Sample records for magmatism isotopic evidence

  1. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  2. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  3. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake.

    PubMed

    Teng, Fang-Zhen; Dauphas, Nicolas; Helz, Rosalind T

    2008-06-20

    Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stagemeltveins are 0.2 permil (per thousand) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2 per thousand lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.

  4. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake

    USGS Publications Warehouse

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.

    2008-01-01

    Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stage melt veins are 0.2 per mil (???) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2??? lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.

  5. Leadville, Colorado district: oxygen isotopic evidence for a magmatic-hydrothermal origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaty, D.W.; Thompson, T.B.; Solomon, G.C.

    1985-01-01

    A magmatic-hydrothermal origin for much of the manto and vein complex at Leadville, Colorado, is indicated by 60 /sup 18/O//sup 16/O and D/H analyses of rocks and minerals. The ore-related samples around Breece Hill all interacted with a high-/sup 18/O and high-D fluid. Phyllically altered Tertiary porphyries equilibrated with fluids of delta/sup 18/O = +4.5 to +7.5 and deltaD = -53 to -70 permil (SMOW). Metal-rich quartz veins above, and vug quartz within manto ore, were deposited by fluids with delta/sup 18/O = +3.4 to +11.3. The host Leadville Dolomite shows high-/sup 18/O alteration adjacent to ore. Finally, silica-dolomite tubesmore » surrounding mantos, possible conduits for spent ore fluids, transmitted fluids of delta/sup 18/O = +6.4 to +8.7. By contrast, early jasperoid and late golden barite formed from meteoric waters. Early white barite formed from a fluid of indeterminate origin. These data clearly show that a local meteoric-hydrothermal system was interrupted by a massive flux of high-/sup 18/O high-D fluid with the isotopic character of magmatic water.« less

  6. Geochemical and Isotopic Evidences of the Magmatic Sources in the Eastern Sector of the Trans-Mexican Volcanic Belt: Xihuingo-Chichicuautla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.

    2011-12-01

    derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.

  7. Magmatic zircon Lu-Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia

    NASA Astrophysics Data System (ADS)

    Reid, Anthony J.; Payne, Justin L.

    2017-11-01

    New in situ zircon Lu-Hf isotopic data are presented from magmatic rocks distributed across the Gawler Craton, Australia. These rocks range in composition from granite to gabbro, with the majority being granite or granodiorite and moderately peraluminous in composition. The new Lu-Hf isotopic data, together with previously published data, provide insight into the magmatic evolution of the craton and crust and mantle interaction through time. Increased juvenile content of magmatic rocks correlate with periods of extensional tectonism, in particular basin formation and associated magmatism during the Neoarchean to earliest Paleoproterozoic (c. 2555-2480 Ma), Middle Paleoproterozoic (c. 2020-1710 Ma) and Late Paleoproterozoic (c. 1630-160 Ma). In contrast, magmatic rocks associated with periods of orogenic activity show greater proportions of crustal derivation, particularly the magmatic rocks generated during the c. 1730-1690 Ma Kimban Orogeny. The final two major magmatic events of the Gawler Craton at c. 1630-1604 Ma and c. 1595-1575 Ma both represent periods of juvenile input into the Gawler Craton, with εHf(t) values extending to as positive as + 8. However, widespread crustal melting at this time is also indicated by the presence of more evolved εHf(t) values to - 6.5. The mixing between crust and mantle sources during these two youngest magmatic events is also indicated by the range in two stage depleted mantle model ages (TDMc) between 1.76 Ga and 2.51 Ga. Significant mantle input into the crust, particularly during formation of the c. 1595-1575 Ma Hiltaba Suite and Gawler Range Volcanics, likely facilitated the widespread crustal magmatism of this time period. Viewed spatially, average εHf(t) and TDMc values highlight three of the major shear zones within the Gawler Craton as potentially being isotopic as well as structural boundaries. Differences in isotopic composition across the Coorabbie Shear Zone in the western Gawler Craton, the Middle Bore Fault in

  8. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  9. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  10. Understanding Copper Isotope Behavior in the High Temperature Magmatic-Hydrothermal Porphyry Environment

    NASA Astrophysics Data System (ADS)

    Gregory, Melissa J.; Mathur, Ryan

    2017-11-01

    Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.

  11. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    NASA Astrophysics Data System (ADS)

    Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.

    2018-04-01

    Observed differences in Mg isotope ratios between bulk magmatic rocks are small, often on a sub per mill level. Inter-mineral differences in the 26Mg/24Mg ratio (expressed as δ26Mg) in plutonic rocks are on a similar scale, and have mostly been attributed to equilibrium isotope fractionation at magmatic temperatures. Here we report Mg isotope data on minerals in spinel peridotite and garnet pyroxenite xenoliths from the rejuvenated stage of volcanism on Oahu and Kauai, Hawaii. The new data are compared to literature data and to theoretical predictions to investigate the processes responsible for inter-mineral Mg isotope fractionation at magmatic temperatures. Theory predicts up to per mill level differences in δ26Mg between olivine and spinel at magmatic temperatures and a general decrease in Δ26Mgolivine-spinel (=δ26Mgolivine - δ26Mgspinel) with increasing temperature, but also with increasing Cr# in spinel. For peridotites with a simple petrogenetic history by melt depletion, where increasing depletion relates to increasing melting temperatures, Δ26Mgolivine-spinel should thus systematically decrease with increasing Cr# in spinel. However, most natural peridotites, including the Hawaiian spinel peridotites investigated in this study, are overprinted by variable extents of melt-rock reaction, which disturb the systematic primary temperature and compositionally related olivine-spinel Mg isotope systematics. Diffusion, subsolidus re-equilibration, or surface alteration may further affect the observed olivine-spinel Mg isotope fractionation in peridotites, making Δ26Mgolivine-spinel in peridotites a difficult-to-apply geothermometer. The available Mg isotope data on clinopyroxene and garnet suggest that this mineral pair is a more promising geothermometer, but its application is restricted to garnet-bearing igneous (garnet pyroxenites) and metamorphic rocks (eclogites). Although the observed δ26Mg variation is on a sub per mill range in bulk magmatic rocks

  12. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  13. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  14. Pb-Sr-Nd-O isotopic characterization of Mesozoic rocks throughout the northern end of the Peninsular Ranges batholith: Isotopic evidence for the magmatic evolution of oceanic arc–continental margin accretion during the Late Cretaceous of southern California

    USGS Publications Warehouse

    Kistler, Ronald W.; Wooden, Joseph L.; Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    Within the duration of the U.S. Geological Survey (USGS)–based Southern California Areal Mapping Project (SCAMP), many samples from the northern Peninsular Ranges batholith were studied for their whole-rock radioisotopic systematics (rubidium-strontium [Rb-Sr], uranium-thorium-lead [U-Th-Pb], and samarium-neodymium [Sm-Nd]), as well as oxygen (O), a stable isotope. The results of three main studies are presented separately, but here we combine them (>400 analyses) to produce a very complete Pb-Sr-Nd-O isotopic profile of an arc-continent collisional zone—perhaps the most complete in the world. In addition, because many of these samples have U-Pb zircon as well as argon mineral age determinations, we have good control of the timing for Pb-Sr-Nd-O isotopic variations.The ages and isotopic variations help to delineate at least four zones across the batholith from west to east—an older western zone (126–108 Ma), a transitional zone (111–93 Ma), an eastern zone (94–91 Ma), and a much younger allochthonous thrust sheet (ca. 84 Ma), which is the upper plate of the Eastern Peninsular Ranges mylonite zone. Average initial 87Sr/86 Sr (Sri), initial 206Pb/204Pb (206 Pbi), initial 208Pb/204Pb (average 208Pbi), initial epsilon Nd (average εNdi), and δ18O signatures range from 0.704, 18.787, 38.445, +3.1, and 4.0‰–9.0‰, respectively, in the westernmost zone, to 0.7071, 19.199, 38.777, −5, and 9‰–12‰, respectively, in the easternmost zone. The older western zone is therefore the more chemically and isotopically juvenile, characterized mostly by values that are slightly displaced from a mantle array at ca. 115 Ma, and similar to some modern island-arc signatures. In contrast, the isotopic signatures in the eastern zones indicate significant amounts of crustal involvement in the magmatic plumbing of those plutons. These isotopic signatures confirm previously published results that interpreted the Peninsular Ranges batholith as a progressively

  15. Crustal recycling through intraplate magmatism: Evidence from the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.

    2014-12-01

    The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids - the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U-Pb geochronology and REE data, and Lu-Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U-Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite-trondhjemite-granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean-Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly

  16. The Magmatic Structure of Mt. Vesuvius: Isotopic and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Civetta, L.; D'Antonio, M.; de Lorenzo, S.; Gasparini, P.

    2002-12-01

    Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano, the risk today is very high. Therefore, the knowledge of the structure and behavior of the magmatic system is fundamental both for the interpretation of any change in the dynamics of the volcano and for prediction of eruptions. A review of available and new isotopic data on rocks from Mt. Vesuvius, together with mineralogical and geochemical data and recent geophysical results, allow us to constrain a thermal modeling that describes history and present state of Mt. Vesuvius magmatic system. This system is formed by a "deep", complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate. The reservoir extends discontinuously between 10 and 20 km of depth, is hosted in densely fractured crustal rocks, where magmas and crust can interact, and has been fed more than once since 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the "deep" reservoir magmas of K-basaltic to K-tephritic to K-phonotephritic composition rise to shallow depths where they stagnate at 3-5 km of depth before plinian eruptions, and through crystallization and mixing processes with the residual portion of the feeding systems, generate isotopically and geochemically layered reservoirs. Alternatively, during "open conduit" conditions deep, volatile-rich magma batches rise from the "deep" reservoir to less than 1 km of depth and mix with the crystal-rich, volatile-poor resident magma, triggering eruptions.

  17. Iron isotope fractionation among magnetite, pyrrhotite, chalcopyrite, rhyolite melt and aqueous fluid at magmatic-hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Bilenker, L. D.; Simon, A.; Lundstrom, C.; Gajos, N.

    2012-12-01

    Fractionation of non-traditional stable isotopes (NTSI) such as Fe in magmatic systems is a relatively understudied subject. The fractionation of Fe stable isotopes has been quantified in some natural igneous samples, but there is a paucity of experimental data that could provide further insight into the causative processes of the observed fractionation. Substantial experimental work has been performed at higher temperatures pertaining to the formation of chondrites and the Earth's core, but only a handful of studies have addressed crustal rocks. To fill this knowledge gap, we performed isothermal, isobaric experiments containing mineral (e.g., magnetite, Fe-sulfides) and fluid, or mineral, rhyolite melt, and fluid assemblages to quantify equilibrium fractionation factors (α). These data, to our knowledge, are the first data that quantify the effect of a fluid phase on iron isotope fractionation at conditions appropriate for evolving magmatic systems. Charges were run inside gold capsules held in a René-41 cold seal vessel, and heated to 400, 600, or 800°C at 150 MPa for mineral-fluid, and 800°C and 100 MPa for mineral-melt-fluid runs. Use of the René vessel fixed the fO2 at the NNO buffer, an oxidation state consistent with arc magmas. The isotopic compositions of the starting and quenched phases were obtained by using a Multi-Collector Plasma Mass Spectrometer (MC-ICP-MS). Equilibrium was assessed by performing time-series runs and the three-isotope method, used only once before in a similar Fe isotope study. Correlation between Fe isotope mass and oxidation state is also being explored. Magnetite-fluid results indicate enrichment of heavy Fe isotopes in the mineral relative to the fluid, consistent with measurements of felsic igneous rocks. Magnetite-melt-fluid relationships are also consistent with measurements of natural samples. In the latter assemblage, over the course of the run, the rhyolite melt becomes heavy relative to the fluid while magnetite

  18. Isotope compositions of C and O of magmatic calcites from the Udachnaya-East pipe kimberlite, Yakutia

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Dublyansky, Yu. V.; Kuzmin, D. V.; Sobolev, N. V.

    2017-07-01

    It has been demonstrated for the first time that the isotopic compositions of carbon (δ13C) in magmatic calcites from the Udachnaya-East pipe kimberlite groundmass varies from-2.5 to-1.0‰ (V-PDB), while those of oxygen (δ18O) range from 15.0 to 18.2‰ (V-SMOW). The obtained results imply that during the terminal late magmatic and postmagmatic stages of the kimberlite pipe formation, the carbonates in the kimberlite groundmass became successively heavier isotopically, which indicates the hybrid nature of the carbonate component of the kimberlite: it was formed with contributions from mantle and sedimentary marine sources.

  19. Involvement of magmatic fluids at the Laloki and Federal Flag massive sulfide Cu-Zn-Au-Ag deposits, Astrolabe mineral district, Papua New Guinea: sulfur isotope evidence

    NASA Astrophysics Data System (ADS)

    Noku, Shadrach K.; Espi, Joseph O.; Matsueda, Hiroharu

    2015-01-01

    We present the first sulfur (S) isotope data of sulfides, sulfates, pyrite in host mudstone, and bulk sulfur of gabbroic rocks from the Laloki and Federal Flag massive Cu-Zn-Au-Ag deposits in the Astrolabe mineral district, Papua New Guinea. Early-stage pyrite-marcasite, chalcopyrite, and sphalerite from Laloki display wide range of δ34S values from -4.5 to +7.0 ‰ ( n = 16). Late-stage pyrite, chalcopyrite, and sphalerite have restricted δ34S values of -1.9 to +4.7 ‰ ( n = 16). The mineralizing stage these correspond to had moderately saline (5.9-8.4 NaCl eq. wt%) mineralizing fluids of possible magmatic origin. A single analysis of late-stage barite has a value of δ34S +17.9 ‰, which is likely similar to coexisting seawater sulfate. Pyrite from the foot-wall mudstone at Laloki has very light δ34S values of -36.1 to -33.8 ‰ ( n = 2), which suggest an organic source for S. Pyrite-marcasite and chalcopyrite from Federal Flag show δ34S values of -2.4 to -1.9 ‰ ( n = 2), consistent with a magmatic origin, either leached from intrusive magmatic rocks or derived from magmatic-hydrothermal fluids. The very narrow range and near-zero δ34S values (-1.0 to +0.6 ‰) of bulk gabbroic samples is consistent with mantle-derived magmatic S. Sulfur isotope characteristics of sulfides and sulfates are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and sedimented mid-ocean ridges. The most reasonable interpretation is that the range of the sulfide and sulfate δ34S values from both Laloki and Federal Flag massive sulfide deposits is indicative of the complex interaction of magmatic fluids, seawater, gabbroic rocks, and mudstone.

  20. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    NASA Astrophysics Data System (ADS)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  1. Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.

    2014-12-01

    Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al

  2. Elemental and Sr-Nd isotopic geochemistry of the Uradzhongqi magmatic complex in western Inner Mongolia, China: A record of early Permian post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Qiao, Xueyuan; Li, Wenbo; Zhong, Richen; Hu, Chuansheng; Zhu, Feng; Li, Zhihua

    2017-08-01

    The magmatic complex in Uradzhongqi, Inner Mongolia, is located in the western segment of the northern margin of the North China Craton (NCC). The dominant components in the complex include syenogranite, monzogranite, granodiorite, diorite and gabbro. Mafic microgranular enclaves (MMEs) are common in syenogranite and granodiorite. Zircon U-Pb dating shows that the ages of these rocks range from 283 to 270 Ma, suggesting an early Permian emplacement. The syenogranite and monzogranite are peraluminous I-type granites, exhibiting conspicuous negative Eu anomaly, enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in high field strength elements (HFSE). The granodiorites, diorites and MMEs are metaluminous in composition, show high Al2O3, MgO and Fe2O3T contents and weak negative Eu anomaly, as well as LREE and LILE enrichment and HFSE depletion. The gabbros show weak positive Eu anomaly and slight REE differentiation. The Sr-Nd isotope compositions show that the source of mafic magma was depleted mantle (DM) with possible involvement of enriched mantle II (EM II), whereas the felsic magma was derived from the Archean lower crust. Petrographic observation and analytical results of mineralogy, geochronology, geochemistry and Sr-Nd isotopes indicate that the main petrogenesis of these magmatic rocks is the mixing of underplating mafic magma and felsic magma. Tectonically, the complex pluton was formed within a post-collisional regime, and the underplating in this area provides another piece of evidence for the vertical growth of the western segment of the northern margin of the NCC.

  3. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    USGS Publications Warehouse

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (<5 Ma), Fiji) indicate that the fluids from which these minerals precipitated were of mixed magmatic and non-magmatic sources. The non-magmatic component of the fluid from the island arc deposits (Koloula, Waisoi) was ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  4. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon

    NASA Astrophysics Data System (ADS)

    Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.

    2007-02-01

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  5. Initial Isotopic Heterogeneities in ZAGAMI: Evidence of a Complex Magmatic History

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.

    2006-01-01

    Interpretations of Zagami s magmatic history range from complex [1,2] to relatively simple [3]. Discordant radiometric ages led to a suggestion that the ages had been reset [4]. In an attempt to identify the mechanism, Rb-Sr isochrons were individually determined for both fine-grained and coarse-grained Zagami [5]. Ages of approx.180 Ma were obtained from both lithologies, but the initial Sr-87/Sr-86 (ISr) of the fine-grained lithology was higher by 8.6+/-0.4 e-units. Recently, a much older age of approx.4 Ga has been advocated [6]. Here, we extend our earlier investigation [5]. Rb-Sr Data: In [5] we applied identical, simplified, procedures to both lithologies to test whether a grain-size dependent process such as thermally-driven subsolidus isotopic reequilibration had caused age-resetting. Minerals were separated only by density. In the present experiment, purer mineral separates were analysed with improved techniques. Combined Rb-Sr results give ages (T) = 166+/-12 Ma and 177+/-9 Ma and I(subSr) = 0.72174+/-9 and 0.72227+/-7 for the coarse-grained and fine-grained lithologies, respectively. ISr in the fine-grained sample is thus higher than in the coarse-grained sample by 7.3+/-1.6 e-units. The results for the coarse-grained lithology are in close agreement with T = 166+/-6 Ma, ISr = 0.72157+/-8 for an adjacent sample [7] and T = 178+/-4 Ma, ISr = 0.72151+/-5 [4, adjusted] for a separate sample. Thus, fine-grained Zagami appears on average to be less typical of the bulk than coarse-grained Zagami.

  6. Unravelling the sulphur isotope systematics of an alkaline magmatic province: implications for REE mineralization and exploration

    NASA Astrophysics Data System (ADS)

    Hutchison, W.; Finch, A.; Boyce, A.; Friis, H.; Borst, A. M.; Horsburgh, N. J.

    2017-12-01

    Some of the world's best alkaline rare earth element (REE) deposits are formed in magmatic systems that are sealed (i.e., those that are autometasomatised and maintain reducing conditions). Conversely, in open systems where oxidizing fluids infiltrate, it is commonly assumed that REE are redistributed over a wider (less concentrated) zone. Sulphur isotope fractionation is sensitive to variations in temperature and redox, and, although sulphide minerals are relatively abundant in alkaline systems, there have been few attempts to test these hypotheses and develop a sulphur isotope proxy for alkaline metasomatism and formation of associated REE deposits. The Gardar Rift Province in southern Greenland was volcanically active in two periods between 1300 and 1100 Ma and is an ideal natural laboratory to explore sulphur isotope systematics because a near-complete alkaline magmatic lineage is exposed. We present new δ34S from across the province with a particular focus on three alkaline systems (Ilímaussaq, Motzfeldt and Ivigtût) that also host major REE deposits. Primitive mafic rocks from regional Gardar dykes and lavas have a restricted range of δ34S between 0 and 3 ‰ and fractional crystallization imparts no observable change in δ34S. In a few cases high-δ34S rocks (>15 ‰) occur when intrusive units have assimilated local sedimentary crust (δ34S = 25 ‰). Most δ34S variation takes place in the roof zones of alkaline intrusions during late-magmatic and hydrothermal stages, and we identify clear differences between the complexes. At Ilímaussaq, where the magmatic series is exceptionally reduced (below QFM buffer), roof zone δ34S remains narrow (0-3 ‰). At Motzfeldt, a more open oxidizing roof zone (MH buffer), δ34S ranges from -12 ‰ in late-stage fluorite veins to +12 ‰ where local crust has been assimilated. Ivigtût is intermediate between these end-members varying between -5 to +5 ‰. The δ34S variations primarily relate to temperature and

  7. Hydrogen isotope fractionation between C-H-O species in magmatic fluids

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Mysen, B. O.

    2012-12-01

    Constraining the hydrogen isotope fractionation between H-bearing volatiles (e.g. H2, CH4, hydrocarbons, H2O) as function of temperature and pressure helps to promote our understanding of the isotopic composition of evolved magmatic fluids and the overall mantle-cycling of water and reduced C-O-H volatiles. To describe the thermodynamics of the exchange reactions between the different H/D isotopologues of H2 and CH4 under supercritical water conditions, a novel experimental technique has been developed by combining vibrational Raman spectroscopy with hydrothermal diamond anvil cell designs (HDAC), which offers a method to monitor the in-situ evolution of H/D containing species. To this end, the equilibrium relationship between H2-D2-HD in supercritical fluid was investigated at temperatures ranging from 300 - 800 oC and pressures ~ 0.3 - 1.3 GPa [1]. Experimental results obtained in-situ and ex-situ show a significant deviation from the theoretical values of the equilibrium constant predicted for ideal-gas reference state, and with an apparent negative temperature effect triggered by the enthalpy contributions due to mixing in supercritical water. Here, we present a series of HDAC experiments conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600 - 800 oC and 409 - 1622 MPa. In detail, tetrakis-silane (Si5C12H36) was reacted with H2O-D2O aqueous solution in the presence of either Ni or Pt metal catalyst, resulting to the formation of deuterated methane species such as CH3D, CHD3, CH2D2 and CD4. Two distinctly different set of experiments ("gas phase"; "liquid phase") were performed by adjusting the silane/water proportions. By measuring the relative intensities of Raman vibrational modes of species, experimental results demonstrate distinctly different thermodynamic properties for the CH4-CH3D-CHD3-CH2D2 equilibrium in gas and liquid-water-bearing systems. In addition, the D/H molar ratio of

  8. Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie

    2013-07-01

    Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.

  9. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  10. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  11. Evidence of magmatic degassing in Archean komatiites: Insights from the Wannaway nickel-sulfide deposit, Western Australia

    NASA Astrophysics Data System (ADS)

    Caruso, Stefano; Fiorentini, Marco L.; Moroni, Marilena; Martin, Laure A. J.

    2017-12-01

    Magmatic degassing from komatiite lava flows potentially influenced the geochemical evolution of the Archean atmosphere and hydrosphere. We argue that the escape of SO2-rich volatiles from komatiites impacted on the mineralogical, geochemical and isotopic composition of associated nickel-sulfide mineralization leaving behind detectable and measurable footprints that can be best observed where the polarity of the magmatic sequence is clearly recognizable. Here we focus on the ore-bearing sequence of the Archean komatiite-hosted N01 nickel-sulfide orebody at Wannaway, Yilgarn Craton, Western Australia. This deposit displays a volcanic sequence with a well-defined succession of stratigraphically-correlated facies comprising a massive sulfide horizon at the base of the channelized komatiite flow, overlain by matrix and disseminated sulfide mineralization. Pyrrhotite is the dominant sulfide phase in the lower part of the ore profile. The amount of troilite gradually increases from the base of the matrix ore over several meters up-sequence, eventually becoming dominant at the expense of pyrrhotite. In the upper portion of the mineralized sequence troilite is associated with accessory Mn sulfide alabandite (MnS), which is usually reported in reduced terrestrial and extra-terrestrial environments. Such mineralogical and volcanological features are consistent with upwards decreasing in fS2 and fO2 away from the basal contact of the komatiite flow. After evaluating the possible role of metamorphism, the pyrrhotite-troilite-alabandite assemblage and the progressive up-sequence decrease of the pyrrhotite/troilite ratio across the upper part of the mineralized sequence are interpreted as magmatic and indicative of progressive loss of sulfur with concomitant establishment of reducing conditions within the sulfide melt ponding at the base of the komatiite lava. In this context, the investigation of spatially constrained sulfur isotopic signatures allows to isolate the multiple

  12. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2018-04-01

    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  13. Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the Late Permian Panthalassic Ocean, Opal Creek, Canada

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Henderson, Charles M.; Algeo, Thomas J.

    2015-02-01

    The geochemical record for the Permian-Triassic boundary in northern latitudes is essential to evaluation of global changes associated with the most profound extinction of life on Earth. We present inorganic and organic geochemical data, and Re-Os isotope systematics in a critical stratigraphic interval of pre- and post-extinction Upper Permian-Lower Triassic sediments from Opal Creek, western Canada (paleolatitude of ∼30°N). We document significant and long-lived changes in Panthalassa seawater chemistry that were initiated during the first of four magmatic or meteoritic inputs to Late Permian seawater, evidenced by notable decreases of Os isotopic ratios upsection. Geochemical signals indicate establishment of anoxic bottom waters shortly after regional transgression reinitiated sedimentation in the Late Permian. Euxinic signals are most prominent in the Upper Permian sediments with low organic carbon and high sulfur contents, and gradually wane in the Lower Triassic. The observed features may have been generated in a strongly euxinic ocean in which high bacterioplankton productivity sustained prolific microbial sulfate reduction in the sediment and/or water column, providing hydrogen sulfide to form pyrite. This scenario requires nearly complete anaerobic decomposition of predominantly labile marine organic matter (OM) without the necessity for a complete collapse of primary marine productivity. Similar geochemical variations could have been achieved by widespread oxidation of methane by sulfate reducers after a methanogenic burst in the Late Permian. Both scenarios could have provided similar kill mechanisms for the latest Permian mass extinction. Despite the moderate thermal maturity of the section, OM in all studied samples is dominantly terrestrial and/or continentally derived, recycled and refractory ancient OM. We argue that, as such, the quantity of the OM in the section mainly reflects changes in terrestrial vegetation and/or weathering, and not in

  14. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry; Elliott, Tim

    2009-02-01

    High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.

  15. Evolution of the Campanian Ignimbrite Magmatic System II: Trace Element and Th Isotopic Evidence for Open-System Processes

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Fowler, S.; Belkin, H.; de Vivo, B.

    2005-12-01

    The Campanian Ignimbrite, a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite was deposited at ~39.3 ka and represents the largest of a number of highly explosive volcanic events in the region near Naples, Italy. Thermodynamic modeling of the major element evolution using the MELTS algorithm (see companion contribution by Fowler et al.) provides detailed information about the identity of and changes in proportions of solids along the liquid line of descent during isobaric fractional crystallization. We have derived trace element mass balance equations that explicitly accommodate changing mineral-melt bulk distribution coefficients during crystallization and also simultaneously satisfy energy and major element mass conservation. Although major element patterns are reasonably modeled assuming closed system fractional crystallization, modeling of trace elements that represent a range of behaviors (e.g. Zr, Nb, Th, U, Rb, Sm, Sr) yields trends for closed system fractionation that are distinct from those observed. These results suggest open-system processes were also important in the evolution of the Campanian magmatic system. Th isotope data yield an apparent isochron that is ~20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open-system at the time of eruption. Because open-system processes can profoundly change isotopic characteristics of a magma body, these results illustrate that it is critical to understand the contribution that open-system processes make to silicic magma bodies prior to assigning relevance to age or timescale information derived from isotope systematics. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggest large-scale fluid-melt interaction at liquidus temperatures is unlikely. In the case of the magma body associated with

  16. Experimental Evidence for Fast Lithium Diffusion and Isotope Fractionation in Water-bearing Rhyolitic Melts at Magmatic Conditions

    NASA Astrophysics Data System (ADS)

    Cichy, S. B.; Till, C. B.; Roggensack, K.; Hervig, R. L.; Clarke, A. B.

    2015-12-01

    The aim of this work is to extend the existing database of experimentally-determined lithium diffusion coefficients to more natural cases of water-bearing melts at the pressure-temperature range of the upper crust. In particular, we are investigating Li intra-melt and melt-vapor diffusion and Li isotope fractionation, which have the potential to record short-lived magmatic processes (seconds to hours) in the shallow crust, especially during decompression-induced magma degassing. Hydrated intra-melt Li diffusion-couple experiments on Los Posos rhyolite glass [1] were performed in a piston cylinder at 300 MPa and 1050 °C. The polished interfaces between the diffusion couples were marked by addition of Pt powder for post-run detection. Secondary ion mass spectrometry analyses indicate that lithium diffuses extremely fast in the presence of water. Re-equilibration of a hydrated ~2.5 mm long diffusion-couple experiment was observed during the heating period from room temperature to the final temperature of 1050 °C at a rate of ~32 °C/min. Fractionation of ~40‰ δ7Li was also detected in this zero-time experiment. The 0.5h and 3h runs show progressively higher degrees of re-equilibration, while the isotope fractionation becomes imperceptible. Li contamination was observed in some experiments when flakes filed off Pt tubing were used to mark the diffusion couple boundary, while the use of high purity Pt powder produced better results and allowed easier detection of the diffusion-couple boundary. The preliminary lithium isotope fractionation results (δ7Li vs. distance) support findings from [2] that 6Li diffuses substantially faster than 7Li. Further experimental sets are in progress, including lower run temperatures (e.g. 900 °C), faster heating procedure (~100 °C/min), shorter run durations and the extension to mafic systems. [1] Stanton (1990) Ph.D. thesis, Arizona State Univ., [2] Richter et al. (2003) GCA 67, 3905-3923.

  17. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean

  18. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the

  19. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun

    2017-03-01

    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  20. Filling in the juvenile magmatic gap: Evidence for uninterrupted Paleoproterozoic plate tectonics

    NASA Astrophysics Data System (ADS)

    Partin, C. A.; Bekker, A.; Sylvester, P. J.; Wodicka, N.; Stern, R. A.; Chacko, T.; Heaman, L. M.

    2014-02-01

    Despite several decades of research on growth of the continental crust, it remains unclear whether the production of juvenile continental crust has been continuous or episodic throughout the Precambrian. Models for episodic crustal growth have gained traction recently through compilations of global U-Pb zircon age frequency distributions interpreted to delineate peaks and lulls in crustal growth through geologic time. One such apparent trough in zircon age frequency distributions between ∼2.45 and 2.22 Ga is thought to represent a pause in crustal addition, resulting from a global shutdown of magmatic and tectonic processes. The ∼2.45-2.22 Ga magmatic shutdown model envisions a causal relationship between the cessation of plate tectonics and accumulation of atmospheric oxygen over the same period. Here, we present new coupled U-Pb, Hf, and O isotope data for detrital and magmatic zircon from the western Churchill Province and Trans-Hudson orogen of Canada, covering an area of approximately 1.3 million km2, that demonstrate significant juvenile crustal production during the ∼2.45-2.22 Ga time interval, and thereby argue against the magmatic shutdown hypothesis. Our data is corroborated by literature data showing an extensive 2.22-2.45 Ga record in both detrital and magmatic rocks on every continent, and suggests that the operation of plate tectonics continued throughout the early Paleoproterozoic, while atmospheric oxygen rose over the same time interval. We argue that uninterrupted plate tectonics between ∼2.45 and 2.22 Ga would have contributed to efficient burial of organic matter and sedimentary pyrite, and the consequent rise in atmospheric oxygen documented for this time interval.

  1. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  2. Geochemical, Sr-Nd isotopic investigations and U-Pb zircon chronology of the Takht granodiorite, west Iran: Evidence for post-collisional magmatism in the northern part of the Urumieh-Dokhtar magmatic assemblage

    NASA Astrophysics Data System (ADS)

    Haghighi Bardineh, Seyyed Nematollah; Zarei Sahamieh, Reza; Zamanian, Hassan; Ahmadi Khalaji, Ahmad

    2018-03-01

    Subduction of Neo-Tethys lithosphere beneath the Iranian plateau during Neogene led to the formation of a NW-SE trending volcano-plutonic zone called Urumieh-Dokhtar magmatic assemblage (UDMA). The Takht granodiorite (NE of Hamedan Province, western Iran) belongs to the UDMA and has geochemical properties of post-collisional granitoids that was formed after the collision of Arabian and Iranian plateaus. This body contains rounded mafic micro-granular enclaves with relatively gradational rims indicating the effect of magma mixing/mingling in formation of the granodiorite body. The determination of U-Pb zircon age proved the Takht granodiorite was formed at Miocene (16.8 ± 0.24 Ma). The Nd-Sr isotope ratios and Sr/Nd, Nb/La and Th/U ratios of the granodiorite confirmed the magma was formed mainly by melting of continental crust, and its enclaves originated from a mantle derived mafic magma. Samples show negative anomalies in Nb, Sr, Ti, P and Eu, whereas positive anomalies in Th, K, Zr, Yb and Rb that reveals contribution of mantle and crustal materials in their generation. The Takht granodiorite has geochemical features of A2-type granites and also shows properties of both the volcanic arc and within plate magmatism association granitoids (high levels of LILEs and HFSEs). Regarding this interpretation and also post-collisional tectonic regime, it can be concluded that post-collision extensions caused deep faults in the UDMA that let mantle derived magmas rise up to the thicken crust. Such magma triggered melting in the middle crustal levels and was contaminated with crustal materials to generate granodiorite and enclave magmas respectively. The results of the current study decipher collision between the Arabian and the Iranian plateaus occurred before Miocene and the magmatism in the UDMA continued after closure of Neo-Tethys.

  3. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    USGS Publications Warehouse

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  4. History of the Magmatic Feeding System of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Orsi, G.; Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.

    2007-12-01

    The definition of the magmatic feeding system of active volcanoes, in terms of composition, time-scale of crystallization, relation between composition of the erupted magma and structural position of vents, magma chamber processes and architecture, is of extreme importance for the hazard evaluation. The studies that are carried out for the definition of the magmatic systems include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb). The Campi Flegrei caldera magmatic structure is characterized by deep and shallow magma chambers. In the deep reservoir (20-10 km depth) mantle derived magmas differentiate and are contaminated with continental crust. In the shallow reservoirs isotopically distinct magmas further differentiate, mix and mingle before the eruptions. These processes generated isotopically distinct components that were variably involved along different structures of the Campi Flegrei caldera during time. At Campi Flegrei caldera the relation between the structural position of the eruptive vent, for the last 14 ka of activity, and the isotopic composition of the emitted magma allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition, and the magma chamber location and processes, of the future eruption, according to the position of the vent

  5. Monzonitoid magmatism of the copper-porphyritic Lazurnoe deposit (South Primor'e): U-Pb and K-Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic-geochemical studies

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.

    2011-05-01

    Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.

  6. Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: Evidence from carbon, helium, and chlorine

    NASA Astrophysics Data System (ADS)

    Genereux, David P.; Webb, Mathew; Solomon, D. Kip

    2009-08-01

    C, He, and Cl concentrations and isotopes in groundwater and surface water in a lowland Costa Rican rain forest are consistent with the mixing of two distinct groundwaters: (1) high-solute bedrock groundwater representing interbasin groundwater flow (IGF) into the rain forest and (2) low-solute local groundwater recharged in the lowlands. In bedrock groundwater, high δ13C (-4.89‰), low 14C (7.98 pM), high R/RA for He (6.88), and low 36Cl/Cl (17 × 10-15) suggest that elevated tracer concentrations are derived from magmatic outgassing and/or weathering of volcanic rock beneath nearby Volcan Barva. In local groundwater, the magmatic signature is absent, and data suggest atmospheric sources for He and Cl and a biogenic soil gas CO2 source for dissolved inorganic carbon. Dating of 14C suggests that the age of bedrock groundwater is 2400-4000 years (most likely at the lower end of the range). Local groundwater has 14C > 100 pM, indicating the presence of "bomb carbon" and thus ages less than ˜55 years. Overall, data are consistent with a conceptual hydrologic model originally proposed on the basis of water budget and major ion data: (1) large variation in solute concentrations can be explained by mixing of the two distinct groundwaters, (2) bedrock groundwater is much older than local groundwater, (3) elevated solute concentrations in bedrock groundwater are derived from volcanic fluids and/or rock, and (4) local groundwater has not interacted with volcanic rock. Tracers with different capabilities converge on the same hydrologic interpretation. Also, transport of magmatic CO2 into the lowland rain forest via IGF seems to be significant relative to other large ecosystem-level carbon fluxes.

  7. Mesozoic to Cenozoic magmatic history of the Pamir

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2018-01-01

    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 < 60 wt.%), alkaline, and isotopically juvenile (-2 to +2 zircon εHf(t)) than the South Pamir batholith. Late Cretaceous magmatism in the Pamir is interpreted here to be the result of extension associated with roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to

  8. Detrital Zircon U-Pb and Hf-isotope Constrains on Basement Ages, Granitic Magmatism, and Sediment Provenance in the Malay Peninsula

    NASA Astrophysics Data System (ADS)

    Sevastjanova, Inga; Clements, Benjamin; Hall, Robert; Belousova, Elena; Pearson, Norman; Griffin, William

    2010-05-01

    The Malay Peninsula forms the western part of central Sundaland in SE Asia. Sundaland comprises Indochina, the Thai-Malay Peninsula, Sumatra, Java, Borneo, and the shallow shelf between these landmasses. It is a composite region of continental crustal fragments that are separated by sutures that represent remnant ocean basins and volcanic arcs. The Malay Peninsula includes two of these fragments - East Malaya and Sibumasu - separated by the Bentong-Raub Suture Zone. The latter is a Palaeo-Tethyan ocean remnant. Granitoids of the Malay Peninsula are the major sources of detrital zircon in Sundaland. East Malaya is intruded by Permian-Triassic Eastern Province granitoids interpreted as products of Palaeozoic subduction of oceanic crust beneath the East Malaya Volcanic Arc. Sibumasu is intruded by Triassic Main Range Province granitoids interpreted as syn- to post-collisional magmatism following suturing to East Malaya. Locally, there are minor Late Cretaceous plutons. Basements of Sibumasu and East Malaya are not exposed and their ages are poorly constrained. The exact timing of the collision between these fragments is also contentious. In order to resolve these uncertainties, 752 U-Pb analyses from 9 samples were carried out on detrital zircons from modern rivers draining the Malay Peninsula and, of these, 243 grains from 6 samples were selected for Hf-isotope analyses. U-Pb zircon ages show that small numbers of Neoarchean-Proterozoic grains are consistently present in all samples, but do not form prominent populations. Permian-Triassic populations are dominant. Only one sample contains a small Jurassic population probably sourced from the area of Thailand and most likely recycled from fluvial-alluvial Mesozoic 'red-beds'. Late Cretaceous populations are locally abundant. Hf-isotope crustal model ages suggest that basement beneath the Malay Peninsula is heterogeneous. Some basement may be Neoarchean but there is no evidence for basement older than 2.8 Ga beneath

  9. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    NASA Astrophysics Data System (ADS)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic

  10. Thermal-field propagation in an exocontact zone of a magmatic body and its impact on radiogenic isotope concentrations in minerals.

    PubMed

    Brandt, I S; Rasskazov, S V; Brandt, S B; Ivanov, A V

    2002-03-01

    In application of radioactive isotope systems (K-Ar, Rb-Sr etc.) during the last decades, experience was gained not only on their geochronometrical uses, but also on estimations of some important parameters of geological processes, especially temperatures and durations of superimposed thermal events. In this paper, the formation of an exocontact thermal field of a magmatic intrusion is considered as a spreading of a thermal source delta-function. Appropriate solutions of the heat-transfer equation are deduced and correlated with diffusion parameters of the radiogenic argon, coupling radioactive, thermal and kinetic parameters in an exocontant zone of a magmatic body. These solutions were used for quantitative reinterpretations of data taken from Hart's classical paper [The petrology and isotopic mineral age relations of a contact zone in the Front Range, Colorado. J. Geol., 1964, v. 72, pp. 493-525]. Theoretic and measured radiogenic argon and strontium concentrations within exocontact aureoles are found to be in good concordance.

  11. History of the magmatic feeding system of the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Orsi, G.

    2007-05-01

    The definition of the magmatic feeding system of active volcanoes in terms of architecture, composition, crystallization time-scale, relationships between composition of the erupted magmas and structural position of the vents, and magma processes, is of paramount importance for volcanic hazards evaluation. Investigations aimed at defining the Campi Flegeri magmatic system, include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb, Th,U). The magmatic feeding system of the Campi Flegrei caldera is characterized by deep and shallow magma reservoirs. In the deep reservoirs (20-10 km depth) mantle- derived magmas differentiated and were contaminated by continental crust. In the shallow reservoirs isotopically distinct magmas, further differentiated, contaminated, and mixed and mingled before eruptions. These processes generated isotopically distinct components, variably interacting with the different structural elements of the Campi Flegrei caldera through time. The relationships between the structural position of the eruption vents, during the last 15 ka of activity, and the isotopic composition of the magmas erupted at the Campi Flegrei caldera allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition of the magma feeding a future eruption, according to vent position.

  12. Magmatism at different crustal levels in the ancient North Cascades magmatic arc

    NASA Astrophysics Data System (ADS)

    Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.

    2013-12-01

    material, possibly during magma production or transport. The Seven-Fingered Jack intrusive complex, emplaced around 15-20 km, preserves a much more discontinuous record of intrusion than the Black Peak. Our data indicate major magmatism in the complex occurred between ~92.1-91.1 Ma. Inheritance in the Seven-Fingered Jack is common, particularly along contacts between intrusions. The Tenpeak intrusive complex, assembled between ~92 Ma and 89 Ma, represents one of the deepest exhumed complexes in the North Cascades. Our geochronology indicates that plutons comprising the complex were intruded rapidly (<200 ka) and followed by periods of magmatic quiescence. Contact relations between contemporaneous intrusions are often mixed, further supporting rapid assembly. Zircon systematics in the Tenpeak are relatively simple, showing no evidence for inheritance from the surrounding host rock or from earlier intrusions. However, zircon oxygen isotope data indicates many magmas contain significant crustal input. The Black Peak, Seven-Fingered Jack, and Tenpeak intrusions illustrate the complicated nature of magmatism at different crustal levels in the 92-87 Ma North Cascades magmatic arc. Our data support incremental assembly of these complexes, but show that many features, such as style of emplacement, zircon chemical and temporal systematics, and magma composition vary between these intrusions.

  13. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan)

    NASA Astrophysics Data System (ADS)

    Ewing, Tanya A.; Müntener, Othmar

    2018-05-01

    The Cretaceous-Paleogene Kohistan arc complex, northern Pakistan, is renowned as one of the most complete sections through a preserved paleo-island arc. The Jijal Complex represents a fragment of the plutonic roots of the Kohistan arc, formed during its early intraoceanic history. We present the first Hf isotope determinations for the Jijal Complex, made on rutile from garnet gabbros. These lithologies are zircon-free, but contain rutile that formed as an early phase. Recent developments in analytical capabilities coupled with a careful analytical and data reduction protocol allow the accurate determination of Hf isotope composition for rutile with <30 ppm Hf for the first time. Rutile from the analysed samples contains 5-35 ppm Hf, with sample averages of 13-17 ppm. Rutile from five samples from the Jijal Complex mafic section, sampling 2 km of former crustal thickness, gave indistinguishable Hf isotope compositions with εHf(i) ranging from 11.4 ± 3.2 to 20.1 ± 5.7. These values are within error of or only slightly more enriched than modern depleted mantle. The analysed samples record variable degrees of interaction with late-stage melt segregations, which produced symplectitic overprints on the main mineral assemblage as well as pegmatitic segregations of hydrous minerals. The indistinguishable εHf(i) across this range of lithologies demonstrates the robust preservation of the Hf isotope composition of rutile. The Hf isotope data, combined with previously published Nd isotope data for the Jijal Complex garnet gabbros, favour derivation from an inherently enriched, Indian Ocean type mantle. This implies a smaller contribution from subducted sediments than if the source was a normal (Pacific-type) depleted mantle. The Jijal Complex thus had only a limited recycled continental crustal component in its source, and represents a largely juvenile addition of new continental crust during the early phases of intraoceanic magmatism. The ability to determine the Hf

  14. Geological, geochemical and isotope diversity of 134 Ma dykes from the Florianópolis Dyke Swarm, Paraná Magmatic Province: Geodynamic controls on petrogenesis

    NASA Astrophysics Data System (ADS)

    Florisbal, L. M.; Janasi, V. A.; Bitencourt, M. F.; Nardi, L. V. S.; Marteleto, N. S.

    2018-04-01

    The Florianópolis Dyke Swarm (FDS), one of the major dyke swarms belonging to the Early cretaceous (135-131 Ma) Paraná Magmatic Province, is largely dominated by high Sr-Ti-P basalts that are confirmed here as feeders of the unique Urubici (= Khumib) lavas of the Paraná and Edendeka lava piles on the basis of their age and geochemistry. Our study integrates field, petrographic, whole-rock geochemistry, and Sr-Nd-Pb isotope geochemistry of representative samples from three main areas of exposition (Santa Catarina Island, Garopaba and Pinheira beaches), thus encompassing the whole extension of the FDS. Compared to the Urubici lavas, the dykes have usually higher contents of LILE and LREE, more radiogenic Sr and Pb, and more unradiogenic Nd, features attributed to a more pronounced interaction with melts derived from the country rocks registered in the basic magmas that remained in the conduits. Some of these dykes show strongly interactive contacts that must be part of a wider zone of crustal melting, probably more developed at greater depths. Small volumes of intermediate to acidic rocks form the cores of some composite dykes, and correspond to products of fractional crystallization from Urubici basalts contaminated with high Rb/Sr, and U/Th crustal melts (probably derived from Neoproterozoic granites), as indicated by geochemical and Sr-Nd-Pb isotope data. The chemical and isotope signatures of the less contaminated FDS basalts and related Urubici lavas do not show clear evidence of inputs from primitive mantle, and seem heavily influenced by enriched mantle. This suggests that the mantle wedge that was affected by subduction during the Neoproterozoic may have been frozen and coupled to the base of the lithospheric plate where the Early cretaceous magmatism occurred. A control of previous tectonic limits on the sources of the Urubici basalts seems evident, since they seem to be related to the younger lithosphere from the South Domain, related to the Florian

  15. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chia; Song, Sheng-Rong; Wang, Pei-Ling; Wu, Chung-Che; Mii, Horng-Sheng; MacDonald, John; Shen, Chuan-Chou; John, Cédric M.

    2017-11-01

    The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies using more than 21 drilled wells have been performed since the 1960s. However, there are still controversies regarding the heat and fluid sources due to the tectonically complicated geological setting. To clarify the heat and fluid sources, we analyzed clumped isotopes with carbon and oxygen isotopic compositions of calcite scaling in geothermal wells and veins on outcrops and calculated the δ18O values of the source fluids. Two populations of δ18O values were calculated: -5.8 ± 0.8‰ VSMOW from scaling in the well and -1.0 ± 1.6‰ to 10.0 ± 1.3‰ VSMOW from outcropping calcite veins, indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, we propose a two-reservoir model: the shallow reservoir provides fluids from meteoric water for the scaling sampled from wells, whereas the deep reservoir provides magmatic fluids from deep marble decarbonization recorded in outcropping calcite veins.

  16. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    USGS Publications Warehouse

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this

  17. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.

    2012-12-01

    Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, fluid-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? So far, the deep slab dehydration hypothesis had strong support, but the hydrated mantle wedge idea is advancing supported by studies of fluid-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and fluid-mobile element reservoirs for subduction: their dehydration causes large fluid and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from hydration at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil

  18. Mantle sources for Central Atlantic Magmatic Province basalts from Hf isotopes

    NASA Astrophysics Data System (ADS)

    Elkins, L. J.; Marzoli, A.; Bizimis, M.; Meyzen, C. M.; Callegaro, S.; Sorsen, N.; Lassiter, J. C.; Ernesto, M.

    2017-12-01

    The Central Atlantic Magmatic Province (CAMP) was one of the most voluminous LIP events in Earth history and likely triggered the end-Triassic mass extinction. The tectonic and mantle processes that produced such significant magmatic emplacement are thus of great interest. To further explore the origins of CAMP, we present new 176Hf/177Hf isotope data for a broad geographic sampling of CAMP dikes, sills, and basalt flows. We find that basaltic intrusions from the Carolinas in Eastern North America trend along a shallower slope than the terrestrial array on a diagram of 176Hf/177Hf vs. 143Nd/144Nd. This trend may reflect the presence of variable quantities of sediment-derived material in the mantle source region. This is consistent with previous suggestions that the asthenosphere beneath CAMP has been partially metasomatised by fluids derived from subducted sediments, as well as with isotopic trends observed in other LIP, such as Karoo [Jourdan et al., 2007, Jour. Petrology, doi:10.1093/petrology/egm010]. Distinct from the Carolina trend, we further observe that high-TiO2 basalts from Amazonia exhibit unusually radiogenic 176Hf/177Hf for a given 208Pb/206Pb ratio. The high-TiO­2 basalts, which trend towards EM1-type compositions, may be asthenospheric melts that have experienced the addition of melts from local subcontinental lithospheric mantle (SCLM). Similarly high-TiO2 CAMP rocks from Sierra Leone may likewise have incorporated enriched lithospheric melts of lamproite-like composition in the source region [Callegaro et al., JPet, accepted; GSA Abstract #302853, 2017]. Low-TiO2 basalts from the same region in Brazil and of similar age to the high-TiO2 basalts lack the observed radiogenic 176Hf/177Hf ratios. This suggests that the melt source region beneath Brazil was heterogeneous, containing variable material with relatively radiogenic 176Hf/177Hf ratios, perhaps due to the greater age of subcontinental lithosphere and the presence of garnet. It remains unclear

  19. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  20. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A

  1. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  2. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali

    2015-04-01

    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  3. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons frommore » several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.« less

  4. Geochronology, geochemistry and isotope tracing of the Oligocene magmatism of the Buchim-Damjan-Borov Dol ore district: Implications for timing, duration and source of the magmatism

    NASA Astrophysics Data System (ADS)

    Lehmann, St.; Barcikowski, J.; von Quadt, A.; Gallhofer, D.; Peytcheva, I.; Heinrich, C. A.; Serafimovski, T.

    2013-11-01

    Timing, source and magmatic evolution of the intrusions in the Buchim-Damjan-Borov Dol ore district of the Former Yugoslav Republic of Macedonia (F.Y.R.O.M.) have been studied. They intrude the Circum Rhodope Unit close to the contact with the Vardar Zone and are a part of the Late Eocene-Oligocene Macedonian Rhodope-North Aegean belt. The magmatism at Buchim-Damjan-Borov Dol occurred between 24.04 ± 0.77 and 24.51 ± 0.89 Ma, as indicated by chemical-annealing (CA)-LA ICP-MS zircon dating. Major element, trace and rare earth element analyses have been performed on the various intrusive rocks. All ore bearing magmas were classified as trachyandesitic, except the youngest intrusion which is not associated with mineralization; the Black Hill locality (24.04 ± 0.77 Ma) shows a trachytic composition. The distribution of the trace elements, enrichment of large ion lithophile elements (LILE) and depletion in high field strength elements (HFSE), indicates subduction-related magmatism; most of the magmas follow a calc-alkaline fractionation trend with shoshonitic affinities; additionally, Sr/Y (10 to 90) and La/Yb values show some similarities to adakite-like magmas. Sr and Nd isotope ratios (Sri = 0.70658 to 0.70740 and Ndi = 0.512425-0.512497) show that the magmatic products were slightly contaminated by continental crust material, e.g., the Variscan/Cadomian basement. In the Late Eocene-Oligocene belt the magmatism between 29 and 35 Ma is dominated by crustal melting with an increase in the mantle contribution between 20 and 27 Ma. We suggest the following scenario for the magmatic history of the Buchim-Damjan-Borov Dol ore district: a slab rollback of an oceanic slab located further to the SW which led to extensional and compressional features in upper levels of the continental crust. In the middle to upper crust three consecutive crystallization stages occurred at variable depths as indicated by amphibole zonation. Mixing of newly formed crust with mantle

  5. Magmatic history of mt. Vesuvius on the basis of new geochemical and isotopic data

    NASA Astrophysics Data System (ADS)

    Arienzo, I.; Civetta, L.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Giordano, F.; Orsi, G.

    2003-04-01

    Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano itself, volcanic risk is very high. Therefore, the knowledge of the structure and behaviour of the magmatic system is fundamental for both interpretation of any change in the dynamics of the volcano and eruption forecasting. We have produced new geochemical and isotopic data on rocks from a 240-m deep core drilled along the southern slope of the volcano. The investigated portion of the core includes lava flows aged between 39 and 20 ka. The obtained results, together with those already available for the younger than 20 ka activity, have allowed us to reconstruct the complex history of the magmatic system. Mt. Vesuvius magmas, originated in a mantle source variably contaminated by slab derived components, stagnate in a deep complex reservoir, located between 10 and 20 km of depth, where they differentiate and contaminate with continental crust. From the deep reservoir magmas discontinuously rise up to shallow reservoirs, where they differentiate, mingle and mix, feeding the volcanic activity. The shallow reservoirs are located at depth of about 3-5 km before Plinian eruptions, and of less than 1 km before strombolian activity.

  6. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  7. Using the magmatic record to constrain the growth of continental crust-The Eoarchean zircon Hf record of Greenland

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Vervoort, Jeffrey D.

    2018-04-01

    Southern West Greenland contains some of the best-studied and best-preserved magmatic Eoarchean rocks on Earth, and these provide an excellent vantage point from which to view long-standing questions regarding the growth of the earliest continental crust. In order to address the questions surrounding early crustal growth and complementary mantle depletion, we present Laser Ablation Split Stream (LASS) analyses of the U-Pb and Hf isotope compositions of zircon from eleven samples of the least-altered meta-igneous rocks from the Itsaq (Amîtsoq) Gneisses of the Isukasia and Nuuk regions of southern West Greenland. This analytical technique allows a less ambiguous approach to determining the age and Hf isotope composition of complicated zircon. Results corroborate previous findings that Eoarchean zircon from the Itsaq Gneiss (∼3.85 Ga to ∼3.63 Ga) were derived from a broadly chondritic source. In contrast to the Sm-Nd whole rock isotope record for southern West Greenland, the zircon Lu-Hf isotope record provides no evidence for early mantle depletion, nor does it suggest the presence of crust older than ∼3.85 Ga in Greenland. Utilizing LASS U-Pb and Hf data from the Greenland zircons studied here, we demonstrate the importance of focusing on the magmatic (rather than detrital) zircon record to more confidently understand early crustal growth and mantle depletion. We compare the Greenland Hf isotope data with other Eoarchean magmatic complexes such as the Acasta Gneiss Complex, Nuvvuagittuq greenstone belt, and the gneissic complexes of southern Africa, and all lack zircons with suprachondritic Hf isotope compositions. In total, these data suggest only a very modest volume of crust was produced during (or survived from) the Hadean and earliest Eoarchean. There remains no record of planet-scale early Earth mantle depletion in the Hf isotope record prior to 3.8 Ga.

  8. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism

    NASA Astrophysics Data System (ADS)

    Bustamante, Camilo; Cardona, Agustín; Archanjo, Carlos J.; Bayona, Germán; Lara, Mario; Valencia, Victor

    2017-04-01

    Between the Late Cretaceous and Paleogene, the Northern Andes experienced subduction and collision due to the convergence between the oceanic Caribbean Plate and the continental margin of Ecuador and Colombia. Subduction-related calc-alkaline plutonic rocks form stocks of limited areal expression or local batholiths that consist mostly of diorites and granodiorites. We investigated two stocks (Hatillo and Bosque) exposed in the Central Cordillera of Colombia that had U-Pb zircon crystallization ages between 60 and 53 Ma. Relatively low radiogenic Sr, Nd and Pb isotopes from selected samples account for a heterogeneous crustal source, whereas negative anomalies of Nb and Ti, high LREE/HREE and Sr/Y > 28 ratios indicate that the magmas were emplaced in a continental magmatic arc setting. ƐHf(i) values of the dated zircons were between - 4 and + 7 and suggest some contamination of the magmas during their ascent through the crust. The high Sr/Y ratios recorded both in the investigated plutons as well as in other Paleogene plutons in the Central Cordillera suggest that the magmas differentiate in high-pressure conditions (garnet stability field). This differentiation probably occurred at the base of a thickened crust through the Mesozoic subduction and accretion of oceanic arcs to the continental margin during the Lower Cretaceous and Paleocene. The existence of other Paleogene granitoids with evidence of shallower differentiation signatures may be also an inheritance of along strike variations in the Northern Andean continental crust due to Cretaceous to Paleogene oblique convergence. The Hf isotope results from Paleogene detrital zircons from volcanoclastic rocks of the eastern Colombian basins reinforce the possibility of a distal magmatic focus.

  9. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  10. Using Oxygen Isotopes of Zircon to Evaluate Magmatic Evolution and Crustal Contamination in the Halifax Pluton, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Murray, K. E.; Lackey, J.; Valley, J. W.; Nowak, R.

    2007-12-01

    Oxygen isotope analysis of zircon (Zrc) is well suited for parsing out the magmatic history in granitoids. The Halifax pluton is the largest pluton (1060 km2) in the peraluminous South Mountain batholith. The Halifax pluton is mapped as a concentrically zoned body, with outer units comprising granodiorite, monzogranite and a mafic porphyry; these units are locally rich in metasedimentary xenoliths and magmatic enclaves. The exterior units surround a more felsic core of leucogranite [1]. Previous oxygen isotope studies of the pluton report high whole rock δ18O values that range from 10.7-11.7‰ [2], and indicate a significant supracrustal component in the source of the pluton. We report the first δ18O(Zrc) values from the Peggy's Cove monzogranite and an associated mafic porphyry. Samples were collected across 30 km of discontinuous exposures of the monzogranite. Values of δ18O(Zrc) vary from 7.71-8.26‰ (average = 8.15±±0.32‰(2 S.D.); n = 10). Small but systematic E-W regional variation in δ18O(Zrc) values suggests heterogeneous magmatic contamination within the monzogranite. Meter-scale magmatic enclaves, observed in close association with pods of diverse xenoliths and smaller enclaves at the western Cranberry Head locality, are slightly enriched in δ18O relative to the host monzogranite. These data combined support a model of magma mingling and heterogeneous mixing at the rim of the pluton, with contamination by high-δ18O rocks. Additional high-δ18O(Zrc) data from granodiorites on the northern margin of the Halifax pluton concur with these observations [3]. Typically, closed magmatic systems show increasing δ18O with SiO2 because more felsic magmas have a greater percentage of high-δ18O minerals such as quartz and feldspar. Thus, the Halifax pluton appears to exhibit an enrichment trend opposite of what would be expected of a closed evolving system. Emplacement mechanisms for the Halifax pluton proposed by previous workers suggest that the outer

  11. A hidden Late Cretaceous arc and subsequent magmatic events in the Caucasus-Iran-Anatolia (CIA) orogenic belt: Detrital zircon U-Pb and Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Tien, C. Y.; Lin, Y. C.; Chu, M. F.; Chung, S. L.; Bi˙ngöl, A. F.

    2017-12-01

    The Caucasus-Iran-Anatolia (CIA) orogenic belt formed by "Turkic-type orogeny" consists mainly of subduction-accretion complexes following the collision between Eurasia and Arabia and the closure of Neotethy. This study reports U-Pb and Hf isotopic data of detrital zircon separates from five Eocene to mid-Miocene sandstone samples from Divrigi and Duranlar in the west to the Mus basin in the east, all locating in the northern part of the Bitlis-Zagros suture zone. The U-Pb age data suggest four main magmatic episodes: (1) 100-70 Ma, (2) 60-40 Ma, (3) 30 Ma, and (4) 15 Ma. The Late Cretaceous zircons recovered mainly from the Mus basin are marked by a significant Hf isotopic variation over time, with ɛHf(T) values dropping from +15 to -10. Zircons from the second and third episodes show spatial variations in isotopic compositions, with positive ɛHf(T) values (+10 to +5) in the Mus basin and heterogeneous ɛHf(T) values (+10 to -10) in the west. The fourth and youngest episode of zircons, mainly from Duranlar area, shows uniform ɛHf(T) values around +5. We attribute the Late Cretaceous episode of zircons to the broadly coeval Elazig arc magmatism that, according to our counterpart study, occurred as a short-lived, intra-oceanic arc system by subduction initiation after the formation of Neotethyan ophiolites in the region. Moreover, we argue that this Late Cretaceous arc system may have existed more widely within the southern branch of Neothethys than that suggested by present-day outcrops. The dramatic change in Hf isotopic composition from 100 to 70 Ma, also observed in the rock record by our counterpart study, may be interpreted as a result of subduction to accretion processes. The remaining three episodes of zircons are related to younger stages of magmatism within or around the suture zone that remains poorly studied. Our results indicate that detrital zircon is a useful tool to uncover "hidden" magmatic records in the CIA and other "Turkic-type" orogenic

  12. Isotopic Equilibrium in Mature Oceanic Lithosphere: Insights From Sm-Nd Isotopes on the Corsica (France) Ophiolites

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Hofmann, A. W.; Raczek, I.; Romairone, A.

    2003-12-01

    .6-8.9. Sm/Nd isotopic compositions of the peridotites are therefore consistent with a Jurassic age of melting and melt impregnation, and point to isotopic compositional similarities between depleted peridotites and associated magmatic rocks. In a regional geodynamic context, Sm/Nd isotope data for the Mt.Maggiore gabbro-peridotite association represent the first record of the attainment of a mature oceanic stage of the Ligurian Tethys ocean. Also, the data presented provide striking evidence of the existence of isotopic equilibrium between melts and their mantle residue. References Snow et al. (1994), Nature 371, 57-60. Salters and Dick (2002), Nature 418,68-72.

  13. High D/H ratios of water in magmatic amphiboles in Chassigny: Possible constraints on the isotopic composition of magmatic water on Mars

    NASA Technical Reports Server (NTRS)

    Watson, L. L.; Hutcheon, I. D.; Epstein, S.; Stolper, E. M.

    1993-01-01

    The D/H ratios of kaersutitic amphiboles contained in magmatic inclusions in the Shergottites Nakhlites Chassignites (SNC) meteorite Chassigny using the ion microprobe were measured. A lower limit on the delta(D(sub SMOW)) of the amphiboles is +1420 +/- 47 percent. Assuming Chassigny comes from Mars and the amphiboles have not been subject to alteration after their crystallization, this result implies either that recycling of D-enriched Martian atmosphere-derived waters into the planetary interior has taken place, or that the primordial hydrogen isotopic composition of the interior of Mars differs significantly from that of the Earth (delta(D(sub SMOW)) approximately 0 percent). In addition, the measurements indicate that the amphiboles contain less than 0.3 wt. percent water. This is much lower than published estimates, and indicates a less-hydrous Chassigny parent magma than previously suggested.

  14. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    NASA Astrophysics Data System (ADS)

    Castillo, Paterno; Hilton, David; Halldórsson, Sæmundur

    2014-09-01

    The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP) in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS) has a deep mantle contribution (Hilton et al., 2011). New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean) lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean) lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014).

  15. Tibetan Magmatism Database

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Kapp, Paul

    2017-11-01

    A database containing previously published geochronologic, geochemical, and isotopic data on Mesozoic to Quaternary igneous rocks in the Himalayan-Tibetan orogenic system are presented. The database is intended to serve as a repository for new and existing igneous rock data and is publicly accessible through a web-based platform that includes an interactive map and data table interface with search, filtering, and download options. To illustrate the utility of the database, the age, location, and ɛHft composition of magmatism from the central Gangdese batholith in the southern Lhasa terrane are compared. The data identify three high-flux events, which peak at 93, 50, and 15 Ma. They are characterized by inboard arc migration and a temporal and spatial shift to more evolved isotopic compositions.

  16. Synchronous partial melting, deformation, and magmatism: evidence from in an exhumed Proterozoic orogen

    NASA Astrophysics Data System (ADS)

    Levine, J. S. F.; Mosher, S.

    2017-12-01

    Older orogenic belts that now expose the middle and lower crust record interaction between partial melting, magmatism, and deformation. A field- and microstructural-based case study from the Wet Mountains of central Colorado, an exhumed section of Proterozoic rock, shows structures associated with anatexis and magmatism, from the grain- to the kilometer-scale, that indicate the interconnection between deformation, partial melting, and magmatism, and allow reconstructions of the processes occurring in hot active orogens. Metamorphic grade, along with the degree of deformation, partial melting, and magmatism increase from northwest to southeast. Deformation synchronous with this high-grade metamorphic event is localized into areas with greater quantities of former melt, and preferential melting occurs within high-strain locations. In the less deformed northwest, partial melting occurs dominantly via muscovite-dehydration melting, with a low abundance of partial melting, and an absence of granitic magmatism. The central Wet Mountains are characterized by biotite dehydration melting, abundant former melt and foliation-parallel inferred melt channels along grain boundaries, and the presence of a nearby granitic pluton. Rocks in the southern portion of the Wet Mountains are characterized by partial melting via both biotite dehydration and granitic wet melting, with widespread partial melting as evidenced by well-preserved former melt microstructures and evidence for back reaction between melt and the host rocks. The southern Wet Mountains has more intense deformation and widespread plutonism than other locations and two generations of dikes and sills. Recognition of textures and fabrics associated with partial melting in older orogens is paramount for interpreting the complex interplay of processes occurring in the cores of orogenic systems.

  17. Stable isotope geochemistry of fumaroles: an insight into volcanic surveillance

    NASA Astrophysics Data System (ADS)

    Panichi, C.; La Ruffa, G.

    2001-12-01

    In active volcanic environments magmatic water may accumulate in the volcanic-hosted geothermal systems, or, more rarely may reach the surface along deep fractures inside the volcano crater. Knowledge of magmatic contribution to emerging fluids in volcanic active areas is critical to understanding the chemical evolution of the magma, the conditions in which it exists in the crust, and the mechanisms by which it erupts in the crust. The source of volatiles (especially water) is also of interest when eruptions are driven by the expansion of hydrothermal fluids against atmospheric pressure, without the involvement of fresh magma ('hydrothermal' or 'phreatomagmatic' eruptions). In both cases the occurrence of volcanic and/or phreatic activities is likely to be preceded by substantial isotopic and chemical changes in the crater fumarolic systems. H and O isotopic composition of condensed water from crater fumaroles appear to be able to give strong evidence for the existence of magmatic waters in the high-temperature manifestations of the volcanic systems. Isotopic data and specific hydrological models from seven different volcanic systems (Galeras Volcano, Colombia, Kilauea Volcano, Hawaii, Kudryvy Volcano, Kuril volcanic arc, Mt St Helens, USA; Guagua Pichincha, Ecuador; Vulcano island, Italy; the Aegean Volcanic Arc, Greece) are discussed in order to highlight the possibility to use those isotopic parameters in the assessment of the environmental risks of an active volcanic area.

