Science.gov

Sample records for magmatism isotopic evidence

  1. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    SciTech Connect

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  2. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Fischer, Tobias; Williams, Stanley N.

    2000-08-01

    We present chemical and isotopic data for fumarolic vapor and thermal spring discharges from Cumbal Volcano, SW Colombia. In 1988 Cumbal showed signs of apparent reactivation. Gases and steam condensates were sampled from summit fumaroles (83-375°C) of Cumbal in 1988-1996 and discharges from thermal springs (15-37°C) on its flanks in 1995-1996. Based on relative CO2, total S (H2S+SO2), and HCl contents, fumarolic discharges are principally magmatic in composition. Fumarolic steam condensates (1993-1996) have δ18O values of -11.4 to +2.5‰ and δD values of -91 to -43‰. δ18O and δD compositions indicate mixing between local meteoric and magmatic waters. 3He/4He ratios in 1993-1996 samples (5.3-7.9 Rcor) are consistent with addition of mantle-derived helium. δ13CCO2 values for 1996 samples (-6.7 to -5.0‰) likely indicate contribution of marine-carbonate, organic sediment, and mantle-derived CO2. δ34SStotal compositions (-4.6 to +5.6‰) of 1988-1996 fumarolic discharges have magmatic signatures and may reflect cycles of deposition and remobilization of native sulfur. Thermal waters are acid-sulfate or bicarbonate in composition. Relative concentrations of chemical constituents of thermal waters imply that the composition of waters is controlled by absorption of magmatic volatiles into shallow ground- and surface waters, dilution with meteoric waters along flow paths, and dissolution of host rocks. δ18O and δD compositions are consistent with a meteoric origin of waters. δ34SStotal values for thermal spring gas discharges (9.6-10.5‰) suggest deposition of δ34S-depleted sulfur minerals along flow paths. Chemical and isotopic compositions of 1988-1995 fumarolic discharges provide evidence for input of magmatic volatiles into the Cumbal hydrothermal system. From 1995 to 1996, geochemical data show increasing hydrothermal signatures, suggesting a decline in magmatic volatile input.

  3. Lithium isotopes and light lithophile element abundances in shergottites: Evidence for both magmatic degassing and subsolidus diffusion

    NASA Astrophysics Data System (ADS)

    Udry, Arya; McSween, Harry Y.; Hervig, Richard L.; Taylor, Lawrence A.

    2016-01-01

    Degassed magmatic water was potentially the major source of surficial water on Mars. We measured Li, B, and Be abundances and Li isotope profiles in pyroxenes, olivines, and maskelynite from four compositionally different shergottites—Shergotty, QUE 94201, LAR 06319, and Tissint—using secondary ion mass spectrometry (SIMS). All three light lithophile elements (LLE) are incompatible: Li and B are soluble in H2O-rich fluids, whereas Be is insoluble. In the analyzed shergottites, Li concentration decreases and Be concentration increases from cores to rims in pyroxenes. However, B concentrations do not vary consistently with Li and Be abundances, except in QUE 94201 pyroxenes. Additionally, abundances of these three elements in olivines show a normal igneous-fractionation trend consistent with the crystallization of olivine before magma ascent and degassing. We expect that kinetic effects would lead to fractionation of 6Li in the vapor phase compared to 7Li during degassing. The Li isotope profiles, with increasing δ7Li from cores to rims, as well as Li and B profiles indicate possible degassing of hydrous fluids only for the depleted shergottite QUE 94201, as also supported by degassing models. Conversely, Shergotty, LAR 06319, and Tissint appear to have been affected by postcrystallization diffusion, based on their LLE and Li isotope profiles, accompanied by diffusion models. This process may represent an overlay on a degassing pattern. The LLE profiles and isotope profiles in QUE 94201 support the hypothesis that degassing of some basaltic shergottite magmas provided water to the Martian surface, although evidence may be obscured by subsolidus diffusion processes.

  4. Paleoproterozoic gabbro-diorite-granite magmatism of the Batomga Rise (NE Aldan Shield): Sm-Nd isotope geochemical evidence

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.

    2016-02-01

    The geochemical similarity and almost simultaneous (2055-2060 Ma) formation of Utakachan gabbro-amphibolite, Jagdakin granodiorite-diorite, Khoyunda granitoid, and Tygymyt leucogranite complexes, which inruded metamorphic formations of the Batomga Group are evidence of their formaton from unified magmatic source. All this makes it possibble to combine aforementioned complexes into the unified Early Proterozoic diferentiated gabbro-diorite-granite complex.

  5. Tritium and stable isotopes of magmatic waters

    NASA Astrophysics Data System (ADS)

    Goff, F.; McMurtry, G. M.

    2000-04-01

    To investigate the isotopic composition and age of water in volcanic gases and magmas, we analyzed samples from 11 active volcanoes ranging in composition from tholeiitic basalt to rhyolite: Mount St. Helens (USA), Kilauea (USA), Pacaya (Guatemala), Galeras (Colombia), Satsuma Iwo-Jima (Japan), Sierra Negra and Alcedo (Ecuador), Vulcano (Italy), Parı´cutin (Mexico), Kudryavy (Russia), and White Island (New Zealand). Tritium at relatively low levels (0.1-5 T.U.) is found in most emissions from high-temperature volcanic fumaroles sampled, even at discharge temperatures >700°C. Although magmatic fluids sampled from these emissions usually contain high CO 2, S total, HCl, HF, B, Br, 3He R/ RA, and low contents of air components, stable isotope and tritium relations of nearly all such fluids show mixing of magmatic volatiles with relatively young meteoric water (model ages≤75 y). Linear δD/ δ18O and 3H/ δ18O mixing trends of these two end-members are invariably detected at arc volcanoes. Tritium is also detected in fumarole condensates at hot spot basalt volcanoes, but collecting samples approaching the composition of end-member magmatic fluid is exceedingly difficult. In situ production of 3H, mostly from spontaneous fission of 238U in magmas is calculated to be <0.001 T.U., except for the most evolved compositions (high U, Th, and Li and low H 2O contents). These values are below the detection limit of 3H by conventional analytical techniques (about 0.01 T.U. at best). We found no conclusive evidence that natural fusion in the Earth produces anomalous amounts of detectable 3H (>0.05 T.U.).

  6. Stable-isotope evidence for a magmatic component in fumarole condensates from Augustine Volcano, Cook Inlet, Alaska, U.S.A.

    USGS Publications Warehouse

    Viglino, J.A.; Harmon, R.S.; Borthwick, J.; Nehring, N.L.; Motyka, R.J.; White, L.D.; Johnston, D.A.

    1985-01-01

    D/H and 18O 16O ratios have been determined for fumarole condensates from Augustine Volcano, an active calc-alkaline stratovolcano in Lower Cook Inlet, Alaska. The isotopic data for the condensates form a linear ?? D-?? 18O array from low-temperature fluids (450??C) fluids collected at the volcano summit which are enriched in both D and 18O (?? D {reversed tilde equals} -35???, ?? 18O {reversed tilde equals} +3.5???). Several lines of evidence suggest that the D-and 18O-rich condensates likely are "magmatic" fluids released into the hydrothermal system during and immediately after the 1976 eruption. Prior to 1976, the Augustine hydrothermal system was dominated completely by local meteoric waters. Between 1976 and 1982, fumarole condensates were observed to be variable mixtures of the "magmatic" fluid and meteoric water, with the proportion of the former systematically decreasing as the hydrothermal system cooled following the 1976 eruption. ?? 1985.

  7. Experimental Evidence for Fast Lithium Diffusion and Isotope Fractionation in Water-bearing Rhyolitic Melts at Magmatic Conditions

    NASA Astrophysics Data System (ADS)

    Cichy, S. B.; Till, C. B.; Roggensack, K.; Hervig, R. L.; Clarke, A. B.

    2015-12-01

    The aim of this work is to extend the existing database of experimentally-determined lithium diffusion coefficients to more natural cases of water-bearing melts at the pressure-temperature range of the upper crust. In particular, we are investigating Li intra-melt and melt-vapor diffusion and Li isotope fractionation, which have the potential to record short-lived magmatic processes (seconds to hours) in the shallow crust, especially during decompression-induced magma degassing. Hydrated intra-melt Li diffusion-couple experiments on Los Posos rhyolite glass [1] were performed in a piston cylinder at 300 MPa and 1050 °C. The polished interfaces between the diffusion couples were marked by addition of Pt powder for post-run detection. Secondary ion mass spectrometry analyses indicate that lithium diffuses extremely fast in the presence of water. Re-equilibration of a hydrated ~2.5 mm long diffusion-couple experiment was observed during the heating period from room temperature to the final temperature of 1050 °C at a rate of ~32 °C/min. Fractionation of ~40‰ δ7Li was also detected in this zero-time experiment. The 0.5h and 3h runs show progressively higher degrees of re-equilibration, while the isotope fractionation becomes imperceptible. Li contamination was observed in some experiments when flakes filed off Pt tubing were used to mark the diffusion couple boundary, while the use of high purity Pt powder produced better results and allowed easier detection of the diffusion-couple boundary. The preliminary lithium isotope fractionation results (δ7Li vs. distance) support findings from [2] that 6Li diffuses substantially faster than 7Li. Further experimental sets are in progress, including lower run temperatures (e.g. 900 °C), faster heating procedure (~100 °C/min), shorter run durations and the extension to mafic systems. [1] Stanton (1990) Ph.D. thesis, Arizona State Univ., [2] Richter et al. (2003) GCA 67, 3905-3923.

  8. Isotopic evidence for the dependence of recurrent felsic magmatism on new crust formation: An example from the Georgetown region of Northeastern Australia

    SciTech Connect

    Black, L.P. ); McCulloch, M.T. )

    1990-01-01

    U-Pb zircon, Sm-Nd, and Rb-Sr isotopic data, together with previously accumulated geological and chemical evidence show that the Georgetown inlier of northeast Queensland and its immediate environs were subjected to three widespread, temporally discrete episodes of felsic magmatism. The earliest of these, at about 1550 Ma, produced widespread anatexis within the metasedimentary rocks of the inlier, which have a poorly constrained depositional age, but which were derived by the degradation of ca. 2000-2500 Ma crust. Contemporaneous I-type magmas contained more radiogenic Nd and are thought to have formed from mixing of newly formed crustal material with the igneous precursors of the metasediments. The data are best explained in terms of successive addition from below of new crustal material (via underplating or emplacement into the lower crust) at about 1550 Ma, 420 Ma, and 300 Ma. The model requires that such newly accreted material does not necessarily melt and mobilize the preceeding underplate. Often it is a still earlier underplate that is activated. These regions of the lower crust can remain dormant for well over a billion years before they produce widespread magmatism destined for the upper crust.

  9. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas water interaction between magmatic component and shallow fluids

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Martin-Del Pozzo, A. L.; Aguayo, A.; Capasso, G.; Favara, R.

    2005-03-01

    Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas-water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80-100° C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO 2 in the springs was also detected and associated with high CO 2 degassing.

  10. Stages of late Paleozoic to early Mesozoic magmatism in the Song Ma belt, NW Vietnam: evidence from zircon U-Pb geochronology and Hf isotope composition

    NASA Astrophysics Data System (ADS)

    Hieu, Pham Trung; Li, Shuang-Qing; Yu, Yang; Thanh, Ngo Xuan; Dung, Le Tien; Tu, Vu Le; Siebel, Wolfgang; Chen, Fukun

    2016-05-01

    The Song Ma zone in NW Vietnam bears important tectonic implications as a potential subduction corridor between the Indochina and South China blocks. On the basis of U-Pb ages, the Hf isotopic characteristics of zircons and the geochemical composition of granitoids, a two-stage magmatic evolution process of the Song Ma zone at ~290-260 and ~245-230 Ma can be proposed. Isotopic analyses indicate magmatic contributions from Neoproterozoic oceanic island basalt, Proterozoic continental crust, and depleted mantle or juvenile lithosphere. By combining geochronological and geochemical data from the granitoid rocks, we suggest that the staged magmatic processes of Song Ma zone may be related to a long-lasting period of ocean subduction (ca. 290-260 Ma) and subsequent syn-/post-collisional evolution (ca. 245-230 Ma).

  11. Involvement of magmatic fluids at the Laloki and Federal Flag massive sulfide Cu-Zn-Au-Ag deposits, Astrolabe mineral district, Papua New Guinea: sulfur isotope evidence

    NASA Astrophysics Data System (ADS)

    Noku, Shadrach K.; Espi, Joseph O.; Matsueda, Hiroharu

    2015-01-01

    We present the first sulfur (S) isotope data of sulfides, sulfates, pyrite in host mudstone, and bulk sulfur of gabbroic rocks from the Laloki and Federal Flag massive Cu-Zn-Au-Ag deposits in the Astrolabe mineral district, Papua New Guinea. Early-stage pyrite-marcasite, chalcopyrite, and sphalerite from Laloki display wide range of δ34S values from -4.5 to +7.0 ‰ ( n = 16). Late-stage pyrite, chalcopyrite, and sphalerite have restricted δ34S values of -1.9 to +4.7 ‰ ( n = 16). The mineralizing stage these correspond to had moderately saline (5.9-8.4 NaCl eq. wt%) mineralizing fluids of possible magmatic origin. A single analysis of late-stage barite has a value of δ34S +17.9 ‰, which is likely similar to coexisting seawater sulfate. Pyrite from the foot-wall mudstone at Laloki has very light δ34S values of -36.1 to -33.8 ‰ ( n = 2), which suggest an organic source for S. Pyrite-marcasite and chalcopyrite from Federal Flag show δ34S values of -2.4 to -1.9 ‰ ( n = 2), consistent with a magmatic origin, either leached from intrusive magmatic rocks or derived from magmatic-hydrothermal fluids. The very narrow range and near-zero δ34S values (-1.0 to +0.6 ‰) of bulk gabbroic samples is consistent with mantle-derived magmatic S. Sulfur isotope characteristics of sulfides and sulfates are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and sedimented mid-ocean ridges. The most reasonable interpretation is that the range of the sulfide and sulfate δ34S values from both Laloki and Federal Flag massive sulfide deposits is indicative of the complex interaction of magmatic fluids, seawater, gabbroic rocks, and mudstone.

  12. Hydrogen Isotope Evidence for Giant Meteoric-Hydrothermal Systems Associated with Extension and Magmatism in the Southern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Holk, G. J.; McCarthy, A.

    2014-12-01

    Over 400 published mineral and fluid inclusion δD values from the southern Canadian Cordillera and our new data from the Eocene Penticton Group Volcanics and Coryell Intrusive Suite of the Southern Omineca Belt and the Western Metamorphic Belt of the Central Coast Orogen are compiled using GIS. δDH2O is estimated using published D/H fractionation factors at 400°C; the error is ±20‰, small enough to distinguish deep magmatic/metamorphic fluids from meteoric-hydrothermal fluids. Histogram plots of δDH2O values estimated from minerals reveal peaks at δD = -60‰ (deep fluid) and ­-110‰ (Early Cenozoic meteoric-hydrothermal fluid); this provides a clear distinction between the two kinds of fluid. Our analysis reveals that syn-extensional meteoric-hydrothermal systems (δDH2O < -80‰) affected the eastern margin of the Coast Ranges Batholith between latitude 49° and 55° and the Omineca Belt between latitude 49° and 52°45'; both regions were affected by detachment faulting during late stages of magmatism in the Early Cenozoic (e.g., Parrish et al., 1988; Crawford et al., 2009). Zones that escaped the effects of meteoric-hydrothermal systems, preserving the D/H signature of deep fluids (δD > -80‰), include the Western Metamorphic Belt, the Western and Central Coast Ranges Batholith, the belt of Jurassic metamorphism that extends from the Cariboo Mountains to the Purcell Mountains, and the deepest structural levels of the Shuswap Metamorphic Core Complex; most of these samples have quartz-feldspar 18O/16O fractionations indicative of magmatic temperatures. High δDH2O values (> -50‰) suggest seawater alteration of the plutons of Vancouver Island (Magaritz and Taylor, 1986). Histogram plots of vein quartz fluid inclusion δD values (Nesbitt and Muehlenbachs, 1995) reveal three peaks that include the two produced by the mineral δD values, but these data are dominated by a large peak at δD = -150, a value similar to modern meteoric waters in the region

  13. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  14. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-09-08

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.

  15. Rapid Rejuvenation of the Source of a Backarc Sheeted Magmatic Complex (Torres del Paine, Patagonia): Evidence From Hf isotopes in Zircon

    NASA Astrophysics Data System (ADS)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Chiaradia, M.; Baumgartner, L. P.; Putlitz, B.

    2014-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a spectacularly exposed example of a bimodal shallow crustal laccolith, made up of a sill complex and a subvertical feeder system. The TPIC was emplaced in a back-arc setting, but slightly older arc-related intrusive units in this area testify to an earlier shift from an arc to a backarc setting. The entire ~88 km3 main complex was emplaced over short time scales of 162 ± 11 ka between ~12.4 and 12.6 Ma, with mafic units from the feeder zone found to be older than mafic units from the sill complex1,2. We aim to assess whether successive pulses of mafic magmatism can tap different geochemical reservoirs in sheeted magmatic complexes emplaced on such short timescales. Hf isotope compositions of individual zircons from mafic units from both the feeder zone and the sill complex were determined by solution MC-ICPMS. Zircons from all units have Hf isotope compositions that indicate a slightly enriched mantle source. Zircons from the mafic sill complex units have higher (more juvenile) initial ɛHf than zircons from feeder zone mafic units. The shift towards more depleted Hf isotope compositions in the sill complex units, which are younger, demonstrates the rapid input of new juvenile material into the source region between ~12.6 Ma and ~12.5 Ma. A similar shift is also seen in bulk rock Nd and Sr isotope data for related samples3. The Hf isotope data demonstrate that significant variability in source geochemistry is possible for sheeted magmatic complexes built up on very short timescales. Analysis of zircons from a range of dikes and intrusive bodies external to the main Torres del Paine complex, with ages that span ~12-29 Ma, will provide a more complete picture in time and space of the geochemical evolution of this magmatic system as it switches between an arc and backarc setting. 1Leuthold et al., 2012, EPSL, 325: 85-92 2Michel et al., 2008, Geology, 36: 459-462 3Leuthold et al., 2013, JPET, 54

  16. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    PubMed Central

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  17. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  18. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zhen; Helz, Rosalind T.; Moynier, Frédéric

    2013-05-01

    The zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰<δ66Zn<0.36‰; δ66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe-Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰<δ66Zn<0.33‰), however, the degree of fractionation caused by magmatic differentiation is less significant (only 0.07‰) and no correlation between isotope composition and degree of differentiation is seen. We conclude that high temperature magmatic differentiation can cause Zn isotope fractionation that is resolvable at current levels of precision, but only in compositionally-evolved lithologies. With regards to primitive (ultramafic and basaltic) material, this signifies that the terrestrial mantle is essentially homogeneous with respect to Zn isotopes. Utilizing basaltic and ultramafic sample analyses, from different geologic settings, we estimate that the average Zn isotopic composition of Bulk Silicate Earth is δ66Zn=0.28

  19. The Chemical and Isotopic Signature of Old Groundwater and Magmatic Solutes in a Costa Rican Rainforest: Evidence From Carbon, Helium, and Chlorine

    NASA Astrophysics Data System (ADS)

    Webb, M. D.; Genereux, D. P.; Solomon, D. K.

    2008-12-01

    Major ion, 18O, and water budget data from previous hydrologic studies at a Costa Rica lowland rainforest site, La Selva Biological station at the foot of Volcan Barva, indicate the presence and mixing of two distinct groundwaters: - bedrock groundwater: relatively high-solute groundwater that represents interbasin groundwater flow into the lowland rainforest watersheds, and - local groundwater: more dilute groundwater recharged locally in the lowlands. In this study we found that C, He, and Cl concentrations and isotope data (ä13C, 14C, 3He/4He, 36Cl/Cl), in groundwater and surface water at La Selva and upslope in Braulio Carillo National Park, are strongly consistent with the mixing hypothesis and provide insight into the age and origin of the two groundwaters. Highly significant linear trends on plots of isotopic abundance vs. the inverse of concentration support the mixing of two groundwaters. High ä13C (-4.89), low 14C (7.98 pmC), high R/RA for He (6.88), and low 36Cl/Cl (17 x 10-15) of bedrock groundwater indicate that elevated C, He, and Cl concentrations in this groundwater are derived from magmatic outgassing and/or weathering of volcanic rock, most likely beneath nearby Volcan Barva. The estimated ä13C of magmatic CO2 was -2.6 , almost identical to the previously- measured ä13C of CO2 in high-temperature gases from two volcanoes in the region (-2.9 at Momotombo in Nicaragua and -2.7 at Arenal in Costa Rica). Concentrations and isotopic ratios of C, He, and Cl in local water are consistent with atmospheric/precipitation sources for He and Cl and a biogenic soil-gas CO2 source for DIC. 14C dating, using NETPATH (a geochemical mass-balance model), indicate an apparent age of bedrock groundwater in the range 2700-4300 years. Local groundwater has 14C concentrations >100 pmC, indicating the presence of anthropogenic "bomb carbon" and thus ages less than ~55 years for these samples collected in 2006. Overall the data are fully consistent with the conceptual

  20. Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the Late Permian Panthalassic Ocean, Opal Creek, Canada

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Henderson, Charles M.; Algeo, Thomas J.

    2015-02-01

    The geochemical record for the Permian-Triassic boundary in northern latitudes is essential to evaluation of global changes associated with the most profound extinction of life on Earth. We present inorganic and organic geochemical data, and Re-Os isotope systematics in a critical stratigraphic interval of pre- and post-extinction Upper Permian-Lower Triassic sediments from Opal Creek, western Canada (paleolatitude of ∼30°N). We document significant and long-lived changes in Panthalassa seawater chemistry that were initiated during the first of four magmatic or meteoritic inputs to Late Permian seawater, evidenced by notable decreases of Os isotopic ratios upsection. Geochemical signals indicate establishment of anoxic bottom waters shortly after regional transgression reinitiated sedimentation in the Late Permian. Euxinic signals are most prominent in the Upper Permian sediments with low organic carbon and high sulfur contents, and gradually wane in the Lower Triassic. The observed features may have been generated in a strongly euxinic ocean in which high bacterioplankton productivity sustained prolific microbial sulfate reduction in the sediment and/or water column, providing hydrogen sulfide to form pyrite. This scenario requires nearly complete anaerobic decomposition of predominantly labile marine organic matter (OM) without the necessity for a complete collapse of primary marine productivity. Similar geochemical variations could have been achieved by widespread oxidation of methane by sulfate reducers after a methanogenic burst in the Late Permian. Both scenarios could have provided similar kill mechanisms for the latest Permian mass extinction. Despite the moderate thermal maturity of the section, OM in all studied samples is dominantly terrestrial and/or continentally derived, recycled and refractory ancient OM. We argue that, as such, the quantity of the OM in the section mainly reflects changes in terrestrial vegetation and/or weathering, and not in

  1. Oxygen isotope systematics in magmatic and subsolidus epidote

    NASA Astrophysics Data System (ADS)

    Morrison, J.; Anderson, J. L.

