão alkaline complex in southeastern Brazil presents two potassic SiO2-undersaturated series. The high-Ca magmatic series consist of initially fractionated olivine (Fo92-91) + diopside (Wo48-43En49-35Ae0-7), as evidenced by the presence of xenocrysts and xenoliths. In that sequence, diopside (Wo47-38En46-37Ae0-8) + phlogopite + apatite + perovskite (Prv>92) crystallized to form the phlogopite melteigite and led to the Ca enrichment of the magma. Diopside (Wo47-41En32-24 Ae3-14) continued to crystallize as an early mafic mineral, followed by nepheline (Ne74.8-70.1Ks26.3-21.2Qz7.6-0.9) and leucite (Lc65-56) and subsequently by melanite and potassic feldspar (Or85-99Ab1-7) to form melanite ijolites, wollastonite-melanite urtites and melanite-nepheline syenites. Melanite-pseudoleucite-nepheline syenites are interpreted to be a leucite accumulation. Melanite nephelinite dykes are believed to represent some of the magmatic differentiation steps. The low-Ca magmatic series is representative of a typical fractionation of aegirine-augite (Wo36-29En25-4Ae39-18) + alkali feldspar (Or57-96Ab3-43) + nepheline (Ne76.5-69.0Ks19.9-14.4Qz15.1-7.7) + titanite from phonolite magma. The evolution of this series from potassic nepheline syenites to sodic sodalite syenites and sodalitolites is attributed to an extensive fractionation of potassic feldspar, which led to an increase of the NaCl activity in the melt during the final stages forming sodalite-rich rocks. Phonolite dykes followed a similar evolutionary process and also registered some crustal assimilation. The mesocratic nepheline syenites showed interactions with phlogopite melteigites, such as compatible trace element enrichments and the presence of diopside xenocrysts, which were interpreted to be due to a mixing/mingling process of phonolite and nephelinite magmas. The geochemical data show higher TiO2 and P2O5 contents and lower SiO2 contents for the high-Ca series and different LILE evolution trends

  15. Hydrothermal-flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.

    1982-01-01

    This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than fifty deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies shows that the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity of about 6 m/year through the pores of a typical cross section of the reservoir having an average porosity of 10%. Although this is an extensional tectonic environment of leaky transform faulting in which repeated intrusions of basalt magma are likely, for simplicity of computation possible heat sources were modelled as simple two dimensional basalt intrusions of various sizes, shapes and locations. We have calculated a series of two-dimensional convective heat transfer models, with different heat sources and permeability distributions. The models which produce the best fit for the temperature distributions observed in the field today have in common a heat source which is a funnel-shaped basalt intrusion, 4 km wide at the top, emplaced at a depth of 5 km to 6 km about 40,000 to 50,000 years ago.

  16. The gravimetric picture of magmatic and hydrothermal sources driving hybrid unrest on Tenerife in 2004/5

    NASA Astrophysics Data System (ADS)

    Prutkin, Ilya; Vajda, Peter; Gottsmann, Jo

    2014-08-01

    We present results from the inversion of gravity changes observed at the central volcanic complex (CVC) of Tenerife, Canary Islands, between May 2004 and July 2005. Marking a period of elevated activity and a reawakening of the volcanic system, the data depict spatial and temporal variations in the sub-surface processes that defined this period of unrest at the Pico Viejo (PV)-Pico Teide (PT) complex, after the last volcanic eruption on Tenerife in 1909. An initial non-linear inversion, based on 3D line segments approximation, yielded three line segments at depths between 1 km a.s.l. and 2 km b.s.l. Our interpretation of the initial inversion results is that the line segments represent apparent composite sources, a superposition of deep and shallow seated sources. We therefore decomposed the gravity changes into shallow and deep parts (fields) using a procedure based on triple harmonic continuation. The shallow and deep fields could then be inverted separately, using the same inversion methodology. The deep field constrains two connected line segments at the depth of about 6 km b.s.l., in the center of the NW seismogenic zone of VT event swarm of the seismic unrest, that we interpret as magma input. The inversion of the shallow field images three weak line segments that are all situated at very shallow, near-surface depths. We interpret the weak segments as hydrothermal sources potentially excited by the deeper magma injection. Our results indicate no significant input into the shallow phonolitic plumbing system of the PV-PT complex, but rather a deeper-seated rejuvenation of the mafic feeder reservoir. The emerging picture from our analysis is that the 2004/5 unrest on Tenerife was of a hybrid nature due to the combination of a deep magma injection (failed eruption?) coupled with fluid migration to shallow depths. The identified causative link between deep and shallow unrest sources indicates the presence of permeable pathways for shallow fluid migration at the

  17. Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source.

    PubMed

    Schiano, P; Clocchiatti, R; Ottolini, L; Busà, T

    2001-08-30

    Mount Etna lies near the boundary between two regions that exhibit significantly different types of volcanism. To the north, volcanism in the Aeolian island arc is thought to be related to subduction of the Ionian lithosphere. On Sicily itself, however, no chemical or seismological evidence of subduction-related volcanism exists, and so it is thought that the volcanism-including that on Mount Etna itself-stems from the upwelling of mantle material, associated with various surface tectonic processes. But the paucity of geological evidence regarding the primary composition of magma from Mount Etna means that its source characteristics remain controversial. Here we characterize the trace-element composition of a series of lavas emitted by Mount Etna over the past 500 kyr and preserved as melt inclusions inside olivine phenocrysts. We show that the compositional change in primary magmas from Mount Etna reflects a progressive transition from a predominantly mantle-plume source to one with a greater contribution from island-arc (subduction-related) basalts. We suggest that this is associated with southward migration of the Ionian slab, which is becoming juxtaposed with a mantle plume beneath Sicily. This implies that the volcanism of Mount Etna has become more calc-alkaline, and hence more explosive, during its evolution.

  18. Petrology, geochemistry and genesis of newly discovered Mesoproterozoic highly magnesian, calcite-rich kimberlites from Siddanpalli, Eastern Dharwar Craton, Southern India: products of subduction-related magmatic sources?

    NASA Astrophysics Data System (ADS)

    Chalapathi Rao, N. V.; Dongre, A.; Kamde, G.; Srivastava, Rajesh K.; Sridhar, M.; Kaminsky, F. V.

    2010-03-01

    The Siddanpalli kimberlites constitute a newly discovered cluster (SKC) of Mesoproterozoic (1090 Ma) dykes occurring in the granite-greenstone terrain of the Gadwal area in the Eastern Dharwar Craton (EDC), Southern India. They belong to coherent facies and contain serpentinized olivines (two generations), phlogopite, spinel, perovskite, ilmenite, apatite, carbonate and garnet xenocrysts. A peculiar feature of these kimberlites is the abundance of carbonate and limestone xenoliths of the eroded platformal Proterozoic (Purana) sedimentary cover of Kurnool/Bhima age. Chemically, the Siddanpalli dykes are the most magnesium-rich (up to 35 wt.% MgO) and silica-undersaturated (SiO2 < 35 wt.%) of all kimberlites described so far from the Eastern Dharwar Craton. The La/Yb ratio in the Siddanpalli kimberlites (64-105) is considerably lower than that in the other EDC kimberlites (108-145), primarily owing to their much higher HREE abundances. Since there is no evidence of any crustal contamination by granitic rocks we infer this to be a specific character of the magmatic source. A comparison of the REE geochemistry of the Siddanpalli kimberlites with petrogenetic models for southern African kimberlites suggests that they display involvement of a wide range in the degree of melting in their genesis. The different geochemical signatures of the SKC compared to the other known kimberlites in the EDC can be explained by a combination of factors involving: (i) higher degrees of partial melting; (ii) relatively shallower depths of derivation; (iii) possible involvement of subducted component in their mantle source region; and (iv) previous extraction of boninitic magmas from their geological domain.

  19. Diffuse CO2 Emanations from a Deep Magmatic Source-Multiphase Dynamics, Soil Impacts, and Lessons for Sequestration Monitoring

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Werner, C. A.; Schulz, M. S.; Howle, J. F.; Farrar, C. D.; Smith, T. R.; Rogie, J. D.

    2011-12-01

    Naturally occurring emissions of nearly pure CO2 at Mammoth Mountain, California, have been suggested as an analog of possible leakage from large-scale carbon capture and sequestration operations. Impacts of sustained elevated levels (>20%) of soil CO2 are greater than the observable forest dieback. Repeated soil-transect studies six and 22 years after onset of CO2 emissions demonstrate substantial degradation of base-cation status in the area of active emission. Detailed time series of soil-gas pressures, CO2 concentrations and fluxes, water contents, and snow-cover dynamics show large short-term (minutes-to-days) variability and switching between quasi-stable states, suggesting countercurrent gas and liquid movement within a shared fracture-pore network. Single fluid phase (Darcian-Fickian) approaches are inadequate to explain the gross features of the measured time series; engineering equations developed for two-fluid-phase flow reactors are more likely to apply. Micrometeorological data show that atmospheric forcing affects total CO2 fluxes. Data presented here show that interactions among the atmospheric boundary layer, water in all its forms (snowpack, percolating soil moisture, groundwater), and upward moving CO2 must be taken into account so that changes in surface CO2 concentrations and fluxes due to hydrologic perturbations can be differentiated from those due to changes in sources at depth.

  20. Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province

    USGS Publications Warehouse

    Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.

    1998-01-01

    Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.

  1. Magmatic systems of large continental igneous province

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2014-05-01

    major series: (1) "green" - spinel peridotite (maily lherzolite) and minor spinel pyroxenite (websterites), and (2) "black" - wehrlite, Al-Ti-augite and hornblende clinopyroxenite, hornblendite, etc., and megacrysts of Al-Ti-augite, kaersutite, ilmenite, sanidine, etc. They often contain vesicles which evidence that their crystallization occurred from fluid-saturated melts. The rocks of this series form veins in peridotite matrix. So, two types of material participated in melting process: moderate-depleted peridotites and geochemical-enriched phase - fluid-saturated melts or high-density fluid. Because the both types of xenoliths are fragments of upper cooled rim of mantle plume head above magma-generation zone, we suggest that they together represent material, which composed plume head and accordingly - the melting substratum. At that the fluid phase exactly provided specific composition of basaltic melts at the initial stages of LIPs development, typical for intraplate settings. The middle level of magmatic systems is represented by transitional magmatic chambers (now large layered mafic-ultramafic intrusions), where newly-formed magmas were accumulated, undergone by crystallizing differentiation, mixing and crustal contamination. Such transformed in a variable degree magmas continued their way to surface led to general diversity of magmatic rocks, erupted on the surface; contribution of subvolcanic magmatic chambers was, probably, small. So, systematic study of processes in LIPs' magmatic systems as a whole can help to reveal processes of primary magmas transformation and thereby to determine their initial composition and source material.

  2. Pleistocene intraplate magmatism in the Goto Islands, SW Japan: Implications for mantle source evolution and regional geodynamics

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen; Uto, Kozo; Matsumoto, Aki; Itoh, Jun'ichi

    2013-08-01

    We present geochemical, Sr, Nd and Pb isotopic data for the youngest back-arc tholeiitic and alkali basalts in the southern tip of Goto Islands along the Taiwan-Shinji Folded Belt in northwestern Kyushu, SW Japan. The data are compared with those more-or-less contemporaneous back-arc basalts elsewhere in the region and interpreted accordingly. Our sampling loci included Ukujima (ca. 1 Ma), Ojikajima and Kamigoto (from 0.6 Ma to 0.14) and six locations in the Fukue island area (ages between 0.7 and 0.02 Ma). The Ukujima tholeiites show the highest SiO2 (ca. 52.5 wt%), FeO* (13 wt%), TiO2 (>2.5 wt%) and lowest MgO (4 wt%) and CaO (7.5 wt%) contents whereas the alkali Kamigoto and most Ojikajima magmas show lower SiO2 (48 wt%) and higher MgO (8.5 wt%) and CaO (11 wt%). The Ukujima tholeiites also show the least radiogenic lead with closely similar 87Sr/86Sr and 143Nd/144Nd ratios ranging between 0.7038 and 0.7042, and between 0.51280 and 0.51285, respectively. Mantle-normalized incompatible element distributions are of alkali basalt-type exhibiting, along with the major element, significant spatio-temporal variations. Regardless of such differences the younger basalts, as compared with older 6-15 Ma eruptive products in Hirado (and those in Kita-Matsuura), northeastward along the belt, are the least radiogenic. The 15 Ma volcanics were erupted during episodes of lithospheric extension and show effects of crustal contamination. The 6-9 Ma tholeiites and alkali basalts appeared as regional extension gave way to compression and show hybrids of depleted mid-ocean ridge basalt-like (N-MORB) mantle and heterogeneous EM2 (enriched mantle type 2) (Uto et al., 2004). As extension diminished, deeper asthenospheric sources were tapped producing a range of enriched mantle type 1 (EM1)-contaminated N-MORB-like magmas in the younger (<1 Ma) Ukujima, Ojikajima-Kamigoto and Fukue volcanoes. This composition is believed to present throughout East and Southeast Asian asthenosphere.

  3. Cenozoic magmatism of north Victoria Land, Antarctica: an experimental study on the mantle source of a primary basanite from the McMurdo Volcanic Group

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Freda, C.; Misiti, V.; Perinelli, C.

    2009-04-01

    Volcanoes of the McMurdo Vocanic Group (MMVG) (Antarctica) dot the eastern shoulder of Ross Sea Rift System giving rise to alkaline transitional volcanic suites which in north Victoria Land are emplaced since Early Cenozoic. Geochemical geological, geophysical and geochronological data on Cenozoic volcanic activity in NVL suggest that the region is a site of passive astenospheric rise, rather than affected by a thermally active mantle plume. Furthermore the comparison of geochemical and isotopical data of basic lavas with those provided by mantle xenoliths they carry to the surface, document the compositional heterogeneity of sublithospheric mantle caused by the coupled action of partial melting and metasomatism. In particular the metasomatic episode is probably linked to the amagmatic extensional event that affected the West Antarctic Rift System in the Late Cretaceous. The astenospheric melts generated during this event, moving through the upper mantle, can have crystallized as veins or may have led to the formation of metasomatic minerals such as amphibole or phlogopite. In this scenario the mineralogical and chemical composition of sources responsible for Cenozoic magmatism, amphibole-bearing spinel-peridotite versus pyroxenite in the garnet stability field, it is still a matter of debate. To shed light on this argument a previous experimental study on a basanite of MMVG, representative of primary magma (Orlando et al., 2000) has been integrated with new experimental investigation on the same basanitic composition. The preliminary experiments were conducted to pressures of 1.0 - 2.0GPa in the presence of 0-1% of added water and indicate olivine on the liquidus at 1.0 GPa that is substitute by clinopyroxene at 2.0GPa. The addition of 1% of water induces a decrease of liquidus temperature of about 40°C shifting its value in the T range (1280-1310°C) the same that was inferred by melt inclusions hosted in the olivine phenocrysts of the studied basanite.

  4. A-type magmatism in a syn-collisional setting: The case of the Pan-African Hook Batholith in Central Zambia

    NASA Astrophysics Data System (ADS)

    Milani, Lorenzo; Lehmann, Jérémie; Naydenov, Kalin V.; Saalmann, Kerstin; Kinnaird, Judith A.; Daly, J. Stephen; Frei, Dirk; Lobo-Guerrero Sanz, Alberto

    2015-02-01

    The Pan-African Hook Batholith formed during the assembly of the Gondwana supercontinent as a result of syn-collisional stage interaction between the Congo and Kalahari Cratons. The bimodal magmatism (mafic to predominantly felsic) is characterized by both an alkali-calcic and an alkalic suite, with typical A-type, metaluminous, high Fe/Mg and K/Na geochemical signature. Occasionally, sodic granitoids have been documented. Compositions were driven to more differentiated products by fractional crystallization, while Sr-Nd isotopes exclude crustal assimilation during crystallization. Recent new U-Pb age data constrain most of the felsic magmatism between 550 and 540 Ma. Scattered outcrops of gabbroic rocks, both tholeiitic and alkaline, testify to periodic input of mantle material, and, in some cases, to interaction with metasomatizing fluids. Crystallization ages on mafic rocks span from 570 to 520 Ma, thus indicating that they were contemporaneous with the major granitic intrusion, which was the result of a number of successive felsic batches, eventually forming a coalescing batholith. Highly radiogenic Pb isotopic values attest to the radiogenic character of the rocks. Such an anomalous signature was acquired during, or soon after, magma emplacement, perhaps as result of metasomatizing fluids. Enrichment in Th-U of large portions of the crust along this part of the margin of the Congo Craton is suggested. Geochemical and isotopic evidence support the interaction between mantle components and portions of the deep crust at pressure of < 10 kbar, while decompression melting of rising asthenospheric mantle ponding at the base of the crust heated, and ultimately melted, crustal material. An additional and crucial contribution to the crustal melting was likely provided by internal radiogenic heat production of the thickened crust, and is in agreement with the high radioactivity of the pluton. A tectono-thermal model, implying crustal accretion accompanied by slab

  5. Feedback between deformation and magmatism in the Lloyds River Fault Zone: An example of episodic fault reactivation in an accretionary setting, Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    Lissenberg, C. Johan; van Staal, Cees R.

    2006-08-01

    The Lloyds River Fault Zone is a 10-15 km wide amphibolite-grade shear zone that formed during the Ordovician Taconic Orogeny. It separates ophiolites and arc-back-arc complexes formed in Iapetus from a peri-Laurentian microcontinent (Dashwoods microcontinent). The Lloyds River Fault Zone comprises three high-strain zones, dominantly composed of mylonitic amphibolites, separated by less deformed plutonic rocks. Structural, age and metamorphic data suggest the Lloyds River Fault Zone accommodated sinistral-oblique underthrusting of ophiolites underneath the Dashwoods microcontinent prior to 471 ± 5 Ma at 800°C and 6 kbar. Plutonic rocks within the Lloyds River Fault Zone comprise two suites dated at 464 ± 2 plus 462 ± 2 and 459 ± 3 Ma, respectively. The younger age of the plutons with respect to some of the amphibolites, evidence for magmatic deformation, and the elongate nature of the plutons parallel to the Lloyds River Fault Zone suggest they were emplaced within the fault zone during deformation. Both intrusive episodes triggered renewed deformation at high temperatures (770-750°C), illustrating the positive feedback between deformation and magmatism. Offshoots of the plutons intruded undeformed ophiolitic gabbros outside the Lloyds River Fault Zone. Deformation localized within the intrusive sheets, coeval with static contact metamorphism of the host gabbros, leading to the development of new, small-scale shear zones. This illustrates that channeling of plutons into shear zones and nucleation of shear zones in melt-rich zones may occur simultaneously within the same fault system.

  6. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Tang, Limei; Yu, Xing; Dong, Yanhui

    2016-12-01

    We present new major element, ICP-MS trace element, and Sr-Nd-Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52-9.51 wt% MgO, 49.40-50.60 wt% SiO2, 0.09-0.27 wt% K2O, 2.55-2.90 wt% Na2O, and 0.60-0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55-0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3-4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9-10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the

  7. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Tang, Limei; Yu, Xing; Dong, Yanhui

    2017-06-01

    We present new major element, ICP-MS trace element, and Sr-Nd-Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52-9.51 wt% MgO, 49.40-50.60 wt% SiO2, 0.09-0.27 wt% K2O, 2.55-2.90 wt% Na2O, and 0.60-0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55-0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3-4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9-10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the

  8. The Timing of Early Magmatism and Extension in the Southern East African Rift: Tracking Geochemical Source Variability with 40Ar/39Ar Geochronology at the Rungwe Volcanic Province, SW Tanzania

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Class, C.; Maqway, M. D.; Boniface, N.; Manya, S.; Hemming, S. R.

    2014-12-01

    The Rungwe Volcanic Province is the southernmost expression of volcanism in the East African Rift System. Rungwe magmatism is focused in a transfer zone between two weakly extended rift segments, unlike more developed rifts where magmatism occurs along segment axes (e.g. mid-ocean ridges). Rungwe was selected as the site of the multinational SEGMeNT project, an integrated geophysical, geochronological and geochemical study to determine the role of magmatism during early stage continental rifting. Argon geochronology is underway for an extensive collection of Rungwe volcanic rocks to date the eruptive sequence with emphasis on the oldest events. The age and location of the earliest events remains contested, but is critical to evaluating the relationship between magmatism and extension. Dated samples are further analyzed to model the geochemistry and isotopic signature of each melt's source and define it as lithospheric, asthenospheric, or plume. Given the goals, the geochronology focuses on mafic lavas most likely to preserve the geochemical signature of the mantle source. Groundmass was prepared and analyzed at the LDEO AGES lab. Twelve preliminary dates yield ages from 8.5 to 5.7Ma, consistent with prior results, supporting an eruptive episode concurrent with tectonic activity on the Malawi and Rukwa border faults (Ebinger et al., JGR 1989; 1993). Three additional samples yield ages from 18.51 to 17.6 Ma, consistent with the 18.6 ±1.0 Ma age obtained by Rasskazov et al. (Russ. Geology & Geophys. 2003). This eruptive episode is spatially limited to phonolite domes in the Usangu Basin and a mafic lava flow on the uplifted Mbeya Block. These eruptions predate the current tectonic extensional structure, suggesting magmatism predates extension, or that the two are not highly interdependent. No Rungwe samples dated yet can be the source of the of 26Ma carbonatitic tuffs in the nearby Songwe River Basin sequence (Roberts et al., Nature Geoscience 2012). Isochron ages

  9. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M.

    2010-10-01

    The Late Paleozoic to Triassic tectonics of northwestern South America have major implications for the understanding of Laurentia-Gondwana interactions that formed Pangea, and the origin of several tectonostratigraphic terranes dispersed by the break-up of this supercontinent during the formation of the Caribbean. Two mylonitic and orthogneissic granitoid suites have been recognized in the northeastern segment of the Sierra Nevada de Santa Marta, the lower Magdalena basin and the Guajira Serranias, within the Caribbean region of Colombia. For the Santa Marta region U/Pb LAM-ICP-MS analysis yielded zircon crystallization ages of 288.1 ± 4.5 Ma, 276.5 ± 5,1 Ma and 264.9 ± 4.0 Ma, related to the magmatic intrusion. Geochemical and modal variations show a compositional spectrum between diorite and granite, whereas LREE enrichment, Ti and Nb anomalies and geochemical discrimination suggest that this granitoid suite was formed within a magmatic arc setting. Inherited zircons suggest that this Early Permian plutonism was formed with the participation of Neoproterozoic and Grenvillian basement proximal to the South American continent. Evidence of a superimposed Early Triassic (ca. 250 Ma) deformational event in Santa Marta, together with a well defined S-type magmatism in the basement rocks from the adjacent lower Magdalena Valley and Guajira Peninsula regions are related to a major shift in the regional tectonic evolution. It's envisioned that this event records either terrane accretion or strong plate coupling during the final stages of Pangea agglutination. Connections with the main Alleghanian-Ouachitan Pangean orogen are precluded due to their timing differences. The plutons temporally and compositionally correlate with an arc found in the northern Andes and Mexican Gondwana terranes, and represent a broader magmatic event formed at the proto-Pacific margin, outside the nucleus of the Laurentia-Gondwana Alleghanian-Oachitan orogens. Evidence of lower temperature

  10. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  11. Magmatism in the Carolina terrane: Isotopic evidence for a Grenville-age source for Late Proterozoic volcanics and a mantle source for Silurian Concord syenite

    SciTech Connect

    Kozuch, M.; Heatherington, A.L.; Mueller, P.A. . Dept. of Geology); Offield, T.W.; Koeppen, R.P.; Klein, T.L. )

    1992-01-01

    Rhyolitic to andesitic volcanic rocks from the central portion of the Carolina slate belt in North Carolina were analyzed for Sr and Nd isotopic composition and dated by U-Pb zircon geochronology. Samples were from the greenschist-facies Late Proterozoic Albemarle Group, Uwharrie Formation, and the informal Virginia sequence. A rhyolite from the Cid Formation of the Albemarle Group dated by U-Pb zircon geochronology yielded a Pb-207/Pb-206 age of 575 [+-] 7.6 Ma, consistent with its position below strata containing the Late Proterozoic trace fossil Pteridinium and above rocks previously dated at 586 [+-] 10 Ma. Rb-Sr isotopic analyses of late Proterozoic rocks showed average initial Sr-87/Sr-86 ratios of approximately 0.704, indicating a moderately depleted source for these samples. E[sub ND] values at 600 Ma are moderately positive (+0.7 [minus] +2.3) and T(DM) values range from 1.19--1.04 Ga. These isotopic data, along with major and trace element data, suggest that andesites and rhyolites of the Carolina slate belt may have formed by partial melting of attenuated, Grenville-aged continental lithosphere during a 600 Ma episode of arc volcanism. In contrast, Sr and Nd data for the younger ([approximately]400 Ma) Concord pluton indicate it was derived from a depleted mantle source (Sr-87/Sr-86 = 0.7021 and E[sub ND] = +0.4 at 400 Ma) without significant involvement of older lithosphere (T(DM) = 370 Ma).

  12. An overview of the volatile systematics of the Lau Basin - Resolving the effects of source variation, magmatic degassing and crustal contamination

    NASA Astrophysics Data System (ADS)

    Hahm, Doshik; Hilton, David R.; Castillo, Paterno R.; Hawkins, James W.; Hanan, Barry B.; Hauri, Erik H.

    2012-05-01

    The Lau Basin erupts lavas with a range of geochemical features reflecting a complex history of interaction involving different mantle sources. The Valu Fa Ridge (VFR) and Mangatolu Triple Junction (MTJ) region have lavas with arc-like characteristics, Niuafo'ou Island (NV), Peggy Ridge and Central and Eastern Lau Spreading Centers (PR, CLSC and ELSC) erupt mid-ocean ridge basalt (MORB)-like volcanics, whereas the Rochambeau Bank (RB) has features akin to ocean island basalt (OIB). To characterize the volatile systematics of these various regions, we report a comprehensive study of 39 submarine lavas from these various eruptive centers encompassing analyses of the noble gases (He, Ne, and Ar) and carbon (CO2) - both isotopes and abundances - together with other major volatile phases (H2O, S, Cl, and F). Helium isotope ratios of the NV, MTJ, CLSC, and ELSC are MORB-like for the most part except for differentiated lavas that tend to have lower, more radiogenic 3He/4He values. The RB has considerably higher 3He/4He ratios (up to 23 RA in this work) which extend as far south as the PR. The influence of 'plume-like' sources in the RB is also apparent in Ne isotopes: RB samples follow a trend similar to Hawaiian basalts in 3-isotope neon space. However, RB lavas have lower 40Ar/36Ar (300-730) and higher [36Ar] than CLSC and ELSC, suggesting greater air contamination. Elemental He/Ne ratios (3He/22NeS and 4He/21Ne∗ where S = solar and * = nucleogenic) are high throughout the Lau Basin and identify the Lau mantle as one of only two high 3He/4He provinces worldwide with such an enrichment of He relative to Ne. Magmatic CO2 and δ13C fall in the range 7-350 ppm and -28‰ to -6‰, respectively. RB lavas have less [CO2] and slightly lower δ13C than CLSC and ELSC. The lowest values are found among MTJ lavas. These lavas also have the highest [H2O], [F], [Cl], and [S] whereas the PR, ELSC and CLSC have the lowest. RB has intermediate [H2O]. We estimate primary [CO2] in

  13. Age and nature of Triassic magmatism in the Netoni Intrusive Complex, West Papua, Indonesia

    NASA Astrophysics Data System (ADS)

    Webb, Max; White, Lloyd T.

    2016-12-01

    We report field observations together with petrological, geochemical and geochronological data from granitoids of the Netoni Intrusive Complex of West Papua. Until now, our knowledge of the timing of granitic magmatism in this region has been limited to a wide range of ages (241-6.7 Ma) obtained from K-Ar measurements of hornblende, biotite and plagioclase, primarily from samples of river detritus. We collected in situ samples along several traverses into the intrusive complex to: (1) develop a better understanding of the lithologies within the intrusive complex; and (2) determine the timing of magmatism using U-Pb dating of zircon. We also dated zircons from two river sand samples to identify other potential pulses of magmatism that may have been missed due to a sampling bias. The zircons extracted from the river sands yield age spectra similar to those obtained from the in situ samples. The combined data demonstrate that magmatism in the Netoni Intrusive Complex occurred between 248 Ma and 213 Ma. The petrological and geochemical data indicate that the granitoids were most likely emplaced in an ocean-continent (Andean style) subduction setting. This builds on previous work which suggests that a magmatic belt extended along eastern Gondwana (now New Guinea and eastern Australia) throughout much of the Paleozoic. The volcanic ejecta that were produced along this arc and the subsequent erosion of the mountain chain are a potential source of detritus for Triassic and younger sedimentary rocks in New Guinea, eastern Indonesia and north/northwestern Australia.

  14. Source and mode of the Permian Panjal Trap magmatism: Evidence from zircon U-Pb and Hf isotopes and trace element data from the Himalayan ultrahigh-pressure rocks

    NASA Astrophysics Data System (ADS)

    Rehman, Hafiz Ur; Lee, Hao-Yang; Chung, Sun-Lin; Khan, Tahseenullah; O'Brien, Patrick J.; Yamamoto, Hiroshi

    2016-09-01

    We present an integrated study of LA-ICP-MS U-Pb age, Hf isotopes, and trace element geochemistry of zircons from the Himalayan eclogites (mafic rocks) and their host gneisses (felsic rocks) from the Kaghan Valley in Pakistan in order to understand the source and mode of their magmatic protoliths and the effect of metamorphism. Zircons from the so-called Group I (high-pressure) eclogites yielded U-Pb mean ages of 259 ± 10 Ma (MSWD = 0.74), whereas those of Group II (ultrahigh-pressure) eclogites yielded 48 ± 3 Ma (MSWD = 0.71). In felsic gneisses the central or core domains of zircons yielded ages similar to those from Group I eclogites but zircon overgrowth domains yielded 47 ± 1 Ma (MSWD = 1.9). Trace element data suggest a magmatic origin for Group I-derived (having Th/U ratios: > 0.5) and metamorphic origin for Group II-derived (Th/U < 0.07) zircons, respectively. Zircon Hf isotope data, obtained from the same dated spots, show positive initial 176Hf/177Hf isotopic ratios referred to as "ƐHf(t)" of around + 10 in Group I eclogites; + 7 in Group II eclogites; and + 8 in felsic gneisses zircons, respectively, thus indicate a juvenile mantle source for the protolith rocks (Panjal Traps) with almost no contribution from the ancient crustal material. The similar ƐHf(t) values, identical protolith ages and trace element compositions of zircons in felsic (granites or rhyolites) and mafic (basalt and dolerite) rocks attest to a bimodal magmatism accounting for the Panjal Traps during the Permian. Later, during India-Asia collision in Eocene times, both the felsic and mafic lithologies were subducted to mantle-depths (> 90 km: coesite-stable) and experienced ultrahigh-pressure metamorphism before their final exhumation.

  15. Mantle metasomatism and alkaline magmatism

    SciTech Connect

    Morris, E.M.; Pasteris, J.D.

    1987-01-01

    The 24 papers in this volume were presented at the Symposium on Alkalic Rocks and Kimberlites, held at the Geological Society of America South-Central Section meeting, April 15-16, 1985, in Fayetteville, Arkansas. This two-day symposium included a total of 55 papers dealing with mantle metasomatism and the origin of alkaline magmas, kimberlites and related rocks, alkalic rocks in oceanic settings, and alkalic rocks in continental settings. Papers presented at this symposium heightened the awareness that alkaline magmatism may occur in virtually all tectonic and petrologic settings. Two papers deal specifically with data from California sites. These research papers on aspects of alkaline rock petrology contribute to a better insight into the complex diversity of alkalic systems, the mantle processes which precede and accompany alkaline magmatism, and kimberlitic and oceanic systems. Abstracts of all papers presented at the symposium and not published in full in the volume are included in an appendix to show the broad scope of data presented at the meeting.

  16. The Visible Human Data Sets (VHD) and Insight Toolkit (ITk): Experiments in Open Source Software

    PubMed Central

    Ackerman, Michael J.; Yoo, Terry S.

    2003-01-01

    From its inception in 1989, the Visible Human Project was designed as an experiment in open source software. In 1994 and 1995 the male and female Visible Human data sets were released by the National Library of Medicine (NLM) as open source data sets. In 2002 the NLM released the first version of the Insight Toolkit (ITk) as open source software. PMID:14728278

  17. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    NASA Astrophysics Data System (ADS)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  18. Neoproterozoic granitic magmatism along the Ailao Shan-Red River belt: U-Pb zircon geochronology, Lu-Hf isotopes and tectonic implications

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Liu, Junlai; Qi, Yinchuan; Fan, Wenkui; Burg, Jean-Pierre

    2017-04-01

    The Neoproterozoic tectonic characteristics of the high grade metamorphic massifs along the Ailao Shan-Red River belt are debated. Controversies are on 1) whether the massifs were parts of the Yangtze block to the northeast or 2) parts of the Indochina block to the southwest and 3) the magmatic rocks represent arc magmatism or rifting linked to break-up of the Rodinia supercontinent. This study presents new and precise LA-ICP-MS U-Pb age dating and geochemical and Hf isotopic analyses of granitic intrusions along the Ailao Shan-Red River belt in an attempt to elucidate the Neoproterozoic magmatic evolution of this belt. In general, zircon U-Pb ages of the studied granitic rocks are between 804 and 724Ma, with a weighted mean of ca. 770 Ma, thus confirming Neoproterozoic magmatism. All samples plot into the peraluminous domain, indicating a major crustal resource. In consistency with these conclusions, most of the Neoproterozoic granitoids show negative ɛHf (t) values near the chondrite line. A few samples possess low positiveɛ Hf (t) values, being signatures of mantle sources. It is therefore concluded that the Neoproterozoic magmatism along the ASRR belt originated from mantle sources with important contributions through anatexis of ancient lower crust. Discrimination diagrams of tectonic settings suggest continental arc magmatism. Neoproterozoic magmatism is widely reported along the margins of the Yangtze block, especially in the northern margin. However, there are fewer reports about Neoproterozoic magmatic activity along the southern and southwestern margins. The geochronology spectrum and geochemisty of the studied Neoproterozoic granitic rocks are similar to those along the western margin of the Yangtze block. The present study, combined with previous results, suggests that oceanic subduction contributed to the generation of the arc magmatisms along the western and southwestern margin of the Yangtze plate and along the ASRR belt (as part of the

  19. Physics Mining of Multi-Source Data Sets

    NASA Technical Reports Server (NTRS)

    Helly, John; Karimabadi, Homa; Sipes, Tamara

    2012-01-01

    Powerful new parallel data mining algorithms can produce diagnostic and prognostic numerical models and analyses from observational data. These techniques yield higher-resolution measures than ever before of environmental parameters by fusing synoptic imagery and time-series measurements. These techniques are general and relevant to observational data, including raster, vector, and scalar, and can be applied in all Earth- and environmental science domains. Because they can be highly automated and are parallel, they scale to large spatial domains and are well suited to change and gap detection. This makes it possible to analyze spatial and temporal gaps in information, and facilitates within-mission replanning to optimize the allocation of observational resources. The basis of the innovation is the extension of a recently developed set of algorithms packaged into MineTool to multi-variate time-series data. MineTool is unique in that it automates the various steps of the data mining process, thus making it amenable to autonomous analysis of large data sets. Unlike techniques such as Artificial Neural Nets, which yield a blackbox solution, MineTool's outcome is always an analytical model in parametric form that expresses the output in terms of the input variables. This has the advantage that the derived equation can then be used to gain insight into the physical relevance and relative importance of the parameters and coefficients in the model. This is referred to as physics-mining of data. The capabilities of MineTool are extended to include both supervised and unsupervised algorithms, handle multi-type data sets, and parallelize it.

  20. Syn- and post-orogenic alkaline magmatism in a continental arc: Along-strike variations in the composition, source, and timing of igneous activity in the Ross Orogen, Antarctica

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, G.; Cottle, J. M.

    2013-12-01

    Neoproterozoic-Paleozoic convergence and subduction along the margin of East Gondwana (Australia, New Zealand, Antarctica) resulted in a belt of deformed and metamorphosed sedimentary rocks and batholith-scale igneous intrusions comparable in size to the present day Andes. Mid-crustal levels of this belt, known as the Ross Orogen in Antarctica, are exposed in the basement of the Cenozoic Transantarctic Mountains, providing snapshots of the intrusive magma system of a major continental arc. Whole rock major- and trace-element geochemistry, Hf isotopes in zircon, and U-Pb geochronology have identified along-strike variations in the composition, source, and timing of magmatism along ~200 km of the southern Victoria Land segment of the orogen. There is an apparent younging of the igneous activity from south to north. New U-Pb ages for intrusive rocks from the Koettlitz Glacier Alkaline Province (KGAP) reveal that igneous activity spanned ca. 565-500 Ma (~30 m.y. longer than previously recognized), while immediately to the north in the Dry Valleys area most igneous activity was confined to a relatively short period (ca. 515-495 Ma). Alkaline and subalkaline igneous rocks occur in both the Dry Valleys area and the KGAP, but alkaline rocks in the Dry Valleys are restricted to the latest phase of magmatism. Na-alkaline rocks in the KGAP, including nepheline syenites, carbonatites, and A-type granites, range in age from ca. 545-500 Ma and overlap in age with more typical subduction/collision-related I- and S-type granites elsewhere in southern Victoria Land. Strong enrichments in the LILE and LREE and high LILE/HFSE and LREE/HREE of samples from the KGAP reveal a source enriched in aqueous-mobile elements, potentially a strongly metasomatized mantle wedge beneath the arc. In the Dry Valleys area, rocks with alkali-calcic composition constitute only the youngest intrusions (505-495 Ma), apparently reflecting a shift to post-orogenic magmatism. Zircons from Dry Valleys

  1. Role of lithosphere vs. asthenosphere on intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Medard, E.; Righter, K.

    2016-12-01

    Continental and oceanic intraplate magmatism is triggered by tectonic extension or / and by the presence of a hot spot. Most of the magmas are alkali basalts and basanites, and their differentiation products (trachytes, rhyolites, phonolites and intermediate compositions); however, melilitites, nephelinites, carbonatites and potassic lavas have been observed in many intraplate volcanic provinces. Although the role of volatiles is obvious, the origin of these exceptional melts is poorly understood, as well as their relationship with common alkaline magmas. Simple melting of dry or hydrous peridotite at mantle pressures is not capable of producing alkali basalts. Petrogenetic links have, therefore, been evoked between melilitites and these basalts. The formation of carbonatites and potassic lavas is still matter of debate. We present a new comprehensive model of intraplate magmatism integrating the composition of all igneous rocks observed at a (currently) intraplate setting, the French Massif Central (FMC), where alkaline magmatism has been recorded since at least 30 Ma in relation with a W-E tectonic extension. Major element analysis of silicic melt inclusions and pools with high Mg# (similar to basalts) brings constraints on the respective involvement of lithospheric and asthenospheric lherzolite/harzburgite sources in the generation of these magmas, considering all the fluids present (H, C, S, F, Cl, O). Combined with the existing literature, these new data are used to reconstruct the magmatic history and mantle evolution from 360 Ma (the start of the reversion of the N-S Rhenohercynian subduction and the age of the first potassic magmas in the FMC) to the recent intraplate volcanic stage. In addition, iron oxidation measurements and oxybarometry on mantle xenoliths allow to constrain the evolution of the Upper Lithospheric Mantle. The contribution of Variscan subduction material to the intraplate magmatism is also assessed. This model shows (1) the persistence

  2. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics

    NASA Astrophysics Data System (ADS)

    Yang, Li-Qiang; Deng, Jun; Dilek, Yildirim; Meng, Jian-Yin; Gao, Xue; Santosh, M.; Wang, Da; Yan, Han

    2016-02-01

    We report new whole-rock geochemical and Sr-Nd-Pb isotope and zircon U-Pb age and Hf isotope data of the Hongshan intrusive suite in the Triassic Yidun Terrane, eastern Tibet. These data allow us to explore the possible causative links between the magmatism and the coeval Cu-Mo mineralization in the region. The Hongshan intrusive rocks have SiO2 of 65.06-73.60 wt.%, K2O of 3.17-6.41 wt.%, and P2O5 of 0.11-0.39 wt.%, enriched in Rb, Th, and U, and depleted in Ba, Sr, P, Ti, Nb, and Eu. These rocks are of high-K calc-alkaline to shoshonite series, showing geochemical signatures of metaluminous to slightly peraluminous I-type granite. Magmatic zircons separated from four samples yielded weighted mean 206Pb/238U ages of 79 ± 0.7 Ma, 78 ± 0.5 Ma, 77 ± 0.8 Ma, and 76 ± 0.8 Ma. Low MgO (0.42-1.47 wt%), low HREE and Y, varying εHf(t) (- 9.5 to - 2.2), and negative εNd(t) (- 7.7 to - 5.8) suggest that magmas of the late Cretaceous Hongshan plutons were most likely generated by partial melting and mixing of ~ 20% juvenile lower crust-derived melts, represented by the ca. 215 Ma basaltic andesite from the southern Yidun Terrane, with ancient basement-derived melts represented by the Baoshan S-type granitic melts from the Zhongza Block. We consider that partial melting processes are capable of removing chalcophile elements (such as Cu) and leaving siderophile metals (such as Mo) as residue in the lower crust of the Yidun Terrane, consequently inducing porphyry Cu-Mo mineralization. This consideration enables us to propose that the Triassic subduction-modified, copper-rich lithosphere was crucial for the giant copper mineralization that occurred in the Yidun Terrane during the late Cretaceous. Lithospheric-scale, transtensional faulting, developed as a result of collision-induced escape tectonics in SE Tibet, triggered asthenospheric upwelling, which in turn caused intra-plate extension and magmatism during the late Cretaceous, forming the Hongshan and coeval I

  3. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; Wooden, J. L.; Cheadle, M. J.; John, B. E.

    2015-12-01

    Over 5300 recent SHRIMP-RG analyses of trace elements (TE) in igneous zircon have been compiled and classified based on their original tectono-magmatic setting to empirically evaluate "geochemical fingerprints" unique to those settings. Immobile element geochemical fingerprints used for lavas are applied with the same rational to zircon, including consideration of mineral competition on zircon TE ratios, and new criteria for distinguishing mid-ocean ridge (MOR), magmatic arc, and ocean island (and other plume-influenced) settings are proposed. The elemental ratios in zircon effective for fingerprinting tectono-magmatic provenance are systematically related to lava composition from equivalent settings. Existing discrimination diagrams using zircon U/Yb versus Hf or Y do not distinguish TE-enriched ocean island settings (i.e., Iceland, Hawaii) from magmatic arc settings. However, bivariate diagrams with combined cation ratios involving U-Nb-Sc-Yb-Gd-Ce provide a more complete distinction of zircon from these settings. On diagrams of U/Yb versus Nb/Yb, most MOR, ocean island, and kimberlite zircon define a broad "mantle-zircon array"; arc zircon defines a parallel array offset to higher U/Yb. Distinctly low U/Yb ratios of MOR zircon (typically <0.1) mirror their parental magmas and long-term incompatible element depletion of the MORB mantle. Plume-influenced sources are distinguished from MOR by higher U/Yb, U/Nb, Nb/Yb, and Nb/Sc. For zircon with U/Yb > 0.1, high Sc/Yb separates arc settings from low-Sc/Yb plume-influenced sources. The slope of scandium enrichment trends in zircon differ between MOR and continental arc settings, likely reflecting the involvement of amphibole during melt differentiation. Scandium is thus also critical for discriminating provenance, but its behavior in zircon probably reflects contrasting melt fractionation trends between tholeiitic and calc-alkaline systems more than compositional differences in primitive magmas sourced at each

  4. Phanerozoic magmatic tempos of North China

    NASA Astrophysics Data System (ADS)

    Cope, Tim

    2017-06-01

    Detrital zircons from northeast China record cyclic magmatism along the northern and eastern margins of the North China block during late Paleozoic time and Mesozoic time, respectively. The late Paleozoic zircons record three magmatic flare-ups with a period of ∼60 m.y. that occurred within a magmatic arc constructed along the Paleoasian (northern) margin of North China, and are accompanied by negative εHf (t) excursions representing shortening and increased crustal melting over the duration of each flare-up. The intervening magmatic lulls are accompanied by rapid positive εHf (t) excursions signifying influxes of juvenile magma into the arc, probably during extension and foundering of underlying melt residua. The lack of similar isotopic patterns in zircons derived from contemporaneous intrusions into older continental settings inboard of the arc indicate that this process was restricted to the arc itself. Mesozoic magmatism in North China occurred along the Paleo-Pacific margin following closure of the Paleoasian Ocean, and exhibits a ∼50 m.y. periodicity that is out-of-phase with that of the Paleozoic arc. Although the tectonic setting of North China during Mesozoic time is complex and still controversial, it is possible that this younger periodicity is governed by similar processes as those that dominated the Paleozoic arc. This is a testable hypothesis that warrants further attention. Crustal shortening was widespread in North China during Mesozoic time, and documented lithosphere removal events in eastern North China occurred during the Mesozoic magmatic lulls. Lithospheric thickening/foundering cyclicity, well-documented in Cordilleran arc systems, may be a common process in continental arcs through space and time.

  5. What olivine and clinopyroxene mineral chemistry and melt inclusion study can tell us about magmatic processes in a post-collisional setting. Examples from the Miocene-Quaternary East Carpathian volcanic chain, Romania

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Mason, Paul R. D.

    2015-04-01

    Calc-alkaline magmatism occurred along the easternmost margin of Tisia-Dacia at the contact with East European Platform forming the Călimani-Gurghiu- Harghita volcanic chain. Its northern part represented by Călimani-Gurghiu-North Harghita (CGNH hereafter) is showing a diminishing age and volume southwards at 10-3.9 Ma. This marks the end of subduction-related magmatism along the post-collision front of the European convergent plate margin. Magma generation was associated with progressive break-off of a subducted slab and asthenosphere uprise. Fractionation and crustal assimilation were typical CGNH volcanic chain. The rocks show homogeneous 87Sr/86Sr, but a linear trend of Th/Y vs Nb/Y that reflects a common mantle source considered to be the metasomatized lithospheric mantle wedge. Fractionation and/or assimilation-fractional crystallization are characteristic for each main volcanic area, suggestive of lower to middle crust magma chamber processes. The South Harghita (SH) volcanic area represents direct continuation of the CGNH volcanic chain. Here at ca. 3 Ma following a time-gap, magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma). This volcanism was interrupted at ~1.6-1.8 Ma by simultaneous generation of Na- and K-alkalic varieties in nearby areas, suggestive of various sources and melting mechanisms, closely related to the hanging block beneath Vrancea seismic zone. The specific geochemistry is revealed by higher Nb/Y and Th/Y ratios and lower 87Sr/86Sr as compared to the CGNH chain. Identification of primitive magmas has been difficult despite the fact that this volcanic area contains more basalts than any other in the Carpathian-Pannonian region. Since the most primitive rocks represent the best opportunity to identify the trace element composition of the mantle source beneath the East Carpathian volcanic chain we use mineral and melt inclusions in olivine and composition of the most primitive

  6. Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets

    NASA Astrophysics Data System (ADS)

    Becek, K.; Borkowski, A.