  18. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus

    NASA Astrophysics Data System (ADS)

    Graff, J. R.; Ernst, R. E.; Samson, C.

    2018-05-01

    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  19. Active Magmatic Underplating in Western Eger Rift, Central Europe

    NASA Astrophysics Data System (ADS)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst

    2017-12-01

    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  20. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    Geology, 85, 457-481. Heinrich, C. A., and Candela, P. A. 2014: 13.1 - Fluids and Ore Formation in the Earth's Crust, in Holland, H. D., and Turekian, K. K., eds., Treatise on Geochemistry (Second Edition): Oxford, Elsevier, 1-28. Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Sillitoe, R. H., 2010: Porphyry copper systems: Economic Geology (Invited Special Paper), 105, 3-41. Sun, S. and Eadington, J. 1987: Oxygen Isotope Evidence for the Mixing of Magmatic and Meteoric Waters during Tin Mineralization in the Mole Granite, New South Wales, Australia: Economic Geology, 82, 43-52. Weis, P., Driesner, T., & Heinrich, C.A. 2012: Porphyry-Copper Ore Shells Form At Stable Pressure Temperature Fronts Within Dynamic Fluid Plumes: Science, 338, 1613-1616. Williams-Jones, A. E., and Migdisov, A. A., 2014: Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems: Economic Geology, Special Publication, 18, 77-95.

  1. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.C.; Bai, G.P.; Hamilton, P.J.

    1995-07-03

    Dawsonite, NaAlCO{sub 3}(OH){sub 2}, is widespread as a cement, replacement, and cavity filling in Permo-Triassic sedimentary rocks of the Bowen-Gunnedah-Sydney basin system eastern Australia. The origin of dawsonite in these rocks was studied by petrographic and stable isotope analysis. Dawsonite {delta}{sup 13}C (PDB) values range from {minus}4.0 to +4.1{per_thousand} and are remarkably consistent throughout the Bowen-Gunnedah-Sydney basin system. These values indicate either a marine carbonate or magmatic source for carbon in the dawsonite. A magmatic carbon source is considered more likely on the basis that (1) evidence of and the cause for widespread marine carbonate dissolution in the sedimentary successionsmore » are not apparent, (2) dawsonite is widespread in both marine and nonmarine facies, (3) the region has been the site of major igneous activity, (4) other dawsonite deposits of similar carbon isotopic composition are linked to igneous activity, and (5) magmatic CO{sub 2} accumulations are known in parts of the Bowen-Gunnedah-Sydney basin system. The timing of igneous activity in the Bowen Basin constrains the timing of dawsonite formation in the Bowen-Gunnedah-Sydney basin system to the Tertiary, consistent with textural relationships, which indicate that dawsonite formed late during the burial history of the Permo-triassic sequences. The distribution and interpreted origin of dawsonite implies magmatic CO{sub 2} seepage in the Bowen-Gunnedah-Sydney basin system on a continental scale.« less

  2. Distinct 238U/235U ratios and REE patterns in plutonic and volcanic angrites: Geochronologic implications and evidence for U isotope fractionation during magmatic processes

    NASA Astrophysics Data System (ADS)

    Tissot, François L. H.; Dauphas, Nicolas; Grove, Timothy L.

    2017-09-01

    Angrites are differentiated meteorites that formed between 4 and 11 Myr after Solar System formation, when several short-lived nuclides (e.g., 26Al-26Mg, 53Mn-53Cr, 182Hf-182W) were still alive. As such, angrites are prime anchors to tie the relative chronology inferred from these short-lived radionuclides to the absolute Pb-Pb clock. The discovery of variable U isotopic composition (at the sub-permil level) calls for a revision of Pb-Pb ages calculated using an ;assumed; constant 238U/235U ratio (i.e., Pb-Pb ages published before 2009-2010). In this paper, we report high-precision U isotope measurement for six angrite samples (NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555) using multi-collector inductively coupled plasma mass-spectrometry and the IRMM-3636 U double-spike. The age corrections range from -0.17 to -1.20 Myr depending on the samples. After correction, concordance between the revised Pb-Pb and Hf-W and Mn-Cr ages of plutonic and quenched angrites is good, and the initial (53Mn/55Mn)0 ratio in the Early Solar System (ESS) is recalculated as being (7 ± 1) × 10-6 at the formation of the Solar System (the error bar incorporates uncertainty in the absolute age of Calcium, Aluminum-rich inclusions - CAIs). An uncertainty remains as to whether the Al-Mg and Pb-Pb systems agree in large part due to uncertainties in the Pb-Pb age of CAIs. A systematic difference is found in the U isotopic compositions of quenched and plutonic angrites of +0.17‰. A difference is also found between the rare earth element (REE) patterns of these two angrite subgroups. The δ238U values are consistent with fractionation during magmatic evolution of the angrite parent melt. Stable U isotope fractionation due to a change in the coordination environment of U during incorporation into pyroxene could be responsible for such a fractionation. In this context, Pb-Pb ages derived from pyroxenes fraction should be corrected using the U isotope composition

  3. Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Rahimi, K. E.; Bursik, M. I.

    2016-12-01

    Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.

  4. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  5. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.

    2000-01-01

    The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal extension and magamatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults sip 30°-50° near the surface and flatten and merge leozoic miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at different times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undeformed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 percent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granitic rocks as well as bimodal 14.0-4.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granitic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger. The close spatial and temporal relation between crustal extension and magmatism suggest a genetic and probably a dynamic relation between these geologic processes. We propose a rectonic-magmatic model that requires heat to be transported into the crust by mantle-derived mafic magmas. These magmas pond at lithologic or rheologic boundaries, begin the crystallize, and partially melt the surrounding crustal rocks. With time, the thermally weakened crust is extended (given a regional extensional stress field) concurrent with granitic magmatism and bimodal volcanism.

  6. Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: Evidence for magmatic digestion and erosion of Pleistocene hyaloclastites

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya; Gurenko, Andrey; Sigmarsson, Olgeir; Chaussidon, Marc

    2008-09-01

    present around many grains, regardless of the degree of olivine-melt oxygen isotope disequilibrium. The preservation of isotopic and compositional zoning in selected grains, and subtle to severe Δ 18O (melt-olivine) and Δ 18O (plagioclase-olivine) disequilibria suggests rather short crystal residence times of years to centuries. Synglacially-altered upper crustal, tufaceous hyaloclastites of Pleistocene age serve as a viable source for low-δ 18O values in Holocene basalts through assimilation, mechanical and thermal erosion, and devolatilization of stoped blocks. Cumulates formed in response to cooling during assimilation, and xenocrysts derived from hyaloclastites, contribute to the diverse δ 18O crystalline cargo. The magma plumbing systems under each fissure are likely to include a network of interconnected dikes and sills with high magma flow rates that contribute to the efficacy of magmatic erosion of large quantities (10-60% mass) of hyaloclastites required by isotopic mass balance. Olivine diversity and the pervasive lack of phenocryst-melt oxygen isotopic equilibrium suggest that a common approach of analyzing bulk olivine for oxygen isotopes, as a proxy for the basaltic melt or to infer mantle δ 18O value, needs to proceed with caution. The best approach is to analyze olivine crystals individually and demonstrate their equilibrium with matrix.

  7. Re-Os and S isotope evidence for the origin of Platreef mineralization (Bushveld Complex)

    NASA Astrophysics Data System (ADS)

    Yudovskaya, M.; Belousova, E.; Kinnaird, J.; Dubinina, E.; Grobler, D. F.; Pearson, N.

    2017-10-01

    The Bushveld Complex contains the largest platinum-group element (PGE) deposits of the world that are represented by persistent stratiform reefs highly enriched with PGE with respect to underlying and overlying rocks. New Re-Os isotope and elemental LA MC-ICPMS data on platinum-group minerals (PGM) from the mineralized reefs are presented with implications to correlation between the different segments of the Bushveld Complex and a role of superimposed processes at the reef formation. We analyzed laurite (RuS2), hollingworthite (RhAsS), sperrylite (PtAs2) and Pt-Fe alloys from the Merensky Reef, Pseudoreef and the PGE reef of the Platreef. The measured 187Os/188Os value for Platreef laurite is 0.1751 ± 0.0004 whereas the ratios for sperrylite and hollingworthite range to slightly higher values (0.1713-0.1818 and 0.1744-0.1835 respectively). The observed textures of the analyzed PGM, such as Pt-Fe symplectites in base metal sulfides (BMS), laurite inclusions in chromite and sperrylite rims around sulfide-silicate aggregates, are interpreted as features of primary magmatic crystallization whereas hollingworthite overgrowths and exsolutions in sperrylite are likely to have originated from later solid state transformation or metasomatic processes. The Platreef is a composite sill-like body in the northern limb correlative to the Critical Zone in terms of stratigraphic position, whole-rock geochemistry and isotope characteristics. The pristine magmatic character of sulfides and PGM in the stratiform reefs at the top of the Platreef strongly resembles the style of Merensky Reef mineralization. However, the basal part of the Platreef pyroxenitic sequence is variably contaminated and mineralized with a significant hydrothermal overprint. Sulfides from underlying Lower Zone peridotite yield δ34S values varying from +9‰ to +14.2‰ that are much higher than the values for the overlying Platreef and are a consequence of sulfur assimilation from sedimentary sulfates. The

  8. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Chuan-Zhou; Tappe, Sebastian; Kostrovitsky, Sergey I.; Wu, Fu-Yuan; Yakovlev, Dmitry; Yang, Yue-Heng; Yang, Jin-Hui

    2014-10-01

    We report combined U-Pb ages and Sr-Nd isotope compositions of perovskites from 50 kimberlite occurrences, sampled from 9 fields across the Yakutian kimberlite province on the Siberian craton. The new U-Pb ages, together with previously reported geochronological constraints, suggest that kimberlite magmas formed repeatedly during at least 4 episodes: Late Silurian-Early Devonian (419-410 Ma), Late Devonian-Early Carboniferous (376-347 Ma), Late Triassic (231-215 Ma), and Middle/Late Jurassic (171-156 Ma). Recurrent kimberlite melt production beneath the Siberian craton - before and after flood basalt volcanism at 250 Ma - provides a unique opportunity to test existing models for the origin of global kimberlite magmatism. The internally consistent Sr and Nd isotope dataset for perovskites reveals that the Paleozoic and Mesozoic kimberlites of Yakutia have distinctly different initial radiogenic isotope compositions. There exists a notable increase in the initial 143Nd/144Nd ratios through time, with an apparent isotopic evolution that is intermediate between that of Bulk Earth and Depleted MORB Mantle. While the Paleozoic samples range between initial 87Sr/86Sr of 0.7028-0.7034 and 143Nd/144Nd of 0.51229-0.51241, the Mesozoic samples show values between 0.7032-0.7038 and 0.51245-0.51271, respectively. Importantly, perovskites from all studied Yakutian kimberlite fields and age groups have moderately depleted initial εNd values that fall within a relatively narrow range between +1.8 and +5.5. The perovskite isotope systematics of the Yakutian kimberlites are interpreted to reflect magma derivation from the convecting upper mantle, which appears to have a record of continuous melt depletion and crustal recycling throughout the Phanerozoic. The analyzed perovskites neither record highly depleted nor highly enriched isotopic components, which had been previously identified in likely plume-related Siberian Trap basalts. The Siberian craton has frequently been suggested

  9. New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages

    USGS Publications Warehouse

    Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B.

    2003-01-01

    New 187Os/188Os ratios of Quaternary Mount Adams volcanic rocks from the Cascade arc in southern Washington vary by >300% (187Os/188Os = 0.165-0.564) and fall into high (>0.319) and low (0.166 to 0.281) groups of 187Os/188Os ratios that are substantially more radiogenic than mantle values. These Os isotope compositions and groupings are interpreted to reflect recycling of discrete intracrustal domains with high 187Os/188Os ratios but differing ages, thus recording the process of crustal hybridization and homogenization. Os isotope compositions provide new constraints on amounts of intracrustal recycling in young subduction-zone environments that reflect the magmatic history of the arc. Sr, Nd, Hf, and Pb isotope variations in this young, mafic are complex are too small to allow such constraints.

  10. Granitoid formation is ineffective in isotopically homogenizing continental crust: Evidence from archean rocks of the Wind River Mountains, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, C.D.; Hulsebosch, T.P.; Chamberlain, K.R.

    1992-01-01

    The Archean core of the Laramide Wind River uplift records evidence of at least three major granitoid-forming episodes. The oldest, the Dry Creek gneiss (DCG), was emplaced by 2.8 Ga and occupies the northeastern part of the range. Mafic, pelitic and ultramafic inclusions occur in the DCG. Elsewhere in the Wind River Mountains there is evidence for crustal components as old as 3.8 Ga. The Bridger batholith (BB), intruded at 2.67 Ga, is found in the west-central Wind River Mountains. The Wind River batholith (WRB) refers to the youngest Late Archean granodiorites and granites which are found throughout the rangemore » and includes granitoids previously name the Louis Lake, Bears Ears, Popo Agie, and Middle Mountain intrusions. Although granitoids of the Wind River batholith have been dated at 2.63 and 2.55 Ga, they are considered together here because there is a complete gradation in rock type and because definite intrusive contacts are scarce. The DCG, BB, and WRB each span the metaluminous/peraluminous boundary and are indistinguishable on Harker diagrams. Each has variable trace element and isotopic characteristics which do not correlate with silica content. Although the isotopic characteristics of these granitoids may be explained by mixing of variable amounts of preexisting continental crust and contemporary depleted mantle, this hypothesis is difficult to reconcile with the evolved nature of even those samples with the most mantle-like isotopic signatures. The authors suggest that each of these granitoid batholiths was formed primarily by remelting of pre-existing heterogeneous continental crust, and that the granite-forming process was not effective in obliterating these trace element and isotopic heterogeneities. Isotopic homogeneity in granitoid batholiths may reflect the isotopic homogeneity of their sources rather than an effective magmatic mixing process.« less

  11. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  12. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten

    2016-11-01

    Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.

  13. Isotopic evolution of the idaho batholith and Challis intrusive province, Northern US Cordillera

    USGS Publications Warehouse

    Gaschnig, Richard M.; Vervoort, J.D.; Lewis, R.S.; Tikoff, B.

    2011-01-01

    The Idaho batholith and spatially overlapping Challis intrusive province in the North American Cordillera have a history of magmatism spanning some 55 Myr. New isotopic data from the ???98 Ma to 54 Ma Idaho batholith and ???51 Ma to 43 Ma Challis intrusions, coupled with recent geochronological work, provide insights into the evolution of magmatism in the Idaho segment of the Cordillera. Nd and Hf isotopes show clear shifts towards more evolved compositions through the batholith's history and Pb isotopes define distinct fields correlative with the different age and compositionally defined suites of the batholith, whereas the Sr isotopic compositions of the various suites largely overlap. The subsequent Challis magmatism shows the full range of isotopic compositions seen in the batholith. These data suggest that the early suites of metaluminous magmatism (98-87 Ma) represent crust-mantle hybrids. Subsequent voluminous Atlanta peraluminous suite magmatism (83-67 Ma) results primarily from melting of different crustal components. This can be attributed to crustal thickening, resulting from either subduction processes or an outboard terrane collision. A later, smaller crustal melting episode, in the northern Idaho batholith, resulted in the Bitterroot peraluminous suite (66-54 Ma) and tapped different crustal sources. Subsequent Challis magmatism was derived from both crust and mantle sources and corresponds to extensional collapse of the over-thickened crust. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  14. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250-1300 °C and its cosmochemical consequences

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Schmidt, Max W.; Bourdon, Bernard

    2012-09-01

    Iron isotope fractionation during metal-silicate differentiation has been proposed as a cause for differences in iron isotope compositions of chondrites, iron meteorites and the bulk silicate Earth. Stable isotope fractionation, however, rapidly decreases with increasing temperature. We have thus performed liquid metal-liquid silicate equilibration experiments at 1250-1300 °C and 1 GPa to address whether Fe isotope fractionation is resolvable at the lowest possible temperatures for magmatic metal-silicate differentiation. A centrifuging piston cylinder apparatus enabled quantitative metal-silicate segregation. Elemental tin or sulphur was used in the synthetic metal-oxide mixtures to lower the melting temperature of the metal. The analyses demonstrate that eight of the 10 experimental systems equilibrated in a closed isotopic system, as was assessed by varying run durations and starting Fe isotope compositions. Statistically significant iron isotope fractionation between quenched metals and silicates was absent in nine of the 10 experiments and all 10 experiments yield an average metal-silicate fractionation factor of 0.01 ± 0.04‰, independent of whether graphite or silica glass capsules were used. This implies that Fe isotopes do not fractionate during low pressure metal-silicate segregation under magmatic conditions. In large bodies such as the Earth, fractionation between metal and high pressure (>20 GPa) silicate phases may still be a possible process for equilibrium fractionation during metal-silicate differentiation. However, the 0.07 ± 0.02‰ heavier composition of bulk magmatic iron meteorites relative to the average of bulk ordinary/carbonaceous chondrites cannot result from equilibrium Fe isotope fractionation during core segregation. The up to 0.5‰ lighter sulphide than metal fraction in iron meteorites and in one ordinary chondrite can only be explained by fractionation during subsolidus processes.

  15. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: Evidence for a magmatic-hydrothermal origin

    USGS Publications Warehouse

    Anderson, E.D.; Atkinson, William W.; Marsh, T.; Iriondo, A.

    2009-01-01

    The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.

  16. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion

    NASA Astrophysics Data System (ADS)

    Chen, Lie-Meng; Teng, Fang-Zhen; Song, Xie-Yan; Hu, Rui-Zhong; Yu, Song-Yue; Zhu, Dan; Kang, Jian

    2018-04-01

    Magnesium isotopic compositions of olivine, clinopyroxene, and ilmenite from the Baima intrusion, SW China, for the first time, are investigated to constrain the magnitude and mechanisms of Mg isotope fractionation among cumulus minerals in layered mafic intrusions and to evaluate their geological implications. Olivine and clinopyroxene have limited Mg isotope variations, with δ26Mg ranging from -0.33 to +0.05‰ and from -0.29 to -0.13‰, respectively, similar to those of mantle xenolithic peridotites. By contrast, ilmenites display extremely large Mg isotopic variation, with δ26Mg ranging from -0.50 to +1.90‰. The large inter-mineral fractionations of Mg isotopes between ilmenite and silicates may reflect both equilibrium and kinetic processes. A few ilmenites have lighter Mg isotopic compositions than coexisting silicates and contain high MgO contents without compositional zoning, indicating equilibrium fractionation. The implication is that the light Mg isotopic compositions of lunar high-Ti basalts may result from an isotopically light source enriched in cumulate ilmenites. On the other hand, most ilmenites have heavy Mg isotopic compositions, coupled with high MgO concentration and chemical zoning, which can be quantitatively modeled by kinetic Mg isotope fractionations induced by subsolidus Mg-Fe exchange between ilmenite and ferromagnesian silicates during the cooling of the Baima intrusion. The extensive occurrence of kinetic Mg isotope fractionation in ilmenites implies the possibility of widespread compositional disequilibrium among igneous minerals in magma chambers. Consequently, disequilibrium effects need to be considered in studies of basaltic magma evolution, magma chamber processes, and magmatic Fe-Ti oxide ore genesis.

  17. A Stable Isotope Study of Fluid-Rock Interactions in the Saddlebag Lake Roof Pendant, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Lojasiewicz, I.; Hartman, S. M.; Holk, G. J.; Paterson, S. R.

    2015-12-01

    The Saddlebag Lake Pendant (SLP) is a ~ 100 km2 zone of Ordovician-Cretaceous metasedimentary and metavolcanic rocks just east of the 95-85 Ma Tuolumne Intrusive Complex (TIC) in the Sierra Nevada of central California. Western SLP and adjacent parts of TIC are affected by the Steelhead Lake Shear Zone (SLSZ), with leucogranitic dikes, abundant qz-tm veins, ductile epidote-chlorite alteration, and massive qz veins. While TIC shows uniform stable isotope values, isotope studies of other Sierra Nevada pendants evidence diversity of fluid sources: Jurassic seawater, Cretaceous magmatic fluids, metamorphic fluids, and meteoric-hydrothermal fluids. We conducted a stable isotope study of 49 samples from units across the SLSZ, focusing on the shear zone. Unlike other pendants, both δ18 O and δD values from SLSZ showed great variability, and most samples were not in isotopic equilibrium. Overall, δ18 O mineral values ranged from -1.5‰(plag) to +15.8‰(bt); mineral δD values ranged from -140‰(tm) to -67‰(bt). TIC δ18 O was +7.8 to +10.0 (plag) and +4.8 to +9.2 (tm), normal magmatic values, and δD were -105 to -75. Paleozoic and Triassic metasedimentary units had most qz δ18 O from +11.3 to +15.8, so within metamorphic range, and δD from -100 to -72 (ep and tm). Jurassic metasedimentary units (Sawmill) and Triassic metavolcanics (Koip) had largest isotopic variability: δ18 O qz from +8.1 to +14.8, plag from -1.1 to +11.8, but ep and tm between +1.3 and +9.3 and δD between -108 and -81. All lower (submagmatic) isotopic values were from a wider, possibly transtensional, part of the SLSZ, transected by Sawmill Canyon. Although TIC and many of the Paleozoic units do not show isotopic evidence for alteration, the Koip and Sawmill units were likely infiltrated by later magmatic waters, and then subjected to very localized meteoric water infiltration in the area surrounding Sawmill Canyon.

  18. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik

    2014-06-01

    We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be

  19. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Santosh, M.; Tang, Li

    2018-05-01

    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  20. Feldspar palaeo-isochrons from early Archaean TTGs: Pb-isotope evidence for a high U/Pb terrestrial Hadean crust

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.; Whitehouse, M. J.; Moorbath, S.; Collerson, K. D.

    2001-12-01

    Feldspar lead-isotope data for 22 early Archaean (3.80-3.82 Ga) tonalitic gneisses from an area south of the Isua greenstone belt (IGB),West Greenland, define a steep linear trend in common Pb-isotope space with an apparent age of 4480+/-77 Ma. Feldspars from interleaved amphibolites yield a similar array corresponding to a date of 4455+/-540 Ma. These regression lines are palaeo-isochrons that formed during feldspar-whole rock Pb-isotope homogenisation a long time (1.8 Ga) after rock formation but confirm the extreme antiquity (3.81 Ga) of the gneissic protoliths [1; this study]. Unlike their whole-rock counterparts, feldspar palaeo-isochrons are immune to rotational effects caused by the vagaries of U/Pb fractionation. Hence, comparison of their intercept with mantle Pb-isotope evolution models yields meaningful information regarding the source history of the magmatic precursors. The locus of intersection between the palaeo-isochrons and terrestrial mantle Pb-isotope evolution lines shows that the gneissic precursors of these 3.81 Ga gneisses were derived from a source with a substantially higher time-integrated U/Pb ratio than the mantle. Similar requirements for a high U/Pb source have been found for IGB BIF [2], IGB carbonate [3], and particularly IGB galenas [4]. Significantly, a single high U/Pb source that separated from the MORB-source mantle at ca. 4.3 Ga with a 238U/204Pb of ca. 10.5 provides a good fit to all these observations. In contrast to many previous models based on Nd and Hf-isotope evidence we propose that this reservoir was not a mantle source but the Hadean basaltic crust which, in the absence of an operating subduction process, encased the early Earth. Differentiation of the early high U/Pb basaltic crust could have occurred in response to gravitational sinking of cold mantle material or meteorite impact, and produced zircon-bearing magmatic rocks. The subchondritic Hf-isotope ratios of ca. 3.8 Ga zircons support this model [5] provided that

  1. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai

    2017-09-01

    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  2. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Bonnand, Pierre; Parkinson, Ian J.; Anand, Mahesh

    2016-02-01

    We present the first stable chromium isotopic data from mare basalts in order to investigate the similarity between the Moon and the Earth's mantle. A double spike technique coupled with MC-ICP-MS measurements was used to analyse 19 mare basalts, comprising high-Ti, low-Ti and KREEP-rich varieties. Chromium isotope ratios (δ53Cr) for mare basalts are positively correlated with indices of magmatic differentiation such as Mg# and Cr concentration which suggests that Cr isotopes were fractionated during magmatic differentiation. Modelling of the results provides evidence that spinel and pyroxene are the main phases controlling the Cr isotopic composition during fractional crystallisation. The most evolved samples have the lightest isotopic compositions, complemented by cumulates that are isotopically heavy. Two hypotheses are proposed to explain this fractionation: (i) equilibrium fractionation where heavy isotopes are preferentially incorporated into the spinel lattice and (ii) a difference in isotopic composition between Cr2+ and Cr3+ in the melt. However, both processes require magmatic temperatures below 1200 °C for appreciable Cr3+ to be present at the low oxygen fugacities found in the Moon (IW -1 to -2 log units). There is no isotopic difference between the most primitive high-Ti, low-Ti and KREEP basalts, which suggest that the sources of these basalts were homogeneous in terms of stable Cr isotopes. The least differentiated sample in our sample set is the low-Ti basalt 12016, characterised by a Cr isotopic composition of -0.222 ± 0.025‰, which is within error of the current BSE value (-0.124 ± 0.101‰). The similarity between the mantles of the Moon and Earth is consistent with a terrestrial origin for a major fraction of the lunar Cr. This similarity also suggests that Cr isotopes were not fractionated by core formation on the Moon.

  3. Crustal growth and episodic reworking over one billion years in the Capricorn Orogen, Western Australia: evidence from Lu-Hf and O isotope data

    NASA Astrophysics Data System (ADS)

    Jahn, Inalee; Clark, Chris; Reddy, Steve; Taylor, Rich

    2017-04-01

    Fundamental to understanding the generation and evolution of a crustal block is knowledge of the relationship between additions of new material from the mantle, and the extent of crustal recycling [1]. Hafnium isotope ratios can be used to characterise relative contributions from mantle, crustal and recycled reservoirs within magmas. Oxygen isotopes can be used to constrain the extent of crustal interaction during magma emplacement. When used in conjunction, they can help unravel multiple crystallisation histories of a crustal block, and follow the source composition through magma evolution. The Capricorn Orogen records the Paleoproterozoic collision of the Yilgarn and Pilbara Cratons to form the West Australian Craton, and over one billion years of subsequent intracontinental crustal reworking. U-Pb zircon geochronology records three discrete tectono-magmatic events which resulted in voluminous granitic magmatism: the 2005-1975 Ma Glenburgh Orogeny, the 1820-1770 Ma Capricorn Orogeny, and the 1680-1620 Ma Durlacher Orogeny [2]. We present U-Pb, Lu-Hf and δ18O isotopic data from zircon from 50 samples of granites and granitoids from the Capricorn Orogen to provide constraints on the crustal evolution of the Paleoproterozoic crust. Our results confirm crustal growth by juvenile mantle input was limited to the Glenburgh Orogeny associated with the amalgamation of the West Australian Craton, while all subsequent Paleoproterozoic magmatism was primarily derived from significant reworking of the pre-existing crustal components. Time-sliced maps showing the variation in Hf and O isotopes can be used to image crustal evolution in space and time, and are particularly useful in constraining the spatial and temporal extent of juvenile magmatic additions to the crust. These maps suggest that crustal growth was concentrated along, or in the terranes adjacent to, the Yilgarn Craton margin. Our results are in agreement with previous isotopic studies [3], and provide additional

  4. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Corfu, Fernando; Chiaradia, Massimo; Stern, Robert J.; Ghorbani, Ghasem

    2014-12-01

    The poorly known Sabzevar-Torbat-e-Heydarieh ophiolite belt (STOB) covers a large region in NE Iran, over 400 km E-W and almost 200 km N-S. The Sabzevar mantle sequence includes harzburgite, lherzolite, dunite and chromitite. Spinel Cr# (100Cr/(Cr + Al)) in harzburgites and lherzolites ranges from 44 to 47 and 24 to 26 respectively. The crustal sequence of the Sabzevar ophiolite is dominated by supra-subduction zone (SSZ)-type volcanic as well as plutonic rocks with minor Oceanic Island Basalt (OIB)-like pillowed and massive lavas. The ophiolite is covered by Late Campanian to Early Maastrichtian (~ 75-68 Ma) pelagic sediments and four plagiogranites yield zircon U-Pb ages of 99.9, 98.4, 90.2 and 77.8 Ma, indicating that the sequence evolved over a considerable period of time. Most Sabzevar ophiolitic magmatic rocks are enriched in Large Ion Lithophile Elements (LILEs) and depleted in High Field Strength Elements (HFSEs), similar to SSZ-type magmatic rocks. They (except OIB-type lavas) have higher Th/Yb and plot far away from mantle array and are similar to arc-related rocks. Subordinate OIB-type lavas show Nb-Ta enrichment with high Light Rare Earth Elements (LREE)/Heavy Rare Earth Elements (HREE) ratio, suggesting a plume or subcontinental lithosphere signature in their source. The ophiolitic rocks have positive εNd (t) values (+ 5.4 to + 8.3) and most have high 207Pb/204Pb, indicating a significant contribution of subducted sediments to their mantle source. The geochemical and Sr-Nd-Pb isotope characteristics suggest that the Sabzevar magmatic rocks originated from a Mid-Ocean Ridge Basalt (MORB)-type mantle source metasomatized by fluids or melts from subducted sediments, implying an SSZ environment. We suggest that the Sabzevar ophiolites formed in an embryonic oceanic arc basin between the Lut Block to the south and east and the Binalud mountains (Turan block) to the north, and that this small oceanic arc basin existed from at least mid-Cretaceous times

  5. Contrasting sources of Late Paleozoic rhyolite magma in the Polish Lowlands: evidence from U-Pb ages and Hf and O isotope composition in zircon

    NASA Astrophysics Data System (ADS)

    Słodczyk, Elżbieta; Pietranik, Anna; Glynn, Sarah; Wiedenbeck, Michael; Breitkreuz, Christoph; Dhuime, Bruno

    2018-02-01

    The Polish Lowlands, located southwest of the Teisseyre-Tornquist Zone, within Trans-European Suture Zone, were affected by bimodal, but dominantly rhyolitic, magmatism during the Late Paleozoic. Thanks to the inherited zircon they contain, these rhyolitic rocks provide a direct source of information about the pre-Permian rocks underlying the Polish Lowland. This paper presents zircon U-Pb geochronology and Hf and O isotopic results from five drill core samples representing four rhyolites and one granite. Based on the ratio of inherited vs. autocrystic zircon, the rhyolites can be divided into two groups: northern rhyolites, where autocrystic zircon is more abundant and southern rhyolites, where inherited zircon dominates. We suggest that the magma sources and the processes responsible for generating high silica magmas differ between the northern and southern rhyolites. Isotopically distinct sources were available during formation of northern rhyolites, as the Hf and O isotopes in magmatic zircon differ between the two analysed localities of northern rhyolites. A mixing between magmas formed from Baltica-derived mudstone-siltstone sediments and Avalonian basement or mantle can explain the diversity between the zircon compositions from the northern localities Daszewo and Wysoka Kamieńska. Conversely, the southern rhyolites from our two localities contain zircon with similar compositions, and these units can be further correlated with results from the North East German Basin, suggesting uniform source rocks over this larger region. Based on the ages of inherited zircon and the isotopic composition of magmatic ones, we suggest that the dominant source of the southern rhyolites is Variscan foreland sediments mixed with Baltica/Avalonia-derived sediments.

  6. Geochemical and Nd-Sr isotopic constraints on the genesis of Mesozoic alkaline magmatism in Tu Le basin, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Tran, T. A.; Tran, T. H.; Lan, C. Y.; Chung, S. L.; Lo, C. H.; Wang, P. L.; Lee, T. Y.; Merztman, S. A.

    2003-04-01

    Mesozoic alkaline magmatism that occurred in the Tu Le basin, northern Vietnam, resulted in several igneous complexes composed of different lithologies. They are represented by the Suoi Be basalts, the Ban Hat gabbros, the Phu Sa Phin syenites, the Van Chan rhyolites and the Ngoi Thia rhyolites, which overall show a bimodal chemical composition. Ar-Ar dating and stratigraphic data indicate that the magmatism clustered in two periods, i.e., the middle-late Jurassic (176 - 145 Ma) and the late Cretaceous-earliest Tertiary (80 - 60 Ma), respectively. The Suoi Be basalts, the Ban Hat gabbros, the Van Chan rhyolites and some of the Phu Sa Phin syenites formed in the Jurassic stage, whilst the Ngoi Thia rhyolites and most of the Phu Sa Phin syenites formed in the Cretaceous stage. The mafic Jurassic magmas are silica-undersaturated (SiO_2 = 44-49 wt.%) and sodium-rich, with low MgO (˜7-3 wt.%) but high TiO_2 (3.6-2.0 wt.%). They exhibit various degrees of LREE-enrichment, with (La)N = 79-290, 5.5<(La/Yb)N<20 (chondrite-normalized) and without apparent Eu anomalies. On the other hand, the felsic magmas of Jurassic and Cretaceous ages show similar geochemical features, with SiO_2 = 62-78 wt.%, (Na_2O+K_2O) = 5.3-10.2 wt.%, significant Eu anomalies (Eu/Eu*= 0.1-0.54), and enrichments in the HFSE (Nb, Ta, Zr) and LILE (Rb, Th, U, K) along with pronounced depletions in Ba, Sr, P and Ti in the primitive mantle-normalized multi-element variation diagram. They are geochemically comparable to A-type granitoids. The mafic and felsic magmas have distinguishable Nd isotope ratios. In contrast to the Jurassic and Cretaceous felsic magmas that have uniform eNd(T) values (-1.5 to -2.8), the Jurassic mafic rocks are marked by more radiogenic and heterogenous eNd(T) values (-1.9 to -8.9), implying different magma sources and independent petrogenetic processes involved in generation of the Jurassic bimodal magmatism. Combining with relevant geological data from northern Vietnam and SW

  7. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    USGS Publications Warehouse

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a

  8. Lithospheric drip magmatism and magma-assisted rifting: a case study in the Western Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Pitcavage, E.; Furman, T.; Nelson, W. R.

    2017-12-01

    The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important

  9. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.M.

    Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less

  10. Recording the transition from flare-up to steady-state arc magmatism at the Purico-Chascon volcanic complex, northern Chile

    NASA Astrophysics Data System (ADS)

    Burns, Dale H.; de Silva, Shanaka L.; Tepley, Frank; Schmitt, Axel K.; Loewen, Matthew W.

    2015-07-01

    The long-term evolution of continental magmatic arcs is episodic, where a few transient events of high magmatic flux or flare-ups punctuate the low-flux magmatism or "steady state" that makes up most of the arc history. How this duality manifests in terms of differences in crustal architecture, magma dynamics and chemistry, and the time scale over which transitions occur is poorly known. Herein we use multiscale geochemical and isotopic characteristics coupled with geothermobarometry at the Purico-Chascon Volcanic Complex (PCVC) in the Central Andes to identify a transition from flare-up to steady state arc magmatism over ∼800 kyr during which significant changes in upper crustal magmatic dynamics are recorded. The PCVC is one of the youngest volcanic centers related to a 10-1 Ma ignimbrite flare-up in the Altiplano-Puna Volcanic Complex of the Central Andes. Activity at the PCVC initiated 0.98 ± 0.03 Ma with the eruption of a large 80-100 km3 crystal-rich dacite ignimbrite. High, restricted 87Sr/86Sr isotope ratios between 0.7085 and 0.7090 in the bulk rock and plagioclase crystals from the Purico ignimbrite, combined with mineral chemistry and phase relationships indicate the dacite magma accumulated and evolved at relatively low temperatures around 800-850 °C in the upper crust at 4-8 km depth. Minor andesite pumice erupted late in the ignimbrite sequence records a second higher temperature (965 °C), higher pressure environment (17-20 km), but with similar restricted radiogenic bulk rock 87Sr/86Sr = 0.7089-0.7091 to the dacites. The compositional and isotopic characteristics of the Purico ignimbrite implicate an extensive zone of upper crustal mixing, assimilation, storage and homogenization (MASH) between ∼30 and 4 km beneath the PCVC ∼1 Ma. The final eruptions at the PCVC < 0.18 ± 0.02 Ma suggest a change in the magmatic architecture beneath the PCVC. These eruptions produced three small <6 km3 crystal-rich dacite lava domes with radiogenic bulk rock

  11. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Qiu, Lin; Ash, Richard D.; McDonough, William F.; Teng, Fang-Zhen; Rudnick, Roberta L.; Taylor, Lawrence A.

    2016-06-01

    Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰ δ56Fe >0.18‰ δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between -2.5‰ and 4

  12. Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement

    NASA Astrophysics Data System (ADS)

    Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.

    2017-09-01

    Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.

  13. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with

  14. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin

    USGS Publications Warehouse

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.

  15. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh

    2016-09-01

    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates

  16. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.

    Volcanism and post-magmatism contribute both significant annual CH 4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ 2H and δ 13C) of CH 4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Parkmore » to show that the predominant flux of CH4(g) is abiotic. The average δ 13C and δ 2H values of CH 4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ 13C CH4 and δ 13C-dissolved inorganic C (DIC) also suggests that CO 2 is a parent C source for the observed CH 4(g). Moreover, CH 4-CO 2 isotopic geothermometry was used to estimate CH 4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.« less

  17. Rhenium-osmium isotope systematics in meteorites I: Magmatic iron meteorite groups IIAB and IIIAB

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Using resonance ionization mass spectrometry (RIMS), Re and Os abundances were determined by isotope dilution (ID) and 187Os 186Os ratios measured in nineteen iron meteorites: eight from group IIAB, ten from group IIIAB, and Treysa (IIIB anomalous). Abundances range from 1.4 to 4800 ppb Re, and from 13 to 65000 ppb Os, and generally agree well with previous ID and neutron activation (NAA) results. The Re and Os data suggest that abundance trends in these iron groups may be entirely explained by fractional crystallization. Addition of late-formed metal to produce ReOs variation in the B subgroups is not essential but cannot be excluded. Whole-rock isochrons for the IIAB and IIIAB groups are statistically indistinguishable. Pooled data yield an initial 187Os 186Os of 0.794 ?? 0.010, with a slope of (7.92 ?? 0.20) ?? 10-2 corresponding to a magmatic iron meteorite age of 4.65 ?? 0.11 Ga (using a decay constant of 1.64 ?? 10-11 a-1). Given the errors in the slope and half life, this age does not differ significantly from the canonical chondrite age of 4.56 Ga, but could be as young as 4.46 Ga. ?? 1992.

  18. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  19. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  20. Serpentinites and Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.

    2012-04-01

    In subduction zones, fluid-mediated chemical exchanges between subducting plates and overlying mantle dictate volatile and incompatible element cycles in earth and influence arc magmatism. One of the outstanding issues is concerned with the sources of water for arc magmas and mechanisms for its slab-to-mantle wedge transport. Does it occur by slab dehydration at depths directly beneath arc front, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? Historically, the deep slab dehydration hypothesis had strong support, but it appears that the hydrated mantle wedge hypothesis is gaining ground. At the center of this hypothesis are studies of fluid-mobile element tracers in volatile-rich mantle wedge peridotites (serpentinites) and their subducted high-pressure equivalents. Serpentinites are key players in volatile and fluid-mobile element cycles in subduction zones. Their dehydration represents the main event for fluid and element flux from slabs to mantle, though direct evidence for this process and identification of dehydration environments have been elusive. Boron isotopes are known markers of fluid-assisted element transfer during subduction and can be the tracers of these processes. Until recently, the altered oceanic crust has been considered the main 11B reservoir for arc magmas, which largely display positive delta11B. However, slab dehydration below fore-arcs transfers 11B to the overlying hydrated mantle and leaves the residual mafic crust very depleted in 11B below sub-arcs. The 11B-rich composition of serpentinites candidate them as the heavy B carriers for subduction. Here we present high positive delta11B of Alpine high-pressure (HP) serpentinites recording subduction metamorphism from hydration at low gades to eclogite-facies dehydration: we show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. In general, the delta11B of these rocks is heavy (16‰ to + 24‰ delta11B). No B

  1. Similarity and Differences of Cretaceous Magmatism in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Peyve, A. A.

    2018-03-01

    The paper considers Cretaceous magmatism at the continental margin of the Arctic Region. It is shown that Cretaceous igneous rocks of this region are rather heterogeneous in age, composition, and geodynamic formation setting. This differentiates them from rocks of typical large igneous provinces (LIPs). Local areas of magmatic activity, their substantial remoteness them from one another, and significant distinctions in age, composition of rocks, and formation conditions prevent us from unreservedly combining all occurrences of Cretaceous magmatism at the continental margin of the Arctic Region into a common igneous province. The stage of tholeiitic magmatism in the Svalbard Archipelago, Franz Josef Land, Arctic Canada, and the Alpha-Mendeleev Rise, which can be considered an LIP, began in the Early Cretaceous and continued for a long time, at least until the Campanian. The magmatism apparently had a plume source and was caused by extension during opening of the Canada Basin. Tholeiitic magmatism gave way to the alkaline magmatism stage from the Campanian to the onset of the Paleocene, related to continental rifting at the initial stage of formation of Eurasian Basin in the Arctic Region. No convincing evidence for a genetic link between Early Cretaceous tholeiitic and Late Cretaceous alkaline magmatism is known at present, nor for the alkaline magmatism belonging to a plume source.

  2. Crustal processes cause adakitic chemical signatures in syn-collision magmatism from SE Iran

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Kheirkhah, Monireh; Neill, Iain

    2015-04-01

    We report new elemental and Nd-Sr isotopic analyses for Late Cenozoic intrusive and extrusive rocks emplaced in SE Iran as part of the wider syn-collision magmatic province within the Turkish-Iranian Plateau. The sample sites are near the town of Dehaj in Kerman Province. Most of the rocks are from stocks and batholiths, interpreted as the roots of central volcanoes. Age controls are not precise, but the rocks are likely to be Late Miocene-Quaternary in age. Basaltic to andesitic lavas crop out nearby; their relationships to the intrusive rocks are uncertain. Geochemically, the entire range of rocks from basalt lavas through to rhyolitic intrusives ranges from 51-71 wt.% silica and isotopic signatures are similar to Bulk Earth, without any clear evidence for large-scale crustal contamination. The basaltic to andesitic lavas appear to have variable and often high La/Yb and Sr/Y such that they range from calc-alkaline arc-like rocks to adakitic compositions depending on the degree of fractionation. The intrusive rocks seem to form a separate suite, with clear indications of increasing Sr/Y and Dy/Yb with fractionation. Previous interpretations relate adakitic magmatism to Tethyan oceanic slab break-off and slab melting beneath the collision zone. However, as the 'adakitic signature' is increasingly apparent in more evolved magmas, at least in the intrusives, adakite generation is more likely to have occurred during melt evolution from an initial low Sr/Y and low La/Yb parent. This parental melt may have been similar in starting composition to proposed non-adakitic basaltic melts from elsewhere in the collision zone. The high Sr/Yb and La/Yb signatures are best explained by the suppression of plagioclase fractionation by high magmatic water contents, promoting incompatible behaviour of Sr. Conversely, Y and Yb are compatible during amphibole and garnet fractionation at crustal or uppermost mantle levels. Rather than a localised slab break-off or melting effect, the

  3. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  4. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Hauri, Erik H.; Elkins-Tanton, Linda T.; Brown, Stephanie M.

    2014-05-01

    The Siberian Traps flood basalts transferred a large mass of volatiles from the Earth's mantle and crust to the atmosphere. The eruption of the large igneous province temporally overlapped with the end-Permian mass extinction. Constraints on the sources of Siberian Traps volatiles are critical for determining the overall volatile budget, the role of crustal assimilation, the genesis of Noril'sk ore deposits, and the environmental effects of magmatism. We measure sulfur isotopic ratios ranging from -10.8‰ to +25.3‰ Vienna Cañon Diablo Troilite (V-CDT) in melt inclusions from Siberian Traps basaltic rocks. Our measurements, which offer a snapshot of sulfur cycling far from mid-ocean ridge and arc settings, suggest the δ34S of the Siberian Traps mantle melt source was close to that of mid-ocean ridge basalts. In conjunction with previously published whole rock measurements from Noril'sk, our sulfur isotopic data indicate that crustal contamination was widespread and heterogeneous—though not universal—during the emplacement of the Siberian Traps. Incorporation of crustal materials likely increased the total volatile budget of the large igneous province, thereby contributing to Permian-Triassic environmental deterioration.

  5. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.

    Volcanism and post-magmatism contribute significant annual methane (CH 4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH 4 (as well as carbon dioxide (CO 2) and other gases), but the ultimate sources of this CH 4 flux have not been elucidated. In this paper, we use dual stable isotope analysis (δ 2H and δ 13C) of CH 4 sampled from ten high-temperature geothermalmore » pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ 13C and δ 2H values of CH 4 emitted from hot springs ( 26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ 13C CH4 and δ 13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH 4, or with equilibration of CH 4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ 13C CH4 and δ 13C CO2 ranged from ~ 250–350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ 2H H2O of the thermal springs and the measured δ 2H CH4 values are consistent with equilibration between the source water and the CH 4 at the formation temperatures. Though the ultimate origin of the CH 4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C 1/C 2+ composition of the gases is more consistent with abiotic origins for most of the samples. Finally, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH 4 flux from the Yellowstone National Park volcanic system.« less

  6. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    DOE PAGES

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; ...

    2017-05-16

    Volcanism and post-magmatism contribute significant annual methane (CH 4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH 4 (as well as carbon dioxide (CO 2) and other gases), but the ultimate sources of this CH 4 flux have not been elucidated. In this paper, we use dual stable isotope analysis (δ 2H and δ 13C) of CH 4 sampled from ten high-temperature geothermalmore » pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ 13C and δ 2H values of CH 4 emitted from hot springs ( 26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ 13C CH4 and δ 13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH 4, or with equilibration of CH 4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ 13C CH4 and δ 13C CO2 ranged from ~ 250–350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ 2H H2O of the thermal springs and the measured δ 2H CH4 values are consistent with equilibration between the source water and the CH 4 at the formation temperatures. Though the ultimate origin of the CH 4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C 1/C 2+ composition of the gases is more consistent with abiotic origins for most of the samples. Finally, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH 4 flux from the Yellowstone National Park volcanic system.« less

  7. Dual stable isotopes of CH4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO2

    NASA Astrophysics Data System (ADS)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute significant annual methane (CH4) fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit CH4 (as well as carbon dioxide (CO2) and other gases), but the ultimate sources of this CH4 flux have not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4 sampled from ten high-temperature geothermal pools in Yellowstone National Park along with other isotopic and gas analyses to evaluate potential sources of methane. The average δ13C and δ2H values of CH4 emitted from hot springs (26.7 (± 2.4) and - 236.9 (± 12.0) ‰, respectively) are inconsistent with microbial methanogenesis but do not allow distinction between thermogenic and abiotic sources. Correlation between δ13CCH4 and δ13C of dissolved inorganic C (DIC) is consistent with DIC as the parent C source for the observed CH4, or with equilibration of CH4 and DIC. Methane formation temperatures estimated by isotopic geothermometry based on δ13CCH4 and δ13CCO2 ranged from 250-350 °C, which is just below previous temperature estimates for the hydrothermal reservoir. Further, the δ2HH2O of the thermal springs and the measured δ2HCH4 values are consistent with equilibration between the source water and the CH4 at the formation temperatures. Though the ultimate origin of the CH4 could be attributed to either abiotic of themorgenic processes with subsequent isotopic equilibration, the C1/C2 + composition of the gases is more consistent with abiotic origins for most of the samples. Thus, our data support the hypothesis that subsurface rock-water interactions are responsible for at least a significant fraction of the CH4 flux from the Yellowstone National Park volcanic system.

  8. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or

  9. Magma mixing and the generation of isotopically juvenile silicic magma at Yellowstone caldera inferred from coupling 238U–230Th ages with trace elements and Hf and O isotopes in zircon and Pb isotopes in sanidine

    USGS Publications Warehouse

    Stelten, Mark E.; Cooper, Kari M.; Vazquez, Jorge A.; Reid, Mary R.; Barfod, Gry H.; Wimpenny, Josh; Yin, Qing-Zhu

    2013-01-01

    The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.

  10. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  11. Oxygen-Carbon and Strontium Isotope Evidence for the Origin and Evolution of CO2-rich Volatiles from Oligocene to Miocene Mantle Magmas, Southwestern Colorado and Northwestern New Mexico

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.; Zbrozek, M.

    2012-12-01

    Oligocene to Miocene, alkaline mafic to ultramafic, rocks that are exposed in the Navajo volcanic field and dikes on the northern San Juan basin (NVSJ) contain calcite in vugs, veins, and breccias. Oxygen-carbon and Sr isotope signatures of bulk carbonate samples from these rocks were used to test hypotheses on the history of volatiles related to this pulse of mantle magmatism. Elevated fluorine in rocks, and fluorite-calcite breccias in some outcrops, indicate that magmatic volatiles were released by NVSJ melts. Oxygen and carbon isotope data for carbonate samples record a complex paragenetic history. δ13C values are mostly -8‰ to -4‰ with a mean value of -5.3 ± 2.0‰, similar to δ13C for primary mantle-derived carbonate. A subset of δ18O values are +5‰ to +10‰ which are within the accepted range of δ18O values for magmatic carbonate in carbonatite and kimberlite. A majority of δ18O values, however, range from +10‰ to +24‰ revealing that low-δ18O magmatic volatiles were overprinted by processes that caused enrichment of 18O at some stage during melt generation and emplacement. A subset of 87Sr/86Sri data from carbonate samples are nearly identical to 87Sr/86Sri for related rocks, hinting that the melts and volatiles came from the same source. Generally, NVSJ calcite samples have higher 87Sr/86Sri ratios than those of rocks, reflecting different melt-volatile sources or crustal contamination from Paleozoic limestone. Field and petrologic evidence does not lend convincing support for crustal contamination. Limestone fragments comprise less than 1% of xenoliths in NVSJ rocks. Also, rock samples do not show elevated CaO, MgO, FeO, Ba or Sr with increasing δ18O calcite which is expected for contamination of magmas with limestone. We propose that CO2-H2O-F volatiles in NVSJ magmas came from distinct melt-volatile sources, similar to the interpretation of Nowell (1993). Our assertion is that CO2-rich volatiles that exsolved from low δ18O mafic melts

  12. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages

    NASA Astrophysics Data System (ADS)

    Cao, Hua-Wen; Zhang, Shou-Ting; Santosh, M.; Zheng, Luo; Tang, Li; Li, Dong; Zhang, Xu-Huang; Zhang, Yun-Hui

    2015-11-01

    The Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore district is located in the East Qinling metallogenic belt on the southern margin of the North China Craton. Two ore fields (Nannihu and Yuku) are recognized in the district, and three types of deposits are identified from the two ore fields as follows: (1) the 6 proximal porphyry-skarn type Mo-W deposits occurring at the inner contact zone of the granite porphyries, (2) the 3 middle skarn-hydrothermal type Zn deposits, and (3) the 8 distal hydrothermal type Pb-Zn-Ag deposits at the periphery of the porphyry. We present C-H-O isotope compositions of hydrothermal quartz and calcite, S-Pb isotope compositions of sulfide minerals, and sphalerite Rb-Sr isochron ages from the 17 deposits. The geochemical and geochronological data from the two ore fields all show systematic temporal and spatial variation, and primarily lead to the following inferences. (1) The temperatures and salinities of the ore-forming fluids decreased during mineralization. The ore-forming fluids gradually evolved from magmatic water to mixed magmatic-meteoric water. (2) The metallogenic components were primarily derived from igneous rocks, with increasing proportions of the materials from the ore-bearing rocks. (3) The mineralization ages of these deposits are close (147-136 Ma), which correspond to the emplacement of the granite intrusions. (4) The three types of deposits and the ore-related late Mesozoic intrusives constitute a unified magmatic-hydrothermal-mineralization system. Finally, we also suggest exploration strategies for the Luanchuan ore district.

  13. Linearity of Mid-Continent Kimberlite-Carbonatite Magmatism, USA: Slab-Edge Focus as Alternative to Hot-Spot Track

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.

    2009-12-01

    The fates of subducted oceanic slabs at depth in the mantle are not well known, but linear trends of unusual magmatic products such as kimberlites and carbonatites might be used to track their past existence within the mantle. A N40°W linear trend of kimberlites and carbonatites, and rocks of kimberlitic affinity, from the Black Hills (WY-SD) to Alberta, was suggested to have been caused by upwelling mantle material focused directly above the western edge of the subducted Kula plate stalled in the transition zone, with a slab window or “tear” to the southwest (Duke, 2009). In contrast, a linear zone of similar magmas to the south (a southerly extension of this N40°W linear trend, from Kansas to Louisiana) has been proposed to represent a hot spot trace produced by a mantle plume (“Bermuda Hot Spot”). Ongoing studies of ages and geochemistry of alkalic rocks along the N40°W trend from Louisiana to Alberta provide increasing evidence for a slab-edge model as the cause of the linear trend of kimberlites and carbonatites in the mid-continent. In addition, seismic tomography indicates that the torn Farallon slab currently is stalled in the transition zone below the mid-continent, and an older slab is within the lower mantle farther to the east (Sigloch et al., 2008). These seismic data were interpreted as revealing the presence of the western edge of the Farallon plate trending roughly N40°W. The slab edge as projected to the surface is parallel to, but slightly west of, the trend of kimberlites and carbonatites at the mid-continent. Recently published ages show no clear age progression for the magmatism and thus do not support a hot-spot hypothesis for the linear trend. The isotopic compositions of the alkalic rocks show a genetic similarity among more recent magmas along the trend. There are at least four main pulses of magmatism along the trend at 110-85, 67-64, 55-52, and less than 50 Ma. Kimberlites and carbonatites in the northern section of the N40

  14. The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Rossetti, Federico; Lucci, Federico; Chiaradia, Massimo; Gerdes, Axel; Martinez, Margarita Lopez; Ghorbani, Ghasem; Nasrabady, Mohsen

    2016-04-01

    A major magmatic flare-up is documented along the Bitlis-Zagros suture zone in Eocene-Oligocene times. The Cenozoic magmatism of intraplate Central Iran is an integrant part of this tectono-magmatic scenario. The Cenozoic magmatism of the Sabzevar structural zone consists of mostly intermediate to felsic intrusions and volcanic products. These igneous rocks have calc-alkaline and adakitic geochemical signatures, with nearly coincident zircon U-Pb and mica Ar-Ar ages of ca. 45 Ma. Adakitic rocks have quite low HREE and high Sr/Y ratio, but share most of their geochemical features with the calc-alkaline rocks. The Sabzevar volcanic rocks have similar initial Sr, Nd and Pb isotope ratios, showing their cogenetic nature. Nd model ages cluster tightly around 0.2-0.3 Ga. The geochemistry of the Sabzevar volcanic rocks, along with their isotopic signatures, might strangle that an upper mantle source, metasomatized by slab-derived melts was involved in generating the Sabzevar calc-alkaline rocks. A bulk rock trace element modeling suggests that amphibole-plagioclase-titanite-dominated replenishment-fractional crystallization (RFC) is further responsible for the formation of the middle Eocene Sabzevar adakitic rocks. Extensional tectonics accompanied by lithospheric delamination, possibly assisted by slab break-off and melting at depth was responsible for the Eocene formation of the Sabzevar magmatic rocks and, more in general, for the magmatic "flare-up" in Iran.

  15. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Leeman, William P.

    1989-01-01

    The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.

  16. Underthrusting of passive margin strata into deep crustal hot zones associated with Cretaceous arc magmatism in North America: links and timescales of magmatic vs. tectonic thickening

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Lee, C.; Tollstrup, D. L.; Xie, L.; Wimpenny, J.; Yin, Q.

    2011-12-01

    The North American Cordillera experienced lithospheric thickening during the Cretaceous as a result of subduction-induced magmatism and tectonic shortening. Several studies suggest correlations between increased plate convergence rates and crustal underthrusting with apparent magmatic flux and evolved isotopic excursions, yet questions still remain regarding causality between tectonic and magmatic thickening. Here, we use lower crustal garnet-bearing metaquartzite (80% SiO2) xenoliths hosted in late Miocene basalts in the central Sierra Nevada Batholith, California to constrain the P-T-t (pressure-temperature-time) history of crustal thickening. The xenoliths are equigranular in texture and are comprised of >50% quartz, ~10% metamorphic garnet, <40% plagioclase, and trace rutile, kyanite, and biotite. High quartz mode, abundant well-rounded detrital zircons, and oriented graphite laths demonstrating sedimentary or metamorphic layering point to a supracrustal sedimentary protolith. However, final equilibration temperatures using titanium-in-quartz thermometry are 700 - 800 °C, and final equilibration pressures using the GASP barometer yield 0.9 - 1.3 GPa, indicating the metaquartzites equilibrated within a hot lower crust (18 - 45 km). Low whole-rock REE totals, lack of whole-rock HREE enrichment relative to LREE and MREE, and absence of positive Eu anomalies suggest that significant melting in the garnet or plagioclase fields did not occur. The whole-rock trace element geochemistry is also consistent with an initially garnet-free protolith. Simultaneous LA-ICP-MS measurements of U-Pb and Hf isotopes in detrital zircons show that all zircons have discordant U-Pb with variable upper intercept ages (1.7, 2.7, 3.3 Ga; consistent with Hf model ages), but common lower intercept ages (100 Ma). The above indicate that protoliths of the metaquartzites were North American Proterozoic to Paleozoic passive margin sediments which were simultaneously emplaced into the lower

  17. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.

    2005-01-01

    quartz associated with mineralization, as well as in the deep stockwork veins, suggests that brines originating deep in the system transported the metals. The ??34S values of sulfides in magnetite (-2.3???) and of sulfate in apatite (5.4???) in unaltered quartz latite indicate that ??34S???S was near 0???. The ??34S values of coexisting alteration alunite and pyrite are 18.2??? to 24.5??? and -8.1??? to -2.2???, respectively. Deep in the system, most of the change in ??34S values occurs in the sulfates, indicating that the fluids were initially H2S-dominant, their redox state buffered at depth by equilibration with igneous rocks. However, in the main alteration zone, most of the change in ??34S values occurs in pyrite, indicating that the fluids moved off the rock buffer and became SO42- -dominant as pyrite precipitated and SO2 disproportionation produced the sulfuric acid requisite for acid leaching. The ??34S values of the late-stage barite and sulfides indicate that the system returned to high H2S/SO42- ratios typical of the original rock-buffered fluid. The ??DH2O of alunite parent fluids was near -45??? and their ??18O ranged from 7??? to -1???, depending on the degree of exchange in the alteration zone at low water-rock ratio, or mixing with unexchanged meteoric water. The low ??D values of some alunite samples are interpreted to result from postdepositional exchange with later ore fluids. Fluid exsolved fr om the magma at depth had ??DH2O and ??18OH2O values near -70??? and 10???, respectively. During and following migration to the top of the magma chamber, the fluid underwent isotopic exchange with the partially crystallized magma and its solid and cooler, but still plastic, carapace just below the transition from a lithostatic to hydrostatic pressure regime. These evolved magmatic fluids had ??DH2O and ??18OH2O values close to -40??? and 5???, respectively, prior to release into the superjacent hydrostatically pressured fracture zone, wherein the fluids separat

  18. Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Konopelko, D.; Wilde, S. A.; Seltmann, R.; Romer, R. L.; Biske, Yu. S.

    2018-03-01

    We present geochemical and Sr-Nd-Pb-Hf isotope data as well as the results of single grain U-Pb zircon dating for ten granitoid and alkaline intrusions of the Alai segment of Kyrgyz South Tien Shan (STS). The intrusions comprise four geochemically contrasting series or suites, including (1) I-type and (2) shoshonitic granitoids, (3) peraluminous granitoids including S-type leucogranites and (4) alkaline rocks and carbonatites, closely associated in space. New geochronological data indicate that these diverse magmatic series of the Alai segment formed in a post-collisional setting. Five single grain U-Pb zircon ages in the range 287-281 Ma, in combination with published ages, define the main post-collisional magmatic pulse at 290-280 Ma, which is similar to ages of post-collisional intrusions elsewhere in the STS. An age of 287 ± 4 Ma, obtained for peraluminous graniodiorite of the Liayliak massif, emplaced in amphibolite-facies metamorphic rocks of the Zeravshan-Alai block, is indistinguishable from ca. 290 Ma age of peraluminous granitoids emplaced coevally with Barrovian-type metamorphism in the Garm block, located ca. 40 km south-west of the research area. The Sr-Nd-Pb-Hf isotopic compositions of the studied intrusions are consistent with the reworking of crustal material with 1.6-1.1 Ga average crustal residence times, indicating the formation of the Alai segment on a continental basement with Mesoproterozoic or older crust. The pattern of post-collisional magmatism in the Alai segment, characterized by emplacement of I-type and shoshoninitic granitoids in combination with coeval Barrovian-type metamorphism, is markedly different from the pattern of post-collisional magmatism in the adjacent Kokshaal segment of the STS with predominant A-type granitoids that formed on a former passive margin of the Tarim Craton. We suggest that during the middle-late Carboniferous the Alai segment probably comprised a microcontinent with Precambrian basement located between

  19. Magmatic and hydrothermal R.E.E. fractionation in the Xihuashan granites (SE China)

    NASA Astrophysics Data System (ADS)

    Maruéjol, Patricia; Cuney, Michel; Turpin, Laurent

    1990-11-01

    The Xihuashan stock (South Jiangxi, China) is composed of cogenetic granitic units (granites Xe, γa, γc, γd and γb) and emplaced during the Yanshanian orogeny (153±0.2 Ma). They are two feldspars, Fe-rich biotite±garnet and slightly peraluminous granites. Primary accessory minerals are apatite 1, monazite, zircon, uranothorite±xenotime in granites Xe and γa, zircon, uranothorite, uraninite, betafite, xenotime 1; hydrothermal minerals are monazite altered into parisite and apatite 2, Y-rich parisite, yttroparisite, Y-rich fluorite and xenotime 2 in granites γc and γb. Petrographic observations, major element, REE, Y and Rb-Sr isotropic data point to a magmatic suite (granites Xe and γa → granites γc and γd → granite γb) distinct from hydrothermal Na-or K-alteration of γb. From granite Xe to granite γb, LREE, Eu, Th and Zr content are strongly depleted, while HREE, Y and U content increase. During K-alteration of γb, these variations are of minor importance. Major and accessory mineral evidences, geochemical and fluid inclusion results indicate two successive alteration fluids interacting with γb, (1) a late-magmatic F- and CO2-rich fluid and (2) a post-magmatic, aqueous and slightly saline fluid. The depletion of LREE and Th content and the increase in HREE, Y and U content correspond, in the magmatic suite to the early fractionation of monazite in the granites where there is no hydrothermal alteration (granites Xe and γe) and to the hydrothermal alteration of monazite into parisite and secondary apatite, intense new formation of yttroparisite, Y enrichment and U loss in the uranothorite and late crystallization of uraninite in the granites γc and γb. Moreover, simulated crystallization of monazite and temperature of monazite saturation show early fractionation of monazite from the magma in the less evolved granites (Xe and γe) and prevailing hydrothermal leaching of monazite in the most evolved granites (γc-γd and γb) related to a late

  20. Evidence of Middle Jurassic magmatism within the Seychelles microcontinent: Implications for the breakup of Gondwana

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.; Lee, T.-Y.; Chiu, H.-Y.; Lee, Y.-H.; Wong, J.

    2015-12-01

    The breakup of East and West Gondwana occurred during the Jurassic, but the exact timing is uncertain due to the limited exposure of rocks suitable for radioisotopic dating. Trachytic rocks from Silhouette Island, Seychelles, yielded a range of zircon ages from Paleoproterozoic to Cenozoic. The 206Pb/238U age of the trachyte is 64.9 ± 1.6 Ma (Danian) but the majority of zircons yielded an age of 163.8 ± 1.8 Ma (Callovian) with a small subset yielding an age of 147.7 ± 4.5 Ma (Tithonian). The Hf isotopes of the Callovian (ɛHf(t) = +4.1 to +13.4) and Danian (ɛHf(t) = +1.9 to +7.1) zircons indicate that they were derived from moderately depleted mantle sources whereas the Tithonian zircons (ɛHf(t) = -7.0 to -7.3) were derived from an enriched source. The identification of middle Jurassic zircons indicates that rifting and magmatism were likely contemporaneous during the initial separation of East and West Gondwana.

  1. Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Van Den Driessche, Jean

    2017-03-01

    New U-Pb dating on zircon yielded ca. 470 Ma ages for the granitoids from the Lévézou massif in the southern French Massif Central. These new ages do not support the previous interpretation of these granitoids as syn-tectonic intrusions emplaced during the Late Devonian-Early Carboniferous thrusting. The geochemical and isotopic nature of this magmatism is linked to a major magmatic Ordovician event recorded throughout the European Variscan belt and related to extreme thinning of continental margins during a rifting event or a back-arc extension. The comparable isotopic signatures of these granitoids on each side of the eclogite-bearing leptyno-amphibolitic complex in the Lévézou massif, together with the fact that they were emplaced at the same time, strongly suggest that these granitoids were originally part of a single unit, tectonically duplicated by either isoclinal folding or thrusting during the Variscan tectonics.

  2. Magmatic and Seismic Evidence for the Neogene Evolution of the Subducting Slab and Crustal and Mantle Lithosphere under the Central Andes

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Sandvol, E. A.

    2017-12-01

    Geophysical models coupled with the distribution, chemistry and age of magmatic rocks provide powerful tools for reconstructing the thermal and material balance and deformational history of the Central Andean crust and lithosphere in time and space. Two examples are given. In the first, a model for changing slab geometry, delamination (foundering) of the crust and mantle and forearc subduction erosion beneath the southern Puna plateau comes from studies of Miocene to Recent magmatic rocks linked with seismic studies. The distribution and chemistry (e.g., Sm/Yb, La/Ta, Ba/La, isotopes) of the volcanic rocks support an 18-7 Ma period of slab shallowing, followed by slab steepening and forearc subduction erosion linked with backarc crustal and lithospheric delamination and eruption of large ignimbrites. Support for delamination comes from seismic attenuation and Vs tomographic images that reveal an 100 km wide high velocity anomaly associated with an irregular shear wave splitting pattern, which is interpreted as a delaminated block above a nearly aseismic segment of the subducting slab at a depth of 150-200 km (Calixto et al., 2013, 2014; Liang et al. 2014). This block underlies the < 7 Ma giant Cerro Galan dacitic ignimbrites and bordering mafic flows and glassy andesites and dacites to the east. The characteristics of the flows support equilibration of basaltic magmas at > 1350°C at 2 Gpa followed by fractionation and mixing with melts of garnet-pyroxene-amphibole bearing crust (Risse et al., 2013). In accord, the lavas are over a region where receiver functions indicate a lithosphere-asthenosphere boundary at 60-80 km and a regionally thin 45-55 km thick crust with a low Vp/Vs (< 1.70) ratio (Heit et al., 2014). Calculations of crustal loss and gain allow up to 10% of the southern Puna lower crust to have been lost in the last 10 Ma. A second region where the characteristics of the magmatic rocks provide clues to the timing of slab shallowing and proposed slab

  3. The evolution of Yellowstone's magmatic system over the past 630 kyr: Insights from the crystal record

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.