    2003-04-01

    770^oC. Temperatures inferred from ΔQt-Ep values are ˜450^oC. The data are interpreted to indicate that published high temperature fractionation factors involving epidote may be in error, yielding temperatures that are too low by as much as ˜200^oC. A number of lines of evidence suggest that measured ΔQt-Ep values from the quenched lithologies provide a more reliable empirical calibration of the Qt-Ep system than the published calibration. Using this "empirical calibration", the data are interpreted to indicate that oxygen isotope systematics in slowly cooled plutonic rocks have in some cases preserved magmatic fractionations, but more often document variable post-crystallization exchange due to 1) solid state diffusion during slow cooling and 2) fluid-hosted isotope exchange associated with mineralogic alteration.

  2. The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids

    NASA Astrophysics Data System (ADS)

    Skewes, M. Alexandra; Holmgren, Carmen; Stern, Charles R.

    2003-01-01

    The copper-rich, tourmaline-bearing Donoso breccia pipe is one among more than 15 different mineralized breccias in the giant (>50 million metric tonnes of copper) Miocene and Pliocene Río Blanco-Los Bronces copper deposit in the high Andes of central Chile. This breccia pipe, bracketed in age between 5.2 and 4.9 Ma, has dimensions of 500 by 700 m at the current surface 3,670 m above sea level. Its roots have yet to be encountered, and it is >300 m in diameter at the depth of the deepest drill holes. The Donoso breccia is, for the most part, monolithic, containing clasts of the equigranular quartz monzonite pluton which hosts the pipe. It is matrix supported, with between 5 and 25% of the total rock volume consisting of breccia-matrix minerals, which include tourmaline, quartz, chalcopyrite, pyrite, specularite, and lesser amounts of bornite and anhydrite. An open pit mine, centered on this breccia pipe, has a current production of 50,000 tonnes of ore per day at an average grade of 1.2% copper, and copper grade in the breccia matrix is significantly higher. Measured δ18O for tourmaline and quartz from the matrix of the Donoso breccia at different levels of the pipe range from +6.9 to +12.0‰, and measured δD in tourmaline ranges from -73 to -95‰. Temperatures of crystallization of these minerals, as determined by the highest homogenization temperatures of highly saline fluid inclusions, range from 400 to >690°C. When corrected for these temperatures, the stable isotope data indicate that fluids from which these breccia-matrix minerals precipitated were magmatic, with δ18O between +5.6 to +9.1‰ and δD between -51 to -80‰. These isotopic data preclude participation of a significant amount of meteoric water in the formation of the Donoso breccia. They support a model in which brecciation is caused by expansion of magmatic fluids exsolved from a cooling pluton, and breccia-matrix minerals, including copper sulfides, precipitated from the same magmatic

  3. Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kesler, Stephen E.; Riciputi, Lee C.; Ye, Zaojun

    2005-03-01

    We report here new sulfur isotope analyses from the Betze-Post-Screamer deposit, the largest Carlin-type gold deposit in the world. Carlin-type deposits contain high concentrations of arsenic, antimony, mercury, tellurium and other elements of environmental interest, and are surrounded by large volumes of crust in which these elements are also enriched. Uncertainty about the source of sulfur and metals in and around Carlin-type deposits has hampered formulation of models for their origin, which are needed for improved mineral exploration and environmental assessment. Previous studies have concluded that most Carlin-type deposits formed from sulfide sulfur that is largely of sedimentary origin. Most of these studies are based on analyses of mineral separates consisting of pre-ore diagenetic pyrite with thin overgrowths of ore-related arsenian pyrite rather than pure, ore-related pyrite. Our SIMS spot analyses of ore-related pyrite overgrowths in the Screamer zone of the Betze-Post-Screamer deposit yield δ34S values of about -1 to 4‰ with one value of about 7‰. Conventional analyses of realgar and orpiment separates from throughout the deposit yield δ34S values of about 5-7‰ with one value of 10‰ in the Screamer zone. These results, along with results from an earlier SIMS study in the Post zone of the deposit and phase equilibrium constraints, indicate that early arsenian pyrite were formed from fluids of magmatic origin with variable contamination from sulfur in Paleozoic sedimentary rocks. Later arsenic sulfides were formed from solutions to which sulfur of sedimentary origin had been added. The presence of Paleozoic sedimentary sulfur in Carlin-type deposits does not require direct involvement of hydrothermal solutions of sedimentary origin. Instead, it could have been added by magmatic assimilation of Paleozoic sedimentary rocks or by hydrothermal leaching of sulfur from wall rocks to the deposit. Thus, the dominant process delivering sulfur, arsenic

  4. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China

    NASA Astrophysics Data System (ADS)

    Wang, Changming; Zhang, Da; Wu, Ganguo; Santosh, M.; Zhang, Jing; Xu, Yigan; Zhang, Yaoyao

    2014-08-01

    The Lengshuikeng ore district in east-central China has an ore reserve of ˜43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb + Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ˜100-400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite-chalcopyrite-sphalerite, middle-stage acanthite-native silver-galena-sphalerite, and late-stage pyrite-quartz-calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from -3.8 to +6.9‰ with an average of +2.0‰. The C-O isotope values of siderite, calcite, and dolomite range from -7.2 to -1.5‰ with an average of -4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA-ICP-MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3 ± 0.8 Ma considered as the emplacement age of the porphyry. Rb-Sr dating of sphalerite from the main ore stage yielded an age of 126.9 ± 7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag-Pb-Zn deposit.

  5. New Geochemical and Isotopic Evidence for Igneous Activity at the Triassic-Jurassic Boundary: the Effects of Volcanism in the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Coe, A. L.

    2001-12-01

    Although the Triassic-Jurassic (T-J) boundary marks one of the `big five' extinction events of the Phanerozoic, the processes driving global change at that time remain obscure. The main contenders include substantial volcanic activity, large meteorite impacts, and major tectonic realignment. Recent results from high-precision Ar-Ar and U-Pb dating suggest that a major phase of volcanic activity, associated with the breakup of Pangea, started ~200 Ma ago in the so-called Central Atlantic magmatic province (Marzoli et al., Science 284, p. 616, 1999). However, it is often hard to accurately assess the global impact of this volcanic activity because of the difficulties in correlating igneous ages with the changes in the sedimentary successions which in practice define the position of the T-J boundary, and because of the difficulties in estimating the volume and extent of volcanic activity. In this study, we have adopted a new approach by determining the Mo, Re and platinum group element (PGE) abundances, and Os isotope compositions, of a suite of fully marine organic-rich mudrocks from three T-J boundary sections in the U.K. One of these sections (St. Audrie's Bay, Somerset) has been proposed as a candidate GSSP for the T-J boundary. The underlying rationale is that organic-rich mudrocks concentrate these elements from seawater, and reflect the particular geochemical and isotopic characteristics of seawater on a global scale at the time of mudrock deposition. Because the Re and PGE signatures of chondritic meteorites and terrestrial volcanism are distinctive, as are the signatures they impart to seawater, the patterns of these elements in well-preserved mudrock samples should help to define both the timing and nature of environmental change at the T-J boundary. Our new results show that Os abundances in marine mudrocks increased more than five-fold in the latest Triassic; Re abundances started to rise at the same time and had increased by up to 2 orders of magnitude in

  6. Isotope fractionation related to kimberlite magmatism and diamond formation

    SciTech Connect

    Galimov, E.M. )

    1991-06-01

    This paper deals with a model of carbon isotope fractionation presumed to accompany the movement of mantle fluids. In the first part of the article, the experimental data and the relationships revealed are generalized and discussed; the remainder of the paper describes the model. The isotope compositions of different forms of carbon related to kimberlite magmatism vary widely. In diamonds, {delta}{sup 13}C values range from {minus}34.5 to +2.8{per thousand}. Carbonate-bearing autholiths in kimberlites occur enriched in {sup 13}C up to +35{per thousand}. Organic matter, including that occurring in fluid inclusions of magmatic minerals of kimberlites, is depleted in {sup 13}C down to {minus}30{per thousand}. It is concluded that the {delta}{sup 13}C-distribution for diamonds is specific for a particular occurrence. Principal differences in isotopic distribution patterns for diamonds of ultrabasic and basic paragenesis exist. Isotopically light diamonds are related only to the latter. The intention of the model is to explain the observed variations of carbon isotope composition of diamond and other carbonaceous substances related to kimberlite magmatism. The model is based on the interaction of reduced sub-asthenospehric fluid with a relatively oxidized lithosphere. It is suggested that diamonds of ultrabasic paragenesis are produced during interaction of the fluid with sheared garnet lbherzolite which is considered to be primitive mantle rock. During contact with the more oxidized mantle, reduced carbon (CH{sub 4}) may partially be converted to CO{sub 2}. Isotope exchange in CO{sub 2}-CH{sub 4} system, conbined with Rayleigh distillation, may provide a significant isotope fractionation. Diamonds of the basic (eclogitic) paragenesis are considered to be realted to this fractionated carbon. Also, occurrence of carbonate material highly enriched in {sup 13}C is explained by the model.

  7. Isotope-geochemical Nd-Sr evidence of Palaeoproterozoic plume magmatism in Fennoscandia and mantle-crust interaction on stages of layered intrusions formation

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Kunakkuzin, Evgeniy; Steshenko, Ekaterina

    2016-04-01

    Palaeoproterozoic Fennoscandian layered intrusions belong to the pyroxenite-gabbronorite-anorthosite formation and spread on a vast area within the Baltic Shield. Based on isotope U-Pb, Sm-Nd, Rb-Sr and Re-Os data the duration of this formation can be to 100-130 Ma (2.53-2.40 Ga) [Serov et. al., 2008; Bayanova et. al., 2009]. We have studied rocks of layered PGE-bearing Fedorovo-Pansky, Monchetundra, Burakovsky, Olanga group intrusions and Penikat intrusion. According to recent and new complex Nd-Sr-REE data magma source of the vast majority of these intrusions was a mantle reservoir with unusual characteristics: negative values of ɛNd (from 0 to -4) and ISr = 0.702-0.706, flat spectra of REE (value of (La/Yb)N ~ 1.0-5.8) with positive Eu-anomalies [Bayanova et. al., 2009; Bayanova et. al., 2014]. However, the distribution of REE for ore-bearing gabbronorite intrusions Penikat (Sm-Nd age is 2426 ± 38 Ma [Ekimova et. al., 2011]) has a negative Eu-anomalies. This may be due to the formation of plagioclase and its removal from the magma chamber. One of the aims of isotope geochemical investigations is to establish the contribution of mantle components in the formation of layered intrusions rocks and the degrees of contamination of the magma source by crustal material. To calculate the proportion of mantle component model binary mixture was used [Jahn et. al., 2000]. As the mantle components we used data for CHUR: ɛNd = 0, [Nd] = 1.324 [Palm, O'Neil, 2003] and for crustal components were used host-rocks Nd-data. The proportion of mantle component for the studied intrusions was 77-99%. Also, data were obtained for the Monchetundra dike complex and amphibolized gabbro, for which the proportion of mantle material was 20-40%. For these rocks a significant crustal contamination is most likely. This process resulted in low values of ɛNd, a direct relationship between ɛNd and Nd concentration, and significant differences between the U-Pb and Sm-Nd model ages. A

  8. The Glória quartz-monzodiorite: isotopic and chemical evidence of arc-related magmatism in the central part of the Paleoproterozoic Mineiro belt, Minas Gerais State, Brazil.

    PubMed

    Avila, Ciro A; Teixeira, Wilson; Cordani, Umberto G; Barrueto, Héctor R; Pereira, Ronaldo M; Martins, Veridiana T S; Dunyi, Liu

    2006-09-01

    The Glória quartz-monzodiorite, one of the mafic plutons of the Paleoproterozoic Mineiro belt, is intrusive into banded gneisses, amphibolites, schists and phyllites of the Rio das Mortes greenstone belt, in the southern portion of the São Francisco Craton, State of Minas Gerais, Brazil. The Glória quartz-monzodiorite yields a SHRIMP U-Pb zircon age of 2188 +/- 29 Ma, suggesting a tectonic relationship with the pre-collisional phase of the Mineiro belt. According to the Nd isotopic evidence (epsilonNd(T) = -3.4; T DM = 2.68 Ga) the original magmas was formed by a mixture among Archean crustal material and Paleoproterozoic juvenile magma. The Glória quartz-monzodiorite shows metaluminous and calc-alkaline tendency with intermediate K content, comparable to that of volcanic-arc rocks. The primary mineralogical assemblage was partly modified by metamorphism, dated between 2131-2121 Ma in nearby coeval plutons. Such metamorphism is significantly older than the reported metamorphic episodes of the Mineiro belt in the Quadrilátero Ferrífero region (2059-2041 Ma) in the eastern portion of the study area. This evidence, together with chemical and isotopic data from other mafic and felsic plutons coeval with the Glória quartz-monzodiorite, indicate a tectonic and magmatic migration within the Mineiro belt from west to east.

  9. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.

    2005-01-01

    quartz associated with mineralization, as well as in the deep stockwork veins, suggests that brines originating deep in the system transported the metals. The ??34S values of sulfides in magnetite (-2.3???) and of sulfate in apatite (5.4???) in unaltered quartz latite indicate that ??34S???S was near 0???. The ??34S values of coexisting alteration alunite and pyrite are 18.2??? to 24.5??? and -8.1??? to -2.2???, respectively. Deep in the system, most of the change in ??34S values occurs in the sulfates, indicating that the fluids were initially H2S-dominant, their redox state buffered at depth by equilibration with igneous rocks. However, in the main alteration zone, most of the change in ??34S values occurs in pyrite, indicating that the fluids moved off the rock buffer and became SO42- -dominant as pyrite precipitated and SO2 disproportionation produced the sulfuric acid requisite for acid leaching. The ??34S values of the late-stage barite and sulfides indicate that the system returned to high H2S/SO42- ratios typical of the original rock-buffered fluid. The ??DH2O of alunite parent fluids was near -45??? and their ??18O ranged from 7??? to -1???, depending on the degree of exchange in the alteration zone at low water-rock ratio, or mixing with unexchanged meteoric water. The low ??D values of some alunite samples are interpreted to result from postdepositional exchange with later ore fluids. Fluid exsolved fr om the magma at depth had ??DH2O and ??18OH2O values near -70??? and 10???, respectively. During and following migration to the top of the magma chamber, the fluid underwent isotopic exchange with the partially crystallized magma and its solid and cooler, but still plastic, carapace just below the transition from a lithostatic to hydrostatic pressure regime. These evolved magmatic fluids had ??DH2O and ??18OH2O values close to -40??? and 5???, respectively, prior to release into the superjacent hydrostatically pressured fracture zone, wherein the fluids separat

  10. Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data

    USGS Publications Warehouse

    Neymark, L.A.; Larin, A.M.; Nemchin, A.A.; Ovchinnikova, G.V.; Rytsk, E. Yu

    1998-01-01

    The Northern Baikal volcanic belt has an age of 1.82-1.87 Ga and extends along the boundary between the Siberian Platform and the Baikal foldbelt. The volcanic belt is composed of volcanics of the Akitkan Group and granitic rocks of the Irel and Primorsk complexes. The geochemistry of the rocks points to the intraplate anorogenic nature of the belt. U-Pb zircon dating of the Chuya granitoids revealed that they are older (2020-2060 Ma) than the Northern Baikal volcanic belt and, thus, cannot be regarded as its component. Data on the Pb isotopic system of feldspars from the granitoids confirm the contemporaneity of all volcanic rocks of the belt except the volcanics of the upper portion of the Akitkan Group (Chaya Formation). Our data suggest its possibly younger (???1.3 Ga) age. The isotopic Nd and Pb compositions of the acid volcanic rocks provide evidence of the heterogeneity of their crustal protoliths. The volcanics of the Malaya Kosa Formation have ??Nd(T) = -6.1, ??2 = 9.36, and were most probably produced with the participation of the U-depleted lower continental crust of Archean age. Other rocks of the complex show ??Nd(T) from -0.1 to -2.4, ??2 = 9.78, and could have been formed by the recycling of the juvenile crust. The depletion of the Malaya Kosa volcanics in most LILEs and HFSEs compared with other acid igneous rocks of the belt possibly reflects compositional differences between the Late Archean and Early Proterozoic crustal sources. The basaltic rocks of the Malaya Kosa Formation (??Nd varies from -4.6 to -5.4) were produced by either the melting of the enriched lithospheric mantle or the contamination of derivatives of the depleted mantle by Early Archean lower crustal rocks, which are not exposed within the area. Copyright ?? 1998 by MAEe Cyrillic signK Hay??a/Interperiodica Publishing.

  11. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ye; Teng, Fang-Zhen; Halama, Ralf; Keller, Jörg; Klaudius, Jurgis

    2016-06-01

    To investigate the behaviour of Mg isotopes during carbonatite magmatism, we analyzed Mg isotopic compositions of natrocarbonatites and peralkaline silicate rocks from Oldoinyo Lengai, Tanzania. The olivine melilitites from the vicinity of Oldoinyo Lengai have homogeneous and mantle-like Mg isotopic compositions (δ26Mg of -0.30 to -0.26‰), indicating limited Mg isotope fractionation during mantle melting. The highly evolved peralkaline silicate rocks not related to silicate-carbonatite liquid immiscibility, including phonolites from the unit Lengai I, combeite-wollastonite nephelinites (CWNs) from the unit Lengai II A and carbonated combeite-wollastonite-melilite nephelinites (carbCWMNs), have δ26Mg values (from -0.25 to -0.10‰) clustered around the mantle value. By contrast, the CWNs from the unit Lengai II B, which evolved from the silicate melts that were presumably generated by silicate-carbonatite liquid immiscibility, have heavier Mg isotopes (δ26Mg of -0.06 to +0.09‰). Such a difference suggests Mg isotope fractionation during liquid immiscibility and implies, based on mass-balance calculations, that the original carbonatite melts at Lengai were isotopically light. The variable and positive δ26Mg values of natrocarbonatites (from +0.13 to +0.37‰) hence require a change of their Mg isotopic compositions subsequent to liquid immiscibility. The negative correlations between δ26Mg values and contents of alkali and alkaline earth metals of natrocarbonatites suggest Mg isotope fractionation during fractional crystallization of carbonatite melts, with heavy Mg isotopes enriched in the residual melts relative to fractionated carbonate minerals. Collectively, significant Mg isotope fractionation may occur during both silicate-carbonatite liquid immiscibility and fractional crystallization of carbonatite melts, making Mg isotopes a potentially useful tracer of these processes relevant to carbonatite petrogenesis.

  12. New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Wu, Shein-Fu; You, Chen-Feng; Lin, Yen-Po; Valsami-Jones, Eugenia; Baltatzis, Emmanuel

    2016-01-01

    Magmatic sources may contribute a significant amount of volatiles in geothermal springs; however, their role is poorly understood in submarine hydrothermal systems worldwide. In this study, new results of B and δ11B in 41 hydrothermal vent waters collected from the shallow hydrothermal system of Milos island in the Aegean Sea were combined with previously published data from other tectonic settings and laboratory experiments to quantify the effects of phase separation, fluid/sediment interaction and magmatic contribution. Two Cl-extreme solutions were identified, high-Cl waters (Cl as high as 2000 mM) and low-Cl waters (Cl < 80 mM). Both sets of waters were characterized by high B/Cl (~ 1.2-5.3 × 10- 3 mol/mol) and extremely low δ11B (1.4-6.3‰), except for the waters with Mg content of near the seawater value and δ11B = 10.3-17.4‰. These high-Cl waters with high B/Cl and low δ11B plot close to the vent waters in sediment-hosted hydrothermal system (i.e., Okinawa Trough) or fumarole condensates from on-land volcanoes, implying B addition from sediment or magmatic fluids plays an important role. This is in agreement with fluid/sediment interactions resulting in the observed B and δ11B, as well as previously reported Br/I/Cl ratios, supporting a scenario of slab-derived fluid addition with elevated B, 11B-rich, and low Br/Cl and I/Cl, which is derived from the dehydration of subducted-sediments. The slab fluid becomes subsequently mixed with the parent magma of Milos. The deep brine reservoir is partially affected by injections of magmatic fluid/gases during degassing. The results presented here are crucial for deciphering the evolution of the brine reservoirs involved in phase separation, fluid/sediment interaction and magmatic contribution in the deep reaction zone of the Milos hydrothermal system; they also have implications in the understanding of the formation of metallic vein mineralization.

  13. Low-Sulfide PGE ores in paleoproterozoic Monchegorsk pluton and massifs of its southern framing, Kola Peninsula, Russia: Geological characteristic and isotopic geochronological evidence of polychronous ore-magmatic systems

    NASA Astrophysics Data System (ADS)

    Chashchin, V. V.; Bayanova, T. B.; Mitrofanov, F. P.; Serov, P. A.

    2016-01-01

    New U-Pb and Sm-Nd isotopic geochronological data are reported for rocks of the Monchegorsk pluton and massifs of its southern framing, which contain low-sulfide PGE ores. U-Pb zircon ages have been determined for orthopyroxenite (2506 ± 3 Ma) and mineralized norite (2503 ± 8 Ma) from critical units of Monchepluton at the Nyud-II deposit, metaplagioclasite (2496 ± 4 Ma) from PGE-bearing reef at the Vurechuaivench deposit, and host metagabbronorite (2504.3 ± 2.2. Ma); the latter is the youngest in Monchepluton. In the southern framing of Monchepluton, the following new datings are now available: U-Pb zircon ages of mineralized metanorite from the lower marginal zone (2504 ± 1 Ma) and metagabbro from the upper zone (2478 ± 20 Ma) of the South Sopcha PGE deposit, as well as metanorite from the Lake Moroshkovoe massif (2463.1 ± 2.7 Ma). The Sm-Nd isochron (rock-forming minerals, sulfides, whole-rock samples) age of orthopyroxenite from the Nyud-II deposit (2497 ± 36 Ma) is close to results obtained using the U-Pb method. The age of harzburgite from PGE-bearing 330 horizon reef of the Sopcha massif related to Monchepluton is 2451 ± 64 Ma at initial ɛNd =-6.0. The latter value agrees with geological data indicating that this reef was formed due to the injection of an additional portion of high-temperature ultramafic magma, which experienced significant crustal contamination. The results of Sm-Nd isotopic geochronological study of ore-bearing metaplagioclasite from PGE reef of the Vurechuaivench deposit (2410 ± 58 Ma at ɛNd =-2.4) provide evidence for the appreciable effect of metamorphic and hydrothermal metasomatic alterations on PGE ore formation. The Sm-Nd age of mineralized norite from the Nyud-II deposit is 1940 ± 32 Ma at initial ɛNd =-7.8. This estimate reflects the influence of the Svecofennian metamorphism on the Monchepluton ore-magmatic system, which resulted in the rearrangement of the Sm-Nd system and its incomplete closure. Thus, the new

  14. Variations in the Pb isotope composition in polyformational magmatic rocks of the Ketkap-Yuna igneous province of the Aldan Shield: Evidence for mantle-crust interaction

    NASA Astrophysics Data System (ADS)

    Polin, V. F.; Dril, S. I.; Khanchuk, A. I.; Velivetskaya, T. A.; Vladimirova, T. A.; Il'ina, N. N.