    2012-07-01

    In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The

  7. Modelling the role of magmatic intrusions in the post-breakup thermal evolution of Volcanic Passive Margins

    NASA Astrophysics Data System (ADS)

    Peace, Alexander; McCaffrey, Ken; Imber, Jonny; van Hunen, Jeroen; Hobbs, Richard; Gerdes, Keith

    2013-04-01

    Passive margins are produced by continental breakup and subsequent seafloor spreading, leaving a transition from continental to oceanic crust. Magmatism is associated with many passive margins and produces diagnostic criteria that include 1) abundant breakup related magmatism resulting in a thick igneous crust, 2) a high velocity zone in the lower crust and 3) seaward dipping reflectors (SDRs) in seismic studies. These Volcanic Passive Margins (VPMs) represent around 75% of the Atlantic passive margins, but beyond this high level description, these magma-rich settings remain poorly understood and present numerous challenges to petroleum exploration. In VPMs the extent to which the volume, timing, location and emplacement history of magma has played a role in controlling heat flow and thermal evolution during margin development remains poorly constrained. Reasons for this include; 1) paucity of direct heat flow and thermal gradient measurements at adequate depth ranges across the margins, 2) poor onshore exposure 3) highly eroded flood basalts and 4) poor seismic imaging beneath thick offshore basalt sequences. As a result, accurately modelling the thermal history of the basins located on VPMs is challenging, despite the obvious importance for determining the maturation history of potential source rocks in these settings. Magmatism appears to have affected the thermal history of the Vøring Basin on the Norwegian VPM, in contrast the effects on the Faeroe-Shetland Basin was minimal. The more localised effects in the Faeroe-Shetland Basin compared to Vøring Basin may be explained by the fact that the main reservoir sandstones appear to be synchronous with thermal uplift along the basin margin and pulsed volcanism, indicating that the bulk of the magmatism occurred at the basin extremities in the Faeroe-Shetland Basin, where its effect on source maturation was lessened. Our hypothesis is that source maturation occurs as a result of regional temperature and pressure

  8. A multi-phase level set framework for source reconstruction in bioluminescence tomography

    SciTech Connect

    Huang Heyu; Qu Xiaochao; Liang Jimin; He Xiaowei; Chen Xueli; Yang Da'an; Tian Jie

    2010-07-01

    We propose a novel multi-phase level set algorithm for solving the inverse problem of bioluminescence tomography. The distribution of unknown interior source is considered as piecewise constant and represented by using multiple level set functions. The localization of interior bioluminescence source is implemented by tracing the evolution of level set function. An alternate search scheme is incorporated to ensure the global optimal of reconstruction. Both numerical and physical experiments are performed to evaluate the developed level set reconstruction method. Reconstruction results show that the proposed method can stably resolve the interior source of bioluminescence tomography.

  9. Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    NASA Astrophysics Data System (ADS)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Zucchetti, Márcia; Noce, Carlos; Baltazar, Orivaldo; da Silva, Luiz; Pinto, Claiton

    2001-07-01

    Quadrilátero Ferrífero region. Deformation related to the west-vergent thrust-and-fold belts of the Brasiliano orogeny is recognized at the eastern margin of the Quadrilátero Ferrífero region. Defining structures as Archean, Trans-Amazonian, and Brasiliano in age is still difficult, although it is accepted that the gold-related Archean structures are best preserved in the central and western parts of the Quadrilátero Ferrífero. The principal source for the Rio das Velhas sedimentary rocks was probably the trondhjemite-tonalite-granodiorite crust that formed in multiple episodes after ~3,500 Ma, and was widely metamorphosed and intruded at 2,880-2,850 Ma. Felsic volcanism at 2,772±6 Ma formed the Rio das Velhas greenstone belt. The volcanic succession was a source for some overlying sedimentary rock units, as indicated by the presence of detrital zircons dated at 2,777-2,771 Ma. Strongly foliated granitic plutons range between 2,712+5/-4 and 2,698±18 Ma. The age of gold mineralization is inferred between 2,698 and 2,670 Ma. A metamorphic overprint during the Trans-Amazonian orogeny is estimated at ~2,050 Ma. There is evidence of local isotopic disturbances because of post-Trans-Amazonian tectonic events, at ~1.8-1.7 and 0.6 Ga.

  10. Chromites from the Gogoł;ów-Jordanów Serpentinite Massif (SW Poland) - evidence of the arc setting magmatism

    NASA Astrophysics Data System (ADS)

    Wojtulek, Piotr; Puziewicz, Jacek; Ntaflos, Theodoros; Bukała, Michał

    2014-05-01

    The Gogołów-Jordanów Serpentinite Massif (GJSM) is a peridotitic member of the Variscan Ślęża Ophiolite (SW Poland). Chromitite veinlets and pockets occur in the central part of the massif in the Czernica Hill area within completely serpentinized rocks. Chromitites consist of rounded chromite grains up to 4 cm and chlorite filling the interstices. The veins are embedded in serpentine-olivine-chlorite aggregates. Chemical composition of chromite occurring in chromitites defines two varieties. Chromite I (Cr# = 0.49 - 0.58) contains 23.32 - 28.36 wt.% Al2O3, 40.29 - 48.10 wt.% Cr2O3, 15.10 - 15.50 wt.% FeO, 14.50 - 15.50 wt.% MgO and ~0.1 wt.% TiO2. Chromite II (Cr# = 0.71 - 0.73) contains 13.83 - 15.24 wt.% Al2O3, 54.85 - 56.65 wt.% Cr2O3, 16.71 - 18.04 wt.% FeO, 10.62 - 11.59 wt.% MgO and 0.1 wt.% TiO2. Chromite grains are composed mostly of chromite I. Chromite II forms irregular spongy domains up to 150 µm, located at fissures or forming grain rims. The bulk chromitite composition of the massive ores reveals Rb, Ba, Pb and Sb enrichment relative to primitive mantle; Pt and Pd (up to 36 ppb) are also enriched relative to primitive mantle. Other phases coexisting with chromite are chlorite and olivine. Chlorite (Fe# = 0.02) contains 17.5 - 23.0 wt.% Al2O3, 0.6 - 1.8 wt.% Cr2O3 and 31.8 - 34.2 wt.% MgO. Olivine (Fo93.5-96.2) contains 0.44- 0.51 wt.% NiO. Olivine grains are zoned - the low-forsteritic cores are surrounded by high-forsteritic domain. Chromite II and chlorite are secondary phases and were probably formed due to greenschist facies metamorphism. Chromitites are cumuletes of melt blocked during its flow through peridotitic host. Low TiO2 content and moderate chromian number of the GJSM chromitites is typical for chromian spinels originated from melt derived from back arc depleted source (cf. Python et al., 2008, Gonzalez-Jimenez, 2011). The GJSM chromitites are rich in Al and poor in Pt and Pd what is typical for chromitites occurring in the

  11. Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: Evidence from the Sangehu adakitic rocks

    NASA Astrophysics Data System (ADS)

    Liu, Han; Wang, Bao-di; Ma, Long; Gao, Rui; Chen, Li; Li, Xiao-bo; Wang, Li-quan

    2016-12-01

    The geodynamic setting of Late Triassic magmatic activity along the Longmu Co-Shuanghu suture zone (LSSZ) in central Qiangtang, Tibet is a matter of debate. This paper presents zircon LA-ICP-MS U-Pb ages, zircon Hf isotopic compositions, and whole-rock geochemical data for the Sangehu (SGH) granitic intrusion in central Qiangtang, and addresses the petrogenesis of Late Triassic magmatism, and the history of collision between the northern and southern Qiangtang terranes. The SGH pluton consists mainly of biotite adamellite with mafic microgranular enclaves (MMEs), and small amounts of K-feldspar granite. The biotite adamellite, MMEs, and K-feldspar granite give ages of 207.8 ± 3.0 Ma, 212.4 ± 31 Ma, and 211.6 ± 3.8 Ma, respectively. The MMEs show magmatic textures and acicular apatite, and are coeval with the host biotite adamellite, suggesting they were produced by magma mixing. All samples from the SGH pluton show high Sr and low Y contents, and positive Eu anomalies, similar to adakitic rocks. The high K2O contents and low Mg#, Cr, and Ni contents, and enriched Hf isotopic characteristics of the zircons indicate that these magmas were derived from the partial melting of thickened crust. However, the whole-rock geochemical data and zircon Hf isotopic compositions also reveal heterogeneity at the source. The combined magmatic and metamorphic records suggest that Triassic magmatic activity in central Qiangtang was closely related to the collision of the northern and southern Qiangtang terranes. The large-scale Late Triassic (225-200 Ma) magmatic event in central Qiangtang may have resulted from the breakoff of the Longmu Co-Shuanghu Tethys Ocean lithospheric slab in the early Late Triassic (236-230 Ma). The Late Triassic magmatic rocks, including adakitic rocks, are coeval with retrograde high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in central Qiangtang, and show characteristics of syn-exhumation magmatism. The early adakitic rocks (>220 Ma

  12. Uralian magmatism: an overview

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.; Montero, P.; Borodina, N. S.; Pushkarev, E. V.; Smirnov, V. N.; Bea, F.

    1997-07-01

    This paper is an attempt to summarize current knowledge of Uralian magmatism, focusing on those aspects relevant for understanding its geodynamic evolution. The Urals consist of three tectonomagmatic domains: a Suture Sector, in the west, and two N-S imbricated Island-Arc Continental Sectors in the east. The Suture Sector comprises lower Palaeozoic mafic-ultramafic complexes which show eastward impoverishment in LILE, thus reflecting the transition of the subcontinental lithospheric mantle of the Russian plate to the suboceanic lithospheric mantle of the subducted Uralian palaeo-ocean. The two Island-Arc Continental Sectors represent the transition from oceanic to continental environments in the middle and south Urals. Collisional magmatism started in the Silurian and persisted till the Permian, migrating progressively eastward and increasing in abundance of LILE and {87Sr }/{86Sr initial}. Magmatic polarity is very similar to that of modern subduction zones and indicates that the subducted slab was dipping eastward during that period. The Northern and Southern Island-Arc Continental Sectors show many similarities regarding the nature and spatial-temporal distribution of magmatism, but there are also some important differences which probably indicate somewhat different geodynamic regimes. In the Northern Sector, Carboniferous tonalite-granodiorite batholiths have features compatible with an origin by melting of the oceanic crust in the subducted slab. In the Southern Sector, however, Carboniferous tonalite-granodiorite batholiths have features more consistent with a melting event within the lower continental crust above the subduction zone than with melting within the subducted slab. Upper Carboniferous-Permian granites have high {87Sr }/{86Sr initial} in the north (e.g., 0.7120 in the Murzinka batholith) but very low {87Sr }/{86Sr initial} in the south (e.g., 0.7045 in the Dzhabyk batholith) in spite of rocks from both batholiths being equally peraluminous and

  13. Testing Magmatic Emplacement Mechanisms in the Balcones Igneous Province of Texas

    NASA Astrophysics Data System (ADS)

    Griffin, W. R.; Bergman, S. C.; Leybourne, M. I.

    2005-12-01

    Various intraplate volcanic fields, large igneous provinces, and continental flood basalt provinces have long been considered to be the result of mantle plumes interacting with the lithosphere, an idea supported by the recognition that the geochemical and isotopic compositions of intraplate magmatism differ significantly from those of mid-ocean ridge and arc settings. However, not all intraplate magmatism fits the mantle plume model. Ad-hoc refinements to the original models of Wilson and Morgan to explain anomalous characteristics has prompted a global debate within the geoscience community ranging from the number of mantle plumes that exist, to the very existence of mantle plumes. An outgrowth of this ongoing debate has been the proposal of a number of alternative models that attempt to explain the existence of intraplate magmatism in the absence of a mantle plume source. The Balcones Igneous Province (BIP) of south central Texas provides an excellent opportunity to investigate magmatic processes that occur in a continental intraplate setting. An integrated field, geochemical, and geochronologic study is in progress in the BIP to understand the petrogenetic processes and magmatic emplacement mechanisms responsible for its formation. The BIP is an arcuate zone of Late Cretaceous (86-77 Ma) intraplate volcanic and intrusive igneous bodies approximately 400 km in length by 100 km in width. Initial geochemical analyses (n=12; major element, trace element, rare-earth element, radiogenic isotope (Sr, Nd, Pb) and mineral composition) from the BIP suggest magmatism resulted from small degrees of partial melting in the garnet stability zone of a depleted mantle source that had experienced re-enrichment in incompatible trace elements. Although previous workers have suggested BIP magmatism may be related to OIB type sources, it is likely that several upper mantle magmatic processes were involved. Initial geochronological analyses (n=7; U/Pb SHRIMP, 40Ar/39Ar) from the BIP

  14. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: Record of a major change in the Caribbean island arc magma sources

    NASA Astrophysics Data System (ADS)

    Escuder Viruete, J.; Contreras, F.; Stein, G.; Urien, P.; Joubert, M.; Pérez-Estaún, A.; Friedman, R.; Ullrich, T.

    2007-12-01

    Located in the Cordillera Central of the Dominican Republic, the Late Cretaceous Tireo Fm (TF) records a major change of the magma sources in the Caribbean island arc. It comprises a > 3 km thick sequence of arc-related volcanic and volcano-sedimentary rocks with variable geochemical characteristics. Combined detailed mapping, stratigraphy, geochemistry and U-Pb/Ar-Ar geochronology show that the volcanic rocks of the Tireo Fm include two main volcanic sequences. The lower volcanic sequence is dominated by monotonous submarine vitric-lithic tuffs and volcanic breccias of andesite to basaltic andesite, with minor interbedded flows of basalts and andesites. Fossil and (U-Pb and 40Ar- 39Ar) geochronological data show that arc magmatism in the lower sequence began to accumulate before ˜ 90 Ma, from the Aptian to Turonian. These rocks constitute an island arc tholeiitic suite, derived from melting by fluxing of a mantle wedge with subduction-related hydrous fluids. The upper volcanic sequence is characterized by a spatial and temporal association of adakites, high-Mg andesites, and Nb-enriched basalts, which collectivelly define a shift in the composition of the subduction-related erupted lavas. A dacitic to rhyolitic explosive volcanism with subaerial and episodic aerial eruptions, and sub-volcanic emplacements of domes, characterize mainly this stratigraphic interval. The onset of this volcanism took place at Turonian-Coniacian boundary and continued in the Santonian to Lower Campanian, with minor events in the Late Campanian. Adakites represent melts of the subducting slab, magnesian andesites the product of hybridization of adakite liquids with mantle peridotite, and Nb-enriched basalts melts of the residue from hybridization. We propose a model of oblique ridge subduction at ˜ 90 Ma and possibly subsequent slab window formation, as principal cause of magmatic variations recorded in the Caribbean island arc, above a southwestern-dipping subduction zone.

  15. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico

    NASA Astrophysics Data System (ADS)

    Martínez-Serrano, Raymundo G.; Schaaf, Peter; Solís-Pichardo, Gabriela; Hernández-Bernal, Ma. del Sol; Hernández-Treviño, Teodoro; Julio Morales-Contreras, Juan; Macías, José Luis

    2004-11-01

    Volcanic activity at Nevado de Toluca (NT) volcano began 2.6 Ma ago with the emission of andesitic lavas, but over the past 40 ka, eruptions have produced mainly lava flows and pyroclastic deposits of predominantly orthopyroxene-hornblende dacitic composition. In the nearby Tenango Volcanic Field (TVF) pyroclastic products and lava flows ranging in composition from basaltic andesite to andesite were erupted at most of 40 monogenetic volcanic centers and were coeval with the last stages of NT. All volcanic rocks in the study area are characterized by a calc-alkaline affinity that is consistent with a subduction setting. Relatively high concentrations of Sr (>460 ppm) coupled with low Y (<21 ppm), along with relatively low HREE contents and Pb isotopic values similar to MORB-EPR, suggest a possible geochemical adakitic signature for the majority of the volcanic rocks of NT. The HFS- and LIL-element patterns for most rocks of the TVF suggest a depleted source in the subcontinental lithosphere modified by subduction fluids, similar to most rocks from the Trans-Mexican Volcanic Belt (TMVB). The isotopic compositions are similar for volcanic rocks of NT and TVF regions ( 87Sr/ 86Sr: 0.703853-0.704226 and 0.703713-0.704481; ɛNd: +4.23-+5.34 and +2.24-+6.85; 206Pb/ 204Pb: 18.55-18.68 and 18.58-18.69; 207Pb/ 204Pb: 15.54-15.62 and 15.56-15.61; 208Pb/ 204Pb: 38.19-38.47 and 38.28-38.50, respectively), suggesting a MORB-like source with low crustal contamination. Metamorphic xenoliths from deeper continental crust beneath NT volcano show isotopic patterns similar to those of Grenvillian rocks of north-central Mexico ( 87Sr/ 86Sr: 0.715653-0.721984, ɛNd: -3.8 to -7.2, 206Pb/ 204Pb: 18.98-19.10, 207Pb/ 204Pb: 15.68-15.69, 208Pb/ 204Pb: 39.16-39.26 and Nd model age (T DM) of 1.2-1.3 Ga). In spite of a thick continental crust (>45 km) that underlies the volcanoes of the study area, the geochemical and isotopic patterns of these rocks indicate low interaction with this crust. NT

  16. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  17. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2014-05-01

    The fluid-magmatic activity within modern and Holocene volcanic centers of The Greater Caucasus is considered. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatigorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric sounding, temperature variations measured in carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures. It has been shown, that observed degradation and the rate of melting for the glaciers on the volcano's eastern slope are related both to climatic variations and endogenic heat flux. In the area of Caucasus Mineral Waters (Pyatigorsk volcanic center) the annular zonality of structural, petro-geochemical, geothermal, and hydrochemical features has been found. The likelihood of existence of peripheral magmatic source at depth of 9 - 15 km is suggested. The relation between hydro-chemical properties of Caucasus Mineral Waters and structural as well as petrologic and geochemical features of the fluid-magmatic system of the Pyatigorsk volcanic center is determined and discussed.

  18. Dissolution of an emplaced source of DNAPL in a natural aquifer setting.

    PubMed

    Rivett, Michael O; Feenstra, Stanley

    2005-01-15

    Field-scale dissolution of a multicomponent DNAPL (dense nonaqueous-phase liquid) source intentionally emplaced below the water table is evaluated in a well-characterized natural aquifer setting. The block-shaped source contained 23 kg of a trichloromethane, trichloroethene, and perchloroethene mixture homogeneously distributed at 5% saturation of pore space. Dissolution was monitored for 3 yr via down-gradient samplers (1-m fence) and occasional intra-source sampling. Although intra-source equilibrium dissolution was shown and endorsed by supporting modeling and literature lab data, less than equilibrium concentrations were predominantly monitored in the 1-m fence. This was ascribed to significant by-passing of the source by groundwater flow due to its low permeability relative to the aquifer and associated dilution of concentrations emitted from the source. Heterogeneous source dissolution occurred despite the relative homogeneity of the source and aquifer and was ascribed to dissolution fingering, which has not been previously field-demonstrated. Bulk bypass of groundwater flow around the source zone caused slow dissolution rates, with 77% of the source remaining after 3 yr and a projected longevity of approximately 25 yr. Observed dissolution fingering would have significantly increased longevity as it increasingly caused intra-source bypass of remaining DNAPL. Our dissolution interpretations were endorsed by additional data collected after 6 yr during source remediation via permanganate oxidation.

  19. The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic-hydrothermal contributions

    NASA Astrophysics Data System (ADS)

    Huston, David L.; Relvas, Jorge M. R. S.; Gemmell, J. Bruce; Drieberg, Susan

    2011-07-01

    Assessment of geological, geochemical and isotopic data indicates that a significant subgroup of volcanic-hosted massive sulphide (VHMS) deposits has a major or dominant magmatic-hydrothermal source of ore fluids and metals. This group, which is typically characterised by high Cu and Au grades, includes deposits such as those in the Neoarchean Doyon-Bousquet-LaRonde and Cambrian Mount Lyell districts. These deposits are distinguished by aluminous advanced argillic alteration assemblages or metamorphosed equivalents intimately associated with ore zones. In many of these deposits, δ34Ssulphide is low, with a major population below -3‰; δ34Ssulphate differs from coexisting seawater and Δ34Ssulphate-sulphide ˜ 20-30‰. These characteristics are interpreted as the consequence of disproportionation of magmatic SO2 as magmatic-hydrothermal fluids ascended and cooled and as a definitive evidence for a significant magmatic-hydrothermal contribution. Other characteristics that we consider diagnostic of significant magmatic-hydrothermal input into VHMS ore fluids include uniformly high (>3 times modern seawater values) salinities or very 18O-enriched (δ18O > 5‰) ore fluids. We do not consider other criteria [e.g. variable salinity, moderately high δ18Ofluid (2-5‰), δ34Ssulphide near 0‰, metal assemblages or a spatial association with porphyry Cu or other clearly magmatic-hydrothermal deposits] that have been used previously to advocate significant magmatic-hydrothermal contributions to be diagnostic as they can be produced by non-magmatic processes known to occur in VHMS mineral systems. However, in general, a small magmatic-hydrothermal contribution cannot be excluded in most VHMS systems considered. Conclusive data that imply minimal magmatic-hydrothermal contributions are only available in the Paleoarchean Panorama district where coeval seawater-dominated and magmatic-hydrothermal systems appear to have been physically separated. This district, which is

  20. Contrasted crustal sources as defined by whole-rock and Sr-Nd-Pb isotope geochemistry of neoproterozoic early post-collisional granitic magmatism within the Southern Brazilian Shear Belt, Camboriú, Brazil

    NASA Astrophysics Data System (ADS)

    Florisbal, Luana Moreira; de Assis Janasi, Valdecir; de Fátima Bitencourt, Maria; Stoll Nardi, Lauro Valentim; Heaman, Larry M.

    2012-11-01

    The early phase of post-collisional granitic magmatism in the Camboriú region, south Brazil, is represented by the porphyritic biotite ± hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (˜610 Ma), equigranular, biotite ± muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriú Complex, as indicated by strongly negative ɛNdt (-23 to -24) and unradiogenic Pb (e.g., 206Pb/204Pb = 16.0-16.3; 207Pb/204Pb = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative ɛNdt (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriú Complex.

  1. Particulate matter chemical component concentrations and sources in settings of household solid fuel use.

    PubMed

    Secrest, Matthew H; Schauer, James J; Carter, Ellison; Baumgartner, Jill

    2017-04-12

    Particulate matter (PM) air pollution derives from combustion and non-combustion sources and consists of various chemical species that may differentially impact human health and climate. Previous reviews of PM chemical component concentrations and sources focus on high-income urban settings, which likely differ from the low- and middle-income settings where solid fuel (i.e., coal, biomass) is commonly burned for cooking and heating. We aimed to summarize the concentrations of PM chemical components and their contributing sources in settings where solid fuel is burned. We searched the literature for studies that reported PM component concentrations from homes, personal exposures, and direct stove emissions under uncontrolled, real-world conditions. We calculated weighted mean daily concentrations for select PM components and compared sources of PM determined by source apportionment. Our search criteria yielded 48 studies conducted in 12 countries. Weighted mean daily cooking area concentrations of elemental carbon, organic carbon, and benzo(a)pyrene were 18.8 μg m(-3) , 74.0 μg m(-3) , and 155 ng m(-3) , respectively. Solid fuel combustion explained 29% to 48% of principal component / factor analysis variance and 41% to 87% of PM mass determined by positive matrix factorization. Several indoor and outdoor sources impact PM concentrations and composition in these settings, including solid fuel burning, mobile emissions, dust, and solid waste burning. This article is protected by copyright. All rights reserved.

  2. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar

    NASA Astrophysics Data System (ADS)

    Melluso, L.; Cucciniello, C.; le Roex, A. P.; Morra, V.

    2016-07-01

    The Ankaratra volcanic complex in central Madagascar consists of lava flows, domes, scoria cones, tuff rings and maars of Cenozoic age that are scattered over 3800 km2. The mafic rocks include olivine-leucite-nephelinites, basanites, alkali basalts and hawaiites, and tholeiitic basalts. Primitive samples have high Mg# (>60), high Cr and Ni concentrations; their mantle-normalized patterns peak at Nb and Ba, have troughs at K, and smoothly decrease towards the least incompatible elements. The Ankaratra mafic rocks show small variation in Sr-Nd-Pb isotopic compositions (e.g., 87Sr/86Sr = 0.70377-0.70446, 143Nd/144Nd = 0.51273-0.51280, 206Pb/204Pb = 18.25-18.87). These isotopic values differ markedly from those of Cenozoic mafic lavas of northern Madagascar and the Comoro archipelago, typical Indian Ocean MORB and oceanic basalt end-members. The patterns of olivine nephelinitic magmas can be obtained through 3-10% partial melting of a mantle source that was enriched by a Ca-rich alkaline melt, and that contained garnet, carbonates and phlogopite. The patterns of tholeiitic basalts can be obtained after 10-12% partial melting of a source enriched with lower amounts of the same alkaline melt, in the spinel- (and possibly amphibole-) facies mantle, hence in volumes where carbonate is not a factor. The significant isotopic change from the northernmost volcanic rocks of Madagascar and those in the central part of the island implicates a distinct source heterogeneity, and ultimately assess the role of the continental lithospheric mantle as source region. The source of at least some volcanic rocks of the still active Comoro archipelago may have suffered the same time-integrated geochemical and isotopic evolution as that of the northern Madagascar volcanic rocks.

  3. Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?

    NASA Astrophysics Data System (ADS)

    Farmer, G.

    2011-12-01

    Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred

  4. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  5. Long-term monitoring on active volcanoes. Time relationship between surface variations of temperature and changes of energy release from magmatic sources, verified by multi-parameter and interdisciplinary comparisons

    NASA Astrophysics Data System (ADS)

    Diliberto, I. S.; Bellomo, S.; Camarda, M.; D'Alessandro, W.; Gagliano Candela, E.; Gagliano, A. L.; Longo, M.; Pisciotta, F.; Pecoraino, G.; Vita, F.

    2015-12-01

    The longest records of temperature data from active volcanoes in southern Italy are presented. One dataset comes from continuous monitoring of fumaroles temperature of la Fossa cone of Vulcano (Aeolian Islands), it runs from 1990 to 2014, but the first measurements started in 1984. Another dataset is from thermal aquifers of Mount Etna volcano, since 1989 the acquisition period has been one month, more recently data with hourly frequency are registered on the continuous monitoring network. Both monitoring systems are still ongoing. In 1984 at Vulcano the monitoring of fumaroles suffered of a pioneering approach, our technicians faced for the first time with extreme condition, absence of energy power, temperature range covering up to 2 order of magnitude (from normal ambient to several hundreds °C), steam, corrosive acidic fluids released by fumaroles (Sulphur and Chlorine compounds, Carbon dioxide). The experience matured in the high temperature fumarole field of Vulcano can be useful to support new surveillance programs on other volcanoes around the world. Time series analysis applied to fumaroles temperature highlighted the cyclic character of the main observed variations and major trends, lasting some years. Long term monitoring allowed comparisons of many temperature subsets with other validated geochemical and geophysical dataseries and highlighted common source mechanisms accounting for endogenous processes. Changes in the magma source and/or seismo-tectonic activity are the primary causes of the main time variations. A similar comparative approach has been applied to time series of temperature data recorded on Etna volcano. Time relationships have been found with the eruptive activity, particularly with the emission rates of volcanic products, although the monitoring sites are far from the eruptive vents. The collected data show confirmation about the effectiveness of the geochemical approach to follow in real time changes from the source, even being far

  6. Changes in magmatic oxidation state induced by degassing

    NASA Astrophysics Data System (ADS)

    Brounce, M. N.; Stolper, E. M.; Eiler, J. M.

    2015-12-01

    Temporal variations in the oxygen fugacity (fO2) of the mantle may have been transmitted to Earth's atmosphere and oceans by volcanic degassing. However, it is unclear how redox states of volatiles relate to their source magmas because degassing and assimilation can impact fO2 before or during eruption. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S and laser fluorination measurements of 18O/16O ratios in submarine glasses from two settings where degassing is recorded: 1) submarine glasses from the Reykjanes Ridge as it shoals to Iceland, including subglacial glasses from the Reykjanes Peninsula; and 2) submarine glasses from Mauna Kea recovered by the Hawaii Shield Drilling Program (HSDP). Glasses from both settings are basalts with 5.5-9.9 wt% MgO and 350-1790 ppm S. Submarine Reykjanes glasses are sulfide saturated. Subglacial Reykjanes and HSDP glasses are not sulfide saturated, and S and H2O contents are consistent with S+H2O degassing. Submarine Reykjanes glasses have 18O/16O indistinguishable from MORB and become progressively 18O-depleted as MgO decreases. Subglacial glasses have lower 18O/16O than submarine glasses at a given MgO, but both sample types project to a common 18O/16O near 10 wt% MgO, suggesting that 18O-depletion in these lavas is generated by fractional crystallization and assimilation of an 18O-depleted crustal component. The oxidation state of Fe increases only slightly as 18O/16O decrease, suggesting that the assimilant is not oxidized enough to change magmatic fO2. Fe and S do not oxidize or reduce with decreasing S or H2O, suggesting that relatively reduced magmas at depth degassed S+H2O without changing magmatic fO2, and that the fO2 of these lavas reflect the fO2of their mantle source. The oxidation states of Fe and S in HSDP glasses are broadly correlated and samples with the highest S concentrations are the most oxidized. Both Fe and S reduce with decreasing S and H2O contents. This suggests

  7. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  8. Activities and source mechanisms of volcanic deep low-frequency earthquakes and its implication for deep crustal process in magmatic arc (Invited)

    NASA Astrophysics Data System (ADS)

    Nakamichi, H.

    2013-12-01

    Rocks under upper mantle and lower crustal temperatures and pressures typically deform in a ductile manner, therefore it is difficult to accumulate enough deviatoric stress in rocks to generate brittle failure under this condition. However earthquakes occur at upper mantle and lower crust beneath active volcanoes, and are recognized as volcanic deep low-frequency earthquakes (VDLFs). VDLFs are characterized by mostly low-frequency energy (<5 Hz), emergent arrivals and long-duration codas. VDLF activity observed at depths of 10-50 km in Japan, the Philippines, Alaska and the Western US (Power et al., 2004; Ukawa, 2005; Nichols et al. 20011), has generally been attributed to magma transport in the mid-to-lower crustal and uppermost mantle regions. However because VDLF seismicity is infrequent, with relatively weak and emergent signals, the relationship between deep magma transport and seismic radiation remains poorly understood. Borehole dense seismic observation systems, such as the high-sensitivity seismograph network 'Hi-net' in Japan (Obara et al. 2005), are effective for detecting not only non-VDLFs (Obara, 2002) but also VDLFs. Since 1997 the Japan Meteorological Agency has routinely detected and located DLFs using the Hi-net dataset, and have identified DLFs in and around most quaternary volcanoes in Japan (Takahashi and Miyamura, 2009). Several studies have attempted to estimate source mechanisms of VDLFs in Japan. The first attempt by Ukawa and Ohtake (1987), obtained a single force as the source mechanism of a VDLF beneath Izu-Ohshima by using particle motions of S-waves. Following that work strike-slip type and non-double-couple source mechanisms were obtained using waveform inversions for VDLFs in Northeast Japan (Nishidomi and Takeo 1996; Okada and Hasegawa, 2000). Nakamichi et al. (2003; 2004) estimated the source mechanisms of Mts. Iwate and Fuji through the moment tensor inversion of spectral ratios of body waves from using data from a dense seismic

  9. Magmatic intrusions and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Gulick, Virginia Claire

    1993-01-01

    This dissertation investigates the possible role of hydrothermally driven ground-water outflow in the formation of fluvial valleys on Mars. Although these landforms have often been cited as evidence for a past warmer climate and denser atmosphere, recent theoretical modeling precludes such climatic conditions on early Mars when most fluvial valleys formed. Because fluvial valleys continued to form throughout Mars' geological history and the most Earth-like stream valleys on Mars formed well after the decline of the early putative Earth-like climate, it may be unnecessary to invoke drastically different climatic conditions for the formation of the earliest stream valleys. The morphology of most Martian fluvial valleys indicates formation by ground-water sapping which is consistent with a subsurface origin. Additionally, many Martian fluvial valleys formed on volcanoes, impact craters, near fractures, or adjacent to terrains interpreted as igneous intrusions; all are possible locales of vigorous, geologically long-lived hydrothermal circulation. Comparison of Martian valley morphology to similar features on Earth constrains valley genesis scenarios. Volumes of measured Martian fluvial valleys range from 1010 to 1013 m3. Based on terrestrial analogs, total water volumes required to erode these valleys range from approximately 1010 to 1015 m3. The clustered distribution of Martian valleys within a given terrain type, the sapping dominated morphology, and the general lack of associated runoff valleys all indicate the importance of localized ground-water outflow in the formation of these fluvial systems. An analytic model of a conductively cooling cylindrical intrusion is coupled with the U.S. Geological Survey's numerical ground-water computer code SUTRA to evaluate the magnitude of ground-water outflow expected from magmatically-driven hydrothermal systems on Mars. Results indicate that magmatic intrusions of several 102 km3 or larger can provide sufficient ground

  10. Properties of truly magmatic epidote

    SciTech Connect

    Evans, B.W.; Vance, J.A.

    1985-01-01

    Euhedral phenocrysts of prismatic epidote up to 4mm in length are present (2 modal %) in a sample of porphyritic rhyodacite (69.5% SiO/sub 2/) in the authors undergraduate teaching collection. The sample is believed to be a Tertiary dike-rock from Ward, Boulder County, Colorado. Phenocrysts of corroded quartz, oscillatory-zoned plagioclase (An30-40), kinked and bent biotite, and very pale yellow pleochroic epidote (Fe/(Fe+Al) = 0.21, 2V(-) large, lamellar twinning on (100)) are set in a finely crystalline groundmass of quartz, potash feldspar (Or92) and oligoclase (An26). Rare small euhedral garnets (Al54Pyl3Gr22 Sp8An3) are enclosed in plagioclase and biotite phenocrysts. Some of the epidote prisms have very pale brown allanitic cores, which are oscillatory-zoned and in part embayed. The bulk of the epidote, however, is poor in allanite component. Critical igneous textural features of the allanite-poor epidote are: euhedral form; euhedral oscillatory zoning; clustering of phenocrysts in synneusis relation; and the presence of euhedral inclusions of zircon that apatite. Since phenocrysts constitute only 26 modal % of the rock, crystallization of epidote, in fact, took place relatively early in the rock's cooling history. A description of this rock is provided as a petrographic guide to those using allegedly magmatic epidote in silicic plutonic rocks as an indicator of minimum pressure of crystallization.

  11. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  12. East Asia: Seismotectonics, magmatism and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng; Yu, Sheng; Ohtani, Eiji

    2011-02-01

    In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab-plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.

  13. Magmatism at the lithosphere-asthenosphere boundary in developing transtensional zone: Spatial-temporal change of sources for Quaternary potassic volcanic rocks from Wudalianchi, China

    NASA Astrophysics Data System (ADS)

    Rasskazov, Sergei; Chuvashova, Irina; Sun, Yi-min; Yang, Chen; Xie, Zhenhua

    2016-04-01

    Study of the Pliocene-Quaternary potassic rock series from the northern circuit of the Songliao basin that was subsided from the Middle Jurassic to Paleogene showed overall change of K2O content along the Wudalianchi zone and revealed its specific variations in the Wudalianchi volcanic field - the limited range of background K2O concentrations between 4.8 and 6.0 wt.% and locally reduced values at the beginning and at the end of the Quaternary volcanic evolution. Initial lava flows with K2O as low as 4.0 wt.% erupted along the Laoshantou - Old Gelaqiushan north-south locus from 2.5 to 2.0 Ma. Then, between 1.3 and 0.8 Ma, background irregular activity occurred in the South Gelaqiushan volcano and along the west-east locus of the Lianhuashan, Wohushan, Yaoquanshan, West Jaodebushan, West Longmenshan volcanoes. In the last 0.6 Ma three groups of volcanoes erupted: Western (North Gelaqiushan, Lianhuashan, Dzhianshan-Dzhiamshanzi), Central (Wohushan, Bijiashan, Laoheishan, Huoshaoshan), and Eastern (Weishan, East Jaodebushan, Xiaogoshan, West and East Longmenshan, Molabushan). Background eruptions continued in the Western and Eastern groups, whereas the Central group displayed stepwisely shifted activity from the southwest to the northeast with decreasing K2O concentrations in eruption products up to 3.2 wt.%. From a comparative analysis of K2O, other major oxides, and trace elements in rocks of early and late eruption phases in the Central group of volcanoes, we infer that in the first volcano (Wohushan), the rocks were almost compositionally similar to the background ones, in the second and third volcanoes (Bijiashan, Laoheishan) were partially close to the background rocks and partly differed from them, and in the fourth volcano (Huoshaoshan) were significantly different from the background rocks. We suggest that magma generation under the Wudalianchi volcanic field was controlled by a layer at the base of the lithosphere that divided and shielded sources of

  14. 48 CFR 52.219-3 - Notice of HUBZone Set-Aside or Sole Source Award.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...), insert the following clause: Notice of HUBZone Set-Aside or Sole Source Award (NOV 2011) (a) Definitions. See 13 CFR 125.6(e) for definitions of terms used in paragraph (c). (b) Applicability. This clause... the Contracting Officer a copy of the notice required by 13 CFR 126.501 if material changes occur...

  15. Public Data Set: Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup

    DOE Data Explorer

    Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609)

    2016-05-31

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in E.T. Hinson et al., 'Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup,' Physics of Plasmas 23, 052515 (2016).

  16. Inferring source attribution from a multiyear multisource data set of Salmonella in Minnesota.

    PubMed

    Ahlstrom, C; Muellner, P; Spencer, S E F; Hong, S; Saupe, A; Rovira, A; Hedberg, C; Perez, A; Muellner, U; Alvarez, J

    2017-03-13

    Salmonella enterica is a global health concern because of its widespread association with foodborne illness. Bayesian models have been developed to attribute the burden of human salmonellosis to specific sources with the ultimate objective of prioritizing intervention strategies. Important considerations of source attribution models include the evaluation of the quality of input data, assessment of whether attribution results logically reflect the data trends and identification of patterns within the data that might explain the detailed contribution of different sources to the disease burden. Here, more than 12,000 non-typhoidal Salmonella isolates from human, bovine, porcine, chicken and turkey sources that originated in Minnesota were analysed. A modified Bayesian source attribution model (available in a dedicated R package), accounting for non-sampled sources of infection, attributed 4,672 human cases to sources assessed here. Most (60%) cases were attributed to chicken, although there was a spike in cases attributed to a non-sampled source in the second half of the study period. Molecular epidemiological analysis methods were used to supplement risk modelling, and a visual attribution application was developed to facilitate data exploration and comprehension of the large multiyear data set assessed here. A large amount of within-source diversity and low similarity between sources was observed, and visual exploration of data provided clues into variations driving the attribution modelling results. Results from this pillared approach provided first attribution estimates for Salmonella in Minnesota and offer an understanding of current data gaps as well as key pathogen population features, such as serotype frequency, similarity and diversity across the sources. Results here will be used to inform policy and management strategies ultimately intended to prevent and control Salmonella infection in the state.

  17. He, Ar, N and C isotope compositions in Tatun Volcanic Group (TVG), Taiwan: Evidence for an important contribution of pelagic carbonates in the magmatic source

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Sano, Yuji; Takahata, Naoto; Yang, Frank T.; Takahashi, Hiroshi A.

    2015-09-01

    The Tatun Volcanic Group (TVG), Northeastern Taiwan, is considered to be the extension of the Ryukyu arc, and belongs to the post-collisional collapse Okinawa Trough. Strong hydrothermal activity is concentrated along the Chinshan fault, and Da-you-keng (DYK) represents the main fumarolic area where the most primitive isotopic and chemical composition is observed. In this study, we present chemical and He, Ar, C and N isotopic compositions of fumaroles, bubbling gas and water from hot springs sampled in 2012 and 2013. High 3He/4He ratios from DYK fumaroles (≈ 6.5 Ra) show a typical arc-like setting, whereas other sampling areas show a strong dependence of 3He/4He and CH4/3He ratios with the distance from the main active hydrothermal area (DYK). This could mean strong crustal contamination and thermal decomposition of organic matter from local sediments. Carbon isotope compositions of DYK range from - 6.67‰ to - 5.85‰, and indicate that carbon contribution comes mainly from pelagic carbonates from the slab (limestone, mantle and sediment contributions are 63%, 19% and 18%, respectively). This is consistent with the negative δ15N values (- 1.4 ± 0.5‰) observed for DYK, implying a strong nitrogen-mantle contribution, and an absence of contribution from nitrogen-pelagic carbonates. These results have important consequences related to the Ryukyu subducted slab. In fact, the Ryukyu margin presents little in off scraping the sedimentary cover to the subducting plate that does not permit any nitrogen contribution in magma from TVG.

  18. Petrologic and geochemical characterization of rift-related magmatism at the northernmost Main Ethiopian Rift: Implications for plume-lithosphere interaction and the evolution of rift mantle sources

    NASA Astrophysics Data System (ADS)

    Feyissa, D. H.; Shinjo, R.; Kitagawa, H.; Meshesha, D.; Nakamura, E.

    2017-06-01

    In this paper, we present petrography, K-Ar ages, whole-rock major- and trace-element concentrations, and Sr-Nd-Hf-Pb isotopic ratios of volcanic rocks from Debre Birhan area in the northernmost Main Ethiopian Rift (MER). The K-Ar ages of the mafic series range from 27 to 0.25 Ma, and two felsic rocks yield ages of 0.93 and 0.23 Ma. The mafic volcanics are classified into older and younger series based on their K-Ar ages. The Mg-numbers (Mg# < 60) of both mafic series, along with low Ni and Cr contents, clearly indicate that these lavas have undergone fractionation en route to the surface. Geochemical and isotopic compositions of the older and younger mafic lavas indicate that crustal contamination did not play a significant role in the evolution of their magmas, hence reflect the geochemical characteristics of the sources. The older and younger mafic volcanic rocks display contrasting trace element and isotopic signatures. The older lavas have higher La/Nb, Zr/Nb, Ba/Nb and 87Sr/86Sri (0.70445-0.70681) and lower ԐHf (- 2.58 to + 6.01) and ԐNd (- 1.25 to + 3.43) and less radiogenic Pb isotopic ratios (206Pb/204Pbi = 17.82-18.64, except TG-54 = 19.1) relative to the younger mafic lavas. Correlations among isotopic ratios and trace element concentrations provide evidence for the involvement of at least three major end-member components (C-1, C-2, and C-3) in the petrogenesis of these mafic lavas. The C-1 end-member component contributes dominantly to younger mafic lavas, and has isotopic composition similar to the common component 'C' deduced from oceanic basalts. The second end-member component (C-2) is represented by lavas near the transition between older and younger, and has isotopic composition similar to that of the seafloor basalts of the Red Sea and the Gulf of Aden. The third end-member component (C-3) is prominent in the older mafic series, and similar isotopically to Pan-African lithosphere. The younger felsic volcanic rocks generally have higher 87Sr/86

  19. Magmatism on the Moon

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie

    2016-04-01

    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  20. Reduced Magmatic Volatiles

    NASA Astrophysics Data System (ADS)

    Hirschmann, M. M.; Withers, A. C.; Ardia, P.; Stanley, B. D.; Foley, N.

    2012-12-01

    Volatiles in Earth's upper mantle are dominated by H2O and CO2, but under more reduced conditions likely deeper in the mantle, other volatile species may be important or dominant. However, the speciation, solubilities, and effect on physical properties of reduced magmatic volatiles are poorly constrained. Here we summarize results from an experimental campaign to better understand reduced volatiles in magmas. Experiments emphasize spectroscopic and SIMS characterization of dissolved species in experiments for which fluid fugacities are known, thereby facilitating thermodynamic parameterization. Experimental determinations of molecular H2 solubility in basaltic and andesitic liquids show concentrations that are proportional to H2 fugacity. Because H2 increases with fH2 whereas dissolved H2O increases with fH2O1/2, the relative importance of H2 increases with pressure and for more hydrous magmas. At 1 GPa and IW-1, solubility in basalt reaches 0.3 wt.% (equivalent to 2.7 wt.% H2O). Solubilities at pressures of the deep upper mantle have not been explored experimentally (as is also true for H2O and CO2), but H2 could become the dominant hydrous species at 400 km and deeper, and so deep hydrous melts may have chiefly H2 rather than H2O or OH. Experiments suggest an extremely low partial specific density (0.18 kg/m3) for dissolved H2 at low pressure, and so appreciable dissolved H2 in melt atop the 410 km discontinuity or in the lower mantle may promote positive buoyancy. Solubilities of reduced C-species remain poorly known. In contrast to results in Na2O-SiO2 liquids (Mysen et al., 2009), experiments with a haplobasaltic liquid at controlled CH4 fugacities indicated very small (<0.05 wt.%) CH4 solubilities even at very reduced conditions (

  1. Managing ground water contamination sources in wellhead protection areas: A priority setting approach

    SciTech Connect

    Not Available

    1991-10-01

    The document is one of a series of technical assistance documents designed by the U.S. EPA to help local governments and public water suppliers protect their wells and implement their state and local Wellhead Protection Programs. The priority setting approach provides a risk screening tool that helps users to assess and rank the relative threats to ground-water supplies posed by specific potential contamination sources.

  2. Paired MEG data set source localization using recursively applied and projected (RAP) MUSIC.

    PubMed

    Ermer, J J; Mosher, J C; Huang, M; Leahy, R M

    2000-09-01

    An important class of experiments in functional brain mapping involves collecting pairs of data corresponding to separate "Task" and "Control" conditions. The data are then analyzed to determine what activity occurs during the Task experiment but not in the Control. Here we describe a new method for processing paired magnetoencephalographic (MEG) data sets using our recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm. In this method the signal subspace of the Task data is projected against the orthogonal complement of the Control data signal subspace to obtain a subspace which describes spatial activity unique to the Task. A RAP-MUSIC localization search is then performed on this projected data to localize the sources which are active in the Task but not in the Control data. In addition to dipolar sources, effective blocking of more complex sources, e.g., multiple synchronously activated dipoles or synchronously activated distributed source activity, is possible since these topographies are well-described by the Control data signal subspace. Unlike previously published methods, the proposed method is shown to be effective in situations where the time series associated with Control and Task activity possess significant cross correlation. The method also allows for straightforward determination of the estimated time series of the localized target sources. A multiepoch MEG simulation and a phantom experiment are presented to demonstrate the ability of this method to successfully identify sources and their time series in the Task data.

  3. The distribution of intraplate volcanism and controls on the generation of intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Adam, J.; Rushmer, T. A.; Smith, I. E.

    2011-12-01

    Although volumetrically subordinate to mid-ocean ridge and volcanic arc magmatism, intraplate volcanism (as typified by the magmatic products of Ocean Islands) is probably the most ubiquitous form of volcanism on Earth. It is semantically associated with plate interiors (and thus also hot spot volcanism), but is also produced in a variety of plate margin settings. Thus it characterizes the circum-Pacific rim, the Caribbean, west Antarctica, and widespread regions affected by the collision of fragments of Gondwana with Laurasia (e.g. the circum Mediterranean and central East Asia). In these settings, volcanism is typically dispersed rather than focussed, and need not be obviously associated with particular tectonic features and events (in contrast to mid-ocean ridge and arc volcanism). Typically, volcanism is also prolonged and may be erupted intermittently and in small volumes for tens of millions of years. A key feature of these plate margin settings is that they involve either plate convergence (e.g. the circum Mediterranean and Central America) or a past history of plate convergence (e.g. eastern Australia). Intraplate volcanism is notably absent from many rifted continental margins where this requirement is not fulfilled (e.g. Western Australia and east Antarctica). Although rare in the Pre-Cambrian record, evidence of intraplate style magmatism extends as far back as the Archaean. Compositionally, intraplate magmas are distinguished both by their diversity and by strong relative enrichments in incompatible elements, including Nb. These features cannot be attributed simply to enriched sources, because Nd and Sr isotopes are consistent with sources that were (in most cases) depleted in incompatibles relative to the primitive mantle. Instead, the incompatible element characteristics of most intraplate basalts appear to be dominated by the consequences of near-solidus melting of normal mantle sources. In this case, the conditions required to initiate intraplate

  4. PANDORA: keyword-based analysis of protein sets by integration of annotation sources.

    PubMed

    Kaplan, Noam; Vaaknin, Avishay; Linial, Michal

    2003-10-01

    Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.