    2017-12-01

    The Yellowstone Plateau volcanic field in northwestern Wyoming is one of the world's largest, active silicic volcanic centers, and has produced three caldera-forming "super eruptions" over the past 2.1 Myr. As a result, the petrologic evolution of Yellowstone's magmatic system has been the focus of numerous studies over the past 60 years. Early studies at Yellowstone focused on characterizing whole-rock chemical and isotopic variations observed in magmas erupted over Yellowstone's lifetime. While these have provided important insights into the source of Yellowstone magmas and the processes controlling their compositional evolution though time, whole-rock studies are limited in their ability to identify the mechanisms and timescales of rhyolite generation. In contrast, much of the recent work at Yellowstone has focused on applying micro-analytical techniques to characterize the age and composition of phenocrysts hosted in Yellowstone rhyolites. These studies have greatly advanced our understanding of the magmatic system at Yellowstone and have provided crucial new insights into the mechanisms and timescales of rhyolite generation. In particular, recent work has focused on applying micro-analytical techniques to study the age and origin of the [1] three caldera-forming eruptions that produced the Huckleberry Ridge, Mesa Falls, Lava Creek tuffs and [2] post-Lava Creek tuff intracaldera rhyolites that compose the Plateau Rhyolite. As a result, a wealth of crystal-chemical data now exists for rhyolites erupted throughout Yellowstone's 2.1 Myr history. These data provide a unique opportunity to create a detailed reconstruction of Yellowstone's magmatic system through time. In this contribution, I integrate available age, chemical, and isotopic data for phenocrysts hosted in Yellowstone rhyolites to construct a model for the evolution of Yellowstone's magmatic system from the caldera-forming eruption of the Lava Creek tuff at ca. 0.63 Ma to the present day. In particular

  4. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa

    NASA Astrophysics Data System (ADS)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter

    2013-01-01

    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  5. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  6. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  7. The reason for a Daly gap in magmatic series of large igneous provinces: geological and petrological evidences

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria; Chistyakov, Alexeii

    2017-04-01

    One of the most important problems of magmatic petrology over the past century is a «Daly Gap» [Daly, 1914]. It describes the lack of intermediate compositions (i.e., andesite, trachyandesite) in volcanic provinces like ocean islands, LIPs, & arcs, giving rise to "bimodal" basalt-rhyolite, basalt-trachyte or basanite-phonolite suites (Menzies, 2016). At the same time, the origin of the bimodal distribution still remains unclear. Among models proposed to explain the origin of the bimodal series are liquid immiscibility (Charlier et al 2011), physico-chemical specifics of melts (Mungal, Martin,1995), high water content in a primary melt (Melekhova et al., 2012), influence of latent heat production (Nelson et al., 2011), appearance of differentiated transitional chambers with hawaiites below and trachytes on top (Ferla et al., 2006), etc. In this case, the bimodal series are characterized by similar geochemical and isotopic-geochemical features of mafic and sialic members. At the same time, some bimodal series are produced by melting of sialic crust over basaltic chambers (Philpottas and Ague, 2009). This results in the essentially different isotopic characteristics of mafic and sialic members, as exemplified by the bimodal rapakivi granites-anorthosite complexes (Ramo, 1991; Sharkov, 2010). In addition, the bimodal basalt-trachyte series are widely spread in oceanic islands where sialic crust is absent. Thus, it is generally accepted that two contrasting melts were formed in magma chambers beneath volcanoes. Such chambers survived as intrusions and are available for geological study and deciphering their role in the formation of the bimodal magmatic series. We discuss this problem by the example of alkali Fe-Ti basalts and trachytes usually developed in LIPs. Transitional magmatic chambers of such series are represented by bimodal syenite-gabbro intrusions, in particular, by the Elet'ozero intrusion (2086±30 Ma) in Northern Karelia (Russia). The intrusion intruded

  8. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    PubMed

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is <0.3‰ (1s). No significant matrix effects have been identified in calcite with the amplitude of chemical composition variation (i.e., MnO, SrO, MgO, or FeO) up to 2.5 wt %. Two modern corals were investigated using magmatic calcite as the calibration standard, and the average δ 13 C values for both corals are similar to the bulk IRMS values. Moreover, coral exhibits significant heterogeneity in carbon isotope compositions, with differences up to 4.85‰ within an individual coral. This study indicates that LA-MC-ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  9. Evolution of Palaeoproterozoic mafic intrusions located within the thermal aureole of the Sudbury Igneous Complex, Canada: Isotopic, geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Prevec, Stephen A.; Baadsgaard, Halfdan

    2005-07-01

    Impact cratering and their resultant geological phenomena are recognised as significant factors in the lithological and biologic evolution of the earth. Age-dating of impact events is critical in correlating cause and effects for these catastrophic processes. The Falconbridge and Drury Township (Twp) intrusions were emplaced at the contact between Neoarchaean basement and Palaeoproterozoic volcanosedimentary rocks, and also lie at the southeast and southwest edges of the Sudbury Igneous Complex (SIC), within its thermal contact aureole. The Falconbridge Twp intrusion is dated at 2441 ± 3 Ma by U-Pb zircon, with evidence of Archaean inheritance from its host granitoids. Granitoids from the southernmost Abitibi Subprovince are dated here between 2670 ± 11 Ma for an undeformed Algoman granite, and 2696 ± 18 Ma for a foliated granitoid, consistent with existing data from the Abitibi Greenstone Belt and from the Wawa Subprovince. Major and trace element geochemical evidence, common-Pb isotopic compositions, and ɛNd2440 values between 0 and -1 are all consistent with a Palaeoproterozoic origin for the Falconbridge Twp intrusion, and support inclusion in the East Bull Lake-type suite of leucogabbroic plutons and sills. In contrast, the Drury Twp intrusion gives a U-Pb zircon age of 1859 ± 13 Ma, coincident with the date of SIC-emplacement. While the major and trace element compositions are comparable to the Falconbridge data, the Drury displays significant heterogeneity in ɛNd2440, with values ranging from +3.7 to -0.1, and contains more radiogenic Pb isotopic compositions. Field, geochemical and isotopic evidence clearly distinguishes this intrusion from constituents of the SIC itself, and indicates that the Drury too is a Palaeoproterozoic intrusion. This requires that apparently unshocked, undeformed magmatic-looking zircon has been grown or reset in a postmagmatic setting. This has significant implications for the identification of mantle-derived magmas and

  10. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine

    USGS Publications Warehouse

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.; Gao, S.; Huang, S.

    2011-01-01

    Diffusion plays an important role in Earth sciences to estimate the timescales of geological processes such as erosion, sediment burial, and magma cooling. In igneous systems, these diffusive processes are recorded in the form of crystal zoning. However, meaningful interpretation of these signatures is often hampered by the fact that they cannot be unambiguously ascribed to a single process (e.g., magmatic fractionation, diffusion limited transport in the crystal or in the liquid). Here we show that Mg and Fe isotope fractionations in olivine crystals can be used to trace diffusive processes in magmatic systems. Over sixty olivine fragments from Hawaiian basalts show isotopically fractionated Mg and Fe relative to basalts worldwide, with up to 0.4??? variation in 26Mg/24Mg ratios and 1.6??? variation in 56Fe/54Fe ratios. The linearly and negatively correlated Mg and Fe isotopic compositions [i.e., ??56Fe=(??3.3??0.3)????26Mg], co-variations of Mg and Fe isotopic compositions with Fe/Mg ratios of olivine fragments, and modeling results based on Mg and Fe elemental profiles demonstrate the coupled Mg and Fe isotope fractionation to be a manifestation of Mg-Fe inter-diffusion in zoned olivines during magmatic differentiation. This characteristic can be used to constrain the nature of mineral zoning in igneous and metamorphic rocks, and hence determine the residence times of crystals in magmas, the composition of primary melts, and the duration of metamorphic events. With improvements in methodology, in situ isotope mapping will become an essential tool of petrology to identify diffusion in crystals. ?? 2011 Elsevier B.V.

  11. Thermal impact of magmatism in subduction zones

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  12. The Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Callegaro, S.; Davies, J.; Chiaradia, M.; Reisberg, L. C.; Merle, R.; Jourdan, F.; Bertrand, H.; Youbi, N.

    2017-12-01

    Basaltic lava flows, dykes, sills, and layered intrusion of the CAMP (Central Atlantic magmatic province) crop out in Europe, Africa, North and South America over > 10 million square km, making this one of Earth's largest igneous provinces. CAMP is characterized by 100-400 m thick preserved lava piles and by huge shallow intrusions (e.g., > 1.5 million cubic km sills). Magmatism occurred mainly between 201.6 and 201.1 Ma (according to U-Pb and Ar/Ar ages) during the end-Triassic extinction event and a few Ma before break-up of Pangea. Pulsed emplacement seems consistent with high-precision geochronology, but needs further confirmation. All over the province, basalts with quite similar composition reflect a common mantle source. These basalts have low Ti contents (TiO2 ca. 1.0-1.3 wt.%), moderately enriched Sr-Nd-Pb isotopic compositions close to the EM-II mantle end-member, and 187Os/188Os close to 0.130. We attribute these characteristics to a dominant shallow asthenospheric mantle source that was enriched by subduction-related components. Assimilation of crustal rocks generally played a minor role and rarely exceed 5-10%. Instead, assimilation of the sub-continental lithospheric mantle (SCLM) was instead recognized in the high-Ti basalts (TiO2> 2.0 wt.%) that were emplaced in a restricted area around the Man and Amazonian cratons (Sierra Leone, Liberia, Brazil, Guyana). The SCLM-like signature of these basalts suggests assimilation of metasomatically enriched parts of the SCLM. Also early basalts emplaced north of the West African craton (Morocco, Mali) are contaminated by enriched SCLM components even if to a lesser degree, while later basalts from the same African regions have low 187Os/188Os (ca. 0.120) and probably tapped a more depleted cratonic SCLM. Calculated mantle potential temperatures are low (ca. 1450 °C) and geochemical data do not support a significant contribution from mantle-plume material. The only available He isotopic data are just slightly

  13. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    NASA Astrophysics Data System (ADS)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (<0.8 atoms per formula unit (apfu)) of all tourmaline samples suggest that they precipitated from reduced, low-salinity fluids. Based on the similar chemical and boron isotope composition and the Re-Os age of molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of

  14. Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation

    USGS Publications Warehouse

    Lovvorn, M.B.; Frison, G.C.; Tieszen, L.L.

    2001-01-01

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ???11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ???12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.

  15. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  16. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    NASA Astrophysics Data System (ADS)

    van der Meer, Q. H. A.; Waight, T. E.; Scott, J. M.; Münker, C.

    2017-07-01

    Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i) = 18.6, 207Pb/204Pb(i) = 15.62, 208Pb/204Pb(i) = 38.6, 87Sr/86Sr(i) = 0.7063-0.7074, εNd(i) = -2.1 - +0.1 and εHf(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i) = 18.7 to 19.4, 207Pb/204Pb(i) = 15.60 to 15.65, 208Pb/204Pb(i) = 38.6 to 39.4, 87Sr/86Sr(i) = 0.7031 to 0.7068, εNd(i) = +4.5 to +8.0 and εHf(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i) ≈ 20.5, 207Pb/204Pb(i) ≈ 15.7, 208Pb/204Pb(i) ≈ 40.0, εNd(i) ≈ 4.5 and εHf(i) ≈ 4.0). In contrast to the inboard HIMU-like magmas, the

  17. Understanding the dynamics of magmatic systems - evidence from Long Valley Caldera and Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Swanson, D. A.

    2001-12-01

    Active magmatic processes produce a wide range of signals that are capable of detection at the Earth's surface by modern geophysical and geochemical instrumentation. The most robust of these signals include spatial-temporal patterns of (1) ground deformation spanning a broad spectrum from gradual secular and quasi-static changes to the high-frequency vibrations associated with seismic waves generated by local, brittle-failure earthquakes and (2) magmatic gas emissions of, most notably, SO2 and CO2. The long records of deformation (in this broad sense) and geochemical data accumulated for Kilauea Volcano on the Island of Hawai`i and in Long Valley Caldera in eastern California exemplify the value of spatially and temporally dense monitoring as a basis for understanding the dynamics of magmatic systems. Kilauea's magma conduit, defined by brittle failure and LP earthquakes, has the form of a narrow, straw-like structure extending from within the lithosphere at a depth of >40 km to a magma chamber centered roughly 5 km beneath the summit crater (Halemaumau). This shallow magma chamber, which consists of a plexus of dikes and sills, is capable of feeding eruptions both within the summit caldera and along the east and southwest rift zones. The current eruption from vents along the east rift zone, which began 18 years ago, appears to be gradually draining this summit magma chamber, as Kilauea's summit has been subsiding about 10 cm/yr since the eruption began. This is equivalent to a volume of about 0.01 km3/yr, 10 percent of the eruption rate of 0.1 km3/yr. Most of the gas released by the magma column escapes through the summit caldera as it ascends from the magma chamber toward the summit and thence through conduits to the active vents on the east rift zone. Indeed, the CO2 flux (about 10,000 tones/yr) from the caldera serves as a proxy for magma flux through the conduit system. Dynamic interaction of the active magma conduit with the hydrothermal system beneath the

  18. Sudbury project (University of Muenster-Ontario Geological Survey): Isotope systematics support the impact origin

    NASA Technical Reports Server (NTRS)

    Deutsch, A.; Buhl, D.; Brockmeyer, P.; Lakomy, R.; Flucks, M.

    1992-01-01

    Within the framework of the Sudbury project a considerable number of Sr-Nd isotope analyses were carried out on petrographically well-defined samples of different breccia units. Together with isotope data from the literature these data are reviewed under the aspect of a self-consistent impact model. The crucial point of this model is that the Sudbury Igneous Complex (SIC) is interpreted as a differentiated impact melt sheet without any need for an endogenic 'magmatic' component such as 'impact-triggered' magmatism or 'partial' impact melting of the crust and mixing with a mantle-derived magma.

  19. Mixing of magmatic volatiles with groundwater and interaction with basalt on the summit of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Goff, Fraser; Janik, Cathy J.; Evans, William C.; Counce, Dale A.; Sorey, Michael L.; Ingebritsen, Steven E.

    2003-01-01

    We interpret new chemical and isotopic data from samples collected between October 1998 and March 2002 from the NSF well (also called the Keller well), the only deep well on the summit of Kilauea Volcano, Hawaii. Sample collection followed cleaning of the well, which renewed access to the hydrothermal system very close to the loci of magmatic and fumarolic activity. The chemical and isotopic compositions of the new samples differ remarkably from data published previously. On the basis of the S/Cl ratio and carbon and helium isotopes we conclude that the thermal fluids formed by condensation of magmatic gas into shallow meteoric groundwater. Gas condensation was followed by a complex pattern of basalt dissolution accompanied by an increase of fluid pH and precipitation of secondary minerals. Geochemical modeling and geothermometry imply that the fluids equilibrated with an assemblage of secondary minerals at temperatures between 90 and 140°C. The significantly different chemical composition of the NSF well fluids from that of springs along the southern coast of the island indicates that mass transport from the summit region toward the lower flanks of the volcano is limited.

  20. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia

    USGS Publications Warehouse

    Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten

    2013-01-01

    The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen

  1. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma

  2. Vertically extensive and unstable magmatic systems: A unified view of igneous processes.

    PubMed

    Cashman, Katharine V; Sparks, R Stephen J; Blundy, Jonathan D

    2017-03-24

    Volcanoes are an expression of their underlying magmatic systems. Over the past three decades, the classical focus on upper crustal magma chambers has expanded to consider magmatic processes throughout the crust. A transcrustal perspective must balance slow (plate tectonic) rates of melt generation and segregation in the lower crust with new evidence for rapid melt accumulation in the upper crust before many volcanic eruptions. Reconciling these observations is engendering active debate about the physical state, spatial distribution, and longevity of melt in the crust. Here we review evidence for transcrustal magmatic systems and highlight physical processes that might affect the growth and stability of melt-rich layers, focusing particularly on conditions that cause them to destabilize, ascend, and accumulate in voluminous but ephemeral shallow magma chambers. Copyright © 2017, American Association for the Advancement of Science.

  3. Geochronology and Geochemistry of a Late Cretaceous Granitoid Suite, Santa Rosa Range, Nevada: Linking Arc Magmatism in Northwestern Nevada to the Sierra Nevada Batholith

    NASA Astrophysics Data System (ADS)

    Brown, K.; Stuck, R.; Hart, W. K.

    2010-12-01

    Throughout the Mesozoic, an arc-trench system dominated the western margin of North America. One of the principal records of this system’s evolution is a discontinuous alignment of deeply eroded batholiths, which represent the once-active roots of ancient volcanic systems. Although these batholiths extend from Alaska to Mexico, there is a prominent (~500 km) gap located in present-day Nevada that contains scattered plutons that are hypothesized to be similar in age and origin to the larger batholiths. The current understanding of these isolated plutons, however, remains limited to regional isotopic studies aimed at identifying major crustal boundaries and structural studies focused on emplacement mechanisms. Therefore, detailed petrogenetic studies of the plutons exposed within the Santa Rosa Range (SRR) of NW Nevada will better characterize magmatism in this region, placing them within a regional context that explores the hypothesized links between the intrusions of NW Nevada to the Sierra Nevada batholith (SNB). A compilation of published geochronology from this region shows that plutons in the SRR are broadly coeval with the Cathedral Range Intrusive Epoch (~95-83 Ma) and the Shaver Sequence (~118-105 Ma) of the SNB. Preliminary Rb-Sr geochronology from the Granite Peak stock reveals a previously unrecognized period of magmatism (ca. 85.0 Ma) in this region. Therefore, ongoing work will more completely characterize the timing of magmatic pulses in this region and their relationships to the SNB. Preliminary petrographic, geochemical, and isotopic observations suggest that two distinct compositional/textural groups exist: the Santa Rosa/ Andorno group (SRA) and Granite Peak/ Sawtooth group (GPS). The chemical and isotopic variations between the two groups suggest that they were not consanguineous. Whereas the SRA group is generally more mafic (64-72 wt% SiO2) and metaluminous, the GPS group is more felsic (72- 76 wt% SiO2) and peraluminous. This observation is

  4. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: Evidence from the Fuping Complex

    NASA Astrophysics Data System (ADS)

    Tang, Li; Santosh, M.; Tsunogae, Toshiaki; Teng, Xue-Ming

    2016-04-01

    The Fuping, Wutai, and Hengshan Complexes in the North China Craton preserve imprints of widespread late Neoarchean magmatism. Here, we report results from systematic petrology, mineral chemistry, whole-rock major, trace and platinum-group element geochemistry, zircon U-Pb geochronology and Hf-O isotopes from the Yangmuqiao mafic-ultramafic intrusion and coeval tonalite-trondhjemite-granodiorite (TTG) gneiss from the Fuping Complex. The mafic-ultramafic intrusion is composed of pyroxene hornblendites, hornblendites, and minor harzburgites. The salient geochemical features of the mafic-ultramafic intrusion and the Fuping TTG gneiss display subduction-related island arc signature, such as fractionated REE patterns with elevated LREE, enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. The chemistry of the clinopyroxene and chromite in the pyroxene hornblendites shows affinity with Alaskan-type mafic-ultramafic intrusions. Zircons from the pyroxene hornblendite yield weighted mean 207Pb/206Pb age of 2514 ± 15 Ma, and those in the Fuping TTG gneiss show mean age of 2513 ± 13 Ma. Zircon Hf and O isotopic compositions are used as magma source and crustal evolution indicators. Zircon grains in the pyroxene hornblendite display positive εHf(t) values (2.6-6.7), Neoarchean TDM (2570-2723 Ma), and their δ18O values vary from 3.8‰ to 7.0‰ (average 6.2‰). Zircons in the TTG gneiss show εHf(t) values in the range of - 1.8 to 4.9, TDM of 2637-2888 Ma, and δ18O values of 4.1‰-6.7‰ (average of 6.1‰). These results suggest that the parental magma of the late Neoarchean magmatism in the Fuping area was dominantly extracted from the depleted mantle and contaminated to different degrees by crustal components. The pyroxene hornblendites have obviously higher IPGE contents (ΣIPGE = 1.69-2.39 ppb) and lower Pd/Ir ratios (5.97-6.28) than those in the hornblendites (ΣIPGE = 0.56-0.72 ppb, Pd/Ir = 6

  5. Metallogeny by Trans-magmatic Fluids—Theoretical Analysis and Field Evidence

    NASA Astrophysics Data System (ADS)

    Luo, Zhaohua; Mo, Xuanxue; Lu, Xinxiang; Chen, Bihe; Ke, Shan; Hou, Zengqian; Jiang, Wan

    This paper is aimed at introducing and developing the principle of Metallogenic Theory through Trans-magmatic Fluids (MTTF) proposed by the Russian Kozhinskii's school. Some fundamental problems of metallogeny are discussed on geodynamic bases. In this theory, the trans-magmatic fluid is interpreted as a moving fluid passing through magma which is not yet consolidated. The intensive wallrock alteration of most of hydrothermal ore systems suggests that large scale fluid flow accompanies metallogenesis. However, geological observations and experiments imply a very limited solubility of fluids in magmas. In addition, the close relationship between small igneous bodies and large ore systems together with the difficulty of fluids that from the wallrocks might enter a magmatic body, which is under high pressure and temperature, need also to be considered. Those ore-bearing fluids that originate from a deep fluid system, are independent of magmas. Experiments show rapid increases of the solubility of ore-forming elements or their compounds in hydrothermal fluids. Therefore, the essential prerequisites for mineralization are (1) large volumes of deep ore-bearing fluids with high concentration of metals, and (2) the large amounts of metal accumulation depend on the rapid ascent of the deep ore-bearing fluid. Magmas are the favorable medium for the ascending fluids, because these magmas provide conditions that prevent re-equilibrium between the fluid and the wallrocks at different deep levels. The fluids in turn, may provide the driving force for the rapid ascent of magmas. Therefore, the two systems act together to account for the close relationship between magmatism and metallogeny. According to this theory, the scale and location of an ore-forming process are decided by (1) the volumetric ratio of the magma and the fluid systems, (2) the ascending rate of the ore-bearing fluid, (3) the boundary conditions for metal accumulation and (4) the segregation of the fluid from

  6. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  7. Petrogenesis of Mesozoic granites in the Xitian, South China: Evidence from whole-rock geochemistry and zircon isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Sun, J.; He, M.; Hou, Q.; Niu, R.

    2017-12-01

    Mesozoic granitoids are widespread in southeastern China, which accompanied with lots of world-famous polymetallic deposits. The mineralization is believed to be related to the Mesozoic granitic magmatism. However, the petrogenesis of these granites and their relation to the mineralization are still debated. As a typical granitic pluton, Xitian granites from the eastern Hunan Province are formed during this period and associated with tungsten-tin deposit. Whole-rock geochemical, SIMS zircon geochronology and oxygen isotopes, as well as LA-ICPMS zircon Lu-Hf isotopic analyses, were carried out on a suite of rocks from Xitian granitic pluton to constrain their magmatic sources and petrogenesis. Xitian granitic pluton is mainly composed of biotite adamellite, biotite granite, fine-grained granite. SIMS and LA-ICPMS U-Pb dating of zircons indicate that there are two episodes of these rocks, i.e., Late Triassic granites (227-233Ma) and Late Jurassic granites (150-154Ma). The Xitian granites are silica-rich, potassic and weakly peraluminous. Petrographic and geochemical features show that they are highly fractionated I-type granites. The combined elemental and isotopic results indicated that the Late Triassic granite in Xitian area experienced a process of crystal fractionation of crustal-derived magmas coupled with strong assimilation of the surrounding rocks. The occurrence of Jurassic granitoids in Xitian area is attributed to ascending of mantle-derived magmas, which provide heat for partial melting of crustal materials. The Late Jurassic granite may be derived from juvenile crust or partial melting of ancient crustal rocks, whereas high degrees of crystal fractionation further enriched tungsten-tin in the evolved granitic rocks. This work was financially supported by the Research Cooperation between Institute and University of Chinese Academy of Sciences grant (Y552012Y00), Public Welfare Project of the Ministry of land and Resources of China (201211024

  8. Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya

    2013-04-01

    dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid

  9. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting?

    NASA Astrophysics Data System (ADS)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.

    2016-11-01

    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  10. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin

    USGS Publications Warehouse

    Kay, Suzanne M.; Burns, W. Matthew; Copeland, Peter; Mancilla, Oscar

    2006-01-01

    Evidence for a Miocene period of transient shallow subduction under the Neuquén Basin in the Andean backarc, and an intermittent Upper Cretaceous to Holocene frontal arc with a relatively stable magma source and arc-to-trench geometry comes from new 40Ar/39Ar, major- and trace-element, and Sr, Pb, and Nd isotopic data on magmatic rocks from a transect at ∼36°–38°S. Older frontal arc magmas include early Paleogene volcanic rocks erupted after a strong Upper Cretaceous contractional deformation and mid-Eocene lavas erupted from arc centers displaced slightly to the east. Following a gap of some 15 m.y., ca. 26–20 Ma mafic to acidic arc-like magmas erupted in the extensional Cura Mallín intra-arc basin, and alkali olivine basalts with intraplate signatures erupted across the backarc. A major change followed as ca. 20–15 Ma basaltic andesite–dacitic magmas with weak arc signatures and 11.7 Ma Cerro Negro andesites with stronger arc signatures erupted in the near to middle backarc. They were followed by ca. 7.2–4.8 Ma high-K basaltic to dacitic hornblende-bearing magmas with arc-like high field strength element depletion that erupted in the Sierra de Chachahuén, some 500 km east of the trench. The chemistry of these Miocene rocks along with the regional deformational pattern support a transient period of shallow subduction that began at ca. 20 Ma and climaxed near 5 Ma. The subsequent widespread eruption of Pliocene to Pleistocene alkaline magmas with an intraplate chemistry in the Payenia large igneous province signaled a thickening mantle wedge above a steepening subduction zone. A pattern of decreasingly arc-like Pliocene to Holocene backarc lavas in the Tromen region culminated with the eruption of a 0.175 ± 0.025 Ma mafic andesite. The northwest-trending Cortaderas lineament, which generally marks the southern limit of Neogene backarc magmatism, is considered to mark the southern boundary of the transient shallow subduction zone.

  11. Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data

    USGS Publications Warehouse

    Neymark, L.A.; Larin, A.M.; Nemchin, A.A.; Ovchinnikova, G.V.; Rytsk, E. Yu

    1998-01-01

    The Northern Baikal volcanic belt has an age of 1.82-1.87 Ga and extends along the boundary between the Siberian Platform and the Baikal foldbelt. The volcanic belt is composed of volcanics of the Akitkan Group and granitic rocks of the Irel and Primorsk complexes. The geochemistry of the rocks points to the intraplate anorogenic nature of the belt. U-Pb zircon dating of the Chuya granitoids revealed that they are older (2020-2060 Ma) than the Northern Baikal volcanic belt and, thus, cannot be regarded as its component. Data on the Pb isotopic system of feldspars from the granitoids confirm the contemporaneity of all volcanic rocks of the belt except the volcanics of the upper portion of the Akitkan Group (Chaya Formation). Our data suggest its possibly younger (???1.3 Ga) age. The isotopic Nd and Pb compositions of the acid volcanic rocks provide evidence of the heterogeneity of their crustal protoliths. The volcanics of the Malaya Kosa Formation have ??Nd(T) = -6.1, ??2 = 9.36, and were most probably produced with the participation of the U-depleted lower continental crust of Archean age. Other rocks of the complex show ??Nd(T) from -0.1 to -2.4, ??2 = 9.78, and could have been formed by the recycling of the juvenile crust. The depletion of the Malaya Kosa volcanics in most LILEs and HFSEs compared with other acid igneous rocks of the belt possibly reflects compositional differences between the Late Archean and Early Proterozoic crustal sources. The basaltic rocks of the Malaya Kosa Formation (??Nd varies from -4.6 to -5.4) were produced by either the melting of the enriched lithospheric mantle or the contamination of derivatives of the depleted mantle by Early Archean lower crustal rocks, which are not exposed within the area. Copyright ?? 1998 by MAEe Cyrillic signK Hay??a/Interperiodica Publishing.

  12. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  13. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  14. Lu-Hf systematics of magmatic zircons reveal a Proterozoic crustal boundary under the Cretaceous Pioneer batholith, Montana

    NASA Astrophysics Data System (ADS)

    Foster, David A.; Mueller, Paul A.; Heatherington, Ann; Gifford, Jennifer N.; Kalakay, Thomas J.

    2012-06-01

    Lu-Hf systematics of magmatic zircons from quartz diorite and granodiorite plutons of the Late Cretaceous Pioneer batholith, Montana, indicate involvement of distinctly different crustal sources in the petrogensis of individual components of the batholith. Plutons of the eastern Pioneer batholith contain magmatic zircons with initial ɛHf values of - 28 to - 34 that crystallized in magmas likely derived from dominantly Archean and earliest Paleoproterozoic crust. Contemporaneous granodiorite in the western Pioneer batholith contains magmatic zircons with initial ɛHf values ranging from - 9 to - 33, but dominated by values between - 18 and - 22, which suggest a mixture of Paleoproterozoic and possible Mesoproterozoic sources. These data suggest that distinct segments of crust juxtaposed and produced during formation of the Great Falls tectonic zone (1.78-1.86 Ga) and the Belt basin (~ 1.43-1.47 Ga) contributed to magmatic compositions in the batholith and that these contributions are recorded in the magmatic zircons. The contrasting ɛHf distributions between eastern and western components of the Pioneer batholith suggest that an important crustal and/or lithospheric boundary underlies the Pioneer batholith. The Hf-isotopic results also suggest that the high P-wave velocity lower crust of the northern Rocky Mountains did not form in a single event.

  15. Magmatism and the Shallowing of the Chilean Flatslab in the Central Andes

    NASA Astrophysics Data System (ADS)

    Kay, S. M.

    2014-12-01

    The magmatic history of the flatslab region between the Central and Southern Andean volcanic zones reflects shallowing of the slab, lithospheric thinning, narrowing of the asthenospheric wedge, crustal thickening and forearc removal by subduction erosion. Newly revised contours on the northern margin of the modern flatslab (Mulcahy et al. 2014) show the flattest part extends from ~28° to 33°S and is bounded by Pleistocene volcanic activity. An eastward broadening of the magmatic arc began after 18 Ma as westward drift of South America accelerated, but the most distinctive retroarc magmatism occurred after near normal subduction of the southward drifting Juan Fernandez Ridge began at ~11 Ma and ended as magmatism ceased in the Pampean ranges, ~ 700 km east of the trench at ~4.7 Ma. Recent seismic work in the retroarc area indicate a ~60 km thick crust under the Precordillera fold-thrust belt with transitions at ~20 and ~40 km that are considered to be the top of crystalline basement and an eclogitic facies transition. Chemical constraints from ~15-7 Ma magmatic rocks suggest eclogization is related to crustal thickening over the shallowing slab in accord with field relations for major thrusting in the region by ~8-7 Ma. High Ba/Th ratios in <9 Ma volcanic rocks are interpreted to reflect phengite breakdown in the mantle wedge with the fluids facilitating eclogization of the lower crust. Evidence for mantle melt contributions in the magmas up until ~7 Ma comes from more primitive isotopic values in 1088-1251 Ma amphibolite and granulite facies xenoliths (eNd = 0 to -3; 87Sr/86Sr =704-0.710) than in Miocene volcanic rocks (eNd = 0-1.7; 0.70325-0.70345; zircon eHf ~ 0). From ~8 to 3 Ma, the active volcanic arc front near 28°S and 33°S was translated ~ 40-50 km eastward in a suspected response to forearc removal by subduction erosion. Given the position of the arc and distance to the trench, the same amount of forearc was likely removed in the intervening flatslab

  16. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb <1.5) are consistent with δ18 O data and emphasize limited interaction with Pan-African crust. However, there are important regional variations in melt evolution revealed by incompatible elements (e.g., Th and Zr) and peralkalinity (molar Na2 O +K2 O /Al2O3). The most chemically-evolved peralkaline compositions are associated with the MER volcanoes (Aluto, Gedemsa and Kone) and an off-axis volcano of the Afar Rift (Badi). On-axis silicic volcanoes of the Afar Rift (e.g., Dabbahu) generate less-evolved melts. While at Erta Ale, the most mature rift setting, peralkaline magmas are rare. We find that melt evolution is enhanced in less mature continental rifts (where parental magmas are of transitional rather than tholeiitic composition) and regions of low magma flux (due to reduced mantle melt productivity

  17. The Isotopic Record From Monogenetic Seamounts: Insights Into Recycling Time Scales In The Upper Mantle

    NASA Astrophysics Data System (ADS)

    Madrigal Quesada, P.; Gazel, E.

    2017-12-01

    Monogenetic seamounts related to non-plume intraplate magmatism provide a window into the composition of upper mantle heterogeneities, nevertheless, the origin of these heterogeneities are still not well constrained. Radiogenic isotopes (Sr-Nd-Pb) from present-day ocean island basalts (OIB) produced by this type of magmatism can help establish the source compositions of these chemically and isotopically enriched reservoirs. Here we present evidence that suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle. We explore this hypothesis using data from non-plume related OIB volcanism; focusing on isolated monogenetic seamounts with no apparent age progression and interpreted to be related to either plate flexure, shear driven convection and/or edge convection. The isotopic record compiled, added to new results obtained from accreted petit-spot seamounts from Santa Elena Peninsula in Costa Rica, suggest that a highly radiogenic mantle reservoir originated from recycled seamount materials can be formed in a shorter time scale than ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle "flavor" found in some of these small-scale seamounts. The implications of these results entail that the recycling of already enriched materials in short time scales and in restricted depths within the Upper Mantle may play an important role in the source of OIBs (plume and non-plume related), as well as, the most enriched suites of EMORBs.

  18. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  19. Mass-dependent Mo isotope variations in oceanic basalts - a new tracer for mantle recycling processes

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Freymuth, H.; Hibbert, K.; Lai, Y. J.; Elliott, T.

    2016-12-01

    How and to what extent crustal material is recycled into the deeper mantle as a result of plate tectonic processes is a long-standing but still not fully understood question in Earth Sciences. Indirect evidence from chemical as well as radiogenic isotope data in oceanic basalts suggest that such a process may indeed have operated over much of Earth's history. Yet, uncertainties in characterising the age of the presumed recycled crustal components as well as the wide range in their chemical composition do not allow us to verify the mantle recycling hypothesis. Technological advances now enable us to explore new isotopic tracers that could shed light on this question. One of these new tools are mass-dependent isotope variation of molybdenum (Mo). Mass-dependent Mo isotope data in clastic and chemical sediments are a well-established geochemical tool to study redox conditions in the Earth's water masses over the geological past [1, 2, 3]. Being an intrinsic property of rocks exposed to the hydrosphere (see Anbar [4] for an overview), mass-dependent Mo isotope variation in mantle-derived rocks from oceanic settings could therefore be used a tracer of recycled crustal material in the Earth's mantle. In this contribution we provide a current overview over how different geological and magmatic processes - such as seawater alteration of oceanic crust, slab dehydration during plate subduction as well as magmatic emplacement - could affect the Mo isotopic composition of crustal components being transferred into the deeper mantle, as well as that of mantle melts that may contain such a recycled component. With this in mind, we explore the use of mass-dependent Mo isotope variations in mantle-derived rocks as a tracer of recycled crust in the mantle. [1] Archer & Vance (2008) Nature Geoscience 1, 597-600. [2] Barling et al. (2001) EPSL 193, 447-457. [3] Siebert et al. (2003) EPSL 211, 159-171. [4] Anbar (2004) Rev. Min. Geochem. 55, 429-454.

  20. Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions

    USGS Publications Warehouse

    Harlan, S.S.; Heaman, L.; LeCheminant, A.N.; Premo, W.R.

    2003-01-01

    Precise U-Pb baddeleyite dating of mafic igneous rocks provides evidence for a widespread and synchronous magmatic event that extended for >2400 km along the western margin of the Neoproterozoic Laurentian craton. U-Pb baddeleyite analyses for eight intrusions from seven localities ranging from the northern Canadian Shield to northwestern Wyoming-southwestern Montana are statistically indistinguishable and yield a composite U-Pb concordia age for this event of 780.3 ?? 1.4 Ma (95% confidence level). This 780 Ma event is herein termed the Gunbarrel magmatic event. The mafic magmatism of the Gunbarrel event represents the largest mafic dike swarm yet identified along the Neoproterozoic margin of Laurentia. The origin of the mafic magmatism is not clear, but may be related to mantle-plume activity or upwelling asthenosphere leading to crustal extension accompanying initial breakup of the supercontinent Rodinia and development of the proto-Pacific Ocean. The mafic magmatism of the Gunbarrel magmatic event at 780 Ma predates the voluminous magmatism of the 723 Ma Franklin igneous event of the northwestern Canadian Shield by ???60 m.y. The precise dating of the extensive Neoproterozoic Gunbarrel and Franklin magmatic events provides unique time markers that can ultimately be used for robust testing of Neoproterozoic continental reconstructions.

  1. Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAχFC): A Visual Basic computer code for calculating trace element and isotope variations of open-system magmatic systems

    NASA Astrophysics Data System (ADS)

    Bohrson, Wendy A.; Spera, Frank J.

    2007-11-01

    Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.

  2. Experimentally determined isotope effect during Mg-Fe interdiffusion in olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Roskosz, M.; Dauphas, N.; Bennett, N.; Mock, T. D.; Shahar, A.

    2017-12-01

    Isotopic fractionation provides the most direct means to investigate the nature of chemical zoning in minerals, which can be produced by either diffusive transport or crystal growth. Misinterpreting the nature of chemical zoning can result in erroneous conclusions regarding magmatic cooling rates and diffusion timescales. Isotopes are useful in this regard because the light isotopes diffuse faster than their heavier counterparts. As a result, isotopic fractionations should be associated with chemical zoning profiles if they are diffusion-driven. In contrast, little isotopic fractionation is associated with crystal growth during slow cooling at magmatic temperatures. The isotope effect for diffusion is described by β and is related to the mass (m) and diffusivity (D) of isotopes i and j of an element via: Di/Dj = (mj/mi)β. To model isotopic profiles, knowledge of β is required. Several estimates of β for Mg and Fe diffusion in olivine have been reported using natural samples but these estimates are uncertain because they depend on the choice of modeling parameters (Sio et al., 2013; Oeser et al., 2015; Collinet et al., 2017). We have experimentally determined β for Fe (βFe) in olivine as a function of crystallographic orientation, composition, and temperature. Thirty experiments have been conducted by juxtaposing crystallographically oriented olivine crystals to make Fo83.4-Fo88.8 and Fo88.8-Fo100 diffusion couples. These diffusion couples were annealed in a 1 atm gas mixing furnace at 1200 °C, 1300 °C or 1400 °C at QFM - 1.5 for up to 15 days. Chemical profiles were characterized using an electron microprobe and isotopic analyses were done using laser ablation MC-ICPMS. We found a crystallographic dependence of βFe for the Fo88.8-Fo100 couple where βFe [100] ≈ βFe [010] > βFe [001]. For the Fo83.4-Fo88.8 couple, βFe is 0.16 ± 0.09 (2σ) for all 3 major crystallographic axes. A temperature dependence of βFe could not be resolved. These

  3. Evidence for Terrane Accretion, Localized Rifting and Magmatism from the Crustal Velocity Structure of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.

    2017-12-01

    The crustal structure in the Southeastern United States records a rich tectonic history, including multiple terrane accretion events, the formation of the supercontinent Pangea, widespread magmatism from the Central Atlantic Magmatic Province (CAMP), and crustal thinning before the breakup of Pangea. We use wide-angle refraction seismic data from Lines 1 and 2 of the SUGAR (SUwannee suture and GeorgiA Rift basin) seismic experiment to constrain crustal structure in order to better understand these tectonic events. The 320 and 420 km lines extend from the northwest to the southeast, crossing the Mesozoic rift basins that record crustal thinning prior to the breakup of Pangea and multiple potential suture zones between accreted terranes. We model crustal P-wave velocity structure with reflection/refraction tomography based on refractions through the sediments, crust and mantle and reflections from the base of the sediments, within the crust and the Moho. To the north on Line 2, we observe high Vp and Vs within the Inner Piedmont and Carolina accreted terranes underlain by a low velocity zone at 5 km depth. These observations are consistent with metamorphosed terranes accreting onto the Laurentian margin along a low velocity region that represents meta-sedimentary rocks and/or an Appalachian detachment. Additionally, differences in the basin structure, lower crustal velocities, and crustal thickness between Lines 1 and 2 reflect varying extension and magmatism between the two Mesozoic rift segments. Line 1 has thicker and more laterally extensive syn-rift sediments and a more pronounced region of crustal thinning. In contrast, syn-rift sediments along Line 2 are thinner and limited to a couple of smaller basins, and the crust of Line 2 gradually thins towards the coast. The thinned crust beneath Line 1 is characterized by high velocities of >7.0 km/s, which we interpret as mafic intrusions related to rifting or CAMP; in contrast, no evidence of elevated lower crustal

  4. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard

    2015-06-01

    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (<10 Ma) large-volume dacitic ignimbrites from the southern portion of the Central Andes have distinctly more radiogenic Sr and heavier O isotopes and thus contrast with older dacitic ignimbrites in northernmost Chile and southern Peru. Results of assimilation and fractional crystallization (AFC) models show that the largest chemical changes occur in the lower crust where magmas acquire a base-level geochemical signature that is later modified by middle to upper crustal AFC. Using geospatial analysis, we estimated the volume of these ignimbrite deposits throughout the Central Andes during the Neogene and examined the spatiotemporal pattern of so-called ignimbrite flare-ups. We observe a N-S migration of maximum ages of the onset of large-volume "ignimbrite pulses" through time: Major pulses occurred at 19-24 Ma (e.g. Oxaya, Nazca Group), 13-14 Ma (e.g. Huaylillas and Altos de Pica ignimbrites) and <10 Ma (Altiplano and Puna ignimbrites). Such "flare-ups" represent magmatic production rates of 25 to >70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1

  5. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  6. Alunite in the Pascua-Lama high-sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry

    USGS Publications Warehouse

    Deyell, C.L.; Leonardson, R.; Rye, R.O.; Thompson, J.F.H.; Bissig, T.; Cooke, D.R.

    2005-01-01

    The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunite-pyrite-enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized, including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal, steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints on the timing and nature of alteration and mineralization of the alunite-pyiite-enargite assemblage in the deposit. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths of alunite-quartz ?? kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite, and ?? 34Salun-py data indicate depositional temperatures of 245?? to 305??C. The ??D and ?? 18O data exclude significant involvement of meteoric water during mineralization and indicate that the assemblage formed from H2S-dominated magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in

  7. Chemical and isotopic equilibrium between CO 2 and CH 4 in fumarolic gas discharges: Generation of CH 4 in arc magmatic-hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Fiebig, Jens; Chiodini, Giovanni; Caliro, Stefano; Rizzo, Andrea; Spangenberg, Jorge; Hunziker, Johannes C.

    2004-05-01

    The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH 4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH 4 and CO 2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H 2O-H 2-CO 2-CO-CH 4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH 4, CO 2 and H 2O implying that carbon isotope partitioning between CO 2 and CH 4 in both systems is controlled by aquifer temperature. N 2/ 3He and CH 4/ 3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH 4 may have been primarily generated through the reduction of CO 2 by H 2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH 4 and subsequent re-equilibration with co-existing CO 2 cannot be ruled out entirely. CO 2/ 3He ratios and δ 13C CO 2 values imply that the evolved CO 2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH 4 during thermometamorphism.

  8. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2004-05-01

    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these

  9. Iron Isotope Constraints on Planetesimal Core Formation

    NASA Astrophysics Data System (ADS)

    Jordan, M.; Young, E. D.

    2016-12-01

    The prevalence of iron in both planetary cores and silicate mantles renders the element a valuable tool for understanding core formation. Magmatic iron meteorites exhibit an enrichment in 57Fe/54Fe relative to chondrites and HED meteorites. This is suggestive of heavy Fe partitioning into the cores of differentiated bodies. If iron isotope fractionation accompanies core formation, we can elucidate details about the history of accretion for planetary bodies as well as their compositions and relative core sizes. The equilibrium 57Fe/54Fe between metal and silicate is necessary for understanding observed iron isotope compositions and placing constraints on core formation. We measure this fractionation in two Aubrite meteorites, Norton County and Mount Egerton, which have known temperatures of equilibration and equilibrated silicon isotopes. Iron was purified using ion-exchange chromatography. Data were collected on a ThermoFinnigan NeptuneTM multiple-collector inductively coupled plasma-source mass spectrometer (MC-ICP-MS) run in wet plasma mode. The measured fractionation Δ57Femetal-silicate is 0.08‰ ± 0.039 (2 SE) for Norton County and 0.09‰ ± 0.019 (2 SE) for Mount Egerton, indicating that the heavy isotopes of Fe partition into the metallic phase. These rocks are in isotopic equilibrium at a temperature of 1130 K and 1200 K ± 80 K, respectively. The concentration of the heavy isotopes of iron in the metallic phase is consistent with recent experimental studies. Using our measured metal-silicate Fe isotope fractionation and the resulting temperature calibration, while taking into account impurities in the metallic phase and temperatures of equilibration, determine that core formation could explain the observed difference between magmatic iron meteorites and chondrites if parent bodies have small cores. In order to verify that Rayleigh distillation during fractional crystallization was not a cause of iron isotope fractionation in iron meteorites, we measured

  10. Low {delta}{sup 18}O magma, Isle of Skye, Scotland: Evidence from zircons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliam, C.E.; Valley, J.W.

    1997-12-01

    Zircons in Tertiary granitic rocks from the Isle of Skye, Scotland were resistant to measurable oxygen isotope exchange during intense hydrothermal activity in the subvolcanic environment. Five granite bodies from the Western Red Hills complex were investigated; four have {sup 18}O (Zrc) = 4.1 {+-} 0.2{per_thousand} (VSMOW) while the fifth, which intruded before major cauldron subsidence, is 2{per_thousand} lower. Zircons from Lewisian gneiss are visually and isotopically distinct indicating that zircons in the granite are not xenocrysts from the Lewisian basement. Analysis of different magnetic and size fractions of zircon shows no significant correlation to {delta}{sup 18}O supporting the conclusionmore » that these values represent the true magmatic compositions and that the Western Red Hills granites intruded as low {delta}{sup 18}O magmas with a whole rock {delta}{sup 18}O {le} 6.0%. Quartz separates from four granites are close to the calculated magmatic values in {delta}{sup 18}O, but in the fifth, values are 5% lower indicating variable exchange of quartz with low {delta}{sup 18}O heated meteoric waters. These results might be explained by magmatic interaction with hydrothermally altered crust early in the evolution of the granites, before crystallization of zircon, followed by interaction with later hydrothermal fluids. Alternatively, independent evidence for low {delta}{sup 18}O mafic magmatism in NW Scotland suggests the presence of large quantities of low {delta}{sup 18}O subducted ocean crust in the subcontinental lithosphere that could contaminate or be the source of low {delta}{sup 18}O mantle-derived melts. 31 refs., 4 figs., 1 tab.« less

  11. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min

    2018-03-01

    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  12. Post-Delamination Magmatism at the Hasandag Cinder Cone Province, Central Anatolia

    NASA Astrophysics Data System (ADS)

    Gall, H. D.; Pickard, M.; Sayit, K.; Hanan, B. B.; Kürkçüoğlu, B.; Furman, T.

    2016-12-01

    Central Anatolian mafic lavas record both closure of the Tethyan Ocean and post-Miocene extension. Regional-scale delamination of the horizontally-subducted Neotethyan slab beneath Central Anatolia 9-14 Ma is inferred on the basis of >1 km of uplift of the Central Anatolian Plateau and the onset of widespread volcanism induced by melting of ascending asthenosphere (Bartol and Govers, 2014). Geochemical data from the Quaternary Hasandağ Cinder Cone Province suggest a more complicated story and require melting of both asthenosphere and lithosphere. Hasandağ cinder cones produce basalt, trachybasalt and basaltic trachyandesite (7.2-10.3 wt. % MgO; 48.9-51.8 wt. % SiO2). Systematic trends in key element ratios indicate a significant contribution from the lithosphere with metasomatic phases including rutile and sodic amphibole. Tb/YbN (1.2-1.7) values restrict depth of melting to the spinel stability field, 30-90 km. Sr-Nd-Hf isotopic values fall within published ranges of post-Miocene Central Anatolian mafic lavas and suggest binary mixing between geographically-constrained enriched and depleted endmembers. In contrast, ternary Pb isotopic abundances are nearly uniform and lack psuedobinary trends indicative of ordered mixing observed elsewhere in Anatolia and in other young extensional provinces. This difference suggests that Hasandağ lavas do not undergo progressive crustal contamination in an evolving extensional environment. Rather, Hasandağ primitive lavas document an increase in degree of melting with depth, a signature associated with drip magmatism (Elkins-Tanton, 2007; Holbig and Grove, 2008).Together, these data argue for a two-part lithospheric foundering process: Miocene microplate-scale delamination of the subducted African slab and the subsequent influx of warm asthenosphere stimulated localized Quaternary drip melting of the remaining Anatolian lithosphere. These distinct mechanisms and scales of lithospheric removal provide a consistent explanation

  13. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    NASA Astrophysics Data System (ADS)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  14. Isotopic evidence for oxygenated Mesoarchaean shallow oceans

    NASA Astrophysics Data System (ADS)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny

    2018-02-01

    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  15. Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas

    NASA Astrophysics Data System (ADS)

    Sakyi, Patrick Asamoah; Tanaka, Ryoji; Kobayashi, Katsura; Nakamura, Eizo

    2012-10-01

    Dislocation textures of olivine grains and Pb isotopic compositions (207Pb/206Pb and 208Pb/206Pb) of olivine-hosted melt inclusions in basaltic lavas from three Hawaiian volcanoes (Kilauea, Mauna Loa, and Koolau) were examined. More than 70% of the blocky olivine grains in the studied samples have a regular-shaped dislocation texture with their dislocation densities exceeding 106 cm-2, and can be considered as deformed olivine. The size distribution of blocky olivine grains shows that more than 99% of blocky olivines coarser than 1.2 mm are identified as deformed olivine. These deformed olivine grains are identified as antecrysts, which originally crystallized from previous stages of magmatism in the same shield, followed by plastic deformation prior to entrainment in the erupted host magmas. This study revealed that entrainment of mantle-derived crystallization products by younger batches of magma is an important part of the evolution of magnesium-rich Hawaiian magma. Lead isotopic compositions of melt inclusions hosted in the olivine antecrysts provide information of the evolutionary history of Hawaiian volcanoes which could not have been accessed if only whole rock analyses were carried out. Antecryst-hosted melt inclusions in Kilauea and Koolau lavas demonstrate that the source components in the melting region changed during shield formation. In particular, evidence of interaction of plume-derived melts and upper mantle was observed in the earliest stage of Koolau magmatism.

  16. Noble Gas Isotope Evidence for Mantle Volatiles in the Cu-Mo Porphyry and Main Stage Polymetallic Veins at Butte, Montana

    NASA Astrophysics Data System (ADS)

    Hofstra, A. H.; Rusk, B. G.; Manning, A. H.; Hunt, A. G.; Landis, G. P.

    2017-12-01

    Recent studies suggest that volatiles released from mafic intrusions may be important sources of heat, sulfur, and metals in porphyry Cu-Mo-Au and epithermal Au-Ag deposits associated with intermediate to silicic stocks. The huge Cu-Mo porphyry and Main Stage polymetallic vein deposits at Butte are well suited to test this hypothesis because there is no geologic or isotopic evidence of basaltic intrusions in the mine or drill holes. The Butte porphyry-vein system is associated with quartz monzonite stocks and dikes within the southwest part of the Late Cretaceous Boulder batholith. The Boulder batholith was emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and Late Cretaceous volcanic rocks. The Boulder batholith and Butte intrusions have Sri and eNd values indicative of crustal contamination. Eu and Ce anomalies in zircon from Butte intrusions provide evidence of oxidation due to magma degassing. To ascertain the source of volatiles in this system, 11 samples from the Cu-Mo porphyry and 16 from Main Stage veins were selected. The isotopic composition of Ar, Ne, and He extracted from fluid inclusions in quartz, magnetite, pyrite, chalcopyrite, sphalerite, galena, enargite, and covellite were determined. Helium isotopes exceed blank levels in all samples and Ne and Ar in some samples. On a 38Ar/36Ar vs. 40Ar/36Ar diagram, data plot near air. On a 20Ne/22Ne vs. 21Ne/22Ne diagram, data extend from air along the trajectories of OIB and MORB. On a 36Ar/4He vs. 3He/4He RA diagram, data extend from crust toward the air-mantle mixing line. The maximum 3He/4He RA values in the Cu-Mo porphyry (2.86) and Main Stage veins (3.46) are from pyrite and these values correspond to 36 and 43 % mantle helium. The Ne and He results show that fluid inclusions contain volatiles discharged from mantle magmas and that these volatiles were diluted by groundwater containing He derived from country rocks. Despite the lack of mafic intrusions in the Butte magmatic center, noble gas

  17. Magnesium isotopic composition of the Earth and chondrites

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites

  18. Marine Carbonate Component in the Mantle Beneath the Southeastern Tibetan Plateau: Evidence From Magnesium and Calcium Isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Li, Xin; Wang, Guiqin; Liu, Yufei; Zhu, Hongli; Kang, Jinting; Huang, Fang; Sun, Weidong; Xia, Xiaoping; Zhang, Zhaofeng

    2017-12-01

    Tracing and identifying recycled carbonates is a key issue to reconstruct the deep carbon cycle. To better understand carbonate subduction and recycling beneath the southeastern Tibetan Plateau, high-K cal-alkaline volcanic rocks including trachy-basalts and trachy-andesites from Tengchong were studied using Mg and Ca isotopes. The low δ26Mg (-0.31 ± 0.03‰ to -0.38 ± 0.03‰) and δ44/40Ca (0.67 ± 0.07‰ to 0.80 ± 0.04‰) values of these volcanic rocks compared to those of the mantle (-0.25 ± 0.07‰ and 0.94 ± 0.05‰, respectively) indicate the incorporation of isotopically light materials into the mantle source, which may be carbonate-bearing sediments with low δ26Mg and δ44/40Ca values. In addition, no correlations of δ26Mg and δ44/40Ca with either SiO2 contents or trace element abundance ratios (e.g., Sm/Yb and Ba/Y) were observed, suggesting that limited Mg and Ca isotopic fractionation occurred during cal-alkaline magmatic differentiation. A binary mixing model using Mg-Ca isotopes shows that 5-8% carbonates dominated primarily by dolostone were recycled back into the mantle. Since Tengchong volcanism is still active and probably related to ongoing plate tectonic movement, we propose that the recycled carbonates are derived from oceanic crust related to the ongoing subduction of the Indian plate.

  19. How tectonics controlled post-collisional magmatism within the Dinarides: Inferences based on study of tectono-magmatic events in the Kopaonik Mts. (Southern Serbia)

    NASA Astrophysics Data System (ADS)

    Mladenović, Ana; Trivić, Branislav; Cvetković, Vladica

    2015-04-01

    In this study, we report evidence about coupling between tectonic and magmatic processes in a complex orogenic system. The study focuses on the Kopaonik Mts. situated between the Dinarides and the Carpatho-Balkanides (Southern Serbia), and a perfect area for investigating tectono-magmatic evolution. We combine a new data set on tectonic paleostress tensors with the existing information on Cenozoic magmatic rocks in the wider Kopaonik Mts. area. The paleostress study revealed the presence of four brittle deformational phases. The established link between fault mechanism and igneous processes suggests that two large tectono-magmatic events occurred in this area. The Late Eocene-Early Miocene tectono-magmatic event was generally characterized by transpressional tectonics that provided conditions for formation of basaltic underplating and subsequent lower crustal melting and generation of I-type magmas. Due to predominant compression in the first half of this event, these magmas could not reach the upper crustal levels. Later on, limited extensional pulses that occurred before the end of this event opened pathways for newly formed mantle melts to reach shallower crustal levels and mix with the evolving I-type magmas. The second event is Middle-Late Miocene in age. It was first associated with clear extensional conditions that caused advancing of basaltic melts to mid-crustal levels. This, in turn, induced the elevation of geotherms, melting of shallow crust and S-type granite formation. This event terminated with transpression that produced small volumes of basaltic melts and finally closed the igneous scene in this part of the Balkan Peninsula. Although we agree that the growth of igneous bodies is usually internally controlled and can be independent from the ambient structural pattern, we have strong reasons to believe that the integration of regional scale observations of fault kinematics with crucial petrogenetic information can be used for establishing spatial

  20. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    USGS Publications Warehouse

    Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.

    1990-01-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth. 

  1. An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.

    2016-12-01

    We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.

  2. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  3. Middle Jurassic Topawa group, Baboquivari Mountains, south-central Arizona: Volcanic and sedimentary record of deep basins within the Jurassic magmatic arc

    USGS Publications Warehouse

    Haxel, G.B.; Wright, J.E.; Riggs, N.R.; Tosdal, R.M.; May, D.J.

    2005-01-01

    Among supracrustal sequences of the Jurassic magmatic arc of the southwestern Cordillera, the Middle Jurassic Topawa Group, Baboquivari Mountains, south-central Arizona, is remarkable for its lithologic diversity and substantial stratigraphic thickness, ???8 km. The Topawa Group comprises four units (in order of decreasing age): (1) Ali Molina Formation-largely pyroclastic rhyolite with interlayered eolian and fluvial arenite, and overlying conglomerate and sandstone; (2) Pitoikam Formation-conglomerate, sedimentary breccia, and sandstone overlain by interbedded silt- stone and sandstone; (3) Mulberry Wash Formation-rhyolite lava flows, flow breccias, and mass-flow breccias, with intercalated intraformational conglomerate, sedimentary breccia, and sandstone, plus sparse within-plate alkali basalt and comendite in the upper part; and (4) Tinaja Spring Porphyry-intrusive rhyolite. The Mulberry Wash alkali basalt and comendite are genetically unrelated to the dominant calcalkaline rhyolite. U-Pb isotopic analyses of zircon from volcanic and intrusive rocks indicate the Topawa Group, despite its considerable thickness, represents only several million years of Middle Jurassic time, between approximately 170 and 165 Ma. Sedimentary rocks of the Topawa Group record mixing of detritus from a minimum of three sources: a dominant local source of porphyritic silicic volcanic and subvolcanic rocks, identical or similar to those of the Topawa Group itself; Meso- proterozoic or Cambrian conglomerates in central or southeast Arizona, which contributed well-rounded, highly durable, polycyclic quartzite pebbles; and eolian sand fields, related to Middle Jurassic ergs that lay to the north of the magmatic arc and are now preserved on the Colorado Plateau. As the Topawa Group evidently represents only a relatively short interval of time, it does not record long-term evolution of the Jurassic magmatic arc, but rather represents a Middle Jurassic "stratigraphic snapshot" of the arc

  4. Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia)

    NASA Astrophysics Data System (ADS)

    Sheldrick, Thomas C.; Barry, Tiffany L.; Van Hinsbergen, Douwe J. J.; Kempton, Pamela D.

    2018-01-01

    Throughout northeast China, eastern and southern Mongolia, and eastern Russia there is widespread Mesozoic intracontinental magmatism. Extensive studies on the Chinese magmatic rocks have suggested lithospheric mantle removal was a driver of the magmatism. The timing, distribution and potential diachroneity of such lithospheric mantle removal remains poorly constrained. Here, we examine successions of Mesozoic lavas and shallow intrusive volcanic plugs from the Gobi Altai in southern Mongolia that appear to be unrelated to regional, relatively small-scale deformation; at the time of magmatism, the area was 200 km from any active margin, or, after its Late Jurassic-Early Cretaceous closure, from the suture of the Mongol-Okhotsk Ocean. 40Ar/39Ar radiometric age data place magmatic events in the Gobi Altai between 220 to 99.2 Ma. This succession overlaps Chinese successions and therefore provides an opportunity to constrain whether Mesozoic lithosphere removal may provide an explanation for the magmatism here too, and if so, when. We show that Triassic to Lower Cretaceous lavas in the Gobi Altai (from Dulaan Bogd, Noyon Uul, Bulgantiin Uul, Jaran Bogd and Tsagaan Tsav) are all light rare-earth element (LREE) and large-ion lithophile element (LILE)-enriched, with negative Nb and Ta anomalies (Nb/La and Ta/La ≤ 1). Geochemical data suggest that these lavas formed by low degrees of partial melting of a metasomatised lithospheric mantle that may have been modified by melts derived from recycled rutile-bearing eclogite. A gradual reduction in the involvement of garnet in the source of these lavas points towards a shallowing of the depth of melting after 125 Ma. By contrast, geochemical and isotope data from the youngest magmatic rocks in the area - 107-99 Ma old volcanic plugs from Tsost Magmatic Field - have OIB-like trace element patterns and are interpreted to have formed by low degrees of partial melting of a garnet-bearing lherzolite mantle source. These rocks did

  5. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    PubMed

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  6. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber

    PubMed Central

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-01-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted. PMID:26620121

  7. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d

    USGS Publications Warehouse

    Karabanov, E.B.; Prokopenko, A.A.; Williams, D.F.; Colman, Steven M.

    1998-01-01

    The paleoclimatic record from bottom sediments of Lake Baikal (eastern Siberia) reveals new evidence for an abrupt and intense glaciation during the initial part of the last interglacial period (isotope substage 5d). This glaciation lasted about 12 000 yr from 117 000 to 105 000 yr BP according to correlation with the SPEC-MAP isotope chronology. Lithological and biogeochemical evidence of glaciation from Lake Baikal agrees with evidence for the advance of ice sheet in northwestern Siberia during this time period and also with cryogenic features within the strata of Kazantzevo soils in Southern Siberia. The severe 5d glaciation in Siberia was caused by dramatic cooling due to the decrease in solar insolation (as predicted by the model of insulation changes for northern Asia according to Milankovich theory) coupled with western atmospheric transport of moisture from the opea areas of Northern Atlantic and Arctic seas (which became ice-free due to the intense warming during preceeding isotope substage 5e). Other marine and continental records show evidence for cooling during 5d, but not for intense glaciation. Late Pleistocene glaciations in the Northern Hemisphere may have begun in northwestern Siberia.

  8. U-Pb geochronology and Hf-Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new evidence for a unique juvenile terrane

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; D'Lemos, R. S.; Blichert-Toft, J.; Vervoort, J.

    2003-03-01

    New U-Pb dates, combined with Nd and Hf isotopic data, from rocks within the Port Morvan area of the Baie de St Brieuc region of Brittany identify a unique portion of the Neoproterozoic Cadomia terrane. Two gneisses near Port Morvan yielded U-Pb dates of 754.6±0.8 Ma and 746.0±0.9 Ma, ages that are more than 130 Myr older than the oldest units formed during the main phase of early Cadomian magmatism. Two trondhjemite boulders from the monogenetic facies of the Cesson conglomerate yielded identical ages of 665.2±0.5 Ma and 665.5±0.7 Ma, and a cobble from the polygenetic facies yields a 207Pb- 206Pb date of 637±2 Ma. Individual detrital zircons from a sandstone associated with the Cesson conglomerates yield concordant U-Pb dates ranging from 650±3 Ma to 624.1±0.6 Ma. Initial ɛNd values for the rocks in this region range from +5.0 to +6.6, indicative of a substantial input from depleted mantle. Initial ɛHf values determined on zircons from these Neoproterozoic rocks, including the detrital zircons, range from +6.7 to +14.5, consistent with the Nd isotopic results. Maximum initial ɛHf values for two 2 Ga Icartian gneisses, considered basement to Cadomia, average +8.4 and +8.7. In contrast to the results of the Port Morvan rocks, 616-608 Ma syn-tectonic intrusions from Normandy and the British Channel Islands all have negative initial ɛNd values (-10.4 to -8.3) consistent with significant contamination by ancient crust such as the 2 Ga gneisses. The oldest arc-related magmas should have interacted most extensively with Cadomian basement, buffering younger mantle-derived magmas that were generated in subsequent magmatic episodes. The rocks within the Port Morvan region are thus inconsistent as examples of the earliest Cadomian intrusions as they show no evidence of interaction with 2 Ga basement. Instead, the older ages and mantle-like isotopic composition of these rocks suggest they are part of an independent terrane that formed prior to, and independently

  9. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  10. Diversity of management strategies in Mesoamerican turkeys: archaeological, isotopic and genetic evidence.

    PubMed

    Manin, Aurelie; Corona-M, Eduardo; Alexander, Michelle; Craig, Abigail; Thornton, Erin Kennedy; Yang, Dongya Y; Richards, Michael; Speller, Camilla F

    2018-01-01

    The turkey ( Meleagris gallopavo ) represents one of the few domestic animals of the New World. While current research points to distinct domestication centres in the Southwest USA and Mesoamerica, several questions regarding the number of progenitor populations, and the timing and intensity of turkey husbandry remain unanswered. This study applied ancient mitochondrial DNA and stable isotope ( δ 13 C, δ 15 N) analysis to 55 archaeological turkey remains from Mexico to investigate pre-contact turkey exploitation in Mesoamerica. Three different (sub)species of turkeys were identified in the archaeological record ( M. g. mexicana , M. g. gallopavo and M. ocellata ), indicating the exploitation of diverse local populations, as well as the trade of captively reared birds into the Maya area. No evidence of shared maternal haplotypes was observed between Mesoamerica and the Southwest USA, in contrast with archaeological evidence for trade of other domestic products. Isotopic analysis indicates a range of feeding behaviours in ancient Mesoamerican turkeys, including wild foraging, human provisioning and mixed feeding ecologies. This variability in turkey diet decreases through time, with archaeological, genetic and isotopic evidence all pointing to the intensification of domestic turkey management and husbandry, culminating in the Postclassic period.