    2016-06-01

    The Pb isotope composition of polyformational Mesozoic igneous rocks of the Ketkap-Yuna igneous province (KYIP) and lower crustal metamorphic rocks of the Batomga granite-greenstone area (the complex of the KYIP basement) of the Aldan Shield was studied for the first time. Based on the data obtained, several types of material sources participating in petrogenetic processes were distinguished. The mantle source identified as PREMA is registered in most of the igneous formations and predominates in mafic alkaline rocks. According to the isotope characteristics, the upper crustal source corresponds to a source of the "Orogen" type by the model of "plumbotectonics" or to the average composition of the continental crust by the Stacey-Kramers model. The lower crust is the third material source; however, the type of lower crustal protolith involved in the igneous process is still not defined, which makes difficult to estimate its role in the petrogenetic processes.

  15. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  16. Magmatism in the Carolina terrane: Isotopic evidence for a Grenville-age source for Late Proterozoic volcanics and a mantle source for Silurian Concord syenite

    SciTech Connect

    Kozuch, M.; Heatherington, A.L.; Mueller, P.A. . Dept. of Geology); Offield, T.W.; Koeppen, R.P.; Klein, T.L. )

    1992-01-01

    Rhyolitic to andesitic volcanic rocks from the central portion of the Carolina slate belt in North Carolina were analyzed for Sr and Nd isotopic composition and dated by U-Pb zircon geochronology. Samples were from the greenschist-facies Late Proterozoic Albemarle Group, Uwharrie Formation, and the informal Virginia sequence. A rhyolite from the Cid Formation of the Albemarle Group dated by U-Pb zircon geochronology yielded a Pb-207/Pb-206 age of 575 [+-] 7.6 Ma, consistent with its position below strata containing the Late Proterozoic trace fossil Pteridinium and above rocks previously dated at 586 [+-] 10 Ma. Rb-Sr isotopic analyses of late Proterozoic rocks showed average initial Sr-87/Sr-86 ratios of approximately 0.704, indicating a moderately depleted source for these samples. E[sub ND] values at 600 Ma are moderately positive (+0.7 [minus] +2.3) and T(DM) values range from 1.19--1.04 Ga. These isotopic data, along with major and trace element data, suggest that andesites and rhyolites of the Carolina slate belt may have formed by partial melting of attenuated, Grenville-aged continental lithosphere during a 600 Ma episode of arc volcanism. In contrast, Sr and Nd data for the younger ([approximately]400 Ma) Concord pluton indicate it was derived from a depleted mantle source (Sr-87/Sr-86 = 0.7021 and E[sub ND] = +0.4 at 400 Ma) without significant involvement of older lithosphere (T(DM) = 370 Ma).

  17. He, Ar, N and C isotope compositions in Tatun Volcanic Group (TVG), Taiwan: Evidence for an important contribution of pelagic carbonates in the magmatic source

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Sano, Yuji; Takahata, Naoto; Yang, Frank T.; Takahashi, Hiroshi A.

    2015-09-01

    The Tatun Volcanic Group (TVG), Northeastern Taiwan, is considered to be the extension of the Ryukyu arc, and belongs to the post-collisional collapse Okinawa Trough. Strong hydrothermal activity is concentrated along the Chinshan fault, and Da-you-keng (DYK) represents the main fumarolic area where the most primitive isotopic and chemical composition is observed. In this study, we present chemical and He, Ar, C and N isotopic compositions of fumaroles, bubbling gas and water from hot springs sampled in 2012 and 2013. High 3He/4He ratios from DYK fumaroles (≈ 6.5 Ra) show a typical arc-like setting, whereas other sampling areas show a strong dependence of 3He/4He and CH4/3He ratios with the distance from the main active hydrothermal area (DYK). This could mean strong crustal contamination and thermal decomposition of organic matter from local sediments. Carbon isotope compositions of DYK range from - 6.67‰ to - 5.85‰, and indicate that carbon contribution comes mainly from pelagic carbonates from the slab (limestone, mantle and sediment contributions are 63%, 19% and 18%, respectively). This is consistent with the negative δ15N values (- 1.4 ± 0.5‰) observed for DYK, implying a strong nitrogen-mantle contribution, and an absence of contribution from nitrogen-pelagic carbonates. These results have important consequences related to the Ryukyu subducted slab. In fact, the Ryukyu margin presents little in off scraping the sedimentary cover to the subducting plate that does not permit any nitrogen contribution in magma from TVG.

  18. Whole Rock Lithium Isotopic Signatures of a Pegmatite Swarm and Their Variation With Increasing Magmatic Fractionation: Evidence From the Little Nahanni Pegmatite Group, Northwest Territories.

    NASA Astrophysics Data System (ADS)

    Barnes, E. M.; Weis, D.; Groat, L. A.

    2008-12-01

    Variations in the δ7Li values of individual dikes of the Little Nahanni Pegmatite Group (LNPG) in the Northwest Territories correlate with variations in the mineralogy and whole rock geochemistry suggesting compositional evolution of the melt during emplacement of the pegmatites. A better understanding of the relationship between these aspects may help clarify some of the processes involved in pegmatite formation. Quartz, K-feldspar, plagioclase, spodumene and mica are the major rock-forming minerals of the majority of the > 200 LNPG pegmatites, with accessory phases including columbite-group minerals, cassiterite, tourmaline, beryl, lithiophilite and garnet. A minority of dikes contain no spodumene but significantly more mica than the others. Major element whole rock geochemistry of 23 samples show high abundance and variability in SiO2 (67.2 - 78.5 wt.%) and Al2O3 (12.7 - 19.6 wt.%), moderate abundance and variability in Na2O (2.5 - 5.4 wt.%) and K2O (2.1-4.4 wt.%) and extremely low abundance in FeO (or Fe2O3), CaO, MgO and MnO (< 1 wt.%). However, Harker diagrams show little correlation between the oxides. In contrast, trace element analyses provide a wealth of information with high (e.g. Li, Cs, Ta, Sn) or low (e.g. rare earth element (REE), Sr, Ba) abundances relative to continental crust, strong fractionation trends in Nb/Ta, Ce/Pb and Zr/Hf, and distinctive REE patterns. Less fractionated spodumene-bearing rocks exclusively correlate with `tetrad effect' REE patterns with strongly negative Eu anomalies. The more fractionated spodumene-free samples display LREE enriched, relatively straight or listric REE patterns. The pegmatites at LNPG are high in H2O, F, P, and Li, all of which are capable of postponing the onset of crystallisation by depolymerizing the cooling silicate melt, potentially to within the temperature range of Li isotope fractionation. Measurements by MC-ICP-MS of 6Li and 7Li in the LNPG whole rock samples range between δ7Li -0.73 and 11

  19. Source and mode of the Permian Panjal Trap magmatism: Evidence from zircon U-Pb and Hf isotopes and trace element data from the Himalayan ultrahigh-pressure rocks

    NASA Astrophysics Data System (ADS)

    Rehman, Hafiz Ur; Lee, Hao-Yang; Chung, Sun-Lin; Khan, Tahseenullah; O'Brien, Patrick J.; Yamamoto, Hiroshi

    2016-09-01

    We present an integrated study of LA-ICP-MS U-Pb age, Hf isotopes, and trace element geochemistry of zircons from the Himalayan eclogites (mafic rocks) and their host gneisses (felsic rocks) from the Kaghan Valley in Pakistan in order to understand the source and mode of their magmatic protoliths and the effect of metamorphism. Zircons from the so-called Group I (high-pressure) eclogites yielded U-Pb mean ages of 259 ± 10 Ma (MSWD = 0.74), whereas those of Group II (ultrahigh-pressure) eclogites yielded 48 ± 3 Ma (MSWD = 0.71). In felsic gneisses the central or core domains of zircons yielded ages similar to those from Group I eclogites but zircon overgrowth domains yielded 47 ± 1 Ma (MSWD = 1.9). Trace element data suggest a magmatic origin for Group I-derived (having Th/U ratios: > 0.5) and metamorphic origin for Group II-derived (Th/U < 0.07) zircons, respectively. Zircon Hf isotope data, obtained from the same dated spots, show positive initial 176Hf/177Hf isotopic ratios referred to as "ƐHf(t)" of around + 10 in Group I eclogites; + 7 in Group II eclogites; and + 8 in felsic gneisses zircons, respectively, thus indicate a juvenile mantle source for the protolith rocks (Panjal Traps) with almost no contribution from the ancient crustal material. The similar ƐHf(t) values, identical protolith ages and trace element compositions of zircons in felsic (granites or rhyolites) and mafic (basalt and dolerite) rocks attest to a bimodal magmatism accounting for the Panjal Traps during the Permian. Later, during India-Asia collision in Eocene times, both the felsic and mafic lithologies were subducted to mantle-depths (> 90 km: coesite-stable) and experienced ultrahigh-pressure metamorphism before their final exhumation.

  20. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  1. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake

    USGS Publications Warehouse

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.

    2008-01-01

    Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stage melt veins are 0.2 per mil (???) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2??? lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.

  2. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  3. On the isotopic composition of magmatic carbon in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1992-01-01

    SNC meteorites are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC meteorites. In order to establish a firm basis for studying the isotopic systematics of carbon in the martian surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC meteorites, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC meteorites are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC meteorites to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of martian surface materials does have the necessary information with which to proceed.

  4. Seismic evidence of an extended magmatic sill under Mt. Vesuvius.

    PubMed

    Auger, E; Gasparini, P; Virieux, J; Zollo, A

    2001-11-16

    Mt. Vesuvius is a small volcano associated with an elevated risk. Seismic data were used to better define its magmatic system. We found evidence of an extended (at least 400 square kilometers) low-velocity layer at about 8-kilometer depth. The inferred S-wave (approximately 0.6 to 1.0 kilometer per second) and P-wave velocities (approximately 2.0 kilometer per second) as well as other evidence indicate an extended sill with magma interspersed in a solid matrix.

  5. In-situ chemical, U-Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Simonetti, Antonio; Neal, Clive R.

    2010-06-01

    Previous investigations of pipe-like intrusions of alnöite within northern Malaita (Solomon Islands) have detailed the chemical and isotopic nature of the alnöite and entrained megacrysts/xenoliths. Alnöite emplacement is poorly constrained since available ages include an Ar-Ar date of 34 Ma (phlogopite) from a mantle xenolith, and a 206Pb/238U date of 33.9 Ma for a zircon megacryst. Hence, we report chemical data, in-situ U-Pb age determinations and Hf isotope compositions for megacrystic zircons recovered from alnöite-derived, ilmenite-rich gravels in the Auluta, Kwainale, and Faufaumela rivers of Malaita. The Zr/Hf ratio (39 to 50) is variable for zircons from Auluta and Faufaumela, whereas it is relatively uniform (40 to 42) in most zircons from Kwainale. Chemical imaging reveals the homogeneous nature for all of the 16 grains analyzed. Trace element compositions obtained by LA-ICP-MS indicate parallel chondrite-normalized REE patterns at variable levels of enrichment; these patterns combined with their low abundances (< 1 to 10 ppm) of U, Th, and Pb confirm their mantle origin. In-situ U-Pb dating conducted by LA-ICP-MS (n = 94 analyses) define a total range in weighted mean (WM) 206Pb/238U ages between ∼ 35 and ∼ 52 Ma. The zircons from Auluta define a range of WM 206Pb/238U ages between 34.9 ± 2.0 Ma and 45.1 ± 2.5 Ma (2σ) that correlate negatively with Zr/Hf ratios and total REE contents. Conversely, the chemically homogeneous zircons from Kwainale define a uniform age spectrum yielding a WM 206Pb/238U age of 36.7 ± 0.5 Ma (2σ). In-situ Hf isotope analyses (n = 30) are uniform and define a WM 176Hf/177Hf value of 0.282933 ± 0.000013 (2σ), which is identical to the previously reported whole rock value for the Malaitan alnöite (0.282939 ± 0.000007). Correlations between ages and chemical compositions (i.e., Auluta zircons), and the uniform Hf isotope compositions are consistent with zircon formation from a common Ontong Java Plateau (OJP

  6. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation

    NASA Astrophysics Data System (ADS)

    Zambardi, Thomas; Lundstrom, Craig C.; Li, Xiaoxiao; McCurry, Michael

    2014-11-01

    This study presents the stable isotopic variations of both Si and Fe recorded in a single well-characterized magmatic suite from Cedar Butte volcano (ID, USA), as well as a sill with progressive compositional change within Finland granophyre (Duluth Complex, MN, USA). Both isotopic systems show a significant enrichment in heavy isotopes in the more differentiated materials, in agreement with previous studies. In addition, the Finland granophyre sill shows a strong dependence between the isotopic composition and the sampling depth, suggesting the isotopic compositions follow a temperature gradient in which the cold part systematically enriches in heavy isotopes. From these results it appears that at Cedar Butte, neither crystal fractionation, nor crustal contamination, nor late stage fluid exsolution can likely explain the isotopic variations we observe for both Fe and Si. We rather attribute these isotopic fractionations to a thermal migration process involving a top-down sill injection during which the isotopic distribution mostly follows a vertical temperature gradient.

  7. Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Tanner, Dominique; Henley, Richard W.; Mavrogenes, John A.; Holden, Peter

    2013-10-01

    This study couples in situ 16O, 17O and 18O isotope and in situ trace element analyses to investigate and characterize the geochemical and textural complexity of magmatic-hydrothermal quartz crystals. Euhedral quartz crystals contemporaneous with mineralization were obtained from four magmatic-hydrothermal ore deposits: El Indio Au-Ag-Cu deposit; Summitville Au-Ag-Cu deposit; North Parkes Cu-Au deposit and Kingsgate quartz-Mo-Bi-W deposit. The internal features of the crystals were imaged using cathodoluminescence and qualitative electron microprobe maps. Quantitative isotopic data were collected in situ using 157 nm laser ablation inductively coupled plasma mass spectrometry (for 40 trace elements in quartz) and sensitive high-resolution ion microprobe (for 3 isotopes in quartz). Imaging revealed fine oscillatory zoning, sector zoning, complex "macromosaic" textures and hidden xenocrystic cores. In situ oxygen isotope analyses revealed a δ18O range of up to 12.4 ± 0.3 ‰ in a single crystal—the largest isotopic range ever ascribed to oscillatory zonation in quartz. Some of these crystals contain a heavier δ18O signature than expected by existing models. While sector-zoned crystals exhibited strong trace element variations between faces, no evidence for anisotropic isotope fractionation was found. We found: (1) isotopic heterogeneity in hydrothermal quartz crystals is common and precludes provenance analysis (e.g., δD-δ18O) using bulk analytical techniques, (2) the trace element signature of quartz is not an effective pathfinder toward noble metal mineralization and (3) in three of the four samples, both textural and isotopic data indicate non-equilibrium deposition of quartz.

  8. Insights into collisional magmatism from isotopic fingerprints of melting reactions.

    PubMed

    Knesel, Kurt M; Davidson, Jon P

    2002-06-21

    Piston-cylinder experiments in the granite system demonstrate that a variety of isotopically distinct melts can arise from progressive melting of a single source. The relation between the isotopic composition of Sr and the stoichiometry of the observed melting reactions suggests that isotopic signatures of anatectic magmas can be used to infer melting reactions in natural systems. Our results also indicate that distinct episodes of dehydration and fluid-fluxed melting of a single, metapelitic source region may have contributed to the bimodal geochemistry of crustally derived leucogranites of the Himalayan orogen.

  9. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.

    PubMed

    Kemp, A I S; Hawkesworth, C J; Foster, G L; Paterson, B A; Woodhead, J D; Hergt, J M; Gray, C M; Whitehouse, M J

    2007-02-16

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  10. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.

    PubMed

    Kemp, A I S; Hawkesworth, C J; Foster, G L; Paterson, B A; Woodhead, J D; Hergt, J M; Gray, C M; Whitehouse, M J

    2007-02-16

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust. PMID:17303751

  11. Using multiple sulfur isotopes to link biological isotope fractionation in a sedimentary protolith to a magmatic Ni-sulfide deposit: Voisey's Bay Ni deposit, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Hiebert, R. S.; Bekker, A.; Wing, B. A.

    2012-12-01

    It is generally accepted that crustal contamination is required for the formation of significant magmatic Ni-Cu-PGE sulfide deposits. Either the addition of external S or SiO2 promote early sulfide saturation. The most direct indicator of S addition by this contaminant is S isotopes. However, the traditional use of δ34S values is inadequate in deposits where Archean sedimentary sulfides incorporated into these deposits might not have significantly different δ34S values from those of mantle S. Even in sediments that have variable δ34S values, δ34S signature can be reset to magmatic values by equilibrating large amounts of silicate magma with initial sulfide melt. However, sedimentary rocks contain isotope evidence of biological fractionation processes in the relationship between δ33S and δ34S values. We used multiple S isotope data to constrain the relationship between δ33S and δ34S values, identify biological S isotope fractionation in the metamorphosed sedimentary rocks of the Tasiuyak Gneiss, and compare this relationship to that in the Voisey's Bay magmatic Ni-deposit. The Voisey's Bay Ni-sulfide deposit, Labrador is hosted by a troctolitic conduit system. The Voisey's Bay intrusion is a part of the Nain plutonic suite and intruded at approximately 1.3 Ga along the boundary between the Proterozoic Tasiuyak Gneiss of the Churchill province and Archean gneisses of the Nain province. The general model suggests assimilation of a large amount of sulfidic Tasiuyak gneiss, leading to sulfur saturation prior to emplacement, even though the Tasiuyak gneiss does not have a high concentration of sulfur. High-temperature equilibrium relationships are not present in our measured δ33S and δ34S values from the Voisey's Bay deposit. Instead they indicate that a kinetic process is responsible for S isotope fractionations in the mineralization and troctolite, similar to that recorded by the Tasiuyak gneiss. The observed relationship between δ33S and δ34S values is

  12. Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence

    NASA Astrophysics Data System (ADS)

    White, J. D. L.; Valentine, G. A.

    2015-12-01

    What are the fragmentation processes in volcanic eruptions? At meetings like this sessions ask "what can pyroclasts tell us?" and the answer is mostly "the properties of the magma at the point of solidification." The only place a pyroclast can preserve a fragmentation signature is at its surface, as the fracture or interface that made it a fragment. Commonly contrasted are "phreatomagmatic" and "magmatic" fragmentation in eruptions. Strictly, the latter means only fragmentation of magma without external water, but it often carries the connotation of disruption by bubbles of magmatic gas. Phreatomagmatic fragmentation implies a role for external water in fragmenting the magma, including vaporization and expansion of water as steam with rapid cooling/quenching of the magma. Magma is necessarily involved in phreatomagmatic fragmentation, and a common approach to assessing whether a pyroclast formed by magmatic or phreatomagmatic fragmentation is to make a stepwise assessment. This often uses particle vesicularity (high=magmatic), shape of particles (blocky=phreatomagmatic), degree of quenching (high=phreatomagmatic), or a glassy fluidal exterior film on particles (present=magmatic). It is widely known that no single one of these criteria is entirely diagnostic and other criteria are often considered, such as welding (=magmatic), particle aggregation (=phreatomagmatic), lithic-fragment abundance (high=phreatomagmatic), and proportion of fines (high=phreatomagmatic). Magmatic fragmentation varies, and even without water can yield anything from rhyolite pumice to obsidian to basaltic achneliths or carbonatitic globules. This makes direct argument for magmatic fragmentation difficult, and many papers have taken an alternative approach: they have "tested" for phreatomagmatism using the fingerprints listed above, and if the fingerprint is lacking a magmatic fragmentation process is considered to be "proven". In other words, absence of evidence for phreatomagmatic

  13. Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center

    SciTech Connect

    Bullen, T.D.; Clynne, M.A. )

    1990-11-10

    Magmatic evolution at the Lassen volcanic center (LVC) is characterized by a transition from predominantly andesitic to predominantly silicic volcanism with time. Magmas of the adesitic, or Brokeoff phase of volcanism range in composition from basaltic andesite to dacite, whereas those of silicic, or Lassen phase range in composition from basaltic andesite to rhyolite. The distinctive mixing-dominated arrays for each volcanic phase manifest the generation and evolution of two physically distinct, but genetically related magma systems. The LVC magmas have Sr, Nd, and Pb isotope characteristics that approximate two-component mixing arrays. One isotopic component is similar in composition to that of NE Pacific Ocean ridge and seamount basalts (MORB component), the other to mafic Mesozoic granitoids sampled from the neighboring Klamath and Sierra Nevada provinces (KSN component). The lack of a correlation between the major element and isotopic compositions of LVC magmas seriously limits any model for magmatic evolution that relies on assimilation of old middle to upper crust by isotopically homogeneous mafic magmas during their ascent through the crust. Alternatively, the isotopic and geochemical uniformity of the most silicic magmas of the Brokeoff and Lassen phases suggests that they are well-homogenized partial melts. The likely source region for these silicic melts is the lower crust, which the authors envision to consist primarily of mafic igneous rocks that are similar in geochemical and isotopic diversity to the regional mafic lavas.

  14. Evolution of the Cretaceous magmatism in the Apuseni-Timok-Srednogorie metallogenic belt and implications for the geodynamic reconstructions: new insight from geochronology, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Frank, M.; Cvetkovic, V.

    2003-04-01

    Most major Cu-Au (-PGE) deposits in the Carpathian Balkan orogen are related to a 1500 km long belt of Upper Cretaceous magmatism extending from southern Romania through Yugoslavia to Bulgaria, with a likely continuation southeast of the Black Sea into Turkey, known as the Apuseni Banat Timok Srednogorie (ABTS) belt (Popov et al., 2000). In the frame of ABTS belt a new investigation was started to reveal the relation between Cretaceous magmatism and the Cu-Au-PGE deposits across the belt in East Serbia (Yugoslavia) and the Panagyurishte district (Bulgaria). The Late Cretaceous (Palaeogene?) magmatism of East Serbia developed along the Timok Magmatic Complex (TMC) in the east and the Ridanj Krepoljin Zone (RKZ) in the west. High precision U-Pb single zircon dating and a combination of isotope tracing, geochronological data as well as petrological data were used to provide additional data for the geodynamic evolution. A maximum life span of 2.5 Ma could be calculated for the first phase of volcanic activity in TMC, starting with the Amf-andesites of Veliki Kravelj (86.29 ± 0.32 Ma) and finishing with the Timozites (84.66 ± 0.5 Ma). Ore bearing magmatism in a single deposit (Veliki Kravelj) extended a maximum of 0.6 Ma ("pre-ore": 86.29 ± 0.32 Ma, "post-ore": 86.17 ± 0.15 Ma). Preliminary data for the dacites (70.3 ± 3.5 Ma) outcropping near Krepoljin give evidence for a shifting of the volcanic activity from TMC to RKZ together with changing the ore-deposit type from Cu-Au-PGE (TMC) to Pb-Zn-Cu (RKZ). Isotope tracing give evidence for mantle dominated source with increasing of crustal contamination in the same direction: (87Sr/86Sr ratios: 0.70388 to 0.706050, e-Hf-zircon data: +12 in TMC to +4.5 in RKZ). The Panagyurishte district (Bulgaria) show a duration time of the magmatic activity of 14 Ma, starting in the north at 92 Ma and finishing in the south at 78 Ma. Ore-related magmatism becomes younger in the same direction but finishes with 86 Ma. Multiple short

  15. Geochronology and isotopic-geochemical characteristics of magmatic complexes of gold-silver ore-magmatic structures in the Chukotka sector of the Russian Arctic coast

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Grigoriev, N. V.; Kurashko, V. V.