  5. Apero, AN Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of Set of Images

    NASA Astrophysics Data System (ADS)

    Pierrot Deseilligny, M.; Clery, I.

    2011-09-01

    IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist) than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  6. Why are plutons dry? Outgassing mechanisms of crustal magmatic bodies

    NASA Astrophysics Data System (ADS)

    parmigiani, andrea; Huber, Christian; Bachmann, Olivier; Leclaire, Sébastien

    2016-04-01

    Magma bodies crystallizing to completion within the crust (i.e., forming plutons) typically undergo significant amounts of second boiling (i.e. cooling and crystallization of dominantly anhydrous minerals lead to volatile saturation and bubble nucleation/growth). The low water content (< 1 wt % H2O) and vanishing residual porosity of most plutons, despite the high volatile concentrations of their magma sources (commonly > 6 wt % H2O for evolved compositions in subduction zones), testify that outgassing from crystalline mushy reservoirs must be an efficient and widespread process. Understanding this outgassing mechanism is key to understand how volatiles are transferred from mantle depths to the surface. From the hydrodynamics point of view, the mass balance of exsolved volatiles in these plutonic bodies is controlled by the difference between the rate of degassing (formation of bubbles by 2nd boiling) and outgassing (transport of gas out of the magma body). In this study, we use pore-scale multiphase modeling to constrain these rates as function of the crystal and volatile contents in the magma. Because second boiling is a slow process, one can consider equilibrium degassing as a valid assumption. Outgassing, on the other end, is controlled by the competition between buoyancy, capillary and viscous forces. Our numerical simulations are used to determine the most efficient setting for gas to escape its magmatic trap. The high viscosity of interstitial melts and capillary forces (due to the non-wetting nature of the gas phase with most of the mineral phases in magmatic systems) strongly limits gas transport until vertically extensive gas channels are generated. We show that channels can readily form in volatile-rich coarse-grained mush zones in the upper crust, and allow efficient outgassing at crystallinities around 50-75 vol%, when millimetric bubbles can still win capillary resistive forces.

  7. An autoregressive atmospheric dispersion model for fitting combined source and receptor data sets

    NASA Astrophysics Data System (ADS)

    Mulholland, M.

    A method is developed for recursive prediction of emissions and concentrations at various positions, which obey an atmospheric dispersion model, yet have a least squares deviation from observations at the same points. As a by-product, the technique yields a concentration distribution grid on each time-step. This robust procedure rationalizes data which are in dispute, and makes optimal use of incomplete source or receptor observation records. Thus several unknown source-rates may be estimated on-line as the procedure steps through the remaining observation records. An accurate advection-diffusion solution is formulated as a linear transformation for each time-step, using a sub-grid adaptation of the pseudospectral method. This is extended to the vertical dimension using the zeroth, first and second vertical moments of concentration, allowing only uniform wind profiles, but gradual wind-field and diffusivity variations in the horizontal. A discrete Kaiman filter then provides optimal estimates of all source rates, constituting the state vector, to minimize deviations from any source and receptor observations. The algorithm has been applied in a 90 km × 90 km region of the Eastern Transvaal Highveld, including nine SO 2 sources and eight detectors. Indications are that the method will be a valuable aid in interpreting such data sets.

  8. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt

    NASA Astrophysics Data System (ADS)

    Seltmann, Reimar; Konopelko, Dmitry; Biske, Georgy; Divaev, Farid; Sergeev, Sergei

    2011-10-01

    The Hercynian Tien Shan (Tianshan) orogen formed during Late Palaeozoic collision between the Karakum-Tarim and the Kazakhstan paleo-continents. In order to constrain timing of Hercynian post-collisional magmatism, 27 intrusions were sampled for U-Pb zircon dating along a ca. 2000 km - long profile in Uzbekistan and Kyrgyzstan. The samples were dated utilizing sensitive high resolution ion microprobe (SHRIMP-II). The obtained ages, together with previously published age data, allowed the timing of Hercynian post-collisional magmatism to be constrained and interpreted in the context of the Paleozoic magmatic evolution of the region. Apart from Hercynian post-collisional magmatism, two older magmatic episodes have been recognized, and the following sequence of events has been established: (1) approximately 10 Ma after cessation of continuous Caledonian magmatism a number of Late Silurian-Early Devonian intrusions were emplaced in the Middle and Northern Tien Shan terranes between 420 and 390 Ma. The intrusions probably formed in an extensional back arc setting during coeval subduction under the margins of Caledonian Paleo-Kazakhstan continent; (2) the next relatively short Late Carboniferous episode of subduction under Paleo-Kazakhstan was registered in the Kurama range of the Middle Tien Shan. Calc-alkaline volcanics and granitoids with ages 315-300 Ma have distinct metallogenic affinities typical for subduction-related rocks and are not found anywhere outside the Middle Tien Shan terrane west of the Talas-Farghona fault; (3) the Early Permian Hercynian post-collisional magmatism culminated after the closure of the Paleo-Turkestan ocean and affected the whole region across terrane boundaries. The post-collisional intrusions formed within a relatively short time span between 295 and 280 Ma. The model for Hercynian post-collisional evolution suggests that after collision the Tien Shan was affected by trans-crustal strike-slip motions which provided suitable conduits

  9. Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°-41°S): Constraints for the tectonic setting along the southwestern margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Martin, Mark W.; Kato, Terence T.; Rodriguez, Carolina; Godoy, Estanislao; Duhart, Paul; McDonough, Michael; Campos, Alberto

    1999-08-01

    Stratigraphic, structural, metamorphic, and geochronologic studies of basement rocks in the Andean foothills and Coast Ranges of south central Chile (39°-41°S) suggest a protracted late Paleozoic to middle Mesozoic deformational and metamorphic history that imposes important constraints on the tectonic development of the southwestern Gondwana margin. In the study area the late Paleozoic paired metamorphic belt, coeval magmatic arc, and overlying Triassic sedimentary units preserve a record of Late Carboniferous to Early Permian subduction and arc magmatism, subsequent deep exhumation of the Western Series subduction complex, and diminished uplift and erosion of the Eastern Series arc-forearc region by the Late Triassic. Late Paleozoic structural elements and metamorphic assemblages formed during early subduction and arc magmatism, collectively referred to as Dl, are largely erased in the Western Series by the dominant D2 schistosity and lower greenschist grade metamorphism. D1 structural features, as well as original sedimentary textures, are relatively well preserved in the less penetratively deformed Eastern Series. The regional distribution of late Paleozoic arc magmatism suggests that the late Paleozoic convergent margin deviated from a N-S trend north of this area to a NW-SE trend near this latitude and faced an open marine environment to the southwest. A transition from F2 isoclinal folding to more open, larger-scale F3 folds, interpreted as change in ductility during differential uplift of the Western Series, is not apparent in the Eastern Series. Despite a lesser degree of uplift during the main exhumational D2 event, delineation of unconformities and U-Pb dating of detrital zircons and intrusions into the Eastern Series allow tighter constraints to be placed on timing of uplift and denudation of the Eastern Series than on that in the Western Series. A regional unconformity exposed in the Lake District that separates more highly deformed Eastern Series

  10. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  11. Linking magmatism with collision in an accretionary orogen.

    PubMed

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-05-11

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  12. Fast Identification of Methane and Other Atmospheric Contaminant Sources in Complex Urban Settings

    NASA Astrophysics Data System (ADS)

    Jacobson, G. A.; Crosson, E.; Tan, S. M.

    2012-12-01

    The identification and quantification of greenhouse gas emissions (fluxes) from urban centers have become of increasing interest over the last few years. This interest is driven by recent measurements indicating that urban emissions are a significant source of methane (CH4) and in fact may be substantially higher than current inventory estimates(1). Urban CH4 emissions could contribute 7-15% to the global anthropogenic budget of methane. Although it is known that the per capita carbon footprint of compact cities, such as New York City, Boston, and San Francisco, are smaller than sprawling cities, such as Houston, the strengths of individual sources within these cities are not well known. Such information is of use to policy makers because it can be used to incentivize changes in transportation and land use patterns. The work discussed here will highlight a vehicle-based methodology for characterizing urban emissions that enables extremely fast identification of methane sources in complex urban settings. Measurements were taken while driving at speeds from 20 to 40 miles per hour in stop and go traffic and were able to not only identify methane plumes but in addition, provide information about the location of the sources generating these methane plumes. Results showed that a large number of highly localized methane sources were found in Boston and San Francisco. For example, leaks from natural gas production, transmission and distribution lines were found in both cities. Flux chamber measurements of these leaks indicate that the methane flux ranged from 40 to 300 standard cubic feet of natural gas per day. For reference, the average American home uses approximately 200-300 cubic feet of natural gas per day. These leaks increase cost to natural gas suppliers, add to greenhouse gas concentrations, and in extreme cases pose a safety hazard. In this work, results showing the identification, location, and quantifying methane sources in urban settings will be presented

  13. Validation of the Minimum Data Set in identifying hospitalization events and payment source.

    PubMed

    Cai, Shubing; Mukamel, Dana B; Veazie, Peter; Temkin-Greener, Helena

    2011-01-01

    To evaluate the accuracy of the Minimum Data Set (MDS) in identifying hospitalization events and payment source among nursing home residents. The 2003 MDS, Medicare Provider Analysis and Review File (MedPAR), Medicare denominator file, Medicaid Analytical Extract (MAX) long-term care file, and MAX personal summary file for 4 states (California, Ohio, New York, and Texas) were obtained and merged. All Medicare/Medicaid-certified nursing ho-mes in these 4 states during 2003. All nursing home residents who were eligible for Medicare. Medicare or Medicaid managed care enrollees were excluded. Using the identification by linking the MDS and claims data as the "gold standard," we calculated false negative and false positive error rates of the MDS in identifying hospitalization events and payment source. As for the accuracy of the MDS in identifying hospitalization events, the false negative error rates ranged from 6.8% to 19.5% and the false positive error rates were between 12.0% and 15.7%, depending on the state. With regard to the identification of Medicare payment source, the MDS had a low false negative rate (varying from 0.4% to 1.1%), and a relatively high false positive rate (ranging from 6.1% to 14.9%). The MDS alone did not seem to be a sufficient source for identification of Medicaid payment source (false negative rate ranging from 11.0% to 55.3%). The accuracy of the MDS in identifying hospitalizations and payment sources varies across the study states, and should be evaluated carefully with regard to the intended uses of the data. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.

  14. Geochemistry of the Ediacaran-Early Cambrian transition in Central Iberia: Tectonic setting and isotopic sources

    NASA Astrophysics Data System (ADS)

    Fuenlabrada, José Manuel; Pieren, Agustín P.; Díez Fernández, Rubén; Sánchez Martínez, Sonia; Arenas, Ricardo

    2016-06-01

    A complete Ediacaran-Early Cambrian stratigraphic transition can be observed in the southern part of the Central Iberian Zone (Iberian Massif). Two different stratigraphic units, underlying Ordovician series, display geochemical and Sm-Nd isotopic features in agreement with an evolving geodynamic setting. Pusa Shales (Early Cambrian) rest unconformably on greywackes of the Lower Alcudian Formation (Late Ediacaran). Both sequences present minor compositional variations for major and trace element contents and similar REE patterns, close to those of PAAS (Post Archean Australian Shale). Trace element contents and element ratios suggest mixed sources, with intermediate to felsic igneous contributions for both units. Tectonic setting discrimination diagrams for the Ediacaran greywackes indicate that these turbiditic series were deposited in a sedimentary basin associated with a mature active margin (volcanic arc). However, the compositions of the Cambrian shales fit better with a more stable context, a back-arc or retro-arc setting. εNd(T) and TDM ages are compatible with dominance of a similar cratonic source for both sequences, probably the West Africa Craton. εNd565 values for the Ediacaran greywackes (- 3.0 to - 1.4) along with TDM ages (1256-1334 Ma) imply a significant contribution of juvenile material, probably derived from the erosion of the volcanic arc. However, εNd530 values in the Cambrian shales (- 5.2 to - 4.0) together with older TDM ages (1444-1657 Ma), suggest a higher contribution of cratonic isotopic sources, probably derived from erosion of the adjacent mainland. Coeval with the progressive cessation of arc volcanism along the peri-Gondwanan realm during the Cambrian, there was a period of more tectonic stability and increasing arrival of sediments from cratonic areas. The geochemistry of the Ediacaran-Cambrian transition in Central Iberia documents a tectonic switch in the periphery of Gondwana, from an active margin to a more stable context

  15. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2013-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  16. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Sobisevich, A. L.; Masurenkov, Yu. P.; Pouzich, I. N.; Laverova, N. I.

    2012-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  17. An integrated, open-source set of tools for urban vulnerability monitoring from Earth observation data

    NASA Astrophysics Data System (ADS)

    De Vecchi, Daniele; Harb, Mostapha; Dell'Acqua, Fabio; Aurelio Galeazzo, Daniel

    2015-04-01

    Aim: The paper introduces an integrated set of open-source tools designed to process medium and high-resolution imagery with the aim to extract vulnerability indicators [1]. Problem: In the context of risk monitoring [2], a series of vulnerability proxies can be defined, such as the extension of a built-up area or buildings regularity [3]. Different open-source C and Python libraries are already available for image processing and geospatial information (e.g. OrfeoToolbox, OpenCV and GDAL). They include basic processing tools but not vulnerability-oriented workflows. Therefore, it is of significant importance to provide end-users with a set of tools capable to return information at a higher level. Solution: The proposed set of python algorithms is a combination of low-level image processing and geospatial information handling tools along with high-level workflows. In particular, two main products are released under the GPL license: source code, developers-oriented, and a QGIS plugin. These tools were produced within the SENSUM project framework (ended December 2014) where the main focus was on earthquake and landslide risk. Further development and maintenance is guaranteed by the decision to include them in the platform designed within the FP 7 RASOR project . Conclusion: With the lack of a unified software suite for vulnerability indicators extraction, the proposed solution can provide inputs for already available models like the Global Earthquake Model. The inclusion of the proposed set of algorithms within the RASOR platforms can guarantee support and enlarge the community of end-users. Keywords: Vulnerability monitoring, remote sensing, optical imagery, open-source software tools References [1] M. Harb, D. De Vecchi, F. Dell'Acqua, "Remote sensing-based vulnerability proxies in the EU FP7 project SENSUM", Symposium on earthquake and landslide risk in Central Asia and Caucasus: exploiting remote sensing and geo-spatial information management, 29-30th January 2014

  18. Mesozoic Granitic Magmatism in Macao, Southeast China

    NASA Astrophysics Data System (ADS)

    Quelhas, P. M.; Mata, J.; Lou, U. T.; Ribeiro, M. L.; Dias, Á. A.

    2016-12-01

    Macao ( 30 Km2) is a territory characterized by small granitic intrusions, located along the coastal region of Southeast China (Cathaysia Block). Granitoids occur as different facies, including microgranite dykes, with distinct textural, mineralogical and geochemical features, for which a middle-upper Jurassic age ( 164 Ma) has been proposed. New data suggest that these granitoids are mostly high-K calc-alkaline metaluminous (A/CNK = 0.8 - 1.1) biotite granites, consistent with total absence of primary muscovite. They show variable amounts of SiO2 (67-77%), reflecting different degrees of magmatic evolution. There is also variability in terms of trace elements, particularly Rare Earth Elements (REEs), evidenced by decreasing (La/Sm)N, (Gd/Lu)N, (Ce/Yb)N and (Eu/Eu*)N towards the more evolved samples, which can be partly attributed to fractional crystallization processes. Most of the granitoids are characterized by (La/Yb)N = 3 - 10.8, showing negative Ba, Nb, Sr, Zr, P, Ti and Eu anomalies. On the other hand, microgranite dykes, along with a few more evolved granites, show an opposite tendency, being usually enriched in HREEs relatively to LREEs with (La/Yb)N = 0.4 - 1.1. Our data suggests intermediate genetic affinities between I-type and A-type granites. Although these granitoids are mostly metaluminous (characteristic of I-types), Ga/Al ratios, usually used to identify A-types, are close to the accepted boundary between A-type and other granite types. The affinities with A-type granites are more marked for the more evolved facies, which depict higher values of FeOt/MgO (14 - 60) and K2O/MgO (60 - 250). Their trace element characteristics are also transitional between WPG (Within-plate granites) and Syn-COLG (Collision Granites). We interpret those transitional characteristics (A/I and WPG/Syn-COLG) of Macao granitoids as reflecting an origin by melting of infracrustal sources over a period of high heat transfer from mantle to crust during an extensional tectonic

  19. Characterizing Magmatic Activity at Mount Baker, Washington With Inversion of Slope Distance Data.

    NASA Astrophysics Data System (ADS)

    Hodge, B. E.; Crider, J. G.

    2007-12-01

    Surface deformation studies at active volcanoes are used to detect changes to magmatic source regions beneath the volcano. At Mount Baker, Washington, continued elevated gas (CO2 and H2S) and heat flux from fumaroles in Sherman Crater indicate the presence of a degassing magma reservoir. We assess if surface deformation has occurred on Mount Baker during the last quarter century by collecting a modern geodetic data set to compare with previous slope distance measurements acquired in 1981 and 1983 with EDM. Campaign GPS surveys in 2006 and 2007 provide slope distance measurements of all 19 trilateration lines on Mount Baker. These surveys determined that slope distances have predominantly shortened around the edifice at rates of less than 2 mm/yr. The greatest slope length change detected (HDLY-RSVT) is -17 ± 4 ppm on the northern flank of the volcano. We fit a strain model to the weighted slope change data using a nonlinear least-squares regression to characterize a two dimensional surface strain tensor. These results indicate contractional strain centered near the crater with and aerial dilation rate of less than 0.5 microstrain/yr. We also use these data to invert source parameters for a spherical magma source at depth to provide estimates of net volume and mass change of the magma reservoir. The inversion results are analyzed in conjunction with microgravity and gas flux data to better understand the current magmatic quiescence at Mount Baker.

  20. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Soejono, Igor; Janoušek, Vojtěch; Žáčková, Eliška; Sláma, Jiří; Konopásek, Jiří; Machek, Matěj; Hanžl, Pavel

    2017-09-01

    Cadomian magmatic complexes of the Brunovistulian Domain crop out at the eastern termination of the Bohemian Massif. However, the age, nature and geotectonic affinity of some of pre-Variscan (meta-)igneous rock complexes from this domain are still unknown. Geochronological and geochemical study of the granitic rocks across the Brunovistulian Domain reveals new information about the timing and nature of this magmatic activity originally situated along the northern margin of Gondwana. Zircon U-Pb data (601 ± 3 Ma, Brno Massif; 634 ± 6 Ma, paraautochtonous core of the Svratka Dome; 568 ± 3 Ma, Bíteš orthogneiss) from the allochtonous Moravicum indicate the prolonged magmatic activity within the Brunovistulian Domain during the Ediacaran. The major- and trace-element and Sr-Nd isotopic signatures show heterogeneous geochemical characteristics of the granitic rocks and suggest a magmatic-arc geotectonic setting. The two-stage Depleted Mantle Nd model ages ( c. 1.3-2.0 Ga) indicate derivation of the granitic rocks from a relatively primitive crustal source, as well as from an ancient and evolved continental crust of the Brunovistulian Domain. These results constrain the magmatic-arc activity to c. 635-570 Ma and provide a further evidence for a long-lived (at least c. 65 Myr) and likely episodic subduction-related magmatism at the northern margin of Gondwana. The presence of granitic intrusions derived from variously mature crustal sources at different times suggests heterogeneous crustal segments to having been involved in the magmatic-arc system during its multistage evolution.

  1. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Soejono, Igor; Janoušek, Vojtěch; Žáčková, Eliška; Sláma, Jiří; Konopásek, Jiří; Machek, Matěj; Hanžl, Pavel

    2016-11-01

    Cadomian magmatic complexes of the Brunovistulian Domain crop out at the eastern termination of the Bohemian Massif. However, the age, nature and geotectonic affinity of some of pre-Variscan (meta-)igneous rock complexes from this domain are still unknown. Geochronological and geochemical study of the granitic rocks across the Brunovistulian Domain reveals new information about the timing and nature of this magmatic activity originally situated along the northern margin of Gondwana. Zircon U-Pb data (601 ± 3 Ma, Brno Massif; 634 ± 6 Ma, paraautochtonous core of the Svratka Dome; 568 ± 3 Ma, Bíteš orthogneiss) from the allochtonous Moravicum indicate the prolonged magmatic activity within the Brunovistulian Domain during the Ediacaran. The major- and trace-element and Sr-Nd isotopic signatures show heterogeneous geochemical characteristics of the granitic rocks and suggest a magmatic-arc geotectonic setting. The two-stage Depleted Mantle Nd model ages (c. 1.3-2.0 Ga) indicate derivation of the granitic rocks from a relatively primitive crustal source, as well as from an ancient and evolved continental crust of the Brunovistulian Domain. These results constrain the magmatic-arc activity to c. 635-570 Ma and provide a further evidence for a long-lived (at least c. 65 Myr) and likely episodic subduction-related magmatism at the northern margin of Gondwana. The presence of granitic intrusions derived from variously mature crustal sources at different times suggests heterogeneous crustal segments to having been involved in the magmatic-arc system during its multistage evolution.

  2. Sediment composition of big Chinese and Indochinese rivers reflects geology of their source, not tectonic setting of their sink.

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Limonta, Mara; Nie, Junsheng; Resentini, Alberto; Vezzoli, Giovanni; Wang, Jiangang; Yang, Shouye

    2016-04-01

    There are several reasons why the tectonic setting of a sedimentary basin cannot be inferred from the composition of its sedimentary fill. One is that sediments can, and quite often are transported for thousands of kilometers from sources uplifted by certain tectonic processes to subsident basins created by totally different tectonic processes. A classical case is the Amazon River, carrying detritus from the Andean Cordillera to the Atlantic passive margin on the opposite side of South America (Franzinelli and Potter, 1983; Dickinson, 1988). Similar is the case of major rivers in China and Indochina, sourced in Tibetan orogenic highlands and reaching the Chinese passive margin or the back-arc/pull-apart Andaman Sea. The Huang He (Yellow River), the most sediment-laden river in the world, delivers annually to the Bohai Sea 1 billion tons of litho-feldspatho-quartzose sedimentaclastic/metamorphiclastic sediments with moderately rich, amphibole-epidote-garnet suites including apatite and zircon (Nie et al., 2015). The Changjiang (Yangtze) River, the fourth longest on Earth and the largest in Eurasia, carries to the East China Sea litho-feldspatho-quartzose sedimentaclastic/metamorphiclastic sand with moderately poor, amphibole-epidote suites including clinopyroxene and garnet (Vezzoli et al., 2016). The Ayeyarwadi (Irrawaddy) River, ranking among the five major rivers in the world for its annual load of 0.4 billion tons, carries to the Andaman Sea litho-feldspatho-quartzose metamorphiclastic/sedimentaclastic sand with moderately rich, amphibole-epidote suites including garnet and clinopyroxene (Garzanti et al., 2013). Detrital modes in these three very big river basins are thus similar, and would plot in the "Recycled Orogen" field of Dickinson (1985) rather than in the "Continental Block" or "Magmatic Arc" fields. The orogenic signature acquired in mountainous headwaters is carried all the way to the mouth, and even after long-distance transport across wide

  3. Magmatic unrest beneath Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Hill, David P.; Prejean, Stephanie

    2005-09-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ˜57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small ( M ≤ 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO 2, and fumarole gases with elevated 3He/ 4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO 2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO 2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  4. Magmatic unrest beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Hill, D.P.; Prejean, S.

    2005-01-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ???57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M ??? 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  5. Family dinner frequency, settings and sources, and body weight in US adults.

    PubMed

    Sobal, Jeffery; Hanson, Karla

    2014-07-01

    Contemporary families and food systems are both becoming more dynamic and complex, and current associations between adult family meals and body mass index (BMI) are not well understood. This investigation took a new approach by examining diverse settings and sources of food for family dinners in relationship to BMI in a cross-sectional nationally representative survey of 360 US adults age 18-85 living with family members. In this sample, 89% of adults ate family dinners at least 5 days per week and almost all ate family dinners cooked and eaten at home. About half of these adults also ate family dinners at restaurants, fast food places, or ate takeout food at home, and less common were family dinners at homes of relatives or friends. Family dinners eaten at fast food places, but not other settings or sources, were significantly associated with higher BMI. Overall, adult family dinners were commonplace, usually involved home cooking, and when at fast food places may be related with higher adult body weights. Copyright © 2014. Published by Elsevier Ltd.

  6. [The first set of legislation for doctors in Denmark and its source of inspiration].

    PubMed

    Brix, Johannes

    2010-01-01

    The first set of legislation for doctors in Denmark was conditional on a national need to regulate the conditions of the pharmaceutical and medical professions. By request of the king, this legislation, which came into force in 1672, was made by doctors residing in Denmark. These doctors had all been educated at foreign universities where the existing legislation had Roger II's and Friedrich II's legislation from the 12th and 13th centuries' South Italy as its source of inspiration. Thus, it is reasonable to presume that the doctors who participated in the making of the Danish legislation were familiar with this legislation. A translation into Danish of Roger II's and Friedrich II's sections regarding the work of a doctor has been made in order to be able to compare it with the content of the Danish set of legislation from 1672. The result of this comparison is that there are so many similarities that there can hardly be any doubt about the fact that the medieval legislation has been used as source for the Danish legislation from 1672.

  7. Tonian granitic magmatism of the Borborema Province, NE Brazil: A review

    NASA Astrophysics Data System (ADS)

    Guimarães, Ignez P.; de Fatima L. de Brito, Maria; de A. Lages, Geysson; da Silva Filho, Adejardo F.; Santos, Lucilene; Brasilino, Roberta G.

    2016-07-01

    involvement of distinct proportions of mantle and crustal components in the source of their protoliths. There is no consensus in the literature about the tectonic setting of the CVG ie they have been related to either continental margin magmatic arc, with possible back-arc association, or extention-related setting, with generation of A-type granites. However, all the available geochemical data suggest that the CVG represent extension related magmatism. The geochemical signature associated to bimodal volcanism, including pyroclastic rocks, with similar ages, and absence, up to now, of evidence for metamorphism of Tonian age, support the hypothesis of extension - related magmatism.

  8. Tectonics and magmatism of ultraslow spreading ridges

    NASA Astrophysics Data System (ADS)

    Dubinin, E. P.; Kokhan, A. V.; Sushchevskaya, N. M.

    2013-05-01

    The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.

  9. Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization

    NASA Astrophysics Data System (ADS)

    Romer, Rolf L.; Kroner, Uwe

    2015-03-01

    The formation of major granite-hosted Sn and/or W deposits and lithium-cesium-tantalum (LCT) type pegmatites in the Acadian, Variscan, and Alleghanian orogenic belts of Europe and Atlantic Northern America involves weathering-related Sn and W enrichment in the sedimentary debris of the Cadomian magmatic arc and melting of these sedimentary source rocks during later tectonic events, followed by magmatic Sn and W enrichment. We suggest that within this, more than 3,000-km long late Paleozoic belt, large Sn and/or W deposits are only found in regions where later redeposition of the Sn-W-enriched weathered sediments, followed by tectonic accumulation, created large volumes of Sn-W-enriched sedimentary rocks. Melting of these packages occurred both during the formation of Pangea, when continental collision subjected these source rocks to high-grade metamorphism and anatexis, and during post-orogenic crustal extension and mantle upwelling. The uncoupling of source enrichment and source melting explains (i) the diachronous occurrence of tin granites and LCT pegmatites in this late Paleozoic orogenic belt, (ii) the occurrence of Sn and/or W mineralizations and LCT pegmatites on both sides of the Rheic suture, and (iii) the contrasting tectonic setting of Sn and/or W mineralizations within this belt. Source enrichment, sedimentary and tectonic accumulation of the source rocks, and heat input to mobilize metals from the source rocks are three unrelated requirements for the formation of Sn and/or W granites. They are the controlling features on the large scale. Whether a particular granite eventually generates a Sn and/or W deposit depends on local conditions related to source melting, melt extraction, and fractionation processes.

  10. Use of standardized source sets for enhanced EMI classification of buried heterogeneous objects

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; O'Neill, Kevin; Shamatava, Irma; Sun, Keli; Paulsen, Keith D.

    2004-09-01

    Most unexploded ordinance (UXO) are heterogeneous objects containing parts of different metals, e.g., head, body, tail and fins, copper banding, etc. Recently, low frequency electromagnetic induction (EMI) sensing, based on the EM diffusion phenomena, has shown considerable progress for the detection and discrimination of UXO. EMI responses are sensitive to the type of metal (conductivity and permeability), to the distance between the sensor and scatterer, and to the coupling effects between different parts of the object. Until now, the simple dipole models used to represent EMI response have neglected the coupling and close proximity effects seen for realistic objects. These factors can interact with the particulars of excitation and observation to produce substantially varied signature patterns for a given object. This means that a key requirement in discrimination/inversion processing is to calculate very fast but very realistic EMI responses for actual target types. This work presents a new discrimination technique based on the standardized excitation approximation (SEA). The SEA seeks to identify objects in terms of their characteristic responses to sets of well defined excitations that can be used to describe any primary (excitation) field. In the new SEA system presented here, the standardized excitations are those produced by a standardized source set (SSS), in particular, fictitious magnetic sources distributed mathematically over a surface surrounding a scatterer. Several numerical results are given to illustrate the efficiency and accuracy of the proposed new technique. Finally, the spatial distribution and frequency dependence of responding equivalent sources are analyzed to demonstrate the usefulness of SSS for target discrimination.

  11. Landscape Response to Magmatic Uplift

    NASA Astrophysics Data System (ADS)

    O'Hara, D.; Karlstrom, L.

    2016-12-01

    The response of bedrock landscapes to localized perturbations that uplift the land surface remains an outstanding problem in geomorphology. Intrusive magmatism represents the majority of magma input to the crust in volcanic environments, thickening the lithosphere and uplifting the surface. Previous studies have analyzed the effects on channel network and basin geometries caused by long wavelength perturbations in the form of tectonic forcing and dynamic topography from mantle flow. However, the erosional response to small wavelength perturbations caused by magmatic intrusions remains relatively unconstrained. Shallow intrusions may initiate long-term adjustments to the erosional pattern of landscapes through the creation of high-relief landforms. Studying the erosional response to localized uplift may provide contextual clues within modern landscapes that can be used to probe transient incision histories and magmatic flux through time. Using a bedrock landscape evolution model, we analyze landscape response to perturbations similar in scale to laccoliths (shallow magmatic intrusions that uplift overlying bedrock). We study the effects of uplift rate variations, uplift geometry, and position in pre-existing basins on drainage network evolution in the uplifted area and surrounding region. A 1D model provides the template for understanding transient ridge migration induced by localized uplift, which we then extend to a 2D model to study the stability of steady state basin spatial configurations and patterns of transient response. We use a Monte Carlo scheme to sample the wide range of parameters, developing new topographic metrics specific to axisymmetric landforms to characterize intra-basin and channel network reconfigurations and erosion response. We explore the extent to which pre-intruded basin geometries and localized uplift rates can be constrained from modern basin geometry and intruded landform mass distribution.

  12. Petrogenesis of Sveconorwegian magmatism in southwest Norway; constraints from zircon U-Pb-Hf-O and whole-rock geochemistry

    NASA Astrophysics Data System (ADS)

    Roberts, Nick M. W.; Slagstad, Trond; Parrish, Randall R.; Norry, Michael J.; Marker, Mogens; Horstwood, Matthew S. A.; Røhr, Torkil

    2013-04-01

    The Sveconorwegian orogen is traditionally interpreted as a Himalayan-scale continental collision, and the eastward continuation of the Grenville Province of Laurentia; however, it has recently been proposed that it represents an accretionary orogen without full-scale continental collision (Slagstad et al., in press). We suggest that magmatism is one of the key constraints to differentiate between different types of orogens; thus, detailed investigation of the timing and petrogenesis of the magmatic record is a requirement for better understanding of the Sveconorwegian orogen as a whole. Here, we present new U-Pb geochronology, zircon Hf-O isotope, and whole-rock geochemical data to constrain the petrogenesis of the early -Sveconorwegian Sirdal Magmatic Belt (SMB). The SMB is a batholithic-scale complex of intrusions that intrudes into most of the Rogaland-Hardangervidda Block in southwest Norway. Current age constraints put emplacement between ~1050 to 1020 Ma. New ages from the Suldal region indicate that the onset of SMB magmatism can be put back to 1070 Ma, which is some 30-50 Myrs prior to high-grade metamorphism. Average initial ɛHf signatures range from ~0 to 4; these overlap with later post-Sveconorwegian granites and with early-/pre-Sveconorwegian ferroan (A-type) granites. Average δ18O signatures range from ~5.7 to 8.7, except for one anomalous granite at ~11.6. The Hf-O signatures are compatible with a mixed mantle-crustal source. Crustal sources may include ~1500 Ma Telemarkian or ~1200 Ma juvenile crust. Hf-O bulk-mixing modelling using a 1500 Ma crustal source indicates >50 % mantle input. Although much further mapping and geochronological work is required, granitic magmatism appears to have persisted throughout much of the ~1100 to 900 Ma period that spans the Sveconorwegian orogen. This magmatism is consistently ferroan (i.e. dry); however, the SMB marks a clear transition to magnesian (i.e. wet) magmatism, with a return to ferroan magmatism at

  13. Late Miocene to Quaternary Transition in Magmatism and Tectonics, Sierra Nevada - Basin and Range Boundary, Northern California-Western Nevada

    NASA Astrophysics Data System (ADS)

    Prytulak, J.; Cousens, B. L.; Henry, C. D.

    2001-12-01

    During the late Miocene and early Pliocene, the Ancestral Cascades Arc (ARC) in northern CA and western NV shut off as the Mendocino triple junction migrated northward. At the same time, Basin and Range extension migrated westward into the Sierra Nevada block, with major episodes at 12 and 3 Ma. These tectonic events are reflected in a complex transition in magmatic composition and style. We are using geochemical, isotopic, and 40Ar/39Ar data to evaluate magma petrogenesis, the timing of volcanism, and the relationship between volcanism and tectonism in this poorly understood region of Mio-Pliocene arc volcanism. The ARC erupted highly porphyritic, pyroxene- or hornblende-plagioclase andesites to dacites, termed the Kate Peak Formation, from numerous stratovolcano complexes over basement rocks of the Sierra Nevada Batholith. Our new and published dating indicate activity from \\sim16 to 4 Ma. Immediately west of Reno, sequences dominated by poorly-phyric, olivine- and pyroxene-basaltic andesite, commonly termed Lousetown Formation, began to erupt as early as 10 Ma and continued to \\sim1 Ma. Early episodes, at 10.3 and 4 Ma, were contemporaneous with continued arc magmatism. Further, post-arc mafic volcanism continued in the area north of Lake Tahoe between 2.9 and 1.2 Ma. Although the change from hydrous intermediate rocks to \\sim anhydrous mafic rocks suggests a fundamental change in magmatic sources and tectonic setting, the mafic rocks have normalized incompatible element patterns and radiogenic isotope compositions that include a strong subduction component that is virtually indistinguishable from that in ARC intermediate lavas. Thus mafic and intermediate magmas, including post-arc magmas, share a common, fluid-modified, mantle wedge source. Additionally, the timing of mafic magmatism coincides only imprecisely with extension. No mafic magmas erupted before the beginning of extension at any location, but the earliest activity followed extension by \\sim2Ma

  14. Vancomycin-resistant enterococci outside the health-care setting: prevalence, sources, and public health implications.

    PubMed Central

    McDonald, L. C.; Kuehnert, M. J.; Tenover, F. C.; Jarvis, W. R.

    1997-01-01

    Although nosocomial acquisition and subsequent colonization of vancomycin-resistant enterococci (VRE), an emerging international threat to public health, has been emphasized in the United States, colonization among nonhospitalized persons has been infrequently documented. In contrast, in Europe, colonization appears to occur frequently in persons outside the health-care setting. An important factor associated with VRE in the community in Europe has been avoparcin, a glycopeptide antimicrobial drug used for years in many European nations at subtherapeutic doses as a growth promoter in food-producing animals. In Europe, evidence suggests that foodborne VRE may cause human colonization. Although avoparcin has never been approved for use in the United States, undetected community VRE transmission may be occurring at low levels. Further studies of community transmission of VRE in the United States are urgently needed. If transmission with VRE from unrecognized community sources can be identified and controlled, increased incidence of colonization and infection among hospitalized patients may be prevented. PMID:9284375

  15. Examination of frit vent from Sixty-Watt Heat Source simulant fueled clad vent set

    SciTech Connect

    Ulrich, G.B.

    1995-11-01

    The flow rate and the metallurgical condition of a frit vent from a simulant-fueled clad vent set (CVS) that had been hot isostatically pressed (HIP) for the Sixty-Watt Heat Source program were evaluated. The flow rate form the defueled vent cup subassembly was reduced approximately 25% from the original flow rate. No obstructions were found to account for the reduced flow rate. Measurements indicate that the frit vent powder thickness was reduced about 30%. Most likely, the powder was compressed during the HIP operation, which increased the density of the powder layer and thus reduced the flow rate of the assembly. All other observed manufacturing attributes appeared to be normal, but the vent hole activation technique needs further refinement before it is used in applications requiring maximum CVS integrity.

  16. Open-source mobile digital platform for clinical trial data collection in low-resource settings

    PubMed Central

    van Dam, Joris; Omondi Onyango, Kevin; Midamba, Brian; Groosman, Nele; Hooper, Norman; Spector, Jonathan; Pillai, Goonaseelan (Colin); Ogutu, Bernhards

    2017-01-01

    Background Governments, universities and pan-African research networks are building durable infrastructure and capabilities for biomedical research in Africa. This offers the opportunity to adopt from the outset innovative approaches and technologies that would be challenging to retrofit into fully established research infrastructures such as those regularly found in high-income countries. In this context we piloted the use of a novel mobile digital health platform, designed specifically for low-resource environments, to support high-quality data collection in a clinical research study. Objective Our primary aim was to assess the feasibility of a using a mobile digital platform for clinical trial data collection in a low-resource setting. Secondarily, we sought to explore the potential benefits of such an approach. Methods The investigative site was a research institute in Nairobi, Kenya. We integrated an open-source platform for mobile data collection commonly used in the developing world with an open-source, standard platform for electronic data capture in clinical trials. The integration was developed using common data standards (Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model), maximising the potential to extend the approach to other platforms. The system was deployed in a pharmacokinetic study involving healthy human volunteers. Results The electronic data collection platform successfully supported conduct of the study. Multidisciplinary users reported high levels of satisfaction with the mobile application and highlighted substantial advantages when compared with traditional paper record systems. The new system also demonstrated a potential for expediting data quality review. Discussion and Conclusions This pilot study demonstrated the feasibility of using a mobile digital platform for clinical research data collection in low-resource settings. Sustainable scientific capabilities and infrastructure are essential to attract and

  17. Revision of earthquake hypocentre locations in global bulletin data sets using source-specific station terms

    NASA Astrophysics Data System (ADS)

    Nooshiri, Nima; Saul, Joachim; Heimann, Sebastian; Tilmann, Frederik; Dahm, Torsten

    2017-02-01

    Global earthquake locations are often associated with very large systematic travel-time residuals even for clear arrivals, especially for regional and near-regional stations in subduction zones because of their strongly heterogeneous velocity structure. Travel-time corrections can drastically reduce travel-time residuals at regional stations and, in consequence, improve the relative location accuracy. We have extended the shrinking-box source-specific station terms technique to regional and teleseismic distances and adopted the algorithm for probabilistic, nonlinear, global-search location. We evaluated the potential of the method to compute precise relative hypocentre locations on a global scale. The method has been applied to two specific test regions using existing P- and pP-phase picks. The first data set consists of 3103 events along the Chilean margin and the second one comprises 1680 earthquakes in the Tonga-Fiji subduction zone. Pick data were obtained from the GEOFON earthquake bulletin, produced using data from all available, global station networks. A set of timing corrections varying as a function of source position was calculated for each seismic station. In this way, we could correct the systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure without explicitly solving for a velocity model. Residual statistics show that the median absolute deviation of the travel-time residuals is reduced by 40-60 per cent at regional distances, where the velocity anomalies are strong. Moreover, the spread of the travel-time residuals decreased by ˜20 per cent at teleseismic distances (>28°). Furthermore, strong variations in initial residuals as a function of recording distance are smoothed out in the final residuals. The relocated catalogues exhibit less scattered locations in depth and sharper images of the seismicity associated with the subducting slabs. Comparison with a high-resolution local catalogue reveals that

  18. Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement.

    PubMed

    O'Brien, Tony; Shoja-Assadi, Farshid; Lea, Simon C; Burke, F J Trevor; Palin, William M

    2010-06-01

    To investigate the effect of various energy sources on the upper and lower surface hardness of a setting glass ionomer with various thicknesses. Cylindrical specimens (4 mm diameter by 1, 2 or 4 mm thickness) of a glass-ionomer cement were prepared with no applied energy source (control), by preheating GIC capsules in a waterbath prior to mixing, application of light with high irradiance or ultrasonic excitation with a scaler tip. The upper and lower surface hardness was measured 0.5 h, 4 h and 1 week following material mixing. The increase in temperature towards the lower surface of each specimen was monitored throughout the first 5 min of setting. No significant differences in hardness between upper and lower surfaces or varying thicknesses were identified for control and preheated samples at any post-mix time (p>0.05). At 0.5 h post-mix, the upper surface hardness of preheated, light and ultrasonic treatments was significantly increased compared with that of the control groups. Following 4 h post-mix, the overall hardness of preheated samples was significantly greater (p<0.001) than other sample groups, which were not statistically different (p=0.684). No significant differences in hardness between test groups were identified following 1 week (p>0.05). Preheating GIC capsules prior to mixing resulted in superior hardness values through depth up to and including 4 h post-mix compared with specimen surfaces treated with light irradiation or with an ultrasonic scaler tip. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Revision of Earthquake Hypocentre Locations in Global Bulletin Data Sets using Source-Specific Station Terms

    NASA Astrophysics Data System (ADS)

    Nooshiri, Nima; Saul, Joachim; Heimann, Sebastian; Tilmann, Frederik; Dahm, Torsten

    2016-10-01

    Global earthquake locations are often associated with very large systematic travel time residuals even for clear arrivals, especially for regional and near-regional stations in subduction zones because of their strongly heterogeneous velocity structure. Travel time corrections can drastically reduce travel-time residuals at regional stations and, in consequence, improve the relative location accuracy. We have extended the shrinking box source-specific station terms (SSST) technique to regional and teleseismic distances and adopted the algorithm for probabilistic, non-linear, global-search location. We evaluated the potential of the method to compute precise relative hypocentre locations on a global scale. The method has been applied to two specific test regions using existing P- and pP-phase picks. The first data set consists of 3103 events along the Chilean margin and the second one comprises 1680 earthquakes in the Tonga-Fiji subduction zone. Pick data were obtained from the GEOFON earthquake bulletin, produced using data from all available, global station networks. A set of timing corrections varying as a function of source position was calculated for each seismic station. In this way, we could correct the systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure without explicitly solving for a velocity model. Residual statistics show that the median absolute deviation (MAD) of the travel time residuals is reduced by 40% - 60% at regional distances, where the velocity anomalies are strong. Moreover, the spread of the travel time residuals decreased by ˜20% at teleseismic distances (>28°). Furthermore, strong variations in initial residuals as a function of recording distance are smoothed out in the final residuals. The relocated catalogues exhibit less scattered locations in depth and sharper images of the seismicity associated with the subducting slabs. Comparison with a high resolution local catalogue reveals that

  20. Open-source mobile digital platform for clinical trial data collection in low-resource settings.

    PubMed

    van Dam, Joris; Omondi Onyango, Kevin; Midamba, Brian; Groosman, Nele; Hooper, Norman; Spector, Jonathan; Pillai, Goonaseelan Colin; Ogutu, Bernhards

    2017-02-01

    Governments, universities and pan-African research networks are building durable infrastructure and capabilities for biomedical research in Africa. This offers the opportunity to adopt from the outset innovative approaches and technologies that would be challenging to retrofit into fully established research infrastructures such as those regularly found in high-income countries. In this context we piloted the use of a novel mobile digital health platform, designed specifically for low-resource environments, to support high-quality data collection in a clinical research study. Our primary aim was to assess the feasibility of a using a mobile digital platform for clinical trial data collection in a low-resource setting. Secondarily, we sought to explore the potential benefits of such an approach. The investigative site was a research institute in Nairobi, Kenya. We integrated an open-source platform for mobile data collection commonly used in the developing world with an open-source, standard platform for electronic data capture in clinical trials. The integration was developed using common data standards (Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model), maximising the potential to extend the approach to other platforms. The system was deployed in a pharmacokinetic study involving healthy human volunteers. The electronic data collection platform successfully supported conduct of the study. Multidisciplinary users reported high levels of satisfaction with the mobile application and highlighted substantial advantages when compared with traditional paper record systems. The new system also demonstrated a potential for expediting data quality review. This pilot study demonstrated the feasibility of using a mobile digital platform for clinical research data collection in low-resource settings. Sustainable scientific capabilities and infrastructure are essential to attract and support clinical research studies. Since many research structures

  1. Sources of Cognitive Inflexibility in Set-Shifting Tasks: Insights Into Developmental Theories From Adult Data.

    PubMed

    Dick, Anthony Steven

    2012-01-01

    Two experiments examined processes underlying cognitive inflexibility in set-shifting tasks typically used to assess the development of executive function in children. Adult participants performed a Flexible Item Selection Task (FIST) that requires shifting from categorizing by one dimension (e.g., color) to categorizing by a second orthogonal dimension (e.g., shape). The experiments showed performance of the FIST involves suppression of the representation of the ignored dimension; response times for selecting a target object in an immediately-following oddity task were slower when the oddity target was the previously-ignored stimulus of the FIST. However, proactive interference from the previously relevant stimulus dimension also impaired responding. The results are discussed with respect to two prominent theories of the source of difficulty for children and adults on dimensional shifting tasks: attentional inertia and negative priming. In contrast to prior work emphasizing one over the other process, the findings indicate that difficulty in the FIST, and by extension other set-shifting tasks, can be attributed to both the need to shift away from the previously attended representation (attentional inertia), and the need to shift to the previously ignored representation (negative priming). Results are discussed in relation to theoretical explanations for cognitive inflexibility in adults and children.

  2. Measuring Data Quality Through a Source Data Verification Audit in a Clinical Research Setting.

    PubMed

    Houston, Lauren; Probst, Yasmine; Humphries, Allison

    2015-01-01

    Health data has long been scrutinised in relation to data quality and integrity problems. Currently, no internationally accepted or "gold standard" method exists measuring data quality and error rates within datasets. We conducted a source data verification (SDV) audit on a prospective clinical trial dataset. An audit plan was applied to conduct 100% manual verification checks on a 10% random sample of participant files. A quality assurance rule was developed, whereby if >5% of data variables were incorrect a second 10% random sample would be extracted from the trial data set. Error was coded: correct, incorrect (valid or invalid), not recorded or not entered. Audit-1 had a total error of 33% and audit-2 36%. The physiological section was the only audit section to have <5% error. Data not recorded to case report forms had the greatest impact on error calculations. A significant association (p=0.00) was found between audit-1 and audit-2 and whether or not data was deemed correct or incorrect. Our study developed a straightforward method to perform a SDV audit. An audit rule was identified and error coding was implemented. Findings demonstrate that monitoring data quality by a SDV audit can identify data quality and integrity issues within clinical research settings allowing quality improvement to be made. The authors suggest this approach be implemented for future research.