  11. Diversity of management strategies in Mesoamerican turkeys: archaeological, isotopic and genetic evidence

    PubMed Central

    Manin, Aurelie; Corona-M, Eduardo; Craig, Abigail; Thornton, Erin Kennedy; Yang, Dongya Y.; Richards, Michael

    2018-01-01

    The turkey (Meleagris gallopavo) represents one of the few domestic animals of the New World. While current research points to distinct domestication centres in the Southwest USA and Mesoamerica, several questions regarding the number of progenitor populations, and the timing and intensity of turkey husbandry remain unanswered. This study applied ancient mitochondrial DNA and stable isotope (δ13C, δ15N) analysis to 55 archaeological turkey remains from Mexico to investigate pre-contact turkey exploitation in Mesoamerica. Three different (sub)species of turkeys were identified in the archaeological record (M. g. mexicana, M. g. gallopavo and M. ocellata), indicating the exploitation of diverse local populations, as well as the trade of captively reared birds into the Maya area. No evidence of shared maternal haplotypes was observed between Mesoamerica and the Southwest USA, in contrast with archaeological evidence for trade of other domestic products. Isotopic analysis indicates a range of feeding behaviours in ancient Mesoamerican turkeys, including wild foraging, human provisioning and mixed feeding ecologies. This variability in turkey diet decreases through time, with archaeological, genetic and isotopic evidence all pointing to the intensification of domestic turkey management and husbandry, culminating in the Postclassic period. PMID:29410864

  12. Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Mandeville, C.W.; Webster, J.D.; Tappen, C.; Taylor, B.E.; Timbal, A.; Sasaki, A.; Hauri, E.; Bacon, C.R.

    2009-01-01

    Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43??N, long. 122??W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing. Sulfur isotope analyses of climactic rhyodacitic whole rocks yield ??34S values of 2.8-14.8??? with corresponding matrix glass values of 2.4-13.2???. ??34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in ??34S from -0.4??? to 5.8??? and from -0.1??? to 3.5???, respectively. Initial ??34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0???. Hydrogen isotope (??D) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values ??f -103 to -53??? and 0.23-1.74 wt%, respectively. Values of

  13. Stable Vanadium Isotopes as a Redox Proxy at High Temperatures?

    NASA Astrophysics Data System (ADS)

    Prytulak, J.; Sossi, P.; Halliday, A.; Plank, T. A.; Savage, P.; Woodhead, J. D.

    2016-12-01

    There is currently no consensus on the relative oxygen fugacity (fO2) of the mantle source of mid-ocean ridge basalts compared to the sub-arc mantle, the region that is central to the mediation of crust-mantle mass balances. Vanadium is a multivalent transition metal whose stable isotope fractionation may reflect oxygen fugacity (fO2). However, a direct link between V isotope composition and fO2 is currently far from convincingly demonstrated. Furthermore, differences in co-ordination environment also play a large role in causing stable isotope fractionation. Here we present V isotope measurements of two suites of co-genetic magmas from contrasting tectonic settings: the Mariana arc and Hekla volcano, Iceland. We use this data alongside the tightly constrained V isotope composition of MORB [1] to assess the effects of fO2 and crystal fractionation on stable vanadium isotopes. We show that, for a given MgO content, V isotopes are identical within analytical error between arc basalts from the Marianas, lavas from Hekla, and MORB. The most striking aspect of our igneous, high temperature V isotope data is the large isotope fractionation (on the order of 2 ‰) towards heavier values in magmatic suites from both Hekla and the Marianas with progressive differentiation. We use a self consistent model of fractionating cotectic phases in both igneous suites to match major, trace and V isotope data. Vanadium partition coefficients required for (titano)magnetite are significantly higher in Hekla (DVmag = 42) than Mariana lavas (DVmag = 32), consistent with a more oxidised source in the latter. Calculated Rayleigh fractionation factors are similar in both suites (Δ51Vmin-melt of -0.4 to -0.5‰) and strongly implicate co-ordination differences between oxides and melt are the dominant driving force for V isotope fractionation. Thus, although fO2likely has a second order effect on V isotopes, they are not a direct proxy for oxygen fugacity in magmatic systems. [1] Prytulak, et

  14. Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September-December 1997

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.; Kessler, R.; Doukas, M.P.

    2000-01-01

    Recent time series soil CO2 concentration data from monitoring stations in the vicinity of Mammoth Mountain, California, reveal strong evidence for a magmatic degassing event during the fall of 1997 lasting more than 2 months. Two sensors at Horseshoe Lake first recorded the episode on September 23, 1997, followed 10 days later by a sensor on the north flank of Mammoth Mountain. Direct degassing from shallow intruding magma seems an implausible cause of the degassing event, since the gas released at Horseshoe Lake continued to be cold and barren of other magmatic gases, except for He. We suggest that an increase in compressional strain on the area south of Mammoth Mountain driven by movement of major fault blocks in Long Valley caldera may have triggered an episode of increased degassing by squeezing additional accumulated CO2 from a shallow gas reservoir to the surface along faults and other structures where it could be detected by the CO2 monitoring network. Recharge of the gas reservoir by CO2 emanating from the deep intrusions that probably triggered deep long-period earthquakes may also have contributed to the degassing event. The nature of CO2 discharge at the soil-air interface is influenced by the porous character of High Sierra soils and by meteorological processes. Solar insolation is the primary source of energy for the Earth atmosphere and plays a significant role in most diurnal processes at the Earth surface. Data from this study suggest that external forcing due largely to local orographic winds influences the fine structure of the recorded CO2 signals.

  15. History of Red Crater volcano, Tongariro Volcanic Centre (New Zealand): Abrupt shift in magmatism following recharge and contrasting evolution between neighboring volcanoes

    NASA Astrophysics Data System (ADS)

    Shane, Phil; Maas, Roland; Lindsay, Jan

    2017-06-01

    Red Crater volcano is one of several contemporaneously active vents on the Tongariro Volcanic Centre. Its history provides an opportunity to investigate the contrasting magmatic evolutionary paths of closely-spaced volcanoes. Rocks erupted at Red Crater over the last 3.4 ka display typical subduction-related trace element and isotopic signatures. Those erupted pre-1.8 ka are medium-K andesites (SiO2 59-62 wt%). They represent the most voluminous magmas and were emplaced in 5 lava flow events. An abrupt shift to the eruption of basaltic andesite (SiO2 53-54 wt%) with less radiogenic Sr-Nd-Pb isotope ratios, occurred post-1.8 ka. This period comprised 6 smaller volume, lava flow episodes and the contemporaneous development of a scoria cone. Plagioclase phenocrysts in post-1.8 ka lava flows have resorbed cores with diverse textural and compositional growth patterns, as would be expected from the disruption of a crystal mush. They are similar to phenocrysts of the pre-1.8 ka lava flows. The post-1.8 ka plagioclase is distinguished from those in the older lavas by overgrowths with elevated An ( 70-90), FeO and MgO contents, that mantle the resorbed cores ( An50-70). These rims are compositionally similar to groundmass plagioclase. This demonstrates that new mafic magma was intruded into the system, mixing with and entraining relic crystals from the older andesite system. Iron and Mg zoning patterns in the crystals are not consistent with significant re-equilibration via diffusion. Hence, the generation of eruptible magma during the last 1.8 ka required repeated mafic intrusion events. The emptying of the older andesitic magma reservoir early in the volcano's history removed buoyancy barriers to the direct eruption of more mafic magmas. This pattern of magmatism is not recorded at the contemporaneously active Ngauruhoe volcano, just 3 km to the SSW. Ngauruhoe rocks are compositionally distinct and are more heterogeneous in isotopic composition. Although mafic recharge is

  16. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Liqi; Zhang, Hongfei; Zhang, Shasha; Xiong, Ziliang; Luo, Biji; Yang, He; Pan, Fabin; Zhou, Xiaochun; Xu, Wangchun; Guo, Liang

    2017-09-01

    Post-collisional granitoids are widespread in the North Qilian and southern margin of the Alxa block and their petrogenesis can provide important insights into the lithospheric processes in a post-collisional setting. This paper carries out an integrated study of U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions for five early Paleozoic intrusive plutons from the North Qilian to southern margin of the Alxa block. The geochronological and geochemical results show that their magmatism can be divided into three periods with distinct geochemical features. The early-period intrusive rocks ( 440 Ma) include the Lianhuashan (LHS) and Mengjiadawan (MJDW) granodiorites. Both of them display high Sr/Y ratios (52-91), coupled with low Y and HREE contents, implying that they were derived from partial melting of thickened lower crust, with garnet in the residue. The middle-period intrusive rocks ( 430 Ma), including the MJDW quartz diorites and Yangqiandashan (YQDS) granodiorites, are high-K calc-alkaline with low Sr/Y values. The geochemical and isotopic data suggest that they are generated from partial melting of lower crust without garnet in the residue. The late-period intrusive rocks (414-422 Ma), represented by the Shengrongsi (SRS) and Xinkaigou (XKG) plutons, are A-type or alkali-feldspar granites. They are possibly derived from partial melting of felsic crustal material under lower pressure condition. Our data show decreasing magma crystallization ages from MJDW pluton in the north and LHS pluton in the south to the SRS and XKG plutons in the central part of the study area. We suggest that such spatial and temporal variations of magmatic suites were caused by lithospheric delamination after the collision between the Central Qilian and the Alxa block. A more plausible explanation is that the delamination propagated from the margin part of the thickened lithosphere to inward beneath the North Qilian and southern margin of the Alxa block.

  17. New evidence for a magmatic influence on the origin of Valles Marineris, Mars

    USGS Publications Warehouse

    Dohm, J.M.; Williams, J.-P.; Anderson, R.C.; Ruiz, J.; McGuire, P.C.; Komatsu, G.; Davila, A.F.; Ferris, J.C.; Schulze-Makuch, D.; Baker, V.R.; Boynton, W.V.; Fairen, A.G.; Hare, T.M.; Miyamoto, H.; Tanaka, K.L.; Wheelock, S.J.

    2009-01-01

    In this paper, we show that the complex geological evolution of Valles Marineris, Mars, has been highly influenced by the manifestation of magmatism (e.g., possible plume activity). This is based on a diversity of evidence, reported here, for the central part, Melas Chasma, and nearby regions, including uplift, loss of huge volumes of material, flexure, volcanism, and possible hydrothermal and endogenic-induced outflow channel activity. Observations include: (1) the identification of a new > 50??km-diameter caldera/vent-like feature on the southwest flank of Melas, which is spatially associated with a previously identified center of tectonic activity using Viking data; (2) a prominent topographic rise at the central part of Valles Marineris, which includes Melas Chasma, interpreted to mark an uplift, consistent with faults that are radial and concentric about it; (3) HiRISE-identified landforms along the floor of the southeast part of Melas Chasma that are interpreted to reveal a volcanic field; (4) CRISM identification of sulfate-rich outcrops, which could be indicative of hydrothermal deposits; (5) GRS K/Th signature interpreted as water-magma interactions and/or variations in rock composition; and (6) geophysical evidence that may indicate partial compensation of the canyon and/or higher density intrusives beneath it. Long-term magma, tectonic, and water interactions (Late Noachian into the Amazonian), albeit intermittent, point to an elevated life potential, and thus Valles Marineris is considered a prime target for future life detection missions. ?? 2008 Elsevier B.V.

  18. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  19. Quantitative assessment of magmatic refill and overpressure in crustal reservoirs by monitoring He isotope composition from volcanic gases: the case of Mt Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea

    2016-04-01

    There is agreement in recognizing episodes of magma injection into crustal chambers as main triggers of eruptive activity of volcanoes (Caricchi et al., 2014). These events cause in fact a buildup of the internal pressure in magma chamber, which in turn controls outpouring magma amount, possible failure of wall-rocks, dike opening, up to a potential eruption. Assessment of the time-dependent pressurization while occurring in chamber is therefore challenging aim of current volcanological research. Recent advancements in estimating the time-dependent pressurization as long as occurring in chamber come from inverse modeling of ground deformation data, which does not however calculate internal evolution of the magma reservoir (Gregg et al., 2013; Cannavò et al., 2015). On the other hand, the geochemistry of volcanic gases has basically addressed to the pressure(depth) of gas exsolution so far (Caracausi et al., 2003; Aiuppa et al., 2007; Paonita et al., 2012). We developed an pioneering tool that computes the changes of 3He/4He isotope ratio of volcanic gases with respect to a background, as a function of the time-dependent outflow of volatiles from a chamber subjected to evolution of internal pressure through an injection event. Our approach postulates a low-3He/4He gas endmember coming from resident magmas stored in crust, that mixes with a high-3He/4He gas endmember from deep parental magmas refilling the deep chamber. We couple a mass balance between the two gas endmembers to a physical model of the magma chamber. When a deep input pressurizes the chamber, the latter releases large amounts of the high-3He/4He gas endmember, so as to change 3He/4He of discharged volcanic gases. We applied the model to the long-term series of He isotope ratios from geochemical monitoring of some peripheral gas emissions at the base of Mt Etna, fed by magmatic degassing occurring at 200-400 MPa (Paonita et al., 2012). The isotope ratios have in fact displayed phases of increase

  20. Magmatic @d^1^8O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean [rapid communication

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.; Valley, J. W.; Wilde, S. A.

    2005-07-01

    Ion microprobe analyses of δ 18O in 4400-3900 Ma igneous zircons from the Jack Hills, Western Australia, provide a record of the oxygen isotope composition of magmas in the earliest Archean. We have employed a detailed analysis protocol aimed at correlating spatially related micro-volumes of zircon concordant in U/Pb age with δ 18O and internal zoning. Simultaneous analysis of 18O and 16O with dual Faraday cup detectors, combined with frequent standardization, has yielded data with improved accuracy and precision over prior studies, and resulted in a narrower range of what is interpreted as magmatic δ 18O in > 3900 Ma zircons. Preserved magmatic δ 18O values from individual zircons (Zrc) range from 5.3‰ to 7.3‰ (VSMOW), and increasingly deviate from the mantle range of 5.3 ± 0.3‰ as zircons decrease in age from 4400 to 4200 Ma. Elevated δ 18O (Zrc) values up to 6.5‰ occur as early as 4325 Ma, which suggests that evolved rocks were incorporated into magmas within ˜230 Ma of Earth's accretion. Values of magmatic δ 18O (Zrc) as high as 7.3‰ are recorded in zircons by 4200 Ma, and are common thereafter. The protoliths of the magmas these zircons crystallized in were altered by low temperature interaction with liquid water near Earth's surface. These results provide the strongest evidence yet for the existence of liquid water oceans and supracrustal rocks by approximately 4200 Ma, and possibly as early as 4325 Ma. The range of magmatic δ 18O values in the 4400-3900 Ma zircons is indistinguishable from Archean igneous zircons, suggesting similar magmatic processes occurred over the first two billion years of recorded Earth history. Zircons with sub-solidus alteration histories, identified by the presence of disturbed internal zoning patterns, record δ 18O values both below (4.6‰) and above (10.3‰) the observed range for primary magmatic zircon, and are unreliable indicators of Early Archean magma chemistry.

  1. Modified sulfur isotopic compositions of sulfides in the nakhlites and Chassigny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, J.P.; Riciputi, L.R.; McSween, H.Y. Jr.

    Variable sulfur isotopic ratios of sulfide minerals in the nakhlites and Chassigny have been measured by ion microprobe. The ranges and means of {delta}{sup 34}S values of pyrrhotite and pyrite in nakhlites become more negative in the sequence Nakhla > Governador Valadares > Lafayette. This is also the sequence of increasing degrees of subsolidus re-equilibration, suggesting that {sup 32}S enrichment may be related to the subsolidus thermal history. A chalcopyrite vein cross cutting a pyrrhotite in Nakhla, coupled with chalcopyrite having slightly lighter {delta}{sup 34}S values, suggests that subsolidus fluids may have become isotopically lighter (with respect to sulfur) inmore » Nakhla with time. Pyrite has replaced pyrrhotite in Lafayette, suggesting that {line_integral}O{sub 2} and/or {line_integral}S{sub 2} increased after pyrrhotite crystallization. A model involving subsolidus hydrothermal modification of igneous sulfide minerals (with {delta}{sup 34}S {approximately} 0{degree}) due to late-stage oxidation of fluids provides a reasonable explanation for the sulfur isotopic systematics of the nakhlites and Chassigny. Sulfur isotopic alteration is believed to have occurred during the waning stages of nakhlite magmatism, rather than during a much later low-temperature (<100 C) iddingsite formation event, based on the ineffectiveness of abiogenic sulfur isotopic fractionation below 200 C. Variable mixing of two isotopically different fluids also could have produced the observed fractionations, although an isotopically light reservoir of sulfur is problematic. Other possible mechanisms evaluated to explain the sulfur isotopic values of the sulfide minerals include martial mantle heterogeneity, possible influence of martial biological processes, and magmatic degassing of SO{sub 2}.« less

  2. Cryogenian (˜830 Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: A magmatic link between Sri Lanka and Madagascar?

    NASA Astrophysics Data System (ADS)

    Teale, William; Collins, Alan S.; Foden, John; Payne, Justin L.; Plavsa, Diana; Chetty, T. R. K.; Santosh, M.; Fanning, Mark

    2011-08-01

    The northern Madurai Block, southern India, lies directly south of, and partly deformed by, the Palghat-Cauvery Shear Zone System (PCSS) - a potential suture of the Neoproterozoic Mozambique Ocean. The Kadavur gabbro-anorthosite complex lies south of the PCSS, in the northern Madurai Block, and crystallized at 829 ± 14 Ma (LA-ICPMS zircon data) in a supra-subduction zone setting. The complex contains zircon ɛHf(t) values of -12.5 to -8.6 that represent Palaeoproterozoic T(DM) model ages (2.3-2.5 Ga). These broadly agree with a whole rock neodymium T(DM) model age of 2287 Ma. Oxygen isotope δ 18O ratios range from 5.82‰ and 6.74‰. The parental magma for the gabbro-anorthosites are interpreted to be derived from a juvenile Neoproterozoic mantle contaminated by Mesoarchaean igneous infra-crustal sources. The gabbro-anorthosites intrude quartzites with dominantly Palaeoproterozoic detrital zircons that contain Neoarchaean and Mesoarchaean hafnium model ages. These quartzite zircons contain metamorphic rims that yield an age of 843 ± 23 Ma demonstrating the autochthonous nature of the gabbro-anorthosite complex. Later felsic magmatism is recorded by the 766 ± 8 Ma crystallisation age of the protolith of a felsic gneiss. Cryogenian magmatism in the Madurai Block is interpreted to form part of an extensive arc magmatic province within the southern East African Orogen that can be traced from central Madagascar, through southern India to the Wanni Complex of Sri Lanka. This province is interpreted to have formed above a south/west dipping subduction system as the Mozambique Ocean was subducted under the Neoproterozoic continent Azania.

  3. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  4. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  5. Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: Clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon

    NASA Astrophysics Data System (ADS)

    Melo, Marilane G.; Lana, Cristiano; Stevens, Gary; Pedrosa-Soares, Antônio C.; Gerdes, Axel; Alkmin, Leonardo A.; Nalini, Hermínio A.; Alkmim, Fernando F.

    2017-07-01

    The Carlos Chagas batholith (CCB) is a very large ( 14,000 km2) S-type granitic body formed during the syn-collisional stage of the Araçuaí orogen (southeastern Brazil). Zircons extracted from the CCB record a wide range of U-Pb ages (from 825 to 490 Ma), indicating a complex history of inheritance, magmatic crystallization and partial melting during the evolution of the orogeny. Magmatic zircons (ca. 578-588 Ma) are marked by similar Hf isotope compositions and REE patterns to those of inherited cores (ca. 825-600 Ma), indicating that these aspects of the chemical signature of the magmatic zircons have likely been inherited from the source. The U-Pb ages and initial 176Hf/177Hf ratios from anatectic and metamorphic zircon domains are consistent with a two-stage metamorphic evolution marked by contrasting mechanisms of zircon growth and recrystallization during the orogeny. Ti-in-zircon thermometry is consistent with the findings of previous metamorphic work and indicates that the two metamorphic events in the batholith reached granulite facies conditions (> 800 °C) producing two generations of garnet via fluid-absent partial melting reactions. The oldest metamorphic episode (ca. 570-550 Ma) is recorded by development of thin anatectic overgrowths on older cores and by growth of new anatectic zircon crystals. Both domains have higher initial 176Hf/177Hf values compared to relict cores and display REE patterns typical of zircon that grew contemporaneously with peritectic garnet through biotite-absent fluid partial melting reactions. Hf isotopic and chemical evidences indicate that a second anatectic episode (ca. 535-500 Ma) is only recorded in parts from the CCB. In these rocks, the growth of new anatectic zircon and/or overgrowths is marked by high initial 176Hf/177Hf values and also by formation of second generation of garnet, as indicated by petrographic observations and REE patterns. In addition, some rocks contain zircon crystals formed by solid

  6. Impacts of the Central Atlantic Magmatic Province on the Terrestrial Carbon Cycle in Western Pangea

    NASA Astrophysics Data System (ADS)

    Knobbe, T.; Suarez, C. A.

    2014-12-01

    Carbon isotope analysis of bulk organic and inorganic carbon preserved in the lacustrine deposits of the late Triassic to Jurassic Moenave Formation were analyzed to construct a carbon isotope chemostratigraphic profile of western Pangea. Negative carbon isotope excursions (NCIE) are characteristic of the Late Triassic and are attributed to the effects of the Central Atlantic Magmatic Province (CAMP) on climate and the global C-cycle. The aerial extent of the CAMP basalts is the largest in Earth's history spanning four continents with an area of ~ 7 x 106 km2 and a volume of 3 to 11 x 106 km3. Carbon isotope and paleontological evidence has shown that the end Triassic extinction is near synchronous to the CAMP and likely spurred on the extinction event as well as an increase in global temperatures of 2 - 2.5°C. Global correlations of NCIEs between marine and terrestrial strata provide a connection between the CAMP basalts and the end-Triassic extinction. Preliminary data collected at Potter Canyon, Arizona reveal a 5.5 ‰ decrease in δ13Corganic and a 2.75‰ decrease in δ13Ccarbonate in the lower portion of the Whitmore Point Member. These NCIEs indicate the global carbon cycle perturbation caused by the CAMP is recorded in lacustrine sediments of the Whitmore Point Member in southern Utah and northern Arizona. Additional samples collected at high sampling frequencies at other locations in the Whitmore Point Member will corroborate the terrestrial impacts of the CAMP perturbation at these locations across the region. Correlation of NCIES associated with the CAMP and any identified microfossils of the Whitmore Point Member will also illustrate the global effects of increased atmospheric CO2 on the terrestrial environment and biota.

  7. Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses

    NASA Astrophysics Data System (ADS)

    Albert, Capucine; Farina, Federico; Lana, Cristiano; Stevens, Gary; Storey, Craig; Gerdes, Axel; Dopico, Carmen Martínez

    2016-12-01

    In this study we present U-Pb and Hf isotope data combined with O isotopes in zircon from Neoarchean granitoids and gneisses of the southern São Francisco craton in Brazil. The basement rocks record three distinct magmatic events: Rio das Velhas I (2920-2850 Ma), Rio das Velhas II (2800-2760 Ma) and Mamona (2750-2680 Ma). The three sampled metamorphic complexes (Bação, Bonfim and Belo Horizonte) have distinct εHf vs. time arrays, indicating that they grew as separate terranes. Paleoarchean crust is identified as a source which has been incorporated into younger magmatic rocks via melting and mixing with younger juvenile material, assimilation and/or source contamination processes. The continental crust in the southern São Francisco craton underwent a change in magmatic composition from medium- to high-K granitoids in the latest stages, indicating a progressive HFSE enrichment of the sources that underwent anatexis in the different stages and possibly shallowing of the melting depth. Oxygen isotope data shows a secular trend towards high δ18O (up to 7.79‰) indicating the involvement of metasediments in the petrogenesis of the high potassium granitoids during the Mamona event. In addition, low δ18O values (down to 2.50‰) throughout the Meso- and Neoarchean emphasize the importance of meteoritic fluids in intra-crustal magmatism. We used hafnium isotope modelling from a compilation of detrital zircon compositions to constrain crustal growth rates and geodynamics from 3.50 to 2.65 Ga. The modelling points to a change in geodynamic process in the southern São Francisco craton at 2.9 Ga, from a regime dominated by net crustal growth in the Paleoarchean to a Neoarchean regime marked by crustal reworking. The reworking processes account for the wide variety of granitoid magmatism and are attributed to the onset of continental collision.

  8. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chambefort, Isabelle; Moritz, Robert; von Quadt, Albrecht

    2007-10-01

    The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat-Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz-sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U-Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the

  9. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  10. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy

    NASA Astrophysics Data System (ADS)

    Serri, G.; Innocenti, F.; Manetti, P.

    1993-07-01

    Serri, G., Innocenti, F. and Manetti, P., 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near The Earth's Surface. Tectonophysics, 223: 117-147. The Neogene-Quaternary magmatism of the northern Apenninic arc took place in four phases separated in space and time which become progressively younger from west to east: Phase I, 14 Ma; Phase II, 7.3-6.0 Ma; Phase III, 5.1-2.2 Ma; Phase IV, 1.3-0.1 Ma. This magmatism is the result of the activation of three physically separate sources: (1) the Adriatic continental crust, extracted from the mantle in the late Proterozoic; (2) a strongly refractory, recently K-enriched harzburgitic mantle located in the mechanical boundary layer (MBL) of the lithosphere; and (3) a recently metasomatized, cpx-rich mantle, compositionally variable from Iherzolite to wehrlite-clinopyroxenite, interpreted as an ephemerally K-enriched asthenosphere. The Adriatic continental crust is the dominant source of the acid plutonic and volcanic rocks of the Tuscan region. The acid magmatism is mostly found inside an ellipsoidal area (about 150 × 300 km) centred on Giglio Island, here defined as the Tuscan Crustal Dome. Within this area, mantle-derived magmas unaffected by important crustal contamination processes and mixing with crustal anatectic melts have so far not been found. Pure crustal magmas are rare but are represented, for example by some of the San Vincenzo and Roccastrada rhyolites. Virtually all the Tuscan acid centres show evidence of mixing with potassic mantle-derived magmas. Major and trace elements, as well as {87Sr }/{86Sr } and {143Nd }/{144Nd } data, on primitive rocks (Mg# > 65) reveal two groups of mantle-derived magmas. These define two distinct mantle enrichment trends, both

  11. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  12. Geochemical characterisation of gases along the dead sea rift: Evidences of mantle-co2 degassing

    NASA Astrophysics Data System (ADS)

    Inguaggiato, C.; Censi, P.; D'Alessandro, W.; Zuddas, P.

    2016-06-01

    The Dead Sea Transform (DST) fault system, where a lateral displacement between the African and Arabian plates occurs, is characterised by anomalous heat flux in the Israeli area close to the border with Syria and Jordan. The concentration of He and CO2, and isotopic composition of He and total dissolved inorganic carbon were studied in cold and thermal waters collected along the DST, in order to investigate the source of volatiles and their relationship with the tectonic framework of the DST. The waters with higher temperature (up to 57.2 °C) are characterised by higher amounts of CO2 and helium (up to 55.72 and 1.91 ∗ 10- 2 cc l- 1, respectively). Helium isotopic data (R/Ra from 0.11 to 2.14) and 4He/20Ne ratios (0.41-106.86) show the presence of deep-deriving fluids consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/3He ratios) indicate a larger contribution of mantle-derived fluids affecting the northern part of the investigated area, where the waters reach the highest temperature. These evidences suggest the occurrence of a favourable tectonic framework, including a Moho discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic activity recognised in the northern part of Israel.

  13. Retrogressive hydration of calc-silicate xenoliths in the eastern Bushveld complex: evidence for late magmatic fluid movement

    NASA Astrophysics Data System (ADS)

    Wallmach, T.; Hatton, C. J.; De Waal, S. A.; Gibson, R. L.

    1995-11-01

    Two calc-silicate xenoliths in the Upper Zone of the Bushveld complex contain mineral assemblages which permit delineation of the metamorphic path followed after incorporation of the xenoliths into the magma. Peak metamorphism in these xenoliths occurred at T=1100-1200°C and P <1.5 kbar. Retrograde metamorphism, probably coinciding with the late magmatic stage, is characterized by the breakdown of akermanite to monticellite and wollastonite at 700°C and the growth of vesuvianite from melilite. The latter implies that water-rich fluids (X CO 2 <0.2) were present and probably circulating through the cooling magmatic pile. In contrast, calc-silicate xenoliths within the lower zones of the Bushveld complex, namely in the Marginal and Critical Zones, also contain melilite, monticellite and additional periclase with only rare development of vesuvianite. This suggests that the Upper Zone cumulate pile was much 'wetter' in the late-magmatic stage than the earlier-formed Critical and Marginal Zone cumulate piles.

  14. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Santos, Jose F.; Stern, Robert J.; Griffin, William L.; Ghorbani, Ghasem; Sarebani, Nazila

    2017-09-01

    Magmatic ;flare-ups; are common in continental arcs. The best-studied examples of such flare-ups are from Cretaceous and younger continental arcs, but a more ancient example is preserved in Late Ediacaran-Cambrian or Cadomian arcs that formed along the northern margin of Gondwana. In this paper, we report new trace-element, isotopic and geochronological data on ∼550 Ma magmatic rocks from the Taknar complex, NE Iran, and use this information to better understand episodes of flare-up, crustal thickening and magmatic periodicity in the Cadomian arcs of Iran and Anatolia. Igneous rocks in the Taknar complex include gabbros, diorites, and granitoids, which grade upward into a sequence of metamorphosed volcano-sedimentary rocks with interlayered rhyolites. Granodioritic dikes crosscut the Taknar gabbros and diorites. Gabbros are the oldest units and have zircon U-Pb ages of ca 556 Ma. Granites are younger and have U-Pb zircon ages of ca 552-547 Ma. Rhyolites are coeval with the granites, with U-Pb zircon ages of ∼551 Ma. Granodioritic dikes show two U-Pb zircon ages; ca 531 and 548 Ma. Geochemically, the Taknar igneous rocks have calc-alkaline signatures typical of continental arcs. Whole-rock Nd and zircon O-Hf isotopic data show that from Taknar igneous rocks were generated via mixing of juvenile magmas with older continental crust components at an active continental margin. Compiled geochronological and geochemical data from Iran and Anatolia allow identification of a Cadomian flare-up along northern Gondwana. The compiled U-Pb results from both magmatic and detrital zircons indicate the flare-up started ∼572 Ma and ended ∼528 Ma. The Cadomian flare-up was linked to strong crustal extension above a S-dipping subduction zone beneath northern Gondwana. The Iran-Anatolian Cadomian arc represents a site of crustal differentiation and stratification and involved older (Archean?) continental lower-middle crust, which has yet to be identified in situ, to form the

  15. Paleomagnetic evidence for counterclockwise rotation of the Dofan magmatic segment, Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Nugsse, Kahsay; Muluneh, Ameha A.; Kidane, Tesfaye

    2018-04-01

    Twenty-six paleomagnetic sites in basalt and trachyte flows and ignimbrite deposits sampled in the Dofan magmatic segment, Main Ethiopian Rift (MER). From each site, 6 to 8 core samples were collected. The samples were then cut into 200 standard specimens and their Natural Remanent Magnetization (NRM) directions were measured using a JR6A spinner magnetometer. Most specimens were subjected to stepwise alternating field (AF) and at least one specimen per site to thermal (TH) demagnetization. The directional analysis of these individual specimens revealed either one or two components of NRM. Where two components are present, the first is isolated below a temperature of 300 °C or AF field below 20 mT; the second is isolated above those steps and mostly defined straight lines directed towards the origin and are interpreted as the Characteristic Remanent Magnetization (ChRM) acquired during cooling. Rock magnetic experiments on representative specimens indicate that the dominant magnetic minerals are titanium poor titanomagnetite and in few cases titanohematites. The overall mean directions calculated for the 23 sites of Dofan is Dec = 354.1°, Inc. = +11.6° (N = 23, K = 35.1, α95 = 5.2°). When these values are compared with the 1.5 Ma expected mean geomagnetic dipole reference field directions Dec = 1.0°, Inc. = +16.4° (N = 32, K = 105.6, α95 = 2.3°), obtained from African Apparent Polar Wander Path Curve; a difference in declination ΔD = -6.9° ± 4.7° and inclination ΔI = +4.8° ± 5.5° are determined. The declination difference is interpreted as a very slight counterclockwise rotation about vertical axis of the Dofan magmatic segment and the result is consistent with previous paleomagnetic reports and analogue modeling in Fentale magmatic segment.

  16. The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African Craton, Morocco) and its relationship to the alkaline magmatism of Africa

    NASA Astrophysics Data System (ADS)

    Haissen, Faouziya; Cambeses, Aitor; Montero, Pilar; Bea, Fernando; Dilek, Yildirim; Mouttaqi, Abdellah

    2017-03-01

    More than 40% of the known alkaline complexes are reported from Africa. Most are ring complexes composed of syenites and associated or not, lithotypes as carbonatites, granites and mafic rocks. Radiometric dating indicates the presence of alkaline complexes with ages spanning from Precambrian to the present. In terms of outcrops, alkaline complexes are reported from cratonic zones and from belts embedded between cratonic areas. Because of the high economic potential for associated REE deposits, these alkaline complexes have received much attention from Earth scientists. These studies aim mainly to constrain the role of the mantle and the crust (and the interaction between them) in the genesis of this peculiar magmatism, and also to explain the variability observed in lithotypes and geotectonic settings. Among those alkaline complexes, Precambrian occurrences are rare. Up-to-date only a few Proterozoic examples were cited in Africa. The recently studied Awsard complex in Southern Morocco is a peculiar one with a crystallization age of 2.46 Ga and an unusual rock assemblages. This paper is a first approximation to a comparison of geochemical and isotopic fingerprints of the Awsard magmatism (as the oldest one) with other known different ages African complexes from different geotectonic settings, aiming to detect if there is any evolution in this alkaline magmatism through time. A first conclusion is that magma sources for this alkaline magmatism has been probably evaluating over geological time, from parental magmas compositions close to that of primitive mantle in these early geological time to compositions holding more and more depleted mantle and continental crust components. However, to go further in this debate more modern isotopic, geochemical and geochronological data from all these complexes are needed. Nevertheless, this comparison highlighted the peculiar character of the Awsard magmatism with an isotopic composition very close to that of Primitive mantle

  17. Elevation and igneous crater modification on Venus: Implications for magmatic volatile content

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.

    1993-01-01

    Although most impact craters on Venus preserve nearly pristine crater rim and ejecta features, a small number of craters have been identified showing clear evidence of either igneous intrusion emplacement (floor-fracturing) beneath the crater floor or of volcanically embayed exterior ejecta deposits. Since the volcanically embayed craters consistently occur at higher elevations than the identified floor-fractured craters, this report proposes that igneous crater modification on Venus is elevation dependent. This report describes how regional variations in magmatic neutral buoyancy could produce such elevation dependent crater modification and considers the implications for typical magmatic volatile contents on Venus.

  18. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  19. O, Sr and Nd isotopic constraints on Cenozoic granitoids of Northwestern Anatolia, Turkey: Enrichment by subduction zone fluids

    NASA Astrophysics Data System (ADS)

    Yücel-Öztürk, Yeşim

    2016-05-01

    The oxygen and strontium isotope compositions of Cenozoic granitoids cropping out in the İzmir-Ankara-Erzincan suture zone help constrain the petrological evolution of magmatism in northwest Anatolia. The magmatism was mostly widespread between late Eocene (∼37 Ma) and the middle Miocene (∼14-15 Ma), and is represented by volcanic and plutonic rocks of orogenic affinity, of which Ezine, Eğrigöz, Çataldağ and Kozak are the largest Tertiary granitic plutons exposed in northwest Anatolia. They vary from granite to granodiorite, and are subalkaline, belonging to the high-K calc-alkaline I-type granite series. All these characteristics, combined with major, trace element geochemical data as well as mineralogical and textural evidence, reveal that the Oligocene-Miocene granitoids of NW Anatolia are comparable with volcanic arc granites, formed in a transitional oceanic to continental collisional tectonic setting, from a hybrid source, having crustal and mantle components that underwent further interaction with the upper crust. These plutons have initial 87Sr/86Sr ratios of 0.7072-0.7094, and εNd(t) values ranging from -3.48 to -1.20. These characteristics also indicate that a crustal component played an important role in the petrogenesis of NW Anatolian Oligocene-Miocene granitoids. The moderately evolved Ezine, Eğrigöz, Çataldağ and Kozak granitoids, have δ18O values that are consistent with those of normal I-type granites (6-10‰), but the δ18O relationships among minerals of samples collected from the intrusive contacts which are closest to mineralized zones, indicate a major influence of hydrothermal processes under subsolidus conditions. The oxygen isotope systematics of the samples from these plutons result from the activity of high-δ18O fluids (magmatic water), with major involvement of low-δ18O fluids (meteoric water) evident, near the edge zone of these plutons. This is most evident in δ18O quartz-feldspar pairs from these granitoids, which

  20. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    PubMed Central

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems. PMID:28120860

  1. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    NASA Astrophysics Data System (ADS)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum Δcore-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  2. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz.

    PubMed

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N

    2017-01-25

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ 18 O values. Overall, Toba quartz crystals exhibit comparatively high δ 18 O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ 18 O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆ core-rim  = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ 18 O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ 18 O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  3. The Deep Crust Magmatic Refinery, Part 2 : The Magmatic Output of Numerical Models.

    NASA Astrophysics Data System (ADS)

    Bouilhol, P.; Riel, N., Jr.; Van Hunen, J.

    2016-12-01

    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To better constrain lower crust processes, we have built up a numerical model [see Riel et al. associated abstract for methods] to explore different parameters, unravelling the complex interplay between melt percolation / crystallization and degassing / re-melting in a so called "hot zone" model. We simulated the intrusion of water bearing mantle melts at the base of an amphibolitized lower crust during a magmatic event that lasts 5 Ma. We varied several parameters such as Moho depth and melt rock ratio to better constrain what controls the final melt / lower crust composition.. We show the evolution of the chemical characteristics of the melt that escape the system during this magmatic event, as well as the resulting lower crust characteristics. We illustrate how the evolution of melt major elements composition reflects the progressive replacement of the crust towards compositions that are dominated by the mantle melt input. The resulting magmas cover a wide range of composition from

  4. Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2018-03-01

    The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise-Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb-Sr-Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.

  5. Oxygen isotope compositions of selected laramide-tertiary granitoid stocks in the Colorado Mineral Belt and their bearing on the origin of climax-type granite-molybdenum systems

    USGS Publications Warehouse

    Hannah, J.L.; Stein, H.J.

    1986-01-01

    Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield ??18O values less than 10.4???, with most values between 9.3 and 10.4???. An average magmatic value of about 8.5??? is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust. Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock ??18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low ??18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases. Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx. ?? 1986 Springer-Verlag.

  6. The Last Gasp - the Terminal Magmatic Stages of the Keweenaw LIP

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Brown, E.; Moucha, R.; Stein, C. A.; Stein, S.

    2016-12-01

    The Keweenaw Flood Basalts, which represent the magmatic record of the best preserved example of a Precambrian Large Igneous Province (LIP), erupted contemporaneously with the development of the failed Mid-Continent Rift ca. 1.1 Ga. At 2 x 106 km3 in volume, the Keweenaw LIP is roughly equivalent in scale to the Parana-Etendeka LIP, but the origin and evolution of the magmatic source of the Keweenaw LIP remains poorly constrained. Specifically, while modern LIPs have a primary magmatic pulse lasting <5Ma, followed by a long phase of waning activity, the Keweenaw LIP underwent significant flood basalt eruptions for ca. 21 Myr. Here we examine the geochemical characteristics of the final phases of magmatic activity within the Keweenaw LIP - the Lake Shore Traps - which erupted ca. 1087 Ma within an alluvial fan sequence (Copper Harbor Conglomerate). The Lake Shore Traps are best exposed at High Rock Bay, where 62 flows ( 1-30m thick) are observed intercalated with thin paleosols over a 530m thickness. Thus, while this late-stage activity might represent a waning phase of magmatism, the thickness represents some half of the total average thickness of modern continental flood basalt provinces. Our initial data suggests a dominantly tholeiitic magma series spanning an unexpectedly wide and continuous range of compositions from basalt to andesite; rare alkaline lavas are also evident. Distinctive geochemical stratigraphic patterns were observed suggesting crystal fractionation and recharge events dominated the magma system. Our initial data do not show any unambiguous parallels between the geochemical characteristics of the Lake Shore Traps and prior phases of magmatic activity in the province. We explore the potential source characteristics of these lavas to refine the source and conditions of melt generation during the terminal phase of activity in the region.

  7. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  8. Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration

    USGS Publications Warehouse

    Cryan, P.M.; Bogan, M.A.; Rye, R.O.; Landis, G.P.; Kester, C.L.

    2004-01-01

    Although hoary bats (Lasiurus cinereus) are presumed to be migratory and capable of long-distance dispersal, traditional marking techniques have failed to provide direct evidence of migratory movements by individuals. We measured the stable hydrogen isotope ratios of bat hair (δDh) and determined how these values relate to stable hydrogen isotope ratios of precipitation (δDp). Our results indicate that the major assumptions of stable isotope migration studies hold true for hoary bats and that the methodology provides a viable means of determining their migratory movements. We present evidence that a single annual molt occurs in L. cinereus prior to migration and that there is a strong relationship between δDh and δDp during the molt period. This presumably reflects the incorporation of local δDp into newly grown hair. Furthermore, we present evidence that individual hoary bats are capable of traveling distances in excess of 2,000 km and that hair is grown at a wide range of latitudes and elevations. Stable hydrogen isotope analysis offers a promising new tool for the study of bat migration.

  9. Discovery of a Triassic magmatic arc source for the Permo-Triassic Karakaya subduction complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, Petek; Ustaömer, Timur; Gerdes, Axel; Robertson, Alastair H. F.; Zulauf, Gernold

    2014-05-01

    The Permo-Triassic Karakaya Complex is well explained by northward subduction of Palaeotethys but until now no corresponding magmatic arc has been identified in the region. With the aim of determining the compositions and ages of the source units, ten sandstone samples were collected from the mappably distinct Ortaoba, Hodul, Kendirli and Orhanlar Units. Zircon grains were extracted from these sandstones and >1300 were dated by the U-Pb method and subsequently analysed for the Lu-Hf isotopic compositions by LA-MC-ICPMS at Goethe University, Frankfurt. The U-Pb-Hf isotope systematics are indicative of two different sediment provenances. The first, represented by the Ortaoba, Hodul and Kendirli Units, is dominated by igneous rocks of Triassic (250-220 Ma), Early Carboniferous-Early Permian (290-340 Ma) and Early to Mid-Devonian (385-400 Ma) ages. The second provenance, represented by the Orhanlar Unit, is indicative of derivation from a peri-Gondwanan terrane. In case of the first provenance, the Devonian and Carboniferous source rocks exibit intermediate eHf(t) values (-11 to -3), consistent with the formation at a continental margin where juvenile mantle-derived magmas mixed with (recycled) old crust having Palaeoproterozoic Hf model ages. In contrast, the Triassic arc magma exhibits higher eHf(t) values (-6 to +6), consistent with the mixing of juvenile mantle-derived melts with (recycled) old crust perhaps somewhat rejuvanated during the Cadomian period. We have therefore identified a Triassic magmatic arc as predicted by the interpretation of the Karakaya Complex as an accretionary complex related to northward subduction (Carboniferous and Devonian granites are already well documented in NW Turkey). Possible explanations for the lack of any outcrop of the source magmatic arc are that it was later subducted or the Karakaya Complex was displaced laterally from its source arc (both post 220 Ma). Strike-slip displacement (driven by oblique subduction?) can also

  10. Anomalous K-Pg-aged seafloor attributed to impact-induced mid-ocean ridge magmatism.

    PubMed

    Byrnes, Joseph S; Karlstrom, Leif

    2018-02-01

    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~10 5 to 10 6 km 3 . Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time.

  11. Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism

    PubMed Central

    Byrnes, Joseph S.; Karlstrom, Leif

    2018-01-01

    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~105 to 106 km3. Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time. PMID:29441360

  12. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  13. Radiogenic isotope evidence for transatlantic atmospheric dust transport

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Abouchami, Wafa; Garrison, Virginia H.; Galer, Stephen J. G.; Andreae, Meinrat O.

    2013-04-01

    Early studies by Prospero and colleagues [1] have shown that African dust reaches all across the Atlantic and into the Caribbean. It may contribute to fertilizing the Amazon rainforest [2,3,4], in addition to enhancing the ocean biological productivity via delivery of iron, a key nutrient element[5]. Radiogenic isotope ratios (Sr, Nd, Pb) are robust tracers of dust sources and can thus provide information on provenance and pathways of dust transport. Here we report Sr, Nd and Pb isotope data on atmospheric aerosols, collected in 2008 on quartz filters, from three different locations in Mali (12.6° N, 8.0° W; 555 m a.s.l.), Tobago (11.3° N, 60.5° W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7° N, 64.6° W; 27 m a.s.l.) to investigate the hypothesis of dust transport across the Atlantic. About 2 cm2 of filter were acid-leached in 0.5 N HBr for selective removal of the anthropogenic labile Pb component (leachate) and possibly the fine soluble particle fraction. The remainder of the filter was subsequently dissolved using a mixture of HF and HNO3 acids, and should be representative of the silicate fraction. Isotopic compositions were measured by TIMS on a ThermoFisher Triton at MPIC, with Pb isotope ratios determined using the triple-spike method. Significant Pb isotope differences between leachates and residues were observed. The variability in Pb isotopic composition among leachates may be attributed to variable and distinct anthropogenic local Pb sources from Africa and South America [6], however, residues are imprinted by filter blank contribution suggesting to avoid the quartz fiber filter for isotopic study of aerosols. The Nd and Sr isotope ratios of aerosol leachates show similar signatures at all three locations investigated. The nearly identical Nd and Sr isotopic compositions in the Mali, Tobago and Virgin islands leachates are comparable to those obtained on samples from the Bodélé depression, Northern Chad [7] and suggest a possible common

  14. Les granitoïdes néoprotérozoïques de Khzama, Anti-Atlas central, Maroc: marqueurs de l'évolution d'un magmatisme d'arc à un magmatisme alcalineNeoproterozoic granitoids from Khzama, central Anti-Atlas, Morocco: evolution markers from arc magmatism to alkaline magmatism

    NASA Astrophysics Data System (ADS)

    El-Khanchaoui, T.; Lahmam, M.; El-Boukhari, A.; El-Beraaouz, H.

    2001-05-01

    Petrological study and zircon typology provide important information that is related to the classification and genesis of Neoproterozoic granitoids in the Khzama area (northeast Siroua). The Pan-African granitoids show a transition from island-arc magmatism to alkaline magmatism. A space and time zonation of magmatism from the north to the south is evident. Early Pan-African granitoids were generated from various magma sources through different petrogenetic mechanisms. The first association corresponds to the low-K calc-alkaline plutons of Ait Nebdas, the second one correponds to high-K calc-alkaline post-collisional granites (Tamassirte-Tiferatine and Ifouachguel). Finally, shoshonitic magmatism (Irhiri) ends the magmatic evolution of the region. Thus, the late Pan-African granitic plutonism began with calc-alkaline associations and ended with K-alkaline magmatism in a transtensional setting, heralding the onset of the Moroccan Palæozoic cycle.

  15. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico

    USGS Publications Warehouse

    Martiny, B.; Martinez-Serrano, R. G.; Moran-Zenteno, D. J.; MacIas-Romo, C.; Ayuso, R.A.

    2000-01-01

    In Western Oaxaca, Tertiary magmatic activity is represented by extensive plutons along the continental margin and volcanic sequences in the inland region. K-Ar age determinations reported previously and in the present work indicate that these rocks correspond to a relatively broad arc in this region that was active mainly during the Oligocene (~ 35 to ~ 25 Ma). In the northern sector of western Oaxaca (Huajuapan-Monte Verde-Yanhuitlan), the volcanic suite comprises principally basaltic andesite to andesitic lavas, overlying minor silicic to intermediate volcaniclastic rocks (epiclastic deposits, ash fall tuffs, ignimbrites) that were deposited in the lacustrine-fluvial environment. The southern sector of the volcanic zone includes the Tlaxiaco-Laguna de Guadalupe region and consists of intermediate to silicic pyroclastic and epiclastic deposits, with silicic ash fall tuffs and ignimbrites. In both sectors, numerous andesitic to dacitic hypabyssal intrusions (stocks and dikes) were emplaced at different levels of the sequence. The granitoids of the coastal plutonic belt are generally more differentiated than the volcanic rocks that predominate in the northern sector and vary in composition from granite to granodiorite. The studied rocks show large-ion lithophile element (LILE) enrichment (K, Rb, Ba, Th) relative to high-field-strength (HFS) elements (Nb, Ti, Zr) that is characteristic of subduction-related magmatic rocks. On chondrite-normalized rare earth element diagrams, these samples display light rare earth element enrichment (LREE) and a flat pattern for the heavy rare earth elements (HREE). In spite of the contrasting degree of differentiation between the coastal plutons and inland volcanic rocks, there is a relatively small variation in the isotopic composition of these two suites. Initial 87Sr/86Sr ratios obtained and reported previously for Tertiary plutonic rocks of western Oaxaca range from 0.7042 to 0.7054 and ??Nd values, from -3.0 to +2.4, and for

  16. Timing of ore-related magmatism in the western Alaska Range, southwestern Alaska

    USGS Publications Warehouse

    Taylor, Ryan D.; Graham, Garth E.; Anderson, Eric D.; Selby, David

    2014-01-01

    This report presents isotopic age data from mineralized granitic plutons in an area of the Alaska Range located approximately 200 kilometers to the west-northwest of Anchorage in southwestern Alaska. Uranium-lead isotopic data and trace element concentrations of zircons were determined for 12 samples encompassing eight plutonic bodies ranging in age from approximately 76 to 57.4 millions of years ago (Ma). Additionally, a rhenium-osmium age of molybdenite from the Miss Molly molybdenum occurrence is reported (approx. 59 Ma). All of the granitic plutons in this study host gold-, copper-, and (or) molybdenum-rich prospects. These new ages modify previous interpretations regarding the age of magmatic activity and mineralization within the study area. The new ages show that the majority of the gold-quartz vein-hosting plutons examined in this study formed in the Late Cretaceous. Further work is necessary to establish the ages of ore-mineral deposition in these deposits.

  17. The Origin of Dark Inclusions in Allende: New Evidence from Lithium Isotopes

    NASA Technical Reports Server (NTRS)

    Sephton, Mark A.; James, Rachael H.; Zolensky, Michael E.

    2006-01-01

    Aqueous and thermal processing of primordial material occurred prior to and during planet formation in the early solar system. A record of how solid materials were altered at this time is present in the carbonaceous chondrites, which are naturally delivered fragments of primitive asteroids. It has been proposed that some materials, such as the clasts termed dark inclusions found in type III chondrites, suggest a sequence of aqueous and thermal events. Lithium isotopes (Li-6 and Li-7) can reveal the role of liquid water in dark inclusion history. During aqueous alteration, Li-7 passes preferentially into solution leaving Li-6 behind in the solid phase and, consequently, any relatively extended periods of interaction with Li-7-rich fluids would have left the dark inclusions enriched in the heavier isotope when compared to the meteorite as a whole. Our analyses of lithium isotopes in Allende and its dark inclusions reveal marked isotopic homogeneity and no evidence of greater levels of aqueous alteration in dark inclusion history.

  18. Two billion years of magmatism recorded from a single Mars meteorite ejection site

    PubMed Central

    Lapen, Thomas J.; Righter, Minako; Andreasen, Rasmus; Irving, Anthony J.; Satkoski, Aaron M.; Beard, Brian L.; Nishiizumi, Kunihiko; Jull, A. J. Timothy; Caffee, Marc W.

    2017-01-01

    The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the isotope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2.403 ± 0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element–depleted mantle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old “depleted” shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago (Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site. PMID:28164153

  19. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  20. 50 Myr of pulsed mafic magmatism in the High Arctic Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Pearson, D. G.; Dockman, D. M.; Heaman, L. M.; Gibson, S. A.; Sarkar, C.

    2017-12-01

    Extensive and voluminous Cretaceous mafic magmatism in the Sverdrup Basin of Arctic Canada forms the circum-Arctic High Arctic Large Igneous Province (HALIP). The small number of published high-precision ages for this LIP indicate its eruption over a considerable timespan raising concerns over whether the HALIP can be strictly defined as a single LIP and questioning the role of a single or multiple plumes in its genesis. Here we present an integrated geochemical and geochronological study to better constrain the timing and cause of mafic magma genesis in the Canadian HALIP. Six new U-Pb and four 40Ar/39Ar ages of mafic lavas and intrusive sheets range from 121 Ma to 78 Ma. The U-Pb ages are the first analyzed from the mafic intrusions of Axel Heiberg and Ellesmere Islands. The new geochronology, combined with other published high-precision ages, reveal a > 50 Myr duration of mafic magmatism in the HALIP defined by three main pulses. Tholeiites dominate the initial 25 Myr of magmatism, transitioning to coeval emplacement of alkali and tholeiitic basalts. Whole-rock Sr-Nd isotope ratios indicate that both magma types are derived from a similar source dominated by convecting mantle. Rare-earth-element inversion models reveal that the alkalic and tholeiitic magmas were generated beneath a bimodal lithospheric `lid' thickness of 65 ± 5 and 45 ± 4 km, respectively. We suggest that the early 128 - 122 Ma tholeiitic event is primarily plume-generated and correlates across the circum-Arctic with the other HALIP tholeiites. Younger HALIP magmatism, with coeval alkalic and tholeiitic magmas erupting over 25 Myr, may be explained by alternating modes of edge-driven mantle convection as the primary control on magma genesis. A distal plume may have intensified magma production by edge-driven convection.

  1. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions

  2. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    USGS Publications Warehouse

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  3. ISOTOPIC EVIDENCE ON THE ORIGIN AND AGE OF THE BLIND RIVER URANIUM DEPOSITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mair, J.A.; Maynes, A.D.; Patchett, J.E.

    Isotopic analyses of lead extracted from a variety of minerals from Blind River. Ontario, are repeated. The detrital minerals monazite and zircon both give leadratio ages of 2500 million years. The uraainite ore gives a lead- ratio age of 1700 m a. Other isotopic evidence is quoted to suggest that the age of the sediment in which the uranium is found may also be approximately 1700 m y, or older. The lead found in pyrite, pyrrhotite, sericite, and feldspar has anomalous isotopic ratios which can be explained by the hypothesis that they received additions of radiogenic lead from the uraninitesmore » (presumed to be 1700 m y old) 1200 to 1300 m y ago. In any case the age of these minerals, in the sense of time of last chemical alteration, is not greater than 1450 plus or minus 150 m y. All our measurements can be interpreted without asauming a major period of mineralization more recent than 1000 m y ago, although we are unable to rule out such a possibility from our evidence. (auth)« less

  4. Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.; Ashwal, L. D.; Shirey, S. B.; Horan, M.; Mock, T.; Andersen, T. B.

    2014-03-01

    Proterozoic anorthosites from the 1630-1650 Ma Mealy Mountains Intrusive Suite (Grenville Province, Canada), the 1289-1363 Ma Nain Plutonic Suite (Nain-Churchill Provinces, Canada) and the 920-949 Ma Rogaland Anorthosite Province (Sveconorwegian Province, Norway), all entrain comagmatic, cumulate, high-alumina orthopyroxene megacrysts (HAOMs). The orthopyroxene megacrysts range in size from 0.2 to 1 m and all contain exsolution lamellae of plagioclase that indicate the incorporation of an excess Ca-Al component inherited from the host magma at pressures in excess of 10 kbar at or near Moho depths (>30-40 km). Suites of HAOMs from each intrusion display a large range in 147Sm/144Nd (0.10 to 0.34) making them amenable for precise age dating with the Sm-Nd system. Sm-Nd isochrons for HAOMs give ages of 1765±12 Ma (Mealy Mountains), 1041±17 Ma (Rogaland) and 1444±100 Ma (Nain), all of them older by about 80 to 120 m.y. than the respective 1630-1650, 920-949 and 1289-1363 Ma crystallization ages of their host anorthosites. Internal mineral Sm-Nd isochrons between plagioclase exsolution lamellae and the orthopyroxene host for HAOMs from the Rogaland and Nain complexes yield ages of 968±43 and 1347±6 Ma, respectively - identical within error to the ages of the anorthosites themselves. This age concordance establishes that decompression exsolution in the HAOM was coincident with magmatic emplacement of the anorthosites, ∼100 m.y. after HAOMs crystallization at the Moho. Correspondence of Pb isotope ages (206Pb/204Pb vs. 207Pb/204Pb) with Sm-Nd ages and other strong lines of evidence indicate that the older megacryst ages represent true crystallization ages and not the effects of time-integrated mixing processes in the magmas. Nd isotopic evolution curves, AFC/mixing calculations and the age relations between the HOAMs and their anorthosite hosts show that the HAOMs are much less contaminated with crustal components and are an older part of the same magmatic system

  5. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  6. Magmatic gas scrubbing: Implications for volcano monitoring

    USGS Publications Warehouse

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  7. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  8. Magmatism evolution on the last Neoproterozoic development stage of the western Siberian active continental margin

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.

    2017-04-01

    .B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.

  9. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  10. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  11. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic

    PubMed Central

    Richards, Michael P.; Pettitt, Paul B.; Stiner, Mary C.; Trinkaus, Erik

    2001-01-01

    New carbon and nitrogen stable isotope values for human remains dating to the mid-Upper Paleolithic in Europe indicate significant amounts of aquatic (fish, mollusks, and/or birds) foods in some of their diets. Most of this evidence points to exploitation of inland freshwater aquatic resources in particular. By contrast, European Neandertal collagen carbon and nitrogen stable isotope values do not indicate significant use of inland aquatic foods but instead show that they obtained the majority of their protein from terrestrial herbivores. In agreement with recent zooarcheological analyses, the isotope results indicate shifts toward a more broad-spectrum subsistence economy in inland Europe by the mid-Upper Paleolithic period, probably associated with significant population increases. PMID:11371652

  12. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic.

    PubMed

    Richards, M P; Pettitt, P B; Stiner, M C; Trinkaus, E

    2001-05-22

    New carbon and nitrogen stable isotope values for human remains dating to the mid-Upper Paleolithic in Europe indicate significant amounts of aquatic (fish, mollusks, and/or birds) foods in some of their diets. Most of this evidence points to exploitation of inland freshwater aquatic resources in particular. By contrast, European Neandertal collagen carbon and nitrogen stable isotope values do not indicate significant use of inland aquatic foods but instead show that they obtained the majority of their protein from terrestrial herbivores. In agreement with recent zooarcheological analyses, the isotope results indicate shifts toward a more broad-spectrum subsistence economy in inland Europe by the mid-Upper Paleolithic period, probably associated with significant population increases.

  13. Deformation-related microstructures in magmatic zircon and implications for diffusion

    NASA Astrophysics Data System (ADS)

    Reddy, Steven Michael; Timms, Nicholas E.; Hamilton, Patrick Joseph; Smyth, Helen R.

    2009-02-01

    stages of initial crystallisation. These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates.

  14. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei

    2018-01-01

    The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing

  15. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    NASA Astrophysics Data System (ADS)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  16. First Nd-Hf isotope evidence for ultra depleted melts in MOR-type replacive mantle bodies

    NASA Astrophysics Data System (ADS)

    Sanfilippo, A.; Botticchio, S.; Salters, V. J. M.; Tribuzio, R.; Zanetti, A.

    2017-12-01

    A growing number of geochemical investigations on peridotites suggest that the chemical heterogeneity of the Earth's mantle is more extreme than the magmas erupted on the surface. The finding of extremely depleted compositions in residual peridotites apparently not sampled by oceanic magmatism implies that the depleted mantle (DM) end-member is yet to be defined, leaving open questions on contribution of the depleted component to basalt volcanism [1]. Here we present new data on two replacive bodies (10-20 m wide) found in a MOR-type mantle section exposed in the Jurassic Alpine ophiolites (Lanzo South Massif, Italy). Field and geochemical data indicate a formation by reaction between highly depleted melts and host plagioclase (Pl)-bearing peridotites. This interaction led to annealing of the foliation and formation of Pl-free harzburgites. Clinopyroxenes from these replacive rocks are characterized by strong depletions in incompatible elements (TiO2 <0.05 wt.%) compared to the host Pl-peridotites (TiO2 in Cpx >0.4 wt.%), and by a marked Nd-Hf isotope decoupling. Initial ɛNd (calculated at 165 Ma) is similar to present-day MORB and abyssal peridotites, whereas their initial ɛHf are amongst the most radiogenic values (up to 200). The 143Nd/144Nd versus 147Sm/144Nd ratios of the two bodies define parallel trends yielding ages compatible with the Jurassic age of the ophiolites. Differently, the 176Hf/177Hf versus 176Lu/177Hf ratios form error-chrons yielding an age of 1.2 Ga! These data indicate that the melts forming these replacive rocks originated from an old, depleted mantle source, akin to the refractory peridotites sampled at Gakkel Ridge [2]. These ultra depleted melts likely were generated during the last phases of the melting process and transported through the lithospheric mantle into the replacive bodies. We provide the first evidence that melt with extremely depleted isotope compositions do occur at ocean ridges, revealing a potential, but still

  17. Identifying the complex melting reaction from 20 Ma to 14 Ma in Tsona leucogranite in Southern Tibet: geochemistry, zircon U-Pb chronology and Hf isotopes evidence

    NASA Astrophysics Data System (ADS)

    Shi, Qingshang; Zhao, Zhidan; Liu, Dong; Zhu, Di-Cheng

    2017-04-01

    The Miocene leucogranites, the record of the evolution of the Himalayan-Tibetan Orogen, extensively intruded the Greater Himalayan Sequence (GHS), and distributed along the South Tibetan Detachment System (STDS) (Guo and Wilson, 2012). Here we present a study of geochemistry, zircon U-Pb chronology and Hf isotopes on the Yamarong leucogranites from Tsona area, Eastern Himalaya, to explore the petrogenesis of the rocks, including melting condition and mechanism, and source of fluid within the magmatism through time. Our new results include: (1) The age of the Yamarong leucogranites range from 14 Ma to 20 Ma (YM1510-1 = 19.7 ± 0.1 Ma, n = 13; YM1502-1 = 17.5 ± 0.1 Ma, n = 12; YM1412 =14.2 ± 0.1 Ma, n = 18), which suggest that the anataxis processes have lasted for more than 6 Ma. (2) The geochemical features are different between the rocks with changing ages, especially between 20 Ma and 17 Ma. The Rb/Sr value of 20 Ma leucogranites (4.1-6.84) is lower than that of 17 Ma samples (5.12-19.02). The 20 Ma leucogranites have higher Ba contents (188-337 ppm) than that of 17 Ma rocks (50-158ppm), which exhibit different trends in the Rb/Sr versus Ba plot, and reveal different melting reaction from 20 Ma to 17 Ma. (Inger and Harris, 1993) (3) The ɛHf(t) isotopes of 20 Ma leucogranites are lower (average ɛHf(t) = -12.5) than that of 17 Ma ones (average ɛHf(t) = -10), which implies differential dissolution of inherited zircon during two partial melting events possibly due to different fluid contribution (Gao et al., 2017); (4) The positive linear relationship of LREEs versus Th in the rocks, with relatively higher contents of Th and LREEs in the 20 Ma, and lower in the 17 Ma leucogranites, which suggests the relationship were mostly controlled by monazite. And this further indicates more monazite was dissolved from the source region in the early stage (˜20Ma) than the later (17Ma) (Gao et al., 2017). In summary, our study provides new evidence for the complex melting

  18. Geophysical evidence for the crustal variation and distribution of magmatism along the central coast of Mozambique

    NASA Astrophysics Data System (ADS)

    Mueller, Christian Olaf; Jokat, Wilfried

    2017-08-01

    For our understanding of the timing and geometry of the initial Gondwana break-up, still a consistent image of the crustal composition of the conjugated margins of central Mozambique and Antarctica and the location of their continent-ocean boundaries is missing. In this regard, a main objective is the explanation for the source of the different magnetic signature of the conjugate margins. Based on a revised investigation of wide-angle seismic data along two profiles across the Mozambican margin by means of an amplitude modelling, this study presents the crustal composition across and along the continental margin of central Mozambique. Supported by 2D magnetic modelling, the results are compared to the conjugate margin in Antarctica and allow new conclusions about their joined tectonic evolution. An observed crustal diversity between the north-eastern and south-western parts of the central Mozambican margin, testifies to the complex break-up history of this area. Conspicuous is the equal spatial extent of the HVLCB along the margin of 190-215 km. The onset of oceanic crust at the central Mozambican margin is refined to chron M38n.2n (164.1 Ma). Magnetic modelling supports the presence of reversed polarized SDRs in the continent-ocean transition that were mainly emplaced between 168.5 and 166.8 Ma (M42-M40). Inferred SDRs in the Riiser-Larsen Sea might be emplaced sometime between 166.8 and 164.1 Ma (M39-M38), but got overprinted by normal polarized intrusions of a late stage of rift volcanism, causing the opposite magnetic signature of the conjugate margins. The distribution of the magmatic material along the central coast of Mozambique clearly indicates the eastern extension of the north-eastern branch of the Karoo triple rift along the entire margin. The main magmatic phase affecting this area lasted for at least 12 Myr between 169 and 157 Ma, followed by the cease of the magmatism, perhaps due to the relative southwards motion of the magmatic centre.

  19. Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?

    NASA Astrophysics Data System (ADS)

    Farmer, G.

    2011-12-01

    Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred

  20. Raton-Clayton Volcanic Field magmatism in the context of the Jemez Lineament

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Pontbriand, A.