    2016-05-01

    The first results of SHRIMP dating of magmatic complexes and associated gold-silver deposits and ore occurrences (Kupol, Dvoinoe, Moroshka, and others) in the Chukotka sector of the Russian Arctic coast are discussed. The petrological and isotopic-geochronological data are used for reconstructing their formation conditions.

  16. Crustal recycling through intraplate magmatism: Evidence from the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.

    2014-12-01

    The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids - the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U-Pb geochronology and REE data, and Lu-Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U-Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite-trondhjemite-granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean-Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly

  17. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  18. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.

    2016-03-01

    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  19. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  20. Zircon U-Pb and Hf Isotopes Provide Insights into Triassic Magmatism in the Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Imrecke, D. B.; Robinson, A. C.

    2015-12-01

    Recent research has improved understanding of Triassic magmatism and sedimentation in the Songpan-Ganzi/Hoh-Xil Terranes of Tibet and the implications for the closure of the Paleotethys ocean (Pullen et al., 2008; Ding et al,. 2013; Zhang et al., 2014). However, our knowledge of the age of magmatism in the laterally equivalent Karakul-Mazar Terrane in the Northern Pamir is limited. While previous investigations indicate Karakul-Mazar igneous bodies have generally documented crystallization ages 225-245 Ma, detrital zircon studies of Late Triassic/Early Jurassic strata within the Northern Pamir and the Tarim Basin record a significant quantity of <220 Ma zircons (Bershaw et al., 2011) sourced from the Pamir. 6 granite samples were analyzed for zircon U-Pb and Hf isotopes, representing plutons distributed across the Chinese Pamir, to determine the distribution of crystallization ages and chemical maturity of the magma source. Analyses yielded 204 Ma and 212-214 Ma zircon U-Pb crystallization ages. The dated samples yield ɛHf(t) values ranging from -6.7 to 9.6. Results show that a large volume of magmatic rocks in the Northern Pamir intruded in the Late Triassic prior to closure of the Paleotethys Ocean at ~200 Ma (Angiolini et al., 2013). Weakly positive and negative ɛHf(t) values indicate a primitive source for the dated magmatic bodies. Additionally, compliation of previously published data with these results suggests two pulses of magmatism, ~210 Ma and 230-245 Ma respectively. Finally, Triassic igneous bodies in the Pamir show similar crystallization ages and chemical signatures compared to plutons in the Songpan-Ganzi/Hoh-Xil Terranes to the east, suggesting lateral continuity of geodynamic processes across the terrane in the Mesozoic.

  1. Zircon Lu-Hf isotopes and granite geochemistry of the Murchison Domain of the Yilgarn Craton: Evidence for reworking of Eoarchean crust during Meso-Neoarchean plume-driven magmatism

    NASA Astrophysics Data System (ADS)

    Ivanic, Timothy J.; Van Kranendonk, Martin J.; Kirkland, Christopher L.; Wyche, Stephen; Wingate, Michael T. D.; Belousova, Elena A.

    2012-09-01

    New in situ Lu-Hf data on zircons from GSWA geochronology samples has provided a unique isotopic dataset with a high temporal resolution for the Murchison Domain of the Yilgarn Craton in Western Australia. These data identify extended periods of juvenile mantle input (positive ɛHf values) into the crust firstly at c. 2980 Ma and then from c. 2820 Ma to c. 2640 Ma with significant pulses of crustal recycling at c. 2750 Ma and c. 2620 Ma (highly negative ɛHf values). Geochemical data from well-characterised granitic suites of the Murchison Domain provide additional constraints on the crustal evolution of the area and indicate a prolonged period of crustal melting and remelting at progressively shallower depths from c. 2750 to c. 2600 Ma. At c. 2760-2753 Ma, widespread calc-alkaline, intermediate to silicic volcanic rocks of the Polelle Group were erupted, accompanied by intrusion of felsic to intermediate melts derived from a variety of crustal sources that likely formed by partial mixing with basaltic melts. The intrusive rocks include a wide geochemical array of rocks in the Cullculli and Eelya suites that were sourced over a wide range of crustal depths. At this time a major departure to negative ɛHf values (<-5) occurred, indicating sampling of c. 3.80 Ga model aged source rocks as well as continued juvenile input. Post-volcanic granitic rocks emplaced between c. 2710 and c. 2600 Ma show geochemical evidence for progressive fractionation through time and derivation from an evolving crustal source. We interpret the driving force for this protracted history of mantle and crustal melting to be two mantle plumes at 2.81 and 2.72 Ga. These data document the process of cratonization through progressive melt depletion of the lower crust, progressively fractionating and shallower melts, culminating with a final phase of crustal recycling (ɛHf < - 5) and the cessation of juvenile input at c. 2630-2600 Ma during intrusion of the Bald Rock Supersuite, resulting in

  2. Paleoproterozoic felsic magmatism of the Karelian Craton: petrogeochemistry, isotope geochemistry, and genesis

    NASA Astrophysics Data System (ADS)

    Bogina, M. M.; Zlobin, V. L.

    2012-04-01

    Intense rift magmatism at the Karelian craton at the Archean-Proterozoic boundary (2.5-2.4 Ga) was mainly represented by mafic rocks, which compose mafic-ultramafic layered intrusions and basaltic lava fields. Felsic rocks of this age are of limited abundance, but provide insight into the nature of magmatism in an extensional regime associated with incipient rifting. These felsic rocks are represented by metavolcanic rocks of dacitic to rhyolitic composition, which are spatially related with mafic volcanics, their plutonic analogues, as well as fields of "remobilized granites" among the Late Archean granitoids. Their U-Pb ages vary from 2434+8 Ma and 2361 + 15 Ma, with the younger ages of the latters. The Paleoproterozoic felsic voclanics and granitoids are ascribed to the calc-alkaline to subalkaline series with total alkalis from 4.1 to 7.3 wt % and the K predominance over Na. Their distinctive feature is elevated TiO2 content (up to 1.19 wt%), which is not typical of siliceous rocks and expressed in the presence of numerous rutile needles in quartz. Practically all rocks have high Fe mole fraction. In terms of alumina saturation index (ASI), the volcanics show wide variations from metaluminous to highly peraluminous rocks (from 0.9 to 1.6), whereas granites are metaluminous rocks (ASI = 0.9-1.0). The studied rocks show fractionated REE patterns with wide LREE variations ((La/Yb)N=2.09-17.08; (La/Sm)N=1.65-4.4) at weak HREE variations (Gd/Yb)N=0.66-2.09), which is typical of the rocks formed in an intracontinental setting. In the petrotectonic diagram, the granitoids fall in the field of A-type anorogenic granites, which is consistent with rifting setting of their formation. In terms of Y-Nb-Ga relations, they correspond to the rocks derived by crustal melting. Sm-Nd isotopic studies revealed that the volcanics are characterized by negative eNd from -3.6 to -2.4, while the granites have more radiogenic composition from -1.7 to -2.0. The model ages vary from 2770

  3. Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.

    2014-12-01

    Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al

  4. Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Padilla, A. J.; Miller, C. F.; Carley, T. L.; Economos, R. C.; Schmitt, A. K.; Coble, M. A.; Wooden, J. L.; Fisher, C. M.; Vervoort, J. D.; Hanchar, J. M.

    2016-09-01

    The Austurhorn intrusive complex (AIC) in southeast Iceland comprises large bodies of granophyre and gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magmatic interactions common in Icelandic silicic systems. Despite being one of Iceland's best-studied intrusions, few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ high spatial resolution zircon elemental and isotopic geochemistry and U-Pb geochronology as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MSCZ. The trace element compositions of AIC zircon crystals form a broad but coherent array that partly overlaps with the geochemical signature for zircons from Icelandic silicic volcanic rocks. Typical of Icelandic zircons, Hf concentrations are relatively low (<10,000 ppm) and Ti concentrations range from 5 to 40 ppm (Ti-in-zircon model temperatures = 761-981 °C). Zircon δ18O values vary from +2.2 to +4.8 ‰, consistent with magmatic zircons from other Icelandic silicic rocks, and preserve evidence for recycling of hydrothermally altered crust as a significant contribution to the generation of silicic magmas within the AIC. Zircon ɛ Hf values generally range from +11 to +15. This range overlaps with that of Icelandic basalts from off-rift settings as well as the least depleted rift basalts, suggesting that the AIC developed within a transitional rift environment. In situ zircon U-Pb ages yield a weighted mean of 6.52 ± 0.03 Ma for the entire complex, but span a range of ~320 kyr, from 6.35 ± 0.08 to 6.67 ± 0.06 Ma (2 σ SE). Gabbros and the most silicic units make up the older part of this range, while granophyres and intermediate units make up the younger part of the complex, consistent with field relationships. We interpret the ~320 kyr range in zircon ages to represent the approximate timescale of magmatic construction

  5. Mantle source of the 2.44-2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hong; Hanski, Eero; Li, Chao; Maier, Wolfgang D.; Huhma, Hannu; Mokrushin, Artem V.; Latypov, Rais; Lahaye, Yann; O'Brien, Hugh; Qu, Wen-Jun

    2016-08-01

    Significant PGE and Cr mineralization occurs in a number of 2.44-2.50-Ga mafic layered intrusions located across the Karelian and Kola cratons. The intrusions have been interpreted to be related to mantle plume activity. Most of the intrusions have negative ɛNd values of about -1 to -2 and slightly radiogenic initial Sr isotope compositions of about 0.702 to 0.703. One potential explanation is crustal contamination of a magma derived from a mantle plume, but another possibility is that the magma was derived from metasomatized sub-continental lithospheric mantle. Samples from the upper chromitite layers of the Kemi intrusion and most samples from the previously studied Koitelainen and Akanvaara intrusions have supra-chondritic γOs values indicating some crustal contamination, which may have contributed to the formation of chromitites in these intrusions. Chromite separates from the main ore zone of the Kemi and Monchepluton intrusions show nearly chondritic γOs, similar to the coeval Vetreny belt komatiites. We suggest that the Os isotope composition of the primitive magma was not significantly changed by crustal contamination due to a high Os content of the magma and a low Os content of the contaminant. Modeling suggests that the Os and Nd isotope compositions of the Monchepluton and Kemi intrusions cannot be explained by assuming a magma source in the sub-continental lithospheric mantle with sub-chondritic γOs. A better match for the isotope data would be a plume mantle source with chondritic Re/Os and Os isotope composition, followed by crustal contamination.

  6. New evidence for a magmatic origin of some gases in the Geysers geothermal reservoir

    SciTech Connect

    Truesdell, A.H.; Kennedy, B.M.; Walters, M.A.; D'Amore, F.

    1994-01-20

    The Geysers vapor-dominated geothermal reservoir is known to have a wide range of gas concentrations in steam (<100 to >75,000 ppmw), but the variations in gas compositions and the origin of the gases have been little studied. Low gas concentrations and steam isotopes similar to meteoric waters are found in the SE Geysers, but steam high in gas and HCI from a high temperature reservoir (HTR) in the NW Geysers has been thought to be related to metamorphic or magmatic brine. New analyses of noble gas isotopes show that the highest gas steam from the HTR has high {sup 3}He/{sup 4}He (8.3 Ra), and very low {sup 36}Ar and radiogenic {sup 40}Ar/{sup 4}He, indicating a strong magmatic component and essentially no atmospheric or crustal noble gases. Other samples from the HTR show various amounts of atmospheric dilution of the magmatic gas and lower HCI and total gas contents. The occurrence of steam in the NW Geysers highly enriched in heavy isotopes of oxygen and hydrogen supports the indications of remnant magmatic fluid: The existence of this fluid strongly suggests that the HTR was formed by rapid heating and catastrophic boiling resulting from injection of magma.

  7. Combined Whole-Rock to Nano-Scale Investigations Reveal Contrasting Response of Pt-Os and Re-Os Isotope Systematics During Magmatic and Post-Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Coggon, J. A.; Luguet, A.; Lorand, J. P.; Fonseca, R.; Wainwright, A.; Appel, P.; Hoffmann, J. E.; Nowell, G. M.

    2015-12-01

    Advances in single-grain and micro- and nano-analytical techniques in recent years have been particularly important to the study of highly siderophile elements (HSE) and have contributed significantly to our knowledge and understanding of their host phases and behaviour. Furthermore, whole-rock- to nano-scale studies provide new perspectives for investigation of HSE isotope systematics. Recent multi-scale 187Re-187Os and 190Pt-186Os studies facilitate comparison, to a previously unattainable degree, of the differing responses of these two decay systems to magmatic and post-magmatic processes. It is well established that mafic-ultramafic melts are sensitive to disturbance of their Re-Os isotope systematics by crustal assimilation, due to the incompatibility and resulting enrichment of Re in crustal lithologies. In contrast the very long half-life and extremely low atomic abundance of 190Pt, combined with relatively low Pt concentrations in crustal rocks, generally render the Pt-Os isotope system insensitive to modification during assimilation. However, using new single chromite grain data (Coggon et al., 2015) from the >3.811 Ga Ujaragssuit nunât layered ultramafic body, Greenland, we show that it is possible to distinguish two distinct episodes of 187Os/188Os modification; Country rock contamination of the parent melt was followed by later metamorphic disturbance of the isotope system. The Pt-Os data (Coggon et al., 2013) from the same samples show no evidence of crustal assimilation, but preserve signatures of mantle melting at ~4.1 Ga as well as disturbance during metamorphism. Macro- to micro-petrographic study clearly demonstrates that Pt, Re and Os are hosted by different mineral phases, of different origins, in these samples. This, together with the physical parameters of the decay systems reported above, leads to the dissimilar behaviour and response of the 187Re-187Os and 190Pt-186Os isotope systems during both magmatic and post-magmatic processes and

  8. Emission rate, isotopic composition and origin(s) of magmatic carbon dioxide at Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Allard, P.

    2012-12-01

    (iii) other Javanese volcanoes whose lavas do not contain calc-silicate xenoliths emit CO2 with identical δ13C values of -4‰. Based on the above observations and on typical arc-type isotopic ratios for water, sulphur and nitrogen in Merapi magmatic gases [2], I rather propose that 80% of CO2 emitted by the volcano ultimately derives from a subducted sediment contribution, in agreement with Sr-Nd-Pb isotope data for bulk lavas [9]. The CO2/HCl ratio of Merapi magmatic gases, normalized to the bulk mass fraction of outgassed Cl inferred from analysis of melt inclusions in clinopyroxene and the matrix glasses, points to a maximum CO2 content of ~1 wt% in the undegassed magma [3], 0.8 wt% of which derived from subducted carbon. [1] Allard, 1980, C.R. Acad Sciences Paris; [2] Allard, 1986, Ph.D thesis, Paris 7 Univ.; [3] Allard et al., 1995, and submitted (JVGR, 2012); [4] Toutain et al., Bull. Volcanol. 2009; [5] Clocchiatti et al., 1982, C.R. Acad. Sciences Paris; [6] Chadwick et al., 2007, J. Petrol.; [7] Deegan et al., 2010, J. Petrol.; [8] Troll et al., 2012, Geophys. Res. Lett.; [9] Gertisser and Keller, 2003, J. Petrol..

  9. Constraints from Li isotope systematics on subduction recycling, arc magmatism, and continent growth: An overview

    NASA Astrophysics Data System (ADS)

    Leeman, W. P.; Lee, C. A.; Chan, L. H.

    2008-12-01

    Great expectations that Li isotopic systematics can uniquely constrain many fluid-mitigated geologic processes have met with mixed success for a variety of reasons. On a local scale (some volcanic arc segments) Li composition can be highly correlated with other geochemical tracers of subduction fluids whereas, globally, such correlations tend to be disappointingly poor. The utility of Li isotopes as a tracer is limited in part by extensive overlap between mantle and subduction inputs, by limited understanding of equilibrium isotopic fractionation effects, and by apparent departures from equilibrium behavior. On the other hand, Li elemental systematics provide important constraints on global recycling processes because major litho-tectonic reservoirs have distinctive enrichments or depletions with respect to Nb or other HFSEs. Such chemical fractionations can be understood in terms of differential solubility of these elements in aqueous fluids vs. silicate melts, as well as the roles of weathering, dehydration, metamorphic or melting processes. For example, arc lavas are are systematically enriched in Li compared to those from other settings and typically have Li/Nb greater than BSE (consistent with addition of Li-rich fluids to their sources). In contrast, bulk continental crust and orogenic granitoids tend to have lower Li/Nb than BSE or arc lavas. Moreover, mass balance implies that the residual mantle (DM) produced by segregation of crust has higher Li/Nb than BSE. However, if continental crust is ultimately derived by subduction related magmatism, high Li/Nb would be expected for the crust and low Li/Nb for the upper mantle. This interesting conundrum is easiest explained in terms of selective Li removal from crustal protolith rocks via chemical weathering and erosion, which also is consistent with Li isotopic compositions of crust, mantle and seawater reservoirs. Thus, Li elemental and isotopic systematics (and relevant proxies) provide complementary

  10. Hf isotope study of Palaeozoic metaigneous rocks of La pampa province and implications for the occurrence of juvenile early Neoproterozoic (Tonian) magmatism in south-central Argentina

    NASA Astrophysics Data System (ADS)

    Chernicoff, C. J.; Zappettini, E. O.; Santos, J. O. S.; Belousova, E.; McNaughton, N. J.

    2011-12-01

    On a global scale, juvenile Tonian (Early Neoproterozoic) magmatic rocks are associated with the extensional events that lead to the breakup of the Rodinia supercontinent. In Argentina, no geological record is available for this time interval, lasting from 1000 to 850 Ma. We present indirect evidence for the existence of Tonian extension in Argentina, as supported by Hf and Nd isotope determinations on Phanerozoic magmatic and sedimentary rocks. We mainly focus on our own Hf isotope determinations carried out on U-Pb SHRIMP dated zircons from Palaeozoic metaigneous rocks of La Pampa province, south-central Argentina, i.e. metagabbros of Valle Daza, dioritic orthogneiss of Estancia Lote 8, and metadiorite of Estancia El Carancho, having found that these rocks were derived from sources of ca. 920 to ca 880 Ma, with ɛHf values between +6.83 and + 9.59. Inherited zircons of this age and character identified in these rocks also point to the same source. We also compile additional Hf and Nd studies from previous work on Phanerozoic magmatic and sedimentary rocks. We preliminarily compare the age of the juvenile Tonian sources referred to in our work with that of two extensional events identified in the São Francisco craton, Brazil.

  11. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system

    USGS Publications Warehouse

    Lambert, D.D.; Foster, J.G.; Frick, L.R.; Ripley, E.M.; Zientek, M.L.

    1998-01-01

    In this study, we reassess crustal contamination and sulfide ore-forming processes in some of the largest magmatic ore deposits, using published Re-Os isotope data and a modeling methodology that incorporates the R factor, defined as the effective mass of silicate magma with which a given mass of sulfide magma has equilibrated, in an Re-Os isotope mixing equation. We show that there is less disparity between conclusions based on Re-Os isotope data compared to other isotopic systems if the R factor is considered, Komatiite-associated Ni sulfide ore systems typically have high Os concentrations, low Re/Os ratios, and near-chondritic initial Os isotope compositions. For magmatic sulfide ores that are interpreted to have experienced relatively low R factors (2,000). Sulfide saturation in these ore systems may, therefore, have been achieved via changes in intensive parameters of the komatiite lavas (cooling or decompression) or changes in compositional parameters transparent to the Re-Os isotope system (e.g., fo2/fs2/fH2O)- Basalt-gabbro-associated Cu-Ni sulfide ore systems at Duluth, Sudbury, and Stillwater are quite distinct from those at Kambalda by having comparatively low Os concentrations, high Re/Os ratios, and high initial Os isotope compositions, These chemical and isotopic characteristics are indicative of significant interactions between their parental basaltic magmas and old crust because there are no known mantle reservoirs with such extreme geocheinical characteristics. Our modeling suggests that for Cu-Ni sulfide ores at Duluth, Sudbury, and Stillwater to maintain the observed high initial Os isotope compositions inherited from a crustal contaminant, R factors for these systems must have been low (< 10,000), consistent with their low metal concentrations. Thus, we interpret this style of base metal sulfide mineralization to be derived from crustally contaminated but less dynamic magmatic systems that did not permit extensive equilibration of sulfide magma

  12. Hydrogen Isotope Composition of Magmatic Water: Review of Variations due to Source, Igneous Environment, and Degassing Processes

    NASA Astrophysics Data System (ADS)

    Taylor, B. E.

    2001-05-01

    The familiar "magmatic water box" frequently shown on plots of δ D vs. δ 18O both represents and misrepresents the hydrogen isotope composition of magmatic water because of the influences of different source compositions and degassing processes. On the one hand, the hydrogen isotope composition of magma source materials in arcs versus continental tectonic settings contributes to differences in the primary δ D values of magmas. On the other hand, water remaining in magmatic rocks and glass is residual, and may express large variations in δ D due either to active degassing, during depressurization associated with emplacement and/or eruption, or to passive degassing during crystallization. The magnitudes of these variations are governed by hydrogen isotope fractionations involving melts, minerals, and dissolved hydrogen (H2O + OH), by water solubility, and whether the process is dominantly a closed- or open-system one. Estimating the primary δ D value of magmatic water requires extrapolation of isotopic and water content data for a suite of co-magmatic samples to a probable undegassed composition (e.g., 5 wt.% H2O). Island arcs and continental settings comprise two principal tectonic settings in which crustal source materials can differ in their hydrogen isotope composition (and dominate over mantle sources). For example, magmas formed in island arcs derive water from subducted marine clays, metamorphosed, hydrothermally altered, and weathered oceanic crust, from pore waters, and possibly, variably metasomatized mantle. Arc magmatic water, sometimes referred to as "andesitic water", tends to have an average δ D value of ca. -30 +/- 5 ‰ , whereas the average δ D value of water from magmas in continental crust regimes can be slightly lighter (e.g. δ D of ca. -45 +/- 10 ‰ ). This difference may be ascribed largely to the fact that continental crust contains water primarily as metamorphic and igneous minerals, whose average values of δ D reflect, among others

  13. Hydrogen isotope fractionation between C-H-O species in magmatic fluids

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Mysen, B. O.