  3. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  4. Changing magmatic and tectonic styles along the paleo-Pacific margin of Gondwana and the onset of early Paleozoic magmatism in Antarctica

    NASA Astrophysics Data System (ADS)

    Encarnación, John; Grunow, Anne

    1996-12-01

    Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a passive to a tectonically active margin. Widespread emplacement of calc-alkaline batholiths (Granite Harbor intrusives) occurred during the active margin phase. We present new concordant zircon and titanite U-Pb ages for these magmatic rocks in southern Victoria Land and the Scott Glacier area. Most magmatic rocks previously associated with a pre-late Early Cambrian (>530 Ma) deformational event(s) (Beardmore orogeny) have yielded younger crystallization ages. The lack of definite arc magmatism prior to ˜530 Ma suggests that deformation may have been associated with a strike or oblique-slip regime, although shallow subduction without significant arc magmatism cannot be ruled out. Local transpressional and transtensional domains may account for compressional deformation and rare alkaline and carbonatite magmatism during this early period. The oldest and most voluminous magmatic rocks were emplaced after ˜530 Ma. This magmatism has been associated with active subduction, and suggests a fundamental change in the plate boundary at ˜530 Ma. Ductile shearing of plutons and contractional deformation of supracrustal rocks after ˜530 Ma (Ross orogeny) may have been due to transpressional tectonics in an oblique subduction setting and/or a collision. Compressional deformation associated with the Ross orogeny may have ceased by ˜500 Ma along the southern Victoria Land-Scott Glacier segment of the Antarctic margin, as indicated by undeformed magmatic rocks of this age, although magmatic activity continued to at least ˜485 Ma.

  5. Geochemical characterization of fluids along the Dead Sea Rift: implications for fluids sources and regional geodynamic setting

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Claudio; Censi, Paolo; D'Alessandro, Walter; Zuddas, Pierpaolo

    2016-04-01

    The Dead Sea Fault where a lateral displacement between the African and Arabian plates occurs is characterized by anomalous heat flux in the northern Israel area close to the border with Syria and Jordan (Shalev et al., 2012). The concentrations of He and CO2, and isotopic composition of He and total dissolved inorganic carbon were studied in cold and thermal waters collected along the Dead Sea Fault, in order to investigate the source of volatiles and their relationship with the tectonic framework of the Dead Sea Fault. The waters with higher temperature (up to 57.2 ° C) are characterized by higher amounts of CO2and helium (up to 55.72 and 1.91*10-2 cc l-1, respectively). Helium isotopic data (R/Ra from 0.11 to 2.14) and 4He/20Ne ratios (0.41 - 106.86) show the presence of deep-deriving fluids consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/3He ratios) indicate a larger contribution of mantle-derived fluids affecting the northern part of the investigated area, where the waters reach the highest temperature and anomalous heat flux was recognized by Shalev et al. (2012). Such occurrence is probably favoured by the peculiar tectonic framework recognized in the northern part of Israel (Segev et al., 2006), including a Moho discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic activity. References: Segev, A., Rybakov, M., Lyakhovsky, V, Hofstetter, A, Tibor, G., Goldshmidt, V., 2006. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics 425, 137-157. Shalev, E., Lyakhosky, V., Weinstein, Y., Ben-Avraham, Z., 2013. The thermal structure of Israel

  6. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    PubMed Central

    Coppens, Philip; Fournier, Bertrand

    2015-01-01

    The need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. PMID:26798829

  7. Long Term Leaching of Chlorinated Solvents from Source Zones in Low Permeability Settings with Fractures

    NASA Astrophysics Data System (ADS)

    Bjerg, P. L.; Chambon, J.; Troldborg, M.; Binning, P. J.; Broholm, M. M.; Lemming, G.; Damgaard, I.

    2008-12-01

    Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis-dichloroethylene (cis-DCE), vinyl chloride (VC) and ethene. This process can be enhanced by addition of electron donors and/or bioaugmentation and is termed Enhanced Reductive Dechlorination (ERD). This work aims to improve our understanding of the physical, chemical and microbial processes governing source behaviour under natural and enhanced conditions. That understanding is applied to risk assessment, and to determine the relationship and time frames of source clean up and plume response. To meet that aim, field and laboratory observations are coupled to state of the art models incorporating new insights of contaminant behaviour. The long term leaching of chlorinated ethenes from clay aquitards is currently being monitored at a number of Danish sites. The observed data is simulated using a coupled fracture flow and clay matrix diffusion model. Sequential degradation is represented by modified Monod kinetics accounting for competitive inhibition between the chlorinated ethenes. The model is constructed using Comsol Multiphysics, a generic finite- element partial differential equation solver. The model is applied at two well characterised field sites with respect to hydrogeology, fracture network, contaminant distribution and microbial processes (lab and field experiments). At the study sites (Sortebrovej and Vadsbyvej), the source areas are situated in a clayey till with fractures

  8. Lithospheric Structure, Stress, and Magmatism at the Rainbow Non-Transform Offset on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Canales, J. P.; Dunn, R. A.

    2014-12-01

    New oceanic lithosphere is formed at slow-spreading mid-ocean ridges by a combination of eruption and intrusion of magma and by tectonic exhumation and alteration of lower crustal and mantle rocks. We look at the relationship between these two processes and how their relative contributions vary at non-transform ridge-segment offsets (NTOs). Models of mantle upwelling predict magmatic input and heat flux to be relatively low at NTOs, yet many host high-temperature hydrothermal systems, which are difficult to explain without the presence of a crustal magmatic source. We analyzed newly acquired swath bathymetry, gravity and magnetic data from the MARINER experiment together with archived data from the Rainbow NTO (36º10' N) on the Mid-Atlantic Ridge. This NTO is currently experiencing both mantle exhumation and magmatic input as evidenced by the active Rainbow high-temperature hydrothermal field. We calculate mantle Bouguer gravity anomalies and crustal magnetization to constrain the lithospheric structure and tectonic evolution of the NTO during the past ~2 Myr. The swath bathymetry data are used to map faults, extrusive volcanic terrain and tectonized blocks and show that the style of crustal accretion varies along the adjacent ridge segments. Spatial changes in the style of extensional faulting are indicative of variations in the mechanical properties and the state of stress of the lithosphere. We suggest that the availability of magma to drive hydrothermal activity at Rainbow and other similar settings is controlled not only by the thermal regime and the structure of the lithosphere but also by the effect of local stress conditions on magma migration. Models of magma migration and dyking show that changes in the direction of minimum compressive stress affect the propagation of magmatic intrusions. We argue that stress rotation can explain the formation of crustal magma chambers at NTOs despite a reduced magmatic flux. These constraints help determine the role of

  9. Tectonic significance of Neoproterozoic magmatism of Nakora area, Malani igneous suite, Western Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Vallinayagam, G.

    2014-05-01

    Three magmatic phases are distinguished in the Neoproterozoic Nakora Ring Complex (NRC) of Malani Igneous Suite (MIS), namely (a) Extrusive (b) Intrusive and (c) Dyke phase. Magmatism at NRC initiated with minor amount of (basic) basalt flows and followed by the extensive/voluminous acid (rhyolites-trachytes) flows. The ripple marks are observed at the Dadawari area of NRC in tuffaceous rhyolite flow which suggests the aqueous condition of flows deposition. The emplacement of the magma appears to have been controlled by a well defined NE-SW tectonic lineament and cut by radial pattern of dykes. These NE-SW tectonic lineaments are the linear zones of crustal weakness and high heat flow. The spheroidal and rapakivi structures in the Nakora acid volcanics indicate the relationship between genetic link and magma mixing. Basalt-trachyte-rhyolite association suggests that the large amount of heat is supplied to the crust from the magma chamber before the eruption. The field (elliptical/ring structures), mineralogical and geochemical characteristics of Nakora granites attest an alkaline character in their evolution and consistent with within plate tectonic setting. The emplacement of these granites and associated volcanics is controlled by ring structures, a manifestation of plume activity and cauldron subsidence, an evidence of extensional tectonic environment. NRC granites are the product of partial melting of rocks similar to banded gneiss from Kolar Schist Belt of India. The present investigations suggest that the magmatic suites of NRC rocks are derived from a crustal source and the required heat supplied from a mantle plume.

  10. Comparison of Proterozoic and Phanerozoic rift-related basaltic-granitic magmatism

    NASA Astrophysics Data System (ADS)

    Haapala, Ilmari; Rämö, O. Tapani; Frindt, Stephen

    2005-03-01

    This paper compares the 1.67-1.47 Ga rapakivi granites of Finland and vicinity to the 1.70-1.68 Ga rapakivi granites of the Beijing area in China, the anorogenic ˜130 Ma granites of western Namibia, and the 20-15 Ma granites of the Colorado River extensional corridor in the Basin and Range Province of southern Nevada. In Finland and China, the tectonic setting was incipient, aborted rifting of Paleoproterozoic or Archean continental crust, in Namibia it was continental rifting and mantle plume activity that led to the opening of southern Atlantic at ˜130 Ma. The 20-15 Ma granites of southern Nevada were related to rifting that followed the Triassic-Paleogene subduction of the Farallon plate beneath the southwestern United States. In all cases, extension-related magmatism was bimodal and accompanied by swarms of diabase and rhyolite-quartz latite dikes. Rapakivi texture with plagioclase-mantled alkali feldspar megacrysts occurs in varying amounts in the granites, and the latest intrusive phases are commonly topaz-bearing granites or rhyolites that may host tin, tungsten, and beryllium mineralization. The granites are typically ferroan alkali-calcic metaluminous to slightly peraluminous rocks with A-type and within-plate geochemical and mineralogical characteristics. Isotope studies (Nd, Sr) suggest dominant crustal sources for the granites. The preferred genetic model is magmatic underplating involving dehydration melting of intermediate-felsic deep crust. Juvenile mafic magma was incorporated either via magma mingling and mixing, or by remelting of newly hybridized lower crust. In Namibia, partial melting of subcontinental lithospheric mantle was caused by the Tristan mantle plume, in the other cases the origin of the mantle magmatism is controversial. For the Fennoscandian suites, extensive long-time mantle upwelling associated with periodic, migrating melting of the subcontinental lithospheric mantle, governed by heat flow and deep crustal structures, is

  11. Magmatism in Lithosphere Delamination process inferred from numerical models

    NASA Astrophysics Data System (ADS)

    Göǧüş, Oǧuz H.; Ueda, Kosuke; Gerya, Taras

    2017-04-01

    The peel away of the oceanic/continental slab from the overlying orogenic crust has been suggested as a ubiquitous process in the Alpine-Mediterranean orogenic region (e.g. Carpathians, Apennines, Betics and Anatolia). The process is defined as lithospheric delamination where a slab removal/peel back may allow for the gradual uprising of sub-lithospheric mantle, resulting in high heat flow, transient surface uplift/subsidence and varying types of magma production. Geodynamical modeling studies have adressed the surface response to the delamination in the context of regional tectonic processes and explored wide range of controlling parameters in pre-syn and post collisional stages. However, the amount and styles of melt production in the mantle (e.g. decompression melting, wet melting in the wedge) and the resulting magmatism due to the lithosphere delamination remains uncertain. In this work, by using thermomechanical numerical experiments, designed in the configuration of subduction to collision, we investigated how melting in the mantle develops in the course of delamination. Furthermore, model results are used to decipher the distribution of volumetric melt production, melt extraction and the source of melt and the style of magmatism (e.g. igneous vs. volcanic). The model results suggest that a broad region of decompression melting occurs under the crust, mixing with the melting of the hydrated mantle derived by the delaminating/subducting slab. Depending on the age of the ocean slab, plate convergence velocity and the mantle temperature, the melt production and crust magmatism may concentrate under the mantle wedge or in the far side of the delamination front (where the subduction begins). The slab break-off usually occurs in the terminal stages of the delamination process and it may effectively control the location of the magmatism in the crust. The model results are reconciled with the temporal and spatial distribution of orogenic vs. anorogenic magmatism in

  12. Quaternary Magmatism in the Cascades - Geologic Perspectives

    USGS Publications Warehouse

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  13. Novel open-source electronic medical records system for palliative care in low-resource settings

    PubMed Central

    2013-01-01

    Background The need for palliative care in sub-Saharan Africa is staggering: this region shoulders over 67% of the global burden of HIV/AIDS and cancer. However, provisions for these essential services remain limited and poorly integrated with national health systems in most nations. Moreover, the evidence base for palliative care in the region remains scarce. This study chronicles the development and evaluation of DataPall, an open-source electronic medical records system that can be used to track patients, manage data, and generate reports for palliative care providers in these settings. DataPall was developed using design criteria encompassing both functional and technical objectives articulated by hospital leaders and palliative care staff at a leading palliative care center in Malawi. The database can be used with computers that run Windows XP SP 2 or newer, and does not require an internet connection for use. Subsequent to its development and implementation in two hospitals, DataPall was tested among both trained and untrained hospital staff populations on the basis of its usability with comparison to existing paper records systems as well as on the speed at which users could perform basic database functions. Additionally, all participants evaluated this program on a standard system usability scale. Results In a study of health professionals in a Malawian hospital, DataPall enabled palliative care providers to find patients’ appointments, on average, in less than half the time required to locate the same record in current paper records. Moreover, participants generated customizable reports documenting patient records and comprehensive reports on providers’ activities with little training necessary. Participants affirmed this ease of use on the system usability scale. Conclusions DataPall is a simple, effective electronic medical records system that can assist in developing an evidence base of clinical data for palliative care in low resource settings. The

  14. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    NASA Astrophysics Data System (ADS)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  15. Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.; Vaniman, David T.

    2014-05-01

    A distinctive sulfur cycle dominates many geological processes on Mars and hydrated sulfate minerals are found in numerous topographic settings with widespread occurrences on the Martian surface. However, many of the key processes controlling the hydrological transport of sulfur, including sulfur sources, climate and the depositional history that led to precipitation of these minerals, remain unclear. In this paper, we use a model for the formation of sulfate efflorescent salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semiarid Southwest U.S., to assess the origin and environmental conditions that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. Our terrestrial geochemical results (δS34 of -36.0 to +11.1‰) show that an ephemeral arid hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and dry/wet atmospheric deposition can lead to widespread surface accumulations of hydrated sulfate efflorescences. Repeating cycles of salt dissolution and reprecipitation appear to be major processes that migrate sulfate efflorescences to sites of surface deposition and ultimately increase the aqueous SO42- flux along the watershed (average 41,273 metric tons/yr). We suggest that similar shallow processes may explain the occurrence of hydrated sulfates detected on the scarps and valley floors of Valles Marineris on Mars. Our estimates of salt mass and distribution are in accord with studies that suggest a rather short-lived process of sulfate formation (minimum rough estimate ∼100 to 1000 years) and restriction by prevailing arid conditions on Mars.

  16. Magmatic occurrences in the Central Arava (southern Israel) based on Geology and Magnetometry

    NASA Astrophysics Data System (ADS)

    Hanan, Ginat; Michael, Rybakov; Boris, Shirman; Michael, Lazar

    2014-05-01

    The Eshet Ridge is located in the Central Arava near Wadi Paran. Geological data were collected using ground magnetic surveys and petrophysical measurements (magnetic susceptibility and density). The goal was to reveal the structure and nature of a concealed magmatic body under the ridge. Integrated gravity and magnetic interpretation together with seismic reflection data (including 2¾ modeling) indicated the presence of a deep-seated basic magmatic intrusion. Occurrence of Fe-mineralized rocks along the ridge supports subsurface data. The magmatic body was intruded in the hard Turonian rocks of the Eshet Ridge. Basic magmatic exposures dating from the Early Miocene were evident along Wadi Ashosh (in the eastern Negev) and its margins 18 km. to the north of the ridge. A new outcrop of basic magmatic intrusion was found southwest of the Tzukim settlement. Magnetic measurements indicated a similarity between their magnetic pattern and the Ashosh basic magmatics, which were dated to 20.4 ± 0.7 Ma. Volcanoclastic tuff pebbles (magnetic susceptibility of around 2-7 * 10-3 SI) surrounded by conglomerate were discovered at two sites in Wadi Demma and Wadi Menuha (streams that drain near the Eshet Ridge and 2 km south of it, respectively). The conglomerates contained mostly limestone, chalk and chert fragments; not more than 5% of which were volcanic pebbles. Two pebbles were dated to 24.4 ± 0.7and 21.5 ± 0.5 Ma. The magmatic outcrops in Wadi Ashosh, the magmatic dyke near Tzukim and the volcanic purple and black pebbles near Wadi Menuha were all dated to the very Late Oligocene-Early Miocene. The magmatic body identified in this study under the Eshet Ridge was termed the Eshet Intrusion and is connected to, and even the source of, all these phenomena.

  17. Nominally hydrous magmatism on the Moon.

    PubMed

    McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J

    2010-06-22

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.

  18. Nominally hydrous magmatism on the Moon

    PubMed Central

    McCubbin, Francis M.; Steele, Andrew; Hauri, Erik H.; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J.

    2010-01-01

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca5(PO4)3(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H2O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher. PMID:20547878

  19. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  20. The Colima volcano magmatic system

    NASA Astrophysics Data System (ADS)

    Spica, Z.; Perton, M.; Legrand, D.

    2016-12-01

    We show how and where magmas are produced and stored at Colima volcano, Mexico, by performing an ambient noise tomography inverting jointly the Rayleigh and Love wave dispersion curves for both phase and group velocities. We obtain shear wave velocity and radial anisotropy models. The shear wave velocity model shows a deep, large and well-delineated elliptic-shape magmatic reservoir below the Colima volcano complex at a depth of about 15 km. The radial anisotropy model shows an important negative feature rooting up to ≥35 km depth until the roof of the magma reservoir, suggesting the presence of vertical fractures where fluids migrate upward and accumulate in the magma reservoir. The convergence of both a low velocity zone and a negative anisotropy suggests that the magma is mainly stored in conduits or inter-fingered dykes as opposed to horizontally stratified magma reservoir.

  1. Introduction to Special Section on Open Magmatic Systems

    NASA Astrophysics Data System (ADS)

    Hildreth, Wes; Grove, Timothy L.; Dungan, Michael A.

    1986-05-01

    The idea that magmatic systems are open to intermittent gains and losses of mass and energy is hardly new. Eruptive, conductive, and hydrothermally convective losses are obvious, and both wall rock assimilation and mixing of discrete magma batches are petrological ideas with long and distinguished conceptual lineages. New ideas of the last decade are largely outgrowths of the mounting evidence that mixing and assimilation are ubiquitous, that heterogeneity and mixing in mantle source regions are common, and that few igneous rock suites are likely to reflect strictly closed-system fractionation of single magma batches. The evidence has accumulated quickly on many fronts, owing in part to the wider availability of high-precision analytical tools and the development of sophisticated methods for modeling the wealth of chemical and isotopic data. Detailed studies of zoned ash flow sheets, zoned and layered plutons, and macroscopically mixed igneous rocks have made petrologists aware that dynamic and nonequilibrium aspects of magma transport play important roles in the evolution of many magmatic systems. Technological advances have permitted routine experimentation over a wide range of pressures, providing kinetic data and phase equilibrum constraints essential to understanding both mantle source processes and magmatic evolution in crustal reservoirs. Finally, the plate tectonic synthesis and seafloor sampling programs have respectively provided the impetus for a detailed assessment of geochemical heterogeneity in a dynamic mantle and an important avenue for accomplishing that assessment.

  2. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    DOE PAGES

    Coppens, Philip; Fournier, Bertrand

    2015-11-11

    Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  3. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    SciTech Connect

    Coppens, Philip; Fournier, Bertrand

    2015-11-11

    Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  4. CO2-fluxing collapses metal mobility in magmatic vapour

    DOE PAGES

    van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; ...

    2016-05-18

    Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanism for metalmore » deposition.« less

  5. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the

  6. Magmatic volatiles and the weathering of Mars

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1993-01-01

    The sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or

  7. Rural Parentage and Labor Market Disadvantage in a Sub-Saharan Setting: Sources and Trends

    ERIC Educational Resources Information Center

    Giroux, Sarah C.

    2008-01-01

    High unemployment in many developing countries is intensifying job competition and raising concern for the employment prospects of vulnerable groups, including children of rural parents. This paper examines the trends and sources in employment disadvantage associated with rural parentage in Cameroon. In documenting the sources of inequality, the…

  8. Magmatic epidote and its petrologic significance

    SciTech Connect

    Zen, A.; Hammarstrom, J.M.

    1984-09-01

    Epidote is a major magmatic mineral in tonalite and granodiorite in a belt coextensive with the Mesozoic accreted terranes between northern California and southeastern Alaska. Textural and chemical evidence indicates that epidote crystallized as a relatively late but magmatic mineral that formed through reaction with hornblende in the presence of a melt phase. The observed relations concur with experimental data on crystallization of epidote from synthetic granodiorite at 8 kbar total pressure. Plutonic rocks bearing magmatic epidote must have formed under moderately high pressures, corresponding to lower crustal depths, under fairly oxidizing conditions. 23 references, 3 figures, 1 table.

  9. Quantification of Methane Source Locations and Emissions in AN Urban Setting

    NASA Astrophysics Data System (ADS)

    Crosson, E.; Richardson, S.; Tan, S. M.; Whetstone, J.; Bova, T.; Prasad, K. R.; Davis, K. J.; Phillips, N. G.; Turnbull, J. C.; Shepson, P. B.; Cambaliza, M. L.

    2011-12-01

    The regulation of methane emissions from urban sources such as landfills and waste-water treatment facilities is currently a highly debated topic in the US and in Europe. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of Methane (CH4) and in fact may be substantially higher than current inventory estimates(1). As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill and wastewater treatment facility owners, watchdog groups, and the governmental agencies seeking to evaluate or enforce regulations. In an attempt to identify major methane source locations and emissions in Boston, Indianapolis, and the Bay Area, systematic measurements of CH4 concentrations and meteorology data were made at street level using a vehicle mounted cavity ringdown analyzer. A number of discrete sources were detected at concentration levels in excess of 15 times background levels. Using Gaussian plume models as well as tomographic techniques, methane source locations and emission rates will be presented. In addition, flux chamber measurements of discrete sources such as those found in natural gas leaks will also be presented. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.

  10. Magmatic versus sedimentary volcanism: similarities of two different geological phenomena

    NASA Astrophysics Data System (ADS)

    Mazzini, Adriano

    2015-04-01

    Sedimentary volcanoes (or more commonly called mud volcanoes) are geological phenomena that are present in sedimentary basins of passive and active margins. At these localities gas and water related to hydrocarbon diagenetic and catagenetic production generate overpressure facilitating the rise of mobile and ductily deformable materials that breach through the denser overlying rocks. The results are surface powerful manifestations of mud eruptions that strikingly resemble to those of magmatic volcanoes. Magmatic and sedimentary volcanoes share many other similarities. Initially both systems are essentially gas driven and the subsurface plumbing systems are characterized by intrusions and a complex system of fractures and conduits that bifurcate from a central feeder channel that manifest in the surface as numerous satellite seeps and vents. In both cases are inferred secondary shallower chambers where reactions take place. Comparable structural morphologies (e.g. conical, elongated, pie-shaped, multicrater, swap-like, caldera collapse, subsiding flanks, plateau-like) and/or alteration of the original shape are in both cases related to e.g. density and viscosity of the erupted solids, to the gas content, to the frequency of the eruptions, and to the action of meteoric factors (e.g. strong erosion by rain, wind, temperature changes etc. etc.). Like for magmatic volcanoes, the periodicity of the eruptive activity is related to the time required to charge the system and create new overpressure, as well as how the structure seals during periods of dormancy. Earthquakes are documented to be a powerful trigger capable to activate faults (often hosting magmatic and sedimentary volcanoes) and/or facilitating the breaching of the upper layers, and allowing the rise of deeper charged fluids. Finally, both systems significantly contribute as active source for CH4 (sedimentary) and CO2 (magmatic) resulting of great importance for global budget estimates of sensitive gasses. The

  11. Using Narrative as a Data Source and Analytic Method to Investigate Learning Outside of Traditional School Settings with Diverse Youth

    ERIC Educational Resources Information Center

    Martell, Sandra Toro; Antrop-Gonzalez, Rene

    2008-01-01

    Narrative is used to describe and understand how people construct meaning of their lives and experiences and how they think about their own and others' identities. We examined narrative as both data source and method of analysis for investigating learning in non-traditional school settings with students from diverse socio-economic status and…

  12. Sources of Anxiety Within the School Setting as Reported by Emory University Preservice and Inservice Teachers. A Descriptive Study.

    ERIC Educational Resources Information Center

    Sullivan, Cheryl Granade

    Data gathered in three Delphi rounds indicated a dichotomy between 12 inservice supervising teachers and 12 preservice teachers at Emory University in their reports of sources of anxiety within the school setting. Preservice teachers reported concerns focused primarily on pupils and pupil-teacher interaction. Inservice teachers had anxiety…

  13. Magmatic Evolution of the Skye Igneous Center, Western Scotland

    NASA Astrophysics Data System (ADS)

    Fowler, S. J.; Bohrson, W. A.; Spera, F. J.

    2003-12-01

    Geochemically complex igneous suites are the result of interplay between deep and crustal-level processes. Quantitatively modeling the contribution that crustal-level processes such as magma recharge, crustal assimilation, and fractional crystallization have is critical for developing realistic models of how magma transport/storage systems evolve. The Energy-Constrained Recharge, Assimilation, and Fractional Crystallization simulator (EC-RAFC, Spera & Bohrson, 2001, 2002; Bohrson & Spera, 2001, 2003) provides a means to model thermal, compositional, and magma volume data for complex magmatic systems. The Skye igneous center, western Scotland, spanning the period 60.53 +/- 0.08 Ma - 53.5 +/- 0.8 Ma and characterized by a well-documented suite of lavas and intrusive rocks of picritic to granitic composition, is the first natural data set to which the EC-RAFC model has been applied in detail. Based on analysis of published field, stratigraphic, petrographic, and chemical data, we propose that the Skye Tertiary magmatic sequence be divided into four petrogenetically related lineages. EC-RAFC results indicate that each lineage is characterized by a unique parental magma that has undergone distinct episodes of RAFC. Model results, constrained by published data on the nature of the crust beneath Skye, indicate that the character of the assimilant changes upsection, suggesting that the associated magma reservoirs migrated to shallower levels as the magmatic system matured. The magmatic products of each group also record the fingerprint of multiple episodes of magma recharge, where the character of the recharge magma also evolves with time. The image of the magma transport system that emerges is one in which magma is initially intruded at lower crustal levels and undergoes a distinct RAFC episode. Residual magma from this event then migrates to shallower levels, where mid-crustal wallrock is assimilated; recharge magma is characterized by increasingly crustal chemical and

  14. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    -hydrothermal or magmatic-steam fluids. Thus, the oxidation of SO2 to aqueous sulfate in the magmatic-steam fluids did not result from mixing with atmospheric oxygen. Both of the fluid types are characterized by high H2 contents that range from 0.2 mol% to the extraordinarily large amounts (66 mol%) observed in some magmatic-steam fluids. Modeling of gas speciation using SOLVGAS requires most of the gas species to have been in disequilibrium at the time of their trapping in the fluid inclusions. The origin of such extreme H2 concentrations, although problematic, is thought to be largely related to accumulation of H2 from the reaction of water with ferrous iron during the rise of magma and probably even after exsolution of fluid from a magma. The large contents of reduced gases in the inclusion fluids are far in excess of those observed in volcanic emanations, and are thought to reflect the close "sampling position" of the host alunite relative to the location of the magma. Isotope ratios of He and Ne indicate largely crustal sources for these gases in the alunite parental fluids derived from Tertiary magmas, but a greater mantle component for the gases in alunite parental fluids derived from Proterozoic magmas.

  15. Estimation of distance error by fuzzy set theory required for strength determination of HDR (192)Ir brachytherapy sources.

    PubMed

    Kumar, Sudhir; Datta, D; Sharma, S D; Chourasiya, G; Babu, D A R; Sharma, D N

    2014-04-01

    Verification of the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of institutional quality assurance program. Either reference air-kerma rate (RAKR) or air-kerma strength (AKS) is the recommended quantity to specify the strength of gamma-emitting brachytherapy sources. The use of Farmer-type cylindrical ionization chamber of sensitive volume 0.6 cm(3) is one of the recommended methods for measuring RAKR of HDR (192)Ir brachytherapy sources. While using the cylindrical chamber method, it is required to determine the positioning error of the ionization chamber with respect to the source which is called the distance error. An attempt has been made to apply the fuzzy set theory to estimate the subjective uncertainty associated with the distance error. A simplified approach of applying this fuzzy set theory has been proposed in the quantification of uncertainty associated with the distance error. In order to express the uncertainty in the framework of fuzzy sets, the uncertainty index was estimated and was found to be within 2.5%, which further indicates that the possibility of error in measuring such distance may be of this order. It is observed that the relative distance li estimated by analytical method and fuzzy set theoretic approach are consistent with each other. The crisp values of li estimated using analytical method lie within the bounds computed using fuzzy set theory. This indicates that li values estimated using analytical methods are within 2.5% uncertainty. This value of uncertainty in distance measurement should be incorporated in the uncertainty budget, while estimating the expanded uncertainty in HDR (192)Ir source strength measurement.

  16. Time-Dependent Selection of an Optimal Set of Sources to Define a Stable Celestial Reference Frame

    NASA Technical Reports Server (NTRS)

    Le Bail, Karine; Gordon, David

    2010-01-01

    Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.

  17. Collision zone magmatism aids continental crustal growth

    NASA Astrophysics Data System (ADS)

    Savov, Ivan; Meliksetian, Khachatur; Ralf, Halama; Gevorg, Navasardian; Chuck, Connor; Massimo, D'Antonio; Samuele, Agostini; Osamu, Ishizuka; Sergei, Karapetian; Arkadi, Karakhanian

    2014-05-01

    .51282, respectively). These isotopic signatures are much more similar to those typical of intra-oceanic subduction zones than those typical of continental crust, likely due to the very young age of the rocks. In contrast, trace element abundances reveal many similarities to average CC, such as Nb-Ta and Ti troughs and Pb peaks. The range of d11B isotope ratios (-8.7 to +2.1 per mil) signifies magmas originating from moderately metasomatised (arc preconditioned) mantle sources. Our combined results reveal that the collision-related mantle melting is capable of generating large volumes of plutons and volcanic rocks that resemble (although not perfectly) the composition of the average CC. We will attempt to use the new combined datasets in order to quantify the importance of the collision zone magmatism for continental crustal growth. [1] Lee et al. (2007) EPSL 263, 370-387; [2] Niu et al. (2013) Earth-Science Reviews 127, 96-110; [3] Connor et al., (2012) J.Applied Volcanology, 1:3, 1-19.

  18. Tuning of AcurosXB source size setting for small intracranial targets.

    PubMed

    Gardner, Stephen J; Lu, Siming; Liu, Chang; Wen, Ning; Chetty, Indrin J

    2017-05-01

    This study details a method to evaluate the source size selection for small field intracranial stereotactic radiosurgery (SRS) deliveries in Eclipse treatment planning system (TPS) for AcurosXB dose calculation algorithm. Our method uses end-to-end dosimetric data to evaluate a total of five source size selections (0.50 mm, 0.75 mm, 1.00 mm, 1.25 mm, and 1.50 mm). The dosimetric leaf gap (DLG) was varied in this analysis (three DLG values were tested for each scenario). We also tested two MLC leaf designs (standard and high-definition MLC) and two delivery types for intracranial SRS (volumetric modulated arc therapy [VMAT] and dynamic conformal arc [DCA]). Thus, a total of 10 VMAT plans and 10 DCA plans were tested for each machine type (TrueBeam [standard MLC] and Edge [high-definition MLC]). Each plan was mapped to a solid water phantom and dose was calculated with each iteration of source size and DLG value (15 total dose calculations for each plan). To measure the dose, Gafchromic film was placed in the coronal plane of the solid water phantom at isocenter. The phantom was localized via on-board CBCT and the plans were delivered at planned gantry, collimator, and couch angles. The planned and measured film dose was compared using Gamma (3.0%, 0.3 mm) criteria. The vendor-recommended 1.00 mm source size was suitable for TrueBeam planning (both VMAT and DCA planning) and Edge DCA planning. However, for Edge VMAT planning, the 0.50 mm source size yielded the highest passing rates. The difference in dose calculation among the source size variations manifested primarily in two regions of the dose calculation: (1) the shoulder of the high-dose region, and (2) for small targets (volume ≤ 0.30 cc), in the central portion of the high-dose region. Selection of a larger than optimal source size can result in increased blurring of the shoulder for all target volume sizes tested, and can result in central axis dose discrepancies in excess of 10% for target volumes sizes

  19. Role of crustal contribution in the early stage of the Damara Orogen, Namibia: new constraints from combined U-Pb and Lu-Hf isotopes from the Goas Magmatic Complex

    NASA Astrophysics Data System (ADS)

    Milani, Lorenzo; Kinnaird, Judith; Lehmann, Jeremie; Naydenov, Kalin; Saalmann, Kerstin; Frei, Dirk; Gerdes, Axel

    2014-05-01

    invoke large-scale reworking in the lower crust. Hf model ages, coupled with an exhaustive set of U-Pb geochronological data and with the new magmatic and detrital age record, suggest that the crustal components which developed the Goas sources might have formed during specific orogenic events, with a maximum contribution of rocks derived from the central-western African Paleoproterozoic Eburnean Orogeny.

  20. Magmatic expressions of continental lithosphere removal

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Currie, Claire A.

    2015-10-01

    Gravitational lithosphere removal in continental interior has been inferred from various observations, including anomalous surface deflections and magmatism. We use numerical models and a simplified theoretical analysis to investigate how lithosphere removal can be recognized in the magmatic record. One style of removal is a Rayleigh-Taylor-type instability, where removal occurs through dripping. The associated magmatism depends on the lithosphere thermal structure. Four types of magmatism are predicted: (1) For relatively hot lithosphere (e.g., back arcs), the lithosphere can be conductively heated and melted during removal, while the asthenosphere upwells and undergoes decompression melting. If removal causes significant lithospheric thinning, the deep crust may be heated and melted. (2) For moderately warm lithosphere (e.g., average Phanerozoic lithosphere) in which the lithosphere root has a low density, only the lithosphere may melt. (3) If the lithosphere root has a high density in moderately warm lithosphere, only asthenosphere melt is predicted. (4) For cold lithosphere (e.g., cratons), no magmatism is induced. An alternate style of removal is delamination, where dense lithosphere peels along Moho. In most cases, the lithosphere sinks too rapidly to melt. However, asthenosphere can upwell to the base of the crust, resulting in asthenospheric and crustal melts. In delamination, magmatism migrates laterally with the detachment point; in contrast, magmatism in Rayleigh-Taylor-type instability has a symmetric shape and converges toward the drip center. The models may explain the diversity of magmatism observed in areas with inferred lithosphere removal, including the Puna Plateau and the southern Sierra Nevada.

  1. Impulsive Wave Propagation within Magmatic Conduits with Axial Symmetry

    NASA Astrophysics Data System (ADS)

    De Negri Leiva, R. S.; Arciniega-Ceballos, A.; Scheu, B.; Dingwell, D. B.; Sanchez-Sesma, F. J.

    2013-12-01

    We implemented Trefftz's method to simulate wave propagation in a fluid-solid system aimed to represent a magmatic conduit. Assuming axial symmetry, a set of multipoles is used to build a complete system of wave functions for both the solid and the fluid. These functions are solutions of the elastodynamic equations that govern the motions in the fluid and the solid, respectively. The conduit can be closed or open and the exterior elastic domain may be unlimited or with an exterior boundary. In order to find the functions coefficients, boundary conditions (null shear and continuity of pressures and normal velocities) are satisfied in the least squares sense. The impulsive nature of the source is considered using Fourier analysis. Despite the simplicity of the formulation our results display a rich variety of behaviors. In fact, for a uniform infinite cylinder we reproduced the analytical solution. Moreover, this approach allows establishing some important effects of conduit geometry, including changes of sections. Lateral effects and bump resonances are well resolved. We compared our numerical calculations with results obtained from experimental simulations of volcanic explosions in which rapid depressurization induces fragmentation of volcanic rocks. These experiments are performed within a shock-tube apparatus at room temperature and various pressures using Argon (Ar) gas, particles and pumice samples of different porosities, from Popocatepetl volcano. The mechanical system is well characterized and the dynamics of the explosive process is monitored with high precision piezoelectric sensors located at the pipe surface. The combination of analytical and experimental approaches is very useful to understand the seismic wave field of volcanic conduit dynamics.

  2. The nature of magmatism at Palinpinon geothermal field, Negros Island, Philippines: implications for geothermal activity and regional tectonics

    NASA Astrophysics Data System (ADS)

    Rae, Andrew J.; Cooke, David R.; Phillips, David; Zaide-Delfin, Maribel

    2004-01-01

    The Palinpinon geothermal field, Negros Island, Philippines is a high-temperature, liquid-dominated geothermal system in an active island-arc volcanic setting. This paper presents a regional context for the Palinpinon geology, discusses the petrogenetic evolution of magmatism in the district and assesses the genetic relationships between intrusion and geothermal circulation. The oldest rock formation, the Lower Puhagan Volcanic Formation (Middle Miocene), is part of a volcanic sequence that is traceable throughout the Visayas region and is related to subduction of the Sulu Sea oceanic basin in a southeasterly direction beneath the Sulu arc. Late Miocene to Early Pliocene times mark a period of regional subsidence and marine sedimentation. A thick sequence of calcareous sediments (Okoy Formation) was deposited during this period. Magmatism in Early Pliocene to Recent times coincided with commencement of subduction at the Negros-Sulu Arc. This produced basaltic andesites and andesites belonging to the Southern Negros and Cuernos Volcanic Formations. During this time the Puhagan dikes and the Nasuji Pluton intruded Middle Miocene, Late Miocene and Early-Late Pliocene formations. Based on radiogenic ( 40Ar/ 39Ar) dating of hornblende, the Puhagan dikes are 4.1-4.2 Ma and the Nasuji Pluton 0.3-0.7 Ma. This age difference confirms these intrusions are not genetically related. The Early Pliocene age of the Puhagan dikes also confirms they are not the heat source for the current geothermal system and that a much younger intrusion is situated beyond drill depths. Igneous rock formations in southern Negros are the products of regional island-arc magmatism with medium K, calc-alkaline, basaltic to dacitic compositions. Their adakitic affinity implies that the melting of subducted oceanic basalt has influenced magmatism in this region. Considering the regional tectonic history the most likely scenarios for the generation of slab melts are: (1) during the Middle Miocene, by the

  3. Early Jurassic calc-alkaline magmatism in northeast China: Magmatic response to subduction of the Paleo-Pacific Plate beneath the Eurasian continent

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Xu, Yi-Gang; Xu, Wen-Liang; Yang, Lei; Wu, Wei; Sun, Chen-Yang

    2017-08-01

    The subduction of the Paleo-Pacific Plate played an important role in the regional evolution of the eastern margin of the Eurasian continent, but the timing and extent of this event remain ambiguous. To address these issues, we examine the geochronology and geochemistry of Early Jurassic intrusive rocks in eastern Jilin Province, NE China. The Early Jurassic gabbro-diorites, diorites, granodiorites, and monzogranites are found to have been emplaced at 183-185 Ma and are characterized by enrichment in large ion lithophile elements and depletion in high field strength elements, similar to calc-alkaline arc-type igneous rocks. The Early Jurassic gabbroic and dioritic rocks have εHf(t) values of +2.1 to +10.1 and Hf single-stage (TDM1) model ages of 430-774 Ma, whereas the monzogranites have εHf(t) values of +6.7 to +8.9 and Hf single-stage (TDM1) ages of 597-718 Ma. The gabbro-diorites, diorites, and granodiorites described in this study are genetically linked and they represent the products of the fractional crystallization of a common mafic magma that was in turn derived from the partial melting of a mantle source that was metasomatized by subduction-related fluids. In contrast, the Early Jurassic monzogranites were generated by partial melting of a depleted lower crustal block that was probably accreted during the Neoproterozoic. More importantly, the Early Jurassic calc-alkaline igneous rocks in the east part of NE China form a NE-trending belt that is oriented perpendicular to the direction of Paleo-Pacific Plate movement at that time. West of this belt, contemporaneous bimodal igneous rocks occur in the Lesser Xing'an-Zhangguangcai Ranges. This magmatic configuration is best explained by continental arc magmatism along the continental margin and extensional magmatism in a back-arc setting, in each case triggered by the initial subduction of the Paleo-Pacific Plate beneath Eurasia in the Early Jurassic.

  4. Water sources in mangroves in four hydrogeomorphic settings in Florida and Mexico

    Treesearch

    Christina Stringer; Mark. Rains

    2016-01-01

    Mangroves are transitional environments, where fresh water from the terrestrial environments mix with seawater from the marine environment. The relative contributions of these sources vary and play a role in controlling the physical and chemical hydrological characteristics of mangroves and facilitate the exchange of mass, energy, and organisms between mangroves and...

  5. School-Community Collaboration in a Rural Setting: Sources and Profiles. Knowledge Brief, Number Eight.

    ERIC Educational Resources Information Center

    Hale, Sylvie van Heusden

    This article provides resources for school-community collaboration to support at-risk students and their families in rural settings. Rural schools and their communities must work together efficiently and economically to counteract problems such as geographic isolation, shortage of resources, economic decline, lack of political power and…

  6. Sources of Cognitive Inflexibility in Set-Shifting Tasks: Insights into Developmental Theories from Adult Data

    ERIC Educational Resources Information Center

    Dick, Anthony Steven

    2012-01-01

    Two experiments examined processes underlying cognitive inflexibility in set-shifting tasks typically used to assess the development of executive function in children. Adult participants performed a Flexible Item Selection Task (FIST) that requires shifting from categorizing by one dimension (e.g., color) to categorizing by a second orthogonal…

  7. Sources of Cognitive Inflexibility in Set-Shifting Tasks: Insights into Developmental Theories from Adult Data

    ERIC Educational Resources Information Center

    Dick, Anthony Steven

    2012-01-01

    Two experiments examined processes underlying cognitive inflexibility in set-shifting tasks typically used to assess the development of executive function in children. Adult participants performed a Flexible Item Selection Task (FIST) that requires shifting from categorizing by one dimension (e.g., color) to categorizing by a second orthogonal…

  8. Sources and Correlates of Role Strain Among Teachers in Varied Settings.

    ERIC Educational Resources Information Center

    Keith, Pat

    This study investigated the relationship between role strain and several personal and organizational variables for teachers in self-contained classrooms and team teaching settings. Role strain was identified by the Job Related Tension Index; personal variables were identified by the Teacher Conception of the Educative Process Questionnaire; and…

  9. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    NASA Astrophysics Data System (ADS)

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-02-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007-2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10-14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of - 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  10. How Consistent Is Sluggish Cognitive Tempo Across Occasions, Sources, and Settings? Evidence From Latent State-Trait Modeling.

    PubMed

    Preszler, Jonathan; Burns, G Leonard; Litson, Kaylee; Geiser, Christian; Servera, Mateu; Becker, Stephen P

    2017-01-01

    Research has yet to determine how much of the variance in sluggish cognitive tempo (SCT) symptom ratings is consistent across occasions, sources, and settings versus specific to occasion, source, and setting. Our first objective was to determine the amount of variance in SCT ratings that was consistent ( trait consistency) across three occasions of measurement over 12 months versus specific to the occasion ( occasion-specificity) with ratings by mothers, fathers, primary teachers, and secondary teachers of 811 Spanish children. Our second objective was then to determine the convergent validity for trait consistency and occasion-specificity variance components within and across settings. SCT ratings reflected mostly trait consistency for mothers, fathers, and primary teachers (less so for secondary teachers) with the convergent validity for trait consistency also being strong for mothers with fathers and for primary teachers with secondary teachers. Across home and school, however, convergent validity for trait consistency was low and even lower for occasion-specificity. SCT appears to be more trait-like rather than state-like, with similar levels of trait consistency across occasions and convergent validity within settings as attention-deficit/hyperactivity disorder (ADHD) symptoms in a prior study. However, SCT symptoms had slightly weaker convergent validity for trait consistency across settings relative to ADHD symptoms.

  11. Numerical model for the evaluation of Earthquake effects on a magmatic system.

    NASA Astrophysics Data System (ADS)

    Garg, Deepak; Longo, Antonella; Papale, Paolo

    2016-04-01

    A finite element numerical model is presented to compute the effect of an Earthquake on the dynamics of magma in reservoirs with deformable walls. The magmatic system is hit by a Mw 7.2 Earthquake (Petrolia/Capo Mendocina 1992) with hypocenter at 15 km diagonal distance. At subsequent times the seismic wave reaches the nearest side of the magmatic system boundary, travels through the magmatic fluid and arrives to the other side of the boundary. The modelled physical system consists in the magmatic reservoir with a thin surrounding layer of rocks. Magma is considered as an homogeneous multicomponent multiphase Newtonian mixture with exsolution and dissolution of volatiles (H2O+CO2). The magmatic reservoir is made of a small shallow magma chamber filled with degassed phonolite, connected by a vertical dike to a larger deeper chamber filled with gas-rich shoshonite, in condition of gravitational instability. The coupling between the Earthquake and the magmatic system is computed by solving the elastostatic equation for the deformation of the magmatic reservoir walls, along with the conservation equations of mass of components and momentum of the magmatic mixture. The characteristic elastic parameters of rocks are assigned to the computational domain at the boundary of magmatic system. Physically consistent Dirichlet and Neumann boundary conditions are assigned according to the evolution of the seismic signal. Seismic forced displacements and velocities are set on the part of the boundary which is hit by wave. On the other part of boundary motion is governed by the action of fluid pressure and deviatoric stress forces due to fluid dynamics. The constitutive equations for the magma are solved in a monolithic way by space-time discontinuous-in-time finite element method. To attain additional stability least square and discontinuity capturing operators are included in the formulation. A partitioned algorithm is used to couple the magma and thin layer of rocks. The

  12. Magmatism evolution on the last Neoproterozoic development stage of the western Siberian active continental margin

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.

    2017-04-01

    Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E

  13. The synoptic setting and possible energy sources for mesoscale wave disturbances

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Koch, Steven E.

    1987-01-01

    Published data on 13 cases of mesoscale wave disturbances and their environment were examined to isolate common features for these cases and to determine possible energy sources for the waves. These events are characterized by either a singular wave of depression or wave packets with periods of 1-4 h, horizontal wavelengths of 50-500 km, and surface-pressure perturbation amplitudes of 0.2-7.0 mb. These wave events are shown to be associated with a distinct synoptic pattern (including the existence of a strong inversion in the lower troposphere and the propagation of a jet streak toward a ridge axis in the upper troposphere) while displaying little correlation with the presence of convective storm cells. The observed development of the waves is consistent with the hypothesis that the energy source needed to initiate and sustain the wave disturbances may be related to a geostrophic adjustment process associated with upper-tropospheric jet streaks.

  14. Using an alternate light source to detect electrically singed feathers and hair in a forensic setting.

    PubMed

    Viner, Tabitha C; Kagan, Rebecca A; Johnson, Jennifer L

    2014-01-01

    Mortality due to electrical injury in wildlife may occur in the form of lightning strike or power line contact. Evidence of electrical contact may be grossly obvious, with extensive singeing, curling, and blackening of feathers, fur, or skin. Occasionally, changes may be subtle, owing to lower current or reduced conductivity, making a definitive diagnosis of electrocution more difficult. We describe the use of an alternate light source in the examination of cases of lightning strike and power line contact in wildlife, and the enhanced detection of changes due to electrical currents in the hair and feathers of affected animals. Subtle changes in the wing feathers of 12 snow geese and 1 wolf that were struck by separate lightning events were made obvious by the use of an alternate light source. Similarly, this technique can be used to strengthen the evidence for power line exposure in birds. Published by Elsevier Ireland Ltd.