    2013-12-01

    The Raton-Clayton Volcanic Field (RCVF) was active from 9 Ma to approximately 50 Ka and stretches from Raton, New Mexico in the west to Clayton, New Mexico in the east. The field occurs in the Great Plains at the northeastern end of the Jemez Lineament, a major crustal feature and focus of volcanism that extends southwest to the Colorado Plateau in Arizona and encompasses five other major volcanic fields. Jemez Lineament magmatism is temporally related to Rio Grande Rift magmatism, though it extends NE and SW from the rift itself, and it has been suggested that it represents an ancient crustal suture that serves as a conduit for magmatism occurring beneath the larger region of north and central New Mexico (Magnani et al., 2004, GEOL SOC AM BULL, 116:7/8, pp. 1-6). This study extends our work into the RCVF from prior and ongoing work in the Mount Taylor Volcanic Field, where we identified different mantle sources with varying degrees of subduction alteration and we determined some of the crustal processes that contribute to the diversity of magma chemistry and eruptive styles there (e.g., AGU Fall Meeting, abst. #V43D-2884 and #V43D-2883). In the RCVF, we are analyzing multiple phases by electron microprobe and plagioclase phenocrysts and glomerocrysts by LA-ICPMS for Sr isotopes and trace elements. We are undertaking this investigation with the following goals: (1) to evaluate previous magma mixing and crustal assimilation models for Sierra Grande andesites (Zhu, 1995, unpublished Ph.D. dissertation, Rice University; Hesse, 1999, unpublished M.S. thesis, Northern Arizona University); (2) to evaluate subduction-modified mantle as the source for RCVF basanites (specifically those at Little Grande); and (3) to assess the possible role of deep crustal cumulates in buffering transitional basalts. In the larger context, these data will be used to evaluate the varying degree of subduction-modification and the effect of crustal thickness on magmatism along the Jemez

  1. Efficient cooling of rocky planets by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  2. Geochronology, geochemical and Sr-Nd-Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Ma, Changqian; Xu, Jiannan

    2017-12-01

    A general consensus has emerged that high field strength elements (HFSE) can mobile to some extent in a hydrothermal fluid. However, there are hot debates on whether sub-solidus hydrothermal alteration can lower the Nb/Ta ratio in evolved melts. In this study, we present petrography, geochronology and geochemistry of the barren and mineralized rocks in the Yemaquan skarn iron deposit, northern Qinghai-Tibet Plateau, to probe magmatic-hydrothermal transition. The barren rocks consist of diorites, granodiorites, granites and syenogranites, whereas the porphyritic granodiorites are associated with mineralization for an excellent consistency between the magmatic zircon U-Pb age (225 ± 2 Ma) and the hydrothermal phlogopite 40Ar-39Ar age (225 ± 1.5 Ma). The Sr-Nd-Hf-Pb isotopic data demonstrate that the Yemaquan granitoids are originated from a relatively homogenous enriched mantle with different degrees of crust contamination (assimilation fractional crystallization, AFC). Trace elements signatures indicate that the porphyritic granodiorites related to mineralization display amphibole crystallization for high water contents, whereas the barren granites have gone through biotite crystallization due to potassium enrichment by continuous upper crust contamination, both of which are responsible for their Nb/Ta ratios, respectively. Modeling results suggest that a basaltic melt with Nb/Ta ratio of 15.3 can reach a minimum Nb/Ta ratio of 12 in the producing granodioritic melt by amphibole fractional crystallization based on partition coefficients of Nb and Ta between amphibole and melts from previous experiments. This may explain the average Nb/Ta ratio (13.7) of the barren granodiorites, while it cannot account for the average Nb/Ta ratio (8.4) of the mineralized porphyritic granodiorites, and it is even lower than that of the granites (10.3) with biotite fractional crystallization. Exsolution of a magmatic-hydrothermal fluid is inevitable when a water saturated magma

  3. The size-isotopic evolution connection among layered mafic instrusions: Clues from a Sr-Nd isotopic study of a small complex

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Pin, Christian; Duthou, Jean-Louis; Platevoet, Bernard

    1994-05-01

    Several theoretical and experimental works have focused on the processes occuring in continental mafic magma chambers. In contrast, systematic isotopic studies of natural remnants of these latter remain scarce, although they can give fundamental constraints for theoretical studies. This is especially true if different layered complex with contrasting characteristics (e.g., different size) are compared. For this reason, we present the results of a Sr-Nd isotopic profile across a small layered mafic intrusion of Permian age exposed near Fozzano (SW Corsica). In the main zone of the layered section, decreasing Sr-87/Sr(sub i)-86 and increasing Nd-143/Nd(sub i)-144 are observed from less evolved (bottom) to more evolved (top) rocks. This peculiar pattern precludes assimilation and fractional crystallization (AFC) as a dominant mechanism in the petrogenesis of this body. Instead, we interpret this trend as reflecting the dilution of an early stage contaminated magma by several reinjections of fresh basalt in the chamber. In agreement with mineralogical and structural data, every cyclic unit is interpreted as a new magmatic input. On the basis of rough refill and fractional crystallization (RFC) calculations, the average volume for each reinjection is estimated to have been about 0.04 cu km. The cumulative volume of these injections would amount to about 75% of the total volume of the layered complex. This implies that reinjections were accompanied by an important increase of the volume of the chamber or by magma withdrawal by surface eruptions. The RFC mechanism documented within this small layered body constrasts with the isotopic pattern observed between several intrusions at the regional scale in SW Corsica, and within large continental mafic magma chambers elsewhere. In these cases the isotopic evolution is dominated by AFC processes, and there is no clear isotopic evidence for reinjections, unless major influx of fresh magma occurred. It is suggested that there is

  4. Sulfur concentration and isotopic variation in apatites from granitic to granodioritic plutons of a Cretaceous Cordilleran Batholith

    NASA Astrophysics Data System (ADS)

    Economos, R. C.

    2012-12-01

    Apatite is a common igneous accessory mineral with a high saturation temperature which can therefore crystallize over a significant portion of magmatic compositional space. Sulfur presents an opportunity to identify zoning in apatites. Unlike other trace elements, sulfur is relatively immobile in the apatite crystal structure and can be present in typical concentrations up to 1500 - 2000 ppm (or 0.5 to 1 wt% SO3). Sulfur concentration zoning in igneous apatites from ore producing magmatic systems has been identified (Streck and Dilles, 1998), but the interpretation of the cause of this zoning remains an open question. δ34S isotopic ratios of whole apatites have been used to track isotopic evolution associated with changes in magma fO2 and eruptive degassing (Rye, 2005). The presented work combines sulfur concentration mapping in zoned apatite crystals with in-situ SIMS 34S and 32S isotope measurements. Apatites were extracted from granite to granodiorite samples from the Cadiz Valley Batholith in the central Mojave Desert. This batholith is related to the pulse of Cretaceous Cordilleran magmatism that generated large batholiths in the Sierra Nevada and the Penninsular Ranges. The Mojave segment of the Cretaceous arc is unique in their construction into a full thickness of continental crust which exerted a strong influence on magmatic compositions. Apatite grains were mounted parallel to C axes, ground until grains were approximately bisected, and analyzed by Electron Microprobe at UCLA, for CaO, P2O5, SO3 and SiO2. Grains were surveyed and those yielding anomalous SO3 contents were investigated by micron-scale concentration mapping. Typical SO3 concentrations of apatites from all samples were ~0.2 wt%, while 8 to 10% of apatite grains from two samples contained cores with concentrations ranging up to 0.5 wt%. The sulfur zoning in these samples is oscillatory, in some grains representing 5 to 6 repetitions of high and low concentrations. Based on these textures

  5. Magmatism at the Eurasian–North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia)

    PubMed Central

    Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V.; Ntaflos, Theodoros

    2011-01-01

    The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian−North American continental plate. The geodynamic evolution of this continent−continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr–Nd–Pb–Hf isotopes of the alkaline suite of rocks combined with new precise K–Ar and 40Ar/39Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively ‘dry’ conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the

  6. Magmatism at the Eurasian-North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia).

    PubMed

    Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V; Ntaflos, Theodoros

    2011-07-01

    The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr-Nd-Pb-Hf isotopes of the alkaline suite of rocks combined with new precise K-Ar and 40 Ar/ 39 Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively 'dry' conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle

  7. Comparison of magmatic and amagmatic rift zone kinematics using full moment tensor inversions of regional earthquakes

    NASA Astrophysics Data System (ADS)

    Jaye Oliva, Sarah; Ebinger, Cynthia; Shillington, Donna; Albaric, Julie; Deschamps, Anne; Keir, Derek; Drooff, Connor

    2017-04-01

    Temporary seismic networks deployed in the magmatic Eastern rift and the mostly amagmatic Western rift in East Africa present the opportunity to compare the depth distribution of strain, and fault kinematics in light of rift age and the presence or absence of surface magmatism. The largest events in local earthquake catalogs (ML > 3.5) are modeled using the Dreger and Ford full moment tensor algorithm (Dreger, 2003; Minson & Dreger, 2008) to better constrain source depth and to investigate non-double-couple components. A bandpass filter of 0.02 to 0.10 Hz is applied to the waveforms prior to inversion. Synthetics are based on 1D velocity models derived during seismic analysis and constrained by reflection and tomographic data where available. Results show significant compensated linear vector dipole (CLVD) and isotropic components for earthquakes in magmatic rift zones, whereas double-couple mechanisms predominate in weakly magmatic rift sectors. We interpret the isotropic components as evidence for fluid-involved faulting in the Eastern rift where volatile emissions are large, and dike intrusions well documented. Lower crustal earthquakes are found in both amagmatic and magmatic sectors. These results are discussed in the context of the growing database of complementary geophysical, geochemical, and geological studies in these regions as we seek to understand the role of magmatism and faulting in accommodating strain during early continental rifting.

  8. Sulphur isotope applications in two Philippine geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayon, F.E.B.

    1996-12-31

    A general and very preliminary study of sulphur isotope geochemistry is presented in this paper. Data from the Mt. Apo and Palinpinon geothermal fields are used to demonstrate the use of sulphur isotopes in geothermometry and correlation of sulphur species. Sulphur and oxygen isotope geothermometers applied to Mt. Apo data show very good agreement with temperatures estimated using other established geothermometers, as well as bore measured temperatures. This signifies that sulphur isotopes in S-species in fluids of the Mt. Apo hydrothermal system are in equilibrium at drilled depths. In Palinpinon, on the other hand, temperature estimates from fluid and mineralmore » sulphur isotope geothermometry calculations do not agree with, and are commonly higher than, well measured temperatures and temperatures estimated from other geothermometers. Sulphur isotopes in the presently-exploited Palinpinon fluid are not in equilibrium, and sulphur isotope geothermometry may be reflective of isotopic equilibrium of the deeper portions of the hydrothermal system. Dissolved sulphate in both the Palinpinon and Mt. Apo geothermal fluids appear to originate from the disproportionation of magmatic SO{sub 2} at temperatures below 400{degrees}C. Hydrogen sulphide in well discharge fluids are dominantly directly derived from the magma, with a minor amount coming from SO{sub 2} disproportionation.« less

  9. Structural controls on the emission of magmatic carbon dioxide gas, Long Valley Caldera, USA

    NASA Astrophysics Data System (ADS)

    Lucic, Gregor; Stix, John; Wing, Boswell

    2015-04-01

    We present a degassing study of Long Valley Caldera that explores the structural controls upon emissions of magmatic carbon dioxide gas. A total of 223 soil gas samples were collected and analyzed for stable carbon isotopes using a field-portable cavity ring-down spectrometer. This novel technique is flexible, accurate, and provides sampling feedback on a daily basis. Sampling sites included major and minor volcanic centers, regional throughgoing faults, caldera-related structures, zones of elevated seismicity, and zones of past and present hydrothermal activity. The classification of soil gases based on their δ13C and CO2 values reveals a mixing relationship among three end-members: atmospheric, biogenic, and magmatic. Signatures dominated by biogenic contributions (~4 vol %, -24‰) are found on the caldera floor, the interior of the resurgent dome, and areas associated with the Hilton Creek and Hartley Springs fault systems. With the introduction of the magmatic component (~100 vol %, -4.5‰), samples acquire mixing and hydrothermal signatures and are spatially associated with the central caldera and Mammoth Mountain. In particular, they are concentrated along the southern margin of the resurgent dome where the interplay between resurgence-related reverse faulting and a bend in the regional fault system has created a highly permeable fracture network, suitable for the formation of shallow hydrothermal systems. This contrasts with the south moat, where despite elevated seismicity, a thick sedimentary cover has formed an impermeable cap, inhibiting the ascent of fluids and gases to the surface.

  10. Water content, speciation and isotopic composition in volcanic glass: an open window on magma degassing processes or paleoclimate?

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit

    2016-04-01

    The content, speciation and isotopic composition of water in volcanic glass have been used for decades as recorder of magma degassing or late glass rehydration processes. Magmatic or paleoclimate information are derived depending on the primary (magmatic) or meteoric (secondary) origin of water. In this study, we attempt to discriminate residual magmatic from secondary meteoric water in volcanic glass. Using samples from different geological settings and different climatic conditions, we show that the H-isotope composition and water content measured via a TC/EA-MAT253 system in volcanic glass alone are not always sufficient to provide clear distinction between magmatic and meteoric origin. However, it is quite easy to resolve δD evolution during post-deposit rehydration by meteoric water from magma degassing when volcanic glass have a δD <-100‰ or >-50‰ and [H2O]tot >1.5-2wt.%. Water speciation inferred from near-infrared spectroscopy also provides valuable information complementary to isotopic and total water measurements. During magma degassing (typically with [H2O]tot decreasing from 6wt.% to ~0wt.% water) H2O/OH is expected to decrease from 2 to close to 0. However, our dataset shows the opposite trend with an increase of H2O/OH from 2 to ~5. We interpret it as post deposit rehydration of the volcanic glass. Overall our results show that the discrimination of the water origin is essential to discuss magma degassing processes or paleoclimatic reconstitutions. The present study of hydrous glass supports the use of H-isotopes of volcanic glass to discuss paleoclimate reconstitution in a specific region. To this purpose, the volcanic glass has to be almost fully rehydrated in order to fingerprint the isotopic composition of the rehydration water. A sharp time constrain can be obtained if the full rehydration occurs quickly after the eruption. This is most likely to occur in meters thick volcanic pyroclast deposits that undergo slow cooling rates and thus can

  11. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high ??18O calcites (25.0 to 27.2), low ??18O wollastonites (-1.3 to 3.5), and sharp gradients in ??18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn). Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts. ?? 1984 Springer-Verlag.

  12. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  13. An ancient depleted mantle sample from a 42-Ma dike in Montana: Constraints on persistence of the lithosphere during Eocene Magmatism

    USGS Publications Warehouse

    Dudas, F.O.; Harlan, S.S.

    1999-01-01

    Recent models for the Cenozoic tectonic evolution of the western margin of North America propose that delamination of ancient lithosphere accompanied asthenospheric upwelling, magmatism, and uplift subsequent to Laramide deformation. On the basis of the age of an alkaline dike in south-central Montana, thermometry of mantle xenoliths from the dike, and Sr, Nd, and Pb isotopic compositions of the dike and a xenocryst, we show that refractory lithosphere, derived from ancient, depleted mantle, remained in place under the Wyoming Craton as late as 42 Ma. The Haymond School Dike, a camptonite, yields a 40Ar/39Ar plateau date of 41.97 ?? 0.19 Ma (2??). Paleomagnetic data are consistent with this date and indicate intrusion during chron C19r. The dike has Sr, Nd, and Pb isotopic compositions similar to those of other Eocene alkaline rocks from central Montana. A clinopyroxene megacryst from the dike has ??42 = 17, and 87Sr/86Sr = 0.70288, indicating that it derives from ancient, depleted mantle isotopically distinct from the source of the host camptonite. Thermometry of xenoliths from the dike shows pyroxene populations that formed at 880?? and 1200??C. Combining thermometry with previous estimates of the regional Eocene geotherm inferred from xenoliths in kimberlites, and with the Al-in-orthopyroxene barometer, we infer that lithospheric mantle remained intact to depths of 110-150 km as late as 42 Ma. Eocene magmatism was not accompanied by complete removal of ancient lithosphere.

  14. Remote detection of magmatic water in Bullialdus crater on the Moon

    USGS Publications Warehouse

    Klima, Rachel L.; Cahill, John; Hagerty, Justin J.; Lawrence, David

    2013-01-01

    Once considered dry compared with Earth, laboratory analyses of igneous components of lunar samples have suggested that the Moon’s interior is not entirely anhydrous. Water and hydroxyl have also been detected from orbit on the lunar surface, but these have been attributed to nonindigenous sources, such as interactions with the solar wind. Magmatic lunar volatiles—evidence for water indigenous to the lunar interior—have not previously been detected remotely. Here we analyse spectroscopic data from the Moon Mineralogy Mapper (M3) and report that the central peak of Bullialdus Crater is significantly enhanced in hydroxyl relative to its surroundings. We suggest that the strong and localized hydroxyl absorption features are inconsistent with a surficial origin. Instead, they are consistent with hydroxyl bound to magmatic minerals that were excavated from depth by the impact that formed Bullialdus Crater. Furthermore, estimates of thorium concentration in the central peak using data from the Lunar Prospector orbiter indicate an enhancement in incompatible elements, in contrast to the compositions of water-bearing lunar samples. We suggest that the hydroxyl-bearing material was excavated from a magmatic source that is distinct from that of samples analysed thus far.

  15. Early post-collisional Brasiliano magmatism in Botuverá region, Santa Catarina, southern Brazil: Evidence from petrology, geochemistry, isotope geology and geochronology of the diabase and lamprophyre dikes

    NASA Astrophysics Data System (ADS)

    Sacks de Campos, Roberto; Philipp, Ruy Paulo; Massonne, Hans-Joachim; Chemale, Farid

    2012-08-01

    The post-collisional magmatism related to Brasiliano orogeny represented the final stage of the Dom Feliciano Belt in Rio Grande do Sul and Santa Catarina states, southern Brazil, presenting high-K calc-alkaline to shoshonitic and alkaline chemical signatures. Magmatic episodes related to this early period were found in Botuverá region, Santa Catarina state, represented by diabase and lamprophyre (spessartite-type) dikes intrusive in metavolcano-sedimentary rocks of the Brusque Metamorphic Complex (CMB). These dikes have massive structure and igneous textures ranging from very fine equigranular to porphyritic, and the latter is characterized by the presence of phenocrysts of plagioclase and hornblende. The dikes have northeast direction and sharp contacts with the metamorphic rocks, indicating that its position was after the main orogenic regional metamorphism that affected the CMB, interpreted as of collisional nature. The diabase has a basic composition, whereas spessartite lamprophyres are intermediate, with geochemical affinities to the tholeiitic series, with a significant enrichment in light rare-earth elements (LREE) and large ion lithophile elements (LILE) such as Cs, Rb, Ba, K and Sr, and negative anomalies for high-field-strength elements (HFS) such as Nb, Ta, U and T. The concentration of standard trace elements and the Th/Yb and Ta/Yb ratios indicate that these magmas were derived from an enriched mantle source and were strongly contaminated by crust. Except for higher values of K, these features are similar to those found in basaltic volcanic rocks associated with the post-collisional period in south Brazil. The widely dispersed values of ɛND (618), ranging between -13.74 and +5.52, highlights the heterogeneity of the source and reinforces the importance of a crustal component in the generation of these rocks. The extremely low value of ɛNd (618), of -21.67 obtained for spessartite lamprophyres supports the importance of the involvement of crust in

  16. Mineralogical, Chemical, and Isotopic Heterogeneity in Zagami: Evidence for a Complex Petrogenesis

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Misawa, K.; Shih, C-Y.; Niihara, T.; Park, J.

    2013-01-01

    Textural variations in the shergottite Zagami were initially interpreted as evidence that it formed in a heterogeneous lava flow. Variations in initial Sr-87/Sr-86 ratios between a Coarse Grained (CG) and a Fine Grained (FG) lithology and evidence for more extensive fractionation of the Rb/Sr ratio in a Dark Mottled Lithology (DML) are consistent with such an interpretation. More recently, Niihara et al. and Misawa et al. have reported the mineralogy and Sr-isotopic systematics of an Olivine Rich Lithology (ORL) found in association with the coarse-grained DML lithology in the Kanagawa Zagami specimen [6,7]. Here we call this lithology DML(Ka) to maintain a distinction with DML(USNM) as studied. An Ar-Ar study by Park et al. of a late stage K-rich melt enriched in K2O to approx 7% and intruded into ORL yielded an Ar-Ar age of 202+/0 7 Ma. The present work extends the study of Kanagawa Zagami to Nd-isotopes.

  17. Correlated microanalysis of zircon: Trace element, δ 18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains

    NASA Astrophysics Data System (ADS)

    Cavosie, Aaron J.; Valley, John W.; Wilde, Simon A.; E. I. M. F.

    2006-11-01

    radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth's history.

  18. Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U ± Ag) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Acosta-Góngora, P.; Gleeson, S. A.; Samson, I. M.; Corriveau, L.; Ootes, L.; Jackson, S. E.; Taylor, B. E.; Girard, I.

    2018-03-01

    The Great Bear Magmatic Zone, in northwest Canada, contains numerous polymetallic mineral occurrences, prospects, and deposits of the iron oxide copper-gold deposit (IOCG) family. The mineralization is hosted by the Treasure Lake Group and igneous rocks of the Great Bear arc and was deposited concomitantly with the arc magmatism (ca. 1.88 to 1.87 Ga). In situ δ 34S ( n = 48) and δ 65Cu ( n = 79) analyses were carried out on ore-related sulfides from a number of these systems. The δ 34S values mainly vary between 0 and +5‰, consistent with derivation of sulfur from the mantle. Lower δ 34S values (-7.7 to +1.4‰) from the Sue-Dianne breccia may indicate SO2 disproportionation of a magmatic hydrothermal fluid. The δ 65Cu values vary between -1.2 and -0.3‰, and are lower than the igneous δ 65Cu range of values (0.0 ± 0.27‰). The S and Cu isotopic data are decoupled, which suggests that Cu (and possibly some S) was dissolved and remobilized from supracrustal rocks during early stages of alteration (e.g., sodic alteration) and then precipitated by lower temperature, more oxidizing fluids (e.g., Ca-Fe-K alteration). A limited fluid inclusion dataset and δ 13C and δ 18O values are also presented. The δ 18Ofluid values are consistent with a magmatic origin or a host-rock equilibrated meteoric water source, whereas the δ 13Cfluid values support a marine carbonate source. Combined, the S and Cu isotopic data indicate that while the emplacement of the Great Bear magmatic bodies may have driven fluid convection and may be the source of fluids and sulfur, metals such as Cu could have been recycled from crustal sources.

  19. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago.

    PubMed

    Wilde, S A; Valley, J W; Peck, W H; Graham, C M

    2001-01-11

    No crustal rocks are known to have survived since the time of the intense meteor bombardment that affected Earth between its formation about 4,550 Myr ago and 4,030 Myr, the age of the oldest known components in the Acasta Gneiss of northwestern Canada. But evidence of an even older crust is provided by detrital zircons in metamorphosed sediments at Mt Narryer and Jack Hills in the Narryer Gneiss Terrane, Yilgarn Craton, Western Australia, where grains as old as approximately 4,276 Myr have been found. Here we report, based on a detailed micro-analytical study of Jack Hills zircons, the discovery of a detrital zircon with an age as old as 4,404+/-8 Myr--about 130 million years older than any previously identified on Earth. We found that the zircon is zoned with respect to rare earth elements and oxygen isotope ratios (delta18O values from 7.4 to 5.0%), indicating that it formed from an evolving magmatic source. The evolved chemistry, high delta18O value and micro-inclusions of SiO2 are consistent with growth from a granitic melt with a delta18O value from 8.5 to 9.5%. Magmatic oxygen isotope ratios in this range point toward the involvement of supracrustal material that has undergone low-temperature interaction with a liquid hydrosphere. This zircon thus represents the earliest evidence for continental crust and oceans on the Earth.

  20. Oxygen Isotope and Microtextural Evidence for Fluctuations in Fluid Pressure During Contact Metamorphism, Alta Aureole, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bowman, J. R.; Valley, J. W.; Kita, N.

    2006-12-01

    Thin section-scale textures record a detailed history of prograde and retrograde reactions in the periclase (Per) zone of the Alta Stock aureole. New ion microprobe (SIMS) measurements (10 micron spot, ±0.2 permil, 1sd) of the oxygen isotope compositions of the carbonates preserving these textures provide evidence for at least two cycles of oscillation of fluid pressure (Pfl) between lithostatic (PL) and hydrostatic (Phyd) conditions during evolution of the inner aureole. Infiltration of water-rich fluids during prograde metamorphism converted dolomite (Dol) to Per + calcite (Cal) marble and caused significant 18O/16O depletion in the Dol protolith (Initial δ18O (Cal) > +25 permil), producing Cal with δ18O values of +11 permil. The SIMS values approximate oxygen isotope exchange equilibrium with the Alta stock, indicating that infiltrating fluids were likely magmatic. Exsolution of fluid from the crystallizing magma, coupled with geothermometry from the periclase zone marbles, requires Pfl> PL. Horizontally-oriented expansion cracks filled with brucite (Br) extend from Br pseudomorphs after periclase, and cut retrograde Dol that partially to completely rims the Br pseudomorphs. This earlier retrograde Dol is significantly depleted in 18O/16O relative to matrix Cal, with δ18O of +5 to +7.1 permil. These lower δ18O values indicate that meteoric water infiltrated into the Per marbles during cooling and resulting partial back reaction of Per + Cal to Dol, prior to the hydration of the remaining Per to Br. Influx of meteoric water requires sufficient increase in permeability to permit surface- derived meteoric water to penetrate to the estimated 4.5 km depth of this structural level of the Alta aureole, and suggests a resulting decrease in Pfl to hydrostatic pressure conditions. The horizontally-oriented expansion cracks associated with the Br pseudomorphs indicate that sub-vertical expansion accompanied hydration of Per to Br, requiring that Pfl increase again to

  1. Lutetian arc-type magmatism along the southern Eurasian margin: New U-Pb LA-ICPMS and whole-rock geochemical data from Marmara Island, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ustaömer, P. Ayda; Ustaömer, Timur; Collins, Alan S.; Reischpeitsch, Jörg

    2009-07-01

    The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6 ± 2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the İzmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.

  2. Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu

    2018-01-01

    Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.

  3. Crystals and Crystals: On the Mythology of Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Marsh, B.

    2008-12-01

    The intimate records of the deep functioning of magmatic systems reside in the temporal and spatial records of magma flux, composition and crystal load. The records for a single system are piecemeal: Plutons show good spatial records, but poor temporal records. Volcanoes give through lava sequences good temporal records, but no spatial context. Because of this dichotomy, two, almost mutually exclusive, branches of magmatology have developed, whereas in Nature there is only a single process. The processes envisioned in these schools necessary to deliver the end rock record are distinct. It is our tools and historic perspectives that have steered the science, not the subject itself. Due to this approach an almost mythical conception of how magmas function has become commonplace. The circumvention of this dilemma rests in carefully evaluating the records on hand in the light of a broad understanding of the fundamental mechanics of how magma lives and dies. It is these basic principles that promise to unify plutonic and volcanic evidence to reveal the full nature of magmatism on all scales. The two most basic features of all magmatic processes are the universal presence of solidification fronts and the presence or absence of a crystal cargo. Almost without exception (e.g., shallow pressure quenching) all first generation crystals grow in marginal solidification fronts (SFs) bordering all magmas. The package of isotherms bounded by the liquidus and solidus define SFs, which propagate in response to the rate of cooling. All physical and chemical processes occurring within SFs compete with the advancement or retreat of solidification. SFs are governed by crystallinity regimes: Suspension Zone (<25 % xtals), Capture Front (~25 %), Mush Zone (25-55%), Rigidity Front (~55%; Critical Crystallinity), and Rigid Crust Zone (>55% xtals). Magmas are laced with nuclei that multiply and grow when overtaken. Crystal growth rates are bounded; tiny crystals reside at the front of SFs

  4. Zinc Isotopic Signatures of the Upper Continental Crust

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Zhang, X.; Zhang, H.; Huang, F.

    2016-12-01

    To examine the Zn isotope systematics within the Upper Continental Crust (UCC), and isotope fractionation during chemical weathering in large spatial and temporal scales, we analyzed Zn isotopic compositions of loess, glacial diamictites, river sediments, and igneous rocks (samples in total 77). The Zn isotopic compositions (δ66Zn relative to JMC-Lyon) of loess display a limited variation (0.17‰ to 0.29‰), which is negatively correlated with Zn content and proxies for chemical weathering (e.g. CIA values), reflect the impact of chemical weathering. Glacial diamictites have more variable δ66Zn (0.09‰ to 0.48‰), but the average δ66Zn (0.29±0.03‰, 2SD) is similar to loess. δ66Zn of glacial diamictites correlate roughly negatively with CIA values, but have no correlation with Zn content, implying source heterogeneity and effect from chemical weathering. δ66Zn of A-type (0.39‰ to 0.45‰) and S-type (0.28‰ to 0.35‰) granites are both homogeneous, but the latter have systematically lighter δ66Zn. This may reflect no Zn isotopic fractionation during magmatic processes and involvement of isotopically light meta-sedimentary into the sources of S-type granites. Furthermore, δ66Zn in riverine sediments display a small variation from 0.23‰ to 0.37‰, while δ66Zn of the the shales vary from 0.14‰ to 0.53‰, which could result from a combination of processes, such as biological cycling and chemical weathering. Overall, our data suggest that incipient chemical weathering can fractionate Zn isotopes significantly, meanwhile, during this process, heavy Zn are released preferentially. The UCC is estimated to have an average δ66Zn of 0.30 ±0.03‰ (2SD) with data collected in this study, which is similar to the estimated value of Bulk Silicate Earth (0.28±0.05‰)[1] and mean dissolved riverine flux (0.33‰)[2], but distinctly lighter than the bulk composition of dissolved Zn in the ocean (0.51‰)[2]. [1] Chen et al., Zinc isotope fractionation

  5. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites

    NASA Astrophysics Data System (ADS)

    Gilg, H. Albert; Frei, Robert

    1994-05-01

    Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions (< 0.6 μm) during cooling of the hydrothermal system probably played the most important role in the disturbance of the K/Ar system. Conventional K/Ar ages of < 2 μm fractions from high-temperature illites (> 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons

  6. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; von Quadt, A.; Heinrich, C. A.; Peytcheva, I.; Marchev, P.

    2012-12-01

    Eastern Srednogorie in Bulgaria is the widest segment of an extensive magmatic arc that formed by convergence of Africa and Europe during Mesozoic to Tertiary times. Northward subduction of the Tethys Ocean beneath Europe in the Late Cretaceous gave rise to a broad range of basaltic to more evolved magmas with locally associated Cu-Au mineralization along this arc. We used U-Pb geochronology of single zircons to constrain the temporal evolution of the Upper Cretaceous magmatism and the age of basement rocks through which the magmas were emplaced in this arc segment. High precision isotope dilution-thermal ionization mass spectrometry (ID-TIMS) was combined with laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) for spatial resolution within single zircon grains. Three tectono-magmatic regions are distinguished from north to south within Eastern Srednogorie: East Balkan, Yambol-Burgas and Strandzha. Late Cretaceous magmatic activity started at ~ 92 Ma in the northernmost East Balkan region, based on stratigraphic evidence and limited geochronology, with the emplacement of minor shallow intrusions and volcanic rocks onto pre-Cretaceous basement. In the southernmost Strandzha region, magmatism was initiated at ~ 86 Ma with emplacement of gabbroic to dioritic intrusions and related dikes into metamorphic basement rocks that have previously been overprinted by Jurassic-Lower Cretaceous metamorphism. The Yambol-Burgas region is an extensional basin between the East Balkan and the Strandzha regions, which broadens and deepens toward the Black Sea further east and is filled with a thick pile of marine sediments and submarine extrusive volcanic rocks accompanied by coeval intrusions. This dominantly mafic magmatism in the intermediate Yambol-Burgas region commenced at ~ 81 Ma and produced large volumes of potassium-rich magma until ~ 78 Ma. These shoshonitic to ultrapotassic basaltic to intermediate magmas formed by differentiation of ankaramitic (high

  7. Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements

    NASA Astrophysics Data System (ADS)

    Tonarini, Sonia; Armienti, Pietro; D'Orazio, Massimo; Innocenti, Fabrizio

    2001-11-01

    New whole-rock B, Sr, Nd isotope ratios and 87Sr/ 86Sr on clinopyroxenes have been collected to study the enrichment of fluid mobile elements (FMEs) observed in Mt. Etna volcanics. Etna volcano, one of the most active in the world, is located in an extremely complex tectonic context at the boundary between colliding African and European plates. The analytical work focuses on current (1974-1998) and historic (1851-1971) eruptive activity, including some key prehistoric lavas, in order to interpret the secular shift of its geochemical signature to more alkaline compositions. Boron is used as a tool to unravel the role of fluids in the genesis of magmas, revealing far-reaching consequences, beyond the case study of Mt. Etna. Small variations are observed in δ 11B (-3.5 to -8.0‰), 87Sr/ 86Sr (0.70323-0.70370), and 143Nd/ 144Nd (0.51293-0.51287). Moreover, temporal evolution to higher δ 11B and 87Sr/ 86Sr, and to lower 143Nd/ 144Nd, is observed in the current activity, defining a regular trend. Sr isotopic equilibrium between whole-rock and clinopyroxene pairs indicates the successive introduction of three distinct magma types into the Etna plumbing system over time; these are characterized by differing degrees of FME enrichment. In addition, certain lavas exhibit evidence for country rock assimilation, magma-fluid interaction, or magma mixing in the shallow feeding system; at times these processes apparently lowered magmatic δ 11B and/or induced Sr isotopic disequilibrium between whole rock and clinopyroxene. The regular increase of δ 11B values is correlated with Nb/FME and 87Sr/ 86Sr ratios; these correlations are consistent with simple mixing between the mantle source and aqueous fluids derived from nearby Ionian slab. The best fit of Mt. Etna data is obtained using an enriched-MORB mantle source and a fluid phase with δ 11B of about -2‰ and 87Sr/ 86Sr of 0.708. We argue that the slab window generated by differential roll-back of subducting Ionian

  8. Sm-Nd Isotopic Systematics of Troctolite 76335

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Nyquist, L. E.; Borg, L. E.

    2007-01-01

    A study of the Sm-Nd isotopic systematics of lunar Mg-suite troctolite 76335 was undertaken to further establish the early chronology of lunar magmatism. Because the Rb-Sr isotopic systematics of similar sample 76535 yielded an age of 4570 +/- 70 Ma [2, lambda = 1.402 x 10(exp -11)], 76335 was expected to yield an old age. In contrast, the Sm-Nd and K-Ar ages of 76535 indicate that the sample is approximately 4260 Ma old, one of the youngest ages obtained for a Mg-suite rock. This study establishes the age of 76335 and discusses the constraints placed on its petrogenesis by its Sm-Nd isotope systematics. The Sm-Nd isotopic system of lunar Mg-suite troctolite 76335 indicates an age of 4278 +/- 60 Ma with an initial epsilon (sup 143)(sub Nd) value of 0.06 +/- 0.39. These values are consistent with the Sm-Nd isotopic systematics of similar sample 76535. Thus, it appears that a robust Sm-Nd age can be determined from a highly brecciated lunar sample. The Sm-Nd isotopic systematics of troctolites 76335 and 76535 appear to be different from those dominating the Mg-suite norites and KREEP basalts. Further analysis of the Mg-suite must be completed to reveal the isotopic relationships of these early lunar rocks.

  9. Magnesium isotope compositions of Solar System materials determined by double spiking

    NASA Astrophysics Data System (ADS)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  10. Metamorphic ages constrain the timing and nature of heat flow into the lower crust of a magmatic arc, Fiordland New Zealand

    NASA Astrophysics Data System (ADS)

    Stowell, H. H.; Schwartz, J.; Klepeis, K. A.; Odom-Parker, K.; Hout, C.; Bollen, E.; Yelverton, J.

    2017-12-01

    Garnet ages for eclogite and granulite from the Western Fiordland Orthogneiss (WFO) provide a precise age for high-grade metamorphism and partial melting of the lower crust in a Cretaceous magmatic arc currently exposed in Fiordland, New Zealand. U/Pb zircon ages and pluton areas indicate that a high magmatic flux event between 118 and 115 Ma added >3,000 km2 of mid- to lower-crustal plutons. The high flux event was followed by high temperature metamorphism and partial melting which resulted in pervasive leucosomes, and trondhjemite layers and veins. At least 1,800 km2 of the newly added crust was metamorphosed to garnet granulite facies orthogneiss. Thermobarometry and phase diagram models indicate that garnet grew at 850 to 1,000°C and 12 to 14 kbar in this monzodiorite and diorite gneiss of the Misty, Malaspina, and Breaksea plutons. Sm-Nd garnet-rock isochrons for these three plutons of the WFO (>700 km2of lower crust) indicate that peak temperatures were reached at 111.7±1.0 Ma (N=16). The isotopic and chemical composition of zircon indicate that the Cretaceous arc flare-up was most likely triggered by partial melting and hybridization of subducted oceanic crust and enriched subcontinental lithospheric mantle directly prior to cessation of arc magmatism. The driving mechanism for the terminal magmatic surge is inferred to be propagation of a discontinuous slab tear beneath the arc, or a ridge-trench collision event between 136 and 128 Ma. The lack of ca. 112 Ma plutons in the western part of Fiordland negates a magmatic heat source for garnet granulite metamorphism. Therefore, we infer that high heat flow associated with mantle advection at the base of the arc after the magmatic surge continued for several m.y., heating the lower crust to granulite facies temperatures.

  11. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.

    1994-01-01

    Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also

  12. Constraining Thermal Histories by Monte Carlo Simulation of Mg-Fe Isotopic Profiles in Olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Dauphas, N.

    2016-12-01

    In thermochronology, random time-temperature (t-T) paths are generated and used as inputs to model fission track data. This random search method is used to identify a range of acceptable thermal histories that can describe the data. We have extended this modeling approach to magmatic systems. This approach utilizes both the chemical and stable isotope profiles measured in crystals as model constraints. Specifically, the isotopic profiles are used to determine the relative contribution of crystal growth vs. diffusion in generating chemical profiles, and to detect changes in melt composition. With this information, tighter constraints can be placed on the thermal evolution of magmatic bodies. We use an olivine phenocryst from the Kilauea Iki lava lake, HI, to demonstrate proof of concept. We treat this sample as one with little geologic context, then compare our modeling results to the known thermal history experienced by that sample. To complete forward modeling, we use MELTS to estimate the boundary condition, initial and quench temperatures. We also assume a simple relationship between crystal growth and cooling rate. Another important parameter is the isotopic effect for diffusion (i.e., the relative diffusivity of the light vs. heavy isotope of an element). The isotopic effects for Mg and Fe diffusion in olivine have been estimated based on natural samples; experiments to better constrain these parameters are underway. We find that 40% of the random t-T paths can be used to fit the Mg-Fe chemical profiles. However, only a few can be used to simultaneously fit the Mg-Fe isotopic profiles. These few t-T paths are close to the independently determined t-T history of the sample. This modeling approach can be further extended other igneous and metamorphic systems where data exist for diffusion rates, crystal growth rates, and isotopic effects for diffusion.

  13. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  14. Magnesium Isotopic Evidence for Widespread Microbial Dolomite Precipitation in the Geological Record.

    NASA Astrophysics Data System (ADS)

    Carder, E. A.; Galy, A.; McKenzie, J. A.; Vasconcelos, C.; Elderfield, H.

    2005-12-01

    The enigma surrounding the `Dolomite Problem' is the relative abundance of dolomite in the geological record versus its very rare occurrence on the surface of the modern Earth despite a particularly favourable modern seawater chemistry. Recent studies of modern dolomite from hypersaline coastal lagoons in Brazil and Pleistocene dolomite from ODP cores collected during ODP Leg 201 on the Peru Margin suggest microbial mediation is an important factor [1]. Indeed, cultures of sulfate-reducing bacteria isolated from the lagoons mediate dolomite precipitation in the laboratory [2, 3]. In this study we report magnesium isotopic analyses of these modern microbial associated dolomites and ancient dolomites of a range of geological ages and environments. The application of stable magnesium isotopes to study dolomite formation and the nature of the processes involved represents a new frontier in isotope geochemistry. Highly accurate determination of the magnesium isotopic composition allows us to distinguish between kinetic and equilibrium isotope fractionation on the basis of the excess of 25Mg. A significant kinetic isotope fractionation is observed in laboratory cultures and surfical microbial mats from the Brazilian lagoons. Older dolomites (<3000 yrs.) taken from cores recovered from the lagoon are much closer to equilibrium. We interpret our data as evidencing an initial microbial mediated nucleation of dolomite that is a kinetic process and a subsequent inorganic addition of dolomite overprinting an equilibrium signature. This is in agreement with a previous major element and crystallographic study of the Brazilian dolomites [1]. The ancient dolomites analysed range in age from Neoproterozoic to Pleistocene and come from diverse geological environments including submarine diagenetic zones, platform carbonates and lagoonal environments. Magnesium isotopic analysis shows evidence of a varying component of kinetic fractionation, smaller than the kinetic end member as

  15. Lead Isotope Characteristics of the Mindyak Gold Deposit, Southern Urals: Evidence for the Source of Metals

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Znamensky, S. E.

    2018-01-01

    The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide-carbonate-quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250-18.336, 207Pb/204Pb = 15.645-15.653, 208Pb/204Pb = 38.179-38.461; while for late pyrite 206Pb/204Pb = 18.102-18.378, 207Pb/204Pb = 15.635-15.646, 208Pb/204Pb = 38.149-38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.

  16. Closed system oxygen isotope redistribution in igneous CAIs upon spinel dissolution

    NASA Astrophysics Data System (ADS)

    Aléon, Jérôme

    2018-01-01

    In several Calcium-Aluminum-rich Inclusions (CAIs) from the CV3 chondrites Allende and Efremovka, representative of the most common igneous CAI types (type A, type B and Fractionated with Unknown Nuclear isotopic anomalies, FUN), the relationship between 16O-excesses and TiO2 content in pyroxene indicates that the latter commonly begins to crystallize with a near-terrestrial 16O-poor composition and becomes 16O-enriched during crystallization, reaching a near-solar composition. Mass balance calculations were performed to investigate the contribution of spinel to this 16O-enrichment. It is found that a back-reaction of early-crystallized 16O-rich spinel with a silicate partial melt having undergone a 16O-depletion is consistent with the O isotopic evolution of CAI minerals during magmatic crystallization. Dissolution of spinel explains the O isotopic composition (16O-excess and extent of mass fractionation) of pyroxene as well as that of primary anorthite/dmisteinbergite and possibly that of the last melilite crystallizing immediately before pyroxene. It requires that igneous CAIs behaved as closed-systems relative to oxygen from nebular gas during a significant fraction of their cooling history, contrary to the common assumption that CAI partial melts constantly equilibrated with gas. The mineralogical control on O isotopes in igneous CAIs is thus simply explained by a single 16O-depletion during magmatic crystallization. This 16O-depletion occurred in an early stage of the thermal history, after the crystallization of spinel, i.e. in the temperature range for melilite crystallization/partial melting and did not require multiple, complex or late isotope exchange. More experimental work is however required to deduce the protoplanetary disk conditions associated with this 16O-depletion.

  17. Evidences of Multiple Magma Injections in Quaternary Balerang and Rajabasa Volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasibuan, R. F.; Ohba, T.; Abdurrachman, M.

    2016-12-01

    Quaternary Balerang and Rajabasa volcanoes are situated along the nearly north-south lineament with a most explosive Krakatau volcanic complex in the south and effusive Sukadana basalt plateau in the north. Some studies have elucidated that Krakatau volcano has multiple magma storage regions beneath together with evidences of magma mixing process. By considering these circumstances, it is necessary to know lateral variations of magmas and to characterize volcanic rocks from Rajabasa volcanic complex which is located between these distinct magmatic systems, in terms of magmatic processes and evolution. Methodologies we used are X-ray fluorescence to determine the whole rock chemistry, K-Ar isotope dating to determine the lifespan of the volcano, as well as EPMA analysis to obtain the chemical composition of minerals. The rock chemistry or TAS plot shows a linear trend, ranging from basaltic (51 wt.%) to rhyolitic (75 wt.%), indicating a chemical heterogeneity of magma. When SiO2 contents are correlated with the relative ages, we found a broad tendency that SiO2 contents progressively decrease with age. The Rajabasa volcano lifespan is known formed at 0.31 Ma while one of the youngest lava is identified erupted at 0.12 Ma. Some plagioclase crystals exhibit disequilibrium textures, like highly sieved core and clear rim regions, also overgrowth rim on the plagioclase and pyroxene crystals whose composition more primitive than the core's composition, indicating magmatic recharge events. Reverse zoning and resorption textures associated with compositional step zoning or progressive zoning are quite common as well in clinopyroxene and plagioclase crystals. By considering these evidences, we conclude that injection of a hotter basaltic magma into colder and more felsic magma occurred beneath the volcanoes.

  18. Tracking the multiple-stage exhumation history and magmatic-hydrothermal events of the West Junggar region, NW China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Yin, Jiyuan; Chen, Wen; Xiao, Wenjiao; Long, Xiaoping; Tao, Ni; Liu, Li-Ping; Yuan, Chao; Sun, Min

    2018-06-01

    To decipher cooling events in the West Junggar region, biotite and K-feldspar 40Ar/39Ar, and zircon and apatite (U-Th)/He isotopic analyses of intrusive rocks were carried out. Previous U-Pb data showed that intrusive bodies in the Baogutu area were emplaced at 315-310 Ma. U-Pb and zircon (U-Th)/He dating results (313-241 Ma) suggest that a magmatic-hydrothermal event lasted for 72 Ma in the Baogutu area of the West Junggar region. Early-stage high temperature alteration (900-300 °C) lasted for 6-2 Ma and was followed by prolonged phyllic and argillic alteration lasting 67-63 Ma between 350 and 200 °C. Finally, slower cooling occurred between 200 and 70 °C, accompanied by post-mineralization uplift and erosion. In this study, three main episodes of relatively rapid cooling were distinguished in the West Junggar region, i.e. late Carboniferous-early Permian (307-277 Ma), middle Triassic (241-232 Ma) and early Cretaceous (145-120 Ma). The first rapid cooling during the late Carboniferous-early Permian was possibly associated with the release of magmatic heat. The middle Triassic and early Cretaceous cooling and exhumation are interpreted as a response to collision(s) between the Qiangtang and Kunlun-Qaidam or Lhasa blocks. The Cenozoic India-Eurasia collision, however, may have had little or no effect on modern tectonic reactivation of the West Junggar region.

  19. Mantle to Surface Fluid Transfer Above a Flat Slab Subduction Zone: Isotopic Evidence from Hot Springs in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Jessup, M. J.; Hilton, D. R.; Shaw, C. A.; Hughes, C. A.

    2015-12-01

    Thermal springs in the Cordillera Blanca, Peru, provide geochemical evidence for deeply circulated hydrothermal fluids that carry significant mantle-derived helium. The Cordillera Blanca is a ~200 km-long NNW-SSE trending mountain range in the Peruvian Andes located above an amagmatic flat-slab subduction segment. The west side of the range is bounded by the Cordillera Blanca detachment that preserves a progression of top to the west ductile shear to brittle normal faulting since ~5 Ma. We report aqueous and stable isotope geochemical results from fluid and gas samples collected in 2013 and 2015 from 13 hot springs emanating from the Cordillera Blanca detachment and associated hanging wall faults. Most springs are vigorously bubbling (degassing), and range in temperature, pH, and conductivity from 17-89 °C, 5.95-8.87, and 0.17-21.5 mS, respectively. The hottest springs issue directly from the northern segment of the detachment. Geochemically, springs are CO2-rich, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including Fe, Cu, As, Zn, Sb, and Tl. Notably, As contents are ≤11 ppm, indicating that thermal waters may be adversely impacting local water quality. Water δ18O and δD, trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260 °C) saline fluid with cold meteoric recharge along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the hot springs range from 0.62 to 1.98 RC/RA, indicating the presence of ~25% mantle-derived helium, assuming mixing of an asthenospheric end-member with the crustal helium reservoir. CO2/3He and carbon stable isotope ratios indicate a carbon source derived from mixing of crustal sources with minor mantle carbon. Overall, the volatile signature overlaps with orogen-wide datasets where crustal overprinting has modified mantle contributions at active arc volcanoes. Given the long duration since active magmatism in the Cordillera

  20. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  1. Does magmatism influence low-angle normal faulting?

    USGS Publications Warehouse

    Parsons, Thomas E.; Thompson, George A.

    1993-01-01

    Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.

  2. Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen Volcanic Center, California

    USGS Publications Warehouse

    Tepley, F. J.; Davidson, J.P.; Clynne, M.A.

    1999-01-01

    The silicic lava domes of Chaos Crags in Lassen Volcanic National Park contain a suite of variably quenched, hybrid basaltic andesite magmatic inclusions. The inclusions represent thorough mixing between rhyodacite and basalt recharge liquids accompanied by some mechanical disaggregation of the inclusions resulting in crystals mixing into the rhyodacite host preserved by quenching on dome emplacement. 87Sr/86Sr ratios (~0.7037-0.7038) of the inclusions are distinctly lower than those of the host rhyodacite (~0.704-0.7041), which are used to fingerprint the origin of mineral components and to monitor the mixing and mingling process. Chemical, isotopic, and textural characteristics indicate that the inclusions are hybrid magmas formed from the mixing and undercooling of recharge basaltic magma with rhyodacitic magma. All the host magma phenocrysts (biotite, plagioclase, hornblende and quartz crystals) also occur in the inclusions, where they are rimmed by reaction products. Compositional and strontium isotopic data from cores of unresorbed plagioclase crystals in the host rhyodacite, partially resorbed plagioclase crystals enclosed within basaltic andesite inclusions, and partially resorbed plagioclase crystals in the rhyodacitic host are all similar. Rim 87Sr/86Sr ratios of the partially resorbed plagioclase crystals in both inclusions and host are lower and close to those of the whole-rock hybrid basaltic andesite values. This observation indicates that some crystals originally crystallized in the silicic host, were partially resorbed and subsequently overgrown in the hybrid basaltic andesite magma, and then some of these partially resorbed plagioclase crystals were recycled back into the host rhyodacite. Textural evidence, in the form of sieve zones and major dissolution boundaries of the resorbed plagioclase crystals, indicates immersion of crystals into a hotter, more calcic magma. The occurrence of partially resorbed plagioclase together with plagioclase

  3. No evidence of reduced collectivity in Coulomb-excited Sn isotopes

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R. K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; Napiorkowski, P. J.; Prajapati, S.; Söderström, P.-A.; Kumar, N.; Wollersheim, H.-J.

    2017-11-01

    In a series of Coulomb excitation experiments the first excited 2+ states in semimagic Sn 112 ,116 ,118 ,120 ,122 ,124 isotopes were excited using a 58Ni beam at safe Coulomb energy. The B (E 2 ; 0+→2+) values were determined with high precision (˜3 %) relative to 58Ni projectile excitation. These results disagree with previously reported B (E 2 ↑) values [A. Jungclaus et al., Phys. Lett. B 695, 110 (2011)., 10.1016/j.physletb.2010.11.012] extracted from Doppler-shift attenuation lifetime measurements, whereas the reported mass dependence of B (E 2 ↑) values is very similar to a recent Coulomb excitation study [J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015), 10.1103/PhysRevC.92.041303]. The stable Sn isotopes, key nuclei in nuclear structure, show no evidence of reduced collectivity and we, thus, reconfirm the nonsymmetric behavior of reduced transition probabilities with respect to the midshell A =116 .

  4. Precise U-Pb Zircon Constraints on the Earliest Magmatic History of the Carolina Terrane.

    PubMed

    Wortman; Samson; Hibbard

    2000-05-01

    The early magmatic and tectonic history of the Carolina terrane and its possible affinities with other Neoproterozoic circum-Atlantic arc terranes have been poorly understood, in large part because of a lack of reliable geochronological data. Precise U-Pb zircon dates for the Virgilina sequence, the oldest exposed part, constrain the timing of the earliest known stage of magmatism in the terrane and of the Virgilina orogeny. A flow-banded rhyolite sampled from a metavolcanic sequence near Chapel Hill, North Carolina, yielded a U-Pb zircon date of 632.9 +2.6/-1.9 Ma. A granitic unit of the Chapel Hill pluton, which intrudes the metavolcanic sequence, yielded a nearly identical U-Pb zircon date of 633 +2/-1.5 Ma, interpreted as its crystallization age. A felsic gneiss and a dacitic tuff from the Hyco Formation yielded U-Pb zircon dates of 619.9 +4.5/-3 Ma and 615.7 +3.7/-1.9 Ma, respectively. Diorite and granite of the Flat River complex have indistinguishable U-Pb upper-intercept dates of 613.9 +1.6/-1.5 Ma and 613.4 +2.8/-2 Ma. The Osmond biotite-granite gneiss, which intruded the Hyco Formation before the Virgilina orogeny, crystallized at 612.4 +5.2/-1.7 Ma. Granite of the Roxboro pluton, an intrusion that postdated the Virgilina orogeny, yielded a U-Pb upper intercept date of 546.5 +3.0/-2.4 Ma, interpreted as the time of its crystallization. These new dates both provide the first reliable estimates of the age of the Virgilina sequence and document that the earliest known stage of magmatism in the Carolina terrane had begun by 633 +2/-1.5 Ma and continued at least until 612.4 +5.2/-1.7 Ma, an interval of approximately 25 m.yr. Timing of the Virgilina orogeny is bracketed between 612.4 +5.2/-1.7 Ma and 586+/-10 Ma (reported age of the upper Uwharrie Formation). The U-Pb systematics of all units studied in the Virgilina sequence are simple and lack any evidence of an older xenocrystic zircon component, which would indicate the presence of a continental

  5. Magmatic plumbing system of Kilauea Volcano: Insights from Petrologic and Geochemical Monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Pietruszka, A. J.; Marske, J.; Greene, A.; Lynn, K. J.

    2016-12-01

    Monitoring the petrology and geochemistry of lavas from active volcanoes in near realtime affords the opportunity to formulate and evaluate models for magma transport, mixing, and storage to help predict eruption scenarios with greater confidence and better understand magmatic plumbing systems (e.g., Poland et al. 2012, Nat. Geosci. 5, 295-300). Continous petrologic and geochemical monitoring of two ongoing eruptions at the summit and east rift zone of Kilauea Volcano on the Island of Hawaii have revealed much about the dynamics of magmatic processes. When the composition of lava shifted to a more MgO-rich composition in April 1983, we predicted that the Puu Oo eruption would not be short-lived. We had no idea it would continue for over 33 years. Subsequent changes in lava composition have highlighted the interplay between mixing pockets of rift-zone stored magma with new mantle-derived magma and the cooling-induced crystal fractionation during brief (usually days) eruption hiatuses. Surprisingly, the mantle derived magma has continued to change in composition including several 10-year cycles in Pb isotope ratios superimposed on a progressive depletion in highly incompatible elements (Greene et al. 2013, G3, doi: 10.1002/ggge.20285). These compositional trends are contrary to those observed for sustained basaltic eruptions on continents and argue for melt extraction from a multi-component source with 1-3 km wide heterogeneities. Compositional zoning within olivine phenocrysts, created by diffusive re-equilibration, also provide insights into magma mixing, storage, and transport at Kilauea. Timescales modeling of Fe-Mg and Ni concentration gradients within Puu Oo olivine indicate that crystals can be stored at magmatic temperatures for months to a few years before eruption (Shea et al. 2015, Geology 43, 935-938). Kilauea's ongoing eruptions continue to provide a dynamic laboratory for positing and testing models for the generation and evolution of basaltic magma.

  6. Titanium stable isotopic variations in chondrites, achondrites and lunar rocks

    NASA Astrophysics Data System (ADS)

    Greber, Nicolas D.; Dauphas, Nicolas; Puchtel, Igor S.; Hofmann, Beda A.; Arndt, Nicholas T.

    2017-09-01

    Titanium isotopes are potential tracers of processes of evaporation/condensation in the solar nebula and magmatic differentiation in planetary bodies. To gain new insights into the processes that control Ti isotopic variations in planetary materials, 25 komatiites, 15 chondrites, 11 HED-clan meteorites, 5 angrites, 6 aubrites, a martian shergottite, and a KREEP-rich impact melt breccia have been analyzed for their mass-dependent Ti isotopic compositions, presented using the δ49Ti notation (deviation in permil of the 49Ti/47Ti ratio relative to the OL-Ti standard). No significant variation in δ49Ti is found among ordinary, enstatite, and carbonaceous chondrites, and the average chondritic δ49Ti value of +0.004 ± 0.010‰ is in excellent agreement with the published estimate for the bulk silicate Earth, the Moon, Mars, and the HED and angrite parent-bodies. The average δ49Ti value of komatiites of -0.001 ± 0.019‰ is also identical to that of the bulk silicate Earth and chondrites. OL-Ti has a Ti isotopic composition that is indistinguishable from chondrites and is therefore a suitable material for reporting δ49Ti values. Previously published isotope data on another highly refractory element, Ca, show measurable variations among chondrites. The decoupling between Ca and Ti isotope systematics most likely occurred during condensation in the solar nebula. Aubrites exhibit significant variations in δ49Ti, from -0.07 to +0.24‰. This is likely due to the uniquely reducing conditions under which the aubrite parent-body differentiated, allowing chalcophile Ti3+ and lithophile Ti4+ to co-exist. Consequently, the observed negative correlation between δ49Ti values and MgO concentrations among aubrites is interpreted to be the result of isotope fractionation driven by the different oxidation states of Ti in this environment, such that isotopically heavy Ti4+ was concentrated in the residual liquid during magmatic differentiation. Finally, KREEPy impact melt breccia

  7. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Gao, Meng; Gao, Jian; Michalski, Greg; Wang, Yuesi

    2018-07-01

    The sources of aerosol ammonium (NH 4 + ) are of interest because of the potential of NH 4 + to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH 4 + is challenging in the urban atmosphere, which has excess ammonia (NH 3 ) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH 4 + , with isotopically light (-33.8‰) and heavy (0 to +12.0‰) NH 4 + associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37-52% of the initial NH 3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH 3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH 3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH 3 and aerosol NH 4 + . Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: Evidence of contrasting styles of magmatism

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Veselovskiy, R. V.; Ivanov, A. V.

    2018-01-01

    Based on the detailed paleomagnetic investigation, we distinguished different styles of intrusive magmatic activity in two regions of the Siberian Traps Large Igneous Province (LIP). The emplacement of intrusions in the Angara-Taseeva depression (the southern periphery of the Siberian Traps LIP) occurred as brief but intense bursts of magmatic activity that led to the emplacement of large and extensive sills. We argue that this pulsating style of intrusive magmatic activity is common for the margins of the Siberian Traps LIP. We also estimated the duration of the main magmatic events as < 104-105 years for the large sills and their area of manifestation (> 200-250 km in diameter and dozens of thousands km2 in square). On the contrary, in the central part of the Siberian Traps LIP (the Tunguska syncline) the intrusive magmatism was more or less continuous without intense peaks of magmatic activity. Furthermore, we obtained the first reliable magnetostratigraphic data from the volcanic section of the Tunguska syncline. Finally, we analyzed the available paleomagnetic and geochronological data from the Siberian platform and suggested the correlation scheme of the studied intrusive complexes with the volcanic sequences of the Siberian Traps LIP.

  9. Isotopic evidence of early hominin diets

    NASA Astrophysics Data System (ADS)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  10. Isotopic evidence of early hominin diets

    PubMed Central

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Manthi, Fredrick Kyalo; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-01-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  11. Magmatic development of the outer Vøring Margin

    NASA Astrophysics Data System (ADS)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2013-04-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  12. Zircon geochronology and Hf-O isotope geochemistry from granites in the Iapetus Suture Zone in Ireland and the Isle of Man

    NASA Astrophysics Data System (ADS)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan

    2014-05-01

    Late Caledonian syn- to post-orogenic granites located in the Iapetus Suture Zone (ISZ) in Ireland and Britain have been related to A-type subduction and possible slab breakoff [1] following the Laurentia-Avalonian collision. Lack of reliable age data (especially in Ireland) has inhibited petrogenetic investigations of these rocks. Hence, ion microprobe U-Pb and oxygen isotope analyses as well as LA-MC-ICPMS Lu-Hf isotopic measurements on zircons from Irish and Isle of Man granites have been undertaken to provide better constraints on this enigmatic episode of the Caledonian Orogeny. Four stages of Late Caledonian granitic magmatism (c. 435, 417, 410 and 394 Ma) are indicated by U-Pb dating of oscillatory-zoned magmatic zircons. The Crossdoney, Kentstown, Drogheda and Ballynamuddagh granites together with a rhyolite from Glenamaddy have yielded U-Pb concordia ages, interpreted as intrusion-ages, between 419.9 ± 4.3 Ma (Glenamaddy) and 415.8 ± 2.0 Ma (Crossdoney) with a weighted average of 417.5 ± 0.9 Ma (MSWD = 1.3). The Glenamaddy Granite - which intruded the Glenamaddy Rhyolite - yielded an age of 410 ± 2.1 Ma. In addition, the Rockabill Granite yielded a younger age of 393.9 ± 1.9 Ma, whereas the Carnsore Granite yielded an older age of 434.6 ± 1.9 Ma. Inherited zircons (487 to 453 Ma) occur in several of the granites, and are interpreted to have been derived from Ordovician arc magmatic rocks accreted within the ISZ. A younger group of c. 440 Ma inherited zircons occurs in the c. 417 Ma Crossdoney and Ballynamuddagh granites. These grains could be related to continued or renewed Silurian arc magmatism. Hf-O isotopic measurements on the dated zircon grains range between -2 and +7 ɛHfi units and 5.5 to 8.5 o δ18O. These are interpreted to indicate the contribution of juvenile mantle melts - possibly derived from the Ordovician arc - to some of the granites. Significant heterogeneities in zircon oxygen isotopes in at least four of the granites further

  13. Elemental and Sr-Nd-Pb isotope geochemistry of the Florianópolis Dyke Swarm (Paraná Magmatic Province): crustal contamination and mantle source constraints

    NASA Astrophysics Data System (ADS)

    Marques, L. S.; De Min, A.; Rocha-Júnior, E. R. V.; Babinski, M.; Bellieni, G.; Figueiredo, A. M. G.

    2018-04-01

    The Florianópolis Dyke Swarm is located in Santa Catarina Island, comprising also the adjacent continental area, and belongs to the Paraná Magmatic Province (PMP). The dyke outcrops in the island are 0.1-70 m thick and most of them are coast-parallel (NE-SW trending), with subordinate NW-SE trending. The vast majority of the dykes has SiO2 varying from 50 to 55 wt% and relatively high-Ti (TiO2 > 3 wt%) contents and these rocks were divided using the criteria commonly used to distinguish the different magma-types identified in the volcanic rocks from the PMP. The Urubici dykes (Sr > 550 μg/g) are the most abundant and some of them experienced crustal contamination reaching to 10%, as evidenced by low P2O5/K2O (0.30-0.21), high (Rb/Ba)PM (1.0-2.2), and radiogenic Sr and Pb isotope compositions (87Sr/86Sri up to 0.70716 (back to 125 Ma) and 206Pb/204Pbm up to 19.093). The Pitanga (Sr < 550 μg/g) and the basaltic trachyandesite dykes are less abundant and almost all of them were also substantially affected by at least 15% of crustal assimilation, evidenced by high (Rb/Ba)PM (up to 2.6) and Sr (87Sr/86Sri = 0.70737-0.71758) and Pb (206Pb/204Pbm = 18.446-19.441) isotope ratios, as well as low P2O5/K2O values (0.30-0.18). The low-Ti (TiO2 < 2 wt%) dykes are scarce and show a large compositional variability (SiO2: 50.4-64.5 wt%), with similar geochemical characteristics of the low-Ti volcanic rocks (Gramado-Palmas) from southern PMP, although the most primitive dykes show hybrid characteristics of Ribeira and Esmeralda magmas. The presence of granitic xenoliths with border reactions and dykes with diffuse contacts indicate that crustal contamination probably occurred by assimilation from re-melted the host rocks. Considering only the high-Ti Urubici dykes that were not affected by crustal contamination, the Sr, Nd and Pb isotope mixing modelling indicates the participation of a heterogeneous metasomatized (refertilized) subcontinental lithospheric mantle (SCLM). This

  14. Helium isotope data from the Goldfield epithermal system, Nevada: Evidence for volatile input from a primitive mantle source during ore formation

    NASA Astrophysics Data System (ADS)

    Hofstra, A. H.; Manning, A. H.

    2013-12-01

    Goldfield is the largest high sulfidation epithermal gold mining district in the United States with over 130 t of gold production and 23 sq. km. of argillic alteration (with alunite, pyrophyllite, or kaolinite). It formed at 20.0×0.5 Ma in an andesite to rhyolite volcanic field in the ancestral Cascades continental magmatic arc. Previous stable isotope studies of quartz, alunite, and sulfide minerals suggest that the gold ores formed in a magmatic vapor plume derived from a subjacent porphyry intrusion, which displaced and mixed with meteoric groundwater at shallow levels. The isotopic compositions of He, Ne, and Ar trapped in fluid inclusions in hydrothermal minerals (Cu-sulfides and sulfosalts, pyrite, quartz) were measured to further constrain volatile source and migration processes. Gases were released by thermal decrepitation at 300°C and analyzed using a high resolution static sector mass spectrometer. The isotopic compositions of Ne and Ar are typical of air-saturated water (ASW), indicating that the samples contain little nucleogenic Ne or radiogenic Ar derived from underlying old crustal sources. In contrast, He/Ne and He/Ar ratios are much greater than ASW, indicating that a component of He was produced in the subsurface. The wide range of He R/Ra values, 0.4 to 20, suggests that He was derived from both crustal and mantle sources. 4He/40Ar* and 4He/21Ne* systematics are characteristic of magma degassing. The highest R/Ra values (15-20) are well above those previously reported for modern volcanic rocks and geothermal fluids in subduction-related arcs. Such R/Ra values indicate a primitive mantle source, perhaps below the subducting slab. We hypothesize that the discharge of metal-laden fluids from the subjacent porphyry intrusion was influenced by the input of hot volatiles from mafic mantle-derived magmas. This scenario implies a magma column that remained open to the flux of volatiles over a considerable depth range, from the mantle to the shallow

  15. The Cenozoic magmatism of East-Africa: Part I - Flood basalts and pulsed magmatism

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.

    2017-08-01

    Cenozoic magmatism in East Africa results from the interplay between lithospheric extension and material upwelling from the African Large Low Shear Velocity Province (LLSVP). The modern focusing of East African magmatism into oceanic spreading centers and continental rifts highlights the modern control of lithospheric thinning in magma generation processes, however the widespread, and volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a significant role for material upwelling from the African LLSVP. The slow relative motion of the African plate during the Cenozoic has resulted in significant spatial overlap in lavas derived from different magmatic events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either bimodal lavas or silicic volcanic products during this period: (A) Eocene Initial Phase from 45 to 34 Ma. This is a period of dominantly basaltic volcanism focused in Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9 to 27 Ma. This period coincides with a significant increase in the aerial extent of volcanism with broadly age equivalent 1 to 2 km thick sequences of dominantly basalt centered on the NW Ethiopian Plateau and Yemen, (C) Early Miocene resurgence phase from 26.9 to 22 Ma. This resurgence in basaltic volcanism is seen throughout the region at ca. 24-23 Ma, but is less volumetrically significant than the prior two basaltic pulses. With our developing understanding of the persistence of LLSVP anomalies within the mantle, I propose that the three basaltic pulses are ostensibly manifestations of the same plume-lithosphere interaction, requiring revision to the duration, magmatic extent, and magma volume of the African-Arabian Large Igneous Province.