    2012-12-01

    Constraining the hydrogen isotope fractionation between H-bearing volatiles (e.g. H2, CH4, hydrocarbons, H2O) as function of temperature and pressure helps to promote our understanding of the isotopic composition of evolved magmatic fluids and the overall mantle-cycling of water and reduced C-O-H volatiles. To describe the thermodynamics of the exchange reactions between the different H/D isotopologues of H2 and CH4 under supercritical water conditions, a novel experimental technique has been developed by combining vibrational Raman spectroscopy with hydrothermal diamond anvil cell designs (HDAC), which offers a method to monitor the in-situ evolution of H/D containing species. To this end, the equilibrium relationship between H2-D2-HD in supercritical fluid was investigated at temperatures ranging from 300 - 800 oC and pressures ~ 0.3 - 1.3 GPa [1]. Experimental results obtained in-situ and ex-situ show a significant deviation from the theoretical values of the equilibrium constant predicted for ideal-gas reference state, and with an apparent negative temperature effect triggered by the enthalpy contributions due to mixing in supercritical water. Here, we present a series of HDAC experiments conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600 - 800 oC and 409 - 1622 MPa. In detail, tetrakis-silane (Si5C12H36) was reacted with H2O-D2O aqueous solution in the presence of either Ni or Pt metal catalyst, resulting to the formation of deuterated methane species such as CH3D, CHD3, CH2D2 and CD4. Two distinctly different set of experiments ("gas phase"; "liquid phase") were performed by adjusting the silane/water proportions. By measuring the relative intensities of Raman vibrational modes of species, experimental results demonstrate distinctly different thermodynamic properties for the CH4-CH3D-CHD3-CH2D2 equilibrium in gas and liquid-water-bearing systems. In addition, the D/H molar ratio of

  14. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Padilla, Abraham J.; Schmitt, Axel K.; Economos, Rita C.; Bindeman, Ilya N.; Jordan, Brennan T.

    2014-11-01

    Tangible evidence of Earth's earliest (Hadean; >4.0 Ga) crust, and the processes and materials that contributed to its formation, exists almost entirely in a record of detrital zircon from Jack Hills, Western Australia, and a few other locations. Iceland, with its thick, juvenile, basaltic crust and relatively abundant silicic rocks, is considered a potential modern analog for the Hadean magmatic environment where >4 Ga zircon formed. We present the first extensive dataset for Icelandic zircon, with trace element and oxygen isotope compositions from samples that span the island's history and full range of tectonic settings. This statistically robust zircon-based comparison between Iceland and the early Earth reveals distinctions in chemistry that suggest fundamental differences in magmatic environments. Whereas the δ18O signature of Hadean zircons generally exceed that of zircons equilibrated with mantle-derived magma (85%≥5.3‰; median 6‰), almost all Icelandic zircons are characterized by a “light” oxygen signature (98%≤5.3‰; median 3‰). Deviations from “juvenile” oxygen values indicate that many Hadean zircons and almost all Icelandic zircons grew from magmas with substantial contributions from materials that had interacted with surface waters. In the Hadean case, the interaction occurred at low temperatures, while in Iceland, it was a high-temperature interaction. Icelandic and Hadean zircons are also distinct in their Ti concentrations (Icelandic median concentration 12 ppm, Hadean median 5 ppm). Titanium in zircon correlates positively with temperature of crystallization, and this difference in median Ti concentration suggests a temperature difference of at least 50 °C. Other differences in trace elements compositions are consistent with the interpretation that Icelandic and Hadean zircons grew in magmas with very different origins and histories (e.g., the heavy rare earth element Yb is almost an order of magnitude higher in Icelandic

  15. Zinc isotopic evidence for the origin of the Moon.

    PubMed

    Paniello, Randal C; Day, James M D; Moynier, Frédéric

    2012-10-18

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon. PMID:23075987

  16. Zinc isotopic evidence for the origin of the Moon.

    PubMed

    Paniello, Randal C; Day, James M D; Moynier, Frédéric

    2012-10-18

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

  17. Zinc isotopic evidence for the origin of the Moon

    NASA Astrophysics Data System (ADS)

    Paniello, Randal C.; Day, James M. D.; Moynier, Frédéric

    2012-10-01

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

  18. Isotopic Constraints on Magmatic Sources at Nyiragongo and Nyamulagira Volcanoes, Virunga Volcanic Province, DR Congo

    NASA Astrophysics Data System (ADS)

    Phillips, E. H. W.; Sims, K. W. W.; Tedesco, D.; Blichert-Toft, J.; Scott, S. R.; Reagan, M. K.

    2015-12-01

    The active volcanoes Nyiragongo and Nyamulagira in the DR Congo have very different physical and geochemical characteristics, despite being situated a mere 15 km apart. Nyiragongo's foiditic lavas are some of the most silica-undersaturated on earth, whereas the highly effusive Nyamulagira erupts primarily basanites and tephrites. To determine the extent and scale of mantle heterogeneities and gain insight into the magmatic sources beneath this portion of the East African Rift, we have measured Hf and Pb isotope compositions for 43 samples from Nyiragongo and Nyamulagira. The Nd and Sr isotope data for the same sample dissolutions are forthcoming. Nyiragongo lavas are clearly distinct from Nyamulagira lavas in terms of their Hf and Pb isotope compositions, suggesting that a long-lived and small-scale heterogeneous mantle source exists beneath these two volcanoes. Nyiragongo lavas have ɛHf ranging from +1.8 to +5.5 with an average of +2.9 (n=29) and 206Pb/204Pb ranging from 19.4049 to 19.7252 with an average of 19.6329 (n=29). Nyamulagira lavas have ɛHf ranging from -0.5 to +1.5 with an average of +0.5 (n=14) and 206Pb/204Pb ranging from 19.2518 to 19.2828 with an average of 19.2663 (n=13). Nyiragongo lavas erupted in 2002 or later have amongst the highest 206Pb/204Pb within this suite of samples. We note that Chakrabarti et al. (2009, Chem Geol 259) measured bulk silicate earth-like Nd and Sr isotope compositions for Nyiragongo lavas and proposed a primitive mantle/bulk-earth plume source for this volcano. Our new Hf isotope compositions for Nyiragongo, however, are higher than bulk silicate earth, suggesting a more depleted source for these highly alkaline lavas. We also note that the He isotope compositions of olivine and clinopyroxene from Nyiragongo lavas (R/Ra = 6.7-8.5; Pik et al., 2006, Chem Geol 226; Tedesco et al., 2010, J Geophys Res 115) are inconsistent with a long-term bulk silicate earth-like source.

  19. Filling in the juvenile magmatic gap: Evidence for uninterrupted Paleoproterozoic plate tectonics

    NASA Astrophysics Data System (ADS)

    Partin, C. A.; Bekker, A.; Sylvester, P. J.; Wodicka, N.; Stern, R. A.; Chacko, T.; Heaman, L. M.

    2014-02-01

    Despite several decades of research on growth of the continental crust, it remains unclear whether the production of juvenile continental crust has been continuous or episodic throughout the Precambrian. Models for episodic crustal growth have gained traction recently through compilations of global U-Pb zircon age frequency distributions interpreted to delineate peaks and lulls in crustal growth through geologic time. One such apparent trough in zircon age frequency distributions between ∼2.45 and 2.22 Ga is thought to represent a pause in crustal addition, resulting from a global shutdown of magmatic and tectonic processes. The ∼2.45-2.22 Ga magmatic shutdown model envisions a causal relationship between the cessation of plate tectonics and accumulation of atmospheric oxygen over the same period. Here, we present new coupled U-Pb, Hf, and O isotope data for detrital and magmatic zircon from the western Churchill Province and Trans-Hudson orogen of Canada, covering an area of approximately 1.3 million km2, that demonstrate significant juvenile crustal production during the ∼2.45-2.22 Ga time interval, and thereby argue against the magmatic shutdown hypothesis. Our data is corroborated by literature data showing an extensive 2.22-2.45 Ga record in both detrital and magmatic rocks on every continent, and suggests that the operation of plate tectonics continued throughout the early Paleoproterozoic, while atmospheric oxygen rose over the same time interval. We argue that uninterrupted plate tectonics between ∼2.45 and 2.22 Ga would have contributed to efficient burial of organic matter and sedimentary pyrite, and the consequent rise in atmospheric oxygen documented for this time interval.

  20. Rhenium-osmium isotope systematics in meteorites I: Magmatic iron meteorite groups IIAB and IIIAB

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Using resonance ionization mass spectrometry (RIMS), Re and Os abundances were determined by isotope dilution (ID) and 187Os 186Os ratios measured in nineteen iron meteorites: eight from group IIAB, ten from group IIIAB, and Treysa (IIIB anomalous). Abundances range from 1.4 to 4800 ppb Re, and from 13 to 65000 ppb Os, and generally agree well with previous ID and neutron activation (NAA) results. The Re and Os data suggest that abundance trends in these iron groups may be entirely explained by fractional crystallization. Addition of late-formed metal to produce ReOs variation in the B subgroups is not essential but cannot be excluded. Whole-rock isochrons for the IIAB and IIIAB groups are statistically indistinguishable. Pooled data yield an initial 187Os 186Os of 0.794 ?? 0.010, with a slope of (7.92 ?? 0.20) ?? 10-2 corresponding to a magmatic iron meteorite age of 4.65 ?? 0.11 Ga (using a decay constant of 1.64 ?? 10-11 a-1). Given the errors in the slope and half life, this age does not differ significantly from the canonical chondrite age of 4.56 Ga, but could be as young as 4.46 Ga. ?? 1992.

  1. High D/H ratios of water in magmatic amphiboles in Chassigny: Possible constraints on the isotopic composition of magmatic water on Mars

    NASA Technical Reports Server (NTRS)

    Watson, L. L.; Hutcheon, I. D.; Epstein, S.; Stolper, E. M.

    1993-01-01

    The D/H ratios of kaersutitic amphiboles contained in magmatic inclusions in the Shergottites Nakhlites Chassignites (SNC) meteorite Chassigny using the ion microprobe were measured. A lower limit on the delta(D(sub SMOW)) of the amphiboles is +1420 +/- 47 percent. Assuming Chassigny comes from Mars and the amphiboles have not been subject to alteration after their crystallization, this result implies either that recycling of D-enriched Martian atmosphere-derived waters into the planetary interior has taken place, or that the primordial hydrogen isotopic composition of the interior of Mars differs significantly from that of the Earth (delta(D(sub SMOW)) approximately 0 percent). In addition, the measurements indicate that the amphiboles contain less than 0.3 wt. percent water. This is much lower than published estimates, and indicates a less-hydrous Chassigny parent magma than previously suggested.

  2. Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U-Pb and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Robinson, F. A.; Foden, J. D.; Collins, A. S.; Payne, J. L.

    2014-12-01

    The Arabian Shield preserves a protracted magmatic record of amalgamated juvenile terranes that host a diverse range of early Neoproterozoic to Cambrian granitoids intruding volcanosedimentary basin assemblages that have corollaries in other parts of the East African Orogen. New zircon U-Pb geochronology of 19 granitoids intruding eight Arabian Shield terranes, define four discrete magmatic events: island arc (∼845 Ma), syncollisional (∼710 Ma), post-tectonic (∼620 Ma) and anorogenic (∼525 Ma). Zircon Lu-Hf isotopic analyses indicate that all studied granitoids are juvenile with typical εHf values of >+5 to +10 and Stenian-Tonian (∼1100-900 Ma) model ages, regardless of their precise intrusive ages or spatial relationship. Subtle changes in isotopic signatures between ∼850 and 600 Ma, suggest the result from changes in granite source materials brought about by; basaltic underplating, limited crustal interaction with Palaeoproterozoic basement and a change to lithospheric delamination/subduction roll-back processes driving juvenile ANS crustal growth. The cycle of granite intrusion reflects accretionary cycles initiated during Mozambique Ocean closure and during Gondwana amalgamation and final assembly. Post-tectonic magmatism is divided into a ∼636-600 Ma phase and post 600 Ma event that reflects first subduction and then within-plate related processes. The identification of magmatism at ∼525 Ma is now the youngest granitoid identified so far in the Saudi Arabian Shield and may change the identified age of the regional, basal Palaeozoic unconformity. This late magmatism may be generated by the Najd Fault reactivation correlating with the Malagasy/Kunnga Orogeny that marked the final stages of Gondwana assembly.

  3. Recharge in Volcanic Systems: Evidence from Isotope Profiles of Phenocrysts

    PubMed

    Davidson; Tepley

    1997-02-01

    Strontium isotope ratios measured from core to rim across plagioclase feldspar crystals can be used to monitor changes in the isotope composition of the magma from which they grew. In samples from three magma systems from convergent margin volcanoes, sudden changes in major element composition, petrographic features, and strontium isotope composition were found to correspond to discrete magmatic events, most likely repeated recharge of more mafic magma with lower ratios of strontium-87 to strontium-86 into a crustally contaminated magma. PMID:9012348

  4. Isotopic microanalysis sheds light on the magmatic endmembers feeding volcanic eruptions: The Astroni 6 case study (Campi Flegrei, Italy)

    NASA Astrophysics Data System (ADS)

    Arienzo, I.; D'Antonio, M.; Di Renzo, V.; Tonarini, S.; Minolfi, G.; Orsi, G.; Carandente, A.; Belviso, P.; Civetta, L.

    2015-10-01

    Sr-isotopic microanalysis has been performed on selected minerals from the Campi Flegrei caldera, together with Sr and Nd isotopic ratio determinations on bulk mineral and glass fractions. The aim was a better characterization of the chemically homogeneous, but isotopically distinct magmatic components which fed volcanic eruptions of the caldera over the past 5 ka, in order to enhance our knowledge about one of the most dangerous volcanoes on Earth. Information on the involved magmatic endmembers, unobtainable by analyzing the isotopic composition of whole rock samples and bulk mineral fractions, has been acquired through high-precision determination of 87Sr/86Sr on single crystals and microdrilled mineral powders. We focused our investigations on the products emplaced during the Astroni 6 eruption (4.23 cal ka BP), assumed representative of the expected event in case of renewed volcanic activity in the Campi Flegrei caldera. Data on single crystals and microdrilled mineral powders have been compared with Sr and Nd isotopic compositions of bulk mineral fractions from products emplaced during the whole Astroni activity, which included seven distinct eruptions. The 87Sr/86Sr ratios of single crystals and microdrilled mineral powders are in the 0.7060 to 0.7076 range, much wider than that of bulk mineral fractions, which range from 0.7066 to 0.7076. Moreover, the Sr isotopic ratios are inversely correlated to 143Nd/144Nd. The new data allow us to better define the magmatic endmembers involved in mingling/mixing processes that occurred prior to/during the Astroni activity. One magmatic endmember, characterized by average 87Sr/86Sr ratio of ~ 0.70750, was quite common in the past 15 ka activity of the Campi Flegrei caldera; the other, as evidenced by the isotopic composition of single feldspar and clinopyroxene crystals, is less enriched in radiogenic Sr (87Sr/86Sr ~ 0.70724). The latter is interpreted to represent a new magmatic component that entered the Campi Flegrei

  5. Fluid inclusion and isotopic systematics of an evolving magmatic-hydrothermal system

    SciTech Connect

    Moore, J.N.; Gunderson, R.P.

    1995-10-01

    The Geysers, California, is the site of a long-lived hydrothermal system that initially developed 1.5-2 m.y. ago in response to the intrusion of a hypabyssal granitic pluton. Although wells drilled into The Geysers produce only dry steam, fluid inclusion, isotopic, and mineralogic data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline {+-} biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote and epidote {+-} chlorite within the intermediate parts of the thermal system and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Pressure-corrected homogenization temperatures and apparent salinities of fluid inclusions trapped in vein minerals range from 440{degrees}C and 44 wt% NaCl equivalent within the hornfels (<600 m from the pluton) to 325{degrees}C and 5 wt% NaCl equivalent at distances of approximately 1500 m from the intrusion. We suggest that the shallow, moderate salinity fluids are connate waters modified by water-rock interactions while the high-salinity fluids are interpreted as magmatic brines. Halite-dissolution temperatures of inclusions in the hornfels and pluton indicate that the magnetic fluids were trapped at lithostatic pressures (300-900 bars). In contrast, homogenization temperatures of the connate fluids suggest trapping under hydrostatic pressures of less than several hundred bars. Whole-rock {delta}{sup 18}O values of samples from The Geysers display systematic variations with respect to depth, location within the field, and grade of alteration. At depths below +610 m relative to mean sea level, the {delta}{sup 18}O values are strongly zoned around a northwest-southeast trending low located near the center of the steam reservoir. 77 refs., 15 figs., 2 tabs.

  6. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the

  7. Magmatic Enclaves

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2011-12-01

    erupt on its own or be exposed at the ground surface. They are thus invaluable in characterizing the accessible range of coeval magmas. Compositional hybridization (mixing) and crystal exchange with host or other magma prior to enclave formation are common. Although enclave compositions preserve aspects of elemental and isotopic contrasts with host rocks, post-entrapment diffusive or fluid exchange can affect plutonic examples. How enclaves form is clear in composite dikes cored by mafic rock that grades into pillows in aplite and in synplutonic dikes that project into enclave trains in hosts that must have been high-crystallinity magma. Other proposed mechanisms include forcible injection, convective stirring at the two-magma interface, or buoyant rise of vesiculated mafic magma into resident host. Enclaves in lava or subpopulations of mafic clasts in pyroclastic deposits are frequently cited as evidence for recharge-induced eruption, though enclave magma could be drawn up into a host during flow in a conduit. Magmatic enclaves have been embraced by petrologists, geochemists, and volcanologists such that they are sought, rather than ignored, and, where present, are essential ingredients in any modern study.

  8. Hf isotope compositions and chronology of magmatic zircons from Tarim continental flood basalts: implications for magmatic evolution of the Early Permian Tarim Large Igneous Province in NW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, Z.; Yu, X.; Langmuir, C. H.; Yang, S.; Chen, H.

    2013-12-01

    The Early Permian Tarim Large Igneous Province (TLIP) in the Tarim cratonic block of northwestern China has been largely regarded to be genetically linked with a mantle plume. Recently, some euhedral zircon crystals with magmatic growth zoning have been obtained from the Tarim continental flood basalts (TCFB) for detailed U-Pb chronological and genetic study. The zircons have the concordant 206Pb/238U ages of 297~283 Ma, coinciding with the previously reported whole-rock 40K/39Ar and 40Ar/39Ar ages (292~283 Ma) of their host basalts. In-situ LA-MC-ICPMS Lu-Hf isotopic analyses of Early Permian zircons from the Keping area of the TCFB reveal that the zircons from two basalt sub-groups (Groups 1a, 1b) have a narrow range of 176Hf/177Hf ratios between 0.282422 and 0.282568. Their corresponding ɛHf(t) (t = 290 Ma) values (-6.8~-1.4) are generally lower than their host basalts (-2.3~2.1), and distinctively different from the intrusive rocks (3.0~7.1) and their zircons (4.9~8.8) from the TLIP and the Precambrian crustal rocks (<-18) in the Tarim block. Combined with their embayed margins produced by magmatic corrosion, these zircons may have crystallized in a concealed pluton shortly prior to the extrusion of basalts and been captured as xenocrysts by the rapidly erupted basaltic lavas. Almost the same ɛHf(t) values between the corroded and uncorroded zircons suggest that the zircons have preserved the initial Hf isotopic compositions from their original source region. Moreover, the very close but relatively higher ɛHf(t) values from the zircons than the inferred sub-continental lithospheric mantle (SCLM) beneath Tarim in the Early Permian [ɛHf(t) = -8.7~-5.2; t = 290 Ma] indicate that the zircons were probably originated from the SCLM with minor addition of depleted mantle magmas during the mantle source partial melting. Both the zircons and their host basalts have almost the same formation ages (~290 Ma) and Hf TDM model ages (ca. 1300~1000 Ma), suggesting that

  9. Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Jiang, Shao-Yong; Honarmand, Maryam; Neubauer, Franz

    2016-02-01

    A petrological, geochemical and Sr-Nd-Pb isotopic study was carried out on the Tarom-Olya pluton, Iran, in the central part of the Alpine-Himalayan orogenic belt. The pluton is composed of diorite, monzonite, quartz-monzonite and monzogranite, which form part of the Western Alborz magmatic belt. LA-ICP-MS analyses of zircons yield ages from 35.7 ± 0.8 Ma to 37.7 ± 0.5 Ma, interpreted as the ages of crystallization of magmas. Rocks from the pluton have SiO2 contents ranging from 57.0 to 69.9 wt.%, high K2O + Na2O (5.5 to 10.3 wt.%) and K2O/Na2O ratio of 0.9 to 2.0. Geochemical discrimination criteria show I-type and shoshonitic features for the studied rocks. All investigated rocks are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs), depleted in high-field strength elements (HFSEs), and show weak or insignificant Eu anomalies (Eu/Eu* = 0.57-1.02) in chondrite-normalized trace element patterns. The Tarom-Olya pluton samples also show depletions in Nb, Ta and Ti typical of subduction-related arc magmatic signatures. The samples have relatively low ISr (0.7047-0.7051) and positive εNd(36 Ma) (+ 0.39 to + 2.10) values. The Pb isotopic ratios show a (206Pb/204Pb)i ratio of 18.49-18.67, (207Pb/204Pb)i ratio of 15.58-15.61 and (208Pb/204Pb)i ratio of 38.33-38.77. The εHf(t) values of the Tarom-Olya pluton zircons vary from - 5.9 to + 8.4, with a peak at + 2 to + 4. The depleted mantle Hf model ages for the Tarom-Olya samples are close to 600 Ma. These isotope evidences indicate contribution of juvenile sources in petrogenesis of the Tarom-Olya pluton. Geochemical and isotopic data suggest that the parental magma of the Tarom-Olya pluton was mainly derived from a sub-continental lithospheric mantle source, which was metasomatized by fluids and melts from the subducted Neotethyan slab with a minor crustal contribution. Subsequent hot asthenospheric upwelling and lithospheric extension caused decompression melting in the final stage of

  10. The origin of the mineralizing fluids in different type mineralizations associated with the Upper Cretaceous Elazig Magmatic Complex, Turkey; an isotopic approach

    NASA Astrophysics Data System (ADS)

    Akgul, Muharrem

    2016-04-01

    This study examined the origin and properties of mineralized fluids by using C, O and S isotopes in different type mineralizations associated with the Upper Cretaceous Elazig Magmatic Complex. The isotopic compositions of vein type mineralizations show that the thrust zone affects the formation of the Karakas iron mineralization by meteoric and magmatic hydrothermal solution mixtures due to the average δ18OH2O value 6.40‰. The calculated δ18OH2O composition values is 5.20‰ in biotite from the Kızıldag vein type Cu-Pb-Zn mineralizations, which is consistent with a magmatic origin of the fluids. The calculated δ18OH2O composition is 4.30‰ that indicates a medium and low temperature magmatic hydrothermal fluid effect. The skarn type mineralizations isotopic compositions indicate that the calculated δ13CCO2 values are between -12.70‰ and -36.39‰ that could be late magmatic fluids that were modified by interaction with the host meta-sedimentary rocks and with meteoric water at the Birvan and Asvan iron mineralizations. Also the δ18OH2Ovalues in quartz of the Meseli iron mineralization are between 0.70‰ and 1.30‰. The lower δ18OH2O oxygen isotope composition compared to magmatic origins must be hydrothermal solutions mixing with meteoric waters. In the massive sulfide type Kavallı and Derince pyrite samples, δ34SH2S values are between 17.73‰ and 20.63‰. These values clearly indicate the volcano-sedimentary effect on hydrothermal solutions, which form the mineralization. The first findings of this study present information that all of the measured isotopic composition was modified by mixing metamorphic, magmatic and meteoric waters in the final stages of the hydrothermal solutions circulation.