  15. The synoptic setting and possible energy sources for mesoscale wave disturbances

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Koch, Steven E.

    1987-01-01

    Published data on 13 cases of mesoscale wave disturbances and their environment were examined to isolate common features for these cases and to determine possible energy sources for the waves. These events are characterized by either a singular wave of depression or wave packets with periods of 1-4 h, horizontal wavelengths of 50-500 km, and surface-pressure perturbation amplitudes of 0.2-7.0 mb. These wave events are shown to be associated with a distinct synoptic pattern (including the existence of a strong inversion in the lower troposphere and the propagation of a jet streak toward a ridge axis in the upper troposphere) while displaying little correlation with the presence of convective storm cells. The observed development of the waves is consistent with the hypothesis that the energy source needed to initiate and sustain the wave disturbances may be related to a geostrophic adjustment process associated with upper-tropospheric jet streaks.

  16. Southern Mexico Miocene Magmatic Activity

    NASA Astrophysics Data System (ADS)

    Layer, P.

    2006-12-01

    Magmatic activity in southern Mexico have been occurred in three important volcanic regions: Los Tuxtlas Volcanic Field (TVF), Chiapanecan Volcanic Arc (CVA), and Tacaná Volcanic Complex (TVC). This activity produce alkaline and calc-alkaline products. The TVF has been active since 7 Ma ago producing Na-alkaline basanite, trachybasalt, and trachyandesite (41 63 wt% SiO2), and calc-alkaline basalts, basaltic-andesites, and andesites (45 63 wt% SiO2). The CVA including El Chichon Volcano produced calc-alkaline magmas varying from andesites to dacites (57 65 wt% SiO2) emitted between 2100 ka ago (Tzontehuitz) to 225 ka and K-alkaline magmas emitted from 1.1 Ma ago (trachybasalt, 46 51 wt% SiO2) to the Recent (trachyandesite, 57 63 wt% SiO2). The TVC emitted calc-alkaline products varying from basaltic-andesite (52 57 wt% SiO2) as mafic enclaves, andesites (57 63 wt% SiO2), and dacites (63 68 wt% SiO2). El Chichón and TVF present slight enrichments in K2O, Na2O, Rb, Sr, Th, U, Cs, and LREE respect to TVC, these are signatures related to subduction environment. The presence of alkaline magmas at El Chichón and TVF correspond to mantle low degree melts that reach the surface along with calc-alkaline lavas due to a tensional stress field that allows their pass to the surface. In the generation of the magmas of southern Mexico three components are involved: mantle partial melting fluids, fluid from subducted lithosphere, and continental crust, likely interacting in different ratios through time and in different proportions from SW to NE.

  17. Nutrient patterns and their food sources in an International Study Setting: report from the EPIC study.

    PubMed

    Moskal, Aurelie; Pisa, Pedro T; Ferrari, Pietro; Byrnes, Graham; Freisling, Heinz; Boutron-Ruault, Marie-Christine; Cadeau, Claire; Nailler, Laura; Wendt, Andrea; Kühn, Tilman; Boeing, Heiner; Buijsse, Brian; Tjønneland, Anne; Halkjær, Jytte; Dahm, Christina C; Chiuve, Stephanie E; Quirós, Jose R; Buckland, Genevieve; Molina-Montes, Esther; Amiano, Pilar; Huerta Castaño, José M; Gurrea, Aurelio Barricarte; Khaw, Kay-Tee; Lentjes, Marleen A; Key, Timothy J; Romaguera, Dora; Vergnaud, Anne-Claire; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Sacerdote, Carlotta; de Magistris, Maria Santucci; Bueno-de-Mesquita, H Bas; Ocké, Marga C; Beulens, Joline W J; Ericson, Ulrika; Drake, Isabel; Nilsson, Lena M; Winkvist, Anna; Weiderpass, Elisabete; Hjartåker, Anette; Riboli, Elio; Slimani, Nadia

    2014-01-01

    Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and

  18. Nutrient Patterns and Their Food Sources in an International Study Setting: Report from the EPIC Study

    PubMed Central

    Moskal, Aurelie; Pisa, Pedro T.; Ferrari, Pietro; Byrnes, Graham; Freisling, Heinz; Boutron-Ruault, Marie-Christine; Cadeau, Claire; Nailler, Laura; Wendt, Andrea; Kühn, Tilman; Boeing, Heiner; Buijsse, Brian; Tjønneland, Anne; Halkjær, Jytte; Dahm, Christina C.; Chiuve, Stephanie E.; Quirós, Jose R.; Buckland, Genevieve; Molina-Montes, Esther; Amiano, Pilar; Huerta Castaño, José M.; Gurrea, Aurelio Barricarte; Khaw, Kay-Tee; Lentjes, Marleen A.; Key, Timothy J.; Romaguera, Dora; Vergnaud, Anne-Claire; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Sacerdote, Carlotta; de Magistris, Maria Santucci; Bueno-de-Mesquita, H. Bas; Ocké, Marga C.; Beulens, Joline W. J.; Ericson, Ulrika; Drake, Isabel; Nilsson, Lena M.; Winkvist, Anna; Weiderpass, Elisabete; Hjartåker, Anette; Riboli, Elio; Slimani, Nadia

    2014-01-01

    Background Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. Methodology/Principal Findings We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. Conclusion/Significance The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs

  19. Improved Routines for the Inversion of the Gravitational Lens Equation for a Set of Source Points

    NASA Astrophysics Data System (ADS)

    Dominik, M.

    1995-03-01

    For the inversion of the lens equation, a method using contour plots has been proposed by Schramm & Kayser (1987). This method is discussed further and its deeper properties are used to construct routines, which allow both efficient and safe searches. A new interpretation of the routines of Schramm and Kayser is presented which overcomes some of its limits. A method is proposed, which stores the data obtained by a contour plot in a suitable data structure, tries to test the data on consistency with the critical curves and caustics and corrects the data if possible. It is shown how these routines can be used for calculating images of extended sources and point sources, light curves and for analyzing the images of an extended source. For the transport of images, Powell's routine is introduced. Its properties are the base for constructing the routines mentioned above. Since `image' gets different meanings, different expressions for `images' of points, curves and areas are defined. Finally, it is shown that contour plot methods do not miss bright area images.

  20. Application of microbial source tracking methods in a Gulf of Mexico field setting.

    PubMed

    Korajkic, A; Badgley, B D; Brownell, M J; Harwood, V J

    2009-11-01

    Microbial water quality and possible human sources of faecal pollution were assessed in a Florida estuary that serves shellfishing and recreational activities. Indicator organisms (IO), including faecal coliforms, Escherichia coli and enterococci, were quantified from marine and river waters, sediments and oysters. Florida recreational water standards were infrequently exceeded (6-10% of samples); however, shellfishing standards were more frequently exceeded (28%). IO concentrations in oysters and overlaying waters were significantly correlated, but oyster and sediment IO concentrations were uncorrelated. The human-associated esp gene of Enterococcus faecium was detected in marine and fresh waters at sites with suspected human sewage contamination. Lagrangian drifters, used to determine the pathways of bacterial transport and deposition, suggested that sediment deposition from the Ochlockonee River contributes to frequent detection of esp at a Gulf of Mexico beach. These data indicate that human faecal pollution affects water quality in Wakulla County and that local topography and hydrology play a role in bacterial transport and deposition. A combination of IO enumeration, microbial source tracking methods and regional hydrological study can reliably inform regulatory agencies of IO sources, improving risk assessment and pollution mitigation in impaired waters.

  1. Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphological setting and surface materials

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Xia, Dunsheng; Wang, Tao; Xue, Xian; Li, Jinchang

    2008-05-01

    Analysis of the geomorphological settings and surface materials in arid and semiarid China and southern Mongolia revealed that the dominant dust sources are 'Gobi' deserts and alluvial fans adjacent to Gobi deserts in the piedmonts of the Kunlun, Qilian, Helan, and Gobi Altai mountains. These areas have persistent supplies of dust-sized particles, deposited by intermittent floods from the mountains, and fine materials are also generated by weathering and aeolian processes acting on the coarse fractions of Gobi surfaces. Clear spatial differences in mineral types and contents and in the salt contents of surface materials also strongly affected the intensity of dust emissions. Inconsistencies in monitoring, simulation, and calculation of dust emissions in previous studies of Northern China and Mongolia may have been caused by insufficiently detailed considerations of variations in the geomorphological setting. Where the geomorphological settings in these areas are not considered in sufficient detail, deviations arise in the estimation and prediction of dust using current models. Although the present study did not quantify the persistence and replenishment of dust sources in the study area, our conclusions about the importance of geomorphology can improve future studies of dust sources and controlling factors, improve assessments of the effects of climate change on dust emissions, and facilitate the interpretation of paleoclimate records.

  2. Depositional setting and hydrocarbon source potential of the Miocene Gulf of Suez syn-rift evaporites

    SciTech Connect

    Richardson, M.; Arthur, M.A.; Quinn, J.S.; Whelan, J.K.; Katz, B.J. )

    1988-08-01

    The Red Sea rift basin and its northern continuation, the Gulf of Suez, has experienced continuous deposition of marine evaporites throughout much of its development from the early Miocene to the Pliocene resulting in the accumulation of up to 5 km of evaporite strata in the rift. In this paper, the geologic history of these evaporites are discussed, along with their petroleum source rock potential. The authors hypothesize that rapid deposition of organic matter occurred during episodic storms and freshening events in which a less saline surface layer developed.

  3. Palaeoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry

    NASA Astrophysics Data System (ADS)

    Kaur, Parampreet; Zeh, Armin; Chaudhri, Naveen

    2017-04-01

    Presently, the extent, origin and petrogenesis of late Palaeoproterozoic (ca. 1.85 Ga) magmatism in the north-central Aravalli-Delhi orogenic belt, NW India and subsequent metamorphic overprints are poorly constrained. Results of new in situ zircon U-Pb-Hf isotope analyses in combination with whole-rock elemental and isotopic data provide the first hard evidence that granitoid magmatism occurred in a continental magmatic arc setting between 1.86 and 1.81 Ga. The Hf-Nd model ages of 3.0-2.6 Ga and inherited zircon grains of 3.3-2.5 Ga indicate abundant reworking of Archaean crust. Flat HREE patterns with negative Eu anomalies furthermore reveal that the granitoids were generated from garnet-free and plagioclase-rich sources at shallow depths. Significant isotope variation among granitoid samples (εHft = -3.7 to -9.0; εNdt = -4.8 to -7.9) indicate that the reworked Archaean crust was not completely homogenised during the Palaeoproterozoic. This is best reflected by zircon Hf-isotope variation of ca. 9.5 epsilon units within the oldest granitoid sample. Zircon grains from this sample define three discrete Hf-isotope groups at εHf1.86Ga = -8.9, -4.8 and -1.6. These are interpreted to result from mixing of zircon-saturated magmas derived from three distinct sources within the crust prior to solidification. A monazite U-Pb isochron age of 868 ± 4 Ma from one of the granitoid samples furthermore indicates that the Aravalli fold belt was affected by an important post-magmatic overprint, perhaps related to the widespread metasomatic, granulite metamorphic and/or magmatic events during the same time span.

  4. Evaporatic-source model for igneous-related Fe oxide (REE-Cu-Au-U) mineralization

    SciTech Connect

    Barton, M.D.; Johnson, D.A.

    1996-03-01

    We propose that many igneous-related Fe oxide-rich (REE-Cu-Au-U-bearing) deposits form by hydrothermal processes involving evaporitic ligand sources, either coeval salars or older evaporites. These deposits are abundant in both Phanerozoic and Proterozoic extensional continental and continent-margin settings. They commonly form in global arid zones, but they also occur where magmatism is superimposed upon older evaporites. Magmatic compositions exert only second-order control, mainly on alteration mineralogy and on element abundances. Hot S-poor brines generated by interaction with evaporitic materials are consistent with geologic settings and help rationalize the distinctive element enrichments (siderophile, lithophile) and hydrothermal alteration (sodic, locally alkaline) found in these systems. This model contrasts with immiscible oxide melt and magmatic-hydrothermal origins commonly proposed for these deposits, although all three mechanisms can occur. 31 refs., 3 figs., 1 tab.

  5. Sources and prevalence of self-reported asthma diagnoses in adults in urban and rural settings of Bangladesh.

    PubMed

    Bartlett, Emily; Parr, John; Lindeboom, Wietze; Khanam, Masuma Akter; Koehlmoos, Tracy Pérez

    2013-01-01

    This study provides data on the sources of asthma diagnoses in the adult Bangladeshi population in urban and rural settings. The paper also reports the prevalence of self-reported asthma diagnoses and associated socio-demographic factors. A cross-sectional study was conducted in three communities: two rural settings and one urban setting, with a total sample size of 32,665 subjects. Pre-existing surveillance data provided individual socio-demographic factors. Provider categories were based on previous research describing provider plurality in Bangladesh. Descriptive statistics, univariate regression and multivariate regression analyses were performed. Bachelor of Medicine, Bachelor of Surgery (MBBS) generalists provided the largest proportion of diagnoses in both urban (54.6%) and rural (42.4%) sites. The largest proportion of non-MBBS-trained healthcare workers providing diagnoses of asthma was spiritual healers (13.3%) in the urban settings and village doctors (42.4%) in rural settings. The overall prevalence of self-reported asthma diagnoses was 5.0% in the urban population and 3.5% in the rural population. The results highlight the importance of non-MBBS doctors in serving the healthcare needs of the Bangladeshi population. This study reveals a higher prevalence of self-reported asthma diagnoses in the urban setting than in rural ones, which is consistent with international literature on the topic.

  6. On correlated sources of uncertainty in four dimensional computed tomography data sets.

    PubMed

    Ehler, Eric D; Tome, Wolfgang A

    2010-06-01

    The purpose of this work is to estimate the degree of uncertainty inherent to a given four dimensional computed tomography (4D-CT) imaging modality and to test for interaction of the investigated factors (i.e., object displacement, velocity, and the period of motion) when determining the object motion coordinates, motion envelope, and the confomality in which it can be defined within a time based data series. A motion phantom consisting of four glass spheres imbedded in low density foam on a one dimensional moving platform was used to investigate the interaction of uncertainty factors in motion trajectory that could be used in comparison of trajectory definition, motion envelope definition and conformality in an optimal 4D-CT imaging environment. The motion platform allowed for a highly defined motion trajectory that could be as the ground truth in the comparison with observed motion in 4D-CT data sets. 4D-CT data sets were acquired for 9 different motion patterns. Multifactor analysis of variance (ANOVA) was performed where the factors considered were the phantom maximum velocity, object volume, and the image intensity used to delineate the high density objects. No statistical significance was found for three factor interaction for definition of the motion trajectory, motion envelope, or Dice Similarity Coefficient (DSC) conformality. Two factor interactions were found to be statistically significant for the DSC for the interactions of 1) object volume and the HU threshold used for delineation and 2) the object velocity and object volume. Moreover, a statistically significant single factor direct proportionality was observed between the maximum velocity and the mean tracking error. In this work multiple factors impacting on the uncertainty in 4D data sets have been considered and some statistically significant two-factor interactions have been identified. Therefore, the detailed evaluation of errors and uncertainties in 4D imaging modalities is recommended in

  7. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  8. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Zhang, Qian; Zhao, Hai-Xiang; Zhao, Kui-Dong

    2015-10-01

    Cretaceous tectono-magmatic evolution of the Cathaysia Block in South China is important but their mechanism and geodynamics remain highly disputed. In this study we carried out a detailed geochemical study on the recently found Kuokeng mafic dikes in the western Fujian Province (the Interior Cathaysia Block) to reveal the petrogenesis and geodynamics of the Cretaceous magmatism. Kuokeng mafic dikes were emplaced in three principal episodes: ~ 129 Ma (monzogabbro), ~ 107 Ma (monzodiorite), and ~ 97 Ma (gabbro). Geochemical characteristics indicate that the monzogabbros were derived from the unmodified mantle source, while gabbros were likely derived from metasomatized mantle by subducted slab (fluids and sediments). Sr-Nd isotope compositions indicate that the parental magmas of the monzodiorites were generated by mixing of enriched, mantle-derived, mafic magmas and felsic melts produced by partial melting of crustal materials. Until the Early Cretaceous (~ 123 Ma), the dominant ancient Interior Cathaysia lithospheric mantle exhibited insignificant subduction signature, indicating the melting of asthenospheric mantle and the consequent back-arc extension, producing large-scale partial melting of the crustal materials under the forward subduction regime of the paleo-Pacific plate. The monzodiorites and gabbros appear to be associated with northwestward subduction of Pacific plate under an enhanced lithospheric extensional setting, accompanying with mantle modification, which triggered shallower subduction-related metasomatically enriched lithospheric mantle to melt partially. After ca. 110 Ma, the coastal magmatic belts formed due to a retreat and rollback of the subducting Pacific Plate underneath SE China in the continental margin arc system.

  9. Magmatic gas scrubbing: Implications for volcano monitoring

    USGS Publications Warehouse

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  10. Magmatic recharge buffers the isotopic compositions against crustal contamination in formation of continental flood basalts

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2017-07-01

    Isotopic compositions of continental flood basalts are essential to understand their genesis and to constrain the character of their mantle sources. Because of potential crustal contamination, it needs to be evaluated if and to which degree these basalts record original isotopic signals of their mantle sources and/or crustal signatures. This study examines the Sr, Nd, Hf, and Pb isotopic compositions of the late Cenozoic Xinchang-Shengzhou (XS) flood basalts, a small-scale continental flood basalt field in eastern China. The basalts show positive correlations between 87Sr/86Sr and 143Nd/144Nd, and negative correlations between 143Nd/144Nd and 176Hf/177Hf, which deviate from compositional arrays of crustal contamination and instead highlight variations in magmatic recharge intensity and mantle source compositions. The lava samples formed by high-volume magmatic recharge recorded signals of recycled sediments in the mantle source, which are characterized by moderate Ba/Th (91.9-106.5), excess 208Pb/204Pb relative to 206Pb/204Pb, and excess 176Hf/177Hf relative to 143Nd/144Nd. Thus, we propose that magmatic recharge buffers the original isotopic compositions of magmas against crustal contamination. Identifying and utilizing the isotope systematics of continental flood basalts generated by high volumes of magmatic recharge are thus crucial to trace their mantle sources.

  11. Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.

  12. Magmatic epidote and its petrologic significance.

    USGS Publications Warehouse

    Zen, E.-A.; Hammarstrom, J.M.

    1984-01-01

    Three epidote-bearing tonalitic plutons from the North American Cordillera were studied in detail. These three plutons have close petrographic and chemical similarities. Epidote is always euhedral against biotite but shows highly embayed, vermiform contacts with plagioclase and quartz. Rounded to highly embayed hornblendes are enclosed in epidote as well as in magmatic plagioclase. The pistacite content of epidote, atomic Fe3+/(Fe3+ + Al), is approx 23-27%. These and other textural relations, the lack of alteration of minerals, and the involvement of epidote in flow banding show that the epidote is magmatic, crystallized later through reaction with hornblende in the presence of a melt phase. The observed relations agree with experimental data on crystallization of epidote from synthetic granodiorite at 8 kbar total P. Plutonic rocks bearing magmatic epidote must have formed under moderately high P, corresponding with lower crustal depth, under fairly oxidizing conditions.-L.di H.

  13. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities

    SciTech Connect

    Tarvainen, O. Laulainen, J.; Komppula, J.; Kronholm, R.; Kalvas, T.; Koivisto, H.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2015-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum B{sub min}-field in single frequency heating mode is often ≤0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  14. Sources of PCR-induced distortions in high-throughput sequencing data sets

    PubMed Central

    Kebschull, Justus M.; Zador, Anthony M.

    2015-01-01

    PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules. PMID:26187991

  15. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities.

    PubMed

    Tarvainen, O; Laulainen, J; Komppula, J; Kronholm, R; Kalvas, T; Koivisto, H; Izotov, I; Mansfeld, D; Skalyga, V

    2015-02-01

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum Bmin-field in single frequency heating mode is often ≤0.8BECR, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  16. Vapor intrusion in urban settings: effect of foundation features and source location

    PubMed Central

    Yao, Yijun; Pennell, Kelly G.; Suuberg, Eric

    2013-01-01

    In many urban settings, groundwater contains volatile organic compounds, such as tricholoroethene, tetrachloroethene, benzene, etc., at concentrations that are at or slightly below non-potable groundwater standards. Some non-potable groundwater standards do not protect against human health risks that might result from vapor intrusion. Vapor intrusion is a process by which vapor phase contaminants present in the subsurface migrate through the soil and ultimately enter a building through foundation cracks. The end result is a decrease in air quality within the building. Predicting whether or not vapor intrusion will occur at rates sufficient to cause health risks is extremely difficult and depends on many factors. In many cities, a wide-range of property uses take place over a relatively small area. For instance, schools, commercial buildings and residential buildings may all reside within a few city blocks. Most conceptual site models assume the ground surface is open to the atmosphere (i.e. green space); however the effect that an impervious surface (e.g. paving) may have on vapor transport rates is not routinely considered. Using a 3-D computational fluid dynamics model, we are investigating how the presence of impervious surfaces affects vapor intrusion rates. To complement our modeling efforts, we are in the initial stages of conducting a field study in a neighborhood where vapor intrusion is occurring. PMID:24619471

  17. Capillary glucose meter accuracy and sources of error in the ambulatory setting.

    PubMed

    Lunt, Helen; Florkowski, Christopher; Bignall, Michael; Budgen, Christopher

    2010-03-05

    Hand-held glucose meters are used throughout the health system by both patients with diabetes and also by health care practitioners. Glucose meter technology is constantly evolving. The current generation of meters and strips are quick to use and require a very small volume of blood. This review aims to describe meters currently available in New Zealand, for use in the ambulatory setting. It also aims to discuss the limits of meter performance and provide technical information that is relevant to the clinician, using locally available data. Commoner causes and consequences of end-user (patient and health professional) error are illustrated using clinical case examples. No meter offers definite advantages over other meters in all clinical situations, rather meters should be chosen because they fit the needs of individual patients and because the provider is able to offer appropriate educational and quality assurance backup to the meter user. A broad understanding of the advantages and disadvantages of the subsidised meter systems available in New Zealand will help the health practitioner decide when it is in the best interests of their patients to change or update meter technology.

  18. Developing open source, self-contained disease surveillance software applications for use in resource-limited settings

    PubMed Central

    2012-01-01

    Background Emerging public health threats often originate in resource-limited countries. In recognition of this fact, the World Health Organization issued revised International Health Regulations in 2005, which call for significantly increased reporting and response capabilities for all signatory nations. Electronic biosurveillance systems can improve the timeliness of public health data collection, aid in the early detection of and response to disease outbreaks, and enhance situational awareness. Methods As components of its Suite for Automated Global bioSurveillance (SAGES) program, The Johns Hopkins University Applied Physics Laboratory developed two open-source, electronic biosurveillance systems for use in resource-limited settings. OpenESSENCE provides web-based data entry, analysis, and reporting. ESSENCE Desktop Edition provides similar capabilities for settings without internet access. Both systems may be configured to collect data using locally available cell phone technologies. Results ESSENCE Desktop Edition has been deployed for two years in the Republic of the Philippines. Local health clinics have rapidly adopted the new technology to provide daily reporting, thus eliminating the two-to-three week data lag of the previous paper-based system. Conclusions OpenESSENCE and ESSENCE Desktop Edition are two open-source software products with the capability of significantly improving disease surveillance in a wide range of resource-limited settings. These products, and other emerging surveillance technologies, can assist resource-limited countries compliance with the revised International Health Regulations. PMID:22950686

  19. Cenozoic Ignimbrites, Source Calderas, Relict Magma Chambers, and Tectonic Settings: Perspectives from Cordilleran North America (Invited)

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.

    2009-12-01

    In the early 1960s, new concepts and innovative techniques coalesced spectacularly to improve understanding of Tertiary pyroclastic volcanism in North America. Spotty recognition of welded tuff, among rocks mostly described as silicic lava flows, exploded with identification of individual ignimbrite sheets, some having volumes >103 km3 and extending >100 km from source calderas. R.l. Smith, during study of the Bandelier Tuff in New Mexico, documented complexities of welding and crystallization zones that provided a genetic framework (cooling units) for ignimbrite studies (even while confusion continues in some areas where talus and vegetation obscure bench-forming contact zones between densely welded cliffs). Also in the 1960s, application of isotopic age determinations (initially K-Ar, now largely superceded by 40Ar/39Ar laser fusion) and precise paleomagnetic pole directions became key tools for correlating ignimbrites, deciphering eruptive histories, and determining volcano-tectonic patterns. Dated ignimbrites provide unique stratigraphic markers within volcanic field, as well as datums for regional structures and the shifting patterns of volcanism related to global plate motions--another happy coincidence in the 1960s as plate-tectonic models were formulated. Tertiary ignimbrite flare-ups along the Cordilleran margin increasingly are recognized as coinciding with inception of regional extension, especially during transitions from episodes of low-angle convergence. Many large caldera sources for the Tertiary ignimbrites have now been identified, in place of prior vague concepts of “volcano-tectonic depressions”, especially as the contrasts between thin outflow and thickly ponded intracaldera ignimbrite with interleaved collapse breccia became appreciated. Multi-km-thick fills in many calderas document that collapse begins early during large ignimbrite eruptions, and downsag inception was succeeded by breakage along ring faults. Resurgent uplift has been

  20. Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; McGuire, J. J.

    2007-12-01

    Seismicity triggered by aseismic deformation, such as magmatic intrusions or afterslip, can be used to detect the occurrence of these otherwise difficult to observe processes. Recent studies suggest that aseismic deformation can trigger large amounts of seismicity in a variety of plate tectonic settings. We have developed a new technique that takes advantage of this triggered seismicity to estimate the time-history of aseismic stressing rate on a fault- zone by combining the rate and state dependent friction and the Epidemic Type Aftershock Sequence (ETAS) models of seismicity-rate [ Dieterich, 1994; Ogata, 1988]. In the rate-state model, the integration of an observed seismicity rate results in an estimate of the stress rate acting in a given space-time window. However, the seismicity rate observed in any catalog comes from 3 primary sources: coseismically-triggered seismicity (aftershocks), tectonically-triggered seismicity (i.e., from long-term tectonic loading), and aseismically-triggered seismicity (e.g., from dike intrusion, aseismic slip transients, or fluid migration). In catalogs dominated by directly triggered aftershocks (i.e., ETAS branching ratios >~0.7), the coseismically-triggered seismicity rate will be much larger than the aseismically-triggered rate and will dominate the estimate of stressing-rate, obscuring the aseismic transient of interest if the rate-state method is applied directly. The challenge therefore lies in isolating the aseismically-triggered seismicity rate from the coseismically-triggered seismicity rate. The ETAS model [ Ogata, 1988] provides a natural way to separate the aseismic and coseismic seismicity rates, as the ETAS parameter μ essentially reflects the aseismically-triggered rate (as well as the background tectonically-triggered rate). To develop a method that can resolve the magnitude and time history of aseismic stress transients even in high branching ratio regions, we combine the rate-state and ETAS models into a

  1. The Last Gasp - the Terminal Magmatic Stages of the Keweenaw LIP

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Brown, E.; Moucha, R.; Stein, C. A.; Stein, S.

    2016-12-01

    The Keweenaw Flood Basalts, which represent the magmatic record of the best preserved example of a Precambrian Large Igneous Province (LIP), erupted contemporaneously with the development of the failed Mid-Continent Rift ca. 1.1 Ga. At 2 x 106 km3 in volume, the Keweenaw LIP is roughly equivalent in scale to the Parana-Etendeka LIP, but the origin and evolution of the magmatic source of the Keweenaw LIP remains poorly constrained. Specifically, while modern LIPs have a primary magmatic pulse lasting <5Ma, followed by a long phase of waning activity, the Keweenaw LIP underwent significant flood basalt eruptions for ca. 21 Myr. Here we examine the geochemical characteristics of the final phases of magmatic activity within the Keweenaw LIP - the Lake Shore Traps - which erupted ca. 1087 Ma within an alluvial fan sequence (Copper Harbor Conglomerate). The Lake Shore Traps are best exposed at High Rock Bay, where 62 flows ( 1-30m thick) are observed intercalated with thin paleosols over a 530m thickness. Thus, while this late-stage activity might represent a waning phase of magmatism, the thickness represents some half of the total average thickness of modern continental flood basalt provinces. Our initial data suggests a dominantly tholeiitic magma series spanning an unexpectedly wide and continuous range of compositions from basalt to andesite; rare alkaline lavas are also evident. Distinctive geochemical stratigraphic patterns were observed suggesting crystal fractionation and recharge events dominated the magma system. Our initial data do not show any unambiguous parallels between the geochemical characteristics of the Lake Shore Traps and prior phases of magmatic activity in the province. We explore the potential source characteristics of these lavas to refine the source and conditions of melt generation during the terminal phase of activity in the region.

  2. Magmatism and Geodynamics of Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Keskin, Mehmet; Oyan, Vural; Sharkov, Evgenii V.; Chugaev, Andrey V.; Genç, Ş. Can; Ünal, Esin; Aysal, Namık; Duru, Olgun; Kavak, Orhan

    2013-04-01

    Eastern Turkey has been an active collision zone for the last 15 My between the Arabian Plate and Eurasian continent. The collision initiated after the closure of the southern branch of the Neotethys Ocean by northward subduction beneath E Anatolia at ~15 Ma. The collision-related volcanism started immediately after the closure of the ocean (again at around 15 Ma) in the north of the present day Lake Van with the eruption of mostly intermediate to acid lavas displaying distinct subduction characteristics. Both continental collision and the magmatism are still active, because the Arabian plate still converges to Anatolia with a velocity of ~2.5 cm/y. The overriding Anatolian block experienced a major uplift event around 10 Ma. The region once resided below the sea level merged as a widespread plateau ~2 km above the sea level as part of a regional dome structure with ~1000 km diameter, extending from Central Anatolia in the West to Azerbaijan in the East. The first alkaline lavas derived from a relatively more enriched source erupted to the surface in the N of Lake Van coeval with the initiation of the uplift at around 10 Ma. The underthrusting Arabian platform, on the other hand, was deformed as a result of both crustal-scale east-west folds adjacent to the major thrust zone and extensional deformations perpendicular to the suture zone. Alkaline within-plate lavas with no subduction component erupted through these extension zones. This intraplate volcanism focused on the Karacadaǧ volcanic complex that covers an area of ~10,000 km2. Early Stage volcanism of Karacadaǧ was dominated by magmas derived from a shallower metasomatized (litospheric) mantle source, while magmas of the later stages were derived from deeper (asthenospheric) sources. The Karacadaǧ volcanic area of SE Anatolia was sourced by a garnet bearing, deep asthenospheric mantle which is similar to that of Afar in terms of its Pb isotopic ratios. This brings into question whether the mantle material

  3. Barbecue Fumes: An Overlooked Source of Health Hazards in Outdoor Settings?

    PubMed

    Wu, Chen-Chou; Bao, Lian-Jun; Guo, Ying; Li, Shao-Meng; Zeng, Eddy Y

    2015-09-01

    Barbecuing or charcoal-grilling has become part of popular outdoor recreational activities nowadays; however, potential human health hazards through outdoor exposure to barbecue fumes have yet to be adequately quantified. To fill this knowledge gap, atmospheric size-fractioned particle and gaseous samples were collected near an outdoor barbecuing vendor stall (along with charcoal-grilled food items) in Xinjiang of Northwest China with a 10-stage micro-orifice uniform deposit impactor and a polyurethane foam (PUF) sampler and were analyzed for particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs through inhalation and dermal contact by adult consumers who spent 1 h per day near a charcoal-grilling vendor for a normal meal (lunch or dinner) amounted to a BaP equivalent (BaPeq) dosage of 3.0-77 ng day(-1) (inhalation: 2.8-27 ng day(-1) of BaPeq; dermal contact: 0.2-50 ng day(-1) of BaPeq), comparable to those (22-220 ng day(-1) of BaPeq) from consumer exposure through the consumption of charcoal-grilled meat, assumed to be at the upper limit of 50-150 g. In addition, the potential health risk was in the range of 3.1 × 10(-10) to 1.4 × 10(-4) for people of different age groups with inhalation and dermal contact exposure to PAHs once a day, with a 95% confidence interval (7.2 × 10(-9) to 1.2 × 10(-5)) comparable to the lower limit of the potential cancer risk range (1 × 10(-6) to 1 × 10(-4)). Sensitivity analyses indicated that the area of dermal contact with gaseous contaminants is a critical parameter for risk assessment. These results indicated that outdoor exposure to barbecue fumes (particularly dermal contact) may have become a significant but largely neglected source of health hazards to the general population and should be well-recognized.

  4. Palinspastic restoration of NAVDat and implications for the origin of magmatism in southwestern North America

    NASA Astrophysics Data System (ADS)

    McQuarrie, Nadine; Oskin, Michael

    2010-10-01

    Simultaneous palinspastic restoration of deformation and volcanism illuminates relationships between magmatism and tectonics in western North America. Using ArcGIS, we retrodeformed the NAVDat (North American Volcanic Database, navdat.geongrid.org) using the western North America reconstruction of McQuarrie and Wernicke (2005). From these data sets we quantitatively compare rates of magmatism and deformation and evaluate the age, composition, and migration of Cenozoic volcanism from 36 Ma to present. These relationships are shown in a series of palinspastic maps as well as animations that highlight migrating extension and volcanism with time. Western North America is grouped into eight different regions with distinct relationships between strain and volcanism to evaluate competing hypotheses regarding the relationship of extension to continental magmatism. A first-order observation from this study is that magmatism throughout the Basin and Range appears to be primarily driven by plate boundary effects, notably subducting and foundering slabs as well as slab windows. Exceptions include the Yellowstone hotspot system along the northern border of our study area and late-stage (<8 Ma) passive, extension-related asthenospheric upwelling along the eastern and western margins of the Basin and Range. The palinspastic reconstructions presented here highlight that the classic, high-angle, Basin and Range faulting that comprises most of the physiographic Basin and Range Province commenced during a magmatic lull. More broadly, with the exception of the Rio Grande rift we find that pulses of magmatism lag the onset of extension. These observations largely contradict the active rifting model where magmatism triggers Basin and Range extension.

  5. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    NASA Astrophysics Data System (ADS)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  6. A review of sea spray aerosol source functions using a large global set of sea salt aerosol concentration measurements

    NASA Astrophysics Data System (ADS)

    Grythe, H.; Ström, J.; Krejci, R.; Quinn, P.; Stohl, A.

    2013-08-01

    Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA have the largest uncertainty of all aerosols. In this study we review 21 SSA source functions from the literature, several of which are used in current climate models, and we also propose a new function. Even excluding outliers, the global annual SSA mass produced by these source functions spans roughly 3-70 Pg yr-1 for the different source functions, with relatively little interannual variability for a given function. The FLEXPART Lagrangian model was run in backward mode for a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allowed to efficiently evaluate all 21source functions at the same time against the measurements. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for improving the SSA source function parameterizations. The best source functions reproduced as much as 70% of the observed SSA concentration variability at several stations, which is comparable with "state of the art" aerosol models. The main driver of SSA production is wind, and we found that the best fit to the observation data could be obtained when the SSA production is proportional to U103.5 where U10 is the source region averaged 10 m wind speed, to the power of 3.5. A strong influence of SST on SSA production could be detected as well, although the underlying physical mechanisms of the SST influence

  7. Study of MOSFET Low Frequency Noise Source Fluctuation Using a New Fully Programmable Test Set-up

    NASA Astrophysics Data System (ADS)

    Rochereau, K.; Blanc, C.; Marin, M.

    2007-07-01

    In this paper we aim to demonstrate the huge spread that can be seen on flicker (1/f) noise figures of advanced MOS devices. In order to do so, we set up a new fully programmable test bench including low frequency noise (1Hz-few Mhz) measurement capability. Once all the hurdles we faced during measurement optimization have been overpassed, we show indeed 1/f noise dispersion over wafer is far larger than simple drive current one. We introduce the first steps of a global study of noise source fluctuation that has still to be led.

  8. Magmatic water in the martian meteorite Nakhla

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Taylor, G. J.; Nagashima, K.; Huss, G. R.

    2012-12-01

    Mars does not recycle crustal materials via plate tectonics. For this reason the magmatic water reservoir of the martian mantle has not been affected by surface processes, and the deuterium/hydrogen (D/H) ratio of this water should represent the original primordial martian value. Following this logic, hydrous primary igneous minerals on the martian surface should also carry this primordial D/H ratio, assuming no assimilation of martian atmospheric water during crystallization and no major hydrogen fractionation during melt degassing. Hydrous primary igneous minerals, such as apatite and amphibole, are present in martian meteorites here on Earth. Providing these minerals have not been affected by terrestrial weathering, martian atmospheric water, or shock processes after crystallization, they should contain a good approximation of the primordial martian D/H ratio. As Nakhla was seen to fall in the Egyptian desert in 1911, terrestrial contamination is minimized in this meteorite. The nakhlites are also among the least shocked of the martian meteorites. Therefore, apatite within Nakhla could contain primordial martian hydrogen isotope ratios. We produced in-situ measurements of the D/H ratios in Nakhla apatite grains, using a Cameca ims 1280 ion-microprobe. Our measurements produced D/H values in Nakhla apatite similar to terrestrial values, despite strong evidence that our samples were not significantly contaminated by terrestrial hydrogen. These results suggest that water trapped in the martian mantle has a similar D/H to that of the Earth. Therefore, the water of these two planets may have originated from the same source material. The D/H ratios of the carbonaceous chondrite meteorites, and the Jupiter-family comet 103P/Hartley 2, are similar to the D/H of the two planets, making both these primitive inner solar system materials strong candidates for the source of the terrestrial planets water. These results support recent dynamical models of the formation of the

  9. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    USGS Publications Warehouse

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  10. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet — A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, John C.

    2013-02-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959-64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991-97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100->1000 nT, 5-50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 "volcanic centers" requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are < 34 Ma, but at least four are active. If a few buried volcanic centers are active, subglacial volcanism may well affect the WAIS regime. Aerogeophysical data (Blankenship et al., 1993, Mt. Casertz; Corr and Vaughan, 2008, near Hudson Mts.) indicated active subglacial volcanism. Magnetic data indicate a caldera and a surrounding "low" in the WAISCORE vicinity possibly the result of a shallow Curie isotherm. High heat flow reported from temperature logging in the WAISCORE (Conway et al., 2011; Clow, personal commun.) and a volcanic ash layer (Dunbar, 2012) are consistent with this interpretation. A subaerially erupted subglacial volcano, (Mt Thiel), about 100 km distant, may be the ash source. The present rapid changes resulting from global warming, could be

  11. Late-Variscan rare metal ore deposition and plume-related magmatism in the eastern European Variscides (D, CZ)

    NASA Astrophysics Data System (ADS)

    Seifert, Thomas

    2014-05-01

    includes a range of mafic calc-alkaline and shoshonitic rock types, and lamprophyres (spessartites and camptonites) with age data between 300-270 Ma. The Mid-European Variscides show a large number of Permo-Carboniferous magmatic complexes with similar ages (Halle Volcanic Complex, Saar-Nahe Basin, Thuringian Forest, Harz Mts., Northwest-Saxonian Volcanic Complexes, bimodal volcanic rocks of the Sub-Erzgebirge basin and the Rhyolite Complex of Tharandt as well as Li-F-Sn small intrusion granites and lamprophyric intrusions in the Erzgebirge. It is important to note that the late-Variscan W-Mo, Sn-W-Mo, Ag-bearing Sn-In-base metal, Ag-Sb-base metal, and U mineralizations in the Erzgebirge-Krušné hory are spatially and temporal associated with intrusion centers of Permo-Carboniferous post-collisional mafic and rhyolitic (sub)volcanic bimodal magmatism (315-290 Ma) along deep-rooted NW-SE fault zones, especially at the intersections with NE-SW, E-W, and N-S major regional structural zones. The bimodal lamprophyre-rhyolite assemblage in the Erzgebirge / Sub-Erzgebirge basin area was formed during intracontinental rifting in a 'Fast Extension' setting by melting of a metasomatic enriched mantle source. The emplacement of fluid-enriched lamprophyres and F-rich rhyolitic intrusions at the same time is probably associated with decompression melting of updoming asthenosphere which is possibly associated with the above mentioned mantle plume.

  12. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements

    NASA Astrophysics Data System (ADS)

    Grythe, H.; Ström, J.; Krejci, R.; Quinn, P.; Stohl, A.

    2014-02-01

    Sea-spray aerosols (SSA) are an important part of the climate system because of their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime, and precipitation. In terms of their global mass, SSA have the largest uncertainty of all aerosols. In this study we review 21 SSA source functions from the literature, several of which are used in current climate models. In addition, we propose a~new function. Even excluding outliers, the global annual SSA mass produced spans roughly 3-70 Pg yr-1 for the different source functions, for particles with dry diameter Dp < 10 μm, with relatively little interannual variability for a given function. The FLEXPART Lagrangian particle dispersion model was run in backward mode for a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes in order to obtain modeled SSA concentrations. This allowed us to efficiently and simultaneously evaluate all 21 source functions against the measurements. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for improving the SSA source function parameterizations. The best source functions reproduced as much as 70% of the observed SSA concentration variability at several stations, which is comparable with "state of the art" aerosol models. The main driver of SSA production is wind, and we found that the best fit to the observation data could be obtained when the SSA production is proportional to U103.5, where U10 is the source region averaged 10 m wind speed. A strong influence of SST on SSA production, with higher temperatures leading to higher

  13. Model of the magmatic thermolysis of coal matter deep in the earth (short communication)

    SciTech Connect

    Yu.M. Korolev; S.G. Gagarin

    2008-06-15

    A model of contact thermolysis was constructed based on a combined set of equations for heat transfer from a magmatic intrusion to a coal bed and the kinetics of thermal coal conversion. This model was illustrated by the generation of petroleum hydrocarbons deep in the earth by the thermolysis of the sapropelic matter of boghead.

  14. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  15. Multiple rifting and alkaline magmatism in southern India during Paleoproterozoic and Neoproterozoic

    NASA Astrophysics Data System (ADS)

    Renjith, M. L.; Santosh, M.; Satyanarayanan, M.; Rao, D. V. Subba; Tang, Li

    2016-06-01

    The Southern Granulite Terrane (SGT) in India preserves the history of tectonothermal events ranging from Paleoarchean to latest Neoproterozoic-Cambrian. Here we investigate alkaline magmatism possibly associated with rifting events in Paleoproterozoic and Neoproterozoic based on petrological, geochemical and zircon U-Pb and Lu-Hf isotopic studies on the alkaline complexes of Korangani (KGAC) and Kambamettu (KAC) in the Madurai Block of SGT. The mica pyroxenite which represents the first intrusive phase at KGAC crystallized from a mildly alkaline hydrous magma derived from a metasomatized mantle. The younger shoshonitic syenite was emplaced at 2533 ± 16 Ma, carries mafic microgranular enclaves, and shows trace-elements ratios consistent with magma mixing trend, and zircon εHf(t) values display mixed positive and negative values - 2.6 to 3.6 suggesting the mixing of adakite-like felsic crustal melt and non-adakitic mantle derived melt. In KAC, four distinct magmatic intrusions are identified: i) quartz-monzonite (emplaced at 2498 ± 16 Ma), an ultrapotassic adakitic rock derived from a carbonated alkali-rich lower crustal source with negative zircons εHf(t) values in zircon (- 8.0 to - 0.8); Y/Nb (> 1.2) and Th/Ce (0.03-0.8) ratios; lower Ni (< 30 ppm) and Cr (< 14 ppm) contents; ii) phlogopite-rich pyroxenite, crystallized from an alkali-rich basaltic parental magma derived from carbonate metasomatized mantle; iii) mantle derived high Ba-Sr carbonatite (emplaced at 2470 ± 15 Ma); and iv) shoshonitic peralkaline syenite rock (emplaced at 608 ± 6 Ma) with strong adakitic signature, low MgO (< 1 wt.%), Ni (12-5 ppm) and Cr (49-35 ppm) contents and negative zircon εHf(t) values (- 30.3 to - 27.3) and trough of Zr-Hf in spidergrams suggesting a carbonated alkali-rich garnet-bearing crustal source. The geochemical features and petrogenetic considerations of the felsic shoshonitic-ultrapotassic adakite-like rocks (syenite, quartz monzonite), mica-pyroxenites and

  16. Magmatic record of India-Asia collision

    NASA Astrophysics Data System (ADS)

    Zhu, Di-Cheng; Wang, Qing; Zhao, Zhi-Dan; Chung, Sun-Lin; Cawood, Peter A.; Niu, Yaoling; Liu, Sheng-Ao; Wu, Fu-Yuan; Mo, Xuan-Xue

    2015-09-01

    New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80-40 Ma migrated from south to north and then back to south with significant mantle input at 70-43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52-51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.

  17. Magmatic record of India-Asia collision

    PubMed Central

    Zhu, Di-Cheng; Wang, Qing; Zhao, Zhi-Dan; Chung, Sun-Lin; Cawood, Peter A.; Niu, Yaoling; Liu, Sheng-Ao; Wu, Fu-Yuan; Mo, Xuan-Xue

    2015-01-01

    New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80–40 Ma migrated from south to north and then back to south with significant mantle input at 70–43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52–51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma. PMID:26395973

  18. Magmatic record of India-Asia collision.

    PubMed

    Zhu, Di-Cheng; Wang, Qing; Zhao, Zhi-Dan; Chung, Sun-Lin; Cawood, Peter A; Niu, Yaoling; Liu, Sheng-Ao; Wu, Fu-Yuan; Mo, Xuan-Xue

    2015-09-23

    New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80-40 Ma migrated from south to north and then back to south with significant mantle input at 70-43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52-51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.

  19. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay

    2015-04-01

    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  20. Eocene-Oligocene calcalkaline magmatism in the Lut-Sistan region, eastern Iran: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Pang, K.; Chung, S.; Zarrinkoub, M. H.; Khatib, M. M.; Mohammadi, S. S.; Lee, H.; Chu, C.; Lin, I.

    2011-12-01

    Extensive Eocene-Oligocene (45-25 Ma) magmatic rocks crop out in the Sistan suture zone and to the west in the Lut Block, eastern Iran. These rocks are widespread (~31 to 34 N and 57 to 61 E) but poorly studied using modern geochemical methods. In this study, we present new geochemical and Sr-Nd isotopic results on this rock suite to examine their origin and tectonic implications. This suite of rocks is dominated by andesites and dacites with minor diorites, granites and rhyolites. The rocks are mostly subalkaline (alkalinity index = +1.0 to -5.9) and conform to the original definition of calcalkaline rocks by Peacock [J. Geol. 39 (1931) 54-67]. They exhibit variable fractionation between light and heavy rare earth elements (REE) (i.e. La/Yb = 7.9-31) and between middle and heavy REE (i.e. Sm/Yb = 1.4-3.8). They are also enriched in large ion lithophile elements, depleted in high field strength elements and show Ba and P troughs and a Pb spike in a primitive mantle-normalized variation diagram. The initial Sr isotopic ratios and ɛNd(t) values, calculated at the ages of each individual rocks, range from 0.7042 to 0.7065 and from -4.9 to +5.5, respectively, consistent with a mantle origin for this rock suite. Further, a high-87Sr/86Sr(t), low-ɛNd(t) component is required to explain the observed isotopic variations, either via crustal contamination or recycling of subducted sediments in the mantle source. A subset of samples exhibit unique incompatible trace element ratios, with Rb/Cs = 2.4-17, Ba/Rb = 0.6-7.1, Ce/Pb = 1.2-3.6 and Nb/U = 1.7-4.2, the extreme compositions of which are significantly lower than average values for continental crust and most mantle-derived magmas. These features are thus attributable to enrichment in the mantle source by slab-derived hydrous fluid, presumably during subduction of the Sistan oceanic lithosphere during Cretaceous. The diffuse pattern of magmatism without any prominent linear trends is best explained by a model involving

  1. Relationship between monogenetic magmatism and stratovolcanoes in western Mexico: The role of low-pressure magmatic processes

    NASA Astrophysics Data System (ADS)

    Petrone, Chiara M.