  16. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Luppo, Tomás; López de Luchi, Mónica G.; Rapalini, Augusto E.; Martínez Dopico, Carmen I.; Fanning, Christopher M.

    2018-03-01

    The Los Menucos Complex (northern Patagonia) consists of ∼6 km thick succession of acidic and intermediate volcanic and pyroclastic products, which has been traditionally assigned to the Middle/Late Triassic. New U/Pb (SHRIMP) zircon crystallization ages of 257 ± 2 Ma at the base, 252 ± 2 Ma at an intermediate level and 248 ± 2 Ma near the top of the sequence, indicate that this volcanic event took place in about 10 Ma around the Permian-Triassic boundary. This volcanism can now be considered as the effusive terms of the neighboring and coeval La Esperanza Plutono-Volcanic Complex. This indicates that the climax of activity of a large magmatic province in northern Patagonia was coetaneous with the end-Permian mass extinctions. Likely correlation of La Esperanza- Los Menucos magmatic province with similar volcanic and plutonic rocks across other areas of northern Patagonia suggest a much larger extension than previously envisaged for this event. Its age, large volume and explosive nature suggest that the previously ignored potential role that this volcanism might have played in climatic deterioration around the Permian-Triassic boundary should be investigated.

  17. Evidence of Tectonic Rotations and Magmatic Flow Within the Sheeted Dike Complex of Super-Fast Spread Crust Exposed at the Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2008-12-01

    Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are

  18. Petrogenesis and tectonic implications of an Early Jurassic magmatic arc from South to East China Seas

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, C.

    2017-12-01

    Granite and diorite samples by drilling in northeastern South China Sea (SCS) and southwestern East China Sea (ECS) contribute key information to understanding tectonic regime of South China Block in Jurassic time. SIMS and LA-ICPMS U-Pb zircon analyses yield ages ranging from 195±2 Ma to 198±1 Ma for samples from well LF3511 in SCS, and an age of 187±1 Ma for the sample from well ESC635 in ECS. They are low temperature I-type granitoids with strongly enriched fluid-mobile elements and depleted Nb-Ta features, indicating subduction arc-related magmatism in their origin. Sr-Nd isotopic compositions for samples from SCS ((87Sr/86Sr)i=0.705494-0.706623, ɛNdt=-0.9 to +2.2) and sample from ECS ((87Sr/86Sr)i=0.705200, ɛNdt=1.1) suggest an affinity with evolved mantle-derived melts. The granitoids found from NE SCS, SE Taiwan to the SW ECS could spatially define an Early Jurassic NE-SW-trending Dongsha-Talun-Yandang low-temperature magmatic arc zone along the East Asian continental margin, paired with Jurassic accretionary complexes exposed in SW Japan, E Taiwan to the W Philippines. Its geodynamic context is associated with oblique subduction of the paleo-Pacific slab beneath Eurasia, as a mechanism responsible for early Jurassic lithospheric extension with magmatism in the South China Block.

  19. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  20. Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity

    NASA Astrophysics Data System (ADS)

    Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.

    2017-12-01

    Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the

  1. Magmatic sulphides in Quaternary Ecuadorian arc magmas

    NASA Astrophysics Data System (ADS)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus

    2018-01-01

    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a

  2. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  3. Crustal-scale magmatism and its control on the longevity of magmatic systems

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-04-01

    Constraining the duration and evolution of crustal magma reservoirs is crucial to our understanding of the eruptive potential of magmatic systems, as well as the volcanic:plutonic ratios in the crust, but estimates of such parameters vary widely in the current literature. Although no consensus has been reached on the lifetime of magma reservoirs, recent studies have revealed about the presence, location, and melt fraction of multi-level (polybaric) storage zones in the crust. If magma accumulates at different crustal levels, it must redistribute significant enthalpy within the crustal column and therefore must influence the lifetime of magma plumbing systems. However, an evaluation of the mass and heat budget of the entire crustal column is lacking. Here, we use a two-dimensional thermal model to determine the thermal conditions under which both lower and upper crustal magma bodies form. We find that large lower crustal mush zones supply heat to the upper crust and reduce the amount of thermal energy necessary to form subvolcanic reservoirs. This indicates that the crust is thermally viable to sustain partially molten magma reservoirs over long timescales (>10^5-106 yr) for a range of magma fluxes (10^-4 to 10^-2 km^3/yr). Our results reconcile physical models of crustal magma evolution and field-based estimates of intrusion rates in numerous magmatic provinces (which include both volcanic and plutonic lithologies). We also show that young magmatic provinces (< 105 yr old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (> 106 yr) can accumulate magma and build reservoirs capable of triggering supereruptions, even with intrusion rates as low as ≤10^-2 km^3/yr. Hence, the total duration of magmatism is critical in determining the size of the magma reservoirs, and should be combined with the magma intrusions rates to assess the capability of volcanic systems to form the largest eruptions on Earth.

  4. Magmatic record of India-Asia collision

    PubMed Central

    Zhu, Di-Cheng; Wang, Qing; Zhao, Zhi-Dan; Chung, Sun-Lin; Cawood, Peter A.; Niu, Yaoling; Liu, Sheng-Ao; Wu, Fu-Yuan; Mo, Xuan-Xue

    2015-01-01

    New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80–40 Ma migrated from south to north and then back to south with significant mantle input at 70–43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52–51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma. PMID:26395973

  5. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Wang, Ying; Li, Shu-Guang

    2014-10-01

    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between

  6. Constraints of lithium isotopes on petrogenesis of the Northern Luzon arc in Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, C. C.; Chu, M. F.; Lai, Y. M.; Lin, T. H.

    2017-12-01

    Lithium stable isotopes have great potential as a tracer of terrestrial materials in crust-mantle recycling. However, the causes of their variations in arc magmatism remain controversial. The Northern Luzon arc has long been demonstrated incorporation of the sediment melt into its sub-arc mantle. The Li isotopes of volcanic rocks in the Coastal Range, located in Eastern Taiwan, thus are studied to examine the effects of sediment melt on the evolution of Li isotopes in subduction zone and also to constrain the petrogenesis of the northernmost part of Northern Luzon arc. It is worth to note that we had ruled out samples that were significantly influenced by crustal contamination according to the proportion of inherited zircons, trace-elemental and Sr-Nd isotopic geochemistry. Concerning that Li isotopic fractionation is negligible during fractional crystallization and partial melting, the variation of Li/Y and δ7Li in rock samples of this study mainly reflects the geochemistry of magma sources. The overall range of δ7Li is very restricted (δ7Li = +2.9 +5.8) and consistent with that of N-MORB. In addition, ɛNd of the Coastal Range volcanic rocks lowers not only with increasing values of sediment-melt indicators (e.g., Th/Ce, Th/Yb and La/Sm), but also Li/Y (from 0.5 to 1.1 ppm). This suggests the involvement of sediment melt with equivalent δ7Li to and higher Li/Y than those of N-MORB, in magma source of the Coastal Range arc volcanism. In summary, the Li isotopic compositions of the Coastal Range volcanic rocks demonstrate that (1) Li/Y commonly treated as a tracer of fluid in arc magmatism indeed can be significantly affected by the input of sediment melt as well, and (2) sediment melt played a key role in the evolution of Li/Y and lithium isotopes in the mantle wedge, but showed least influence on Li isotopic variation possibly as a result of the similarity between δ7Li of sediments subducted and of the upper mantle.

  7. Petrogenesis of Sveconorwegian magmatism in southwest Norway; constraints from zircon U-Pb-Hf-O and whole-rock geochemistry

    NASA Astrophysics Data System (ADS)

    Roberts, Nick M. W.; Slagstad, Trond; Parrish, Randall R.; Norry, Michael J.; Marker, Mogens; Horstwood, Matthew S. A.; Røhr, Torkil

    2013-04-01

    The Sveconorwegian orogen is traditionally interpreted as a Himalayan-scale continental collision, and the eastward continuation of the Grenville Province of Laurentia; however, it has recently been proposed that it represents an accretionary orogen without full-scale continental collision (Slagstad et al., in press). We suggest that magmatism is one of the key constraints to differentiate between different types of orogens; thus, detailed investigation of the timing and petrogenesis of the magmatic record is a requirement for better understanding of the Sveconorwegian orogen as a whole. Here, we present new U-Pb geochronology, zircon Hf-O isotope, and whole-rock geochemical data to constrain the petrogenesis of the early -Sveconorwegian Sirdal Magmatic Belt (SMB). The SMB is a batholithic-scale complex of intrusions that intrudes into most of the Rogaland-Hardangervidda Block in southwest Norway. Current age constraints put emplacement between ~1050 to 1020 Ma. New ages from the Suldal region indicate that the onset of SMB magmatism can be put back to 1070 Ma, which is some 30-50 Myrs prior to high-grade metamorphism. Average initial ɛHf signatures range from ~0 to 4; these overlap with later post-Sveconorwegian granites and with early-/pre-Sveconorwegian ferroan (A-type) granites. Average δ18O signatures range from ~5.7 to 8.7, except for one anomalous granite at ~11.6. The Hf-O signatures are compatible with a mixed mantle-crustal source. Crustal sources may include ~1500 Ma Telemarkian or ~1200 Ma juvenile crust. Hf-O bulk-mixing modelling using a 1500 Ma crustal source indicates >50 % mantle input. Although much further mapping and geochronological work is required, granitic magmatism appears to have persisted throughout much of the ~1100 to 900 Ma period that spans the Sveconorwegian orogen. This magmatism is consistently ferroan (i.e. dry); however, the SMB marks a clear transition to magnesian (i.e. wet) magmatism, with a return to ferroan magmatism at

  8. Crustal inheritance and arc magmatism: Magnetotelluric constraints from the Washington Cascades on top-down control

    NASA Astrophysics Data System (ADS)

    Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.

    2017-12-01

    Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc

  9. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunson, J; E.Borg, L; Nyquist, L E

    2008-11-17

    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiationmore » was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.« less

  10. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  11. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions

    USGS Publications Warehouse

    Chivas, A.R.; Barnes, I.; Evans, William C.; Lupton, J.E.; Stone, J.O.

    1987-01-01

    Natural liquid carbon dioxide is produced commercially from a 2.5-km-deep well near the 4,500-yr-old maar volcano, Mount Gambier, South Australia. The carbon dioxide has accumulated in a dome that is located on the extension of a linear chain of volcanic activity. A magmatic origin for the fluid is suggested by the geological setting, ??13CPDB of -4.0???, for the CO2 (where PDB represents the carbon-isotope standard), and a relatively high 3He component of the contained helium and high 3He/C ratio (6.4 x 10-10). The 3He/ 4He and He/Ne ratios are 3.0 and > 1,370 times those of air, respectively. The CO2, as collected at the Earth's surface at 29.5 ??C and 75 bar, expands more than 300-fold to form a gas at 1 atm and 22 ??C. We suggest that liquid CO2 or high-density CO2 fluid (the critical point is 31.1 ??C, 73.9 bar) of volcanic origin that expands explosively from shallow levels in the Earth's crust may be a major contributor to 'phreatic' volcanic eruptions and maar formation. Less violent release of magmatic CO2 into crater lakes may cause gas bursts with equally disastrous consequences such as occurred at Lake Nyos, Cameroon, in August 1986. ?? 1987 Nature Publishing Group.

  12. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia

    USGS Publications Warehouse

    Khashgerel, B.-E.; Rye, R.O.; Hedenquist, J.W.; Kavalieris, I.

    2006-01-01

    of the Hugo Dummett deposits, and isotopic data (??18O = 3.0-9.0???, ??D = -101 to -116%o) show it formed from a magmatic fluid with water similar in composition to that which formed the pyrophyllite. Mg chlorite (??18O = 5.5???, ??D = -126???) is a widespread mineral retrograde after hydrothermal biotite and may have formed from fluids similar to those related to the muscovite during cooling of the porphyry system. By contrast, paragenetically later and postmineralization alteration fluid, which produced dickite (??18O = -4.1 to +3.3???, ??D = -130 to -140???), shows clear evidence for mixing with substantial amounts of meteoric water. Relatively low ??D values (-140???) for this meteoric water component may indicate that its source was at high elevations. The geologic structure, nature of alteration, styles of mineralization, and stable isotope data indicate that the Oyu Tolgoi deposits constitute a typical porphyry system formed in an island-arc setting. The outward zonation of sulfide minerals for the Hugo Dummett deposits, from a bornite-dominated core to chalcopyrite and pyrite-enargite, can be interpreted to be related to a cooling magmatic hydrothermal system which transgressed outward over enclosing advanced argillic alteration. This resulted in some unusual alteration and sulfide parageneses, such as topaz, or pyrite, enargite, and tennantite, entrained by high-grade bornite. ?? 2006 by Economic Geology.

  13. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics

    NASA Astrophysics Data System (ADS)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.

    2018-03-01

    This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid

  14. Mixing of Magmatic Volatiles With Meteoric Groundwater in the Summit of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hurwitz, S.; Goff, F.; Janik, C. J.; Evans, W. C.; Counce, D. A.; Sorey, M. L.; Ingebritsen, S. E.

    2001-12-01

    Water samples were collected from the only deep well (Keller Well-NSF Well) on the summit of Kilauea volcano, Hawaii. The well was drilled in 1973 to a depth of 1262 m, but sat idle until 1998 when a drilling rig was used to remove mud and renew access to the hydrothermal system at a location very close to summit fumarolic activity. The chemistry and isotopic composition of fluid samples collected in 1998-2001 differ significantly from those of samples collected before 1998 and reported in previous studies. The water from the well is rich in sulfate and has a near-neutral pH. The major element chemistry differs significantly from seawater composition and from that of hydrothermal fluids from Kilauea's east rift zone. The well water has a low chloride concentration relative to typical magmatic-hydrothermal fluids and a high sulfate to bicarbonate ratio (approximately 4:1). Based on the S/Cl mass ratio and on carbon and helium isotopes in the well fluids, summit fumaroles and the parental Kilauea magma, we conclude that the hydrothermal fluids sampled from the well formed by condensation of magmatic volatiles into shallow, mainly meteoric groundwater. The oxygen and deuterium isotopic composition indicate that the meteoric component was recharged on the eastern margin of the caldera. Steam condensation and gas dissolution beneath the crater formed an acidic fluid that dissolved the host basalt at high temperatures. The hydrothermal fluid was then modified by cooling and precipitation of secondary minerals along a flow path away from the crater towards the well. Geochemical modeling based on fluid chemistry and geothermometry suggests that the well fluids equilibrated with an assemblage of secondary minerals at temperatures between 90 and 140oC. The C/S ratios in the well water, the parental magma, and the gas plume emanating from the caldera indicate that most of the sulfur degassed from the magma is scrubbed by groundwaters beneath the summit. However, based on the

  15. Mediterranean Magmatism: Bimodal Melting Patterns Inferred By Numerical Models

    NASA Astrophysics Data System (ADS)

    Gogus, O.; Ueda, K.; Gerya, T.

    2017-12-01

    Melt production by the decompression melting of the asthenospheric mantle occurs in the course of the lithospheric foundering process. The magmatic imprints of such foundering process are often described as anorogenic magmatism and this is usually followed by the orogenic magmatism, related to the subduction events in the Mediterranean region. Here, by using numerical geodynamic experiments we explore various styles of magmatism, their interaction with each other and the amount of magma production in the ocean subduction to slab peel away/delamination configuration. Model results show that the early stage of the ocean subduction under the continental lithosphere is associated with the short pulse of wet melting-orogenic magmatism and then the melting process is mostly dominated by dry melting-anorogenic magmatism, until the slab break-off occurs. While the melt types mixes/alternates during the evolution of the model, the wet melting facilitates the production of dry melting because of its uprising and emplacement under the crust where dry melting is present. The melt production pattern and the amount does not change significantly with different depths of the slab break-off (160-200 km). Model results can explain the transition from the calc-alkaline to alkaline volcanism in the western Mediterranean (Alboran domain) where ocean subduction to delamination has been interpreted.

  16. Intraplate mafic magmatism: New insights from Africa and N. America

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.