  11. Crustal thickening and clay: Controls on O isotope variation in global magmatism and siliciclastic sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Payne, Justin L.; Hand, Martin; Pearson, Norman J.; Barovich, Karin M.; McInerney, David J.

    2015-02-01

    New compilations of global O isotope data from zircon and siliciclastic sedimentary rocks highlight an increasing range in δ18O values in both systems since the late Archean. This is consistent with an increased clay component in sedimentary rocks and subsequent incorporation into igneous rocks. Each of these factors can arguably be achieved by increased crustal thickening in the late Archean resulting in greater burial and melting of supracrustal rocks and increased chemical weathering and recycling of upper crustal rocks. Despite the suggested change in tectonic regimes in the late Archean, stochastic modelling in this study demonstrates that δ18O data do not provide evidence for a secular decrease in the proportion of mantle-derived magmas in granitoid rocks. Instead, best-fit models indicate that juvenile input and reworking of supracrustal material vary with respect to the short term (100-200 Myr) tectonic cycles preserved in the continental crust. Hence, major step changes in global tectonic regimes in the post-Hadean, such as the initiation of subduction in the mid- to late Archean, are not supported by global zircon O isotope datasets and instead minor, progressive changes are indicated for Earth's tectonic regimes.

  12. Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center

    USGS Publications Warehouse

    Bullen, T.D.; Clynne, M.A.

    1990-01-01

    Magmatic evolution at the Lassen volcanic center (LVC) is characterized by a transition from predominantly andesitic to predominantly silicic volcanism with time. Magmas of the andesitic, or "Brokeoff phase' of volcanism range in composition from basaltic andesite to dacite, whereas those of silicic, or "Lassen phase' range in composition from basaltic andesite to rhyolite. The compositions of magmas from each phase define well organized but distinct variation trends. Magmatic evolution at LVC can be viewed in terms of a series of mantle melting events that subsequently stimulated melting in a progressively increasing volume of the lower crust. -from Authors

  13. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-06-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  14. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten

    2016-11-01

    Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.

  15. The French Guyana doleritic dykes: geochemical evidence of three populations and new data for the Jurassic Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Nomade, S.; Pouclet, A.; Chen, Y.

    2002-12-01

    A petrographic and geochemical study of 15 Early Jurassic and 7 Proterozoic dolerites of French Guyana, and of one Jurassic dolerite from Ivory-Coast were carried out. The Early Jurassic SSW-NNE trending dykes have doleritic aphyric or gabbroic phyric texture. Their chemical compositions, slightly under-saturated to over-saturated, show moderate to low Mg-ratios (63-36), high TiO 2 contents (1.85-3.56 wt.%), weak rare earth element fractionation [1.8<(La/Yb) n <4.6], negative Sr-anomalies (0.41isotopic data of Bertrand et al. [Bertrand, H., Liegeois, J.P., Deckart, K., Féraud, G., 1999. High-Ti tholeiites in Guinea and Their Connection with the Central Atlantic CFB Province: Elemental and Nd-Sr-Pb Isotopic Evidence for Preferential Zone of Mantle Upwelling in Cause of Rifting. AGU spring meeting (Abst. p 317)] suggest that their magmatic source is different from that of the other basalts of the Central Atlantic Magmatic Province (CAMP). Such signatures are restricted to a central zone coinciding with the Panafrican Rokelides suture. We propose a model of sub-lithospheric preferential channelling of an asthenospheric ascent in this zone. Two other groups of dykes were identified in French Guyana. Compared to the Jurassic ones the Proterozoic dykes have NNW-SSE and E-W trending direction, more important LILE enrichment, low TiO 2 contents (<2 wt%) and Nb-Ta negative anomalies. Their calc-alkaline signature could be the result of a previous subduction and may be related to the 1800 Ma Venturi-Tapajós event, which contaminated the mantle source.

  16. The development of extension and magmatism during continent-ocean transition: evidence from Ethiopia

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Booth, Adam; Corti, Giacomo; Magee, Craig; Jackson, Christopher; Wilkinson, Jason

    2016-04-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate and timing of extension. Preexisting plate architecture and/or the evolving kinematics of extension during breakup may also influence magmatism strongly. The Ethiopian and Afar Rift systems provide an excellent opportunity to address these issues since they expose, along strike, several sectors of ongoing, asynchronous rift development from embryonic continental rifting in the south to incipient oceanic spreading in the north. A consensus has now emerged from a variety of disciplines in Ethiopia that a considerable proportion of extension in Ethiopia is accommodated by focused dyke intrusion in narrow axial zones, without marked crustal (and plate?) thinning. These "magmatic segments" may mark the final breakup boundary and location of an incipient oceanic spreading centre. However, observations of markedly thinned crust and a pulse in Quaternary-Recent basaltic volcanism within the Danakil Depression have recently been cited as evidence that an abrupt, late stage of localised plate stretching may instead mark the final stages of continent-ocean transition (Bastow & Keir, 2011). We explore this hypothesis using recently-acquired seismic reflection data and accompanying borehole geological constraints from Danakil. Thick sequences of evaporites have been deposited in an asymmetric basin, whose subsidence has been controlled primarily by a major, east dipping normal fault. Surprisingly, no significant magmatism is observed in the upper ~1000m. Age constraints on a potash-bearing sequence presently being mined in the basin point towards rapid basin infill in the last several tens-to-hundreds of thousands of years. Basin formation cannot be easily attributed to the effects of magmata intrusion. Instead, an abrupt, localised, late-stage, plate

  17. Long-lived postbreakup magmatism along the East Greenland margin: Evidence for shallow-mantle metasomatism by the Iceland plume

    NASA Astrophysics Data System (ADS)

    Storey, M.; Pedersen, A. K.; Stecher, O.; Bernstein, S.; Larsen, H. C.; Larsen, L. M.; Baker, J. A.; Duncan, R. A.

    2004-02-01

    40Ar/39Ar dating has identified a succession of middle Miocene (14 13 Ma) basaltic lavas in East Greenland that overlie Eocene flood basalts that were erupted during continental breakup ca. 56 55 Ma. The long postbreakup magmatic history (˜40 m.y.) of the East Greenland margin precludes a simple relationship between this later igneous activity and the track of the Iceland hotspot. Chemical and isotopic data suggest that the postbreakup magmas were produced from mantle that had been metasomatized by light rare earth element enriched, H2O- and CO2-bearing melts originating from the Iceland plume. Episodic melting of recently metasomatized shallow mantle beneath Greenland and the North Atlantic can explain both the composition and the long-lived nature of postbreakup magmatism along the East Greenland margin, as well as lavas on Jan Mayen Island that have enriched, Icelandic-type isotopic signatures.

  18. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Zhang, Zhaowei; Li, Wenyuan; Wang, Yalei; Sun, Tao; Ripley, Edward M.

    2015-02-01

    This paper reports the first set of data for the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Eastern Kunlun Paleozoic arc terrane which is located in the northern part of the Qinghai-Tibet plateau. An on-going drilling campaign reveals ~ 100 million tons of sulfide mineralization with the average grade of 0.8 wt.% Ni and 0.1 wt.% Cu for the deposit. This makes the Xiarihamu deposit one of the 20 largest magmatic Ni-Cu sulfide deposits in the world and the largest ever found in arc settings. The deposit is hosted in a small ultramafic body intruding older gabbroic and metamorphic rocks. New zircon U-Pb isotope age data reveal that the ultramafic body (411.6 ± 2.4 Ma) is ~ 20 Ma younger than the host gabbroic intrusion (431.3 ± 2.1 Ma). The ultramafic body is composed predominantly of lherzolite and olivine websterite, with minor dunite, websterite and orthopyroxenite. Mineralization mainly occurs as sub-horizontal to gently dipping (< 30°) disseminated sulfide zones that are generally concordant with the lithological structure of the ultramafic intrusion. The lateral extension and thickness of individual mineralized zones are up to ~ 200 m and ~ 100 m, respectively. Sulfide mineral assemblages are composed of pyrrhotite, pentlandite and chalcopyrite. The Xiarihamu ultramafic rocks show light REE enrichments and pronounced negative Nb anomalies, plus significant Ca-depletion in olivine (< 700 ppm Ca), which are characteristic of many arc basalts in the world. Olivine crystals in the Xiarihamu ultramafic rocks have relatively primitive compositions, with Fo contents up to 90 mol%, close to the mantle value. The contrasting Ni contents of olivine crystals with similar Fo contents from different sulfide-mineralized zones in a single drill core indicate that at least two pulses of sulfide-laden magma with different Ni compositions were involved in the development of the deposit. Estimated parental magma for the Xiarihamu lherzolites contains 52

  19. Using Oxygen Isotopes of Zircon to Evaluate Magmatic Evolution and Crustal Contamination in the Halifax Pluton, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Murray, K. E.; Lackey, J.; Valley, J. W.; Nowak, R.

    2007-12-01

    Oxygen isotope analysis of zircon (Zrc) is well suited for parsing out the magmatic history in granitoids. The Halifax pluton is the largest pluton (1060 km2) in the peraluminous South Mountain batholith. The Halifax pluton is mapped as a concentrically zoned body, with outer units comprising granodiorite, monzogranite and a mafic porphyry; these units are locally rich in metasedimentary xenoliths and magmatic enclaves. The exterior units surround a more felsic core of leucogranite [1]. Previous oxygen isotope studies of the pluton report high whole rock δ18O values that range from 10.7-11.7‰ [2], and indicate a significant supracrustal component in the source of the pluton. We report the first δ18O(Zrc) values from the Peggy's Cove monzogranite and an associated mafic porphyry. Samples were collected across 30 km of discontinuous exposures of the monzogranite. Values of δ18O(Zrc) vary from 7.71-8.26‰ (average = 8.15±±0.32‰(2 S.D.); n = 10). Small but systematic E-W regional variation in δ18O(Zrc) values suggests heterogeneous magmatic contamination within the monzogranite. Meter-scale magmatic enclaves, observed in close association with pods of diverse xenoliths and smaller enclaves at the western Cranberry Head locality, are slightly enriched in δ18O relative to the host monzogranite. These data combined support a model of magma mingling and heterogeneous mixing at the rim of the pluton, with contamination by high-δ18O rocks. Additional high-δ18O(Zrc) data from granodiorites on the northern margin of the Halifax pluton concur with these observations [3]. Typically, closed magmatic systems show increasing δ18O with SiO2 because more felsic magmas have a greater percentage of high-δ18O minerals such as quartz and feldspar. Thus, the Halifax pluton appears to exhibit an enrichment trend opposite of what would be expected of a closed evolving system. Emplacement mechanisms for the Halifax pluton proposed by previous workers suggest that the outer

  20. Evidence of Middle Jurassic magmatism within the Seychelles microcontinent: Implications for the breakup of Gondwana

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.; Lee, T.-Y.; Chiu, H.-Y.; Lee, Y.-H.; Wong, J.

    2015-12-01

    The breakup of East and West Gondwana occurred during the Jurassic, but the exact timing is uncertain due to the limited exposure of rocks suitable for radioisotopic dating. Trachytic rocks from Silhouette Island, Seychelles, yielded a range of zircon ages from Paleoproterozoic to Cenozoic. The 206Pb/238U age of the trachyte is 64.9 ± 1.6 Ma (Danian) but the majority of zircons yielded an age of 163.8 ± 1.8 Ma (Callovian) with a small subset yielding an age of 147.7 ± 4.5 Ma (Tithonian). The Hf isotopes of the Callovian (ɛHf(t) = +4.1 to +13.4) and Danian (ɛHf(t) = +1.9 to +7.1) zircons indicate that they were derived from moderately depleted mantle sources whereas the Tithonian zircons (ɛHf(t) = -7.0 to -7.3) were derived from an enriched source. The identification of middle Jurassic zircons indicates that rifting and magmatism were likely contemporaneous during the initial separation of East and West Gondwana.

  1. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    USGS Publications Warehouse

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (<5 Ma), Fiji) indicate that the fluids from which these minerals precipitated were of mixed magmatic and non-magmatic sources. The non-magmatic component of the fluid from the island arc deposits (Koloula, Waisoi) was ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  2. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  3. Zircon and baddeleyite U-Pb geochronology and Hf isotopes from the Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Davies, Joshua; Marzoli, Andrea; Bertrand, Herve; Youbi, Nasrrddine; Schaltegger, Urs

    2016-04-01

    Large Igneous Provinces (LIPs) are anomalously large volumes of dominantly mafic magma that erupted and intruded into the upper crust over short time scales. The origin of these volcanic provinces is very likely specific for each case, partly explained by plate tectonic processes or mantle plumes. Despite an ambivalent plate tectonic connection, there is a striking temporal correlation between the timing of LIPs and periods of mass extinction on Earth. However, establishing the relationship between these two is quite complicated since mass extinctions are typically recognised in the marine record, and LIPs are usually terrestrially emplaced. High precision geochronology of LIPs is essential to (i) establish the synchrony and infer the causal relationship with mass extinctions, and (ii) to understand how LIPs form. In this study, we apply high-precision zircon and baddeleyite U-Pb geochronology to rocks from the ~200 Ma Central Atlantic Magmatic Province (CAMP), in an attempt to reconstruct the overall timing of the event, its spatial distribution in time, and determine its relationship with the end-Triassic mass extinction. We also present Hf isotope data from the separated zircon and baddeleyite to both elucidate the origin of the LIP and also to determine if the magmas all originate from the same source. Our data suggest that the majority of the CAMP magmas were emplaced over a 0.5 Ma period from ~201.5 Ma to ~201.0 Ma with a possible small secondary event occurring much later at ~199 Ma. Spatially, it appears that CAMP magmatism occurred roughly simultaneously over the entire province (i.e. ~8000 Km North to South). However, the Hf isotopic composition varies over this length with the highest values (~5.5 ɛHf) occurring in a small area to the south of the province in Brazil and Sierra Leone. Towards the north, the ɛHf values become negative, indicating the presence of an older or more enriched component in the magmas. Our geochronology also indicates that CAMP

  4. Adakitic-like magmatism in western Ossa-Morena Zone (Portugal): Geochemical and isotopic constraints of the Pavia pluton

    NASA Astrophysics Data System (ADS)

    Lima, S. M.; Neiva, A. M. R.; Ramos, J. M. F.

    2013-02-01

    Granitic rocks are a major component of the Earth's continental crust and occur in a wide variety of tectonic settings. Their chemical and isotopic characterization is crucial to the recognition of the potential sources and mechanisms involved in their generation. In this study, we present the first whole rock chemical and isotopic (Sr-Nd-O) data for the Pavia pluton (328-317 Ma), located near the western border of the Ossa-Morena Zone (Évora Massif, Portugal). Major and trace element geochemistry suggests that the different granitic phases composing this intrusive body (enclaves, granites (s.l.) and crosscutting dikes) represent independent magma pulses and the majority is similar to TTGs and adakites. The little Sr-Nd-O isotopic variation, with (87Sr/86Sr)328 = 0.70428-0.70560, ɛNd328 ranging between - 3.4 and + 0.4 and δ18O varying from + 5.6‰ to + 8.4‰ implies an isotopically similar protolith for all phases. The most viable mechanism for the generation of the Pavia pluton adakitic-like magmatism is assimilation-fractional crystallization of a mantle-derived magma. This mechanism was also invoked to explain the genesis of other plutons within the Évora Massif but they have a distinct chemistry (typical arc calc-alkaline rocks). The chemical differences between them and the Pavia pluton granitic rocks are interpreted as the result of lower degrees of crustal assimilation and higher degrees of contamination of mantle-derived magmas by the sinking slab (after subduction blocking and subsequent slab break-off).

  5. New evidence for a magmatic influence on the origin of Valles Marineris, Mars

    USGS Publications Warehouse

    Dohm, J.M.; Williams, J.-P.; Anderson, R.C.; Ruiz, J.; McGuire, P.C.; Komatsu, G.; Davila, A.F.; Ferris, J.C.; Schulze-Makuch, D.; Baker, V.R.; Boynton, W.V.; Fairen, A.G.; Hare, T.M.; Miyamoto, H.; Tanaka, K.L.; Wheelock, S.J.

    2009-01-01

    In this paper, we show that the complex geological evolution of Valles Marineris, Mars, has been highly influenced by the manifestation of magmatism (e.g., possible plume activity). This is based on a diversity of evidence, reported here, for the central part, Melas Chasma, and nearby regions, including uplift, loss of huge volumes of material, flexure, volcanism, and possible hydrothermal and endogenic-induced outflow channel activity. Observations include: (1) the identification of a new > 50??km-diameter caldera/vent-like feature on the southwest flank of Melas, which is spatially associated with a previously identified center of tectonic activity using Viking data; (2) a prominent topographic rise at the central part of Valles Marineris, which includes Melas Chasma, interpreted to mark an uplift, consistent with faults that are radial and concentric about it; (3) HiRISE-identified landforms along the floor of the southeast part of Melas Chasma that are interpreted to reveal a volcanic field; (4) CRISM identification of sulfate-rich outcrops, which could be indicative of hydrothermal deposits; (5) GRS K/Th signature interpreted as water-magma interactions and/or variations in rock composition; and (6) geophysical evidence that may indicate partial compensation of the canyon and/or higher density intrusives beneath it. Long-term magma, tectonic, and water interactions (Late Noachian into the Amazonian), albeit intermittent, point to an elevated life potential, and thus Valles Marineris is considered a prime target for future life detection missions. ?? 2008 Elsevier B.V.

  6. Field-based evidence for devolatilization in subduction zones: implications for arc magmatism.

    PubMed

    Bebout, G E

    1991-01-25

    Metamorphic rocks on Santa Catalina Island, California, afford examination of fluid-related processes at depths of 15 to 45 kilometers in an Early Cretaceous subduction zone. A combination of field, stable isotope, and volatile content data for the Catalina Schist indicates kilometer-scale transport of large amounts of water-rich fluid with uniform oxygen and hydrogen isotope compositions. The fluids were liberated in devolatilizing, relatively low-temperature (400 degrees to 600 degrees C) parts of the subduction zone, primarily by chlorite-breakdown reactions. An evaluation of pertinent phase equilibria indicates that chlorite in mafic and sedimentary rocks and melange may stabilize a large volatile component to great depths (perhaps >100 kilometers), depending on the thermal structure of the subduction zone. This evidence for deep volatile subduction and large-scale flow of slab-derived, water-rich fluids lends credence to models that invoke fluid addition to sites of arc magma genesis.

  7. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Civetta, L.; Arienzo, I.; D'Antonio, M.; Moretti, R.; Orsi, G.; Tomlinson, E. L.; Albert, P. G.; Menzies, M. A.

    2014-09-01

    New geochemical and isotopic data on volcanic rocks spanning the period ~75-50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic activity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deep provenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that >5-10 km3 of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4-6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr-Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated by Hercynian crust at 8-12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4-6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.

  8. Thermal History of the Bandelier Magmatic System: Evidence for Magmatic Injection and Recharge at 1.61 Ma as Revealed by Cathodoluminescence and Titanium Geothermometry

    NASA Astrophysics Data System (ADS)

    Campbell, M. E.; Hanson, J. B.; Minarik, W. G.; Stix, J.

    2009-12-01

    The rhyolitic Valles Caldera complex, New Mexico, is one of the type examples of resurgent calderas, and has experienced two well-studied caldera-forming eruptions. The first formed the Lower Bandelier Tuff (LBT) at 1.61 Ma, and the second emplaced the Upper Bandelier Tuff (UBT) at 1.22-1.26 Ma. During the time between the LBT and UBT, the much smaller-scale Cerro Toledo Rhyolite (CTR) was sporadically erupted. Quartz crystals from these stages of activity were imaged using cathodoluminescence (CL) microscopy, and growth zones in certain quartzes, due to varying Ti content, were revealed. Using a titanium-in-quartz geothermometer, crystallization temperatures were obtained. LBT quartzes are unzoned, with temperatures clustering between 660-715°C when a calculated aTiO2 of 0.4 is applied to the system. These near-solidus temperatures imply that the LBT magma chamber was highly crystalline at one point. However, the low crystal content and the widespread presence of resorption features on LBT crystals require that pervasive melting affected the LBT magma chamber at some point prior to eruption. This melting is hypothesized to result from a hot magmatic injection into the system, with the injection also being a likely trigger of the cataclysmic LBT volcanism. The earliest erupted CTR units contain many zoned quartz crystals. Inner zones are usually rounded and invariably reveal cold (~660-700°C) cores and hot (~750-825°C) rims. We interpret these results as thermal evidence of magmatic recharge, where new magma mixed vigorously with leftover magma, and high-temperature rims crystallized around low-temperature restitic quartz cores. Thermal data for the rest of the CTR record the continuing cooling and evolution of this mixture of magma, while results for the culminating UBT reveal generally unzoned quartz crystals with a roughly constant temperature of 685 to 725°C. Altogether, these results present an unprecedented glimpse into the thermal history of the

  9. The Dynamics of the Post-Caldera Magmatic System at Yellowstone: Insights from Age, Trace Element, and Isotopic Data of Zircon and Sanidine

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.; Cooper, K. M.; Vazquez, J. A.; Calvert, A. T.; Glessner, J. J.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Yellowstone hosts a voluminous magmatic system that produced three silicic caldera-forming eruptions over the past 2.1 My. Following the most recent of these (the Lava Creek Tuff at 639 ka), the magma system at Yellowstone underwent two episodes of intracaldera eruptions, the latest of which produced the Central Plateau Member (CPM) rhyolites. The CPM rhyolites erupted intermittently from ca. 170 ka to ca. 70 ka and can be viewed as snapshots of the magma system through time, which provides a unique opportunity to study the dynamics of an evolving caldera system. To constrain the nature and timescales of magmatic processes at Yellowstone we examine four CPM rhyolites that erupted from ca. 116 ka to ca. 74 ka and present a comprehensive data set that integrates (1) 238U-230Th ages, trace-elements, and Hf isotope compositions of the surfaces and interiors of single zircons, (2) bulk 238U-230Th ages and in situ Ba and Pb isotope compositions of sanidines, (3) sanidine 40Ar-39Ar ages, and (4) trace-element and isotopic compositions of the CPM glasses. Zircon 238U-230Th ages and Hf isotope data demonstrate that isotopically juvenile magmas, derived from Yellowstone basalts, were added to the Yellowstone magma reservoir over time and were fundamental to its post-caldera isotopic evolution. We use zircon Hf isotope data along with new Hf isotope data (and existing O isotope data) for the Yellowstone basalts (whole-rocks), older Yellowstone rhyolites (glasses), and local crustal sources to quantify the role of isotopically juvenile magma in the evolution of the magmatic system. Additionally, linking age, trace-element, and isotopic data from zircon and sanidine demonstrates that eruptible CPM rhyolites were generated by extracting melt and antecrystic zircon from a long-lived (>200 ky) crystal mush, while sanidine remained trapped in the crystal network. The extracted melts amalgamated and then crystallized new sanidines and rims on the antecrystic zircons that were in

  10. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes

    NASA Astrophysics Data System (ADS)

    Saunders, James A.; Mathur, Ryan; Kamenov, George D.; Shimizu, Toru; Brueseke, Matthew E.