    2010-10-01

    A large Quaternary monogenetic volcanic field is present in the western part of the Trans-Mexican Volcanic Belt. It is composed by mafic-intermediate scoria cones and silicic domes that are arranged in two NNW-SSE alignments. These mark the north and south borders (Northern Volcanic Chain and Southern Volcanic Chain, SVC) of the San Pedro-Ceboruco graben. The products of this monogenetic volcanic field span a large range of compositions (from basalt to rhyolite) and magma affinities (from sub-alkaline to Na-alkaline), defining different magmatic groups. Mafic and silicic monogenetic centres from the north alignment also coexist with two stratovolcanoes (Ceboruco and Tepetiltic) and sometimes punctuate their flanks. Whole-rock analyses indicate the existence of 4 different types of primitive magmas (Na-alkaline, High-Ti, Low-Ti/SVC and sub-alkaline) which have evolved independently by low-P magmatic processes. Despite the relatively small size and simplicity of the monogenetic magmatism, open-system processes have modified the geochemical and isotope composition of erupted products. The negative correlation between Sr isotope ratios and MgO contents observed for Southern Volcanic Chain and High-Ti groups points to crustal interaction via AFC processes, involving upper granitic crust and mafic lower crust respectively. In contrast, the large variability in Nd-isotopic ratios, combined with low and less variable 87Sr/ 86Sr, shown by the most mafic compositions of the High-Ti group is mostly due to mantle source heterogeneities. Low-Ti and Na-alkaline compositions are only slightly modified by crustal contamination processes and their whole-rock geochemistry reflects the complex nature of the western Mexico sub-arc mantle. It is therefore apparent that a combination of mantle source processes plus crustal assimilation has generated complex geochemical and isotopic characteristics in the western part of the Trans-Mexican Volcanic belt. Despite the presence of

  2. New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Wu, Shein-Fu; You, Chen-Feng; Lin, Yen-Po; Valsami-Jones, Eugenia; Baltatzis, Emmanuel

    2016-01-01

    Magmatic sources may contribute a significant amount of volatiles in geothermal springs; however, their role is poorly understood in submarine hydrothermal systems worldwide. In this study, new results of B and δ11B in 41 hydrothermal vent waters collected from the shallow hydrothermal system of Milos island in the Aegean Sea were combined with previously published data from other tectonic settings and laboratory experiments to quantify the effects of phase separation, fluid/sediment interaction and magmatic contribution. Two Cl-extreme solutions were identified, high-Cl waters (Cl as high as 2000 mM) and low-Cl waters (Cl < 80 mM). Both sets of waters were characterized by high B/Cl (~ 1.2-5.3 × 10- 3 mol/mol) and extremely low δ11B (1.4-6.3‰), except for the waters with Mg content of near the seawater value and δ11B = 10.3-17.4‰. These high-Cl waters with high B/Cl and low δ11B plot close to the vent waters in sediment-hosted hydrothermal system (i.e., Okinawa Trough) or fumarole condensates from on-land volcanoes, implying B addition from sediment or magmatic fluids plays an important role. This is in agreement with fluid/sediment interactions resulting in the observed B and δ11B, as well as previously reported Br/I/Cl ratios, supporting a scenario of slab-derived fluid addition with elevated B, 11B-rich, and low Br/Cl and I/Cl, which is derived from the dehydration of subducted-sediments. The slab fluid becomes subsequently mixed with the parent magma of Milos. The deep brine reservoir is partially affected by injections of magmatic fluid/gases during degassing. The results presented here are crucial for deciphering the evolution of the brine reservoirs involved in phase separation, fluid/sediment interaction and magmatic contribution in the deep reaction zone of the Milos hydrothermal system; they also have implications in the understanding of the formation of metallic vein mineralization.

  3. The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African Craton, Morocco) and its relationship to the alkaline magmatism of Africa

    NASA Astrophysics Data System (ADS)

    Haissen, Faouziya; Cambeses, Aitor; Montero, Pilar; Bea, Fernando; Dilek, Yildirim; Mouttaqi, Abdellah

    2017-03-01

    More than 40% of the known alkaline complexes are reported from Africa. Most are ring complexes composed of syenites and associated or not, lithotypes as carbonatites, granites and mafic rocks. Radiometric dating indicates the presence of alkaline complexes with ages spanning from Precambrian to the present. In terms of outcrops, alkaline complexes are reported from cratonic zones and from belts embedded between cratonic areas. Because of the high economic potential for associated REE deposits, these alkaline complexes have received much attention from Earth scientists. These studies aim mainly to constrain the role of the mantle and the crust (and the interaction between them) in the genesis of this peculiar magmatism, and also to explain the variability observed in lithotypes and geotectonic settings. Among those alkaline complexes, Precambrian occurrences are rare. Up-to-date only a few Proterozoic examples were cited in Africa. The recently studied Awsard complex in Southern Morocco is a peculiar one with a crystallization age of 2.46 Ga and an unusual rock assemblages. This paper is a first approximation to a comparison of geochemical and isotopic fingerprints of the Awsard magmatism (as the oldest one) with other known different ages African complexes from different geotectonic settings, aiming to detect if there is any evolution in this alkaline magmatism through time. A first conclusion is that magma sources for this alkaline magmatism has been probably evaluating over geological time, from parental magmas compositions close to that of primitive mantle in these early geological time to compositions holding more and more depleted mantle and continental crust components. However, to go further in this debate more modern isotopic, geochemical and geochronological data from all these complexes are needed. Nevertheless, this comparison highlighted the peculiar character of the Awsard magmatism with an isotopic composition very close to that of Primitive mantle

  4. The potential role of magmatic gases in the genesis of Illinois- Kentucky fluorspar deposits: implications from chemical reaction path modeling

    USGS Publications Warehouse

    Plumlee, G.S.; Goldhaber, M.B.; Rowan, E.L.

    1995-01-01

    Presents results of reaction path calculations using the chemical speciation and reaction path program SOLVEQ and CHILLER to model possible fluorite deposition mechanisms in the Illinois-Kentucky fluorspar district. The results indicate that the fluids responsible for Illinois-Kentucky fluorspar mineralization were most likely quite acidic (pH < 4) and rich in fluorine in order to produce the fluorite-rich, dolomite-poor mineral assemblages and extensive dissolution of host limestones. A possible source for the acid and fluorine may have been HF-rich gases which were expelled from alkalic magmas and then incorporated by migrating basinal brines. An analysis of the geologic setting of other fluorite deposits and districts worldwide suggests that involvement of magmatic gases is probable for many of these districts as well. -from Authors

  5. Phase-in of nonpoint sources in a transferable discharge permit system for water quality management: setting permit prices.

    PubMed

    Collentine, Dennis

    2005-11-01

    The composite market design is a proposal for a transferable discharge permit system that specifically includes agricultural non-point-source dischargers and addresses both property rights and transaction cost problems. The first step to implementation of a composite market scheme is the estimation of a supply curve for abatement measures in the catchment area. Estimation is performed by combining costs with modeled loss reductions from selected best management practices and then using this information to estimate the supply curve for abatement, which in turn can then be used to set permit prices. The Rönneå catchment in southern Sweden is used as a pilot study area for making this type of estimate. Costs for existing measures that reduce nutrient losses from farmland (catch crops and spring planting) are based on existing programs financed by the Swedish Agricultural Board. A set of supply curves is calculated for these measures using retention estimates for seven subcatchments and three soil types in the area. Although existing information is sufficient to calculate partial supply curves and may be used to set permit prices, additional measures should be included as well as an increased number of variables for differentiating site specific reduction costs.

  6. Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data.

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Murai, Y.; Flueh, E. R.

    2014-12-01

    The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the

  7. Sources of inaccuracy in the measurement of adult patients’ resting blood pressure in clinical settings: a systematic review

    PubMed Central

    Kallioinen, Noa; Hill, Andrew; Horswill, Mark S.; Ward, Helen E.; Watson, Marcus O.

    2017-01-01

    Background: To interpret blood pressure (BP) data appropriately, healthcare providers need to be knowledgeable of the factors that can potentially impact the accuracy of BP measurement and contribute to variability between measurements. Methods: A systematic review of studies quantifying BP measurement inaccuracy. Medline and CINAHL databases were searched for empirical articles and systematic reviews published up to June 2015. Empirical articles were included if they reported a study that was relevant to the measurement of adult patients’ resting BP at the upper arm in a clinical setting (e.g. ward or office); identified a specific source of inaccuracy; and quantified its effect. Reference lists and reviews were searched for additional articles. Results: A total of 328 empirical studies were included. They investigated 29 potential sources of inaccuracy, categorized as relating to the patient, device, procedure or observer. Significant directional effects were found for 27; however, for some, the effects were inconsistent in direction. Compared with true resting BP, significant effects of individual sources ranged from −23.6 to +33 mmHg SBP and −14 to +23 mmHg DBP. Conclusion: A single BP value outside the expected range should be interpreted with caution and not taken as a definitive indicator of clinical deterioration. Where a measurement is abnormally high or low, further measurements should be taken and averaged. Wherever possible, BP values should be recorded graphically within ranges. This may reduce the impact of sources of inaccuracy and reduce the scope for misinterpretations based on small, likely erroneous or misleading, changes. PMID:27977471

  8. Does subduction zone magmatism produce average continental crust

    NASA Technical Reports Server (NTRS)

    Ellam, R. M.; Hawkesworth, C. J.

    1988-01-01

    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition.

  9. Spatial and temporal variations of loads and sources of total and dissolved Phosphorus in a set of rivers (Western France).

    NASA Astrophysics Data System (ADS)

    Legeay, Pierre-Louis; Moatar, Florentina; Gascuel-Odoux, Chantal; Gruau, Gérard

    2015-04-01

    In intensive agricultural regions with important livestock farming, long-term land application of Phosphorus (P) both as chemical fertilizer and animal wastes, have resulted in elevated P contents in soils. Since we know that high P concentrations in rivers is of major concern, few studies have been done at to assess the spatiotemporal variability of P loads in rivers and apportionment of point and nonpoint source in total loads. Here we focus on Brittany (Western France) where even though P is a great issue in terms of human and drinking water safety (cyano-toxins), environmental protection and economic costs for Brittany with regards to the periodic proliferations of cyanobacteria that occur every year in this region, no regional-scale systematic study has been carried out so far. We selected a set of small rivers (stream order 3-5) with homogeneous agriculture and granitic catchment. By gathering data from three water quality monitoring networks, covering more than 100 measurements stations, we provide a regional-scale quantification of the spatiotemporal variability of dissolved P (DP) and total P (TP) interannual loads from 1992 to 2012. Build on mean P load in low flows and statistical significance tests, we developed a new indicator, called 'low flow P load' (LFP-load), which allows us to determine the importance of domestic and industrial P sources in total P load and to assess their spatiotemporal variability compared to agricultural sources. The calculation and the map representation of DP and TP interannual load variations allow identification of the greatest and lowest P contributory catchments over the study period and the way P loads of Brittany rivers have evolved through time. Both mean DP and TP loads have been divided by more than two over the last 20 years. Mean LFDP-load decreased by more than 60% and mean LFTP-load by more than 45% on average over the same period showing that this marked temporal decrease in total load is largely due to the

  10. Silurian magmatism in eastern Senegal and its significance for the Paleozoic evolution of NW-Gondwana

    NASA Astrophysics Data System (ADS)

    Fullgraf, Thomas; Ndiaye, Papa Moussa; Blein, Olivier; Buscail, François; Lahondère, Didier; Le Métour, Joël; Sergeev, Sergey; Tegyey, Monique

    2013-02-01

    Submarine basalt and trachyte of the Nandoumba group occur in eastern Senegal within the Bassarides branch of the Mauritanides orogen. The unit forms part of the parautochthonous domain which is stacked between underlying Neoproterozoic to Paleozoic foreland and overlying Variscan nappes. The crystallisation age of the volcanic to subvolcanic rocks has been determined by U-Pb single zircon SHRIMP method at 428 ± 5.2 Ma whereas zircon xenocryst ages vary from 500 to 2200 Ma. The shape of the xenocryst grains document proximal Neo- and Paleoproterozoic and distal Mesoproterozoic provenance areas for assimilated sediments. This is compatible with the Paleoproterozoic Birimian basement and Neoproterozoic cover rocks nearby whereas an origin from the Amazonian craton could be assumed for distal Mesoproterozoic zircons. Geochemical and Sm-Nd isotope whole rock analysis show that basalts of the Nandoumba group are similar to modern transitional to alkaline volcanic lavas in intraplate settings. Those basalts have a deep mantle source with a great contribution of a recycled mantle component such as EM1 and/or EM2. The basalts resemble in their composition those from the Meguma terrane of Nova Scotia which are of similar age suggesting a common source and therefore connection of Meguma with Gondwana during this period. Review of circum-Atlantic Silurian magmatism indicates ongoing fragmentation of NW-Gondwana that started in Cambro/Ordovician times.

  11. Argon isotopes as recorders of magmatic processes

    NASA Astrophysics Data System (ADS)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.

    2003-12-01

    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  12. Bidirectional feedback observed between a magmatic intrusion and shallow earthquake

    NASA Astrophysics Data System (ADS)

    Ebmeier, Susanna; Elliott, John; Nocquet, Jean-Mathieu; Biggs, Juliet; Mothes, Patricia; Jarrín, Paúl; Yépez, Marco; Aguaiza, Santiago; Lundgren, Paul; Samsonov, Sergey

    2016-04-01

    Moderate volcano-tectonic earthquakes (M 5-6) during volcanic unrest are unusual, and tend to be associated with major stress perturbations to the crust, occurring during episodes of rifting or the onset of volcanic eruptions. The feedback from such events may be positive, easing magma ascent and eruption, or, as we demonstrate here, negative, hindering any further magma movement. We present measurements of deformation at Chiles-Cerro Negro volcanoes on the Ecuador-Colombian border. There was previously no record of historical activity at either volcano, but between 2013 and early 2015 there were three episodes of unrest characterised by swarms of volcano-tectonic earthquakes of increasing energy and duration and thought to be associated with the hydrothermal system. In October 2014, magmatic processes not only caused many thousands of small earthquakes per day, but culminated in a Mw 5.6 earthquake located on a system of active tectonic faults that last ruptured in 1868. We find that inflation of a mid-crustal magmatic source ~10 km south of the volcanoes ceased abruptly at the time of the earthquake, after which time the rate of seismicity also began a gradual decline. The Chiles-Cerro Negro unrest is therefore an interesting example of magma ascent triggering a moderate earthquake on a tectonic fault and subsequently being inhibited by co-seismic stress changes. This is an important observation for the interpretation of moderate earthquakes during volcanic unrest in terms of evolving hazard.

  13. Simulating the Thermochemical Magmatic and Tectonic Evolution of Venus's Mantle and Lithosphere: Intrusive vs. Extrusive Magmatism

    NASA Astrophysics Data System (ADS)

    Tackley, Paul; Armann, Marina

    2013-04-01

    Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ~150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature rheological temperature scale lower than TCMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive magmatism as an alternative to

  14. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue?

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher

    2015-04-01

    Myanmar (Burma) is richly endowed in precious and base metals, having one of the most diverse collections of natural resources in SE Asia. Its geological history is dominated by the staged closing of Tethys and the suturing of Gondwana-derived continental fragments onto the South China craton during the Mesozoic-Cenozoic. The country is located at a crucial geologic juncture where the main convergent Tethyan collision zone swings south around the Namche Barwa Eastern Himalayan syntaxis. However, despite recent work, the geological and geodynamic history of Myanmar remains enigmatic. Plate margin processes, magmatism, metasomatism and the genesis of mineral deposits are intricately linked, and there has long been recognized a relationship between the distribution of certain mineral deposit types, and the tectonic settings which favour their genesis. A better knowledge of the regional tectonic evolution of a potential exploration jurisdiction is therefore crucial to understanding its minerals prospectivity. This strong association between tectonics and mineralization can equally be applied in reverse. By mapping out the spatial, and temporal, distribution of presumed co-genetic mineral deposits, coupled with an understanding of their collective metallogenetic origin, a better appreciation of the tectonic evolution of a terrane may be elucidated. Identification and categorization of metallotects within a geodynamically-evolving terrane thus provides a complimentary tool to other methodologies (e.g. geochemical, geochronological, structural, geophysical, stratigraphical), for determining the tectonic history and inferred geodynamic setting of that terrane through time. Myanmar is one such study area where this approach can be undertaken. Here are found two near-parallel magmatic belts, which together contain a significant proportion of that country's mineral wealth of tin, tungsten, copper, gold and silver. Although only a few 100 km's apart, these belts exhibit a

  15. Mantle source of the 2.44-2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hong; Hanski, Eero; Li, Chao; Maier, Wolfgang D.; Huhma, Hannu; Mokrushin, Artem V.; Latypov, Rais; Lahaye, Yann; O'Brien, Hugh; Qu, Wen-Jun

    2016-12-01

    Significant PGE and Cr mineralization occurs in a number of 2.44-2.50-Ga mafic layered intrusions located across the Karelian and Kola cratons. The intrusions have been interpreted to be related to mantle plume activity. Most of the intrusions have negative ɛNd values of about -1 to -2 and slightly radiogenic initial Sr isotope compositions of about 0.702 to 0.703. One potential explanation is crustal contamination of a magma derived from a mantle plume, but another possibility is that the magma was derived from metasomatized sub-continental lithospheric mantle. Samples from the upper chromitite layers of the Kemi intrusion and most samples from the previously studied Koitelainen and Akanvaara intrusions have supra-chondritic γOs values indicating some crustal contamination, which may have contributed to the formation of chromitites in these intrusions. Chromite separates from the main ore zone of the Kemi and Monchepluton intrusions show nearly chondritic γOs, similar to the coeval Vetreny belt komatiites. We suggest that the Os isotope composition of the primitive magma was not significantly changed by crustal contamination due to a high Os content of the magma and a low Os content of the contaminant. Modeling suggests that the Os and Nd isotope compositions of the Monchepluton and Kemi intrusions cannot be explained by assuming a magma source in the sub-continental lithospheric mantle with sub-chondritic γOs. A better match for the isotope data would be a plume mantle source with chondritic Re/Os and Os isotope composition, followed by crustal contamination.

  16. Latest Cambrian-Early Ordovician rift-related magmatic activity in the Kouřim Unit, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Soejono, Igor; Machek, Matej; Sláma, Jiří; Janoušek, Vojtěch

    2017-04-01

    inherited from the source, represented most likely by recycled immature arc-related material (?metagraywackes). The real tectonic setting of this Late Cambrian magmatic activity seems rather indicated by the within-plate geochemistry of the metadiorite. These results bring further evidence for the presence of the Late Cambrian-Early Ordovician extensional event documented throughout the basement of the European Variscan Belt. Together with other occurrences of bimodal magmatism, as well as metamorphic and sedimentary record, indicate an important period of lithospheric thinning. This overall Early Palaeozoic rift-related architecture is often considered as a consequence of the Rheic Ocean opening.

  17. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-01-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  18. Four Flavours of Orogenic Plateau Magmatism: What's Melting Beneath the Turkish-Iranian Plateau?

    NASA Astrophysics Data System (ADS)

    Neill, I.; Allen, M. B.; Kaislaniemi, L.; Van Hunen, J.

    2013-12-01

    Orogenic plateaux are first order topographic features of the continents, occurring in collision zones such as Tibet and Andean-style continental arcs. Plateaux are sites of abundant mantle-derived magmatism, but there is little understanding of its geodynamic cause in spite of assumptions that slab break-off or lithospheric thinning are controlling factors in melt production. The Turkish-Iranian Plateau formed on the Eurasian Plate after the ~30 Ma Arabia-Eurasia collision. Neogene-recent volcanoes are found up to ~800 km from the suture, and have huge compositional variation. We define four varieties of recent mafic magmatism spatially and geochemically. (1) Close to the Bitlis Suture in Eastern Turkey, slab break-off is likely to have occurred at ~10 Myr, and there is little mantle lithosphere present. Magmatism is mostly calc-alkaline, sourced from the asthenosphere or any remaining mantle lithosphere, and is affected by crustal contamination. (2) In the Lesser Caucasus up to ~500 km from the suture, magmatism is more alkaline, less crustally-contaminated and is derived from subduction-modified lithospheric mantle. (3) Close to the Zagros Suture in Iran, the lithosphere may have thickened to >200 km during collision. Magmatism is volumetrically limited and derived almost exclusively from the lithospheric mantle, with trace element-enriched alkaline or ultrapotassic compositions. Unlike the Lesser Caucasus, there is little magmatism in the Iranian desert up to ~500 km from the suture. (4) Beyond ~500 km from the Bitlis-Zagros Suture Zone, there is sparse, compositionally variable magmatism: it is OIB-like in Eastern Iran, more akin to Zagros magmatism in the Alborz, and more felsic above the ~55 km thick crust of the Greater Caucasus. Geochemical data suggest that magmatism in (1) is caused by asthenospheric upwelling following slab breakoff, whereas in (2) it is dominated by melting of the base of the still-present lithospheric mantle during convective removal

  19. Integrating GRACE and multi-source data sets to quantify the seasonal groundwater depletion in mega agricultural regions

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Wang, D.; Zhu, T.; Ringler, C.; Sun, A. Y.

    2015-12-01

    It is challenging to quantify the groundwater depletion in the mega basins owing to the huge spatial scale and the intensive anthrophonic activities (e.g. dams and reservoirs). Recently, the satellite Gravity Recovery and Climate Experiment (GRACE) data provides an opportunity to monitor large-scale groundwater depletion. However, the data is only available after 2002, limiting the understanding of inter-annual variability of seasonal groundwater depletion. In this study, a simple model with two parameters is developed, based on the seasonal Budyko framework for quantifying the seasonal groundwater depletion. The model is applied to the Indus and Ganges River basin in South Asia and the High Plain/Ogallala aquifer in United States. The parameters of the model are estimated by integrating GRACE and other multi-source data sets. Total water storage changes before 2003 are reconstructed based on the developed model with available data of evaporation, precipitation, and potential evaporation.

  20. An abrupt change in the magmatic source of rhyolite volcanism in Long Valley, CA recorded by pre-eruptive oxygen fugacities of the Early Rhyolites (Obsidians): evidence of transition from subduction-modified lithosphere to asthenosphere

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2016-12-01

    mixed lithology, consisting of pre-existing crust and an additional component with low fO2. We propose that the reduced component in the ER source is aesthenospheric basalt, which suggests that a transition in mantle source, from subduction-modified lithosphere to asthenosphere, has occurred beneath Long Valley.

  1. Sublithospheric Triggers for Episodic Silicic Magmatism in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Vogt, K.; Schubert, M.

    2014-12-01

    The melt source and ascent mechanisms for crustal-scale silicic magmatism in subduction zones remain a matter of debate. Recent petrological-thermo-mechanical numerical experiments suggest that important physical controls of this process can be of sublithospheric origin. Firstly, deep sources of silicic magma can be related to episodic development of positively buoyant diapiric structures in the mantle wedge originated from deeply subducted rock mélanges (Gerya and Yuen, 2003; Castro and Gerya, 2008). Partial melting of these rapidly ascending lithologically mixed structures can produce silicic magmas with a relatively constant major element composition and variable time-dependent isotopic ratios inherited from the mélange (Vogt et al., 2013). Secondly, episodic injections of subduction-related mantle-derived mafic magmas into a partially molten hot zone of the arc lower crust can drive ascents of pre-existing felsic crustal magmas toward upper crustal levels. The injection of mafic magma induces overpressure in the lower crustal magma reservoir, which increases crustal stresses and triggers development of brittle/plastic fracture zones serving as conduits for the rapid episodic ascent of felsic magmas (Shubert et al., 2013). Our numerical results thus imply that subduction-related sublithospheric magma intrusions into the lower arc crust may both be the prime source for the generation of silicic magmas and the major physical driving mechanism for their episodic ascent toward upper crustal levels. References:Castro, A., and Gerya, T.V., 2008. Magmatic implications of mantle wedge plumes: experimental study. Lithos 103, 138-148. Gerya, T.V., and Yuen, D.A., 2003. Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones. Earth and Planetary Science Letters 212, 47-62.Schubert, M., Driesner, T., Gerya, T.V., Ulmer, P., 2013. Mafic injection as a trigger for felsic magmatism: A numerical study. Geochemistry, Geophysics

  2. Design and implementation of an open source indexing solution for a large set of radiological reports and images.

    PubMed

    Voet, T; Devolder, P; Pynoo, B; Vercruysse, J; Duyck, P

    2007-11-01

    This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3 years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31 ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license.

  3. Magmatic Evolution of the Coso Geothermal Area, California

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Miller, J. S.; Leeman, W. P.; Johnson, B. R.; Monastero, F. C.

    2007-12-01

    as the geothermal production area is approached suggests that the magmatic flux is highest there even though erupted volumes are significantly larger outside the geothermal area. One scenario consistent with the above data is as follows. Post-subduction tectonic events triggered magmatism at 3.5 Ma, tapping fertile, subduction-metasomatized lithospheric mantle. Basalts stalled in and partially melted the mid-crust, generating a mixed-magma series and copious volcanism. Depletion of the mantle source by 2 Ma led to a hiatus in magmatism. A change in basalt chemistry to OIB- affinity in the last 1 Ma suggests a profound change in magma source - likely involving decompression melting of ascending asthenospheric mantle, perhaps related to lithosphere delamination. Injection of such magmas into the lower crust, would have generated rhyolites by remelting of earlier emplaced mafic bodies - imparting a juvenile isotopic signature in the late rhyolites. Precursory Pliocene magmatism is a common feature of other western U.S. geothermal areas, including Twin Peaks, The Geysers, and Long Valley.

  4. Variations in magmatic processes among igneous asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1991-01-01

    Six asteroid classes (types V, E, A, R, M, S) are composed primarily of differentiated assemblages produced by igneous processes within their parent planetesimals. These are identified by surface materials which deviate from a chondritic composition to a degree that require igneous chemical fractionation processes. There are large variations among these igneous asteroids in the peak temperatures attained, in the efficiency of magmatic phase separation, and in the depth within the original parent body exposed at the present surface. These variations provide important constraints on the nature of asteroidal heating events, on the differentiation processes within small planetary bodies, and on the disruption of those parent bodies. Variations due to depth within the parent body and due to degree of magmatic differentiation are detailed.

  5. Aspects of the magmatic geochemistry of bismuth

    USGS Publications Warehouse

    Greenland, L.P.; Gottfried, D.; Campbell, E.Y.

    1973-01-01

    Bismuth has been determined in 74 rocks from a differentiated tholeiitic dolerite, two calc-alkaline batholith suites and in 66 mineral separates from one of the batholiths. Average bismuth contents, weighted for rock type, of the Great Lake (Tasmania) dolerite, the Southern California batholith and the Idaho batholith are, 32, 50 and 70 ppb respectively. All three bodies demonstrate an enrichment of bismuth in residual magmas with magmatic differentiation. Bismuth is greatly enriched (relative to the host rock) in the calcium-rich accessory minerals, apatite and sphene, but other mineral analyses show that a Bi-Ca association is of little significance to the magmatic geochemistry of bismuth. Most of the bismuth, in the Southern California batholith at least, occurs in a trace mineral phase (possibly sulfides) present as inclusions in the rock-forming minerals. ?? 1973.

  6. Magmatic Processes (Paper 6R0769)

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce

    1987-06-01

    The dream of having physics and chemistry contribute equally in unraveling magmatic processes has nearly come true. A rigorous, logical infrastructure of forceful, quantitative investigation has not yet fully emerged, but most all the bits and pieces are hovering about, fidgeting for their rightful places. This quadreinnium is marked by the general quantitative investigation of well defined magmatic process as opposed to construction of detailed physicochemical sceneries to explain specific field problems, although some of this has also produced good results. The surest sign of significant progress is the steady implementation of newly investigated physical processes into petrologic thinking. Regardless of inclination, petrologists are actively seeking evidence for or against various processes, are learning the essentials of the mechanics, and, perhaps best of all, are (most often) accurately using the new vocabulary. We are in the midst of an extremely fertile burst of activity, and the next four years promise, in terms of quantitatively solving problems, to be even better.

  7. Macrostructural and microstructural architecture of the Karakoram fault: Relationship between magmatism and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Phillips, Richard J.; Searle, Michael P.

    2007-06-01

    A key factor in interpreting the significance of large-scale strike-slip faults in models of continental deformation is an understanding of the temporal relationship between faulting and magmatism. Knowledge of when a strike-slip fault initiated is essential in order to determine its long-term slip rate and its significance in accommodating strain. We review key structural criteria that identify whether magmatism is prekinematic or synkinematic with faulting and apply these criteria to a major Tibet-bounding strike-slip fault. Along the Karakoram fault, in western Tibet, opinion is divided between (1) those advocating that magmatism and shearing were coeval, in which case the youngest U-Pb crystallization age provides a minimum age of shear, and (2) those advocating that magmatism preceded strike-slip shearing, in which case the youngest U-Pb crystallization age provides a maximum age of shear. Fault zone rocks within the central segment of the fault are variably deformed, displaying high- to low-temperature solid-state fabrics. Mylonites indicate subsolidus noncoaxial deformation at temperatures that have not exceeded greenschist-lower amphibolite facies. There is no evidence for submagmatic deformation, and there are no textural or structural indicators that suggest synkinematic magmatism. Consequently, magmatism preceded shearing suggesting that the U-Pb age of proximal leucogranites sets a maximum age for shear. Coupled with a limited offset (<150 km), these data confirm a low long-term slip rate for the Karakoram fault (3-10 mm/yr). Consequently, the fault is unlikely to have played a significant role in accommodating strain during the Indo-Asian collision, and thus its role in suggested extrusion models of deformation is limited.

  8. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction

  9. Main peculiarities of N-Q magmatism of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Dokuchaev, A.; Bubnov, S.; Bogatikov, O.; Goltsman, Yu.

    2012-04-01

    -Mo porphyry specialization. Products of Quaternary magmatic activity are developed in Elbrus and Kazbek neovolcanic areas. Five phases were documented in the Quaternary activity (950-<30 Ka) of Elbrus. Early-stage rocks are ascribed to calc-alkaline basaltic andesites, dacites, and K-Na trachybasaltic andesites, while later stages produced calc-alkaline rhyolites, dacites, andesites, and K-Na trachydacites and trachyandesites. Four phases of activity were identified in Kazbek area (450-< 30 Ka, Dzhava, Keli, Kazbek, and Kabardzhin-Sakokhetsky centers). Dzhava center is represented by the andesites, Keli center produced rocks from andesites (K-Na trachyandesites) to rhyolites. Kazbek center rocks vary in composition from basaltic andesites (K-Na trachybasaltic andesites) to dacites. Kabardzhin-Sakokhet center includes subalkaline basalts to dacites. Quaternary volcanics of the Greater Caucasus have Pb-Zn ore-geochemical signature. Young magmatism of the region was formed in a complex geotectonic setting combining continental collision with mantle hot spot activity. Parental magmas of Neogene-Quaternary volcanics of the Greater Caucasus were derived from a multicomponent source involving mantle and crust components. Majority of young granitoids were derived through lower crustal melting. Work was supported by the RFBR (projects 11-05-00933, 11-05-00726) and Program 4 of the RAS Presidium.

  10. Compositional spatial zonation and 2005-2013 temporal evolution of the hydrothermal-magmatic fluids from the submarine fumarolic field at Panarea Island (Aeolian Archipelago, southern Italy)

    NASA Astrophysics Data System (ADS)

    Tassi, Franco; Capaccioni, Bruno; Vaselli, Orlando

    2014-05-01

    The November 2002 submarine gas blast at Panarea Island (Sicily, southern Italy) was an unexpected reactivation event able to locally affect this hydrothermal-magmatic system whose the youngest eruptive products were dated at 20,000 ± 2000 years BP. The presence of magmatic gases (SO2 and HF) in the fumarolic gas discharges after the violent exhalative event was indicative of a magmatic input that temporary displaced the hydrothermal system. A few months later these acidic gases were indeed not detected in any of the studied fumaroles. Nevertheless, new geochemical data obtained by periodical sampling up to June 2013 suggest that the chemical-physical conditions of the hydrothermal-magmatic system at Panarea were not completely restored with respect to the geochemical data obtained in the early nineties. Thus, the 2002 gas burst has unequivocally caused a permanent modification to the fluid circulation system feeding the submarine fumaroles. In addition, strong compositional differences were observed by the 46 gases collected in 2012-2013 from submarine fumaroles located in different sites of the studied area, allowing to distinguish three different groups of fumaroles: A) H2- and CO-rich gases, which also show relatively low Ar concentrations, B) H2S-rich gases, having variable CO/CH4 ratios, and C) Ar-rich gases, having relatively low H2 concentrations. Gases from group A are distributed along NW- and NE-trending fault systems, whereas those of groups B and C discharge at increasing distance from the intersection of the two fault systems, indicating a spatial and compositional control by the local tectonic setting. The H2/CO ratios of groups A and B gases are significantly lower than those measured prior to 2012. This would imply an increase of gas pressure at depth, possibly caused by continuous addition of gas and energy from the magmatic source to the hydrothermal reservoir. Continuation of this process may lead to the occurrence of gas burst events in the

  11. Early Yellowstone hotspot magmatism and gold metallogeny

    NASA Astrophysics Data System (ADS)

    Hames, Willis; Unger, Derick; Saunders, James; Kamenov, George

    2009-11-01

    High-grade epithermal gold deposits in the Northern Great Basin have long been associated with regional Miocene basaltic to rhyolitic volcanism. Previous models for the low-sulfidation epithermal gold ores in this region have generally portrayed the bimodal magmas as a source of heat to drive large-scale convection of meteoritic water that leached gold from crustal sources and deposited it in hydrothermal vein systems, or required that the gold evolve from fractionated silicic magmas. New data of the present study indicate a more direct genetic link to the plume-related basaltic magmas of the region. Laser 40Ar/ 39Ar incremental heating plateau ages for single crystals of adularia from several of these low-sulfidation epithermal gold deposits range from 16.6 Ma to 15.5 Ma. Adularia from the Jumbo deposit yields three concordant plateau ages with a combined statistical result of 16.54 ± 0.04 Ma (95% confidence level, MSWD = 0.23). Plateau ages for adularia from other deposits in the region, and from gold-bearing veins in the Owyhee Mountains of southwestern Idaho, yield similar ages up to ~16.5 Ma, however some veins are as young as ca. 15.5 Ma and the grain-to-grain ages for a given sample can vary by up to ca. 0.5 Ma. Observed variations in age among the adularia crystals of a given rock sample indicate varying amounts of extraneous argon, and also loss of radiogenic 40Ar, among the population of grains for a particular sample. The single-crystal results are interpreted to indicate a 16.5-15.5 Ma interval for formation of gold-bearing adularia veins in the region. The initiation and duration of this gold-forming event appears contemporaneous (within uncertainties) with the basaltic volcanism at the Steens Mountain section and an ensuing one-million-year episode of basaltic volcanism from multiple centers in the region ( Brueseke et al., 2007). Trace amounts of lead are alloyed with gold in the deposits studied. The isotopic compositions of this lead are not

  12. A model for northern Vermont's Acadian magmatism with insight from Italy's Tuscan magmatic province

    SciTech Connect

    Westerman, D.S. . Dept. of Geology)

    1993-03-01

    S-type Devonian acidic intrusives in northern Vermont occur scattered throughout the turbiditic flysch sequence and pervasive horizon of mafic Standing Pond Volcanics of the Connecticut Valley--Gaspe Trough (CVGT). These granitoids formed in a successor basin that opened over the stalled Taconic subduction zone located between the Bronson Hill--Boundary Mountain Volcanic arc (east) and the ophiolite-bearing accretionary complex of the Green Mountains (west). Contact aureoles surrounding the granitoids are superimposed over low-pressure facies series metamorphic isograds that have concentric pattern correlated with the centers of intrusion. Italy's Tuscan Magmatic Province, also dominated by S-type acidic intrusives, developed between 7 and 2 Ma in a successor basin over an extinct subduction zone. In that case, the basin and its plutons developed when the Corsica-Sardinia plate pulled back to form the Tyrrhenian Sea after having collided with Italy to form the Apennine range approximately 10 m.y. earlier. In this model for northern Vermont, a volcanic arc and accretionary complex developed during Ordovician subduction, perhaps with continuing trench--arc separation due to shallow subduction. When the leading edge of continental North America entered the subduction zone, the process stalled and the subducted Iapetus slab continued to lose heat and increase density, promoting its separation from the overlying plate. Upwelling under the former forearc region rifted the crust to form the CVGT. The mantle-derived mafic melts rose, transferring heat to metamorphose and partially melt the basin fill. The Standing Pond Volcanics represent this melt that reached the surface at one stage and flooded the basin. Northern Vermont's granitoids rose, penetrating the domed strata above their source region, as extensional tectonism was replaced by Acadian compression.

  13. Modelling magmatic gas scrubbing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Di Napoli, Rossella; Aiuppa, Alessandro; Valenza, Mariano; Bergsson, Baldur; Ilyinskaya, Evgenia; Pfeffer, Melissa Anne; Rakel Guðjónsdóttir, Sylvía

    2015-04-01

    In volcano-hosted hydrothermal systems, the chemistry of deeply rising magmatic gases is extensively modified by gas-water-rock interactions taking place within the hydrothermal reservoir, and/or at shallow groundwaters conditions. These reactions can scrub reactive, water-soluble species (S, halogens) from the magmatic gas phase, so that their quantitative assessment is central to understanding the chemistry of surface gas manifestations, and brings profound implications to the interpretation of volcanic-hydrothermal unrests. Here, we present the results of numerical simulations of magmatic gas scrubbing, in which the reaction path modelling approach (Helgeson, 1968) is used to reproduce hydrothermal gas-water-rock interactions at both shallow (temperature up to 109°C; low-T model runs) and deep reservoir (temperature range: 150-250 °C; high-T model runs) conditions. The model was built based upon the EQ3/6 software package (Wolery and Daveler, 1992), and consisted into a step by step addition of a high-temperature magmatic gas to an initial meteoric water, in the presence of a dissolving aquifer rock. The model outputted, at each step of gas addition, the chemical composition of a new aqueous solution formed after gas-water-rock interactions; which, upon reaching gas over-pressuring (PgasTOT > Psat(H2O) at run T), is degassed (by single-step degassing) to separate a scrubbed gas phase. As an application of the model results, the model compositions of the separated gases are finally compared with compositions of natural gas emissions from Hekla volcano (T< 100°C) and from Krisuvik geothermal system (T> 100°C), resulting into an excellent agreement. The compositions of the model solutions are also in fair agreement with compositions of natural thermal water samples. We conclude that our EQ3/6-based reaction path simulations offer a realistic representation of gas-water-rock interaction processes occurring underneath active magmatic-hydrothermal systems

  14. Magmatic Diversity of the Wehrlitic Intrusions in the Oceanic Lower Crust of the Northern Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Kaneko, R.; Adachi, Y.; Miyashita, S.

    2014-12-01

    .38 wt% and 0.26 wt%, respectively, and plot on the field of MOR magmatism. The most-evolved Ol (Fo% = 84.7) from the wehrlitic intrusions has high NiO (0.31 wt%) and plots on the olivine mantle array (Takahashi 1986). It is suggested that heterogeneity of source mantle influences the magmatic diversity of the wehrlitic intrusions.

  15. I{ Relationship between source clean up and mass flux of chlorinated solvents in low permeability settings with fractures}

    NASA Astrophysics Data System (ADS)

    Bjerg, P. L.; Chambon, J. C.; Christiansen, C. M.; Broholm, M. M.; Binning, P. J.

    2009-04-01

    Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis-dichloroethylene (cis-DCE), vinyl chloride (VC) and ethene. This process can be enhanced by addition of electron donors and/or bioaugmentation and is termed Enhanced Reductive Dechlorination (ERD). This work aims to improve our understanding of the physical, chemical and microbial processes governing source behaviour under natural and enhanced conditions. That understanding is applied to risk assessment, and to determine the relationship and time frames of source clean up and plume response. To meet that aim, field and laboratory observations are coupled to state of the art models incorporating new insights of contaminant behaviour. The long term leaching of chlorinated ethenes from clay aquitards is currently being monitored at a number of Danish sites. The observed data is simulated using a coupled fracture flow and clay matrix diffusion model. Sequential degradation is represented by modified Monod kinetics accounting for competitive inhibition between the chlorinated ethenes. The model is constructed using Comsol Multiphysics, a generic finite- element partial differential equation solver. The model is applied at well characterised field sites with respect to hydrogeology, fracture network, contaminant distribution and microbial processes (lab and field experiments). At one of the study sites (Sortebrovej), the source areas are situated in a clayey till with fractures and

  16. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    , even if one data object lies behind another. Stereoscopic viewing is another powerful tool to investigate 3-D relationships between objects. This form of immersion is constructed through viewing two separate images that are interleaved--typically 48 frames per second, per eye--and synced through an emitter and a set of specialized polarizing eyeglasses. The polarizing lenses flicker at an equivalent rate, blanking the eye for which a particular image was not drawn, producing the desired stereo effect. Volumetric visualization of the ARAD 3-D seismic dataset will be presented. The effective use of transparency reveals detailed structure of the melt-lens beneath the 9°03'N overlapping spreading center (OSC) along the East Pacific Rise, including melt-filled fractures within the propagating rift-tip. In addition, range-gated images of seismic reflectivity will be co-registered to investigate the physical properties (melt versus mush) of the magma chamber at this locale. Surface visualization of a dense, 2-D grid of MCS seismic data beneath Axial seamount (Juan de Fuca Ridge) will also be highlighted, including relationships between the summit caldera and rift zones, and the underlying (and humongous) magma chamber. A selection of Quicktime movies will be shown. Popcorn will be served, really!

  17. Evaluating the relative roles of crustal growth and recycling through continental arc magmatism in the Ross orogen, Antarctica

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, Graham; Cottle, John

    2017-04-01

    There remains much debate about the mechanisms of the growth and differentiation of continental crust over geologic time, although the geochemical resemblance between continental crust and arc magmatism around the world make subduction-related magmatism a conspicuous candidate. It's clear that both juvenile magmatism and crustal recycling occur at convergent margins, but is it difficult to quantify the roles of these two end-member processes. This is particularly challenging in continental arc settings, where magmas ascend through and interact with thick continental lithosphere of variable—and usually unknown—age and composition. We assess the relative magnitudes of crustal growth and recycling in a 500-km-long segment of the Ross orogen of Antarctica—an archetypal example of a long-lived "Cordilleran-style" continental arc—utilizing an extensive set of zircon Hf (˜70 samples) and whole rock Nd and Sr (15 samples) isotopic data for igneous rocks ranging from gabbro to granite. Initial ɛNd and 87Sr/86Sr values range from +0.1 to -10.3 and ˜0.7044 to 0.7137, respectively. Initial ɛHf values (weighted means of individual analyses from each sample) are predominately negative—ranging from +3.5 to -12.3—potentially interpreted as reflecting a dominant crustal component in the source of the granitoids. However, inherited zircon domains provide evidence for significantly less radiogenic ancient crust in the unexposed basement of the orogen. Additionally, primitive samples (SiO2 < 52 wt%; Mg# > 69) range in initial ɛHf from approximately +0.8 to -4.0, representing juvenile magmatism with enriched isotopic compositions. While a broader range and lower ɛHf values (+3.5 to -12.3) in more evolved samples from large granitic plutons likely reflect variable degrees of crustal assimilation during differentiation, overlap with the isotopic compositions of primitive samples permits differentiation with relatively minor degrees of crustal assimilation. This

  18. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  19. The amniotic fluid as a source of neural stem cells in the setting of experimental neural tube defects.

    PubMed

    Turner, Christopher G; Klein, Justin D; Wang, Junmei; Thakor, Devang; Benedict, Darcy; Ahmed, Azra; Teng, Yang D; Fauza, Dario O

    2013-02-15

    We sought to determine whether neural stem cells (NSCs) can be isolated from the amniotic fluid in the setting of neural tube defects (NTDs), as a prerequisite for eventual autologous perinatal therapies. Pregnant Sprague-Dawley dams (n=62) were divided into experimental (n=42) and control (n=20) groups, depending on prenatal exposure to retinoic acid for the induction of fetal NTDs. Animals were killed before term for analysis (n=685 fetuses). Amniotic fluid samples from both groups underwent epigenetic selection for NSCs, followed by exposure to neural differentiation media. Representative cell samples underwent multiple morphological and phenotypical analyses at different time points. No control fetus (n=267) had any structural abnormality, whereas at least one type of NTD developed in 52% (217/418) of the experimental fetuses (namely, isolated spina bifida, n=144; isolated exencephaly, n=24; or a combination of the two, n=49). Only amniotic samples from fetuses with a NTD yielded cells with typical neural progenitor morphology and robust expression of both Nestin and Sox-2, primary markers of NSCs. These cells responded to differentiation media by displaying typical morphological changes, along with expression of beta-tubulin III, glial fibrillary acidic protein, and/or O4, markers for immature neurons, astrocytes, and oligodendrocytes, respectively. This was concurrent with downregulation of Nestin and Sox-2. We conclude that the amniotic fluid can harbor disease-specific stem cells, for example, NSCs in the setting of experimental NTDs. The amniotic fluid may be a practical source of autologous NSCs applicable to novel forms of therapies for spina bifida.

  20. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  1. Data policy for data sets from various sources: recent developments in the Integrated Carbon Observation System (ICOS)

    NASA Astrophysics Data System (ADS)

    Vermeulen, A. T.; Kutsch, W. L.; Lavric, J. V.; Juurola, E.

    2016-12-01

    Fluxnet is facing a transition from single PI and project engagement to a cooperation of infrastructures such as ICOS, Ameriflux, NEON, Chinaflux or TERN. Each of these infrastructures has developed its own data life cycle, data license and data policy which will have implications on future cooperation within Fluxnet and other global data integration efforts such as e.g. SOCAt in the ocean community. This presentation will introduce into the recent developments of the ICOS data policy and show perspectives for future cooperation in global networks. The challenge in developing the ICOS data policy has been to find the best compromise between optimized access for users and sufficient visibility and acknowledgement of data providers. ICOS data will be provided under the Creative Commons 4.0 BY license. ICOS data will be provided through the ICOS Carbon Portal. Data usage will be absolutely unrestricted. Data have only to be attributed as ICOS data. With the attribution ICOS will provide a persistent identifier (pid, sometimes also nominated as digial object identifier, doi) that will direct to a landing page where data provider and if necessary also funding organisations are identified. In cooperation with other environmental research infrastructures in the framework of the European cluster project ENVRIplus and the Research Data Alliance (RDA) the ICOS Carbon Portal is currently developing a data citation system. This includes developing recommendations for data citation of integrated data sets from different sources.