    2017-12-01

    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  17. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    NASA Astrophysics Data System (ADS)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  18. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  19. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037339','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037339"><span>Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O <span class="hlt">isotopic</span> responses to rapid and brief heating</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schimmelmann, A.; Mastalerz, Maria; Gao, L.; Sauer, P.E.; Topalov, K.</p> <p>2009-01-01</p> <p>Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near <span class="hlt">magmatic</span> intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O <span class="hlt">isotopic</span> changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying <span class="hlt">isotopically</span> exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of <span class="hlt">isotopically</span> non-exchangeable organic hydrogen in kerogen near <span class="hlt">magmatic</span> contacts. Thermal stress in coal caused a reduction of <span class="hlt">isotopically</span> exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., {single bond}OH, {single bond}COOH, {single bond}NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ???2.5 to ???3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong ??13Ckerogen vs. ??15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.117..313L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.117..313L"><span>Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb <span class="hlt">isotopic</span> <span class="hlt">evidence</span> from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Layton-Matthews, Daniel; Leybourne, Matthew I.; Peter, Jan M.; Scott, Steven D.; Cousens, Brian; Eglington, Bruce M.</p> <p>2013-09-01</p> <p>Volcanic-hosted massive sulfide (VHMS) and volcanic-sediment-hosted massive sulfide (VSHMS; i.e., hosted by both volcanic and sedimentary rocks) deposits in the Finlayson Lake District, Yukon, Canada, provide a unique opportunity to study the influence of seafloor and sub-seafloor hydrothermal processes on the formation of Se-poor (GP4F VHMS deposit; 7 ppm Se average), intermediate (Kudz Ze Kayah—KZK VHMS deposit; 200 ppm Se average), and Se-enriched (Wolverine VSHMS deposit; 1100 ppm Se average) mineralization. All three deposits are hosted by mid-Paleozoic (˜360-346 Ma) felsic volcanic rocks, but only the Wolverine deposit has voluminous coeval carbonaceous argillites (black shales) in the host rock package. Here we report the first application of Se <span class="hlt">isotope</span> analyses to ancient seafloor mineralization and use these data, in conjunction with Pb and S <span class="hlt">isotope</span> analyses, to better understand the source(s) and depositional process(es) of Se within VHMS and VSHMS systems. The wide range of δ82Se (-10.2‰ to 1.3‰, relative to NIST 3149), δ34S (+2.0‰ to +12.8‰ CDT), and elevated Se contents (up to 5865 ppm) within the Wolverine deposit contrast with the narrower range of δ82Se (-3.8‰ to -0.5‰), δ34S (9.8‰ to 13.0‰), and lower Se contents (200 ppm average) of the KZK deposit. The Wolverine and KZK deposits have similar sulfide depositional histories (i.e., deposition at the seafloor, with concomitant zone refining). The Se in the KZK deposit is <span class="hlt">magmatic</span> (leaching or degassing) in origin, whereas the Wolverine deposit requires an additional large <span class="hlt">isotopically</span> negative Se source (i.e. ˜-15‰ δ82Se). The negative δ82Se values for the Wolverine deposit are at the extreme light end for measured terrestrial samples, and the lightest observed for hypogene sulfide minerals, but are within calculated equilibrium values of δ82Se relative to NIST 3149 (˜30‰ at 25 °C between SeO4 and Se2-). We propose that the most negative Se <span class="hlt">isotope</span> values at the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..324..156L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..324..156L"><span><span class="hlt">Evidence</span> of recent deep <span class="hlt">magmatic</span> activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Londono, John Makario</p> <p>2016-09-01</p> <p>In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed <span class="hlt">magmatic</span> activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium <span class="hlt">isotopes</span> at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed <span class="hlt">magmatic</span> activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new <span class="hlt">magmatic</span> activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000197','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000197"><span>Seawater osmium <span class="hlt">isotope</span> <span class="hlt">evidence</span> for a middle Miocene flood basalt event in ferromanganese crust records</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.</p> <p>2008-01-01</p> <p>Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) <span class="hlt">isotope</span> stratigraphy and yield ages from middle Miocene to the present. The three Os <span class="hlt">isotope</span> records do not show <span class="hlt">evidence</span> for growth hiatuses. The reconstructed Os <span class="hlt">isotope</span>-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium <span class="hlt">isotope</span> (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic <span class="hlt">isotope</span> neodymium, lead (Nd, Pb) time series because the variability of these <span class="hlt">isotopes</span> was very small in the records of the three crusts prior to 10??Ma. The Os <span class="hlt">isotope</span> record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os <span class="hlt">isotope</span> records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an <span class="hlt">isotopic</span> minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os <span class="hlt">isotope</span> minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27322197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27322197"><span><span class="hlt">Isotopic</span> <span class="hlt">Evidence</span> for Early Trade in Animals between Old Kingdom Egypt and Canaan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arnold, Elizabeth R; Hartman, Gideon; Greenfield, Haskel J; Shai, Itzhaq; Babcock, Lindsay E; Maeir, Aren M</p> <p>2016-01-01</p> <p><span class="hlt">Isotope</span> data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct <span class="hlt">evidence</span> for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900-2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete <span class="hlt">evidence</span> of early trade in animals from Egypt to Canaan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4913912','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4913912"><span><span class="hlt">Isotopic</span> <span class="hlt">Evidence</span> for Early Trade in Animals between Old Kingdom Egypt and Canaan</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Greenfield, Haskel J.; Shai, Itzhaq; Babcock, Lindsay E.; Maeir, Aren M.</p> <p>2016-01-01</p> <p><span class="hlt">Isotope</span> data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct <span class="hlt">evidence</span> for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900–2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete <span class="hlt">evidence</span> of early trade in animals from Egypt to Canaan. PMID:27322197</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGeo...77..171E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGeo...77..171E"><span>Miocene <span class="hlt">magmatism</span> and tectonics within the Peri-Alboran orogen (western Mediterranean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.</p> <p>2014-07-01</p> <p>The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar <span class="hlt">isotopic</span> ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar <span class="hlt">isotopic</span> age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain <span class="hlt">magmatism</span>. These two sets of data allow us to place the <span class="hlt">magmatic</span> activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive <span class="hlt">magmatic</span> events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras <span class="hlt">magmatic</span> province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911512G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911512G"><span>Contrasting Cu-Au and Sn-W Granite Metallogeny through the Zircon Geochemical and <span class="hlt">Isotopic</span> Record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardiner, Nicholas; Hawkesworth, Chris; Robb, Laurence; Whitehouse, Martin; Roberts, Nick; Kirkland, Chris</p> <p>2017-04-01</p> <p><span class="hlt">Magmatic</span> genesis and evolution - mediated by geodynamic setting - exert a primary control on the propensity of granites to be metal fertile. A revolution in our understanding of these petrogenetic processes has been made through a range of mineral-based tools, most notably the common accessory mineral zircon. There is consequently considerable interest in whether the geochemical and <span class="hlt">isotopic</span> compositions of zircon can be applied to metallogenic problems. The paired <span class="hlt">magmatic</span> belts of Myanmar have broadly contrasting metallogenic affinities (Sn-W versus Cu-Au), and are interpreted to have formed on the accretionary margin of the subducting Neo-Tethys Ocean. They therefore present the opportunity to geochemically compare and contrast the zircon compositions in two end-member types of granite-hosted mineral deposits generated in collisional settings. We present an integrated zircon <span class="hlt">isotope</span> (U-Pb, Lu-Hf, O) and trace element dataset that fingerprint: (a) source; (b) redox conditions; and (c) degree of fractionation. These variables all impact on magma fertility, and our key question to address is whether they can be reliably traced and calibrated within the Myanmar zircon record. Granitoid-hosted zircons from the I-type copper arc have juvenile ɛHf (+7 to +12) and mantle-like δ18O (5.3 ‰), whereas zircons from the S-type tin belt have low ɛHf (-7 to -13) and heavier δ18O (6.2-7.7 ‰). Plotting Hf versus U/Yb reaffirms that the tin belt magmas contain greater crustal contributions than the copper arc rocks. Links between whole rock Rb/Sr and zircon Eu/Eu* highlights that the latter can be used to monitor magma fractionation in systems that crystallize plagioclase (low Sr/Y). Ce/Ce* and Eu/Eu* in zircon are thus sensitive to redox and fractionation respectively, and can be used to evaluate the sensitivity of zircons to the metallogenic affinity of their host rocks. Tin contents that exceed the solubility limit are required in order to make a <span class="hlt">magmatic</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13A1579P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13A1579P"><span><span class="hlt">Isotopic</span> <span class="hlt">Evidence</span> for Platform Exposure and Diagenesis in the Miocene: Implications for South-East Asian Platform Evolution.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prince, K.; Laya, J. C.; Betzler, C.; Eberli, G. P.; Zarikian, C.; Swart, P. K.; Blättler, C. L.; Reolid, J.; Reijmer, J.</p> <p>2017-12-01</p> <p>The Maldives record nearly continuous carbonate deposition from the Eocene to the Holocene, and its stable tectonic regime and lack of clastic input make it an ideal example for understanding the depositional and diagenetic dynamics of isolated carbonate platforms. The Kardiva platform ultimately drowned, but the amplitude and frequency of sea-level changes in the Miocene make it likely that subaerial exposure occurred during its evolution. Abundant moldic porosity has been interpreted as meteoric diagenesis, but stable <span class="hlt">isotope</span> <span class="hlt">evidence</span> to support this has not been reported. Using bulk stable <span class="hlt">isotope</span> analyses and petrographic methods, we sought to identify <span class="hlt">evidence</span> of meteoric diagenesis by investigating the variations in grains, cements, porosity, δ13C, and δ18O at IODP Sites U1645, U1469, and U1470. Within the platform, grain distribution is variable with algae, benthic foraminifera, and corals representing the most abundant grain types. Cement abundance generally increases while porosity decreases with depth, with some variability. δ18O and δ13C range from -7.0‰ to 3.2‰ and -7‰ to 2.5‰, respectively. Petrography and <span class="hlt">isotope</span> values show <span class="hlt">evidence</span> for subaerial exposure and alteration by meteoric fluids, with a cross-plot of δ13C and δ18O showing the characteristic inverted "J" trend associated with dissolution and precipitation reactions mediated by meteoric fluids, resulting in more negative values. These results are compared to <span class="hlt">isotopic</span> values for unaltered red algae and corals to account for the possibility of vital effects, but vital effects alone do not yield such low values. This <span class="hlt">evidence</span> for meteoric diagenesis of the Kardiva Platform indicates variation between wet and dry periods, and also potential high-amplitude sea-level fluctuations during the Miocene in the Indo-Pacific region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.491..160C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.491..160C"><span>Modulation of <span class="hlt">magmatic</span> processes by CO2 flushing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon</p> <p>2018-06-01</p> <p><span class="hlt">Magmatic</span> systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in <span class="hlt">magmatic</span> systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within <span class="hlt">magmatic</span> systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of <span class="hlt">magmatic</span> systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic <span class="hlt">magmatic</span> systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal <span class="hlt">magmatic</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009976','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009976"><span>Oxygen <span class="hlt">isotope</span> studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Viswanathan, S.</p> <p>1974-01-01</p> <p>Oxygen <span class="hlt">isotope</span> studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, <span class="hlt">magmatic</span> granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than <span class="hlt">magmatic</span> granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen <span class="hlt">isotopic</span> interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.300..261G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.300..261G"><span>Relict zircon U-Pb age and O <span class="hlt">isotope</span> <span class="hlt">evidence</span> for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping</p> <p>2018-02-01</p> <p>Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O <span class="hlt">isotopes</span> and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-<span class="hlt">magmatic</span> zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic <span class="hlt">magmatic</span> rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-<span class="hlt">magmatic</span> zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic <span class="hlt">magmatism</span> in the Triassic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.4110T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.4110T"><span>Evolving Mantle Sources in Postcollisional Early Permian-Triassic <span class="hlt">Magmatic</span> Rocks in the Heart of Tianshan Orogen (Western China)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Gong-Jian; Cawood, Peter A.; Wyman, Derek A.; Wang, Qiang; Zhao, Zhen-Hua</p> <p>2017-11-01</p> <p><span class="hlt">Magmatism</span> postdating the initiation of continental collision provides insight into the late stage evolution of orogenic belts including the composition of the contemporaneous underlying subcontinental mantle. The Awulale Mountains, in the heart of the Tianshan Orogen, display three types of postcollisional mafic <span class="hlt">magmatic</span> rocks. (1) A medium to high K calc-alkaline mafic volcanic suite (˜280 Ma), which display low La/Yb ratios (2.2-11.8) and a wide range of ɛNd(t) values from +1.9 to +7.4. This suite of rocks was derived from melting of depleted metasomatized asthenospheric mantle followed by upper crustal contamination. (2) Mafic shoshonitic basalts (˜272 Ma), characterized by high La/Yb ratios (14.4-20.5) and more enriched <span class="hlt">isotope</span> compositions (ɛNd(t) = +0.2 - +0.8). These rocks are considered to have been generated by melting of lithospheric mantle enriched by melts from the Tarim continental crust that was subducted beneath the Tianshan during final collisional suturing. (3) Mafic dikes (˜240 Ma), with geochemical and <span class="hlt">isotope</span> compositions similiar to the ˜280 Ma basaltic rocks. This succession of postcollision mafic rock types suggests there were two stages of magma generation involving the sampling of different mantle sources. The first stage, which occurred in the early Permian, involved a shift from depleted asthenospheric sources to enriched lithospheric mantle. It was most likely triggered by the subduction of Tarim continental crust and thickening of the Tianshan lithospheric mantle. During the second stage, in the middle Triassic, there was a reversion to more asthenospheric sources, related to postcollision lithospheric thinning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.H72D0879K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.H72D0879K"><span>Compound-Specific Carbon and Hydrogen <span class="hlt">Isotope</span> Analysis - Field <span class="hlt">Evidence</span> of MTBE Bioremediation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuder, T.; Kolhatkar, R. V.; Philp, P.; Wilson, J. T.; Landmeyer, J. E.; Allen, J.</p> <p>2002-12-01</p> <p>. (Env. Sci. Tech., 2002, 36, 1931-1938) and appears to be in excess of -60 for H and under -2 for C. The high H fractionation observed under aerobic conditions may be attributed to the initial, monooxygenase transformation of MTBE (cf., Deeb et al., Biodegradation, 2000, 11, 171-186). The anaerobic enzymatic reactions were not characterized yet, but a hydrolytic process may be responsible. Interestingly, <span class="hlt">isotopic</span> fractionation at an anaerobic site, which was treated by oxygen injection, did not show differences between aerobic and anaerobic parts of the plume. Despite oxygen addition, there was no <span class="hlt">evidence</span> for monooxygenase activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V31E4799P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V31E4799P"><span>Investigating the long-term geodetic response to <span class="hlt">magmatic</span> intrusions at volcanoes in northern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parker, A. L.; Biggs, J.; Annen, C.; Houseman, G. A.; Yamasaki, T.; Wright, T. J.; Walters, R. J.; Lu, Z.</p> <p>2014-12-01</p> <p>Ratios of intrusive to extrusive activity at volcanic arcs are thought to be high, with estimates ranging between 5:1 and 30:1. Understanding the geodetic response to <span class="hlt">magmatic</span> intrusion is therefore fundamental to large-scale studies of volcano deformation, providing insight into the dynamics of the inter-eruptive period of the volcano cycle and the building of continental crust. In northern California, we identify two volcanoes - Medicine Lake Volcano (MLV) and Lassen Volcanic Center (LaVC) - that exhibit long-term (multi-decadal) subsidence. We test the hypothesis that deformation at these volcanoes results from processes associated with <span class="hlt">magmatic</span> intrusions. We first constrain the spatial and temporal characteristics of the deformation fields, establishing the first time-series of deformation at LaVC using InSAR data, multi-temporal analysis techniques and global weather models. Although the rates of deformation at the two volcanoes are similar (~1 cm/yr), our results show that the ratio of vertical to horizontal displacements is significantly different, suggesting contrasting source geometries. To test the origin of deformation, we develop modeling strategies to investigate thermal and viscoelastic processes associated with <span class="hlt">magmatic</span> intrusions. The first model we develop couples analytical geodetic models to a numerical model of volume loss due to cooling and crystallization based upon temperature-melt fraction relationships from petrological experiments. This model provides <span class="hlt">evidence</span> that <span class="hlt">magmatic</span> intrusion at MLV has occurred more recently than the last eruption ~1 ka. The second model we test uses a finite element approach to simulate the time-dependent viscoelastic response of the crust to <span class="hlt">magmatic</span> intrusion. We assess the magnitude and timescales of ground deformation that may result from these processes, exploring the model parameter space before applying the models to our InSAR observations of subsidence in northern California.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9748156','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9748156"><span>Ancient mantle in a modern arc: osmium <span class="hlt">isotopes</span> in izu-bonin-mariana forearc peridotites</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parkinson; Hawkesworth; Cohen</p> <p>1998-09-25</p> <p>Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from <span class="hlt">magmatism</span> during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium <span class="hlt">isotopes</span> record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile <span class="hlt">isotope</span> tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium <span class="hlt">isotopes</span> than previously recognized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MinPe.tmp...32S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MinPe.tmp...32S"><span>Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): <span class="hlt">Evidence</span> from mineral geochemistry and the U-Pb and Lu-Hf <span class="hlt">isotope</span> compositions of zircon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shchukina, Elena V.; Agashev, Alexey M.; Zedgenizov, Dmitry A.</p> <p>2018-05-01</p> <p>The concentrations of major and trace elements in minerals, reconstructed whole-rock compositions of zircon-bearing equigranular eclogites from the V. Grib kimberlite pipe located within the Arkhangelsk Diamondiferous Province (North-Western Russia), and results of the U-Pb and Lu-Hf <span class="hlt">isotope</span> analyses of zircon grains from eclogites and granulite xenoliths are reported. These data suggest that the equigranular eclogites could represent the fragments of mid-ocean-ridge basalt that were metamorphosed during Paleoproterozoic subduction at 1.7-1.9 Ga. The Hf <span class="hlt">isotope</span> compositions of the eclogitic zircon display uniformity and indicate corresponding Hf-depleted mantle model ages of 2.2-2.3 Ga. The formation of zircon in eclogites could have resulted from interactions with metasomatic/subduction-related fluids just prior to, but associated with, Paleoproterozoic eclogite formation. A link between eclogitic zircon formation and continental lower-crustal rocks can be excluded based on differences in the Hf <span class="hlt">isotope</span> compositions of eclogitic and granulitic zircon grains. The U-Pb upper intercept age of granulitic zircon of 2716 ± 61 Ma provides a new minimum age constraint for zircon crystallisation and granulite formation. The U-Pb ages obtained from granulitic zircon show two stages of Pb loss at 2.2-2.6 Ga and 1.7-2.0 Ga. The late Paleoproterozoic stage of Pb loss recorded in granulitic zircon is due to the intensive reworking of basement crustal rocks, which was caused by a tectonic process/subduction event associated with equigranular eclogite formation. Our data, along with <span class="hlt">evidence</span> previously obtained from the V. Grib pipe coarse-granular eclogites, show at least two main subduction events in the lithospheric mantle of the Arkhangelsk region: the Archean (2.8 Ga) and Paleoproterozoic (1.7-1.9 Ga) subductions, which correspond to major <span class="hlt">magmatic</span> and metamorphic events in the Baltic Shield.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSAES..64..116T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSAES..64..116T"><span>Geology, petrology and geochronology of the Lago Grande layered complex: <span class="hlt">Evidence</span> for a PGE-mineralized <span class="hlt">magmatic</span> suite in the Carajás Mineral Province, Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teixeira, Antonio Sales; Ferreira Filho, Cesar Fonseca; Giustina, Maria Emilia Schutesky Della; Araújo, Sylvia Maria; da Silva, Heloisa Helena Azevedo Barbosa</p> <p>2015-12-01</p> <p> ultramafic lithotypes render Nd model ages between 2.94 and 3.56 Ga, with variably negative ɛNd (T = 2.72 Ga) values (-0.32 to -4.25). The crystallization sequence of the intrusion and the composition of cumulus minerals, together with lithogeochemical and Nd <span class="hlt">isotopic</span> results, are consistent with an original mantle melt contaminated with older continental crust. The contamination of mafic magma with sialic crust is also consistent with intra-plate rifting models proposed in several studies of the CMP. Lithogeochemical and <span class="hlt">isotopic</span> data from the Lago Grande Complex may also be interpreted as the result of melting an old lithospheric mantle, and alternative models should not be disregarded. PGE mineralizations occur in chromitites and associated with base metal sulfides in the Lago Grande Complex. Chromitite has the highest PGE content (up to 10 ppm) and is characterized by high Pt/Pd ratio (4.3). Mantle-normalized profile of chromitite is highly enriched in PPGE and similar to those from Middle Group (MG) and Upper Group (UG) chromitites from the Bushveld Complex. Platinum group minerals (PGM) occur mainly at the edge of chromite crystals in the Lago Grande chromitite, consisting of arsenides and sulfo-arsenides. Sulfide-bearing harzburgite samples of the Lago Grande complex have PGE content of up to 1 ppm and low Pt/Pd (0.2-0.3) ratios. The 2722 ± 53 Ma U-Pb zircon age determined in this study for the Lago Grande Complex overlaps with the crystallization age of the Luanga Complex. Previous interpretation that the Lago Grande and Luanga layered intrusions are part of a <span class="hlt">magmatic</span> suite (i.e., Serra Leste <span class="hlt">Magmatic</span> Suite) is now reinforced by similar fractionation sequences, comparable petrological evolution and overlapped U-Pb zircon ages. The occurrence of the same styles of PGE mineralization in the Lago Grande and Luanga complexes, together with remarkably similar chondrite-normalized PGE profiles and PGE minerals for chromitites of both complexes, support the concept that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1374327','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1374327"><span>The thermal regime of the Campi Flegrei <span class="hlt">magmatic</span> system reconstructed through 3D numerical simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia</p> <p></p> <p>In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and <span class="hlt">isotopical</span> observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) <span class="hlt">magmatic</span> system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and <span class="hlt">magmatic</span> history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc <span class="hlt">magmatic</span> system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1374327-thermal-regime-campi-flegrei-magmatic-system-reconstructed-through-numerical-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1374327-thermal-regime-campi-flegrei-magmatic-system-reconstructed-through-numerical-simulations"><span>The thermal regime of the Campi Flegrei <span class="hlt">magmatic</span> system reconstructed through 3D numerical simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...</p> <p>2016-11-11</p> <p>In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and <span class="hlt">isotopical</span> observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) <span class="hlt">magmatic</span> system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and <span class="hlt">magmatic</span> history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc <span class="hlt">magmatic</span> system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41E..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41E..05M"><span>The <span class="hlt">Magmatic</span> Budget of Rifted Margins: is it Related to Inheritance?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manatschal, G.; Tugend, J.; Gillard, M.; Sauter, D.</p> <p>2017-12-01</p> <p>High quality reflection and refraction seismic surveys show a divergent style of margin architecture often referred to as magma-poor or magma-rich. More detailed studies show, however, that the evolution of these margins can be similar, despite the variable quantity and distribution of <span class="hlt">magmatism</span>. These observations suggest that simple relations between <span class="hlt">magmatic</span> and extensional systems are inappropriate to describe the <span class="hlt">magmatic</span> history of rifted margins. Moreover, the study of <span class="hlt">magmatic</span> additions indicates that they may occur, prior to, during or after lithospheric breakup. Furthermore, the observation that the <span class="hlt">magmatic</span> budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how <span class="hlt">magmatic</span> and tectonic processes are interacting during rifting and lithospheric breakup and on how far the inherited composition and temperature of the decompressing mantle may control the <span class="hlt">magmatic</span> budget during rifting. In our presentation we will review examples from present-day and fossil rifted margins to discuss their structural and <span class="hlt">magmatic</span> evolution and whether they are considered as magma-rich or magma-poor. The key questions that we aim to address are: 1) whether decompression melting is the driving force, or rather the consequence of extension, 2) how far the <span class="hlt">magmatic</span> budget is controlled by inherited mantle composition and temperature, and 3) how important magma storage is during initial stages of rifting. Eventually, we will discuss to what extent the evolution of margins may reflect the interplay between inheritance (innate/"genetic code") and the actual physical processes (acquired/external factors).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJEaS.107.1127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJEaS.107.1127S"><span>Geochemical and <span class="hlt">isotopic</span> constraints on the role of juvenile crust and magma mixing in the UDMA <span class="hlt">magmatism</span>, Iran: <span class="hlt">evidence</span> from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarjoughian, Fatemeh; Lentz, David; Kananian, Ali; Ao, Songjian; Xiao, Wenjiao</p> <p>2018-04-01</p> <p>The Zafarghand Igneous Complex is composed of granite, granodiorite, diorite, and gabbro that contain many mafic microgranular enclaves. This complex was emplaced during the late Oligocene (24.6 Ma) to form part of the Urumieh-Dokhtar <span class="hlt">magmatic</span> arc of Central Iran. The enclaves have spheroidal to elongated/lenticular shapes and are quenched mafic melts in felsic host magma as evidenced by fine-grained sinuous margins and (or) locally transitional and diffuse contacts with the host rocks, as well as having disequilibrium textures. These textures including oscillatory zoning with resorption surfaces on plagioclase, feldspar megacrysts with poikilitic and anti-rapakivi textures, mafic clots, acicular apatites, and small lath-shaped plagioclase in larger plagioclase crystals all indicate that the enclaves crystallized from mafic magma that was injected into and mixing/mingling with the host felsic magma. The studied rocks have calc-alkaline, metaluminous compositions, with an arc affinity. They are enriched in large ion lithophile elements, light rare-earth elements, and depleted in high field strength elements with significant negative Eu anomalies. The Sr-Nd <span class="hlt">isotopic</span> data for all of the samples are similar and display ISr = 0.705123-0.705950 and ɛNd (24.6 Ma) = - 1.04-1.03 with TDM 0.9-1.1 Ga. The host granites and enclaves are of mixed/mingled origin and most probably formed by the interaction between the juvenile lower crust with a basaltic composition and old lower or middle continental crust as a major component and lithospheric mantle as a minor component; this was followed by fractional crystallization and possibly minor crustal assimilation. The source seems to be comprised of about 90-80% of the basaltic magma and about 10-20% of lower/middle-crust-derived magma. Geochemical characteristics indicate that the intrusion of these rocks from a subduction zone setting below the Central Iran micro-continent was related to an active continental margin, although was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5630770-development-application-laser-microprobe-techniques-oxygen-isotope-analysis-silicates-fluid-rock-interaction-during-after-granulite-facies-metamorphism-highland-southwestern-complex-sri-lanka','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5630770-development-application-laser-microprobe-techniques-oxygen-isotope-analysis-silicates-fluid-rock-interaction-during-after-granulite-facies-metamorphism-highland-southwestern-complex-sri-lanka"><span>Development and application of laser microprobe techniques for oxygen <span class="hlt">isotope</span> analysis of silicates, and, fluid/rock interaction during and after granulite-facies metamorphism, highland southwestern complex, Sri Lanka</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Elsenheimer, D.W.</p> <p>1992-01-01</p> <p>The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen <span class="hlt">isotope</span> ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, revealsmore » complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and <span class="hlt">isotopic</span> exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable <span class="hlt">isotopic</span> characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with <span class="hlt">isotopic</span> compositions that suggest vein fluids that are at least in part <span class="hlt">magmatic</span>. Post-metamorphic <span class="hlt">magmatic</span> activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has <span class="hlt">magmatic</span> <span class="hlt">isotopic</span> compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geote..52..225K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geote..52..225K"><span>Carboniferous Granitoid <span class="hlt">Magmatism</span> of Northern Taimyr: Results of <span class="hlt">Isotopic</span>-Geochemical Study and Geodynamic Interpretation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurapov, M. Yu.; Ershova, V. B.; Makariev, A. A.; Makarieva, E. V.; Khudoley, A. K.; Luchitskaya, M. V.; Prokopiev, A. V.</p> <p>2018-03-01</p> <p>Data on the petrography, geochemistry, and <span class="hlt">isotopic</span> geochronology of granites from the northern part of the Taimyr Peninsula are considered. The Early-Middle Carboniferous age of these rocks has been established (U-Pb, SIMS). Judging by the results of 40Ar/39Ar dating, the rocks underwent metamorphism in the Middle Permian. In geochemical and <span class="hlt">isotopic</span> composition, the granitic rocks have much in common with evolved I-type granites. This makes it possible to specify a suprasubduction marginal continental formation setting. The existence of an active Carboniferous margin along the southern edge of the Kara Block (in presentday coordinates) corroborates the close relationship of the studied region with the continent of Baltia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI22A..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI22A..04F"><span>Constraining Slab Breakoff Induced <span class="hlt">Magmatism</span> through Numerical Modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freeburn, R.; Van Hunen, J.; Maunder, B. L.; Magni, V.; Bouilhol, P.</p> <p>2015-12-01</p> <p>Post-collisional <span class="hlt">magmatism</span> is markedly different in nature and composition than pre-collisional magmas. This is widely interpreted to mark a change in the thermal structure of the system due to the loss of the oceanic slab (slab breakoff), allowing a different source to melt. Early modelling studies suggest that when breakoff takes place at depths shallower than the overriding lithosphere, <span class="hlt">magmatism</span> occurs through both the decompression of upwelling asthenopshere into the slab window and the thermal perturbation of the overriding lithosphere (Davies & von Blanckenburg, 1995; van de Zedde & Wortel, 2001). Interpretations of geochemical data which invoke slab breakoff as a means of generating <span class="hlt">magmatism</span> mostly assume these shallow depths. However more recent modelling results suggest that slab breakoff is likely to occur deeper (e.g. Andrews & Billen, 2009; Duretz et al., 2011; van Hunen & Allen, 2011). Here we test the extent to which slab breakoff is a viable mechanism for generating melting in post-collisional settings. Using 2-D numerical models we conduct a parametric study, producing models displaying a range of dynamics with breakoff depths ranging from 150 - 300 km. Key models are further analysed to assess the extent of melting. We consider the mantle wedge above the slab to be hydrated, and compute the melt fraction by using a simple parameterised solidus. Our models show that breakoff at shallow depths can generate a short-lived (< 3 Myr) pulse of mantle melting, through the hydration of hotter, undepleted asthenosphere flowing in from behind the detached slab. However, our results do not display the widespread, prolonged style of <span class="hlt">magmatism</span>, observed in many post-collisional areas, suggesting that this <span class="hlt">magmatism</span> may be generated via alternative mechanisms. This further implies that using <span class="hlt">magmatic</span> observations to constrain slab breakoff is not straightforward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991JVGR...48..139A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991JVGR...48..139A"><span><span class="hlt">Isotopic</span> study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, P.; Maiorani, A.; Tedesco, D.; Cortecci, G.; Turi, B.</p> <p>1991-08-01</p> <p><span class="hlt">Isotopic</span> study of the origin of sulfur and carbon in the hottest (Solfatara) fumaroles of Campi Flegrei caldera, Southern Italy, was carried out on gas samples collected between 1983 and 1988, i.e. during and after the 1982-1984 seismo-volcanic crisis. The results for sulfur (H 2S), the first ever reported on these gases, indicate a mean ∂ 34S of -0.3±0.3‰ (range: -0.7 to +0.1‰ ) versus Canyon Diablo Troilite standard, consistent with an igneous derivation of this element, from either active magma degassing or/and leaching of reduced sulfur-bearing minerals in the volcanic layers. The lack of peculiar ∂ 34S variation during and after the crisis suggests that the chemical variation of H 2S and S/C ratio in the fumaroles (increase and then decrease by a factor 3) were not due to a changing origin of sulfur. The mean ∂ 13C of carbon (CO 2) over the period of survey, -1.6±0.2‰ (range: -1.9 to -1.3‰) versus PDB standard, is similar to the values obtained before the crisis (since 1970). Such an <span class="hlt">isotopic</span> constancy requires a large and stable source of carbon feeding the fumaroles. The measured ∂ 13C values are much higher than those typical of primary mantle-<span class="hlt">magmatic</span> carbon ( -6±2‰) and plot within the ∂13C range for marine carbonates ( 0±2‰). Such high values may reflect either (a) 13C-fractionation during degassing of CO 2 from the underlying (⩽5 km depth) magma chamber or (b) the contribution of heavy CO 2 of sedimentary origin, derived from either thermometamorphism of Mesozoic limestone series embedding the magma chamber or, possibly, past contamination of the local mantle by subducted sediments. Various arguments, among which volcanological <span class="hlt">evidence</span> of an isolated and cooling magma reservoir (which would have been extensively degassed and, so, depleted in 13C along with time), the low 3He/ 4He ratios and the broad 13C-enrichment of volcanic fluids in the region, and geochemical <span class="hlt">evidence</span> of crust-magma fluid interactions, suggest that a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V33C0537Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V33C0537Q"><span>First-principles investigations of equilibrium Ca, Mg, Si and O <span class="hlt">isotope</span> fractionations between silicate melts and minerals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qi, Y.; Liu, X.; Kang, J.; He, L.</p> <p>2017-12-01</p> <p>Equilibrium <span class="hlt">isotope</span> fractionation factors are essential for using stable <span class="hlt">isotope</span> data to study many geosciences processes such as planetary differentiation and mantle evolution. The mass-dependent equilibrium <span class="hlt">isotope</span> fractionation is primarily controlled by the difference in bond energies triggered by the <span class="hlt">isotope</span> substitution. With the recent advances in computational capabilities, first-principles calculation has become a reliable tool to investigate equilibrium <span class="hlt">isotopic</span> fractionations, greatly improving our understanding of the factors controlling <span class="hlt">isotope</span> fractionations. It is important to understand the <span class="hlt">isotope</span> fractionation between melts and minerals because <span class="hlt">magmatism</span> is critical for creating and shaping the Earth. However, because <span class="hlt">isotope</span> fractionation between melts and minerals is small at high temperature, it is difficult to experimentally calibrate such small signature. Due to the disordered and dynamic character of melts, calculations of equilibrium <span class="hlt">isotope</span> fractionation of melts are more challenging than that for gaseous molecules or minerals. Here, we apply first-principles molecular dynamics method to calculate equilibrium Ca, Mg, Si, and O <span class="hlt">isotope</span> fractionations between silicate melts and minerals. Our results show that equilibrium Mg, Si, and O <span class="hlt">isotope</span> fractionations between olivine and pure Mg2SiO4 melt are close to zero at high temperature (e.g. δ26Mgmelt-ol = 0.03 ± 0.04‰, δ30Simelt-ol = -0.06 ± 0.07‰, δ18Omelt-ol = 0.07‰ ± 0.08 at 1500 K). Equilibrium Ca, Mg, Si, and O <span class="hlt">isotope</span> fractionations between diopside and basalt melt (67% CaMgSi2O6 + 33% CaAl2Si2O8) are also negligible at high temperature (e.g. δ44/40Camelt-cpx = -0.01 ± 0.02‰, δ26Mgmelt-cpx = -0.05 ± 0.14‰, δ30Simelt-cpx = 0.04 ± 0.04‰, δ18Omelt-cpx = 0.03 ± 0.07‰ at 1500 K). These results are consistent with the observations in natural samples that there is no significant Ca, Mg, Si, and O <span class="hlt">isotope</span> fractionation during mantle partial melting, demonstrating the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011691','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011691"><span>Sr <span class="hlt">isotopic</span> tracer study of the Samail ophiolite, Oman.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.</p> <p>1981-01-01</p> <p>Rb and Sr concentrations and Sr-<span class="hlt">isotopic</span> compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- <span class="hlt">isotopic</span> composition may reflect real heterogeneities in the magma source region. The average Sr-<span class="hlt">isotopic</span> composition of cumulate gabbro falls in the range of <span class="hlt">isotopic</span> compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial <span class="hlt">magmatic</span> compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-<span class="hlt">isotopic</span> compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6504K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6504K"><span>Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: <span class="hlt">Evidence</span> from zircon U-Pb geochronology and S-Pb <span class="hlt">isotopes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kan, Tian; Zheng, Youye; Gao, Shunbao</p> <p>2016-04-01</p> <p>The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a <span class="hlt">magmatic</span> source for the ore-forming materials. Lead <span class="hlt">isotopic</span> systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the <span class="hlt">magmatic</span> field according to the discrimination diagram of Zhu et al. (1995). The S-Pb <span class="hlt">isotopic</span> data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996GeCoA..60.2559B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996GeCoA..60.2559B"><span>SrNdPb <span class="hlt">isotopic</span> and trace element <span class="hlt">evidence</span> for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.</p> <p>1996-07-01</p> <p>Oligocene flood basalts from western Yemen have a relatively limited range in initial <span class="hlt">isotopic</span> composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the <span class="hlt">isotopic</span> ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and <span class="hlt">isotope</span> ratios suggest that crustal contamination has substantially modified the primary <span class="hlt">isotopic</span> and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous <span class="hlt">isotopic</span> composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent <span class="hlt">magmatic</span> system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying <span class="hlt">isotopic</span> variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. <span class="hlt">Isotopic</span> compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.284..401A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.284..401A"><span>Persistence of fertile and hydrous lithospheric mantle beneath the northwestern Ethiopian plateau: <span class="hlt">Evidence</span> from modal, trace element and Sr-Nd-Hf <span class="hlt">isotopic</span> compositions of amphibole-bearing mantle xenoliths</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja</p> <p>2017-07-01</p> <p>We present new trace element compositions of amphiboles, Sr-Nd-Hf <span class="hlt">isotope</span> compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched <span class="hlt">isotope</span> compositions than depleted ones. While lherzolites with <span class="hlt">isotope</span> compositions similar to those of the Afar plume result from the most recent metasomatic overprint, <span class="hlt">isotope</span> compositions more depleted than present-day MORB can be explained by an older melt extraction and/or <span class="hlt">isotopic</span> rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt <span class="hlt">magmatism</span>, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt <span class="hlt">magmatism</span>. Strikingly, both trace</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........41E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........41E"><span>An experimental and petrologic investigation of the source regions of lunar <span class="hlt">magmatism</span> in the context of the primordial differentiation of the moon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elardo, Stephen M.</p> <p></p> <p>The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and <span class="hlt">isotopic</span> characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar <span class="hlt">magmatism</span>, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar <span class="hlt">magmatism</span>: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of <span class="hlt">magmatism</span> from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and <span class="hlt">isotopic</span> data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V34B..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V34B..04R"><span>Cenozoic East African <span class="hlt">Magmatism</span> and the African LLSVP</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rooney, T. O.</p> <p>2017-12-01</p> <p>The Ethiopian-Arabian Large Igneous Province preserves a 45 Ma record of mantle-lithosphere interaction, manifesting as flood basalts, shield volcanoes, silicic eruptions, and monogenetic <span class="hlt">magmatic</span> events. During the Cenozoic, <span class="hlt">magmatism</span> in in this region has resulted from the interplay between lithospheric extension and material upwelling from the African large low-velocity shear velocity province (LLSVP). Consequently, the study of <span class="hlt">magmatism</span> in East Africa provides a complement to investigations of the Pacific LLSVP. The volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a role for material upwelling from the African LLSVP, however the modern focusing of East African <span class="hlt">magmatism</span> into oceanic spreading centers and continental rifts also highlights the control of lithospheric thinning in magma generation processes. The study of the mantle reservoirs derived from the African LLSVP is complicated by the slow relative motion of the African plate during the Cenozoic, resulting in significant spatial overlap in lavas derived from different <span class="hlt">magmatic</span> events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either by bimodal or silicic volcanism, totaling ca. 720,000 km3 of <span class="hlt">magmatism</span>: (A) Eocene Initial Phase from 45-34 Ma, which is dominated by basaltic volcanism and focused on Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9-27 Ma, which coincides with a significant increase in the aerial extent of volcanism. Broadly age equivalent 1 to 2 km thick sequences of dominantly basalt are centered on the NW Ethiopian Plateau and Yemen, but also Turkana during this period. (C) Early Miocene resurgence phase from 26.9-22 Ma, where basaltic volcanism is seen throughout the region but is less volumetrically significant than the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V33C3114B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V33C3114B"><span>Origin and Role of Recycled Crust in Flood Basalt <span class="hlt">Magmatism</span>: Case Study of the Central East Greenland Rifted Margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, E.; Lesher, C. E.</p> <p>2015-12-01</p> <p>Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/<span class="hlt">isotopically</span> heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB <span class="hlt">magmatism</span>, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the <span class="hlt">isotopic</span> compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their <span class="hlt">isotopic</span> compositions only indirectly represent the <span class="hlt">isotopic</span> compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB <span class="hlt">magmatism</span>, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1034195-direct-determination-europium-valence-state-xanes-extraterrestrial-merrillite-implications-ree-crystal-chemistry-martian-magmatism','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1034195-direct-determination-europium-valence-state-xanes-extraterrestrial-merrillite-implications-ree-crystal-chemistry-martian-magmatism"><span>Direct determination of europium valence state by XANES in extraterrestrial merrillite: Implications for REE crystal chemistry and martian <span class="hlt">magmatism</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shearer, C.K.; Papike, J.J.; Burger, P.V.</p> <p>2012-03-15</p> <p>The relative proportion of divalent and trivalent Eu has proven to be a useful tool for estimating f{sub O{sub 2}} in various <span class="hlt">magmatic</span> systems. However, in most cases, direct determination of the Eu valence state has not been made. In this study, direct determination of Eu valence by XANES and REE abundance in merrillite provide insights into the crystal chemistry of these phosphates and their ability to record conditions of <span class="hlt">magmatism</span>. Merrillite strongly prefers Eu{sup 3+} to Eu{sup 2+}, with the average valence state of Eu ranging between 2.9 and 3 over approximately six orders of magnitude in f{sub O{submore » 2}}. The dramatic shift in the REE patterns of merrillite in martian basaltic magmas, from highly LREE-depleted to LREE-enriched, parallels many other trace element and <span class="hlt">isotopic</span> variations and reflects the sources for these magmas. The behavior of REE in the merrillite directly reflects the relationship between the eightfold-coordinated Ca1 site and adjacent sixfold Na and tetrahedral P sites that enables charge balancing through coupled substitutions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030697','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030697"><span><span class="hlt">Isotopic</span> <span class="hlt">evidence</span> of nitrate sources and denitrification in the Mississippi River, Illinois</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Panno, S.V.; Hackley, Keith C.; Kelly, W.R.; Hwang, H.-H.</p> <p>2006-01-01</p> <p>Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO 3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The <span class="hlt">isotopic</span> composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O <span class="hlt">isotopes</span> to help identify the major sources of NO 3- and assess the degree of denitrification in the samples. The <span class="hlt">isotopic</span> <span class="hlt">evidence</span> suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between ??18O and ??15N also indicate that, depending on sample location and season, NO3- in the river and tile drains lias undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River. ?? ASA, CSSA, SSSA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.138..629L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.138..629L"><span>In situ U-Pb and Lu-Hf <span class="hlt">isotopic</span> studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Yuyoung; Cho, Moonsup; Yi, Keewook</p> <p>2017-05-01</p> <p><span class="hlt">Isotopic</span> and geochemical characteristics of Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite have long been used for tracing the mantle-crustal source and <span class="hlt">magmatic</span> evolution. We analyzed Lu-Hf <span class="hlt">isotopic</span> compositions of zircon from the Sancheong-Hadong AMCG complex, Yeongnam Massif, Korea, in order to understand tectonomagmatic evolution of the Paleoproterozoic AMCG suite occurring at the southeastern margin of the North China Craton (NCC). The anorthositic rocks in this complex, associated with charnockitic and granitic gneisses, were recrystallized to eradicate <span class="hlt">magmatic</span> features. In situ SHRIMP (sensitive high-resolution ion microprobe) U-Pb analyses of zircon from a leuconorite and an oxide-bearing gabbroic dyke yielded weighted mean 207Pb/206Pb ages of 1870 ± 2 Ma and 1861 ± 6 Ma, respectively. Charnockitic, granitic, and porphyroblastic gneisses yielded weighted mean 207Pb/206Pb zircon ages of 1861 ± 6 Ma, 1872 ± 6 Ma, and 1873 ± 4 Ma, respectively. These crystallization ages, together with our previous geochronological data for anorthosites (1862 ± 2 Ma), are indicative of episodic AMCG <span class="hlt">magmatism</span> over an ∼10 Ma interval. Initial εHf(t) values of zircon analyzed from five anorthositic rocks and four felsic gneisses range from +2.1 to -6.1 and -0.3 to -5.4, respectively. Zircon Hf <span class="hlt">isotopic</span> data in combination with available whole rock Sr-Nd <span class="hlt">isotopic</span> data suggest that anorthositic parental magma was most likely derived from a mantle source and variably affected by crustal contamination. This crustal component is also reflected in charnockitic-granitic magmas produced primarily by the melting of lower crust. Taken together, the AMCG <span class="hlt">magmatism</span> at 1.87-1.86 Ga in the Yeongnam Massif is most likely a late orogenic product of Paleoproterozoic NCC amalgamation tectonically linked to assembly of the Columbia supercontinent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V13E..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V13E..01N"><span>Vanadium <span class="hlt">isotope</span> heterogeneity of the early solar system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nielsen, S.; Auro, M. E. E.; Magna, T.; Davis, D. M.; Mezger, K.; Sarafian, A. R.</p> <p>2017-12-01</p> <p>Vanadium (V) has two <span class="hlt">isotopes</span> with masses 50 and 51 that have 51V/50V ratio of 410. This ratio can be modified by production of 50V through cosmic irradiation, heterogeneous distribution of anomalous nucleosynthetic material and stable <span class="hlt">isotope</span> fractionation. Due to the existence of only two V <span class="hlt">isotopes</span> in nature, these latter processes cannot directly be distinguished from irradiation processes. Previous data has suggested that Earth is characterized by 51V/50V that is significantly different to that of meteorites. These data are difficult to reconcile with a singular process that caused the V <span class="hlt">isotope</span> variation in the early Solar System. Here we present new V <span class="hlt">isotope</span> data for a large range of meteorites in order to investigate the ultimate origin of V <span class="hlt">isotope</span> variation in the early Solar System. We find limited and non-systematic 51V/50V variation of 0.3‰ for 25 martian meteorites (depleted/intermediate/enriched shergottites, nakhlites, and chassignite and orthopyroxenite ALH 84001), which suggests that igneous processes on Mars did not induce significant V <span class="hlt">isotope</span> shifts. Our best estimate for V <span class="hlt">isotope</span> composition of the bulk silicate Mars can thus be approximated by the mean value of the entire Martian meteorite suite. This value is significantly lighter ( 0.4‰) than that measured for pristine terrestrial rocks. In contrast, meteorites from the HED parent body reveal significant 51V/50V variation that may be linked to <span class="hlt">magmatic</span> processes such as fractional crystallization of Vestan magma ocean. The two data sets illustrate that several processes are likely to explain the V <span class="hlt">isotope</span> variation found in meteorites. We will also present new V <span class="hlt">isotope</span> data for carbonaceous and ordinary chondrites and put them in the context of the values found for Earth, Mars and the HED parent body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeCoA.228...62S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeCoA.228...62S"><span><span class="hlt">Isotopic</span> coherence of refractory inclusions from CV and CK meteorites: <span class="hlt">Evidence</span> from multiple <span class="hlt">isotope</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shollenberger, Quinn R.; Borg, Lars E.; Render, Jan; Ebert, Samuel; Bischoff, Addi; Russell, Sara S.; Brennecka, Gregory A.</p> <p>2018-05-01</p> <p>Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials in the Solar System and numerous previous studies have revealed nucleosynthetic anomalies relative to terrestrial rock standards in many <span class="hlt">isotopic</span> systems. However, most of the <span class="hlt">isotopic</span> data from CAIs has been limited to the Allende meteorite and a handful of other CV3 chondrites. To better constrain the <span class="hlt">isotopic</span> composition of the CAI-forming region, we report the first Sr, Mo, Ba, Nd, and Sm <span class="hlt">isotopic</span> compositions of two CAIs hosted in the CK3 desert meteorites NWA 4964 and NWA 6254 along with two CAIs from the CV3 desert meteorites NWA 6619 and NWA 6991. After consideration of neutron capture processes and the effects of hot-desert weathering, the Sr, Mo, Ba, Nd, and Sm stable <span class="hlt">isotopic</span> compositions of the samples show clearly resolvable nucleosynthetic anomalies that are in agreement with previous results from Allende and other CV meteorites. The extent of neutron capture, as manifested by shifts in the observed 149Sm-150Sm <span class="hlt">isotopic</span> composition of the CAIs is used to estimate the neutron fluence experienced by some of these samples and ranges from 8.40 × 1013 to 2.11 × 1015 n/cm2. Overall, regardless of CAI type or host meteorite, CAIs from CV and CK chondrites have similar nucleosynthetic anomalies within analytical uncertainty. We suggest the region that CV and CK CAIs formed was largely uniform with respect to Sr, Mo, Ba, Nd, and Sm <span class="hlt">isotopes</span> when CAIs condensed and that CAIs hosted in CV and CK meteorites are derived from the same <span class="hlt">isotopic</span> reservoir.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.410...97A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.410...97A"><span>Synchroneity of cratonic burial phases and gaps in the kimberlite record: Episodic <span class="hlt">magmatism</span> or preservational bias?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ault, Alexis K.; Flowers, Rebecca M.; Bowring, Samuel A.</p> <p>2015-01-01</p> <p>A variety of models are used to explain an apparent episodicity in kimberlite emplacement. Implicit in these models is the assumption that the preserved kimberlite record is largely complete. However, some cratons now mostly devoid of Phanerozoic cover underwent substantial Phanerozoic burial and erosion episodes that should be considered when evaluating models for global kimberlite distributions. Here we show a broad temporal coincidence between regional burial phases inferred from thermochronology and gaps in the kimberlite record in the Slave craton, Superior craton, and cratonic western Australia. A similar pattern exists in the Kaapvaal craton, although its <span class="hlt">magmatic</span>, deposition, and erosion history differs in key ways from the other localities. One explanation for these observations is that there is a common cause of cratonic subsidence and suppression of kimberlite <span class="hlt">magmatism</span>. Another possibility is that some apparent gaps in kimberlite <span class="hlt">magmatism</span> are preservational artifacts. Even if kimberlites occurred during cratonic burial phases, the largest uppermost portions of the pipes would have been subsequently eroded along with the sedimentary rocks into which they were emplaced. In this model, kimberlite <span class="hlt">magmatism</span> was more continuous than the preserved record suggests, implying that <span class="hlt">evidence</span> for episodicity in kimberlite genesis should be carefully evaluated in light of potential preservational bias effects. Either way, the correlation between burial and kimberlite gaps suggests that cratonic surface histories are important for understanding global kimberlite patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5590212-stable-isotope-evidence-hydrologic-conditions-during-regional-metamorphism-panamint-mountains-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5590212-stable-isotope-evidence-hydrologic-conditions-during-regional-metamorphism-panamint-mountains-california"><span>Stable <span class="hlt">isotope</span> <span class="hlt">evidence</span> for hydrologic conditions during regional metamorphism in the Panamint Mountains, California</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bergfeld, D.; Nabelek, P.I.; Labotka, T.C.</p> <p>1992-01-01</p> <p>The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable <span class="hlt">isotopic</span> analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schistsmore » are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon <span class="hlt">isotopic</span> data indicate that most <span class="hlt">isotopic</span> changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is <span class="hlt">evident</span> in the <span class="hlt">isotopic</span> data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002056','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002056"><span>Volatile Concentrations and H-<span class="hlt">Isotope</span> Composition of Unequilibrated Eucrites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Hauri, Erik H.; Righter, Kevin; Berger, Eve L.</p> <p>2017-01-01</p> <p>Eucrites are among the oldest and best studied asteroidal basalts (1). They represent <span class="hlt">magmatism</span> that occurred on their parent asteroid, likely 4-Vesta, starting at 4563 Ma and continuing for approx. 30 Myr. Two hypotheses are debated for the genesis of eucrites, a magma ocean model (2), and a mantle partial melting model. In general, volatiles (H, C, F, Cl) have been ignored for eucrites and 4-Vesta, but solubility of wt% levels of H2O are possible at Vestan interior PT conditions. Targeted measurements on samples could aid our understanding considerably. Recent studies have found <span class="hlt">evidence</span> of volatile elements in eucrites, but quantifying the abundance of volatiles remains problematic (6). Volatile elements have a disproportionately large effect on melt properties and phase stability, relative to their low abundance. The source of volatile elements can be elucidated by examining the hydrogen <span class="hlt">isotope</span> ratio (D/H), as different H reservoirs have drastically different H <span class="hlt">isotope</span> compositions. Recent studies of apatite in eucrites have shown that the D/H of 4-Vesta matches that of Earth and carbonaceous chondrites, however, the D/H of apatites may not represent the D/H of a primitive 4-Vesta melt due to the possibility of degassing prior to the crystallization of apatite. Therefore, the D/H of early crystallizing phases must be measured to determine if the D/H of 4-Vesta is equal to that of the Earth and carbonaceous chondrites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BVol...77...53D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BVol...77...53D"><span>Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of <span class="hlt">magmatic</span>, hydrothermal and pyrometamorphic processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.</p> <p>2015-06-01</p> <p>On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible <span class="hlt">magmatic</span>, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb <span class="hlt">isotope</span> analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic <span class="hlt">magmatic</span> phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing <span class="hlt">evidence</span> of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917888L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917888L"><span>Age and <span class="hlt">isotopic</span> marks of K-rich Manning Massif trachybasalts: an <span class="hlt">evidence</span> for Lambert-Amery rift-system initiation (East Antarctica)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leitchenkov, German; Belyatsky, Boris; Lepekhina, Elena; Antonov, Anton; Krymsky, Robert; Andronikov, Alex; Sergeev, Sergey</p> <p>2017-04-01</p> <p>Volcanic rocks from the Manning Massif, which is situated in the western flank of the Paleozoic-Late Mesozoic Lambert Rift (East Antarctica), belong to a rare type of alkaline <span class="hlt">magmatism</span> within the Precambrian East Antarctic Craton. K-rich olivine trachybasalts compose some flows resting upon a surface of Precambrian granulite terrain, each flow of 2.5-7 m in thickness and total section not less than 30 m. Each flow sequence comprises of glassy chilled base with vitroporphyritic texture, fine-plated vesicular basalt with interstitial texture, massive fine-grained basalt with porphyritic microlitic texture, amigdaloidal aphanitic basalt with poikilophytic texture, and vesicular mandelstone of slag crust with vitroporphyritic texture [Andronikov et al., 1998]. Rb-Sr and K-Ar <span class="hlt">isotopic</span> age of this eruption was estimated as 40-50 Ma and the main reason for this Cenozoic continental volcanism was supposed the post-rift tectonic activity [Andronikov et al., 1998]. But the <span class="hlt">isotopic</span> characteristics of these trachybasalts are very similar to those obtained for the part of spinel lherzolite and spinel-garnet lherzolite xenoliths from the Mesozoic alkaline picrite of the adjacent Jetty Peninsula region. That could be <span class="hlt">evidence</span> of the trachybasalt mantle source in long-lived enriched upper mantle beneath the region, either under the lowermost levels of spinel lherzolite facies or on the highest levels of garnet lherzolite facies conditions. To reveal tectonic position of these enigmatic volcanics, we have studied 16 samples from different parts of basaltic flows for U-Pb geochronology and Pb-Sr-Nd-Os <span class="hlt">isotopic</span> characteristics. U-Pb SIMS SHRIMP-II analysis was performed for 68 apatite grains from 5 samples. All obtained data-points are approximated by discordia line (MSWD=1.6) on Tera-Wasserburg diagram, corresponding to the age of 346±46 Ma. Common Pb <span class="hlt">isotope</span> composition of these apatites differs from the model by increased 206Pb/204Pb (19.8) and 207Pb/204Pb (18.3) that means the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033591','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033591"><span>Textural, mineralogical and stable <span class="hlt">isotope</span> studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.</p> <p>2008-01-01</p> <p>Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between <span class="hlt">magmatic</span> PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural <span class="hlt">evidence</span> that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable <span class="hlt">isotopic</span> data suggest that the fluids involved in the alteration were of <span class="hlt">magmatic</span> origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both <span class="hlt">magmatic</span> crystallization and subsolidus hydrothermal alteration. Experimental studies of <span class="hlt">magmatic</span> crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of <span class="hlt">magmatic</span> and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.133..351N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.133..351N"><span><span class="hlt">Isotopic</span> <span class="hlt">evidence</span> for nitrogen mobility in peat bogs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost</p> <p>2014-05-01</p> <p>Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present <span class="hlt">evidence</span> for post-depositional mobility of atmogenic N in peat, based on natural-abundance N <span class="hlt">isotope</span> ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). <span class="hlt">Isotope</span> signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an <span class="hlt">isotope</span> mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43A0510A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43A0510A"><span>Growth Rates and Mechanisms of <span class="hlt">Magmatic</span> Orbicule Formation: Insights from Calcium <span class="hlt">Isotopes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.</p> <p>2017-12-01</p> <p>Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca <span class="hlt">isotopes</span> can offer a unique perspective on orbicule formation, as diffusive <span class="hlt">isotope</span> fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive <span class="hlt">isotope</span> fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B54D..06A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B54D..06A"><span><span class="hlt">Isotopic</span> <span class="hlt">Evidence</span> of Unaccounted for Fe and Cu Erythropoietic Pathways</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.</p> <p>2011-12-01</p> <p>Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural <span class="hlt">isotopic</span> variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn <span class="hlt">isotope</span> compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall <span class="hlt">isotopic</span> variability than Fe and Cu, which indicates that <span class="hlt">isotope</span> fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is <span class="hlt">isotopically</span> light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu <span class="hlt">isotope</span> compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. <span class="hlt">Isotope</span> compositions provide an original method for evaluating metal mass balance and homeostasis. Natural <span class="hlt">isotope</span> variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of <span class="hlt">isotopically</span> heavy ferritin and hemosiderin, and for Cu, with <span class="hlt">isotopically</span> light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron <span class="hlt">isotopes</span> provide an intrinsic measuring rod of the erythropoietic yield, while Cu <span class="hlt">isotopes</span> seem to gauge the relative activity of erythropoiesis and lymphatics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..80..316O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..80..316O"><span>Zircon U-Pb ages and Hf <span class="hlt">isotopes</span> for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz, Agustín; Hauser, Natalia; Becchio, Raúl; Suzaño, Néstor; Nieves, Alexis; Sola, Alfonso; Pimentel, Marcio; Reimold, Wolf</p> <p>2017-12-01</p> <p>The evolution of the rocks of the Lower Paleozoic Orogen in Puna, at the Southwestern Gondwana margin, has been widely debated. In particular, the scarce amount of geological and geochemical data available for the Diablillos Intrusive Complex, Eastern <span class="hlt">Magmatic</span> Belt, Southern Puna, require a further study for new <span class="hlt">evidence</span> towards the understanding of sources, <span class="hlt">magmatic</span> processes and emplacement of magmas, in order to better comprehend the crustal evolution in this setting. We present new combined U-Pb and Hf <span class="hlt">isotope</span> analyses on zircon by LA-MC-ICP-MS from monzogranite, granodiorite and diorite rocks of the Diablillos Intrusive Complex. We obtained 206Pb/238U concordant weighted average ages of 517 ± 3 Ma and 515 ± 6 Ma for the monzogranite and diorite, respectively, and a concordant age of 521 ± 4 Ma for the granodiorite. These ages permit to constrain the climax of <span class="hlt">magmatic</span> activity in the Diablillos Complex around ∼515-520 Ma, while the emplacement of the complex took place between ∼540 Ma and 490 Ma (representing a ca. 50 Ma <span class="hlt">magmatic</span> event). Major and trace element data, initial 87Sr/86Sr values varying from 0.70446 to 0.71278, positive and negative ɛNd(t) values between +2.5 and -4, as well as ɛHf(t) for zircon data between + 3 and -3 indicate that the analyzed samples represent contaminated magmas. The ɛHf(t) and the ɛNd(t) values for this complex specify that these rocks are derived from interaction of a dominant Mesoproterozoic crystalline and/or a metasedimentary source and juvenile mantle-derived magmas, with a TDM model age range of ∼1.2-1.5 Ga, with later reworking during lower Paleozoic times. The combined data obtained in this contribution together with previous data, allow us to suggest that the formation of the Eastern <span class="hlt">Magmatic</span> Belt of the Puna was part of a long-lived <span class="hlt">magmatic</span> event during Early Paleozoic times. Whereby the granitoids of the Eastern <span class="hlt">Magmatic</span> Belt formed through intra-crustal recycling at an active continental margin, with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V62B1413I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V62B1413I"><span>Sr, Nd, and Pb <span class="hlt">Isotopic</span> Geochemistry of Rhyolites from the Eastern Rhodopes, Bulgaria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanova, R.; Kamenov, G. D.; Yanev, Y.</p> <p>2002-12-01</p> <p>Paleogene Eastern Rhodopes Volcanic Area (ERVA) is part of a more than 2000 km long <span class="hlt">magmatic</span> belt in SE Europe extending from the Inner Dinarids (West Bosnia-Herzegovina) to Western Anatolia (European Turkey). Volcanic activity occurred during the Late Eocene-Early Oligocene and was spatially related to extensional Paleogene shallow marine basins underlain by a high-grade metamorphic basement. The volcanism is bimodal in character, with minor mafic (basalts) and major intermediate (mainly andesites) to acid (mainly rhyolites) volcanics present in similar volumes. This work focuses on Maritsa volcanic group (36-32 Ma) located in the NE part of the ERVA, S Bulgaria. The volcanic group comprises Lozen volcano composed of dacites, rhyodacites, and rhyolites, St Marina rhyolite dome, and Sheinovets rhyolite dome-cluster located within a caldera with the same name. Measured present day 87Sr/86Sr of the rhyolites range from 0.7075 to 0.7180, however on a plot 87Rb/86Sr vs 87Sr/86Sr the data form an errorchron (MSWD=21) with 30.5 +/-3.6Ma age and 87Sr/86Sr initial equal to 0.7074. Pb <span class="hlt">isotopic</span> compositions in all of the volcanoes show similar values ranging from 18.712 to 18.768 in 206Pb/204Pb, 15.643 to 15.687 in 207Pb/204Pb, and 38.790 to 38.922 in 208Pb/204Pb. Nd <span class="hlt">isotopes</span> show also little variations with 143Nd/144Nd ranging from 0.51242 to 0.51249. The similarity in the <span class="hlt">isotopic</span> compositions between the volcanoes suggests common, homogeneous <span class="hlt">magmatic</span> source. Crustal origin of the rhyolites as a result of melting of the metamorphic basement is not plausible because the rhyolites have different Sr and Nd <span class="hlt">isotopic</span> compositions from the gneisses in the ERVA. Sr and Nd <span class="hlt">isotopic</span> data for the rhyolites differ also from the basalts (i.e. possible mantle melts) in the Eastern Rhodopes region. Rhyolites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios compared to the basalts, thus suggesting involvement of crustal component in the magma generation, most probably the metamorphic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017732','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017732"><span>Cierco Pb-Zn-Ag vein deposits: <span class="hlt">Isotopic</span> and fluid inclusion <span class="hlt">evidence</span> for formation during the mesozoic extension in the pyrenees of Spain</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B.</p> <p>1996-01-01</p> <p>The Cierco Pb-Zn-Ag vein deposits, located in the central Pyrenees of Spain, crosscut Paleozoic metasedimentary rocks and are in close proximity to Hercynian granodiorite dikes and plutons. Galena and sphalerite in the deposits have average ??34S values of -4.3 and -0.8 per mil (CDT), respectively. Coexisting mineral pairs give an <span class="hlt">isotopic</span> equilibration temperature range of 89?? to 163??C which overlaps with the 112?? to 198??C range obtained from primary fluid inclusions. Coexisting quartz has a ??18O value of 19 ?? 1 per mil (VSMOW). The fluid which deposited these minerals is inferred to have had ??18OH2o and ??34SH2s values of 5 ?? 1 and -1 ?? 1 per mil, respectively. Chemical and microthermometric analyses of fluid inclusions in quartz and sphalerite indicate salinities of 3 to 29 wt percent NaCl equiv with Na+ and Ca2+ as the dominant cations in solution. The Br/Cl and I/Cl ratios differ from those characteristic of <span class="hlt">magmatic</span> waters and pristine seawater, but show some similarity to those observed in deep ground waters in crystalline terranes, basinal brines, and evaporated seawater, Barite, which postdates the sulfides, spans <span class="hlt">isotopic</span> ranges of 13 to 21 per mil, 10 to 15 per mil, and 0.7109 to 0.7123 for ??34S, ??18O, and 87Sr/86Sr, respectively. The three parameters are correlated providing strong <span class="hlt">evidence</span> that the barites are products of fluid mixing. We propose that the Cierco deposits formed along an extensional fault system at the margin of a marine basin during the breakup of Pangea at some time between the Early Triassic and Early Cretaceous. Sulfide deposition corresponded to an upwelling of hydrothermal fluid from the Paleozoic basement and was limited by the amount of metals carried by the fluid. Barite deposition corresponded to the waning of upward flow and the collapse of sulfate-rich surface waters onto the retreating hydrothermal plume. Calcite precipitated late in the paragenesis as meteoric or marine waters descended into the fault system</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6720K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6720K"><span><span class="hlt">Magmatism</span> and deformation during continental breakup</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keir, Derek</p> <p>2013-04-01</p> <p>The rifting of continents and the transition to seafloor spreading is characterised by extensional faulting and thinning of the lithosphere, and is sometimes accompanied by voluminous intrusive and extrusive <span class="hlt">magmatism</span>. In order to understand how these processes develop over time to break continents apart, we have traditionally relied on interpreting the geological record at the numerous fully developed, ancient rifted margins around the world. In these settings, however, it is difficult to discriminate between different mechanisms of extension and <span class="hlt">magmatism</span> because the continent-ocean transition is typically buried beneath thick layers of volcanic and sedimentary rocks, and the tectonic and volcanic activity that characterised breakup has long-since ceased. Ongoing continental breakup in the African and Arabian rift systems offers a unique opportunity to address these problems because it exposes several sectors of tectonically active rift sector development spanning the transition from embryonic continental rifting in the south to incipient seafloor spreading in the north. Here I synthesise exciting, multidisciplinary observational and modelling studies using geophysical, geodetic, petrological and numerical techniques that uniquely constrain the distribution, time-scales, and interactions between extension and <span class="hlt">magmatism</span> during the progressive breakup of the African Plate. This new research has identified the previously unrecognised role of rapid and episodic dike emplacement in accommodating a large proportion of extension during continental rifting. We are now beginning to realise that changes in the dominant mechanism for strain over time (faulting, stretching and magma intrusion) impact dramatically on <span class="hlt">magmatism</span> and rift morphology. The challenge now is to take what we're learned from East Africa and apply it to the rifted margins whose geological record documents breakup during entire Wilson Cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.153..170Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.153..170Z"><span>The Late Paleozoic <span class="hlt">magmatic</span> evolution of the Aqishan-Yamansu belt, Eastern Tianshan: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf <span class="hlt">isotopes</span> of igneous rocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Liandang; Chen, Huayong; Zhang, Li; Zhang, Weifeng; Yang, Juntao; Yan, Xuelu</p> <p>2018-03-01</p> <p>The Aqishan-Yamansu belt in the Eastern Tianshan (Xinjiang, NW China) is an important mineralization belt. The belt mainly comprises Carboniferous volcanic, volcaniclastic and clastic rocks, and hosts many intermediate-felsic intrusions and Fe (-Cu) deposits. The biotite diorite, felsic brecciated tuff, granodiorite and syenite from the western Aqishan-Yamansu belt are newly zircon U-Pb dated to be 316.7 ± 1.4 Ma, 315.6 ± 2.6 Ma, 305.8 ± 1.9 Ma and 252.5 ± 1.4 Ma, respectively. The mafic rocks (mafic brecciated tuff and diabase porphyry) are tholeiitic to calc-alkaline series, LILE-rich (e.g., Rb, Ba and Pb), HFSE-depleted (e.g., Nb and Ta), and have high Mg#(44-60), Nb/Ta (15.0-20.0), Ba/La (>30) and Ba/Nb (>57) values/ratios, and low Th/Yb ratios (<1), probably originating from mantle wedge metasomatized by slab-derived fluids. The intermediate-felsic igneous rocks are LILE-rich, HFSE-depleted, with high Sr and Y contents showing typical of normal arc magma affinity. Moreover, the depleted εHf(t) (>2.10) and positive εNd(t) (>5.7), combined with variable Nb/Ta ratios (9.52-21.4), Y/Nb ratios (1.47-39.7) and Pb <span class="hlt">isotopes</span> (206Pb/204Pb = 16.225-17.640, 207Pb/204Pb = 15.454-15.520, 208Pb/204Pb = 37.097-38.025) suggest that these rocks were magma mixing products between juvenile crustal-derived magmas and minor mantle-derived magmas. Combined published works with our new ages, geochemical and <span class="hlt">isotopic</span> data, we propose that the Aqishan-Yamansu belt was an Early Carboniferous fore-arc basin during the southward subduction of the Kangguer oceanic slab beneath the Yili-Central Tianshan block. With the continuing southward subduction, the Aqishan-Yamansu fore-arc basin initiated to close, which generated the mafic and intensive intermediate-felsic <span class="hlt">magmatism</span> associated with regional Fe (-Cu) mineralization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAESc.103..129H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAESc.103..129H"><span>Geology, geochronology, and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China: <span class="hlt">Evidence</span> for a Paleo-Mesoproterozoic tectono-<span class="hlt">magmatic</span> event and associated IOCG systems in the western Yangtze Block</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Lin; Ding, Jun; Deng, Jun; Peng, Hui-juan</p> <p>2015-05-01</p> <p>Numerous Fe-Cu-Au-rare earth element (REE) deposits have been identified within the Paleoproterozoic Dongchuan Group of the Kangdian region of SW China. This region hosts the Yinachang deposit, which contains more than 16.8 Mt Fe, 682.6 kt Cu, and significant amounts of Au and the REEs. Both the Haizi dolerite and a <span class="hlt">magmatic</span> breccia in the central part of the Kangdian region are thought to be related to the Dongchuan dolerite in the northern part of this region; all three of these units provide <span class="hlt">evidence</span> of the tectono-<span class="hlt">magmatic</span> history of the Kunyang Rift and are closely spatially and temporally related to Fe-Cu-Au-REE mineralization in this region. Here, we present a new zircon U-Pb age for the Haizi dolerite (1764.7 ± 5.7 Ma), which is consistent with the known age of the Dongchuan dolerite (1765 ± 57 Ma), allowing the determination of the precise timing of Paleo-Mesoproterozoic intraplate mafic <span class="hlt">magmatism</span> in this region (1.72-1.77 Ga). The breccia in this region formed during <span class="hlt">magmatism</span> at around 1.73-1.74 Ga, as documented by zircon U-Pb dating of matrix material within the Yinachang <span class="hlt">magmatic</span> breccia (1739 ± 13 Ma). The geochemistry of Haizi and Dongchuan dolerite samples provides <span class="hlt">evidence</span> of intraplate extension in the Kangdian region, the majority of which was concentrated along the Kunyang Rift. The Kangdian region underwent variable degrees of extension, as evidenced by the fact that break-up in the central part of this region occurred earlier than in the north. This also led to the emplacement of deeper-sourced alkaline magmas (usually OIB-type magmas) in the central part of this region. The iron-oxide copper gold (IOCG) mineralization in the Kangdian region is associated with the upwelling of mantle material. A chalcopyrite Re-Os age of 1648 ± 14 Ma from the Yinachang Fe-Cu-Au-REE deposit obtained during this study is some 50-100 Myr younger than the timing of emplacement of the deeply sourced Haizi and Dongchuan dolerites. The Yinachang deposit is a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009MinDe..44..597S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009MinDe..44..597S"><span>Uniformity in sulfur <span class="hlt">isotope</span> composition in the orogenic gold deposits from the Dharwar Craton, southern India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakthi Saravanan, C.; Mishra, B.</p> <p>2009-07-01</p> <p>The sulfur <span class="hlt">isotope</span> composition of sulfides (mainly pyrite and arsenopyrite) from gold deposits/prospects of the Dharwar Craton such as Hutti, Hira-Buddini, Uti, Kolar (Chigargunta), Ajjanahalli, and Jonnagiri has a narrow range (δ34S = +1.1 to +7.1‰). Such craton-scale uniformity of the above gold camps is noteworthy, in spite of the wide diversity in host rock compositions and their metamorphic conditions, and suggests a <span class="hlt">magmatic</span> or average crustal source of sulfur for all deposits studied. In addition, our study points towards gold precipitation from reduced ore fluids, with near-homogeneous sulfur <span class="hlt">isotope</span> compositions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.480...53G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.480...53G"><span><span class="hlt">Magmatic</span> controls on the genesis of porphyry Cu-Mo-Au deposits: The Bingham Canyon example</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grondahl, Carter; Zajacz, Zoltán</p> <p>2017-12-01</p> <p>Bingham Canyon is one of the world's largest porphyry Cu-Mo-Au deposits and was previously used as an example to emphasize the role of magma mixing and <span class="hlt">magmatic</span> sulphide saturation in the enhancement of ore fertility of <span class="hlt">magmatic</span> systems. We analyzed whole rocks, minerals, and silicate melt inclusions (SMI) from the co-genetic, ore-contemporaneous volcanic package (∼38 Ma). As opposed to previous propositions, whole-rock trace element signatures preclude shoshonite-latite genesis via mixing of melanephelinite and trachyte or rhyolite, whereas core to rim compositional profiles of large clinopyroxene phenocrysts suggests the amalgamation of the ore-related magma reservoir by episodic recharge of shoshonitic to latitic magmas with various degrees of differentiation. Major and trace element and Sr and Nd <span class="hlt">isotopic</span> signatures indicate that the ore-related shoshonite-latite series were generated by low-degree partial melting of an ancient metasomatized mantle source yielding volatile and ore metal rich magmas. Latite and SMI compositions can be reproduced by MELTS modeling assuming 2-step lower and upper crustal fractionation of a primary shoshonite with minimal country rock assimilation. High oxygen fugacities (≈ NNO + 1) are prevalent as evidenced by olivine-spinel oxybarometry, high SO3 in apatite, and anhydrite saturation. The magma could therefore carry significantly more S than would have been possible at more reducing conditions, and the extent of ore metal sequestration by <span class="hlt">magmatic</span> sulphide saturation was minimal. The SMI data show that the latites were Cu rich, with Cu concentrations in the silicate melt reaching up to 300-400 ppm at about 60 wt% SiO2. The Au and Ag concentrations are also high (1.5-4 and 50-200 ppb, respectively), but show less variation with SiO2. A sudden drop in Cu and S concentrations in the silicate melt at around 65 wt% SiO2 in the presence of high Cl, Mo, Ag, and Au shows that the onset of effective metal extraction by fluid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012731','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012731"><span>Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: <span class="hlt">Evidence</span> from Sm-Nd <span class="hlt">isotopes</span> and rare earth elements</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stille, P.; Tatsumoto, M.</p> <p>1985-01-01</p> <p>Major element, trace element and Sm-Nd <span class="hlt">isotope</span> analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd <span class="hlt">isotope</span> data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga <span class="hlt">magmatic</span> event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd <span class="hlt">isotope</span> data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985CoMP...89..184S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985CoMP...89..184S"><span>Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: <span class="hlt">Evidence</span> from Sm-Nd <span class="hlt">isotopes</span> and rare earth elements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stille, P.; Tatsumoto, M.</p> <p>1985-04-01</p> <p>Major element, trace element and Sm-Nd <span class="hlt">isotope</span> analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd <span class="hlt">isotope</span> data yield isochron ages of 475±81 Ma for the hornblendefelses, 1,018±59 Ma for the plagioclase amphibolites and 1,071±43 Ma for the banded amphibolites. The 1 Ga <span class="hlt">magmatic</span> event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd <span class="hlt">isotope</span> data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial ɛ Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T11F..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T11F..05D"><span>The Role of Magma Mixing in Creating <span class="hlt">Magmatic</span> Diversity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davidson, J. P.; Collins, S.; Morgan, D. J.</p> <p>2012-12-01</p> <p>Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual <span class="hlt">magmatic</span> rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, <span class="hlt">magmatic</span> rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. <span class="hlt">Magmatic</span> diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. <span class="hlt">Evidence</span> for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by <span class="hlt">isotopic</span> fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012050','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012050"><span>STABLE <span class="hlt">ISOTOPE</span> GEOCHEMISTRY OF THERMAL FLUIDS FROM LASSEN VOLCANIC NATIONAL PARK, CALIFORNIA.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Janik, Cathy J.; Nehring, Nancy L.; Truesdell, Alfred H.</p> <p>1983-01-01</p> <p>In the Lassen vapor-dominated geothermal system, surface manifestations of thermal fluids at high elevations (1800-2500 m) include superheated and drowned fumaroles, steam-heated acid-sulfate hot springs, and low-chloride bicarbonate springs. Neutral high-chloride hot water discharges at lower elevations. Deuterium and oxygen-18 data establish genetic connections between these fluids and with local meteoric waters. Steam from the highest temperature fumarole at Bumpass Hell and water from the highest chloride hot spring have <span class="hlt">isotopic</span> compositions corresponding to vapor-liquid equilibrium at 235 degree C. Carbon and sulfur <span class="hlt">isotope</span> data suggest that the CO//2 and H//2S in the system did not entirely originate from <span class="hlt">magmatic</span> sources, but probably include contributions from thermal metamorphism of marine sedimentary rocks. Observations suggest that carbon and sulfur <span class="hlt">isotope</span> variations are useful indicators of gas reactions and flow paths in geothermal systems. Refs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.432..176F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.432..176F"><span>Molybdenum mobility and <span class="hlt">isotopic</span> fractionation during subduction at the Mariana arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim</p> <p>2015-12-01</p> <p>-like mantle wedge. Thus we infer that the Pb and Mo budgets of the fluid component are dominated by contributions from the deeper, less altered (cooler) portion of the subducting Pacific crust. The high 98Mo/95Mo of this flux is likely caused by <span class="hlt">isotopic</span> fractionation during dehydration and fluid flow in the slab. As a result, the residual mafic crust becomes <span class="hlt">isotopically</span> lighter than the upper mantle from which it was derived. Our results suggest that the continental crust produced by arc <span class="hlt">magmatism</span> should have an <span class="hlt">isotopically</span> heavy Mo composition compared to the mantle, whilst a contribution of deep recycled oceanic crust to the sources of some ocean island basalts might be <span class="hlt">evident</span> from an <span class="hlt">isotopically</span> light Mo signature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V41A3105M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V41A3105M"><span>Magma ascent and <span class="hlt">magmatism</span> controlled by cratering on the Moon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michaut, C.; Pinel, V.</p> <p>2016-12-01</p> <p>The lunar primary crust was formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a relatively light and thick crust. This crust acted as a barrier for the denser primary mantle melts: mare basalts erupted primarily within large impact basins where at least part of this crust was removed. Thus, lunar magmas likely stored at the base of or deep in the lunar crust and the ascent of magma to shallow depths probably required local or regional tensional stresses. On the Moon, <span class="hlt">evidences</span> of shallow sites of <span class="hlt">magmatism</span> are mostly concentrated within old and degraded simple and complex craters that surround the Mare basalts. Impacts, that were numerous in the early times of the Moon, created depressions at the lunar surface that induced specific states of stress. Below a crater, magma ascent is helped by the tensional stresses caused by the depression up to a depth that is close to the crater radius. However, many craters that are the sites of shallow <span class="hlt">magmatism</span> are less than 10 to 20 km in radius and are equally situated in regions of thin (i.e. 20 km) or thick (i.e. 60km) crust suggesting that the depression, although significant enough to control magma emplacement, was not large enough to induce it. Since the sites of <span class="hlt">magmatism</span> surround the mare basalts, we explore the common idea that the weight of the Mare induced a tensile state of stress in the surrounding regions. We constrain the regional state of stress that was necessary to help magma ascent to shallow depths but was low enough for the local depression due to a crater to control magma emplacement. This state of stress is consistent with a relatively thin but extended mare load. We also show that the depression due to the crater probably caused the horizontalization and hence the storage of the <span class="hlt">magmatic</span> intrusion at shallow depth below the crater. In the end, because of the neutral buoyancy of magmas in the crust and the lack of tectonic processes, impact processes largely</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.478..203F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.478..203F"><span>Numerical models of the <span class="hlt">magmatic</span> processes induced by slab breakoff</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freeburn, Rebecca; Bouilhol, Pierre; Maunder, Ben; Magni, Valentina; van Hunen, Jeroen</p> <p>2017-11-01</p> <p>After the onset of continental collision, <span class="hlt">magmatism</span> often persists for tens of millions of years, albeit with a different composition, in reduced volumes, and with a more episodic nature and more widespread spatial distribution, compared to normal arc <span class="hlt">magmatism</span>. Kinematic modelling studies have suggested that slab breakoff can account for this post-collisional <span class="hlt">magmatism</span> through the formation of a slab window and subsequent heating of the overriding plate and decompression melting of upwelling asthenosphere, particularly if breakoff occurs at depths shallower than the overriding plate. To constrain the nature of any melting and the geodynamic conditions required, we numerically model the collision of two continental plates following a period of oceanic subduction. A thermodynamic database is used to determine the (de)hydration reactions and occurrence of melt throughout this process. We investigate melting conditions within a parameter space designed to generate a wide range of breakoff depths, timings and collisional styles. Under most circumstances, slab breakoff occurs deeper than the depth extent of the overriding plate; too deep to generate any decompressional melting of dry upwelling asthenosphere or thermal perturbation within the overriding plate. Even if slab breakoff is very shallow, the hot mantle inflow into the slab window is not sustained long enough to sufficiently heat the hydrated overriding plate to cause significant <span class="hlt">magmatism</span>. Instead, for relatively fast, shallow breakoff we observe melting of asthenosphere above the detached slab through the release of water from the tip of the heating detached slab. Melting of the subducted continental crust during necking and breakoff is a more common feature and may be a more reliable indicator of the occurrence of breakoff. We suggest that <span class="hlt">magmatism</span> from slab breakoff alone is unable to explain several of the characteristics of post-collisional <span class="hlt">magmatism</span>, and that additional geodynamical processes need to be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983E%26PSL..65..322V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983E%26PSL..65..322V"><span>Thermal anomalies and <span class="hlt">magmatism</span> due to lithospheric doubling and shifting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlaar, N. J.</p> <p>1983-11-01</p> <p>We present some thermal and <span class="hlt">magmatic</span> consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours <span class="hlt">magmatism</span>. We speculate about the <span class="hlt">magmatic</span> consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence <span class="hlt">magmatic</span> processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on <span class="hlt">magmatism</span> in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GeCoA..74.3274D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GeCoA..74.3274D"><span>Magnesium and iron <span class="hlt">isotopes</span> in 2.7 Ga Alexo komatiites: Mantle signatures, no <span class="hlt">evidence</span> for Soret diffusion, and identification of diffusive transport in zoned olivine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dauphas, Nicolas; Teng, Fang-Zhen; Arndt, Nicholas T.</p> <p>2010-06-01</p> <p>Komatiites from Alexo, Canada, are well preserved and represent high-degree partial mantle melts (˜50%). They are thus well suited for investigating the Mg and Fe <span class="hlt">isotopic</span> compositions of the Archean mantle and the conditions of <span class="hlt">magmatic</span> differentiation in komatiitic lavas. High precision Mg and Fe <span class="hlt">isotopic</span> analyses of 22 samples taken along a 15-m depth profile in a komatiite flow are reported. The δ 25Mg and δ 26Mg values of the bulk flow are -0.138 ± 0.021‰ and -0.275 ± 0.042‰, respectively. These values are indistinguishable from those measured in mantle peridotites and chondrites, and represent the best estimate of the composition of the silicate Earth from analysis of volcanic rocks. Excluding the samples affected by secondary Fe mobilization, the δ 56Fe and δ 57Fe values of the bulk flow are +0.044 ± 0.030‰, and +0.059 ± 0.044‰, respectively. These values are consistent with a near-chondritic Fe <span class="hlt">isotopic</span> composition of the silicate Earth and minor fractionation during komatiite magma genesis. In order to explain the early crystallization of pigeonite relative to augite in slowly cooled spinifex lavas, it was suggested that magmas trapped in the crystal mush during spinifex growth differentiated by Soret effect, which should be associated with large and coupled variations in the <span class="hlt">isotopic</span> compositions of Mg and Fe. The lack of variations in Mg and Fe <span class="hlt">isotopic</span> ratios either rules out the Soret effect in the komatiite flow or the effect is effaced as the solidification front migrates downward through the flow crust. Olivine separated from a cumulate sample has light δ 56Fe and slightly heavy δ 26Mg values relative to the bulk flow, which modeling shows can be explained by kinetic <span class="hlt">isotope</span> fractionation associated with Fe-Mg inter-diffusion in olivine. Such variations can be used to identify diffusive processes involved in the formation of zoned minerals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016918','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016918"><span>Nd, Sr, and O <span class="hlt">isotopic</span> variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.</p> <p>1991-01-01</p> <p>Nd, Sr and O <span class="hlt">isotopic</span> data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr <span class="hlt">isotopic</span> zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen <span class="hlt">isotope</span> data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd <span class="hlt">isotopic</span> variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar <span class="hlt">isotopic</span> characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural <span class="hlt">evidence</span> to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the <span class="hlt">magmatic</span> history of the TMOV. The large-volume rhyolites</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015676','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015676"><span>A paleomagnetic and stable <span class="hlt">isotope</span> study of the pluton at Rio Hondo near Questa, New Mexico: implications for CRM related to hydrothermal alteration</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hagstrum, J.T.; Johnson, C.M.</p> <p>1986-01-01</p> <p>Paleomagnetic and rock magnetic data combined with stable <span class="hlt">isotope</span> data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen <span class="hlt">isotope</span> temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and <span class="hlt">isotopic</span> exchange above its Curie temperature (580??C) in the presence of a <span class="hlt">magmatic</span> fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite <span class="hlt">isotopic</span> temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie <span class="hlt">isotopic</span> temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and <span class="hlt">magmatic</span> fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (> 350??C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The <span class="hlt">isotopic</span> ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid. ?? 1986.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9479D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9479D"><span>Exploring the pre-eruptive history of the Central Atlantic <span class="hlt">Magmatic</span> Province (CAMP) and the link with the end Triassic extinction using high precision U-Pb zircon and baddeleyite geochronology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, Joshua; Marzoli, Andrea; Bertrand, Hervé; Youbi, Nasrrddine; Schaltegger, Urs</p> <p>2015-04-01</p> <p>The Central Atlantic <span class="hlt">Magmatic</span> Province (CAMP) is a massive outpouring of basaltic lava, dykes and sills that was predominantly emplaced into the Triassic-Jurassic basins of North and South America, Europe and Africa. These basins were, at the time, in the center of the paleo-supercontinent Pangea, and the CAMP flood basalts are associated with Pangea's break-up and the opening of the Atlantic Ocean. The global climatic and environmental impact of the basalt eruption has been temporally linked with the end-Triassic mass extinction, although the extinction horizon, defined by a carbon <span class="hlt">isotope</span> excursion, is stratigraphically below the first basaltic flows in all of the currently identified basins. Therefore, if the extinction is related to the CAMP, it must be related to a process that occurred before the eruption of the first basalt flow, or is co-incident with a currently unidentified older basalt flow. Here we present high precision TIMS zircon U-Pb geochronology on zircons from the North Mountain basalt (NMB) in the Fundy basin, Canada, and also baddeleyite from the Foum Zuid dyke (FZD) in the Anti-Atlas, Morocco. The NMB zircons have been separated from the lowermost accessible basalt flow of the NMB sequence in a coarse-grained section, rather than from a felsic residual melt pod, which is the usual target for zircon geochronology in basalts. The baddeleyites from the FZD were also separated from a coarse-grained section of the dyke. The zircons and baddeleyites from the NMB and FZD samples contain an antecrystic population with ages more than 1 Ma older than the emplacement of the basalts. The U-Pb ages presented here suggest that there was <span class="hlt">magmatic</span> activity relating to the CAMP before the eruption of the first basalts. There are a number of possible explanations for the old zircons 1) recycling of zircon from earlier phases of <span class="hlt">magmatism</span>, which then would have to have been re-molten and entrained into the NMB and FZD magmas. 2) Recycling of crystal mush from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.153..238W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.153..238W"><span>Carboniferous - Early Permian <span class="hlt">magmatic</span> evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin</p> <p>2018-03-01</p> <p>The Late Paleozoic <span class="hlt">magmatic</span> evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and <span class="hlt">isotopic</span> data of <span class="hlt">magmatic</span> and sedimentary rocks in the Bogda Range. The available data indicate that the <span class="hlt">magmatism</span> occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian <span class="hlt">magmatic</span> rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic <span class="hlt">magmatic</span> rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/1040/ds1040.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/1040/ds1040.pdf"><span><span class="hlt">Isotopic</span> data for Late Cretaceous intrusions and associated altered and mineralized rocks in the Big Belt Mountains, Montana</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>du Bray, Edward A.; Unruh, Daniel M.; Hofstra, Albert H.</p> <p>2017-03-07</p> <p>The quartz monzodiorite of Mount Edith and the concentrically zoned intrusive suite of Boulder Baldy constitute the principal Late Cretaceous igneous intrusions hosted by Mesoproterozoic sedimentary rocks of the Newland Formation in the Big Belt Mountains, Montana. These calc-alkaline plutonic masses are manifestations of subduction-related <span class="hlt">magmatism</span> that prevailed along the western edge of North America during the Cretaceous. Radiogenic <span class="hlt">isotope</span> data for neodymium, strontium, and lead indicate that the petrogenesis of the associated magmas involved a combination of (1) sources that were compositionally heterogeneous at the scale of the geographically restricted intrusive rocks in the Big Belt Mountains and (2) variable contamination by crustal assimilants also having diverse <span class="hlt">isotopic</span> compositions. Altered and mineralized rocks temporally, spatially, and genetically related to these intrusions manifest at least two <span class="hlt">isotopically</span> distinct mineralizing events, both of which involve major inputs from spatially associated Late Cretaceous igneous rocks. Alteration and mineralization of rock associated with the intrusive suite of Boulder Baldy requires a component characterized by significantly more radiogenic strontium than that characteristic of the associated igneous rocks. However, the source of such a component was not identified in the Big Belt Mountains. Similarly, altered and mineralized rocks associated with the quartz monzodiorite of Mount Edith include a component characterized by significantly more radiogenic strontium and lead, particularly as defined by 207Pb/204Pb values. The source of this component appears to be fluids that equilibrated with proximal Newland Formation rocks. Oxygen <span class="hlt">isotope</span> data for rocks of the intrusive suite of Boulder Baldy are similar to those of subduction-related <span class="hlt">magmatism</span> that include mantle-derived components; oxygen <span class="hlt">isotope</span> data for altered and mineralized equivalents are slightly lighter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51B0309B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51B0309B"><span><span class="hlt">Isotopic</span> composition of reduced and oxidized sulfur in the Canary Islands: implications for the mantle S cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaudry, P.; Longpre, M. A.; Wing, B. A.; Bui, T. H.; Stix, J.