    2016-01-01

    New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

  11. The Fate of Sulfur in Late-Stage Magmatic Processes: Insights From Quadruple Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Keller, N. S.; Ono, S.; Shaw, A. M.

    2009-05-01

    Multiple sulfur isotopes (32S, 33S, 34S and 36S) have recently been shown to be useful tracers of fluid-rock interaction in seafloor hydrothermal systems [1]. Here we present the application of multiple sulfur isotopes to subaerial volcanoes with the aim of unraveling the various processes fractionating sulfur in the upper volcanic system. We take advantage of the fact that the ascent of volcanic gases through a hydrothermal system causes complex isotopic fractionation between the quaduple sulfur isotopes. δ34S is thought to trace the source of sulfur as well as magma degassing; at equilibrium, δ33S follows a mass-dependent fractionation relationship such that two phases in equilibrium with each other have equal Δ33S values (Δ33S ≡ ln(δ33S+1) - 0.515×ln(δ34S+1)). Disequilibrium Δ33S values can indicate isotope mixing and other fluid-rock interactions. The ultimate aim of this study is to assess the use of quadruple sulfur isotopes to obtain quantitative information on the sulfur cycle at convergent plate margins. The sulfur mass balance at convergent margins is poorly constrained, partly because late-stage processes are challenging to quantify and lead to large uncertainties in the global output fluxes. Quadruple sulfur isotopes provide a powerful tool to untangle the convoluted history of volcanic systems. Here we report the first quadruple sulfur isotopic values for H2S, SO2 and native sulfur from arc volcanoes. Fumarolic gases (˜100°C) and sulfur sublimates were collected from Poas and Turrialba, two actively degassing volcanoes in Costa Rica. The gases were bubbled in situ through chemical traps to separate H2S from SO2: H2S was reacted to form ZnS, and SO2 to form BaSO4. Sulfur was chemically extracted from the solid phases and precipitated as Ag2S, which was fluorinated to SF6 and analysed by IRMS. Poas and Turrialba have H2S/SO2 ˜1 and 0.01, respectively. δ34SH2S and δ34SSO2 are similar to gases measured at other arcs [2], - 7.9‰ and 0.6

  12. Easter microplate evolution: Pb isotope evidence

    NASA Astrophysics Data System (ADS)

    Hanan, Barry B.; Schilling, Jean-Guy

    1989-06-01

    of the plum pudding model across fracture zones, where smaller degrees of melting might have prevailed and preferential melting of the LILE-rich veins or plums may take place, were found to be inconclusive. In contrast, the overall variation in Pb isotopes, (La/Sm)N, and tectonic and kinematic evolution of the EPR, strongly support that the hotspot source-migrating ridge model may indeed be applicable to the region. Independent evidence suggests that the tectonic and geochemical anomaly associated with the Easter microplate is the result of the influence of a lateral mantle plume flow at shallow depth in the upper-mantle, connecting the Sala y Gomez plume with the westward migrating EPR. A small discontinuity in Pb isotope variation associated with the 25°S propagating East Rift, as also found across the 95.5°W propagator on the Galapagos Spreading Center, further supports the concept that the flux of the plume may pulsate; that is, the plume is discontinuous and probably rises in the form of a chain of blobs. The repeated tectonic disturbances and propagation of new rifts which characterize the evolution of the Easter microplate may coincide and be caused by the appearance of such blobs in the upper most mantle, as we have previously suggested for the Galapagos. There is a remarkable similarity in the geochemical, petrological, and tectonic configuration of the Easter microplate-Sala y Gomez hotspot system with that of the Galapagos, which suggests that very similar processes are at work in the two regions.

  13. Using hafnium isotopic compositions in zircons to understand magmatic processes in the Okataina Volcanic Center, New Zealand

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Cooper, K. M.; Wimpenny, J.; Yin, Q.

    2012-12-01

    The Taupo Volcanic Zone (TVZ) in New Zealand comprises the Okataina Volcanic Center (OVC) and Taupo Volcanic Center (TVC). The TVZ is one of the most active volcanic zones in the world, having erupted over 50 times in the past 60 ka. Rhyolites erupted from the OVC vary in chemical composition over relatively small distances and within single eruptions, suggesting that multiple internally homogeneous melts are stored separately, albeit in close physical proximity to each other. Eruptive products record the mingling of chemically distinct melts; however, the timescales on which these melts are amalgamated prior to (or during) eruptions is not well understood. This study presents the results of new hafnium isotopic data obtained from zircons of the 0.7 ka Kaharoa eruption, the most recent rhyolitic eruption from the OVC. ɛHf data were acquired from spots previously analyzed for trace element and U-Th age data (Klemetti et al., 2011, EPSL v 305) in order to chemically fingerprint distinct melts that existed prior to amalgamation and eruption. Zircons were analyzed from two samples of the Kaharoa eruption, each representing a chemical compositional end member of the eruptive products (Types 1 (T1) and 2 (T2)). Though erupted simultaneously, these zircons encompass a wide range of ages (~10 ka to secular equilibrium), and preliminary ɛHf values for these zircons range from -1 to +24. Zircons from T1 rhyolites display ɛHf values of +6 to +20, while T2 zircons span a somewhat wider range between -1 and +24. Zircon zones with high Y and low Hf that crystallized between 20-40 ka, previously interpreted to reflect the presence of a hot-dry-reducing magma beneath this part of the magmatic system, also have high ɛHf, suggesting that these magmas have a distinctive origin. The anomalously high ɛHf values of the Kaharoa zircons have implications for better understanding the sources of the rhyolitic melts as well as their interactions within the OVC magmatic system. One

  14. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-01

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  15. Nitrogen isotopes determination in natural gas: analytical method and first results on magmatic, hydrothermal and soil gas samples.

    PubMed

    Grassa, Fausto; Capasso, Giorgio; Oliveri, Ygor; Sollami, Aldo; Carreira, Paula; Rosario Carvalho, M; Marques, Jose M; Nunes, Joao C

    2010-06-01

    A continuous-flow GC/IRMS technique has been developed to analyse delta(15)N values for molecular nitrogen in gas samples. This method provides reliable results with accuracy better than 0.15 per thousand and reproducibility (1sigma) within+/-0.1 per thousand for volumes of N(2) between 1.35 (about 56 nmol) and 48.9 muL (about 2 mumol). The method was tested on magmatic and hydrothermal gases as well as on natural gas samples collected from various sites. Since the analysis of nitrogen isotope composition may be prone to atmospheric contamination mainly in samples with low N(2) concentration, we set the instrument to determine also N(2) and (36)Ar contents in a single run. In fact, based on the simultaneously determined N(2)/(36)Ar ratios and assuming that (36)Ar content in crustal and mantle-derived fluids is negligible with respect to (36)Ar concentration in the atmosphere, for each sample, the degree of atmospheric contamination can be accurately evaluated. Therefore, the measured delta(15)N values can be properly corrected for air contamination.

  16. Genesis of massive sulfide deposits in the Verkhneural'sk ore district, the South Urals, Russia: Evidence for magmatic contribution of metals and fluids

    NASA Astrophysics Data System (ADS)

    Karpukhina, V. S.; Naumov, V. B.; Vikent'ev, I. V.

    2013-03-01

    Melt inclusions and aqueous fluid inclusions in quartz phenocrysts from host felsic volcanics, as well as fluid inclusions in minerals of ores and wall rocks were studied at the Cu-Zn massive sulfide deposits in the Verkhneural'sk ore district, the South Urals. The high-temperature (850-1210°C) magmatic melts of volcanic rocks are normal in alkalinity and correspond to rhyolites of the tholeiitic series. The groups of predominant K-Na-type (K2O/Na2O = 0.3-1.0), less abundant Na-type (K2O/Na2O = 0.15-0.3), and K-type (K2O/Na2O = 1.9-9.3) rhyolites are distinguished. The average concentrations (wt %) of volatile components in the melts are as follows: 2.9 H2O (up to 6.5), 0.13 Cl (up to 0.28), and 0.09 F (up to 0.42). When quartz was crystallizing, the melt was heterogeneous, contained magnetite crystals and sulfide globules (pyrrhotite, pentlandite, chalcopyrite, bornite). High-density aqueous fluid inclusions, which were identified for the first time in quartz phenocrysts from felsic volcanics of the South Urals, provide evidence for real participation of magmatic water in hydrothermal ore formation. The fluids were homogenized at 124-245°C in the liquid phase; the salinity of the aqueous solution is 1.2-6.2 wt % NaCl equiv. The calculated fluid pressure is very high: 7.0-8.7 kbar at 850°C and 5.1-6.8 kbar at 700°C. The LA-ICP-MS analysis of melt and aqueous fluid inclusions in quartz phenocrysts shows a high saturation of primary magmatic fluid and melt with metals. This indicates ore potential of island-arc volcanic complexes spatially associated with massive sulfide deposits. The systematic study of fluid inclusions in minerals of ores and wall rocks at five massive sulfide deposits of the Verkhneural'sk district furnished evidence that ore-forming fluids had temperature of 375-115°C, pressure up to 1.0-0.5 kbar, chloride composition, and salinity of 0.8-11.2 (occasionally up to 22.8) wt % NaCl equiv. The H and O isotopic compositions of sericite from host

  17. Major and trace element and Sr and Nd isotopic results from mantle diapirs in the Oman ophiolite: Implications for off-axis magmatic processes

    NASA Astrophysics Data System (ADS)

    Nicolle, Marie; Jousselin, David; Reisberg, Laurie; Bosch, Delphine; Stephant, Aurore

    2016-03-01

    The Oman ophiolite includes both a fossil fast spreading axis, defined by five mantle diapirs, and an off-axis mantle diapir emplaced 30 km from the axis, providing a natural laboratory for the study of off-axis magmatic processes. We compare field and petrological observations coupled with geochemical and isotopic analyses of samples from the off-axis diapir with those of the nearest on-axis diapir, with a particular focus on the Moho Transition Zone (MTZ). Both diapirs are defined by the presence of steeply plunging lineations, but in the on-axis case, these lineations rotate gradually into parallelism with the horizontal magmatic lineations of the overlying crust, while in the off-axis case, a shear zone separates the steeply plunging lineations from the horizontal lineations of the surrounding mantle. In the on-axis diapir, the MTZ is 50 to 500 m thick and composed of dunite with layered gabbro lenses whereas in the off-axis diapir, the MTZ is thicker and composed of dunite with massive (∼20% of MTZ) clinopyroxenite lenses and a notable absence of plagioclase. Moreover, the off-axis diapir is associated with amphibole-bearing intrusions, consisting of Mg-rich gabbroic sills in the mantle peripheral to the diapir, and microgabbroic lenses of broadly basaltic composition in the overlying crust. The εNd values of the pyroxenites in the MTZ of the off-axis diapir fully overlap with those of the intrusions in the surrounding mantle and crust, suggesting that they are genetically related. Calculated rare earth element (REE) abundances of liquids in equilibrium with clinopyroxene imply that the magmas that traversed the MTZ of the off-axis diapir were more depleted in highly incompatible elements than their counterparts in the MTZ of the on-axis diapir. On the other hand, Nd isotopic compositions of the off-axis samples (ε Nd = 6.2- 7.9 in 18 of 19 samples) indicate derivation of their parental magmas from a less depleted source than that which produced the magma

  18. Rhenium-osmium isotope systematics in meteorites. I - Magmatic iron meteorite groups IIAB and IIIAB

    NASA Technical Reports Server (NTRS)

    Morgan, John W.; Walker, Richard J.; Grossman, Jeffery N.

    1992-01-01

    Resonance ionization mass spectrometry is used to determine the Re and Os abundances by isotope dilution (ID) and to measure Os-187/Os-186 ratios from 19 iron meteorites. Abundances range from 1.4 to 4800 ppb Re, and from 13 to 65,000 ppb Os, and generally agree well with previous ID and neutron activation results. The Re and Os data suggest that abundance trends in these iron groups may be entirely explained by fractional crystallization. Whole-rock isochrons for the IIAB and IIIAB groups are statistically indistinguishable. Pooled data yield an initial Os-187/Os-186 of 0.794 +/- 0.010 Ga. Given the errors in the slope and half life, this age does not differ significantly from the canonical chondrite age of 4.56 Ga, but could be as young as 4.46 Ga.

  19. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models

    USGS Publications Warehouse

    Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.

    1998-01-01

    In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have

  20. Magmatic processes at Popocatepetl volcano, Mexico: petrology, geochemistry and Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Stimac, J.; Siebe, C.; Mac¡as, J.

    2003-12-01

    Popocatepetl volcano is one of the most famous and most active stratovolcanoes of the Trans-Mexican Volcanic Belt (TMVB). It is located 60 km south-east of Mexico-City and 40 km west of the city of Puebla, both cities have more than 30 million inhabitants. In this contribution we present a study of Late Pleistocene to Recent products of Popocatépetl (Popo) volcano and surrounding scoria cones to better establish their genetic relationship and magmatic history. Popo and flanking vents are located within the central portion of the Trans Mexican Volcanic Belt, which is related to oblique subduction of young oceanic lithosphere. Current activity of Popo can be understood in the context of its past eruptions and those from surrounding scoria cones. The latest cycle of eruption began Dec. 21, 1994 with continuous to pulsating emission of phreatic ash. The last important event happened on July 19, 2003, covering Mexico-City with a thin ash-layer. Both Popo and surrounding scoria cones produced moderate-K, calc-alkaline rocks, with the two groups differing mainly in degree of differentiation, water content, and oxidation state. Some vent samples on the immediate flanks of Popo and have phenocryst assemblages and compositions transitional between typical flanking vent and stratovolcano samples. Monogenetic vents produced mainly basaltic andesites to andesites, primarily by crystal fractionation of Ol (Fo80-90)+chromite, 2PyxñOl, and 2PyxñPlagñHb assemblages, with minor assimilation of crustal debris. The andesitic to dacitic rocks of Popo are dominated by Plag-2Pyx-2OxideñHbl assemblages, with variable amounts of Ol (Fo70-90)+chromite xenocrysts. A few Popo samples contain locally abundant xenolithic debris of cognate-granitoid intrusions and their metasedimentary wallrocks. The two suites share parental Mg-rich basaltic andesite magmas, with the Popo magmas reflecting longer residence in the crust, and enhanced hydration and oxidation due to the resulting processes of

  1. ­Characterization of Reduced Magmatic C-O-H-N Volatiles By Isotopic Labeling

    NASA Astrophysics Data System (ADS)

    Falksen, E.; Armstrong, L. S.; Hirschmann, M. M.

    2014-12-01

    Characterization of COHN species in silicate melts [1-10] is required to understand the role of reduced volatiles in planetary and early Earth processes, including partitioning between planetary cores, mantles, and atmospheres during early differentiation. Vibrational spectroscopy has been used to examine volatile speciation, but for a number of absorptions there is uncertainty as to whether they relate to species containing N, C, or both [1,3]. In particular, an IR band at 3370 cm-1 is commonly attributed to N-H stretching [1,4,5,7], but associated Raman bands near 3280 cm-1 have also been attributed to alkyne (C-H) bonds [8-10]. The 3370 cm-1 IR band appears even in nominally N-free experiments owing to trapped air and is accompanied by a feature at 1615 cm-1 which could be caused by C=O or N-H bonds [1,3,8]. We sought to determine whether N and C were responsible for various IR bands by dissolving different isotopes of N and C in basaltic melts at high pressure and temperature and observing the shift in position of the resulting absorptions. Experiments were conducted at 1.2 GPa and 1400 oC and volatiles were added to a basaltic oxide mix in the form of unlabeled, 13C labeled, and 15N labeled urea [(NH2)2CO]. The resulting glasses were analyzed using FTIR and the theoretical band shifts were predicted based on a classical approximation of a diatomic molecule. Relative to isotopically normal glasses, bands at both 3370 cm-1 and 1615 cm-1 decrease by 4-8 wavenumbers for 15N and not at all for 13C, consistent with origination by N-H bonds in amines or metal-ammine complexes. [1] Stanley et al. (2014) GCA 129, 54-76. [2] Wetzel et al. (2013) PNAS 110, 8010-8013. [3] Armstrong et al. (in prep). [4] Kadik et al. (2011) Geochem. Int. 49, 429-438. [5] Kadik et al. (2013) PEPI 214, 14-24. [6]Mysen (2013) Chem. Geo. 346, 113-124. [7] Mysen et al. (2008) Am. Min. 93, 1760-1770. [8] Mysen et al. (2009) GCA 73, 1696-1710. [9] Dasgupta et al. (2013) GCA 102, 191-212. [10] Chi

  2. Magmatic and tectonic extension at the Chile Ridge: Evidence for mantle controls on ridge segmentation

    NASA Astrophysics Data System (ADS)

    Howell, Samuel M.; Ito, Garrett; Behn, Mark D.; Martinez, Fernando; Olive, Jean-Arthur; Escartín, Javier

    2016-06-01

    We use data from an extensive multibeam bathymetry survey of the Chile Ridge to study tectonomagmatic processes at the ridge axis. Specifically, we investigate how abyssal hills evolve from axial faults, how variations in magmatic extension influence morphology and faulting along the spreading axis, and how these variations correlate with ridge segmentation. The bathymetry data are used to estimate the fraction of plate separation accommodated by normal faulting, and the remaining fraction of extension, M, is attributed primarily to magmatic accretion. Results show that M ranges from 0.85 to 0.96, systematically increasing from first-order and second-order ridge segment offsets toward segment centers as the depth of ridge axis shoals relative to the flanking highs of the axial valley. Fault spacing, however, does not correlate with ridge geometry, morphology, or M along the Chile Ridge, which suggests the observed increase in tectonic strain toward segment ends is achieved through increased slip on approximately equally spaced faults. Variations in M along the segments follow variations in petrologic indicators of mantle melt fraction, both showing a preferred length scale of 50 ± 20 km that persists even along much longer ridge segments. In comparison, mean M and axial relief fail to show significant correlations with distance offsetting the segments. These two findings suggest a form of magmatic segmentation that is partially decoupled from the geometry of the plate boundary. We hypothesize this magmatic segmentation arises from cells of buoyantly upwelling mantle that influence tectonic segmentation from the mantle, up.

  3. The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc

    NASA Astrophysics Data System (ADS)

    Andonaegui, Pilar; Arenas, Ricardo; Albert, Richard; Sánchez Martínez, Sonia; Díez Fernández, Rubén; Gerdes, Axel

    2016-06-01

    The upper allochthonous units of NW Iberian Massif contain an extensive Cambrian magmatism (c. 500 Ma), covering felsic to mafic compositions. The magmatic activity generated large massifs of granitoids and gabbros, with calc-alkaline and tholeiitic compositions respectively. Petrological and geochemical features of these massifs are characteristic of volcanic arc. The plutons intruded siliciclastic sedimentary series deposited in the periphery of the West Africa Craton. U-Pb/Hf isotopic compositions of detrital zircon in the siliciclastic host series, indicate continental arc activity between c. 750 Ma and c. 500 Ma. It was characterized by a large variety of isotopic sources, including from very old continental input, even Archean, to the addition of a significant amount of juvenile mafic material. These isotopic sources experienced an extensive mixing that explains the composition and isotopic features (εHft from - 50 until + 15) of the represented Cambrian plutons. The Cambrian igneous rocks of the upper units of NW Iberia are related to the latest activity of the Avalonian-Cadomian arc. From the Middle Cambrian arc activity in the periphery of Gondwana was replaced by pronounced extension associated with the development of continental rifting, which finally led to separation of the microcontinent Avalonia. Subsequent drifting of Avalonia to the North caused progressive opening one of the main Paleozoic ocean, the Rheic Ocean.

  4. Late-magmatic immiscibility during batholith formation: assessment of B isotopes and trace elements in tourmaline from the Land's End granite, SW England

    NASA Astrophysics Data System (ADS)

    Drivenes, Kristian; Larsen, Rune B.; Müller, Axel; Sørensen, Bjørn E.; Wiedenbeck, Michael; Raanes, Morten P.

    2015-06-01

    Quartz-tourmaline orbicules are unevenly distributed in the roof segment of the Land's End granite, SW England. This study shows that the orbicules formed from an immiscible hydrous borosilicate melt produced during the late stages of crystallization, and differentiates tourmaline formed by dominantly magmatic and dominantly hydrothermal processes. Trace elements and boron isotope fractionation can be tracked in tourmaline, and create a timeline for crystallization. Tourmaline from the granite matrix has higher V, Cr and Mg content and is isotopically heavier than the later crystallizing inner orbicule tourmaline. Overgrowths of blue tourmaline, occurring together with quartz showing hydrothermal cathodoluminescence textures, crystallized from an aqueous fluid during the very last crystallization, and are significantly higher in Sr and Sn, and isotopically heavier. Tourmaline associated with Sn mineralization is also high in Sr and Sn, but has boron isotopic compositions close to that of the magmatic tourmaline, and is not formed by the same fluids responsible for the blue overgrowths. The ore-forming fluids precipitating tourmaline and cassiterite are likely derived from the same magma source as the granite, but exsolved deeper in the magma chamber, and at a later stage than orbicule formation. Tourmaline from massive quartz-tourmaline rocks is concentrically zoned, with major and trace element compositions indicating crystallization from a similar melt as for the orbicules, but shows a more evolved signature.

  5. Magmatic Processes in Monogenetic Eruptions, Procida Island, Campi Flegrei, Italy: Geochemical Evidence From Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Severs, M. J.; Fedele, L.; Esposito, R.; Bodnar, R.; Petrosino, P.; Lima, A.; de Vivo, B.; Shimizu, N.