  2. Detrital geochronology of unroofing magmatic complexes

    NASA Astrophysics Data System (ADS)

    Malusà, Marco Giovanni; Villa, Igor Maria; Vezzoli, Giovanni; Garzanti, Eduardo

    2010-05-01

    Tectonic reconstructions performed in recent years are increasingly based on petrographic (Dickinson & Suczek, 1979; Garzanti et al., 2007) and geochronological (Brandon et al., 1998; DeCelles et al., 2004) analyses of detrital systems. Detrital age patterns are traditionally interpreted as a result of cooling induced by exhumation (Jäger, 1967; Dodson, 1973). Such an approach can lead to infer extremely high erosion rates (Giger & Hurford 1989) that conflict with compelling geological evidence (Garzanti & Malusà, 2008). This indicates that interpretations solely based on exhumational cooling may not have general validity (Villa, 2006). Here we propose a new detrital geochronology model that takes into account the effects of both crystallization and exhumational cooling on geochronometers, from U-Pb on zircon to fission tracks on apatite. This model, specifically designed for unroofing magmatic complexes, predicts both stationary and moving mineral-age peaks. Because its base is the ordinary interaction between endogenic and exogenic processes, it is applicable to any geological setting. It was tested on the extremely well-studied Bregaglia-Bergell pluton in the Alps, and on the sedimentary succession derived from its erosion. The consistency between predicted and observed age patterns validates the model. Our results demonstrate that volcanoes were active on top of the growing Oligocene Alps, and resolve a long-standing paradox in quantitative erosion-sedimentation modelling, the scarcity of sediment during apparently fast erosion. Dickinson, W. R. & Suczek, C. A. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 63, 2164-2172 (1979). Garzanti, E., Doglioni, C., Vezzoli. G. & Andò, S. Orogenic belts and orogenic sediment provenance. J. Geol. 115, 315-334 (2007). Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull

  3. Cenozoic fluid-magmatic centers, geodynamics and volcanism in Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Sobissevitch, A. L.; Nechaev, Yu. V.; Masurenkov, Yu. P.; Pouzich, I. N.; Pronin, A. P.; Laverova, N. I.

    2009-04-01

    The central segment of Alpine mobile folded system of the Greater Caucasus is characterized by complex crossing of the active faults of different structural directions. On the crossings of disjunctive knots of Caucasian WNW and Trans-Caucasian NS faults the two Cenozoic fluid-magmatic centers are located featuring dormant yet not extinct volcanoes of Elbrus and Kazbek. Mentioned centers are known as the Elbrus volcano-plutonic center, the Kazbek volcano-plutonic center, they are outlined according to the results of geological, geomorphological and geophysical studies. Geodynamic position of the Elbrus volcano within the Transcaucasia uplift is considered with respect to evolution of volcanic processes and possible resumption of volcanic activity in this region. In order to carry out the multidisciplinary study of geological and geophysical processes in the vicinity of the volcanic dome it is essential to obtain reliable information about basic parameters of local magmatic structures. The satellite imagery processing carried out according to original technology based on determination of surface lineaments and consequent transition to analysis of the field of tectonic disintegration of the lithosphere may allow one to obtain independent knowledge about deep subsurface structures for the given territory. As a result, the 3D model of tectonic disintegration field under the Elbrus volcano has been constructed. The two anomalous domains have been outlined and they were associated with local deep magmatic source and peripheral magmatic chamber of the Elbrus volcano. Comparative analysis of experimental geophysical data obtained by means of microgravity studies over the same territory, magneto-telluric profiling and search for thermal anomalies has shown appropriate correlation in terms of shape, size and position of magmatic structures in the vicinity if the Elbrus volcanic center. Thus, the position and size of the magmatic chamber and the deep magmatic source of the

  4. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment

    PubMed Central

    Chiaradia, Massimo; Caricchi, Luca

    2017-01-01

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2–3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits. PMID:28295045

  5. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    NASA Astrophysics Data System (ADS)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  6. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment

    NASA Astrophysics Data System (ADS)

    Chiaradia, Massimo; Caricchi, Luca

    2017-03-01

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2–3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits.

  7. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment.

    PubMed

    Chiaradia, Massimo; Caricchi, Luca

    2017-03-15

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2-3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits.

  8. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    NASA Astrophysics Data System (ADS)

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-06-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.

  9. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    PubMed Central

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  10. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises.

    PubMed

    Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-06-09

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.

  11. Intrusive LIPs: Deep crustal magmatic processes during the emplacement of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Karlstrom, L.

    2011-12-01

    Large Igneous Provinces (LIPs) are characterized by magmatic activity on two distinct timescales. While these provinces have total active lifetimes of order 10-30 Ma, most of the erupted volume is emplaced within <1 Ma in many cases. The latter timescale is likely controlled by magmatic intrusion/evolution processes within the deep crust. We present seismic evidence for 5-15 km thick Moho-level ultramafic intrusive/cumulate layers underlying Phanerozoic LIPs worldwide [Ridley and Richards, 2010]. These deep crustal bodies are both observed and predicted to have volumes at least as large as the extrusive components of flood volcanism. The evidence for these layers is particularly clear for oceanic LIPs (plateaus). We hypothesize that thermally activated creep of the lower crust due to magma chamber emplacement controls a transition from largely extrusive to largely intrusive magmatism during mantle plume impingement on the lithosphere [Karlstrom and Richards, 2011]. We explore this hypothesis by modeling the thermomechanical evolution of Moho-level magma chambers. Comparing the timescale for viscoelastic relaxation of intrusion-related stresses with the timescale for sill formation and magma differentiation, we find that fracture processes leading to diking from Moho levels may plausibly be shut off on a timescale of ~1 Ma. Continued melt influx therefore results in intrusive magmatism, which may be manifest as plateau growth in oceanic settings. We suggest that maximum intrusion size may be limited by crustal thickness, resulting in smaller volume individual eruptions in oceanic versus continental LIPs.

  12. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A

  13. Plate Tectonics Constrained by Evidence-Based Magmatic Temperatures and Phase Relations of Fertile Lherzolite (Invited)

    NASA Astrophysics Data System (ADS)

    Green, D. H.; Falloon, T.

    2010-12-01

    In order to understand Earth’s plate tectonics we must interpret the most direct probes for mantle composition and temperature distribution i.e. the primitive basaltic magmas and peridotites representing partial melts and mantle residues. An evidence-based approach to identification of parental magmas and determination of their temperatures requires glass and phenocryst compositions and experimentally calibrated Fe/Mg partitioning between olivine and melt. We have compared magmatic crystallization temperatures between ‘hot-spot’(proposed to be plume-related) and normal mid-ocean ridge basalt (MORB) parental liquids, by examining three representative magmatic suites from both ocean island (Hawaii, Iceland, and Réunion) and mid-ocean ridge settings (Cocos-Nazca, East Pacific Rise, and Mid-Atlantic Ridge). We have glass and olivine phenocryst compositions, including volatile (H2O) contents, and have calculated parental liquid compositions at 0.2GPa by incrementally adding olivine back into the glass compositions until a liquid in equilibrium with the most-magnesian olivine phenocryst composition is obtained. The results of these calculations demonstrate that there is very little difference (maximum of ~20°C) between the ranges of crystallization temperatures of the parental liquids (MORB:1243-1351°C versus OIB:1286-1372°C) when volatile contents are taken into account. However while lacking temperature contrast, the source regions for ‘hot-spot’ parental magmas contain geochemical signatures of old subducted crust/lithosphere. The mantle depths of origin determined for both the MORB and OIB suites are similar (MORB:1-2 GPa; OIB:1-2.5 GPa). Calculations of mantle potential temperatures (Tp) are model dependent, particularly to melt fraction from an inferred source. Assuming similar fertile lherzolite sources, the differences in Tp values between the hottest MORB and the hottest ocean island tholeiite sources are ~80°C. These differences disappear if the

  14. A General Model for Shallow Magmatic Intrusions

    NASA Astrophysics Data System (ADS)

    Thorey, C.; Michaut, C.

    2015-12-01

    Shallow magmatic intrusions make room for themselves by upward bending of the elastic overburden. Previous studies have shown that the bending of the overlying layer first controls the dynamics. Then, when the radius reaches a few times the flexural wavelength of the overburden, it transitions to a gravity current regime. This model predicts the appropriate geometry for both terrestrial laccoliths and large mafic sills. However, it underestimates the absolute dimensions of these magmatic intrusions; in particular, it requires abnormally high viscosity to reconcile both observations and predictions. To get some insights into the effective flow viscosity, we develop a model that account for the cooling of such elastic-plated gravity currents. We show that the coupling between the temperature field and the flow itself leads to the formation of a highly viscous region at the tip that slows down the spreading in both regimes. The intrusions are predicted to be thicker and their dimensions, especially in the bending regime, are now consistent with observations. By introducing the potentially complex structure of the overburden, we also show that the topography largely contributes to constrain the final intrusion morphology. For instance, in the case of an intrusion centered below a circular depression, the model predicts that the lithostatic increase at the crater rim prevents the magma from spreading laterally and enhances the thickening of the intrusion. This model has already proven successful in reproducing the deformations observed on potential intrusion centered below lunar impact craters. Caldera complexes often exhibit ground deformations that might be associated to the formation of shallow magmatic intrusions. InSAR imaging and GPS measurements now provide efficient tools to monitor these deformations. We conclude this study by examining the ability of the model to reproduce the deformation observed in several caldera complexes.

  15. Tritium and stable isotopes of magmatic waters

    NASA Astrophysics Data System (ADS)

    Goff, F.; McMurtry, G. M.

    2000-04-01

    To investigate the isotopic composition and age of water in volcanic gases and magmas, we analyzed samples from 11 active volcanoes ranging in composition from tholeiitic basalt to rhyolite: Mount St. Helens (USA), Kilauea (USA), Pacaya (Guatemala), Galeras (Colombia), Satsuma Iwo-Jima (Japan), Sierra Negra and Alcedo (Ecuador), Vulcano (Italy), Parı´cutin (Mexico), Kudryavy (Russia), and White Island (New Zealand). Tritium at relatively low levels (0.1-5 T.U.) is found in most emissions from high-temperature volcanic fumaroles sampled, even at discharge temperatures >700°C. Although magmatic fluids sampled from these emissions usually contain high CO 2, S total, HCl, HF, B, Br, 3He R/ RA, and low contents of air components, stable isotope and tritium relations of nearly all such fluids show mixing of magmatic volatiles with relatively young meteoric water (model ages≤75 y). Linear δD/ δ18O and 3H/ δ18O mixing trends of these two end-members are invariably detected at arc volcanoes. Tritium is also detected in fumarole condensates at hot spot basalt volcanoes, but collecting samples approaching the composition of end-member magmatic fluid is exceedingly difficult. In situ production of 3H, mostly from spontaneous fission of 238U in magmas is calculated to be <0.001 T.U., except for the most evolved compositions (high U, Th, and Li and low H 2O contents). These values are below the detection limit of 3H by conventional analytical techniques (about 0.01 T.U. at best). We found no conclusive evidence that natural fusion in the Earth produces anomalous amounts of detectable 3H (>0.05 T.U.).

  16. Sr isotopic microsampling of magmatic rocks; a review (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2010-12-01

    Sr isotopes have been used since the 1960s as powerful tracers of source for igneous rocks. In the past 10 years in-situ isotopic microsampling has afforded us tremendous progress in our capacity to understand magmatic processes. This progress is underpinned by analytical advances particularly in sample extraction through laser or micromill and in multicollector mass spectrometer improvements to sensitivity and precision. Perhaps the biggest surprise was the recognition in the 1990s that young magmatic rocks are commonly isotopically heterogeneous at the component (inter- or intra- crystal) scale. Given that melting and fractionation do not affect 87Sr/86Sr we would not a priori expect isotopic variations within or among crystals in a young igneous rock. This observation alone attests to open system behavior in magmas, and tells us that many of the crystals have been mechanically aggregated and not grown directly from the melt in which they are found solidified (a conclusion that can also commonly be drawn from cursory petrographic examination). This recognition in turn means that we can make use of the crystals as recorders of the isotopic environments in which they crystallise: If a crystal grows progressively from a melt which changes its isotopic composition through processes such as contamination and mixing, then the only record of the melt evolution is in the core-rim compositions of the crystals - analogous to the environmental record of tree rings. Plagioclase crystals in mafic enclaves from Lassen (CA) and Purico-Chascon (Chile), for instance, have isotopic records that reflect origination from the more silicic host. Core-rim records of evolution can also be integrated with textural measurements. At Stromboli we have shown how isotopic zoning correlates with crystal size distribution. The detailed records of single crystals can be complemented by multi crystal core analyses which can be used to distinguish specific populations. This approach was used on

  17. Magmatic Degassing and the Volatile Depletion of the Moon

    NASA Astrophysics Data System (ADS)

    Rutherford, M. J.; Saal, A. E.; Hauri, E.

    2015-12-01

    The detection of highly volatile elements in lunar volcanic glasses and melt inclusions has provided the first definitive evidence for the accretion and retention of these elements in the Moon's interior1,2. Measurement of H in lunar apatite, at levels similar to terrestrial apatite, has added weight to this discovery3,4. These results are at odds with the longest-standing observations that the abundances of highly- and moderately-volatile elements in lunar basalts are as much as 1000 times more depleted than in terrestrial basalts5. We will show that most of these apparent contradictions have arisen due to the previously unappreciated importance of a single widespread process, magmatic degassing. Degassing occurs in all eruptions of magma, with the consequent release of volatile elements into an exsolved vapor phase. We use ours and previously published results to evaluate lunar magmatic degassing and to show that A) volatile element contents for the bulk silicate Moon (BSM) are only moderately depleted compared with the bulk silicate Earth (range 0.5-0.1, avg. 0.25 x BSE), B) they essentially overlap the composition of the terrestrial depleted MORB source and C) the volatile depletion pattern for the BSM is largely flat, and so does not correlate with condensation temperature at 10-4 bars, nor with bond energy for likely ligands. Published high-precision Sr and Pb isotope ratios on well-dated lunar rocks6-8 reveal 87Rb/86Sr and 238U/204Pb ratios of the lunar mantle a factor of 0.3-0.5 and 0.28-0.85 depleted compared to those of the BSE, respectively; lending support to our estimates for the abundances of Rb (0.245 x BSE) and Pb (0.187 x BSE) in the BSM. Before the Moon's extent of volatile depletion can be confidently attributed to the accretion processes, magmatic degassing must be examined and critically evaluated. References [1] Saal et al., 2008. Nature 454, 192. [2] Hauri et al., 2015. FEPS 409, 252. [3] Boyce et al., 2014. Sc. 344, 400. [4] Anand et al

  18. Magmatic volatiles in explosive rhyolitic eruptions

    SciTech Connect

    Eichelberger, J.C.; Westrich, H.R.

    1981-07-01

    Obsidian clasts in rhyolitic tephra deposits preserve preeruption magmatic volatile contents, providing a direct means for determining the volatile content of explosively erupted magmas. Small to moderate volume Plinian eruptions (10/sup -3/ to 10/sup -1/ km/sup 3/) appear to be driven by 0.5--1.0 wt.% volatiles, consisting dominantly of H/sub 2/O with minor CO/sub 2/. Analysis of obsidian from eruptive sequences consisting of tephra and flows indicates that this hydrous magma abruptly overlies magma with only 0.1--0.2 wt.% H/sub 2/O.

  19. Rhenium and Iridium Partitioning in Silicate and Magmatic Spinels: Implications for Planetary Magmatism and Mantles

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2001-01-01

    Highly siderophile elements Re, Ru and Ir partition strongly into spinel structures with large octahedral sites. New experimental results for both magmatic and silicate spinels will be presented with a few planetary implications. Additional information is contained in the original extended abstract.

  20. Rhenium and Iridium Partitioning in Silicate and Magmatic Spinels: Implications for Planetary Magmatism and Mantles

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2001-01-01

    Highly siderophile elements Re, Ru and Ir partition strongly into spinel structures with large octahedral sites. New experimental results for both magmatic and silicate spinels will be presented with a few planetary implications. Additional information is contained in the original extended abstract.

  1. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  2. Source to Sink studies in Spain: a catalogue and data set of Mediterranean river basins and deltaic systems

    NASA Astrophysics Data System (ADS)

    Canals, M.; Arnau, P.; Colas, S.

    2003-04-01

    Deltas and their alongshore extensions form most of the low Spanish Mediterranean shorelines. Prodeltas form the offshore, fine-grained continuation of deltaic edifices. Both large river systems, like the Ebro, and tens of small to very small river systems coexist in the Spanish Mediterrranean watershed. A general north (wetter) to south (drier) climatic gradient has an influence on precipitation and natural river discharge. Local precipitation anomalies appear mostly because of altitudinal differences. The Ebro is a especial case since its upper basin is under the influence of the Atlantic climate. This natural scenario has been profoundly disturbed by river management schemes. Damming and water diversion has been almost everywhere particularly intensive during the XXth century and has strongly reduced water and sediment discharge at river mouths. The Ebro River is the most dramatic example, with up to 97% of the basin surface now behind dams, and >90% reduction of the sediment discharge, suspended and bedload, at its mouth. Beach stability has much suffered because of the drastic reduction in the volumes of solid load reaching river mouth and being redistributed by alongshore currents. A similar situation, although perhaps less dramatic, could be depicted for other Mediterranean countries. However, a consistent and comprehensive catalogue and data set of Mediterranean river basins and deltaic systems are still lacking. Although some information can be easilly accessed (i.e., via Internet), lots of valuable information remain to be mined to a great extent from basin authorities in order to achieve a comprehensive compilation and understanding of source to sink river systems in the Spanish Mediterranean. A team from the University of Barcelona has collected a vast quantity of information on the totality of Spanish Mediterranean river systems, with a substantial amount of it kindly provided by river basin authorities. The collection includes DTMs, aerial photographs

  3. Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions

    NASA Astrophysics Data System (ADS)

    Houston, Heidi

    2001-06-01

    Source time functions of 255 moderate to great earthquakes obtained from inversions of teleseismic body waves by Tanioka and Ruff [1997] and coworkers were compared in a systematic way. They were scaled to remove the effect of moment and to allow the direct comparison and averaging of time function shape as well as duration. Time function durations picked by Tanioka and Ruff [1997] are proportional to the cube root of seismic moment if moments from the Harvard centroid moment tensor catalog are used. The average duration of scaled time functions is shorter and the average shape has a more abrupt termination for deeper events than shallower ones, with a distinct change occurring at ˜40 km depth. The complexity of the time functions, as quantified by the number of subevents, appears to decrease below ˜40 km depth. Furthermore, among events shallower than 40 km, the average duration of scaled time functions is shorter, and their average shape has a more abrupt termination (1) for events with strike-slip focal mechanisms compared to thrust events and (2) for the few thrust events associated with an intraplate setting compared to the majority associated with an interplate (subduction) boundary. In each of these cases, events in more technically and seismically active settings have a longer duration and a more gradual termination. This can be interpreted in terms of lower stress drops and/or slower rupture velocities at active plate boundaries, suggesting that fault rheology depends on slip rate and may evolve as total fault slip accumulates. Furthermore, differences in average time function shape and duration associated with different subduction zones suggest that differences exist in the rheology on the plate boundaries at the various subduction zones. Supporting data table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password = "guest"); subdirectories in the ftp site are arranged by paper

  4. Magmatic Processes and Systems Deduced from Single Crystals

    NASA Astrophysics Data System (ADS)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.

    2014-12-01

    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  5. Imaging the magmatic and hydrothermal systems of Long Valley Caldera, California with magnetotellurics

    NASA Astrophysics Data System (ADS)

    Peacock, J.; Mangan, M.; McPhee, D.; Ponce, D. A.

    2015-12-01

    Long Valley Caldera (LVC) in Eastern California contains active hydrothermal systems, areas of episodic seismicity, and areas of elevated gas emissions, all of which are related to a deeper magmatic system that is not well characterized. To better image the Long Valley magmatic system, 60 full-tensor broadband magnetotelluric (MT) stations were collected in LVC and modeled in three-dimensions to constrain the subsurface electrical resistivity structure down to 30 km. Three conductive zones are imaged in the preferred resistivity model. The most prominent conductive zone (<7 Ohm-m) is located 5 km beneath the resurgent dome (near the center of Long Valley Caldera), where it elongates in a north-south direction, and has westward connection to the surface close to well 44-16 near Deer Mountan. This conductive zone is interpreted to be an accumulation zone of hydrothermal fluids originating from a deeper magmatic source. The shape of the conductive body suggests that the fluids pool under the resurgent dome and migrate westward, upwelling just south of well 44-16 to feed the near surface geothermal system. A second conductive zone (<10 Ohm-m) is 4 km southeast of the resurgent dome and 5 km deep and coincident with the seismic swarm of 2014. This is another zone of fluid accumulation, where the source could be the fluid accumulation zone to the west or an independent deeper source. The third conductive anomaly (<10 Ohm-m) is a few kilometers south of the resurgent dome below a depth of 15 km, and collocated with a low p- and s-wave velocity zone, and directly beneath a GPS inflation area, all of which advocate for a magma mush zone of as much as 30% interstitial melt. The preferred resistivity model suggests an accumulation of hydrothermal fluids 5 km below the resurgent dome that originates from a deeper magmatic source at 15 km depth.

  6. Constraining earthquake source inversions with GPS data: 2. A two-step approach to combine seismic and geodetic data sets

    USGS Publications Warehouse

    Custodio, S.; Page, M.T.; Archuleta, R.J.

    2009-01-01

    We present a new method to combine static and wavefield data to image earthquake ruptures. Our combined inversion is a two-step procedure, following the work of Hernandez et al. (1999), and takes into account the differences between the resolutions of the two data sets. The first step consists of an inversion of the static field, which yields a map of slip amplitude. This inversion exploits a special irregular grid that takes into account the resolution of the static data. The second step is an inversion of the radiated wavefield; it results in the determination of the time evolution of slip on the fault. In the second step, the slip amplitude is constrained to resemble the static slip amplitude map inferred from the GPS inversion. Using this combined inversion, we study the source process of the 2004 M6 Parkfield, California, earthquake. We conclude that slip occurred in two main regions of the fault, each of which displayed distinct rupture behaviors. Slip initiated at the hypocenter with a very strong bilateral burst of energy. Here, slip was localized in a narrow area approximately 10 km long, the rupture velocity was very fast (???3.5 km/s), and slip only lasted a short period of time (<1 s). Then the rupture proceeded to a wider region 12-20 km northwest of the hypocenter. Here, the earthquake developed in a more moderated way: the rupture velocity slowed to ???3.0 km/s and slip lasted longer (1-2 s). The maximum slip amplitude was 0.45 m. Copyright 2009 by the American Geophysical Union.