</p> <p>2017-12-01</p> <p>The Earth's mantle contains distinct sulfur reservoirs, which can be probed by sulfur <span class="hlt">isotope</span> analyses of volcanic rocks and gases. We analyzed the <span class="hlt">isotopic</span> composition of reduced and oxidized sulfur in a diverse range of volcanically derived materials spanning historical volcanism in the Canary Islands. Our sample set consists of subaerial volcanic tephras from three different islands, mantle and sedimentary xenoliths, as well as lava balloon samples from the 2011-2012 submarine El Hierro eruption and associated crystal separates. This large sample set allows us to differentiate between the various processes responsible for sulfur <span class="hlt">isotope</span> heterogeneity in the Canary archipelago. Our results define an array in triple S <span class="hlt">isotope</span> space between the compositions of the MORB and seawater sulfate reservoirs. Specifically, the sulfide values are remarkably homogeneous around d34S = -1 ‰ and D33S = -0.01 ‰, while sulfate values peak at d34S = +4 ‰ and D33S = +0.01 ‰. Lava balloons from the El Hierro eruption have highly enriched sulfate d34S values up to +19.3 ‰, reflecting direct interaction between seawater sulfate and the erupting magma. Several sulfate data points from the island of Lanzarote also trend towards more positive d34S up to +13.8 ‰, suggesting interaction with seawater sulfate-enriched lithologies or infiltration of seawater within the <span class="hlt">magmatic</span> system. On the other hand, the modal values and relative abundances of S2- and S6+ in crystal separates suggest that the Canary Island mantle source has a d34S around +3 ‰, similar to the S-<span class="hlt">isotopic</span> composition of a peridotite xenolith from Lanzarote. We infer that the S2- and S6+ modes reflect <span class="hlt">isotopic</span> equilibrium between those species in the <span class="hlt">magmatic</span> source, which requires 80 % of the sulfide to become oxidized after melting, consistent with measured S speciation. This 34S enrichment of the source could be due to the recycling of hydrothermally-altered oceanic crust, which has been previously suggested</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri98-4217/WRIR_98-4217.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri98-4217/WRIR_98-4217.pdf"><span><span class="hlt">Magmatic</span> carbon dioxide emissions at Mammoth Mountain, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farrar, Christopher D.; Neil, John M.; Howle, James F.</p> <p>1999-01-01</p> <p>Carbon dioxide (CO2) of <span class="hlt">magmatic</span> origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are <span class="hlt">evidence</span> of an active <span class="hlt">magmatic</span> system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of <span class="hlt">magmatic</span> CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.304..109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.304..109L"><span>Semi-adakitic <span class="hlt">magmatism</span> of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic <span class="hlt">magmatism</span> in southeastern Eurasia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk</p> <p>2018-04-01</p> <p>The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic <span class="hlt">magmatic</span> enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic <span class="hlt">magmatism</span>, might have occurred along the areas affected by ridge subduction. We suggest that this sequential <span class="hlt">magmatism</span> would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite <span class="hlt">magmatism</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7096X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7096X"><span>Linking Tengchong Terrane in SW Yunnan with Lhasa Terrane in southern Tibet through <span class="hlt">magmatic</span> correlation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Jincheng; Zhu, Dicheng; Dong, Guochen; Zhao, Zhidan; Wang, Qing</p> <p>2016-04-01</p> <p>New zircon U-Pb data, along with the data reported in the literature, reveal five phases of <span class="hlt">magmatic</span> activity in the Tengchong Terrane since the Early Paleozoic with spatial and temporal variations summarized as: Cambrian-Ordovician (500-460 Ma) to the eastern, minor Triassic (245-206 Ma) in the eastern and western, abundant Early Cretaceous (131-114 Ma) in the eastern, extensive Late Cretaceous (77-65 Ma) in the central, and Paleocene-Eocene (65-49 Ma) in the central and western Tengchong Terrane, in which the Cretaceous-Eocene <span class="hlt">magmatism</span> was migrated from east to west (Xu et al., 2012). The increased zircon eHf(t) of the Early Cretaceous granitoids from -12.3 to -1.4 at ca. 131-122 Ma to -4.6 to +7.1 at ca. 122-114 Ma identified for the first time in this study and the <span class="hlt">magmatic</span> flare-up at ca. 53 Ma in the central and western Tengchong Terrane (Wang et al., 2014, Ma et al., 2015) indicate the increased contributions from mantle- or juvenile crust-derived components. The spatial and temporal variations and changing <span class="hlt">magmatic</span> compositions with time in the Tengchong Terrane closely resemble the Lhasa Terrane in southern Tibet. Such similarities, together with the data of stratigraphy and paleobiogeography (Zhang et al., 2013), enable us to propose that the Tengchong Terrane in SW Yunnan is most likely linked with the Lhasa Terrane in southern Tibet, both of which experience similar tectonomagmatic histories since the Early Paleozoic. References Ma, L.Y., Wang, Y.J., Fan, W.M., Geng, H.Y., Cai, Y.F., Zhong, H., Liu, H.C., Xing, X.W., 2014. Petrogenesis of the early Eocene I-type granites in west Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research 25, 401-419. Wang, Y.J., Zhang, L.M., Cawood, P.A., Ma, L.Y., Fan, W.M., Zhang, A.M., Zhang, Y.Z., Bi, X.W., 2014. Eocene supra-subduction zone mafic <span class="hlt">magmatism</span> in the Sibumasu Block of SW Yunnan: Implications for Neotethyan subduction and India-Asia collision</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T41C2604L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T41C2604L"><span>Late Paleozoic <span class="hlt">magmatism</span> in South China: Oceanic subduction or intracontinental orogeny?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Q.; Yu, J.; Zhao, G.</p> <p>2013-12-01</p> <p>The significant late Paleozoic <span class="hlt">magmatism</span> has been widely recognized in the East Asian Blocks, which sheds a light on the assembly and break-up of the Pangea supercontinent. As one of major components in East Asia, however, the South China Block (SCB) does not have much late Paleozoic <span class="hlt">magmatism</span> recognized. Here we report a gneissic granite intrusion in northeastern Fujian Province, eastern SCB. It is a S-type granite characterized by high K2O and Al2O3, and low SiO2 and Na2O with a high A/CNK ratio of 1.22. Zircons with stubby morphology from this gneissic granite yield 206Pb/238U ages ranging from 326 Ma to 301 Ma with a weighted average age of 313×4 Ma, and negative epsilonHf(t) values from -8.35 to -1.74 with two-stage Hf model ages of 1.43 to 1.84 Ga. This S-type granite was probably originated from late Paleoproterozoic crust during an intracontinental orogeny, not under oceanic subduction. Integrated with previous results on the paleogeographic reconstruction of the SCB, the nature of Paleozoic basins, Early Permian volcanism and U-Pb-Hf <span class="hlt">isotope</span> of detrital zircons from the late Paleozoic to early Mesozoic sedimentary rocks, our data support a late Paleozoic orogeny in the SCB, which may have included Late Carboniferous (340-310 Ma) compressive episode and Early Permian (287-270 Ma) post-orogenic or intraplate extensive episode. Our interpretation is consistent with the late Paleozoic orogenic events recognized in other Pangea microcontinents, and thus provides a window for the reconstruction of Pangea. Acknowledgements: NSFC (41190070, 41190075)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeCoA..99....1D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeCoA..99....1D"><span>In-situ Pb <span class="hlt">isotope</span> analysis of Fe-Ni-Cu sulphides by laser ablation multi-collector ICPMS: New insights into ore formation in the Sudbury impact melt sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darling, J. R.; Storey, C. D.; Hawkesworth, C. J.; Lightfoot, P. C.</p> <p>2012-12-01</p> <p>Laser-ablation (LA) multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) is ideally suited to in situ determination of <span class="hlt">isotope</span> ratios in sulphide minerals. Using samples of <span class="hlt">magmatic</span> sulphide ore from the Sudbury impact structure, we test LA-MC-ICPMS analytical protocols that aim to meet a range of analytical challenges in the analysis of Pb <span class="hlt">isotopes</span>. These include: potential matrix sensitive <span class="hlt">isotopic</span> fractionation; interferences on Pb <span class="hlt">isotopes</span>; low melting points of many sulphide minerals; the availability of standards. <span class="hlt">Magmatic</span> sulphides of wide ranging mineralogy (pyrrhotite, pentlandite, chalcopyrite, pyrite and sphalerite) were analysed for Pb <span class="hlt">isotopic</span> composition, using the silicate glass NIST SRM 610 as an external standard to correct for instrumental mass-fractionation. Despite matrix sensitive melting and re-deposition around ablation pits, several lines of <span class="hlt">evidence</span> indicate that all analyses are accurate, within typical analytical uncertainties of 0.003-2% (2σ), and that the defined approach is insensitive to compositional diversity in sample matrix: (a) laser ablation and dissolution based measurements of sulphide powders are in agreement; (b) analyses from each sample define isochron ages within uncertainty of the known crystallization age (1850 Ma); (c) the results of sulphide measurements by laser ablation are consistent with age-corrected feldspar analyses from the same samples. The results have important implications for ore formation in Sudbury. The Pb <span class="hlt">isotope</span> data regressions are consistent with age corrected feldspar analyses from each respective sample, which together with time integrated Th/U ratios that match whole rock values (3.1, 4.0 and 6.1 for the Worthington, Copper Cliff and Parkin Offset Dykes, respectively) indicate chemical equilibrium between the silicate and sulphide systems during ore formation. The sulphides within each respective sample have indistinguishable model initial Pb <span class="hlt">isotope</span> ratios (207Pb/204Pbm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NW....101..187S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NW....101..187S"><span>Keratin decomposition by trogid beetles: <span class="hlt">evidence</span> from a feeding experiment and stable <span class="hlt">isotope</span> analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugiura, Shinji; Ikeda, Hiroshi</p> <p>2014-03-01</p> <p>The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable <span class="hlt">isotope</span> ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the <span class="hlt">isotopic</span> signatures of the trogids with the feathers to investigate <span class="hlt">isotopic</span> shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable <span class="hlt">isotope</span> analysis provided strong <span class="hlt">evidence</span> of keratin decomposition by trogid beetles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4848528','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4848528"><span>Zn/Cd ratios and cadmium <span class="hlt">isotope</span> <span class="hlt">evidence</span> for the classification of lead-zinc deposits</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong</p> <p>2016-01-01</p> <p>Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn <span class="hlt">isotopes</span>, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd <span class="hlt">isotope</span> systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little <span class="hlt">evidence</span> of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier <span class="hlt">isotopes</span> (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and <span class="hlt">isotopic</span> studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CoMP..173...27S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CoMP..173...27S"><span>Experimental calibration of vanadium partitioning and stable <span class="hlt">isotope</span> fractionation between hydrous granitic melt and magnetite at 800 °C and 0.5 GPa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sossi, Paolo A.; Prytulak, Julie; O'Neill, Hugh St. C.</p> <p>2018-04-01</p> <p>Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its <span class="hlt">isotopes</span>. As a result, vanadium <span class="hlt">isotopes</span> vary during <span class="hlt">magmatic</span> differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and <span class="hlt">isotope</span> fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities ({f_{{{O}2}}}), bracketing those of terrestrial magmas. Magnetite is <span class="hlt">isotopically</span> light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log{f_{{{O}2}}} relative to the Fayalite-Magnetite-Quartz buffer (FMQ), from Δ51Vmag-gl = - 0.63 ± 0.09‰ at FMQ - 1 to - 0.92 ± 0.11‰ (SD) at ≈ FMQ + 5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log{f_{{{O}2}}}. These first mineral-melt measurements of V <span class="hlt">isotope</span> fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling <span class="hlt">isotopic</span> fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural <span class="hlt">isotope</span> variations in <span class="hlt">magmatic</span> suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium <span class="hlt">isotope</span> variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6697C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6697C"><span>Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-<span class="hlt">isotope</span> data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Keda; Sun, Min; Xiao, Wenjiao</p> <p>2014-05-01</p> <p>The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf <span class="hlt">isotopes</span> for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic <span class="hlt">magmatism</span>, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic <span class="hlt">magmatism</span> of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic <span class="hlt">magmatism</span> in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with <span class="hlt">evidence</span> of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V23D3023S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V23D3023S"><span>Hf and Nd <span class="hlt">Isotopic</span> and REE Investigations of Magnetite in a Proterozoic IOCG system: Fingerprinting Sources and Timing of Mineralisation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaefer, B. F.</p> <p>2016-12-01</p> <p>The Stuart Shelf on the margin of the Gawler Craton, South Australia, contains numerous economic and sub-econmic IOCG mineralised systems, including the giant Olympic Dam Cu-Au-U deposit. Hematite and magnetite have played a critical in the genesis of all of these deposits, and increasingly it appears that magnetite has been in equilibrium with either the final mineralised assemblage or was critical in transporting metals during the ore forming event. 14 magnetites and one hematite from three separate styles of iron oxide mineralisation associated with the Prominent Hill Cu-Au deposit were selected for detailed analysis. The REE and <span class="hlt">isotopic</span> separations were all conducted by low blank wet chemistry and <span class="hlt">isotopes</span> determined by TIMS (Nd) and MC-ICPMS (Hf). Magnetites associated with skarn style mineralsiation proximal to the ore body are unformly depleted in REE, whereas hematite within the ore and <span class="hlt">magmatic</span> magmatites and whole rock gabbros from the nearby 1590Ma White Hill Gabbro intrusion are all relatively LREE enriched and display a comparable range in REE. Significantly however, magnetite separates almost invariably display more evolved Hf <span class="hlt">isotopic</span> signatures than the host lithologies adjacent the economic mineralisation (dacites and metasediments at Prominent Hill mine) implying that the magnetites were sourcing their REE inventory dominantly from the local crust rather than a mantle derived source. In contrast, the <span class="hlt">magmatic</span> magnetites from the White Hill Complex display Nd and Hf <span class="hlt">isotopes</span> which are slightly more primitive, recording a greater relative mantle component, however still requiring a significant crustal input. Significantly, the hematite which contains the Au mineralisation preserves ɛNd (1590) = -4.04 and ɛHf (1590) = -6.05 essentially identical to the <span class="hlt">magmatic</span> magnetites and their host gabbros in the White Hill complex and the basalts and dacites of the host Gawler Range Volcanics (ɛNd (1590) = -7.10 - -3.72 and ɛHf (1590) = -7.69 - -1</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V33A2728B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V33A2728B"><span>Helium <span class="hlt">isotope</span> <span class="hlt">evidence</span> for plume metasomatism of Siberian continental lithosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barry, P. H.; Hilton, D. R.; Howarth, G. H.; Pernet-Fisher, J. F.; Day, J. M.; Taylor, L. A.</p> <p>2013-12-01</p> <p> activity), large degree partial-melts percolated through the SCLM towards crustal magma chambers. As a result, xenoliths from the younger Obnazhennaya pipe show strong petrological <span class="hlt">evidence</span> for plume-related basaltic metasomatism, whereas older Udachnaya samples do not [4]. Thus, we interpret the marked He-<span class="hlt">isotope</span> disparity between ';pre-plume' Udachnaya and ';post-plume' Obnazhennaya xenoliths to be the direct result of metasomatic refertilization associated with the emplacement of the SFB. The lower He concentrations in Obnazhennaya xenoliths may also point to extensive He-loss during the SFB, that may also be coupled with key volatiles that are outgassed into the atmosphere during flood basalt volcanism (e.g.,CO2). Our new results provide compelling <span class="hlt">evidence</span> that mantle plume impingement can profoundly modify continental regions and that He <span class="hlt">isotopes</span> are a very sensitive tracer of metasomatism. [1] Basu et al., 1995. Science, 822-825. [2] Day et al., 2012, AGU Abstract V53A-2796. [3] Pearson et al., 1995. GCA, 59, 959-977. [4] Howarth et al., 2013 Lithos, In review.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001625','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001625"><span>Sims Analysis of Water Abundance and Hydrogen <span class="hlt">Isotope</span> in Lunar Highland Plagioclase</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.</p> <p>2015-01-01</p> <p>The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) <span class="hlt">isotopes</span> in lunar samples, however, is controversial. The large variation of H <span class="hlt">isotope</span> ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as <span class="hlt">evidence</span> that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H <span class="hlt">isotopes</span> in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and <span class="hlt">magmatic</span> degassing) may have modified the H <span class="hlt">isotope</span> signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H <span class="hlt">isotopes</span> in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10...59M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10...59M"><span><span class="hlt">Magmatic</span> intrusions in the lunar crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michaut, C.; Thorey, C.</p> <p>2015-10-01</p> <p>The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable <span class="hlt">evidence</span> of the geological and <span class="hlt">magmatic</span> processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly <span class="hlt">evident</span> in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow <span class="hlt">magmatic</span> intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide <span class="hlt">evidence</span> of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29556051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29556051"><span><span class="hlt">Evidence</span> for a vibrational phase-dependent <span class="hlt">isotope</span> effect on the photochemistry of vision.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A</p> <p>2018-04-01</p> <p>Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing <span class="hlt">evidence</span> for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known <span class="hlt">isotope</span> effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent <span class="hlt">isotope</span> effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017627','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017627"><span><span class="hlt">Magmatic</span> vapor source for sulfur dioxide released during volcanic eruptions: <span class="hlt">Evidence</span> from Mount Pinatubo</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wallace, P.J.; Gerlach, T.M.</p> <p>1994-01-01</p> <p>Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive <span class="hlt">magmatic</span> vapor is a major source of the SO2 that is released during many volcanic eruptions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3059S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3059S"><span>Oceanic <span class="hlt">magmatic</span> evolution during ocean opening under influence of mantle plume</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya</p> <p>2015-04-01</p> <p>Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap <span class="hlt">magmatism</span> in Antarctica, and for <span class="hlt">magmatism</span> of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and <span class="hlt">isotopic</span> composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift <span class="hlt">magmatism</span>; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..240G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..240G"><span>Numerical model for the evaluation of Earthquake effects on a <span class="hlt">magmatic</span> system.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garg, Deepak; Longo, Antonella; Papale, Paolo</p> <p>2016-04-01</p> <p>A finite element numerical model is presented to compute the effect of an Earthquake on the dynamics of magma in reservoirs with deformable walls. The <span class="hlt">magmatic</span> system is hit by a Mw 7.2 Earthquake (Petrolia/Capo Mendocina 1992) with hypocenter at 15 km diagonal distance. At subsequent times the seismic wave reaches the nearest side of the <span class="hlt">magmatic</span> system boundary, travels through the <span class="hlt">magmatic</span> fluid and arrives to the other side of the boundary. The modelled physical system consists in the <span class="hlt">magmatic</span> reservoir with a thin surrounding layer of rocks. Magma is considered as an homogeneous multicomponent multiphase Newtonian mixture with exsolution and dissolution of volatiles (H2O+CO2). The <span class="hlt">magmatic</span> reservoir is made of a small shallow magma chamber filled with degassed phonolite, connected by a vertical dike to a larger deeper chamber filled with gas-rich shoshonite, in condition of gravitational instability. The coupling between the Earthquake and the <span class="hlt">magmatic</span> system is computed by solving the elastostatic equation for the deformation of the <span class="hlt">magmatic</span> reservoir walls, along with the conservation equations of mass of components and momentum of the <span class="hlt">magmatic</span> mixture. The characteristic elastic parameters of rocks are assigned to the computational domain at the boundary of <span class="hlt">magmatic</span> system. Physically consistent Dirichlet and Neumann boundary conditions are assigned according to the evolution of the seismic signal. Seismic forced displacements and velocities are set on the part of the boundary which is hit by wave. On the other part of boundary motion is governed by the action of fluid pressure and deviatoric stress forces due to fluid dynamics. The constitutive equations for the magma are solved in a monolithic way by space-time discontinuous-in-time finite element method. To attain additional stability least square and discontinuity capturing operators are included in the formulation. A partitioned algorithm is used to couple the magma and thin layer of rocks. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V41D2118G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V41D2118G"><span><span class="hlt">Magmatic</span> Processes at Kilauea Volcano Revealed by the Puu Oo Eruption</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, M. O.; Marske, J. P.; Pietruszka, A. P.; Rhodes, J. M.; Norman, M. D.; Eiler, J.</p> <p>2008-12-01</p> <p>The ongoing Puu Oo eruption (1983 to present) provides an unprecedented opportunity to probe the crustal and mantle <span class="hlt">magmatic</span> processes beneath Kilauea volcano. Here we present Pb, Sr, Nd and O <span class="hlt">isotope</span> ratios, major- and trace-element abundances, olivine compositions, and petrography data for Puu Oo lavas an compare them to the Kilauea historical record. Crustal processes are dominated by olivine fractionation and accumulation with minor clinopyroxene fractionation, and to a lesser extent and only periodically when eruption rates decrease, by crustal contamination. Systematic variations in Sr <span class="hlt">isotope</span> ratios, incompatible trace element ratios, and MgO-normalized major elements document remarkable changes in parental magma compositions delivered to Puu Oo. Inflections in some trends correlate broadly with increasing intermediate depth earthquakes under the Kilauea's summit and to changes in eruption rate. Thus, volcanic events are influenced by melting and transport processes. One surprising feature is the systematic trend of Puu Oo rock compositions away from and beyond typical historical Kilauea compositions towards those of lavas from neighboring Mauna Loa volcano. The source for this component in Puu Oo lavas is a hybrid with about equal mixtures of historical Kilauea and Mauna Loa end members. The Puu Oo lava trend continues the cyclic pattern of compositional variation that extends back over 1000 years. Similar trends are also recorded on a coarser scale in HSDP lavas. These patterns of cyclic compositional variation are important for understanding melting processes in Hawaiian and other volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11C0357H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11C0357H"><span>Investigating <span class="hlt">Magmatic</span> Processes in the Lower Levels of Mantle-derived <span class="hlt">Magmatic</span> Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.</p> <p>2017-12-01</p> <p>Our understanding of mantle-derived <span class="hlt">magmatic</span> systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged <span class="hlt">magmatism</span> led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich <span class="hlt">magmatic</span> flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy <span class="hlt">magmatic</span> system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021711','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021711"><span>Lead <span class="hlt">isotope</span> compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.</p> <p>1999-01-01</p> <p>Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and <span class="hlt">isotopic</span> compositions. Lead <span class="hlt">isotope</span> compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb <span class="hlt">isotope</span> province. Lead <span class="hlt">isotope</span> compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the <span class="hlt">magmatic</span> suites and the porphyry copper deposits themselves. The range of age-corrected Pb <span class="hlt">isotope</span> compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb <span class="hlt">isotope</span> compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb <span class="hlt">isotope</span> differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead <span class="hlt">isotope</span> compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027659','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027659"><span>Foreland-forearc collisional granitoid and mafic <span class="hlt">magmatism</span> caused by lower-plate lithospheric slab breakoff: The Acadian of Maine, and other orogens</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schoonmaker, A.; Kidd, W.S.F.; Bradley, D.C.</p> <p>2005-01-01</p> <p>During collisional convergence, failure in extension of the lithosphere of the lower plate due to slab pull will reduce the thickness or completely remove lower-plate lithosphere and cause decompression melting of the asthenospheric mantle; magmas from this source may subsequently provide enough heat for substantial partial melting of crustal rocks under or beyond the toe of the collisional accretionary system. In central Maine, United States, this type of <span class="hlt">magmatism</span> is first apparent in the Early Devonian West Branch Volcanics and equivalent mafic volcanics, in the slightly younger voluminous mafic/silicic <span class="hlt">magmatic</span> event of the Moxie Gabbro-Katahdin batholith and related ignimbrite volcanism, and in other Early Devonian granitic plutons. Similar lower-plate collisional sequences with mafic and related silicic <span class="hlt">magmatism</span> probably caused by slab breakoff are seen in the Miocene-Holocene Papuan orogen, and the Hercynian-Alleghenian belt. <span class="hlt">Magmatism</span> of this type is significant because it gives <span class="hlt">evidence</span> in those examples of whole-lithosphere extension. We infer that normal fault systems in outer trench slopes of collisional orogens in general, and possibly those of oceanic subduction zones, may not be primarily due to flexural bending, but are also driven by whole-lithosphere extension due to slab pull. The Maine Acadian example suggests that slab failure and this type of <span class="hlt">magmatism</span> may be promoted by pre-existing large margin-parallel faults in the lower plate. ?? 2005 Geological Society of America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811690H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811690H"><span><span class="hlt">Magmatism</span> and polymetallic mineralization in southwestern Qinzhou-Hangzhou metallogenic belt, South China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Xudong; Lu, Jianjun; Wang, Rucheng; Ma, Dongsheng</p> <p>2016-04-01</p> <p>As Neoproterozoic suture zone between the Yangtze Block and Cathaysia Block, Qinzhou-Hangzhou metallogenic belt is one of the 21 key metallogenic belts in China. Intensive multiple-aged felsic <span class="hlt">magmatism</span> and related polymetallic mineralization take place in this belt. Although Neoproterozoic, Paleozoic, Triassic granites and associated deposits have been found in southwestern Qinzhou-Hangzhou metallogenic belt, Middle-Late Jurassic (150-165 Ma) <span class="hlt">magmatism</span> and related mineralization is of the most importance. Three major kinds of Middle-Late Jurassic granitoids have been distinguished. (Cu)-Pb-Zn-bearing granitoids are slightly differentiated, calc-alkaline and metaluminous dioritic to granodioritic rocks. Sn-(W)-bearing granites contain dark microgranular enclaves and have high contents of REE and HFSE, suggesting affinities of aluminous A-type (A2) granites. W-bearing granites are highly differentiated and peraluminous rocks. (Cu)-Pb-Zn-bearing granitoids have ɛNd(t) values of -11 ˜ -4 and ɛHf(t) values of -12 ˜ -7, corresponding to TDMC(Nd) from 1.4 to 1.8 Ga and TDMC(Hf) from 1.6 to 2.0 Ga, respectively. The ɛNd(t) values of W-bearing granites vary from -11 to -8 with TDMC(Nd) of 1.6 ˜ 1.9 Ga and ɛHf(t) values change from -16 to -7 with TDMC(Hf) of 1.5 ˜ 2.0 Ga. Compared with (Cu)-Pb-Zn-bearing granitoids and W-bearing granites, the Sn-(W)-bearing granites have higher ɛNd(t) (-8 ˜ -2) and ɛHf(t) (-8 ˜ -2) values and younger TDMC(Nd) (1.1 ˜ 1.6 Ga) and TDMC(Hf) (1.2 ˜ 1.8 Ga) values, showing a more juvenile <span class="hlt">isotopic</span> character. Sn-(W)-bearing granites originate from partial melting of granulitized lower crust involved with some mantle-derived materials. W-bearing granites are derived from partial melting of crust. (Cu)-Pb-Zn-bearing granitoids are also derived from crust but may be influenced by more mantle-derived materials. For (Cu)-Pb-Zn deposits, skarn and carbonate replacement are the most important mineralization types. Cu ore bodies mainly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V31E4797M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V31E4797M"><span>Geochemical and <span class="hlt">Isotopic</span> Data from Micron to Across-Arc Scales in the Andean Central Volcanic Zone: Applications for Resolving Crustal <span class="hlt">Magmatic</span> Differentiation and Modification Processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michelfelder, G.; Wilder, A.; Feeley, T.</p> <p>2014-12-01</p> <p>Plagioclase crystals from silicic (andesitic to dacitic) lavas and domes at Volcán Uturuncu, a potentially active volcano in the back-arc of the Andean CVZ (22.3°S, 67.2°W), exhibit large variations in An contents, textures, and core to rim 87Sr/86Sr ratios. Many of the <span class="hlt">isotopic</span> variations can not have existed at <span class="hlt">magmatic</span> temperatures for more than a few thousand years. The crystals likely derived from different locations in the crustal <span class="hlt">magmatic</span> system and mixed just prior to eruption. Uturuncu magmas initially assimilated crustal rocks with high 87Sr/86Sr ratios. The magmas were subsequently modified by frequent recharge of more mafic magmas with lower 87Sr/86Sr ratios. A typical Uturuncu silicic magma therefore only attains its final composition just prior to or during eruption. In the Lazufre region of active surface uplift (~25˚14'S; Volcán Lastarria and Cordon del Azufre) closed system differentiation processes are not the only factors influencing silicic magma compositions. 87Sr/86Sr (0.70651-0.70715) and 206Pb/204Pb ratios (18.83-18.88) are highly elevated and143Nd/144Nd ratios (0.512364 -0.512493) are low relative to similar composition rocks from the "southern Cordillera domain." These data, along with major and trace element trends, reflect a multitude of differentiation processes and magma sources including crystallization-differentiation of more mafic magmas, melting and assimilation of older crustal rocks, and magma mixing and mingling. On an arc-wide scale silicic lavas erupted from three well-characterized composite volcanoes between 21oS and 22oS (Aucanquilcha, Ollagüe, and Uturuncu) display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front apparently reflect melting of relatively young, mafic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004MinPe..82..105L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004MinPe..82..105L"><span>The carbonatite-marble dykes of Abyan Province, Yemen Republic: the mixing of mantle and crustal carbonate materials revealed by <span class="hlt">isotope</span> and trace element analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Bas, M. J.; Ba-Bttat, M. A. O.; Taylor, R. N.; Milton, J. A.; Windley, B. F.; Evins, P. M.</p> <p>2004-09-01</p> <p>Dykes of carbonate rocks, that cut gneisses in the Lowder-Mudiah area of southern Yemen, consist of dolomite and/or calcite with or without apatite, barite and monazite. Petrographic observations, mineralogical, XRF and ICP-MS analyses reveal that some of the carbonate rocks are derived from sedimentary protoliths, whereas others are <span class="hlt">magmatic</span> calcio- and magnesio-carbonatites some of which are mineralized with barite-monazite. The interbanded occurrence and apparent contemporary emplacement of these different rock types within individual dykes, backed by Sr Nd <span class="hlt">isotope</span> <span class="hlt">evidence</span>, are interpreted to show that intrusion of mantle-derived carbonatite magma was accompanied by mobilization of crustal marbles. That took place some 840 Ma ago but the REE-mineralization is dated at ca. 400 Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13B0512F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13B0512F"><span>Re-evaluating Gondwana breakup: <span class="hlt">Magmatism</span>, movement and microplates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferraccioli, F.; Jordan, T. A.</p> <p>2017-12-01</p> <p>Gondwana breakup is thought to have initiated in the Early- to Mid-Jurassic between South Africa and East Antarctica. The critical stages of continental extension and <span class="hlt">magmatism</span> which preceded breakup remain controversial. It is agreed that extensive <span class="hlt">magmatism</span> struck this region 180 Ma, and that significant extension occurred in the Weddell Sea Rift System (WSRS) and around the Falkland Plateau. However, the timing and volume of <span class="hlt">magmatism</span>, extent and mechanism of continental extension, and the links with the wider plate circuit are poorly constrained. Jordan et al (Gondwana Research 2017) recently proposed a two-stage model for the formation of the WSRS: initial extension and movement of the Ellsworth Whitmore Mountains microplate along the margin of the East Antarctic continent on a sinistral strike slip fault zone, followed by transtensional extension closer to the continental margin. Here we identify some key questions raised by the two-stage model, and identify regions where these can be tested. Firstly, is the <span class="hlt">magmatism</span> inferred to have facilitated extension in the WSRS directly linked to the onshore Dufek Intrusion? This question relates to both the uncertainty in the volume of <span class="hlt">magmatism</span> and potentially the timing of extension, and requires improved resolution of aeromagnetic data in the eastern WSRS. Secondly, did extension in the WSRS terminate against a single strike slip fault zone or into a distributed fault system? By integrating new and existing aeromagnetic data along the margin of East Antarctica we evaluate the possibility of a distributed shear zone penetrating the East Antarctic continent, and identify critical remaining data gaps. Finally we question how extension within the WSRS could fit into the wider plate circuit. By integrating the two-stage model into Gplates reconstructions we identify regions of overlap and areas where tracers of past plate motion could be identified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23661641','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23661641"><span>Hydrogen <span class="hlt">isotopes</span> in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saal, Alberto E; Hauri, Erik H; Van Orman, James A; Rutherford, Malcolm J</p> <p>2013-06-14</p> <p>Water is perhaps the most important molecule in the solar system, and determining its origin and distribution in planetary interiors has important implications for understanding the evolution of planetary bodies. Here we report in situ measurements of the <span class="hlt">isotopic</span> composition of hydrogen dissolved in primitive volcanic glass and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. After consideration of cosmic-ray spallation and degassing processes, our results demonstrate that lunar <span class="hlt">magmatic</span> water has an <span class="hlt">isotopic</span> composition that is indistinguishable from that of the bulk water in carbonaceous chondrites and similar to that of terrestrial water, implying a common origin for the water contained in the interiors of Earth and the Moon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.127....3I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.127....3I"><span>A historical overview of Moroccan <span class="hlt">magmatic</span> events along northwest edge of the West African Craton</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane</p> <p>2017-03-01</p> <p>Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of <span class="hlt">magmatic</span> events from Archean to Quaternary. The oldest <span class="hlt">magmatic</span> rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic <span class="hlt">magmatism</span>, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic <span class="hlt">magmatism</span> is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic <span class="hlt">magmatic</span> activity, related to the Pan-African cycle, consists of rift-related Tonian <span class="hlt">magmatism</span> associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer <span class="hlt">magmatism</span> (680-640 Ma), followed by widespread Ediacaran <span class="hlt">magmatism</span> (620-555 Ma). Each <span class="hlt">magmatic</span> episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic <span class="hlt">magmatism</span> began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline <span class="hlt">magmatism</span> was associated with the opening of the Permian basins. Mesozoic <span class="hlt">magmatism</span> began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic <span class="hlt">Magmatic</span> Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic <span class="hlt">magmatic</span> event is represented by mafic lava flows and gabbroic intrusions in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11D..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11D..04M"><span>Beating the Heat: <span class="hlt">Magmatism</span> in the Low-Temperature Thermochronologic Record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, K. E.; Reiners, P. W.; Braun, J.; Karlstrom, L.; Morriss, M. C.</p> <p>2017-12-01</p> <p>The low-temperature thermochronology community was quick to recognize upper-crustal complexities in the geotherm that reflect landscape evolution, but the complex effects of crustal <span class="hlt">magmatism</span> on thermochronometers can be difficult to independently document and remain underexplored. Because <span class="hlt">magmatism</span> is common in many regions central to our understanding of tectonics, this is a significant gap in our ability to robustly interpret rock cooling. Here, we use several different numerical approaches to examine how local and regional crustal <span class="hlt">magmatism</span> affects cooling age patterns and present examples from the western US that demonstrate the importance—and utility—of considering these effects. We modified the finite-element code Pecube to calculate how thermochronometers document the emplacement of simple hot bodies at different crustal levels. Results demonstrate the potential for mid-crustal plutons, emplaced at 10-15 km depth, to reset cooling ages in the overlying rocks at partial-retention depths at the time of <span class="hlt">magmatism</span>. Permo-Triassic sandstones from the Colorado Plateau's Canyonlands region have apatite cooling ages that exemplify the resulting ambiguity: Oligocene rock cooling can be attributed to either 1 km of erosion or relaxation of a geothermal gradient transiently doubled by mid-crustal <span class="hlt">magmatism</span>. Despite these complexities, there are compelling reasons to target rocks with <span class="hlt">magmatic</span> histories. Shallowly emplaced plutons can usefully reset cooling ages in country rocks with protracted near-surface histories, as we have demonstrated in the Colorado Plateau's Henry Mountains. Cooling age patterns are also useful for quantifying <span class="hlt">magmatic</span> processes themselves. In an ongoing project, we use the pattern of thermochronometer resetting around individual dikes that fed the Columbia River flood basalts, which are exposed in the Wallowa Mountains, to identify long-lived feeder dikes and model their thermal aureoles to further constrain eruptive dynamics. The pattern</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6560A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6560A"><span>Steam and gas emission rates from La Soufrière of Guadeloupe (Antilles arc): implications for the <span class="hlt">magmatic</span> supply degassing during unrest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, Patrick; Aiuppa, Alessandro; Beauducel, François; Calabrese, Sergio; Di Napoli, Rossella; Crispi, Olivier; Gaudin, Damien; Parello, Franceso; Hammouya, Gilbert; Tamburello, Giancarlo</p> <p>2015-04-01</p> <p>Since its last <span class="hlt">magmatic</span> eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises (the last of which, in 1976-1977, with 73000 evacuees). Here we report on the first direct quantification of gas plume emissions from La Soufrière summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in 2006 then 2012 [1] by measuring the horizontal and vertical distribution of volcanic gas concentrations in the air-diluted plume, the composition of the hot fumarolic fluid at exit (108°C), and scaling to the speed of plume transport (in situ measurements and FLIR imaging). We first demonstrate that all fumarolic vents of La Soufrière are fed by a common H2O-rich (97-98 mol %) fluid end-member, emitted almost unmodified at the most active South Crater while affected by secondary alterations (steam condensation, sulphur scrubbing) at other vents. Daily fluxes in 2012 (200 tons of H2O, 15 tons of CO2, ~4 tons of H2S and 1 ton of HCl) were augmented by a factor ~3 compared to 2006, in agreement with increasing activity. Summit fumarolic degassing contributes most of the bulk volatile and heat budget (8 MW) of the volcano. <span class="hlt">Isotopic</span> <span class="hlt">evidences</span> demonstrate that La Soufrière hydrothermal emissions are sustained by continuous heat and gas supply from an andesitic magma reservoir confined at 6-7 km depth. This <span class="hlt">magmatic</span> supply mixes with abundant groundwater of tropical meteoric origin in the hydrothermal system. Based on petro-geochemical data for the erupted magma(s), we assess that the volcanic gas fluxes in 2012 can be accounted for by the release of free <span class="hlt">magmatic</span> gas derived from about 1000 m3 per day of the basaltic melt replenishing the reservoir at depth. In terms of mass budget, the current degassing unrest is compatible with enhanced free gas release from that reservoir, without requiring any (actually undetected) magma intrusion. We recommend a regular</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T43A0666W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T43A0666W"><span>Late Triassic granitic rocks of the Central Qiangtang Orogenic Belt, northern Tibet: tracing crustal thickening through post-collisional silicic <span class="hlt">magmatism</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, H.; Chen, J.</p> <p>2017-12-01</p> <p>The Central Qiangtang Orogenic Belt (CQOB) was formed through Triassic continental collision between the Southern and Northern Qiangtang terranes. Numerous granitic intrusions occur along the CQOB, forming a Late Triassic granitic belt that stretches 1000 km from west to east. This Central Qiangtang granitic belt was believed to constitute most of the CQOB. Therefore, the CQOB thus provides a typical composite orogen for the study of relationships between granitoid <span class="hlt">magmatism</span> and orogenic processes. Recently, many studies have been carried out, and the close relationship of the <span class="hlt">magmatic</span> belt with the evolutionary history of the CQOB is well established. Late Triassic intrusive rocks are widely exposed in the Riwanchaka area of Central Qiangtang, northern Tibet. In this study, new U-Pb zircon ages reveal that Late Triassic <span class="hlt">magmatism</span> in Riwanchaka took place at ca 225-205 Ma, coeval with exhumation of the metamorphic rocks in Central Qiangtang. Our new and previously published data enable us to correlate the subduction-related volcanic arc rocks in the Riwanchaka area to a post-collisional extension setting related to slab break-off during northward subduction of the Paleo-Tethys Ocean seafloor. Geochemical characteristics suggested that the samples from CQOB can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios and (La/Yb)N (chondrite-normalized) ratios. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The crustal structure and evolution of the CQOB are considered on the basis of available data and variations in Sr/Y, La/Yb, and Hf <span class="hlt">isotopic</span> ratios. Temporal geochemical and Hf <span class="hlt">isotopic</span> changes, diagnostic of crustal thickening, indicate that the CQOB was greatly</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PEPI..212...44L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PEPI..212...44L"><span><span class="hlt">Evidence</span> for <span class="hlt">magmatic</span> underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lodge, A.; Nippress, S. E. J.; Rietbrock, A.; García-Yeguas, A.; Ibáñez, J. M.</p> <p>2012-12-01</p> <p>In recent years, an increasing number of studies have focussed on resolving the internal structure of ocean island volcanoes. Traditionally, active source seismic experiments have been used to image the volcano edifice. Here we present results using the analysis of compressional to shear (P to S) converted seismic phases from teleseismic events, recorded by stations involved in an active source experiment "TOM-TEIDEVS" (Ibáñez et al., 2008), on the island of Tenerife, Canary Islands. We supplement this data with receiver function (RF) analysis of seismograms from the Canary Islands of Lanzarote and La Palma, applying the extended-time multitaper frequency domain cross-correlation estimation method (Helffrich, 2006). We use the neighbourhood inversion approach of Sambridge (1999a,b) to model the RFs and our results indicate <span class="hlt">magmatic</span> underplating exists beneath all three islands, ranging from 2 to 8 km, but showing no clear correlation with the age of the island. Beneath both La Palma and Tenerife, we find localized low velocity zones (LVZs), which we interpret as due to partial melt, supported by their correlation with the location of historical earthquakes (La Palma) and recent earthquakes (Tenerife). For Lanzarote, we do not sample the most recently volcanically active region and find no <span class="hlt">evidence</span> for a LVZ. Instead, we find a simple gradational velocity structure, with discontinuities at ˜4, 10 and 18 km depth, in line with previous studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tecto..36.1861W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tecto..36.1861W"><span>Birth, life, and demise of the Andean-syn-collisional Gissar arc: Late Paleozoic tectono-<span class="hlt">magmatic</span>-metamorphic evolution of the southwestern Tian Shan, Tajikistan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Worthington, James R.; Kapp, Paul; Minaev, Vladislav; Chapman, James B.; Mazdab, Frank K.; Ducea, Mihai N.; Oimahmadov, Ilhomjon; Gadoev, Mustafo</p> <p>2017-10-01</p> <p>The amalgamation of the Central Asian Orogenic Belt in the southwestern Tian Shan in Tajikistan is represented by tectono-<span class="hlt">magmatic</span>-metamorphic processes that accompanied late Paleozoic ocean closure and collision between the Karakum-Tarim and Kazakh-Kyrgyz terranes. Integrated U-Pb geochronology, thermobarometry, pseudosection modeling, and Hf geochemistry constrain the timing and petro-tectonic nature of these processes. The Gissar batholith and the Garm massif represent an eastward, along-strike increase in paleodepth from upper-batholith ( 21-7 km) to arc-root ( 36-19 km) levels of the Andean-syn-collisional Gissar arc, which developed from 323-288 Ma in two stages: (i) Andean, I-type granitoid <span class="hlt">magmatism</span> from 323-306 Ma due to northward subduction of the Gissar back-arc ocean basin under the Gissar microcontinent, which was immediately followed by (ii) syn-collisional, I-S-type granitoid <span class="hlt">magmatism</span> in the Gissar batholith and the Garm massif from 304-288 Ma due to northward subduction/underthrusting of Karakum marginal-continental crust under the Gissar microcontinent. A rapid <span class="hlt">isotopic</span> pull-up from 288-286 Ma signals the onset of juvenile, alkaline-syenitic, post-collisional <span class="hlt">magmatism</span> by 280 Ma, which was driven by delamination of the Gissar arclogite root and consequent convective asthenospheric upwelling. Whereas M-HT/LP prograde metamorphism in the Garm massif (650-750°C/6-7 kbar) from 310-288 Ma was associated with subduction-magma inundation and crustal thickening, HT/LP heating and decompression to peak-metamorphic temperatures ( 800-820°C/6-4 kbar) at 288 ± 6 Ma was driven by the transmission of a post-collisional, mantle-derived heat wave through the Garm-massif crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11...97S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11...97S"><span>A Palaeoproterozoic tectono-<span class="hlt">magmatic</span> lull as a potential trigger for the supercontinent cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spencer, Christopher J.; Murphy, J. Brendan; Kirkland, Christopher L.; Liu, Yebo; Mitchell, Ross N.</p> <p>2018-02-01</p> <p>The geologic record exhibits periods of active and quiescent geologic processes, including <span class="hlt">magmatism</span>, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-<span class="hlt">magmatic</span> lull. During this lull, global-scale continental <span class="hlt">magmatism</span> (plume and arc <span class="hlt">magmatism</span>) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of <span class="hlt">magmatic</span> quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile <span class="hlt">magmatism</span>. This post-lull <span class="hlt">magmatic</span> flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth's first hemispheric supercontinent. We posit that the juvenile <span class="hlt">magmatic</span> flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..257...44A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..257...44A"><span>Gas geochemistry of the <span class="hlt">magmatic</span>-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agusto, M.; Tassi, F.; Caselli, A. T.; Vaselli, O.; Rouwet, D.; Capaccioni, B.; Caliro, S.; Chiodini, G.; Darrah, T.</p> <p>2013-05-01</p> <p>Copahue volcano is part of the Caviahue-Copahue Volcanic Complex (CCVC), which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina-Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe-Ofqui strike slip and the northern Copahue-Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and <span class="hlt">isotope</span> compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium <span class="hlt">isotope</span> ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from - 8.8‰ to - 6.8‰ vs. V-PDB), δ15N values (+ 5.3‰ to + 5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the <span class="hlt">magmatic</span> source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle <span class="hlt">isotope</span> signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°-220 °C. On the contrary, rock-fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006-2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MinPe.tmp...82N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MinPe.tmp...82N"><span>The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz <span class="hlt">magmatic</span> belt, Iran</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nabatian, Ghasem; Li, Xian-Hua; Wan, Bo; Honarmand, Maryam</p> <p>2017-11-01</p> <p>The geochemical and <span class="hlt">isotopic</span> investigations were provided on the Upper Eocene Senj mafic intrusion and Mo-Cu mineralization to better understand the tectono-<span class="hlt">magmatic</span> evolution and metallogeny of the central part of the Alborz <span class="hlt">magmatic</span> belt. The Senj mafic intrusion is composed of gabbro to monzodiorite and monzonite in lithology, and intruded as a sill into volcano-sedimentary rocks of the Eocene Karaj Formation. The Karaj Formation consists of volcano-sedimentary rocks, such as altered crystalline to shaly tuffs. The Senj intrusion (39.7 ± 0.4 Ma) shows LILE and LREE enrichment and negative anomaly of Nb, Ta and Ti, the geochemical signatures similar to those from subduction-related mafic magmas. The Hf-O zircon analyses yield ɛHf(t) values of + 4.1 to + 11.1 and δ18O values of + 4.8 to + 6.2‰. The zircon <span class="hlt">isotopic</span> signatures together with shoshonitic affinity in the Senj mafic samples suggest partial melting of an enriched lithospheric mantle that had already been metasomatized by slab-derived melts and fluids. The Mo-Cu mineralization mainly occurs as veins and veinlets in the volcano-sedimentary rocks of the Karaj Formation and is dominated by molybdenite with minor amounts of chalcopyrite, bornite, pyrite and tetrahedrite-tennantite. The associated gangue minerals are tremolite, actinolite, quartz, calcite, chlorite and epidote. The Senj Mo-Cu deposit formed in volcano-sedimentary rocks following the emplacement of the Late Eocene Senj sill. The source of molybdenite in the Senj deposit is dominantly from crustal materials as it is revealed by Re contents in the molybdenite minerals (0.5 to 0.7 ppm). In fact, the molybdenite occurrence may be a remobilization process related to the emplacement of the Senj mafic magma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023112','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023112"><span>Late Holocene hydrous mafic <span class="hlt">magmatism</span> at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kinzler, R.J.; Donnelly-Nolan, J. M.; Grove, T.L.</p> <p>2000-01-01</p> <p>This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years B.P.). Petrologic, geochemical and <span class="hlt">isotopic</span> <span class="hlt">evidence</span> indicates that this late Holocene mafic <span class="hlt">magmatism</span> was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic <span class="hlt">magmatism</span> (from 10,600 to ~3000 14C years B.P.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (< 0.2 wt%), lower LILE abundance and different <span class="hlt">isotopic</span> characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched <span class="hlt">magmatic</span> inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15105458','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15105458"><span>Coeval large-scale <span class="hlt">magmatism</span> in the Kalahari and Laurentian cratons during Rodinia assembly.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanson, Richard E; Crowley, James L; Bowring, Samuel A; Ramezani, Jahandar; Gose, Wulf A; Dalziel, Ian W D; Pancake, James A; Seidel, Emily K; Blenkinsop, Thomas G; Mukwakwami, Joshua</p> <p>2004-05-21</p> <p>We show that intraplate <span class="hlt">magmatism</span> occurred 1106 to 1112 million years ago over an area of two million square kilometers within the Kalahari craton of southern Africa, during the same magnetic polarity chron as voluminous <span class="hlt">magmatism</span> within the cratonic core of North America. These contemporaneous <span class="hlt">magmatic</span> events occurred while the Rodinia supercontinent was being assembled and are inferred to be parts of a single large igneous province emplaced across the two cratons. Widespread intraplate <span class="hlt">magmatism</span> during Rodinia assembly shows that mantle upwellings required to generate such provinces may occur independently of the supercontinent cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1986/0565/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1986/0565/report.pdf"><span>Red-Sea rift <span class="hlt">magmatism</span> near Al Lith, Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pallister, J.S.</p> <p>1986-01-01</p> <p>A model of poly-baric mantle-melt derivation, producing several alkalinesubalkaline cycles, best explains <span class="hlt">magmatism</span> in the Red Sea region. Differences in the depths and dynamics of mantle-melt extraction and transport brought about through changes in crust and mantle structure as the rift and paar developed may account for the transition from mixed alkaline-subalkaline bimodal <span class="hlt">magmatism</span> of the pre-20 Ma rift basin to exclusively subalkaline (tholeiitic) <span class="hlt">magmatism</span> at the Red Sea spreading axis and to predominantly alkali basalt volcanism within the Arabian Shield.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032537&hterms=ecosystem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Decosystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032537&hterms=ecosystem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Decosystem"><span>Methylhopane Biomarker and Carbon <span class="hlt">Isotopic</span> <span class="hlt">Evidence</span> for Late Archean Aerobic Ecosystems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eigenbrode, Jennifer L.; Freeman, Katherine H.; Summons, Roger E.</p> <p>2007-01-01</p> <p>Molecular fossils are particularly valuable in early Earth studies because they provide information about microbial sources and ecology. Here we report on the distribution of 2- methyl and 3-methylhopanes preserved in a 2.72-2.56 billion-year-old section of shallow and deepwater sediments of the Hamersley Province [Eigenbrode et aI., submitted]. These biomarkers are mostly from cyanobacteria and oxygen-respiring methanotrophs, respectively. The relative abundance of 2-methylhopanes increases with carbonate abundance in shallow-water facies indicating cyanobacteria were key microbes in shallow ecosystems and suggesting they supplied both molecular oxygen and fixed carbon. The relative abundance of 3-methylhopane strongly correlates with kerogen-carbon <span class="hlt">isotopic</span> values, and is more abundant in the samples with 13C-enriched signatures. Thus, molecular data provides <span class="hlt">evidence</span> for cycling of methane in shallow settings, even though the anoxic deeper environments bear stronger 13C-depletion, which together suggests a more complex methane cycle than previously envisioned. Detailed facies analysis of the Hamersley carbon-<span class="hlt">isotope</span> record reveals temporal changes suggesting continued oxidation of shallow settings favoring the expansion of aerobic ecosystems and respiring organisms [Eigenbrode et aI., 2006, PNAS, 103: 15759]. Similar analysis of published carbon-<span class="hlt">isotopic</span> records suggests similar, but diachronous, expansion of oxygenated habitats in shallow then deep waters as anaerobic microbial communities gave way to respiring communities fueled by oxygenic photosynthesis before the post 2.45-Ga atmospheric oxygenation event [Eigenbrode et aI., 2006]. The robust relationships observed provide geochemical support for methanogenesis, aerobic methanotrophy, and oxygenic photosynthesis in the late Archean, as well as major ecological shifts linked to biogeochemical reorganization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3297203','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3297203"><span><span class="hlt">Isotopic</span> <span class="hlt">evidence</span> of plutonium release into the environment from the Fukushima DNPP accident</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zheng, Jian; Tagami, Keiko; Watanabe, Yoshito; Uchida, Shigeo; Aono, Tatsuo; Ishii, Nobuyoshi; Yoshida, Satoshi; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao</p> <p>2012-01-01</p> <p>The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu <span class="hlt">isotopes</span> remains uncertain almost one year after the accident. Here we report the <span class="hlt">isotopic</span> <span class="hlt">evidence</span> for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination. PMID:22403743</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.478..179T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.478..179T"><span>Forced transport of thermal energy in <span class="hlt">magmatic</span> and phreatomagmatic large volume ignimbrites: Paleomagnetic <span class="hlt">evidence</span> from the Colli Albani volcano, Italy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trolese, Matteo; Giordano, Guido; Cifelli, Francesca; Winkler, Aldo; Mattei, Massimo</p> <p>2017-11-01</p> <p>Few studies have detailed the thermal architecture of large-volume pyroclastic density current deposits, although such work has a clear importance for understanding the dynamics of eruptions of this magnitude. Here we examine the temperature of emplacement of large-volume caldera-forming ignimbrites related to <span class="hlt">magmatic</span> and phreatomagmatic eruptions at the Colli Albani volcano, Italy, by using thermal remanent magnetization analysis on both lithic and juvenile clasts. Results show that all the <span class="hlt">magmatic</span> ignimbrites were deposited at high temperature, between the maximum blocking temperature of the magnetic carrier (600-630 °C) and the glass transition temperature (about 710 °C). Temperature estimations for the phreatomagmatic ignimbrite range between 200 and 400 °C, with most of the clasts emplaced between 200 and 320 °C. Because all the investigated ignimbrites, <span class="hlt">magmatic</span> and phreatomagmatic, share similar magma composition, volume and mobility, we attribute the temperature difference to magma-water interaction, highlighting its pronounced impact on thermal dissipation, even in large-volume eruptions. The homogeneity of the deposit temperature of each ignimbrite across its areal extent, which is maintained across topographic barriers, suggests that these systems are thermodynamically isolated from the external environment for several tens of kilometers. Based on these findings, we propose that these large-volume ignimbrites are dominated by the mass flux, which forces the lateral transport of mass, momentum, and thermal energy for distances up to tens of kilometers away from the vent. We conclude that spatial variation of the emplacement temperature can be used as a proxy for determining the degree of forced-convection flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010044940&hterms=rhenium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drhenium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010044940&hterms=rhenium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drhenium"><span>Rhenium and Iridium Partitioning in Silicate and <span class="hlt">Magmatic</span> Spinels: Implications for Planetary <span class="hlt">Magmatism</span> and Mantles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Righter, K.</p> <p>2001-01-01</p> <p>Highly siderophile elements Re, Ru and Ir partition strongly into spinel structures with large octahedral sites. New experimental results for both <span class="hlt">magmatic</span> and silicate spinels will be presented with a few planetary implications. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916749S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916749S"><span><span class="hlt">Evidence</span> for subduction-related <span class="hlt">magmatism</span> during the Cretaceous and Cenozoic in Myanmar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare</p> <p>2017-04-01</p> <p>Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional <span class="hlt">evidence</span> would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf <span class="hlt">isotope</span> data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007E%26PSL.259..567Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007E%26PSL.259..567Y"><span>Osmium <span class="hlt">isotope</span> <span class="hlt">evidence</span> for uniform distribution of s- and r-process components in the early solar system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yokoyama, Tetsuya; Rai, Vinai K.; Alexander, Conel M. O'D.; Lewis, Roy S.; Carlson, Richard W.; Shirey, Steven B.; Thiemens, Mark H.; Walker, Richard J.</p> <p>2007-07-01</p> <p>We have precisely measured Os <span class="hlt">isotopic</span> ratios in bulk samples of five carbonaceous, two enstatite and two ordinary chondrites, as well as the acid-resistant residues of three carbonaceous chondrites. All bulk meteorite samples have uniform 186Os/ 188Os, 188Os/ 189Os and 190Os/ 189Os ratios, when decomposed by an alkaline fusion total digestion technique. These ratios are also identical to estimates for Os in the bulk silicate Earth. Despite Os <span class="hlt">isotopic</span> homogeneity at the bulk meteorite scale, acid insoluble residues of three carbonaceous chondrites are enriched in 186Os, 188Os and 190Os, <span class="hlt">isotopes</span> with major contributions from stellar s-process nucleosynthesis. Conversely, these <span class="hlt">isotopes</span> are depleted in acid soluble portions of the same meteorites. The complementary enriched and depleted fractions indicate the presence of at least two types of Os-rich components in these meteorites, one enriched in Os <span class="hlt">isotopes</span> produced by s-process nucleosynthesis, the other enriched in <span class="hlt">isotopes</span> produced by the r-process. Presolar silicon carbide is the most probable host for the s-process-enriched Os present in the acid insoluble residues. Because the enriched and depleted components present in these meteorites are combined in proportions resulting in a uniform chondritic/terrestrial composition, it requires that disparate components were thoroughly mixed within the solar nebula at the time of the initiation of planetesimal accretion. This conclusion contrasts with <span class="hlt">evidence</span> from the <span class="hlt">isotopic</span> compositions of some other elements (e.g., Sm, Nd, Ru, Mo) that suggests heterogeneous distribution of matter with disparate nucleosynthetic sources within the nebula.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MinDe..53..585Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MinDe..53..585Z"><span>Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: <span class="hlt">evidence</span> from structures, Re-Os-Pb-S <span class="hlt">isotopes</span>, and fluid inclusions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Qing; Li, Wenchang; Qing, Chengshi; Lai, Yang; Li, Yingxu; Liao, Zhenwen; Wu, Jianyang; Wang, Shengwei; Dong, Lei; Tian, Enyuan</p> <p>2018-04-01</p> <p>The Zhaxikang Pb-Zn-Sb-Ag-(Au) deposits, located in the eastern part of northern Himalaya, totally contain more than 1.146 million tonnes (Mt) of Pb, 1.407 Mt of Zn, 0.345 Mt of Sb, and 3 kilotonnes (kt) of Ag. Our field observations suggest that these deposits are controlled by N-S trending and west- and steep-dipping normal faults, suggesting a hydrothermal rather than a syngenetic sedimentary origin. The Pb-Zn-Sb-Ag-(Cu-Au) mineralization formed in the Eocene as indicated by a Re-Os isochron age of 43.1 ± 2.5 Ma. Sulfide minerals have varying initial Pb <span class="hlt">isotopic</span> compositions, with (206Pb/204Pb)i of 19.04-19.68, (207Pb/204Pb)i of 15.75-15.88, and (208Pb/204Pb)i of 39.66-40.31. Sulfur <span class="hlt">isotopic</span> values display a narrow δ34S interval of +7.8-+12.2‰. These Pb-S <span class="hlt">isotopic</span> data suggest that the Zhaxikang sources of Pb and S should be mainly from the coeval felsic magmas and partly from the surrounding Mesozoic strata including metasedimentary rocks and layered felsic volcanic rocks. Fluid inclusion studies indicate that the hydrothermal fluids have medium temperatures (200-336 °C) but varying salinities (1.40-18.25 wt.% NaCl equiv.) with densities of 0.75-0.95 g/cm3, possibly suggesting an evolution mixing between a high salinity fluid, perhaps of <span class="hlt">magmatic</span> origin, with meteoric water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64493&keyword=Phylogeny&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64493&keyword=Phylogeny&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>MYCORRHIZAL VS. SAPROTROPHIC STATUS OF FUNGI: THE <span class="hlt">ISOTOPIC</span> <span class="hlt">EVIDENCE</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Relative abundance of carbon (C) and nitrogen (N) <span class="hlt">isotopes</span> in fungal sporocarps may prove useful in unraveling fungal roles in ecosystems. Sporocarps of known mycorrhizal or saprotrophic genera were collected from a single site in Oregon and <span class="hlt">isotopically</span> compared to foliage, litt...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.308..412G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.308..412G"><span>Zircon Hf-O <span class="hlt">isotopic</span> constraints on the origin of Late Mesozoic felsic volcanic rocks from the Great Xing'an Range, NE China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong</p> <p>2018-05-01</p> <p>The voluminous Late Mesozoic <span class="hlt">magmatism</span> was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd <span class="hlt">isotopic</span> characteristics, but this mechanism faces difficulties when interpreting other <span class="hlt">isotopic</span> data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and <span class="hlt">isotopic</span> data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the <span class="hlt">magmatic</span> zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the <span class="hlt">magmatic</span> zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O <span class="hlt">isotopic</span> characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen <span class="hlt">isotope</span> alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090028&hterms=shale+Oil&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dshale%2BOil','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090028&hterms=shale+Oil&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dshale%2BOil"><span>Origin of petroporphyrins. 2. <span class="hlt">Evidence</span> from stable carbon <span class="hlt">isotopes</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.</p> <p>1990-01-01</p> <p>Compared with the carbon-13 <span class="hlt">isotopic</span> composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 <span class="hlt">isotopic</span> composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 <span class="hlt">isotopic</span> composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 <span class="hlt">isotopic</span> composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191260','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191260"><span>Geochemistry, Nd-Pb <span class="hlt">Isotopes</span>, and Pb-Pb Ages of the Mesoproterozoic Pea Ridge Iron Oxide-Apatite–Rare Earth Element Deposit, Southeast Missouri</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ayuso, Robert A.; Slack, John F.; Day, Warren C.; McCafferty, Anne E.</p> <p>2016-01-01</p> <p>Iron oxide-apatite and iron oxide-copper-gold deposits occur within ~1.48 to 1.47 Ga volcanic rocks of the St. Francois Mountains terrane near a regional boundary separating crustal blocks having contrasting depleted-mantle Sm-Nd model ages (TDM). Major and trace element analyses and Nd and Pb <span class="hlt">isotope</span> data were obtained to characterize the Pea Ridge deposit, improve identification of exploration targets, and better understand the regional distribution of mineralization with respect to crustal blocks. The Pea Ridge deposit is spatially associated with felsic volcanic rocks and plutons. Mafic to intermediate-composition rocks are volumetrically minor. Data for major element variations are commonly scattered and strongly suggest element mobility. Ratios of relatively immobile elements indicate that the felsic rocks are evolved subalkaline dacite and rhyolite; the mafic rocks are basalt to basaltic andesite. Granites and rhyolites display geochemical features typical of rocks produced by subduction. Rare earth element (REE) variations for the rhyolites are diagnostic of rocks affected by hydrothermal alteration and associated REE mineralization. The magnetite-rich rocks and REE-rich breccias show similar REE and mantle-normalized trace element patterns.Nd <span class="hlt">isotope</span> compositions (age corrected) show that: (1) host rhyolites have ɛNd from 3.44 to 4.25 and TDM from 1.51 to 1.59 Ga; (2) magnetite ore and specular hematite rocks display ɛNd from 3.04 to 4.21 and TDM from 1.6 to 1.51 Ga, and ɛNd from 2.23 to 2.81, respectively; (3) REE-rich breccias have ɛNd from 3.04 to 4.11 and TDM from 1.6 to 1.51 Ga; and (4) mafic to intermediate-composition rocks range in ɛNd from 2.35 to 3.66 and in TDM from 1.66 to 1.56. The ɛNd values of the magnetite and specular hematite samples show that the REE mineralization is <span class="hlt">magmatic</span>; no <span class="hlt">evidence</span> exists for major overprinting by younger, crustal meteoric fluids, or by externally derived Nd. Host rocks, breccias, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.246..110G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.246..110G"><span>Long-lived interaction between hydrothermal and <span class="hlt">magmatic</span> fluids in the Soultz-sous-Forêts granitic system (Rhine Graben, France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardien, Véronique; Rabinowicz, Michel; Vigneresse, Jean-Louis; Dubois, Michel; Boulvais, Philippe; Martini, Rossana</p> <p>2016-03-01</p> <p>The 5 km deep drilling at Soultz-sous-Forêts samples a granitic intrusion under its sedimentary cover. Core samples at different depths allow study of the evolving conditions of fluid-rock interaction, from the syn-tectonic emplacement of Hercynian granites at depth until post-cooling history and alteration close to the surface. Hydrogen, carbon and oxygen <span class="hlt">isotope</span> compositions of CO2 and H2O have been measured in fluid inclusions trapped in <span class="hlt">magmatic</span> quartz within samples collected along the drill core. Early Fluid Inclusions Assemblage (FIA) contains aqueous carbonic fluids whereas the latest FIA are H2O-rich. In the early FIA, the amount of CO2 and the δ13C value both decrease with depth, revealing two distinct sources of carbon, one likely derived from sedimentary carbonates (δ13C = - 2‰ V-PDB) and another from the continental crust (δ13C = - 9‰ V-PDB). The carbon <span class="hlt">isotope</span> composition of bulk granites indicates a third carbon source of organic derivation (δ13C = - 20‰ V-PDB). Using a δD - δ18O plot, we argue that the water trapped in quartz grains is mainly of meteoric origin somewhat mixed with <span class="hlt">magmatic</span> water. The emplacement of the Soultz-sous-Forêts granite pluton occurred in a North 030-040° wrench zone. After consolidation of the granite mush at 600 °C, sinistral shear (γ 1) concentrated the final leucocratic melt in vertical planes oriented along (σ1, σ2). Crystallization of this residual leucocratic melt occurred while shearing was still active. At a temperature of 550 °C, crystallization ended with the formation of vertical quartz veins spaced about 5 mm, and exhibiting a width of several cm. The quartz veins form a connected network of a few kilometers in height, generated during hydrothermal contraction of the intrusion. Quartz crystallization led to the exsolution of 30% by volume of the aqueous fluid. As quartz grains were the latest solid phase still plastic, shearing localized inside the connected quartz network. Aqueous fluid was</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013022','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013022"><span><span class="hlt">Isotopic</span> studies of the late Archean plutonic rocks of the Wind River Range, Wyoming.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stuckless, J.S.; Hedge, C.E.; Worl, R.G.; Simmons, K.R.; Nkomo, I.T.; Wenner, D.B.</p> <p>1985-01-01</p> <p>Two late Archaean intrusive events were documented in the Wind River Range by <span class="hlt">isotopic</span> studies of the Rb-Sr and U-Th-Pb systems in whole-rock samples and the U-Pb systematics for zircon. An age of approx 2630(20) m.y. for the Louis Lake batholith and apparent ages of 2504(40) to 2575(50) m.y. for the Bear Ears pluton were obtained. Post-<span class="hlt">magmatic</span> hydrothermal events approximately Tertiary in age, lowered delta 18O values and disturbed parent-daughter relationships in most of the <span class="hlt">isotopic</span> systems investigated. The two intrusive units apparently were derived from different protoliths. Initial <span class="hlt">isotopic</span> ratios and petrochemistry for the Louis Lake batholith are consistent with an early Archaean trondhjemitic to tonalitic source. The protolith for the Bear Ears pluton must have been subjected to high-grade metamorphism that caused loss of Rb and U prior to magma generation. -L.C.H.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MinPe.110...11K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MinPe.110...11K"><span>Strontium <span class="hlt">isotope</span> systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria - results of in-situ LA-MC-ICP-MS analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozlik, Michael; Gerdes, Axel; Raith, Johann G.</p> <p>2016-02-01</p> <p>The in-situ Sr <span class="hlt">isotopic</span> systematics of scheelite and apatite from the Felbertal W deposit and a few regional Variscan orthogneisses ("Zentralgneise") have been determined by LA-MC-ICP-MS. The 87Sr/86Sr ratios of scheelite and apatite from the deposit are highly radiogenic and remarkably scattering. In the early <span class="hlt">magmatic</span>-hydrothermal scheelite generations (Scheelite 1 and 2) the 87Sr/86Sr ratios range from 0.72078 to 0.76417 and from 0.70724 to 0.76832, respectively. Metamorphic Scheelite 3, formed by recrystallisation and local mobilisation of older scheelite, is characterised by even higher 87Sr/86Sr values between 0.74331 and 0.80689. Statistics allows discriminating the three scheelite generations although there is considerable overlap between Scheelite 1 and 2; they could be mixtures of the same <span class="hlt">isotopic</span> reservoirs. The heterogeneous and scattering 87Sr/86Sr ratios of the two primary scheelite generations suggest modification of the Sr <span class="hlt">isotope</span> system due to fluid-rock interaction and <span class="hlt">isotopic</span> disequilibrium. Incongruent release of 87Sr from micas in the Early Palaeozoic host rocks of the Habach Complex contributed to the solute budget of the hydrothermal fluids and may explain the radiogenic Sr <span class="hlt">isotope</span> signature of scheelite. Spatially resolved analyses revealed <span class="hlt">isotopic</span> disequilibrium even on a sub-mm scale within zoned Scheelite 2 crystals indicating scheelite growth in an <span class="hlt">isotopic</span> dynamical hydrothermal system. Zoned apatite from the W mineralised Early Carboniferous K1-K3 orthogneiss in the western ore field yielded 87Sr/86Sr of 0.72044-0.74514 for the cores and 0.74535-0.77937 for the rims. Values of <span class="hlt">magmatic</span> apatite cores from the K1-K3 orthogneiss are comparable to those of primary Scheelite 1; they are too radiogenic to be <span class="hlt">magmatic</span>. The Sr <span class="hlt">isotopic</span> composition of apatite cores was therefore equally modified during the hydrothermal mineralisation processes, therefore supporting the single-stage genetic model in which W mineralisation is associated with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5238450','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5238450"><span>Dual sources of water overprinting on the low zircon δ18O metamorphic country rocks: Disequilibrium constrained through inverse modelling of partial reequilibration</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wei, Chun-Sheng; Zhao, Zi-Fu</p> <p>2017-01-01</p> <p>Since water is only composed of oxygen and hydrogen, δ18O and δ2H values are thus utilized to trace the origin of water(s) and quantify the water-rock interactions. While Triassic high pressure (HP) and ultrahigh pressure (UHP) metamorphic rocks across the Dabie-Sulu orogen in central-eastern China have been well documented, postcollisional <span class="hlt">magmatism</span> driven hydrothermal systems are little known. Here we show that two sources of externally derived water interactions were revealed by oxygen <span class="hlt">isotopes</span> for the gneissic country rocks intruded by the early Cretaceous postcollisional granitoids. Inverse modellings indicate that the degree of disequilibrium (doD) of meteoric water interactions was more <span class="hlt">evident</span> than that of <span class="hlt">magmatic</span> one (−65 ± 1o vs. −20 ± 2°); the partial reequilibration between quartz and alkali feldspar oxygen <span class="hlt">isotopes</span> with <span class="hlt">magmatic</span> water was achieved at 340 °C with a water/rock (W/R) ratio of about 1.2 for an open-hydrothermal system; two-stage meteoric water interactions were unraveled with reequilibration temperatures less than 300 °C and W/R ratios around 0.4. The lifetime of fossil <span class="hlt">magmatic</span> hydrothermal system overprinted on the low zircon δ18O orthogneissic country rocks was estimated to maintain up to 50 thousand years (Kyr) through oxygen exchange modellings. Four-stage <span class="hlt">isotopic</span> evolutions were proposed for the <span class="hlt">magmatic</span> water interacted gneiss. PMID:28091552</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28407013','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28407013"><span>Dietary resilience among hunter-gatherers of Tierra del Fuego: <span class="hlt">Isotopic</span> <span class="hlt">evidence</span> in a diachronic perspective.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tafuri, Mary Anne; Zangrando, Atilio Francisco Javier; Tessone, Augusto; Kochi, Sayuri; Moggi Cecchi, Jacopo; Di Vincenzo, Fabio; Profico, Antonio; Manzi, Giorgio</p> <p>2017-01-01</p> <p>The native groups of Patagonia have relied on a hunter-gatherer economy well after the first Europeans and North Americans reached this part of the world. The large exploitation of marine mammals (i.e., seals) by such allochthonous groups has had a strong impact on the local ecology in a way that might have forced the natives to adjust their subsistence strategies. Similarly, the introduction of new foods might have changed local diet. These are the premises of our <span class="hlt">isotopic</span>-based analysis. There is a large set of paleonutritional investigations through <span class="hlt">isotopic</span> analysis on Fuegians groups, however a systematic exploration of food practices across time in relation to possible pre- and post-contact changes is still lacking. In this paper we investigate dietary variation in hunter-gatherer groups of Tierra del Fuego in a diachronic perspective, through measuring the <span class="hlt">isotopic</span> ratio of carbon (∂13C) and nitrogen (∂15N) in the bone collagen of human and a selection of terrestrial and marine animal samples. The data obtained reveal an unexpected <span class="hlt">isotopic</span> uniformity across prehistoric and recent groups, with little variation in both carbon and nitrogen mean values, which we interpret as the possible <span class="hlt">evidence</span> of resilience among these groups and persistence of subsistence strategies, allowing inferences on the dramatic contraction (and extinction) of Fuegian populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016084','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016084"><span>Deep drilling at the Siljan Ring impact structure: oxygen-<span class="hlt">isotope</span> geochemistry of granite</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Komor, S.C.; Valley, J.W.</p> <p>1990-01-01</p> <p>The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-<span class="hlt">isotope</span> compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz <span class="hlt">isotopic</span> compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical <span class="hlt">evidence</span> of alteration, provides <span class="hlt">evidence</span> for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen <span class="hlt">isotopic</span> compositions preserve <span class="hlt">evidence</span> for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001GeCoA..65..571S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001GeCoA..65..571S"><span><span class="hlt">Evidence</span> for a nonmagmatic component in potassic hydrothermal fluids of porphyry cu-Au-Mo systems, Yukon, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selby, David; Nesbitt, Bruce E.; Creaser, Robert A.; Reynolds, Peter H.; Muehlenbachs, Karlis</p> <p>2001-02-01</p> <p> 40Ar or disturbance. The 40Ar/ 36Ar values (285-292) of the K-feldspar samples are similar to the atmospheric compositions (295 ± 5) during Late Cretaceous time. The H, Sr, Pb, and Ar <span class="hlt">isotopic</span> compositions of hydrothermal K-feldspar and quartz vein fluid inclusion waters that characterize the potassic hydrothermal fluids show <span class="hlt">evidence</span> for an exotic component in addition to <span class="hlt">magmatic</span> water (fluid). This component has a low δD, radiogenic Sr and Pb, and an atmospheric Ar composition. The inheritance of pre-existing <span class="hlt">isotope</span> compositions from the host rocks, postpotassic alteration <span class="hlt">isotope</span> exchange, or the replenishment of the magma chamber with magma of different <span class="hlt">isotopic</span> composition cannot explain the <span class="hlt">isotope</span> data. We suggest that to generate the observed H, Sr, Pb, and Ar <span class="hlt">isotope</span> compositions, crustal fluids must be a component (15-94%) of potassic hydrothermal fluids in porphyry mineralization in the deposits studied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997Geo....25..503S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997Geo....25..503S"><span>Carbon <span class="hlt">isotopic</span> <span class="hlt">evidence</span> for photosynthesis in Early Cambrian oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.</p> <p>1997-06-01</p> <p>Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable <span class="hlt">isotope</span> analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C <span class="hlt">isotopic</span> composition. All primary carbonate components exhibit C <span class="hlt">isotopic</span> values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton</em> precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C <span class="hlt">isotopic</span> composition of the photic zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18413605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18413605"><span>Stable <span class="hlt">isotope</span> <span class="hlt">evidence</span> for an amphibious phase in early proboscidean evolution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L</p> <p>2008-04-15</p> <p>The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the <span class="hlt">isotopic</span> pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined <span class="hlt">evidence</span> from <span class="hlt">isotopes</span>, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995Metic..30R.606Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995Metic..30R.606Z"><span>Nitrogen <span class="hlt">Isotopic</span> Disequilibrium in the Cape York III A Iron</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zipfel, J.; Kim, Y.; Marti, K.</p> <p>1995-09-01</p> <p>Cape York is a medium octahedrite of the class III A, which is presumed to have been formed by fractional crystallization of an asteroidal metal core (1). Within the Cape York kamacite-taenite matrix abundant troilite nodules are found. From their elongated form it has been suggested that immiscible S-rich liquids were trapped under the influence of a gravity field. Some of these nodules contain chromite grains, preferentially at the bottom of the troilite/metal boundary (2,3). Minor phases within the troilite are sulfides, phosphates, silica and copper. Carlsbergite (CrN) is exclusively found within the metal matrix. The nitrogen <span class="hlt">isotopic</span> composition in metal of Cape York was analyzed by several workers and found to be enriched in 14N (delta^(15)N -32.3 to -94.8 per mil) with concentrations varying from 7 to 37 ppm. The large range of N concentrations may reflect artifacts due to experimental difficulties (4), but also might be attributed to varying amounts of CrN within the metal separates. The N in troilite (delta^(15)N -3.8+/-1.2 per mil) was found to be heavier than that observed in metal (4). In one temperature step (1100 degrees C) during stepwise release, nitrogen with a delta^(15)N of -32 per mil was measured, indicating inclusions of an <span class="hlt">isotopically</span> distinct phase in troilite. In order to trace the nature of the inclusion we determined the N <span class="hlt">isotopic</span> composition first in a small pilot sample and then in a larger (23.93mg) chromite separate. The latter was stepwise heated at temperatures between 400 and 1000 degrees C, and the release of sample N started at 700 degrees C (delta^(15)N -9.6+/-2.4 per mil). The lightest N component was measured in the 1000 degrees C step with delta^(15)N -56.4+/-13.0 per mil and the average N composition is obtained as delta^(15)N -25.8 per mil. This result supports earlier <span class="hlt">evidence</span> that nitrogen is <span class="hlt">isotopically</span> not equilibrated between chromite, surrounding troilite and metal matrix. Possible processes which could lead to a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..348...49M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..348...49M"><span>Hydrogen <span class="hlt">isotope</span> determination by TC/EA technique in application to volcanic glass as a window into secondary hydration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit</p> <p>2017-12-01</p> <p>The use of volcanic glass as recorder of paleoenvironmental conditions has existed for 30 years. In this paper we investigate the methodological aspects of the determination of water content, <span class="hlt">isotopic</span> composition, and water speciation in volcanic glass using the High Temperature Conversion/Elemental Analyzer (TCEA) mass spectrometer system on milligram quantities of glass concentrates. It is shown here that the precision and the reproducibility of this method is comparable to off-line conventional methods that require 100 times greater amount of material (δD ± 3‰; [H2O]tot ± 10relative% if < 1 wt% and ± 5 relative% if > 1 wt%) but is quicker and permits easy replication. This method extracts 100% of the water as verified by FTIR measurements. Finally, this study confirms the interest of DRIFT spectroscopy in the NIR range for the study of porous samples such as volcanic pumices and tephra, to determine the water speciation (H2O/OH). It may complement conventional FTIR transmission measurements in the MIR or NIR range that usually require homogeneous transparent sections or high degree of sample dilution in a non-absorbing matrix. Using these methods, we attempt to discriminate residual <span class="hlt">magmatic</span> from secondary meteoric water in volcanic glass. Using mafic to differentiated samples from different geological settings and different climatic conditions, we show that the H-<span class="hlt">isotope</span> composition and water content of volcanic glass alone are not always sufficient to provide clear distinction between <span class="hlt">magmatic</span> and meteoric origin. However if the magma is known to have a δD between - 90‰ and - 40‰ (- 60‰ for MORB mantle source), it is quite easy to resolve the δD evolution during <span class="hlt">magmatic</span> degassing from post-depositional rehydration by meteoric water with δD < - 50‰ or δD > - 20‰. Water speciation measurements may provide additional information. In most cases, <span class="hlt">isotopic</span> and total water measurements should be complemented by characterization of water</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999GeCoA..63..713W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999GeCoA..63..713W"><span>Implications of 187Os <span class="hlt">isotopic</span> heterogeneities in a mantle plume: <span class="hlt">evidence</span> from Gorgona Island and Curaçao</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, Richard J.; Storey, Michael; Kerr, Andrew C.; Tarney, John; Arndt, Nicholas T.</p> <p>1999-03-01</p> <p>Recent work has suggested that the mafic-ultramafic volcanism in <span class="hlt">evidence</span> throughout portions of the Caribbean, Central America, and northern South America, including the islands of Gorgona and Curaçao, was generated as part of a middle-Cretaceous, large igneous province. New Re-Os isochron results for tholeiitic basalts from Gorgona and Curaçao indicate crystallization ages of 89.2 ± 5.2 and 85.6 ± 8.1 Ma, respectively, consistent with reported Ar ages. The Gorgona ultramafic suite shows a large range in initial Os <span class="hlt">isotopic</span> composition, with γ Os values ranging from -0.5 to +12.4. This large range reflects <span class="hlt">isotopic</span> heterogeneities in the mantle source similar to those observed for modern ocean island basalts. In contrast to ocean island basalts, however, Os <span class="hlt">isotopic</span> compositions do not correlate with variations in Nd, Sr, or Pb <span class="hlt">isotopic</span> compositions, which are within the range of depleted mid-ocean ridge basalts. The processes that produced these rocks <span class="hlt">evidently</span> resulted in the decoupling of Os <span class="hlt">isotopes</span> from the Nd, Sr, and Pb <span class="hlt">isotopic</span> systems. Picrites from Curaçao have very uniform, chondritic initial Os <span class="hlt">isotopic</span> compositions, with initial γ Os values ranging only from -0.4 to ±1.4. Basalts from Curaçao, however, define an isochron with a 187Os-enriched initial <span class="hlt">isotopic</span> composition (γ Os = +9.5). In contrast to the 187Os-enriched ultramafic rocks from Gorgona, the enrichment in these basalts could have resulted from lithospheric contamination. If the Gorgona and Curaçao rocks were derived from the same plume, Os results, combined with Sr, Nd, and Pb data indicate a heterogeneous plume, with multiple compositionally and <span class="hlt">isotopically</span> distinct domains. The Os <span class="hlt">isotopic</span> results require derivation of Os from a minimum of two distinct reservoirs, one with a composition very similar to the chondritic average and one with long-term enriched Re/Os. Oceanic crustal recycling has been invoked to explain most of the 187Os enrichments that have been observed in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrEaS...6...29H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrEaS...6...29H"><span><span class="hlt">Magmatic</span> densities control erupted volumes in Icelandic volcanic systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartley, Margaret; Maclennan, John</p> <p>2018-04-01</p> <p><span class="hlt">Magmatic</span> density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which <span class="hlt">magmatic</span> physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to <span class="hlt">magmatic</span> physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between <span class="hlt">magmatic</span> density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25453079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25453079"><span>Early inner solar system origin for anomalous sulfur <span class="hlt">isotopes</span> in differentiated protoplanets.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James</p> <p>2014-12-16</p> <p>Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-<span class="hlt">isotope</span> composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other <span class="hlt">magmatic</span> iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-<span class="hlt">isotope</span> composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur <span class="hlt">isotope</span> compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S <span class="hlt">isotopes</span> and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148424','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148424"><span><span class="hlt">Magmatic</span> gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional <span class="hlt">magmatism</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.</p> <p>2015-01-01</p> <p>Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of <span class="hlt">magmatic</span> CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the <span class="hlt">magmatic</span> gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a <span class="hlt">magmatic</span> CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total <span class="hlt">magmatic</span> CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26279451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26279451"><span>Carbon <span class="hlt">isotope</span> ratios of human tooth enamel record the <span class="hlt">evidence</span> of terrestrial resource consumption during the Jomon period, Japan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kusaka, Soichiro; Uno, Kevin T; Nakano, Takanori; Nakatsukasa, Masato; Cerling, Thure E</p> <p>2015-08-17</p> <p>Archaeological remains strongly suggest that the Holocene Japanese hunter-gatherers, the Jomon people, utilized terrestrial plants as their primary food source. However, carbon and nitrogen <span class="hlt">isotope</span> analysis of bone collagen indicates that they primarily exploited marine resources. We hypothesize that this inconsistency stems from the route of protein synthesis and the different proportions of protein-derived carbon in tooth enamel versus bone collagen. Carbon <span class="hlt">isotope</span> ratios from bone collagen reflect that of dietary protein and may provide a biased signal of diet, whereas <span class="hlt">isotope</span> ratios from tooth enamel reflect the integrated diet from all macronutrients (carbohydrates, lipids, and proteins). In order to evaluate the differences in inferred diet between the archaeological <span class="hlt">evidence</span> and bone collagen <span class="hlt">isotope</span> data, this study investigated carbon <span class="hlt">isotopes</span> in Jomon tooth enamel from four coastal sites of the Middle to Late-Final Jomon period (5,000-2,300 years BP). Carbon <span class="hlt">isotope</span> ratios of human teeth are as depleted as coeval terrestrial mammals, suggesting that C 3 plants and terrestrial mammals were major dietary resources for the Jomon people. Dietary dependence on marine resources calculated from enamel was significantly lower than that calculated from bone collagen. The discrepancy in <span class="hlt">isotopic</span> ratios between enamel and collagen and the nitrogen <span class="hlt">isotope</span> ratio in collagen shows a negative correlation on individual and population levels, suggesting diets with variable proportions of terrestrial and marine resources. This study highlights the usefulness of coupling tooth enamel and bone collagen in carbon <span class="hlt">isotopic</span> studies to reconstruct prehistoric human diet. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188277','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188277"><span>Rb-Sr, K-Ar, and stable <span class="hlt">isotope</span> <span class="hlt">evidence</span> for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Böhlke, John Karl; Kistler, R. W.</p> <p>1986-01-01</p> <p>Gold-bearing quartz veins occur in and near major fault zones in deformed oceanic and island-arc rocks west of the main outcrop of the Sierra Nevada composite batholith. Veins typically occupy minor reverse faults that crosscut blueschist to amphibolite-grade metamorphic rocks whose metamorphic ages range from early Paleozoic to Jurassic. Vein micas and carbonate-quartz-mica assemblages that formed by hydrothermal metasomatism of ultramafic wall rocks in the Alleghany, Grass Valley, Washington, and Mother Lode districts yield concordant K-Ar and Rb-Sr ages. The dated veins are significantly younger than prograde metamorphism, penetrative deformation, and accretion of their host rocks to the continental margin. New and previously published mineralization ages from 13 localities in the Sierra foothills range from about 140 to 110 m.y. ago, with mean and median between 120 and 115 m.y. The age relations suggest that mineralizing fluids were set in motion by deep <span class="hlt">magmatic</span> activity related to the resumption of east-dipping subduction along the western margin of North America following the Late Jurassic Nevadan collision event.CO 2 -bearing fluids responsible for metasomatism and much of the vein mica, carbonate, albite, and quartz deposition in several northern mines were <span class="hlt">isotopically</span> heavy (delta 18 O [asymp] 8-14ppm; delta D between about -10 and -50ppm) and do not resemble seawater, <span class="hlt">magmatic</span>, or meteoric waters. Metasomatic and vein-filling mica, dolomite, magnesite, and quartz in altered ultramafic rocks generally formed from fluids with similar Sr and O <span class="hlt">isotope</span> ratios at a given locality. Consistent quartz-mica delta 18 O fractionations (delta 18 O (sub Q-M) = 4.5-4.9ppm) from various localities imply uniform equilibration temperatures, probably between 300 degrees and 350 degrees C. On a local (mine) scale, fluids responsible for both carbonate alteration of mafic and ultramafic wall rocks and albitic alteration of felsic and pelitic rocks had similar Sr <span class="hlt">isotope</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.151..148Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.151..148Y"><span>Spatiotemporal distribution of low-frequency earthquakes in Southwest Japan: <span class="hlt">Evidence</span> for fluid migration and <span class="hlt">magmatic</span> activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Zhiteng; Zhao, Dapeng; Niu, Xiongwei; Li, Jiabiao</p> <p>2018-01-01</p> <p>Low-frequency earthquakes (LFEs) in the lower crust and uppermost mantle are widely observed in Southwest Japan, and they occur not only along the subducting Philippine Sea (PHS) slab interface but also beneath active arc volcanoes. The volcanic LFEs are still not well understood because of their limited quantities and less reliable hypocenter locations. In this work, seismic tomography is used to determine detailed three-dimensional (3-D) P- and S-wave velocity (Vp and Vs) models of the crust and upper mantle beneath Southwest Japan, and then the obtained 3-D Vp and Vs models are used to relocate the volcanic LFEs precisely. The results show that the volcanic LFEs can be classified into two types: pipe-like and swarm-like LFEs, and both of them are located in or around zones of low-velocity and high-Poisson's ratio anomalies in the crust and uppermost mantle beneath the active volcanoes. The pipe-like LFEs may be related to the fluid migration from the lower crust or the uppermost mantle, whereas the swarm-like LFEs may be related to local <span class="hlt">magmatic</span> activities or small magma chambers. The number of LFEs sometimes increases sharply before or after a nearby large crustal earthquake which may cause cracks and fluid migration. The spatiotemporal distribution of the LFEs may indicate the track of migrating fluids. As compared with the tectonic LFEs along the PHS slab interface, the volcanic LFEs are more sensitive to fluid migration and local <span class="hlt">magmatic</span> activities. High pore pressures play an important role in triggering both types of LFEs in Southwest Japan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM...V41C06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM...V41C06V"><span>Shallow <span class="hlt">magmatic</span> degassing into the hydrothermal system of Copahue, Argentina</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varekamp, J.; Ouimette, A.; Kreulen, R.; Delpino, D.; Bermudez, A.</p> <p>2001-05-01</p> <p>Copahue volcano has a crater lake and acid hot springs that discharge into the Rio Agrio river system. These fluids are very concentrated (up to 6 percent sulfate), rich in rock-forming elements (up to 2000 ppm Mg) and small spheres of native sulfur float in the crater lake. The stable <span class="hlt">isotope</span> composition of the waters (delta 18O =-2.1 to + 3.6 per mille; delta D = -49 to -26 per mille) indicates that the hot spring waters are at their most concentrated about 70 percent volcanic brine and 30 percent glacial meltwater. The crater lake waters have similar mixing proportions but added <span class="hlt">isotope</span> effects from intense evaporation. Further dilution of the waters in the Rio Agrio gives values closer to local meteoric waters (delta 18O = -11 per mille; delta D = -77 per mille), whereas evaporation in closed ponds led to very heavy water (up to delta 18O = +12 per mille). The delta 34S value of dissolved sulfate is +14.2 per mille, whereas the native sulfur has values of -8.2 to -10.5 per mille. The heavy sulfate probably formed when SO2 disproportionated into bisulfate and native sulfur. We measured the sulfate fluxes in the Rio Agrio, and from these flux values and the stoichiometry of the disproportionation reaction we calculated the rate of liquid sulfur storage inside the volcano (6000 m3/year). During the eruptions of 1995/2000, large amounts of that stored liquid sulfur were ejected as pyroclastic sulfur. The calculated rate of rock dissolution (from rock- forming element fluxes in the Rio Agrio) suggests that the void space generated by rock dissolution is largely filled by native sulfur. The <span class="hlt">isotopic</span> signature of the <span class="hlt">magmatic</span> sulfur can be reconstituted at about +7 per mille, which is a source signature with superposed effects of shallow degassing. Lead <span class="hlt">isotope</span> and 129Iodine data from the fluids indicate that subducted components may have played a role in the Copahue magma formation. Primary glass inclusions in plagioclase and olivine have 1110-1670 ppm Cl, 90-400 ppm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010023092&hterms=sources+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsources%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010023092&hterms=sources+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsources%2Benergy"><span>Martian <span class="hlt">Magmatic</span>-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.</p> <p>2000-01-01</p> <p><span class="hlt">Magmatic</span>-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant <span class="hlt">evidence</span> of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived <span class="hlt">magmatic</span>-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, <span class="hlt">magmatic</span>-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSAES..39...24F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSAES..39...24F"><span>Contrasted crustal sources as defined by whole-rock and Sr-Nd-Pb <span class="hlt">isotope</span> geochemistry of neoproterozoic early post-collisional granitic <span class="hlt">magmatism</span> within the Southern Brazilian Shear Belt, Camboriú, Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Florisbal, Luana Moreira; de Assis Janasi, Valdecir; de Fátima Bitencourt, Maria; Stoll Nardi, Lauro Valentim; Heaman, Larry M.</p> <p>2012-11-01</p> <p>The early phase of post-collisional granitic <span class="hlt">magmatism</span> in the Camboriú region, south Brazil, is represented by the porphyritic biotite ± hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (˜610 Ma), equigranular, biotite ± muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb <span class="hlt">isotopes</span> require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriú Complex, as indicated by strongly negative ɛNdt (-23 to -24) and unradiogenic Pb (e.g., 206Pb/204Pb = 16.0-16.3; 207Pb/204Pb = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative ɛNdt (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and <span class="hlt">isotopic</span> characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriú Complex.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>