  7. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....2096T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....2096T"><span>Geochemical and Nd-Sr isotopic constraints on the genesis of Mesozoic alkaline <span class="hlt">magmatism</span> in Tu Le basin, Northern Vietnam</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tran, T. A.; Tran, T. H.; Lan, C. Y.; Chung, S. L.; Lo, C. H.; Wang, P. L.; Lee, T. Y.; Merztman, S. A.</p> <p>2003-04-01</p> <p>Mesozoic alkaline <span class="hlt">magmatism</span> that occurred in the Tu Le basin, northern Vietnam, resulted in several igneous complexes composed of different lithologies. They are represented by the Suoi Be basalts, the Ban Hat gabbros, the Phu Sa Phin syenites, the Van Chan rhyolites and the Ngoi Thia rhyolites, which overall show a bimodal chemical composition. Ar-Ar dating and stratigraphic data indicate that the <span class="hlt">magmatism</span> clustered in two periods, i.e., the middle-late Jurassic (176 - 145 Ma) and the late Cretaceous-earliest Tertiary (80 - 60 Ma), respectively. The Suoi Be basalts, the Ban Hat gabbros, the Van Chan rhyolites and some of the Phu Sa Phin syenites formed in the Jurassic stage, whilst the Ngoi Thia rhyolites and most of the Phu Sa Phin syenites formed in the Cretaceous stage. The mafic Jurassic magmas are silica-undersaturated (SiO_2 = 44-49 wt.%) and sodium-rich, with low MgO (˜7-3 wt.%) but high TiO_2 (3.6-2.0 wt.%). They exhibit various degrees of LREE-enrichment, with (La)N = 79-290, 5.5<(La/Yb)N<20 (chondrite-normalized) and without apparent Eu anomalies. On the other hand, the felsic magmas of Jurassic and Cretaceous ages show similar geochemical features, with SiO_2 = 62-78 wt.%, (Na_2O+K_2O) = 5.3-10.2 wt.%, significant Eu anomalies (Eu/Eu*= 0.1-0.54), and enrichments in the HFSE (Nb, Ta, Zr) and LILE (Rb, Th, U, K) along with pronounced depletions in Ba, Sr, P and Ti in the primitive mantle-normalized multi-element variation diagram. They are geochemically comparable to A-type granitoids. The mafic and felsic magmas have distinguishable Nd isotope ratios. In contrast to the Jurassic and Cretaceous felsic magmas that have uniform eNd(T) values (-1.5 to -2.8), the Jurassic mafic rocks are marked by more radiogenic and heterogenous eNd(T) values (-1.9 to -8.9), implying different magma <span class="hlt">sources</span> and independent petrogenetic processes involved in generation of the Jurassic bimodal <span class="hlt">magmatism</span>. Combining with relevant geological data from northern Vietnam and SW</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.674..114A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.674..114A"><span>A 17 Ma onset for the post-collisional K-rich calc-alkaline <span class="hlt">magmatism</span> in the Maghrebides: Evidence from Bougaroun (northeastern Algeria) and geodynamic implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbassene, Fatiha; Chazot, Gilles; Bellon, Hervé; Bruguier, Olivier; Ouabadi, Aziouz; Maury, René C.; Déverchére, Jacques; Bosch, Delphine; Monié, Patrick</p> <p>2016-04-01</p> <p>Bougaroun is the largest pluton ( 200 km2) in the 1200 km-long Neogene <span class="hlt">magmatic</span> belt located along the Mediterranean coast of Maghreb. New U-Pb dating on zircons and K-Ar ages on whole rocks and separated minerals document its emplacement at 17 Ma within the Lesser Kabylian basement, a continental block that collided with the African margin during the Neogene. This Upper Burdigalian intrusion is therefore the oldest presently identified K-rich calc-alkaline massif in the whole Maghrebides <span class="hlt">magmatic</span> lineament and marks the onset of its activity. The Bougaroun peraluminous felsic rocks display a very strong crustal imprint. Associated mafic rocks (LREE-enriched gabbros) have preserved the ;orogenic; (subduction-related) geochemical signature of their mantle <span class="hlt">source</span>. Older depleted gabbros cropping out at Cap Bougaroun are devoid of clear subduction-related imprint and yielded Ar-Ar hornblende ages of 27.0 ± 3.0 Ma and 23.3 ± 3.2 Ma. We suggest that they are related to the Upper Oligocene back-arc rifted margin and Early Miocene oceanic crust formation of the nearby Jijel basin, an extension of the Algerian basin developed during the African (Tethyan) slab rollback. The fact that the Bougaroun pluton intrudes exhumed Kabylian lower crustal units, mantle slices and flysch nappes indicates that the Kabylian margin was already stretched and in a post-collisional <span class="hlt">setting</span> at 17 Ma. We propose a tectono-<span class="hlt">magmatic</span> model involving an Early Miocene Tethyan slab breakoff combined with delamination of the edges of the African and Kabylian continental lithospheres. At 17 Ma, the asthenospheric thermal flux upwelling through the slab tear induced the thermal erosion of the Kabylian lithospheric mantle metasomatized during the previous subduction event and triggered its partial melting. We attribute the strong trace element and isotopic crustal signature of Bougaroun felsic rocks to extensive interactions between ascending mafic melts and the African crust underthrust beneath the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V43F..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V43F..04B"><span>Volatiles and the tempo of flood basalt <span class="hlt">magmatism</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Black, B. A.; Manga, M.</p> <p>2016-12-01</p> <p>During continental flood basalt <span class="hlt">magmatism</span>, large volumes of magma erupt repeatedly, overcoming mechanical and density barriers. Here, we examine the viability of buoyancy overpressure due to volatile exsolution as a trigger for continental flood basalt eruptions. We employ a new one-dimensional model that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape from Moho-depth and crustal chambers. We investigate the temporal evolution of degassing and the eruptibility of magmas, using the Siberian Traps flood basalts as a test case. We suggest that the volatile budget <span class="hlt">set</span> during mantle melting controls ascent of magma into the crust, thereby regulating the tempo of flood basalt <span class="hlt">magmatism</span>. Volatile-rich melts from low degrees of partial melting of the mantle are buoyant, and erupt frequently from Moho-depth chambers, reaching the surface with little staging or crustal interaction. Melts with moderate volatile budgets accumulate in large, mostly molten magma chambers at the Moho. These large magma bodies may remain buoyant and poised to erupt—triggered by volatile-rich recharge or external stresses—for 105 - 106 years. If and when such chambers fail, enormous volumes of magma can ascend into the crust, staging at shallow levels and initiating substantial assimilation that contributes to pulses of large-volume flood basalt eruptions. Our model further predicts that the Siberian Traps may have released 1019 - 1020 g of CO2 during a number of brief ( 104 year) pulses, providing a plausible trigger for warming and ocean acidification during the end-Permian mass extinction. The assimilation of carbon-rich crustal rocks strongly enhances both flood basalt eruptibility and CO2 release, and the tempo of eruptions influences the environmental effects of CO2, SO2, and halogen degassing. The eruptive dynamics of flood basalts are thus intertwined with their environmental consequences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70014428','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70014428"><span><span class="hlt">Magmatic</span> heat and the El Nino cycle</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shaw, H.R.; Moore, J.G.</p> <p>1988-01-01</p> <p>Large submarine lava flows with apparent volumes exceeding 10 km3 have recently been imaged on the deep ocean floor in various parts of the Pacific by means of GLORIA and SeaMarc side-looking sonar surveys. Such flows may produce thermal anomalies large enough to perturb the cyclic processes of the ocean and could be a factor in the genesis of El Nino phenomena. We find that known volume rates of mid-ocean magma production could generate repetitive thermal anomalies as large as 10% of the average El Nino sea surface anomaly at intervals of about 5 years (the mean interval of El Nino events between 1935 and 1984). Likewise, estimated rates of eruption, cooling of lava on the seafloor, and transfer of heat to the near-surface environment could reasonably produce a thermal anomaly comparable to that associated with El Nino. Larger <span class="hlt">magmatic</span> events, associated with fluctuations in the total <span class="hlt">magmatic</span> power and seismicity along the East Pacific Rise, are possible at longer intervals and may explain the extreme size of some El Nino events, such as that of 1982-1983. -Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JVGR...91..381W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JVGR...91..381W"><span>Thermal evolution of the Phlegraean <span class="hlt">magmatic</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wohletz, Kenneth; Civetta, Lucia; Orsi, Giovanni</p> <p>1999-08-01</p> <p>A series of 2-D conductive/convective numerical models show a rather limited range of possible magma chamber configurations that predict the present thermal regime at Campi Flegrei. These models are calculated by HEAT, which allows continuous adjustment of heterogeneous rock properties, magma injection/replenishment, and convective regimes. The basic test of each model is how well it reproduces the measured thermal gradients in boreholes at Licola, San Vito, and Mofete reported by AGIP in 1987. The initial and boundary conditions for each model consists of a general crustal structure determined by geology and geophysics and major <span class="hlt">magmatic</span> events: (1) the 37 ka Campanian Ignimbrite; (2) smaller volume 37-16 ka eruptions; (3) the 12 ka Neapolitan Yellow Tuff; (4) recent <span class="hlt">magmatism</span> (e.g., Minopoli at ˜10 ka and Monte Nuovo in 1538 AD). While magma chamber depth is well constrained, magma chamber diameter, shape, volume, and peripheral convective regimes are poorly known. Magma chamber volumes between 200 and 2000 km 3 have been investigated with cylindrical, conical (funnel-shaped), and spheroidal shapes. For all reasonable models, a convective zone, developed above the magma chambers after caldera collapse, is necessary to achieve the high gradients seen today. These models should help us understand recent bradyseismic events and future unrest.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..11312209D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..11312209D"><span>Multiphase <span class="hlt">magmatic</span> flows at Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dartevelle, S.; Valentine, G. A.</p> <p>2008-12-01</p> <p>The proposed Yucca Mountain radioactive waste repository is sited in southern Nevada in a region that has experienced sporadic basaltic volcanism since the late Miocene. Volcanic risk assessment for the proposed repository requires estimating the consequences of a new monogenetic volcano intersecting the underground facility during its 104-106 year performance period. We report numerical studies aimed at understanding the range of processes and dynamic parameter values that could accompany intersection of an open repository drift by a volatile-rich trachybasaltic magma as it ascends in a dike. We focus on one end-member type of <span class="hlt">magmatic</span> behavior, namely, a fragmented <span class="hlt">magmatic</span> mixture under pressure interacting with an underground cavity. Initial and boundary conditions are based upon field data and previous modeling studies of the interaction between vertically propagating dikes and a repository opening. The calculations are two-dimensional and time-dependent and are conducted with the multiphase hydrodynamics code GMFIX. Calculations indicate that gas-particle mixtures, as they rise from below and interact with horizontal openings, form complex flow patterns involving varying degrees of recirculation and deposition of pyroclasts. Dynamic pressures are up to 106 Pa but are more typically on the order of 103 to 104 Pa. The geometry and number of outlets play a key role in determining the types of flow patterns, as do volatile contents and the degree of fragmentation. The detailed numerical simulations provide information that will be used to confirm the adequacy of simplified probabilistic consequence models used in risk assessments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70036589','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70036589"><span>Claritas rise, Mars: Pre-Tharsis <span class="hlt">magmatism</span>?</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.</p> <p>2009-01-01</p> <p>Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of <span class="hlt">magmatic</span>-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the <span class="hlt">magmatic</span> complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.1350S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.1350S"><span>The role of mantle-derived magmas in the isotopic evolution of Yellowstone's <span class="hlt">magmatic</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stelten, Mark E.; Cooper, Kari M.; Wimpenny, Josh B.; Vazquez, Jorge A.; Yin, Qing-Zhu</p> <p>2017-04-01</p> <p>Injection of mantle-derived magmas into the Earth's crust provides the heat necessary to develop and maintain large silicic <span class="hlt">magmatic</span> systems. However, the role of mantle-derived magmas in controlling the compositional evolution of large silicic systems remains poorly understood. Here we examine the role of mantle-derived magmas in the postcaldera <span class="hlt">magmatic</span> system at Yellowstone Plateau, the youngest <span class="hlt">magmatism</span> associated with the Yellowstone hotspot. Using microbeam techniques, we characterize the age and Hf isotope composition of single zircon crystals hosted in rhyolites from the most recent eruptive episode at Yellowstone Plateau, which produced the Central Plateau Member rhyolites. We place these zircon data into context by comparing them to new solution Hf isotope data for the Central Plateau Member glasses, Yellowstone basalts, and potential local crustal <span class="hlt">sources</span>. Zircons in the Central Plateau Member rhyolites record a wide range of Hf isotope compositions relative to their host melts and extend from values similar to previously erupted Yellowstone rhyolites to values similar to Yellowstone basalts. Most zircons (˜90%) are in isotopic equilibrium with their host melt, but a significant proportion show ɛHf values higher than their host melt, thus providing the direct evidence that silicic derivatives of mantle-derived basalts have recharged Yellowstone's <span class="hlt">magmatic</span> system. Mixing models confirm that the isotopic characteristics of the youngest Yellowstone rhyolites can be explained by recharge of Yellowstone's magma reservoir with silicic derivatives of underplating, mantle-derived basalts (˜5-10% material added by mass). This process helps drive the long-term isotopic evolution of Yellowstone's <span class="hlt">magmatic</span> system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V31E4799P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V31E4799P"><span>Investigating the long-term geodetic response to <span class="hlt">magmatic</span> intrusions at volcanoes in northern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parker, A. L.; Biggs, J.; Annen, C.; Houseman, G. A.; Yamasaki, T.; Wright, T. J.; Walters, R. J.; Lu, Z.</p> <p>2014-12-01</p> <p>Ratios of intrusive to extrusive activity at volcanic arcs are thought to be high, with estimates ranging between 5:1 and 30:1. Understanding the geodetic response to <span class="hlt">magmatic</span> intrusion is therefore fundamental to large-scale studies of volcano deformation, providing insight into the dynamics of the inter-eruptive period of the volcano cycle and the building of continental crust. In northern California, we identify two volcanoes - Medicine Lake Volcano (MLV) and Lassen Volcanic Center (LaVC) - that exhibit long-term (multi-decadal) subsidence. We test the hypothesis that deformation at these volcanoes results from processes associated with <span class="hlt">magmatic</span> intrusions. We first constrain the spatial and temporal characteristics of the deformation fields, establishing the first time-series of deformation at LaVC using InSAR data, multi-temporal analysis techniques and global weather models. Although the rates of deformation at the two volcanoes are similar (~1 cm/yr), our results show that the ratio of vertical to horizontal displacements is significantly different, suggesting contrasting <span class="hlt">source</span> geometries. To test the origin of deformation, we develop modeling strategies to investigate thermal and viscoelastic processes associated with <span class="hlt">magmatic</span> intrusions. The first model we develop couples analytical geodetic models to a numerical model of volume loss due to cooling and crystallization based upon temperature-melt fraction relationships from petrological experiments. This model provides evidence that <span class="hlt">magmatic</span> intrusion at MLV has occurred more recently than the last eruption ~1 ka. The second model we test uses a finite element approach to simulate the time-dependent viscoelastic response of the crust to <span class="hlt">magmatic</span> intrusion. We assess the magnitude and timescales of ground deformation that may result from these processes, exploring the model parameter space before applying the models to our InSAR observations of subsidence in northern California.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJEaS.104..449B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJEaS.104..449B"><span>The Tertiary dike <span class="hlt">magmatism</span> in the Southern Alps: geochronological data and geodynamic significance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bergomi, Maria Aldina; Zanchetta, Stefano; Tunesi, Annalisa</p> <p>2015-03-01</p> <p>The relationships between tectonics and <span class="hlt">magmatic</span> activity in the Alps are still debated. Despite an active subduction since the Late Cretaceous, no arc-related <span class="hlt">magmatism</span> is recorded prior of the Middle Eocene. The emplacement of plutons along the Insubric Fault in a short time span (~34-28 Ma) has been generally interpreted in terms of the slab break-off model. The Tertiary <span class="hlt">magmatism</span>, however, is also characterized by the occurrence of widespread calcalkaline dikes not necessarily intruded along the Insubric Fault. The geochemical features of dikes vary along the Alps belt and are interpreted in terms of mantle <span class="hlt">source</span> heterogeneity and degree of crustal contamination. U-Pb zircon dating of studied dikes indicates intrusion ages in the 42- to 34-Ma time interval. These data provide evidence for a pre-Oligocene <span class="hlt">magmatic</span> activity that was not solely limited to the Adamello batholith. Moreover, it appears that dikes rejuvenate from SE to NW, in an opposite direction with respect to the Alpine subduction polarity. Thus, a more complex geodynamic scenario than the slab break-off model must be envisaged. The absence of arc <span class="hlt">magmatism</span> prior to the Middle Eocene can be explained by the low-angle subduction of the Tethyan slab that confined the mantle partial melting zone away from the orogenic wedge. The onset of the Apennines subduction at 55-50 Ma caused the Alpine slab to retreat. The partial melting zone progressively migrated beneath the orogenic wedge and finally reached the axial belt in the Late Eocene, when the Alpine collision was completed. Only at this stage, slab break-off occurred and promoted the intrusion of the Periadriatic plutons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2545S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2545S"><span>Cenozoic fluid-<span class="hlt">magmatic</span> centers, geodynamics, seismotectonics and volcanism in Northern Caucasus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sobissevitch, Alexei L.; Masurenkov, Yuri P.; Nechaev, Yuri V.; Pouzich, Irina N.; Laverova, Ninel I.</p> <p>2010-05-01</p> <p>The central segment of Alpine mobile folded system of the Greater Caucasus is characterized by complex crossing of the active faults of different structural directions. On the crossings of disjunctive knots of Caucasian WNW and Trans-Caucasian NS faults the two Cenozoic fluid-<span class="hlt">magmatic</span> centers are located featuring dormant yet not extinct volcanoes of Elbrus and Kazbek. Mentioned centers are known as the Elbrus volcano-plutonic center, the Kazbek volcano-plutonic center, they are outlined according to the results of geological, geomorphological and geophysical studies. Geodynamic position of the Elbrus volcano within the Transcaucasia uplift is considered with respect to evolution of volcanic processes and possible resumption of volcanic activity in this region. In order to carry out the multidisciplinary study of geological and geophysical processes in the vicinity of the volcanic dome it is essential to obtain reliable information about basic parameters of local <span class="hlt">magmatic</span> structures. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area are presented and compared to the results of theoretical approaches as well as with numerical simulations and processing of remote sensing data. In particular, the satellite imagery processing carried out according to original technology based on determination of surface lineaments and consequent transition to analysis of the field of tectonic disintegration of the lithosphere may allow one to obtain independent knowledge about deep subsurface structures for the given territory. As a result, the 3D model of tectonic disintegration field under the Elbrus volcano has been constructed. The two anomalous domains have been outlined and they were associated with local deep <span class="hlt">magmatic</span> <span class="hlt">source</span> and peripheral <span class="hlt">magmatic</span> chamber of the Elbrus volcano. Comparative analysis of experimental geophysical data obtained by means of microgravity studies over the same territory, magneto-telluric profiling and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GGG....16.3532W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GGG....16.3532W"><span>Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic <span class="hlt">Magmatic</span> Province and the breakup of Pangea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whalen, Lisa; Gazel, Esteban; Vidito, Christopher; Puffer, John; Bizimis, Michael; Henika, William; Caddick, Mark J.</p> <p>2015-10-01</p> <p>The Central Atlantic <span class="hlt">Magmatic</span> Province (CAMP) is the large igneous province (LIP) that coincides with the breakup of the supercontinent Pangea. Major and trace element data, Sr-Nd-Pb radiogenic isotopes, and high-precision olivine chemistry were collected on primitive CAMP dikes from Virginia (VA). These new samples were used in conjunction with a global CAMP data <span class="hlt">set</span> to elucidate different mechanisms for supercontinent breakup and LIP formation. On the Eastern North American Margin, CAMP flows are found primarily in rift basins that can be divided into northern or southern groups based on differences in tectonic evolution, rifting history, and supercontinental inheritance. Geochemical signatures of CAMP suggest an upper mantle <span class="hlt">source</span> modified by subduction processes. We propose that the greater number of accretionary events, or metasomatism by sediment melts as opposed to fluids on the northern versus the southern Laurentian margin during the formation of Pangea led to different subduction-related signatures in the mantle <span class="hlt">source</span> of the northern versus southern CAMP lavas. CAMP samples have elevated Ni and low Ca in olivine phenocrysts indicating a significant pyroxenite component in the <span class="hlt">source</span>, interpreted here as a result of subduction metasomatism. Different collisional styles during the Alleghanian orogeny in the North and South may have led to the diachroneity of the rifting of Pangea. Furthermore, due to a low angle of subduction, the Rheic Plate may have underplated the lithosphere then delaminated, triggering both the breakup of Pangea and the formation of CAMP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/5725624','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/5725624"><span>The thermal evolution of a episodic, convergent-margin, <span class="hlt">magmatic</span> center: Evidence from the Tatoosh <span class="hlt">Magmatic</span> Complex, Mount Rainier National Park, southern Washington Cascades</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Murphy, M.T. )</p> <p>1992-01-01</p> <p>Use of Mount Rainier as an IAVCEI Decade Volcano requires an assessment of long-term, <span class="hlt">magmatic</span> activity cycles. Recent activity could represent either a waxing or waning step, relative to the main cone. The Tertiary record at Mount Rainier, represented by the Tatoosh complex, suggests evolution into larger and more energetic systems. This sequence included bimodal dikes and sills (Chinook Pass episode), through dacitic dome and pyroclastic eruptions (Sourdough Mountains episode), shallow monzonitic plutons, culminating in large granodiorite plutons (White River episode). Limited geochronology, geochemistry and field relations support this conceptual model. Simple thermal modeling of this hypothesis suggests that for the first two episodes, transport was insufficient to support a magma chamber. This is consistent with field relations. Repeated <span class="hlt">magmatism</span> could have perturbed the geotherm, allowing a magma chamber during White River time. This suggests a potential 3 million-year-long, volcanic <span class="hlt">source</span> for dacitic clasts of the Ellensburg Formation. Uplifts from such a thermal load would be consistent with independent estimates of Miocene deformation in the Washington Cascades. A 7 million year cycle for <span class="hlt">magmatism</span> at Mount Rainier is consistent with the rock record and the cooling of a 0.5-km accumulation zone of melt at the mid crust. This suggests that any current activity at Mount Rainier could relate to the 0.7-Ma stratovolcano or the Lily Creek Formation (3 Ma). These results indicate the detailed petrologic and geochronological work in the Tatoosh complex necessary to Decade Volcano studies at Mount Rainier.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2324052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2324052"><span>Complete <span class="hlt">Sets</span> of Radiating and Nonradiating Parts of a <span class="hlt">Source</span> and Their Fields with Applications in Inverse Scattering Limited-Angle Problems</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Louis, A. K.</p> <p>2006-01-01</p> <p>Many algorithms applied in inverse scattering problems use <span class="hlt">source</span>-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting <span class="hlt">source</span> problem does not have a unique solution, since certain parts of the <span class="hlt">source</span> totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special <span class="hlt">sets</span> of functions, which include all radiating and all nonradiating parts of the <span class="hlt">source</span>. These <span class="hlt">sets</span> are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17956761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17956761"><span>Using a <span class="hlt">source</span>-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part I: study area description, data <span class="hlt">set</span> acquisition and qualitative data analysis of the data <span class="hlt">set</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Badol, Caroline; Locoge, Nadine; Léonardis, Thierry; Galloo, Jean-Claude</p> <p>2008-01-25</p> <p>The global objective of this two part study was (1) to conduct VOC measurements in order to further understand VOC behaviour in an urban area influenced by industrial emissions and (2) to evaluate the role of these specific <span class="hlt">sources</span> relative to urban <span class="hlt">sources</span>. In this first paper a thorough descriptive and qualitative analysis is performed. A second article will be devoted to the quantitative analysis using Chemical Mass Balance (CMB) modelling. In the Dunkerque (France) area most industrial <span class="hlt">sources</span> are situated in the north and the west of the receptor site whereas urban and traffic <span class="hlt">sources</span> are located in the south and the east. A data <span class="hlt">set</span> constituted of nearly 330,000 VOC data has been developed from the hourly measurements of 53 VOCs for 1 year from September 2002 to August 2003. It also contains meteorological parameters such as temperature, wind direction and wind speed. Using different graphical methods, the influence of the different <span class="hlt">sources</span> on the ambient VOC concentrations has been highlighted at different time scales. In this work, the analysis of daily time series for the 53 VOCs shows the influence of traffic exhaust emissions because of the increases at traffic rush hours. Besides, the seasonal evolution of the VOC/acetylene ratio points out the influence of evaporative <span class="hlt">sources</span> on ambient VOC concentration. Concerning other point <span class="hlt">sources</span>, the variations of measured VOC concentrations for different wind directions and scatter plots of VOC hourly concentrations highlight the influence of some industrial <span class="hlt">sources</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V13E2656S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V13E2656S"><span><span class="hlt">Magmatism</span> at different crustal levels in the ancient North Cascades <span class="hlt">magmatic</span> arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.</p> <p>2013-12-01</p> <p>The mechanisms of magma ascent and emplacement inferred from study of intrusive complexes have long been the subject of intense debate. Current models favor incremental construction based on integration of field, geochemical, geochronologic, and modeling studies. Much of this work has been focused on a single crustal level. However, study of <span class="hlt">magmatism</span> throughout the crust is critical for understanding how magma ascends through and intrudes surrounding crustal material. Here, we present new geochronologic and geochemical work from intrusive complexes emplaced at a range of crustal depths in the Cretaceous North Cascades <span class="hlt">magmatic</span> arc. These complexes were intruded between 92 and 87 Ma at depths of at ≤5 -10 km, ~20 km, and ~25 km during this time. U-Pb CA-TIMS geochronology in zircon can resolve <0.1% differences in zircon dates and when combined with detailed field relationships allow new insights into how <span class="hlt">magmatic</span> systems are assembled. We can demonstrate highly variable rates of intrusion at different crustal levels: the shallow-crustal (5-10 km) Black Peak intrusive complex was assembled semi-continuously over ~5 My, while the deep-crustal (25-30 km) Tenpeak intrusive complex was assembled in brief, high-flux events over ~2.6 My. Between these bodies is the Seven-Fingered Jack-Entiat intrusive complex, a highly elongate amalgamation of intrusions recording two episodes of <span class="hlt">magmatism</span> between~92-88 Ma and ~80-77 Ma. Each of these complexes provides a window into crustal processes that occur at different depths. Our data suggest assembly of the Black Peak intrusive complex occurred via a series of small (0.5-2 km2) <span class="hlt">magmatic</span> increments from ~92 Ma to ~87 Ma. Field relations and zircon trace element geochemistry indicate each of these increments were emplaced and crystallized as closed systems-we find no evidence for mixing between magmas in the complex. However, zircon inheritance becomes more common in younger intrusions, indicating assimilation of older plutonic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2311R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2311R"><span>The <span class="hlt">magmatic</span> and eruptive response of arc volcanoes to deglaciation: insights from southern Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rawson, Harriet; Mather, Tamsin A.; Pyle, David M.; Smith, Victoria C.; Fontijn, Karen; Lachowycz, Stefan; Naranjo, José A.; Watt, Sebastian F. L.</p> <p>2016-04-01</p> <p>Volcanism exerts a major influence on Earth's atmosphere and surface environments. Understanding feedbacks between climate and long-term changes in rates or styles of volcanism is important, but unresolved. For example, it has been proposed that a pulse of activity at once-glaciated volcanoes contributed to increasing atmospheric carbon dioxide accelerating early Holocene climate change. In plate-tectonic <span class="hlt">settings</span> where <span class="hlt">magmatism</span> is driven by decompression melting there is convincing evidence that activity is modulated by changes in ice- or water-loading across glacial/interglacial cycles. The response of subduction-related volcanoes, where the crust is typically thicker and mantle melting is dominated by flux melting, remains unclear. Since arc volcanoes account for 90% of subaerial eruptions, they are the most significant <span class="hlt">sources</span> of volcanic gases and tephra directly to the atmosphere. Testing the response of arc volcanoes to deglaciation requires careful work to piece together eruption archives. Records of effusive eruptions from long-lived, arc stratovolcanoes are challenging to obtain and date; while deposits from the explosive eruptions, which dominate arc records, are prone to erosion and reworking. Our new high-resolution post-glacial (<18 ka) eruption record from a large stratovolcano in southern Chile (Mocho Choshuenco) provides new insight into the <span class="hlt">magmatic</span> response following the removal of a regional ice load. We observe significant variations in eruptive flux, eruption size and magma composition across three distinct phases of post-glacial volcanic activity. Phase 1, shortly after deglaciation, was dominated by large explosive eruptions of dacite and rhyolite. During Phase 2 (7.3 - 2.9 ka) eruption rates and eruptive fluxes were lower, and activity was dominated by moderate-scale basaltic-andesite eruptions. For the past 2.4 kyr (Phase 3), eruptive fluxes have been elevated, and dominated by explosive eruptions of intermediate magmas. We propose that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.451..263F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.451..263F"><span>Contrasting hydrological processes of meteoric water incursion during <span class="hlt">magmatic</span>-hydrothermal ore deposition: An oxygen isotope study by ion microprobe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.</p> <p>2016-10-01</p> <p>Meteoric water convection has long been recognized as an efficient means to cool <span class="hlt">magmatic</span> intrusions in the Earth's upper crust. This interplay between <span class="hlt">magmatic</span> and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into <span class="hlt">magmatic</span>-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different <span class="hlt">settings</span>. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot <span class="hlt">magmatic</span> fluids. Our data show that porphyry copper ore deposition occurs close to a <span class="hlt">magmatic</span>-meteoric water interface, rather than in a purely <span class="hlt">magmatic</span> fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of <span class="hlt">magmatic</span> fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMDI53A2371G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMDI53A2371G"><span>Central Atlantic <span class="hlt">Magmatic</span> Province (CAMP): The Palisade Sill Connection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghatak, A.; Basu, A. R.</p> <p>2012-12-01</p> <p>The extensively studied 200Ma Central Atlantic <span class="hlt">Magmatic</span> Province (CAMP) is considered to be the world's largest continental Large Igneous Province (LIP) covering up to 7 X 106 km2. This igneous province has been linked to the ~200Ma Mesozoic opening of the Central Atlantic Ocean. This opening fragmented the CAMP into several segments that occur on four different tectonic plates today. The CAMP related LIP is different from others in that it constitutes almost entirely of dikes and sills with sparse volcanic outflows. The 200 Ma Palisade Sill, exposed along the Hudson River in northeastern North America is an expression of the CAMP <span class="hlt">magmatism</span>. On the basis of similar ages of eruption, Palisade Sill tholeiites have been correlated to other CAMP exposures in four continents. We provide an isotopic tracer study of the Palisade Sill basalts and relate them to low-Ti (<2 wt %) CAMP related tholeiites from North and South America, western Europe, and West Africa. We report Nd-Sr-Pb isotopic and multiple trace element data of 19 basalts and gabbros, 3 chilled margin basalts, and 4 sandstones spanning the entire length and thickness of the Palisade Sill in New York and New Jersey. These geochemical data are essential to understand the relationship between mantle geodynamic processes involved in the generation of the CAMP tholeiites prior to the formation of the of the Atlantic Ocean crust. The Palisade Sill basalts of this study yield the typical composition of low-Ti CAMP tholeiites with small LREE enrichments (LaN/SmN = 1.7 to 2.3), radiogenic Sr and negative ɛNd(I) values (87Sr/87Sr(I) = 0.70668 to 0.71037; ɛNd(I) = -0.64 to -3.8), and Pb-isotopic ratios (e.g. 206Pb/204Pb = 18.11 to 18.69) above the NHRL and subparallel to it. These geochemical data indicate the Palisade Sill basalts were derived from a slightly enriched OIB-like mantle <span class="hlt">source</span>. Further, these rocks were derived by ~15% melting of a slightly depleted spinel peridotite with up to 20% contamination by the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DokES.466..199K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DokES.466..199K"><span>Paleoproterozoic gabbro-diorite-granite <span class="hlt">magmatism</span> of the Batomga Rise (NE Aldan Shield): Sm-Nd isotope geochemical evidence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.</p> <p>2016-02-01</p> <p>The geochemical similarity and almost simultaneous (2055-2060 Ma) formation of Utakachan gabbro-amphibolite, Jagdakin granodiorite-diorite, Khoyunda granitoid, and Tygymyt leucogranite complexes, which inruded metamorphic formations of the Batomga Group are evidence of their formaton from unified <span class="hlt">magmatic</span> <span class="hlt">source</span>. All this makes it possibble to combine aforementioned complexes into the unified Early Proterozoic diferentiated gabbro-diorite-granite complex.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.tmp...18R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.tmp...18R"><span>"Normal" to adakite-like arc <span class="hlt">magmatism</span> associated with the El Abra porphyry copper deposit, Central Andes, Northern Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabbia, Osvaldo M.; Correa, Karen J.; Hernández, Laura B.; Ulrich, Thomas</p> <p>2017-03-01</p> <p>The El Abra porphyry copper deposit belongs to the Late Eocene—Early Oligocene metallogenic belt of northern Chile, which host several world-class porphyry copper deposits. Our previous geochronological work done on this deposit provides the temporal framework for petrological data interpretation. The <span class="hlt">magmatic</span> history of the El Abra deposit lasts for 8.6 Ma and can be divided into two stages. An early period, from about 45 to 38.7 Ma, dominated by diorites and quartz monzodiorites with "normal" (non-adakite) arc geochemistry and a late period, with rocks younger than 38.7 Ma that developed adakite-like geochemistry, where equigranular granodiorites are the volumetrically dominant rock type (e.g., Clara granodiorite 38 Ma). These granodiorites are then intruded by leucocratic porphyry dikes and aplites. Most copper mineralization is associated with multiple intrusions of these younger porphyritic rocks, described as the El Abra porphyry unit, and emplaced over a 1.4 Ma period, from 37.5 to 36.1 Ma. The adakite-like geochemistry of the younger rock units (<38.7 Ma) is attested by a significant depletion in REE contents, particularly MREE and HREE (concave MREE distribution patterns), high La/Yb and Sr/Y ratios, and Na2O and Al2O3 contents, along with the absence of the Eu anomaly in normalized REE distribution patterns. The evolution of this large, long-lived <span class="hlt">magmatic</span> system from "normal" to adakite-like arc <span class="hlt">magmatism</span> is discussed in a tectonic context of crust overthickening due to a major orogenic episode (Incaic compressive phase). This tectonic <span class="hlt">setting</span> may have promoted higher pressure conditions at the lower crust "hot zone" and increased the crustal residence time of derivative melts favoring extensive differentiation leading to water-rich (and oxidized?) felsic melts, where amphibole fractionation played an important role. Strontium, Nd, and Pb isotope data suggest a common mantle <span class="hlt">source</span> for both the non-adakite and adakite-like rocks. This implies that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/945666','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/945666"><span>DEVELOPING AND EXPLOITING A UNIQUE SEISMIC DATA <span class="hlt">SET</span> FROM SOUTH AFRICAN GOLD MINES FOR <span class="hlt">SOURCE</span> CHARACTERIZATION AND WAVE PROPAGATION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Julia, J; Nyblade, A A; Gok, R; Walter, W R; Linzer, L; Durrheim, R</p> <p>2008-07-08</p> <p>In this project, we are developing and exploiting a unique seismic data <span class="hlt">set</span> to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from 3 deep gold mines in South Africa recorded on inmine networks (< 1 km) comprised of tens of high-frequency sensors, a network of 4 broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km) from the mines. After 1 year of seismic monitoring of mine activity (2007), over 10,000 events in the range -3.4 < ML < 4.4 have been catalogued and recorded by the in-mine networks. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes 3.0 and larger are seen at regional distances (up to {approx}600 km) in high-pass filtered recordings. We have analyzed in-mine recordings in detail at one of the South African mines (Savuka) to (i) improve on reported hypocentral locations, (ii) verify sensor orientations, and (iii) determine full moment tensor solutions. Hypocentral relocations on all catalogued events have been obtained from P- and S-wave travel-times reported by the mine network operator through an automated procedure that selects travel-times falling on Wadati lines with slopes in the 0.6-0.7 range; sensor orientations have been verified and, when possible, corrected by correlating P-, SV-, and SH-waveforms obtained from theoretical and empirical (polarization filter) rotation angles; full moment tensor solutions have been obtained by inverting P-, SV-, and SH- spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. The relocation procedure has revealed that origin times often necessitate a negative correction of a few tenths of second and that hypocentral</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DokES.475..828T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DokES.475..828T"><span>Isotope compositions of C and O of <span class="hlt">magmatic</span> calcites from the Udachnaya-East pipe kimberlite, Yakutia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomilenko, A. A.; Dublyansky, Yu. V.; Kuzmin, D. V.; Sobolev, N. V.</p> <p>2017-07-01</p> <p>It has been demonstrated for the first time that the isotopic compositions of carbon (δ13C) in <span class="hlt">magmatic</span> calcites from the Udachnaya-East pipe kimberlite groundmass varies from-2.5 to-1.0‰ (V-PDB), while those of oxygen (δ18O) range from 15.0 to 18.2‰ (V-SMOW). The obtained results imply that during the terminal late <span class="hlt">magmatic</span> and postmagmatic stages of the kimberlite pipe formation, the carbonates in the kimberlite groundmass became successively heavier isotopically, which indicates the hybrid nature of the carbonate component of the kimberlite: it was formed with contributions from mantle and sedimentary marine <span class="hlt">sources</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985CoMP...90..121G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985CoMP...90..121G"><span>Chemical mass transfer in <span class="hlt">magmatic</span> processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghiorso, Mark S.; Carmichael, Ian S. E.</p> <p>1985-07-01</p> <p>Numerical examples of the approach described in Part I of this series (Ghiorso, 1985) are presented in this paper. These examples include the calculation of the compositions and proportions of liquid and solid phases produced during (1) the equilibrium crystallization of a basaltic andesite at 1 bar, (2) the fractional crystallization of an olivine tholeiite at 1 bar and elevated pressures, (3) the fractional and equilibrium crystallization of an olivine boninite at 1 bar, and (4) the (a) isothermal and (b) isenthalpic assimilation of olivine (Fo90) into a liquid/solid assemblage of quartz dioritic composition at ˜1,125° C and 3 kbars. The numerical results on the crystallization of the basaltic andesite are verified by comparison with experimental data while those calculations performed using olivine tholeiitic and olivine boninitic compositions are favorably compared against whole rock and mineral analytical data and petrographic and field observations. In each of the examples presented, the heat effects associated with the modelled process are calculated (e.g. heat of crystallization, heat of assimilation), and free energies of crystallization are examined as a function of the degree of mineral supersaturation. The former quantities are on the order of 173 cal/grm for the cooling and fractional crystallization of an olivine tholeiite to a rhyolitic residuum (corresponding to a 400° C temperature interval). The latter represents an important petrological parameter, in that it quantifies the driving force for the rate of crystal growth and rate of nucleation in <span class="hlt">magmatic</span> systems. Calculated free energies of crystallization are small (on the order of hundreds of calories per mole per 25° C of undercooling) which indicates that the kinetics of crystallization in <span class="hlt">magmatic</span> systems are affinity controlled. Melt oxygen fugacity and the degree of oxygen metasomatism play a major role in controlling the fractionation trends produced from crystallizing basaltic liquids</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Geote..47..291B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Geote..47..291B"><span>Geodynamics of late Paleozoic <span class="hlt">magmatism</span> in the Tien Shan and its framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biske, Yu. S.; Konopelko, D. L.; Seltmann, R.</p> <p>2013-07-01</p> <p>The Devonian-Permian history of <span class="hlt">magmatic</span> activity in the Tien Shan and its framework has been considered using new isotopic datings. It has been shown that the intensity of <span class="hlt">magmatism</span> and composition of igneous rocks are controlled by interaction of the local thermal upper mantle state (plumes) and dynamics of the lithosphere on a broader regional scale (plate motion). The Kazakhstan paleocontinent, which partly included the present-day Tien Shan and Kyzylkum, was formed in the Late Ordovician-Early Silurian as a result of amalgamation of ancient continental masses and island arcs. In the Early Devonian, heating of the mantle resulted in the within-plate basaltic volcanism in the southern framework of the Kazakhstan paleocontinent (Turkestan paleoocean) and development of suprasubduction <span class="hlt">magmatism</span> over an extensive area at its margin. In the Middle-Late Devonian, the margins of the Turkestan paleoocean were passive; the area of within-plate oceanic <span class="hlt">magmatism</span> shifted eastward, and the active margin was retained at the junction with the Balkhash-Junggar paleoocean. A new period of active <span class="hlt">magmatism</span> was induced by an overall shortening of the region under the <span class="hlt">settings</span> of plate convergence. The process started in the Early Carboniferous at the Junggar-Balkhash margin of the Kazakhstan paleocontinent and the southern (Paleotethian) margin of the Karakum-Tajik paleocontinent. In the Late Carboniferous, <span class="hlt">magmatism</span> developed along the northern boundary of the Turkestan paleoocean, which was closing between them. The disappearance of deepwater oceanic basins by the end of the Carboniferous was accompanied by collisional granitic <span class="hlt">magmatism</span>, which inherited the paleolocations of subduction zones. Postcollision <span class="hlt">magmatism</span> fell in the Early Permian with a peak at 280 Ma ago. In contrast to Late Carboniferous granitic rocks, the localization of Early Permian granitoids is more independent of collision sutures. The <span class="hlt">magmatism</span> of this time comprises: (1) continuation of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED477000.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED477000.pdf"><span>Xtreme Learning Control: Examples of the Open <span class="hlt">Source</span> Movement's Impact on Our Educational Practice in a University <span class="hlt">Setting</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dunlap, Joanna C.; Wilson, Brent G.; Young, David L.</p> <p></p> <p>This paper describes how Open <span class="hlt">Source</span> philosophy, a movement that has developed in opposition to the proprietary software industry, has influenced educational practice in the pursuit of scholarly freedom and authentic learning activities for students and educators. This paper provides a brief overview of the Open <span class="hlt">Source</span> movement, and describes…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Geote..44...60P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Geote..44...60P"><span>Tectonics and <span class="hlt">magmatism</span> in eastern South America and the Brazil basin of the Atlantic in the Phanerozoic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peyve, A. A.</p> <p>2010-01-01</p> <p>The <span class="hlt">magmatic</span> and tectonic activity of eastern South America and the western South Atlantic shows that extension of the continental crust is the determinant factor of <span class="hlt">magmatism</span>. Heating of the upper mantle is a necessary condition of its manifestation. Ascending plume material is a <span class="hlt">source</span> of additional heat. In the Early Mesozoic, Eastern Brazil was situated above a large, ascending and probably ramifying plume, which has supplied heat and material since the Triassic, creating favorable conditions for continental <span class="hlt">magmatism</span>. <span class="hlt">Magmatic</span> activity continued, gradually waning, until the Neogene as evidence for long-term retention of heat energy beneath the continental lithosphere after the plume ascent. It has been shown that heated mantle material can be displaced from the continent to the ocean for a significant distance beneath the lithosphere with the formation of linear tectonomagmatic rises of the oceanic crust. The structural elements inherited certain directions on the continent and in the ocean, beginning from the Neoproterozoic. These directions were reactivated and continued to control the younger structural grain and <span class="hlt">magmatic</span> activity. In Southeastern Brazil, these were the structural units striking in the southeastern (about 120° SE) and northeastern directions parallel to the continent-ocean boundary. In Northeastern Brazil, the W-E- and N—S-trending structural units are predominant. All these directions are manifested in oceanic structural units (Rio Grande, Vitória-Trindadi, Fernando de Noronha, Pernambuco rises, etc.).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18209282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18209282"><span>Identification of the <span class="hlt">sources</span> of Escherichia coli in a watershed using carbon-utilization patterns and composite data <span class="hlt">sets</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moussa, Samir H; Massengale, Rene D</p> <p>2008-06-01</p> <p>The field of bacterial <span class="hlt">source</span> tracking (BST) has been rapidly evolving to meet the demands of water pollution analysis, specifically the contamination of waterways and drinking water reservoirs by point <span class="hlt">source</span> and nonpoint <span class="hlt">source</span> pollution. The goal of the current study was to create a BST library based on carbon-utilization patterns (CUP) for predicting <span class="hlt">sources</span> of E. coli in a watershed, to compare this library to an antibiotic-resistance analysis (ARA) library previously published for the same isolates, and to determine the efficacy of using a composite dataset which combines data from both datasets into a single library for predicting the <span class="hlt">source</span> of unknown isolates. This was accomplished by generating a CUP dataset and a composite ARA-CUP dataset for the E. coli isolates from known fecal <span class="hlt">sources</span> within a watershed. These libraries were then used to predict the <span class="hlt">sources</span> of E. coli isolates collected from 13 water sites in the same watershed and compared in regard to predictive accuracy. The dominant <span class="hlt">sources</span> of E. coli in the South Bosque watershed were cattle as identified by all three methods. The 6-<span class="hlt">source</span> composite library had higher average rates of correct classification (96.7%), specificity (99.2%), positive-predictive value (99.1%), and negative-predictive value (96.8%) than either the ARA or CUP 6 <span class="hlt">source</span> libraries (ARCC 80.1% and 86.7% respectively). The current study is the first field study to compare two phenotypic methods, Antibiotic Resistance Analysis (ARA) and Carbon Utilization Profiling (CUP). This study is also the first to combine both of these methods to create a composite "toolbox" type approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V13E0602B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V13E0602B"><span>On the Origin of Late Cretaceous and Younger Continental Interior <span class="hlt">Magmatism</span>, Western U.S.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bailley, T. L.; Farmer, G. L.</p> <p>2005-12-01</p> <p>It has long been recognized that the continental interior of the western U.S. experienced discrete pulses of <span class="hlt">magmatic</span> activity during Late Cretaceous and Early Tertiary (Laramide; 70-55 Ma) and the mid-Tertiary (35-25 Ma). However, the relative importance of plate boundary vs. sublithospheric processes in triggering <span class="hlt">magmatism</span>, and the controls on the space-time-composition patterns in <span class="hlt">magmatism</span> remain unclear. Laramide <span class="hlt">magmatism</span> was small volume and largely restricted to three linear ``bands'' in Montana, Colorado, and southern Arizona. The Laramide <span class="hlt">magmatism</span> in Colorado (the Colorado Mineral Belt) is aligned with the southern margin of a ``flat slab'' segment of subducted oceanic lithosphere known to have been present beneath Colorado. Mantle melting may have been induced by convective instabilities along the slab margin and account for the localization in this region. In contrast to the Laramide igneous activity, mid-Tertiary <span class="hlt">magmatism</span> was widespread from Colorado to northern Mexico and corresponds to the continental interior portion of the ``ignimbrite flare-up'' that produced large volumes of silicic magmas throughout the western United States. Rollback of shallowly subducted oceanic lithosphere beneath North America which induces melting in slab-metasomatized upper mantle(?) has been proposed by many workers as the trigger mechanism for melting, but it is not obvious whether this hydrated mantle is upwelling asthenosphere or what had been, prior to Tertiary hydration, mantle lithosphere. We suggest that the spacing of major continental interior volcanic centers may bear on this issue. The large volumes of magmas generated in the western U.S. during the mid-Tertiary event (>10,000 km3 in the San Juans alone) require either ``dynamic'' melting in upwelling asthenosphere, or ``static'' melting of recently hydrated lithosphere over a large area. The regular, but wide, spacing (~300km apart) of major mid-Tertiary volcanic centers in the western U.S., the San Juans</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912648K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912648K"><span>Crustal-scale <span class="hlt">magmatism</span> and its control on the longevity of <span class="hlt">magmatic</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef</p> <p>2017-04-01</p> <p>Constraining the duration and evolution of crustal magma reservoirs is crucial to our understanding of the eruptive potential of <span class="hlt">magmatic</span> systems, as well as the volcanic:plutonic ratios in the crust, but estimates of such parameters vary widely in the current literature. Although no consensus has been reached on the lifetime of magma reservoirs, recent studies have revealed about the presence, location, and melt fraction of multi-level (polybaric) storage zones in the crust. If magma accumulates at different crustal levels, it must redistribute significant enthalpy within the crustal column and therefore must influence the lifetime of magma plumbing systems. However, an evaluation of the mass and heat budget of the entire crustal column is lacking. Here, we use a two-dimensional thermal model to determine the thermal conditions under which both lower and upper crustal magma bodies form. We find that large lower crustal mush zones supply heat to the upper crust and reduce the amount of thermal energy necessary to form subvolcanic reservoirs. This indicates that the crust is thermally viable to sustain partially molten magma reservoirs over long timescales (>10^5-106 yr) for a range of magma fluxes (10^-4 to 10^-2 km^3/yr). Our results reconcile physical models of crustal magma evolution and field-based estimates of intrusion rates in numerous <span class="hlt">magmatic</span> provinces (which include both volcanic and plutonic lithologies). We also show that young <span class="hlt">magmatic</span> provinces (< 105 yr old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (> 106 yr) can accumulate magma and build reservoirs capable of triggering supereruptions, even with intrusion rates as low as ≤10^-2 km^3/yr. Hence, the total duration of <span class="hlt">magmatism</span> is critical in determining the size of the magma reservoirs, and should be combined with the magma intrusions rates to assess the capability of volcanic systems to form the largest eruptions on Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.286..264R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.286..264R"><span>The Cenozoic <span class="hlt">magmatism</span> of East-Africa: Part I - Flood basalts and pulsed <span class="hlt">magmatism</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rooney, Tyrone O.</p> <p>2017-08-01</p> <p>Cenozoic <span class="hlt">magmatism</span> in East Africa results from the interplay between lithospheric extension and material upwelling from the African Large Low Shear Velocity Province (LLSVP). The modern focusing of East African <span class="hlt">magmatism</span> into oceanic spreading centers and continental rifts highlights the modern control of lithospheric thinning in magma generation processes, however the widespread, and volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a significant role for material upwelling from the African LLSVP. The slow relative motion of the African plate during the Cenozoic has resulted in significant spatial overlap in lavas derived from different <span class="hlt">magmatic</span> events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either bimodal lavas or silicic volcanic products during this period: (A) Eocene Initial Phase from 45 to 34 Ma. This is a period of dominantly basaltic volcanism focused in Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9 to 27 Ma. This period coincides with a significant increase in the aerial extent of volcanism with broadly age equivalent 1 to 2 km thick sequences of dominantly basalt centered on the NW Ethiopian Plateau and Yemen, (C) Early Miocene resurgence phase from 26.9 to 22 Ma. This resurgence in basaltic volcanism is seen throughout the region at ca. 24-23 Ma, but is less volumetrically significant than the prior two basaltic pulses. With our developing understanding of the persistence of LLSVP anomalies within the mantle, I propose that the three basaltic pulses are ostensibly manifestations of the same plume-lithosphere interaction, requiring revision to the duration, <span class="hlt">magmatic</span> extent, and magma volume of the African-Arabian Large Igneous Province.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27386580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27386580"><span>Off-axis <span class="hlt">magmatism</span> along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville</p> <p>2016-06-01</p> <p>Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc <span class="hlt">settings</span>. We show evidence for a large, long-lived, off-axis <span class="hlt">magmatic</span> intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a <span class="hlt">magmatic</span> body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large <span class="hlt">magmatic</span> body may represent the birth of a new magma chamber on the margins of a back-arc rift system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4928910','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4928910"><span>Off-axis <span class="hlt">magmatism</span> along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hamling, Ian J.; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville</p> <p>2016-01-01</p> <p>Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc <span class="hlt">settings</span>. We show evidence for a large, long-lived, off-axis <span class="hlt">magmatic</span> intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a <span class="hlt">magmatic</span> body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large <span class="hlt">magmatic</span> body may represent the birth of a new magma chamber on the margins of a back-arc rift system. PMID:27386580</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70047949','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70047949"><span>Remote detection of <span class="hlt">magmatic</span> water in Bullialdus crater on the Moon</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Klima, Rachel L.; Cahill, John; Hagerty, Justin J.; Lawrence, David</p> <p>2013-01-01</p> <p>Once considered dry compared with Earth, laboratory analyses of igneous components of lunar samples have suggested that the Moon’s interior is not entirely anhydrous. Water and hydroxyl have also been detected from orbit on the lunar surface, but these have been attributed to nonindigenous <span class="hlt">sources</span>, such as interactions with the solar wind. <span class="hlt">Magmatic</span> lunar volatiles—evidence for water indigenous to the lunar interior—have not previously been detected remotely. Here we analyse spectroscopic data from the Moon Mineralogy Mapper (M3) and report that the central peak of Bullialdus Crater is significantly enhanced in hydroxyl relative to its surroundings. We suggest that the strong and localized hydroxyl absorption features are inconsistent with a surficial origin. Instead, they are consistent with hydroxyl bound to <span class="hlt">magmatic</span> minerals that were excavated from depth by the impact that formed Bullialdus Crater. Furthermore, estimates of thorium concentration in the central peak using data from the Lunar Prospector orbiter indicate an enhancement in incompatible elements, in contrast to the compositions of water-bearing lunar samples. We suggest that the hydroxyl-bearing material was excavated from a <span class="hlt">magmatic</span> <span class="hlt">source</span> that is distinct from that of samples analysed thus far.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=105295&keyword=Antibiotic+AND+resistance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=105295&keyword=Antibiotic+AND+resistance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>USE OF COMPOSITE DATA <span class="hlt">SETS</span> FOR <span class="hlt">SOURCE</span>-TRACKING ENTEROCCOCCI IN THE WATER COLUMN AND SHORELINE INTERSTITIAL WATERS ON PENSACOLA BEACH, FL</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Genthner, Fred J., Joseph B. James, Diane F. Yates and Stephanie D. Friedman. Submitted. Use of Composite Data <span class="hlt">Sets</span> for <span class="hlt">Source</span>-Tracking Enterococci in the Water Column and Shoreline Interstitial Waters on Pensacola Beach Florida. Mar. Pollut. Bull. 33 p. (ERL,GB 1212). <br><br>So...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=105295&keyword=antibiotic+AND+resistance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=91052443&CFTOKEN=30367249','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=105295&keyword=antibiotic+AND+resistance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=91052443&CFTOKEN=30367249"><span>USE OF COMPOSITE DATA <span class="hlt">SETS</span> FOR <span class="hlt">SOURCE</span>-TRACKING ENTEROCCOCCI IN THE WATER COLUMN AND SHORELINE INTERSTITIAL WATERS ON PENSACOLA BEACH, FL</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Genthner, Fred J., Joseph B. James, Diane F. Yates and Stephanie D. Friedman. Submitted. Use of Composite Data <span class="hlt">Sets</span> for <span class="hlt">Source</span>-Tracking Enterococci in the Water Column and Shoreline Interstitial Waters on Pensacola Beach Florida. Mar. Pollut. Bull. 33 p. (ERL,GB 1212). <br><br>So...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V13G2696L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V13G2696L"><span>Crustal migration of <span class="hlt">magmatic</span> CO2 tracked by tree-ring radiocarbon and seismicity at Mammoth Mountain, California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewicki, J. L.; Hilley, G. E.; Shelly, D. R.; King, J.; McGeehin, J. P.; Mangan, M.; Evans, W.</p> <p>2013-12-01</p> <p>Mammoth Mountain is a dacitic dome complex situated on the southwestern rim of Long Valley caldera, eastern California. Since 1989, unrest at Mammoth Mountain has been expressed by seismicity, ground deformation, diffuse CO2 emissions, and elevated 3He/4He ratios in fumarolic gases, all apparently driven by the release of CO2-rich aqueous fluids from basaltic intrusions in the middle to lower crust. Three lower-crustal (32-19 km depth) seismic swarms occurred beneath the mountain in 2006, 2008 and 2009 and were consistently followed several months later by peaks in the frequency of shallow (≤10 km depth) earthquakes. We measured the radiocarbon depletion relative to global background values in the annual rings (1998-2012) of a tree growing in the largest (~0.3 km2) area of diffuse CO2 emissions on Mammoth Mountain (the Horseshoe Lake tree kill; HLTK). We modeled the ground surface area, on average, that emitted the <span class="hlt">magmatic</span> CO2 photosynthesized by the study tree (the <span class="hlt">magmatic</span> CO2 <span class="hlt">source</span> area) using measured atmospheric parameters. Results indicated that the tree integrated <span class="hlt">magmatic</span> CO2 emissions over the majority of the HLTK area. The tree-ring radiocarbon record and <span class="hlt">magmatic</span> CO2 <span class="hlt">source</span> area modeling together implied that <span class="hlt">magmatic</span> CO2 emissions from the HLTK were relatively stable from 1998 to 2009, nearly doubled from 2009 to 2011, and then declined by the 2012 growing season. The initial increase in CO2 emissions was detected during the growing season immediately after the largest (February 2010) peak in shallow earthquake frequency. Propagation of CO2-rich <span class="hlt">magmatic</span> fluids may have driven observed patterns of elevated deep, then shallow seismicity, whereas the relationship between pore fluid pressures within a shallow (upper 3 km of crust) fluid reservoir and permeability structure of the reservoir cap rock may have controlled temporal variations in surface CO2 emissions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1255257','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1255257"><span>CO<sub>2</sub>-fluxing collapses metal mobility in <span class="hlt">magmatic</span> vapour</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; Williams-Jones, A. E.</p> <p>2016-05-18</p> <p><span class="hlt">Magmatic</span> systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important <span class="hlt">source</span> of metals and ore-forming fluids in these systems. In many <span class="hlt">magmatic</span>-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO<sub>2</sub>-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO<sub>2</sub>-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanism for metal deposition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70186946','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70186946"><span>Heat flux from <span class="hlt">magmatic</span> hydrothermal systems related to availability of fluid recharge</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.</p> <p>2015-01-01</p> <p><span class="hlt">Magmatic</span> hydrothermal systems are of increasing interest as a renewable energy <span class="hlt">source</span>. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge <span class="hlt">magmatic</span> hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15993139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15993139"><span>Use of composite data <span class="hlt">sets</span> for <span class="hlt">source</span>-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Genthner, Fred J; James, Joseph B; Yates, Diane F; Friedman, Stephanie D</p> <p>2005-07-01</p> <p><span class="hlt">Sources</span> of Enterococcus faecalis isolates from Pensacola Beach, FL. were identified using a library-based approach by applying the statistical method of average similarity to single and composite data <span class="hlt">sets</span> generated from separate analyses. Data <span class="hlt">sets</span> included antibiotic resistance analysis (ARA), rep-fingerprints, and fatty acid methyl ester (FAME) profiles. Use of a composite data <span class="hlt">set</span> composed of ARA and rep-fingerprints, added to the confidence of the identifications. The addition of FAME data to composite data <span class="hlt">sets</span> did not add to the confidence of identifications. <span class="hlt">Source</span> identification was performed to better understand risk associated with higher densities of enterococci found in swash zone interstitial water (SZIW) as compared to adjacent bathing water on Pensacola Beach, FL. The "swash zone" is that area of the beach continually washed over by waves. As the potential <span class="hlt">sources</span> of enterococci were limited in this environment, only two library units, sea gull and human, were constructed. Identification of the beach isolates using a composite data <span class="hlt">set</span> indicated a sea gull origin. The clonality of the beach isolates suggested that the beach environment selects certain subspecies of E. faecalis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAfES..97..143A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAfES..97..143A"><span>Relationships between deformation and <span class="hlt">magmatism</span> in the Pan-African Kandi Shear Zone: Microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adissin Glodji, L.; Bascou, J.; Yessoufou, S.; Ménot, R.-P.; Villaros, A.</p> <p>2014-09-01</p> <p>Relationships between the metamorphic basement, granitic intrusions and the Kandi Shear Zone (KSZ) in central Bénin have been investigated using petrological and structural approaches, in order to better understand the space and time parameters of the Pan-African shear deformation and the Ediacaran <span class="hlt">magmatism</span>. In central Bénin, metamorphic rocks from the KSZ display a steep to vertical N-S trending foliation, a sub-horizontal mineral lineation together with kinematic indicators in agreement with a dextral transcurrent mega-shear zone. Four granitic intrusions (Dassa, Tré, Gobada and Tchetti) show many petrological similarities. They are biotite ± amphibole - ilmenite ± magnetite monzogranites with ferrous and metaluminous I-type features derived from high-K calk-alkaline magma. A fifth intrusion (Fita) is an alkali-feldspar, biotite, magnetite and ilmenite bearing granite crystallized from an alkaline magma. Moreover, high K2O, Zr, Y, Nb and low CaO, MgO and Al2O3 contents together with high (FeOt/MgO) and low LIL/HFS elements ratios suggesting an A-type granite affinity. Microstructural and AMS investigations presented in this paper show (i) solid-state deformation evidence for Dassa pluton and (ii) a <span class="hlt">magmatic</span> deformation for the Tré, Tchetti, Gobada and Fita granitoids. Foliation in Dassa is parallel to the mesoscopic planar mylonitic foliation of the metamorphic basement. In the Tré, Tchetti, Gobada and Fita granitoids, <span class="hlt">magmatic</span> textures and magnetic fabrics are coherent with the KSZ activity. These data suggest (i) a syn-kinematic nature for most of the intrusions (Tré, Gobada, Tchetti and Fita), except Dassa which correspond to an earlier event (ii) the succession of high-K calk-alkaline (Dassa, Tré, Gobada, Tchetti) evolves toward alkaline magmas (Fita) during the KSZ strike-slip tectonics. These observations highlight the changing nature of magma composition, <span class="hlt">magmatic</span> processes and the different <span class="hlt">sources</span> during KSZ activity in the Bénin Nigerian</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V51A4720S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V51A4720S"><span>The Dynamics of the Post-Caldera <span class="hlt">Magmatic</span> System at Yellowstone: Insights from Age, Trace Element, and Isotopic Data of Zircon and Sanidine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stelten, M. E.; Cooper, K. M.; Vazquez, J. A.; Calvert, A. T.; Glessner, J. J.; Wimpenny, J.; Yin, Q. Z.</p> <p>2014-12-01</p> <p>Yellowstone hosts a voluminous <span class="hlt">magmatic</span> system that produced three silicic caldera-forming eruptions over the past 2.1 My. Following the most recent of these (the Lava Creek Tuff at 639 ka), the magma system at Yellowstone underwent two episodes of intracaldera eruptions, the latest of which produced the Central Plateau Member (CPM) rhyolites. The CPM rhyolites erupted intermittently from ca. 170 ka to ca. 70 ka and can be viewed as snapshots of the magma system through time, which provides a unique opportunity to study the dynamics of an evolving caldera system. To constrain the nature and timescales of <span class="hlt">magmatic</span> processes at Yellowstone we examine four CPM rhyolites that erupted from ca. 116 ka to ca. 74 ka and present a comprehensive data <span class="hlt">set</span> that integrates (1) 238U-230Th ages, trace-elements, and Hf isotope compositions of the surfaces and interiors of single zircons, (2) bulk 238U-230Th ages and in situ Ba and Pb isotope compositions of sanidines, (3) sanidine 40Ar-39Ar ages, and (4) trace-element and isotopic compositions of the CPM glasses. Zircon 238U-230Th ages and Hf isotope data demonstrate that isotopically juvenile magmas, derived from Yellowstone basalts, were added to the Yellowstone magma reservoir over time and were fundamental to its post-caldera isotopic evolution. We use zircon Hf isotope data along with new Hf isotope data (and existing O isotope data) for the Yellowstone basalts (whole-rocks), older Yellowstone rhyolites (glasses), and local crustal <span class="hlt">sources</span> to quantify the role of isotopically juvenile magma in the evolution of the <span class="hlt">magmatic</span> system. Additionally, linking age, trace-element, and isotopic data from zircon and sanidine demonstrates that eruptible CPM rhyolites were generated by extracting melt and antecrystic zircon from a long-lived (>200 ky) crystal mush, while sanidine remained trapped in the crystal network. The extracted melts amalgamated and then crystallized new sanidines and rims on the antecrystic zircons that were in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Litho.198..184G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Litho.198..184G"><span>The role of subduction channel mélanges and convergent subduction systems in the petrogenesis of post-collisional K-rich mafic <span class="hlt">magmatism</span> in NW Tibet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Zhengfu; Wilson, Marjorie; Zhang, Lihong; Zhang, Maoliang; Cheng, Zhihui; Liu, Jiaqi</p> <p>2014-06-01</p> <p>Post-collisional potassium-rich mafic <span class="hlt">magmatism</span> occurred in the northwestern part of the Tibetan Plateau, close to the western syntaxis of the Himalayan orogen, from 8.3 Ma to the present. This <span class="hlt">magmatism</span> is associated with a tectonic <span class="hlt">setting</span> influenced by opposing N and S dipping subduction systems formed during the collision of India and Asia. It postdates continent-continent collision and has been linked to the onset of near vertical subduction of Indian continental lithosphere at ~ 8 Ma. The <span class="hlt">magmatic</span> rocks have relatively high MgO (4.02-9.04 wt.%), SiO2 (46.15-57.49 wt.%), K2O (3.26-7.23 wt.%), Ba (1071-3210 ppm), Th (8.2-85.2 ppm), and Pb (18.6-54.8 ppm) contents, and relatively low Al2O3 (12.74-15.78 wt.%). Sr-Nd-Pb isotopic compositions range from: (87Sr/86Sr)i (0.7072-0.7131), (143Nd/144Nd)i (0.511953-0.512528) and (206Pb/204Pb)i (18.67-19.08). Chondrite-normalized rare earth element (REE) patterns are characterized by light REE (LREE) enrichment, flat heavy REE (HREE) patterns and slightly negative Eu anomalies in some of the <span class="hlt">magmatic</span> rocks. Primitive mantle-normalized incompatible element patterns display strong enrichments in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and distinct negative Ta-Nb-Ti anomalies. The major and trace element and Sr-Nd-Pb isotope characteristics of the most primitive mafic igneous rocks are interpreted in terms of a mantle <span class="hlt">source</span> region dominated by subduction channel-derived mélange material derived from both the Indian and Asian subduction systems. This mélange material was underplated below the lithosphere of the Songpan-Ganzi terrane of NW Tibet, probably within the past 25 Ma. Partial melting of the underplated mélange was induced by adiabatic decompression linked to the onset of near vertical subduction of the Indian slab at ~ 8 Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V31C4775M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V31C4775M"><span>Permian-Triassic <span class="hlt">Magmatism</span> Along the Southern Gondwana Margin: Correlating Proximal and Distal Volcanic Deposits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McKay, M. P.; Weislogel, A. L.; Fildani, A.</p> <p>2014-12-01</p> <p>Active margins are dominated by erosion, structural deformation, tectonic dissection, and igneous intrusions. These destructive processes lead to an incomplete record of past <span class="hlt">magmatism</span> in active margins. Volcanic airfall tuffs that are transported and deposited in distal sedimentary basins may be more likely to be preserved in the rock record. Tuffs, however, may be affected by atmospheric fractionation during transport, postdepositional weathering, and diagenesis during burial, potentially altering ash texture, mineralogy, and geochemistry. We use outcrop observations, stratigraphic relationships, whole rock geochemistry, U-Pb zircon geochronology, and zircon rare-earth element geochemistry from Permian-Triassic strata of South Africa and South America to correlate distal volcanic ashes to proximal volcanic deposits and plutonic suites within southern Gondwana. U-Pb zircon signals of the tuffs are treated as "detrital"; the distinct zircon signals were then used to correlate distal airfall ashes to potential <span class="hlt">magmatic</span> <span class="hlt">sources</span>. This suggests that airfall fractionation of zircon populations is not a significant concern in tuff geochronology. Additionally, zircon inheritance may be a useful tool in matching far-traveled ashes with parental <span class="hlt">magmatic</span> suites. Although previous studies have shown that the geochemistry of volcanic tuff deposits varies with distance from the volcanic vent, we employ whole rock and zircon REE compositions to differentiate distinct <span class="hlt">magmatic</span> periods using distal ashes that were deposited >750 km from the volcanic <span class="hlt">source</span>. The results of this study support a geochronologic interpretation that the Karoo strata of S. Africa are >10 Ma younger than previously thought based on biostratigraphy. Since the Karoo basin is heavily studied as a record of the end-Permian extinction and paleoclimate change, our results have major implication for this key time in Earth History.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V11B2779Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V11B2779Y"><span>The switch of <span class="hlt">magmatic</span> evolution between early and late Paleozoic in the northern Beishan, southern Central Asia Orogenic belt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Y.; Zong, K.; He, Z.</p> <p>2016-12-01</p> <p>The Beishan Orogenic Belt locates in the southernmost of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. However, the petrogenesis and geodynamic <span class="hlt">settings</span> of widely distributed Paleozoic granitoids in the Beishan Orogenic Belt are poorly understood. In this study, we found that petrogenesis and tectonic <span class="hlt">settings</span> are distinguished between the early and late Paleozoic granitoids in the Mazongshan unit located in the northern Beishan Orogenic Belt. The early Paleozoic intrusions are represented by Hongliuxia granite and Shibanjing complex which intruded at 460-430 Ma. On one hand, they display large range of zircon ɛHf(t) values from -17.1 to +14.2, implying both the juvenile and ancient crust material were involved in their petrogenesis. Noticeable, their zircon Hf model ages range from 0.5 Ga to 2.1 Ga and peaks at 0.9 Ga, 1.2 Ga and 1.8 Ga that are accordance with the formation time of the ancient continental crust in the southern Beishan Orogenic Belt. On the other hand, their geochemical and petrographic signatures reveal a classic high-K I-type granite affinity (e.g., weak peraluminous, moderate A/CNK values (0.72-1.27) , low Ga/Al ratios (1.87-2.41) and occurrence of hornblende). Moreover, they display relative enrichment of LILEs and LREEs but pronounced depletion of Nb, Ta and Ti. Thus, we suggest the early Paleozoic granitoids in the Beishan Orogenic Belt are generated in the continental arc <span class="hlt">setting</span>. In contrast, the late Paleozoic granitoids are represented by Shuangjingzi complex which emplaced at 330 and 280 Ma. They are characterized by the positive zircon ɛHf(t) values of 5.4-12.8, supporting their magma <span class="hlt">source</span> are dominated by partial melting of juvenile crust material in the extension <span class="hlt">setting</span>. Therefore, the early and late Paleozoic <span class="hlt">magmatic</span> evolutions in the Beishan Orogenic belt are distinguished by the reworking of ancient crust and remelting of juvenile crust materials</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V33E..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V33E..05D"><span><span class="hlt">Magmatic</span> differentiation in a chaotic background: A comparison of multiphase simulations and <span class="hlt">magmatic</span> chronometers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufek, J.</p> <p>2015-12-01</p> <p>The location and timescales of silicic magma production has received much recent attention and these questions are at the forefront of understanding incubation times for eruptive episodes and ultimately, the production of continental crust. While idealizations of differentiation in simplified magma reservoir geometries have been useful to frame end-member behavior, most <span class="hlt">magmatic</span> systems, and particular large magma reservoirs, are open systems with time varying geometries. Evidence of open systems and assembly of <span class="hlt">magmatic</span> systems incrementally are present in a range of plutonic and volcanic rocks. To evaluate the timescales of silicic magma production, a 3D multiphase dynamics model was implemented that includes heat transfer, phase change and magma dynamics. The size of the <span class="hlt">magmatic</span> systems under consideration are not prescribed, but rather grow or shrink in response to the flux of heat and intrusions. To compare simulations to a range of data, major element chemistry, phase assemblage, and tracking of representative crystals are made through time. A particular focus of this presentation is a comparison of dynamic processes to proxies used as chronometers. This includes recording the timescale of appearance of different phases that can be compared to timescales inferred from diffusion profiles and monitoring zircon saturation and dispersal. Both the differentiation timescale and timescales of the major growth of zircons are a relatively small fraction of the melt-present lifetime of magma reservoirs, and in particular, typically represent relatively smaller fractions for larger <span class="hlt">magmatic</span> systems. Melt can exist at low melt fraction (<0.2) for timescales of 100s kyr for the largest systems, while spending only a small amount of time at high melt fraction. Nevertheless, these reservoirs can be assembled incrementally with magma fluxes in the ranges estimated for arcs. A mid-upper crust location is important to have phase assemblages with sufficient leverage to produce</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V53A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V53A..07B"><span>Cenozoic <span class="hlt">Magmatism</span> in the Southwestern U.S. and Effects on the Lithosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baldridge, W. S.; van Wijk, J. W.; Ni, J. F.</p> <p>2009-12-01</p> <p>Latest Cretaceous and Tertiary <span class="hlt">magmatism</span> in the southwestern U.S. initially recorded subduction of the Farallon plate beneath the North American. With foundering of the Farallon plate and initiation of lithospheric extension in the middle Tertiary, <span class="hlt">magmatism</span> gave way in the late Tertiary to normal intraplate genesis of mainly basaltic rocks from lithospheric and asthenospheric <span class="hlt">sources</span>. When the classical geochronologic and petrologic studies are combined with newer geochemical and geophysical studies and with numerical modeling, a new understanding of magmagenesis and lithospheric evolution emerges. The geochronologic and petrologic studies of 30-40 years ago documented major pulses of <span class="hlt">magmatism</span> from latest Cretaceous/Early Cenozoic (75-50 Ma) through middle (36-20 Ma) and late (12-0 Ma) Cenozoic. Many questions were left unanswered by the original models and new ideas have emerged related to (1) the uplift history and mechanisms of the region, (2) the role of crust and subcrustal lithosphere as magma <span class="hlt">source</span> regions, (3) the importance of fluids in magmagenesis, and (4) the role of lithospheric delamination and “drips.” Petrological studies verify that the signature calc-alkaline basaltic andesites of middle Tertiary <span class="hlt">magmatism</span>