    2008-12-01

    Campi Flegrei is an active volcanic complex located in the greater Naples area, which has produced more than 50 eruptions over the past 60,000 years. These have ranged from small eruptions such as Monte Nuovo eruption of 1538 CE to extremely large eruptions such as the Campanian Ignimbrite (150-200 DRE; Barbieri et al., 1978). The volcanic field includes the mainland area located to the west of Naples and also the two islands of Ischia and Procida. The volcanic products range from basalts to shoshonitic phonolites and trachytes, with the more evolved magmas being more abundant. Three eruptive units from Procida Island have been studied to observe geochemical trends over time within a small area and to better understand magmatic processes between monogenetic eruptions. Juvenile samples from Pozzo Vecchio, Breccia Museo, and Solchiara were collected to examine the geochemistry of the mineral phases present and melt inclusions (MIs) found within the phenocrysts. Solchiara contained phenocrysts of olivine and clinopyroxene, whereas Breccia Museo and Pozzo Vecchio samples contained clinopyroxene and sanidine as the dominant phenocryst phases. Melt inclusions from Solchiara have narrow compositional ranges in major and trace elements (i.e., CaO, TiO2, Zr, Dy, La) over a large range in SiO2 contents (47 to 55 wt%) while MI from the Breccia Museo have a limited range of SiO2 contents (57 to 61 wt%) with a wider range for major and trace elements (i.e., FeO, Al2O3, CaO, La, Th, Rb). Pozzo Vecchio MI from clinopyroxene and sanidine define different chemical compositions, but petrographic evidence does not suggest a xenocrystic origin for either mineral phase. This suggests that Pozzo Vecchio is the result of magma mixing. Modeling of fractional crystallization of olivine, clinopyroxene, and sanidine are capable of producing most of the trends in major and trace elements between the most primitive samples to the most evolved samples. Volatile concentrations between the

  6. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas.

  7. Magmatism as a response to exhumation of the Priest River complex, northern Idaho: Constraints from zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Stevens, L. M.; Baldwin, J. A.; Crowley, J. L.; Fisher, C. M.; Vervoort, J. D.

    2016-10-01

    Zircon and monazite U-Pb geochronology and zircon Hf isotopes place constraints on the temporal and source relationships between crustal anatexis, magmatism, and exhumation of the Priest River metamorphic core complex, northern Idaho. Granitoids that intruded the migmatitic, pelitic Hauser Lake gneiss include the < 76.5 ± 0.1 Ma Spokane granite, 50.13 ± 0.02 Ma Silver Point quartz monzonite, c. 47.9 Ma Wrencoe granodiorite, < 46.4 ± 1.8 Ma Rathdrum granite, and a < 49.8 ± 0.4 Ma leucocratic dike. Cretaceous magmatism preceded the c. 64 Ma peak metamorphism (recorded by monazite) of the Hauser Lake gneiss, whereas discrete pulses of Eocene magmatic activity post-date the onset of exhumation by 10 Ma. The relative timing of pluton emplacement in the Priest River complex indicates that it was primarily a response to decompression rather than a cause. The mylonitized Silver Point and undeformed Wrencoe plutons bracket the end of a rapid phase of exhumation to c. 50-48 Ma. Zircon εHf(i) values and Lu-Hf isotope evolution indicate that the Silver Point and Wrencoe plutons crystallized from homogeneous magmas sourced from Archean-Proterozoic basement orthogneisses, whereas the Spokane granite and two leucocratic units appear to have been produced by partial melting of the Hauser Lake gneiss. Comparison of the Priest River complex with other deeply exhumed northern Cordilleran complexes indicates variability in the timing and, therefore, relative influences of partial melting and magmatism on the initiation of exhumation, which must be accounted for in numerical models of metamorphic core complex formation and evolution.

  8. Stable Isotope Evidence for Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Mao, W. L.; Schauble, E. A.; Caracas, R.; Reagan, M. M.; Gleason, A. E.

    2015-12-01

    Planetary differentiation occurred at high temperature and varying oxygen fugacity, on bodies with varying compositions and internal pressures. The specific conditions at which bodies differentiated and the chemical fingerprints left by differentiation can be investigated by measuring stable isotope ratios in natural samples. Much can be learned by combining those data with experiments that systematically investigate the chemical and physical conditions within differentiating bodies. In this talk we focus on one variable in particular that has not been well defined with respect to stable isotope fractionation: pressure. We will present new iron isotope data on how pressure affects isotope fractionation factors for a number of iron compounds relative to silicate. The processes governing iron isotope fractionation in igneous rocks have been debated extensively over the past decade. Analyses of natural samples show that iron isotopes are fractionated at both the whole rock and mineral scales. This fractionation has been interpreted to be a result of several processes including a possible signature of high pressure core formation. We have collected new high pressure synchrotron nuclear resonant inelastic x-ray scattering data from Sector 16-ID-D at the Advanced Photon Source on 57Fe enriched Fe, FeO, FeHx and Fe3C. Our data show clear trends with pressure implying that not only does pressure have an effect on the iron isotope beta factors but also a fractionation amongst the alloys. This suggests that depending on the light element in the core, there will be a different resulting signature in the iron isotope record. We will discuss the likelihood of different light elements in the core based on these results, as well as the theoretical predictions for the same phases. Finally, we will present the fractionation expected between metal and silicate at high pressure and high temperature in order to determine if core formation would indeed leave an isotopic signature in

  9. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: Evidence for a magmatic-hydrothermal origin

    USGS Publications Warehouse

    Anderson, E.D.; Atkinson, W.W.; Marsh, T.; Iriondo, A.

    2009-01-01

    The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.

  10. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  11. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  12. Three Magmatic Components in the 1973 Eruption of Eldfell Volcano, Iceland: Evidence From Plagioclase Crystal Size Distribution (CSD) and Geochemistry

    NASA Astrophysics Data System (ADS)

    Higgins, M. D.; Roberge, J.

    2006-12-01

    The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (~18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (~13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (~24%) and had the steepest CSDs. There is no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows are mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma. The late flows are yet another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during ascent to a higher level staging chamber. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening. Eichelberger et al. (2006) have suggested that compositional diversity in arc volcanoes reflects mixing of independently evolved magma batches. Perhaps the same also occurs in other settings.

  13. Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry

    NASA Astrophysics Data System (ADS)

    Higgins, Michael D.; Roberge, Julie

    2007-03-01

    The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (˜ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (˜ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (˜ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.

  14. The barents sea magmatic province: Geological-geophysical evidence and new 40Ar/39Ar dates

    NASA Astrophysics Data System (ADS)

    Shipilov, E. V.; Karyakin, Yu. V.

    2011-07-01

    Resulting from study of the geological structure of the Franz Josef Land and Svalbard archipelagoes, this work presents new 17 40Ar/39Ar age datings for basalts taken during coastal expeditions in 2006-2010. Radiological age determination for intrusive units (sills) located in the western part of Nordensciold Land (Spitzbergen Island) has been made for the first time. In relation to use of the interpretation results of marine geological-geophysical data, the distribution peculiarities and time ranges for Jurassic-Cretaceous basic magmatism within the studied regions of the Barents Sea continental margin and within the Arctic as a whole are discussed.

  15. Magmatic Contribution of Ore Metals to the Conical Seamount Hydrothermal System, Papua New Guinea: a High-Precision Pb Isotope Study.

    NASA Astrophysics Data System (ADS)

    Perfit, M.; Kamenov, G.; Mueller, P.; Jonasson, I.

    2004-12-01

    During RV SONNE cruise SO-133 in 1998 polymetallic gold mineralization was discovered at Conical Seamount, located on the flank of Lihir island, Papua New Guinea. The seamount and the island are composed mainly of trachybasalts and basaltic trachyandesites, although some monzonites are found on Lihir. Sr isotopic analyses suggest that most of the Sr in the mineralized samples is derived from the local alkaline lavas. Elevated 87Sr/86Sr ratios in some of the samples suggest that during the waning stages of the hydrothermal system, some of the Sr was contributed either from seawater or the thick sequence of marine sediments underlying the island. High-precision Pb isotopic analyses conducted with MC-ICP-MS show that the ores and volcanic rocks share similar Pb isotopic compositions, suggesting that the Pb in the mineralized zones was ultimately derived from local magmatic sources. The Pb isotopic data, however, reveal small, but significant, differences between the mineralized zones and the associated host lavas. Mineralized samples from Lihir have slightly less radiogenic lead isotopic ratios than their host lavas. These lead isotopic compositions are similar, however, to some of the fresh lavas recovered from Conical seamount and to a monzonite intrusion underlying the Ladolam deposit. Lead isotopic ratios in mineralized samples from Conical seamount, however, are slightly more radiogenic than their host lavas and similar to those of fresh lavas recovered from nearby Tubaf and Edison seamounts. Petrographic data reveal a complex magmatic history for the magma chamber inferred beneath Conical seamount. Based on zoning patterns in the Conical clinopyroxenes, it appears that a sub-seamount magma chamber was recharged with a mafic magma similar to the most primitive, volatile-rich, and xenolith-bearing lavas recovered from Tubaf and Edison seamounts. Rapid cooling of this mafic magma accompanied by exsolution of metal-bearing fluids in the relatively shallow magma

  16. Isotopic evidence of early hominin diets

    PubMed Central

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Manthi, Fredrick Kyalo; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-01-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  17. Isotopic evidence of early hominin diets

    NASA Astrophysics Data System (ADS)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  18. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali

    2015-04-01

    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  19. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites

    PubMed

    Schiellerup; Lambert; Prestvik; Robins; McBride; Larsen

    2000-06-15

    Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr. PMID:10866196

  20. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites

    PubMed

    Schiellerup; Lambert; Prestvik; Robins; McBride; Larsen

    2000-06-15

    Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr.

  1. Geochemistry and isotopic composition of the Guerrero Terrane (western Mexico): implications for the tectono-magmatic evolution of southwestern North America during the Late Mesozoic

    NASA Astrophysics Data System (ADS)

    Mendoza, O. T.; Suastegui, M. G.

    2000-10-01

    The composite Guerrero Terrane of western Mexico records much of the magmatic evolution of southwestern North America during Late Mesozoic time. The Guerrero includes three distinctive subterranes characterized by unique stratigraphic records, structural evolutions, and geochemical and isotopic features that strongly suggest they evolved independently. The eastern Teloloapan Subterrane represents an evolved intra-oceanic island arc of Hauterivian to Cenomanian age, which includes a high-K calc-alkaline magmatic suite. The central Arcelia-Palmar Chico Subterrane represents a primitive island arc-marginal basin system of Albian to Cenomanian age, consisting of an oceanic suite and a tholeiitic arc suite. The western Zihuatanejo-Huetamo Subterrane comprises three components that represent an evolved island arc-marginal basin-subduction complex system of Late Jurassic (?) -Early Cretaceous age built on a previously deformed basement. The Zihuatanejo Sequence includes a thick high-K calc-alkaline magmatic suite. The Las Ollas Complex consists of tectonic slices containing exotic blocks of arc affinity affected by high-pressure/low-temperature metamorphism included in a sheared matrix. The Huetamo Sequence consists mainly of volcanic-arc derived sedimentary rocks, including large pebbles of tholeiitic, calc-alkaline, and shoshonitic lavas. These sequences are unconformably underlain by the Arteaga Complex, which represents the subvolcanic basement. On the basis of available geology, geochemistry, geochronology, and isotopic data, we suggest that Late Mesozoic volcanism along the western margin of southern North America developed in broadly contemporaneous but different intra-oceanic island arcs that constitute a complex fossil arc-trench system similar to the present-day western Pacific island arc system.

  2. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  3. Metallogeny by Trans-magmatic Fluids—Theoretical Analysis and Field Evidence

    NASA Astrophysics Data System (ADS)

    Luo, Zhaohua; Mo, Xuanxue; Lu, Xinxiang; Chen, Bihe; Ke, Shan; Hou, Zengqian; Jiang, Wan

    This paper is aimed at introducing and developing the principle of Metallogenic Theory through Trans-magmatic Fluids (MTTF) proposed by the Russian Kozhinskii's school. Some fundamental problems of metallogeny are discussed on geodynamic bases. In this theory, the trans-magmatic fluid is interpreted as a moving fluid passing through magma which is not yet consolidated. The intensive wallrock alteration of most of hydrothermal ore systems suggests that large scale fluid flow accompanies metallogenesis. However, geological observations and experiments imply a very limited solubility of fluids in magmas. In addition, the close relationship between small igneous bodies and large ore systems together with the difficulty of fluids that from the wallrocks might enter a magmatic body, which is under high pressure and temperature, need also to be considered. Those ore-bearing fluids that originate from a deep fluid system, are independent of magmas. Experiments show rapid increases of the solubility of ore-forming elements or their compounds in hydrothermal fluids. Therefore, the essential prerequisites for mineralization are (1) large volumes of deep ore-bearing fluids with high concentration of metals, and (2) the large amounts of metal accumulation depend on the rapid ascent of the deep ore-bearing fluid. Magmas are the favorable medium for the ascending fluids, because these magmas provide conditions that prevent re-equilibrium between the fluid and the wallrocks at different deep levels. The fluids in turn, may provide the driving force for the rapid ascent of magmas. Therefore, the two systems act together to account for the close relationship between magmatism and metallogeny. According to this theory, the scale and location of an ore-forming process are decided by (1) the volumetric ratio of the magma and the fluid systems, (2) the ascending rate of the ore-bearing fluid, (3) the boundary conditions for metal accumulation and (4) the segregation of the fluid from

  4. Deep earthquakes beneath Mount St. Helens: Evidence for magmatic gas transport?

    USGS Publications Warehouse

    Weaver, C.S.; Zollweg, J.E.; Malone, S.D.

    1983-01-01

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.

  5. Evidence for slab material under Greenland and links to Cretaceous High Arctic magmatism

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Trønnes, R. G.; Spakman, W.; Panet, I.; Gaina, C.

    2016-04-01

    Understanding the evolution of extinct ocean basins through time and space demands the integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred interpretation stipulates that anomalous, fast seismic velocities at 1000-1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic Large Igneous Province in the Sverdrup Basin. However, continental crustal contributions are noted in these evolved basaltic rocks. The integration of independent, yet complementary, data sets provides insight into present-day mantle structure, magmatic events, and relict oceans.

  6. Mixing and mingling in the evolution of andesite dacite magmas; evidence from co-magmatic plutonic enclaves, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Cole, J. W.; Gamble, J. A.; Burt, R. M.; Carroll, L. D.; Shelley, D.

    2001-10-01

    The southeastern side of the Taupo Volcanic Zone, New Zealand is marked by a line of andesite/dacite/low-silica rhyolite complexes. Co-magmatic plutonic enclaves occur within the lavas of the four youngest complexes: White Island, Motuhora (Whale Island), Edgecumbe and Tauhara. The enclaves range from coarse-grained gabbros, diorites, granodiorites and a syenite to finer-grained dolerites and microdiorites. The more mafic types are generally porphyritic with large phenocrysts of plagioclase, usually with extensive sieve textures in the cores and corroded margins. Most of these enclaves, including the coarser-grained plutonic examples, contain glass and many are miarolitic. Diorites and microdiorites/dolerites predominate at White Island, Motuhora and Edgecumbe; many are porphyritic. Enclaves at Tauhara are more variable; those collected from Hipaua Dome include a range from microdiorites to quartz microdiorites and those from Rubbish Tip Dome include microdiorites, a granodiorite, and a syenite. Most enclaves show textural evidence for disequilibrium with multiple populations of plagioclase and pyroxene. They also show considerable textural variation, even within a thin section, with coarse-grained gabbros/diorites intimately mixed with finer-grained dolerites/microdiorites. Geochemically and isotopically, most enclaves have a similar composition with their host lavas, although some have lower silica contents. Enclaves at Motuhora and Tauhara are isotopically more variable, indicating multiple sources and a more complex petrogenesis. Most diorite/microdiorite enclaves are interpreted to represent parts of a crystal mush formed during fractionation of andesite/dacite magma, and entrained during later rise of magma to the surface. The granodiorite from Rubbish Tip Dome, Tauhara, probably represents part of a silicic magma chamber within the crust that fed the host low-silica rhyolite lava dome. Variability within the enclaves indicates the complexity likely to occur

  7. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Chuan-Zhou; Tappe, Sebastian; Kostrovitsky, Sergey I.; Wu, Fu-Yuan; Yakovlev, Dmitry; Yang, Yue-Heng; Yang, Jin-Hui

    2014-10-01

    We report combined U-Pb ages and Sr-Nd isotope compositions of perovskites from 50 kimberlite occurrences, sampled from 9 fields across the Yakutian kimberlite province on the Siberian craton. The new U-Pb ages, together with previously reported geochronological constraints, suggest that kimberlite magmas formed repeatedly during at least 4 episodes: Late Silurian-Early Devonian (419-410 Ma), Late Devonian-Early Carboniferous (376-347 Ma), Late Triassic (231-215 Ma), and Middle/Late Jurassic (171-156 Ma). Recurrent kimberlite melt production beneath the Siberian craton - before and after flood basalt volcanism at 250 Ma - provides a unique opportunity to test existing models for the origin of global kimberlite magmatism. The internally consistent Sr and Nd isotope dataset for perovskites reveals that the Paleozoic and Mesozoic kimberlites of Yakutia have distinctly different initial radiogenic isotope compositions. There exists a notable increase in the initial 143Nd/144Nd ratios through time, with an apparent isotopic evolution that is intermediate between that of Bulk Earth and Depleted MORB Mantle. While the Paleozoic samples range between initial 87Sr/86Sr of 0.7028-0.7034 and 143Nd/144Nd of 0.51229-0.51241, the Mesozoic samples show values between 0.7032-0.7038 and 0.51245-0.51271, respectively. Importantly, perovskites from all studied Yakutian kimberlite fields and age groups have moderately depleted initial εNd values that fall within a relatively narrow range between +1.8 and +5.5. The perovskite isotope systematics of the Yakutian kimberlites are interpreted to reflect magma derivation from the convecting upper mantle, which appears to have a record of continuous melt depletion and crustal recycling throughout the Phanerozoic. The analyzed perovskites neither record highly depleted nor highly enriched isotopic components, which had been previously identified in likely plume-related Siberian Trap basalts. The Siberian craton has frequently been suggested

  8. The thermal evolution of a episodic, convergent-margin, magmatic center: Evidence from the Tatoosh Magmatic Complex, Mount Rainier National Park, southern Washington Cascades

    SciTech Connect

    Murphy, M.T. )

    1992-01-01

    Use of Mount Rainier as an IAVCEI Decade Volcano requires an assessment of long-term, magmatic activity cycles. Recent activity could represent either a waxing or waning step, relative to the main cone. The Tertiary record at Mount Rainier, represented by the Tatoosh complex, suggests evolution into larger and more energetic systems. This sequence included bimodal dikes and sills (Chinook Pass episode), through dacitic dome and pyroclastic eruptions (Sourdough Mountains episode), shallow monzonitic plutons, culminating in large granodiorite plutons (White River episode). Limited geochronology, geochemistry and field relations support this conceptual model. Simple thermal modeling of this hypothesis suggests that for the first two episodes, transport was insufficient to support a magma chamber. This is consistent with field relations. Repeated magmatism could have perturbed the geotherm, allowing a magma chamber during White River time. This suggests a potential 3 million-year-long, volcanic source for dacitic clasts of the Ellensburg Formation. Uplifts from such a thermal load would be consistent with independent estimates of Miocene deformation in the Washington Cascades. A 7 million year cycle for magmatism at Mount Rainier is consistent with the rock record and the cooling of a 0.5-km accumulation zone of melt at the mid crust. This suggests that any current activity at Mount Rainier could relate to the 0.7-Ma stratovolcano or the Lily Creek Formation (3 Ma). These results indicate the detailed petrologic and geochronological work in the Tatoosh complex necessary to Decade Volcano studies at Mount Rainier.

  9. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.

    2012-12-01

    Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, fluid-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? So far, the deep slab dehydration hypothesis had strong support, but the hydrated mantle wedge idea is advancing supported by studies of fluid-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and fluid-mobile element reservoirs for subduction: their dehydration causes large fluid and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from hydration at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil

  10. Evidence for magmatic underplating under the Azores Islands from P-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George

    2016-04-01

    The Azores plateau is located near the Mid-Atlantic Ridge and consists of nine islands. Various methods including seismic reflection, gravity, and passive seismology, have been used to investigate the crustal thickness beneath the islands. They have yielded depth estimates that range between roughly 10 km and 30 km, but until now, a model of the fine-scale crustal structure has been lacking. Geochemical studies carried out across the islands suggest the existence of volcanic interfaces within the shallow crust. Moreover, magma might have accumulated beneath the existing crust (magmatic underplating), causing a shift of the crust-mantle boundary to lower depths. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with P-wave receiver functions (PRFs). A challenge of using ocean island data is oceanic noise that interferes with the useful conversion signals. Here, we employ a frequency-domain deconvolution with objective regularisation based on the pre-event noise spectrum to reduce the effect of the oceanic noise. Our fine-scale PRFs yield conversions at about 0.3 s, 1 s, and 2-3.5 s, which we attribute to a shallow volcanic interface, a mid-crustal interface, and the crust-mantle boundary, respectively. Following the interpretation of similar PRF studies beneath other volcanic ocean islands, the 1 s signal (mid-crustal interface) may correspond to a conversion at the top of the underplated magmatic material. Underplating is most pronounced in the southeastern portion of the Azores plateau. Considering lower seismic P- and S-wave velocities within the volcanic interfaces (vp=4.9 km/s, vs=2.6 km/s) and higher velocities within the underplated material (vp=7.3 km/s, vs=4.2 km/s) compared to the normal crust (vp=6.3 km/s, vs=3.6 km/s), the total crustal thickness amounts to approximately 12-15 km.

  11. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite.

    PubMed

    McSween, H Y; Grove, T L; Lentz, R C; Dann, J C; Holzheid, A H; Riciputi, L R; Ryan, J G

    2001-01-25

    Observations of martian surface morphology have been used to argue that an ancient ocean once existed on Mars. It has been thought that significant quantities of such water could have been supplied to the martian surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous martian meteorites. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty meteorite--a basalt body ejected 175 million years ago from Mars--as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty meteorite, the inner cores of pyroxene minerals (which formed at depth in the martian crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the martian surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the martian surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars.

  12. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaowei; Tang, Qingyan; Li, Chusi; Wang, Yalei; Ripley, Edward M.

    2016-03-01

    The newly discovered Xiarihamu Ni-Cu deposit is located in the Eastern Kunlun orogenic belt in the northern part of the Qinghai-Tibet plateau, western China. It is the largest magmatic Ni-Cu sulfide deposit found thus far in an arc setting worldwide and ranks second in China in terms of total Ni resources. Fe-Ni-Cu sulfide mineralization occurs in a small ultramafic body that is part of a larger mafic-ultramafic complex formed by protracted Silurian-Early Devonian basaltic magmatism. The mineralized ultramafic body is composed predominantly of lherzolite and olivine websterite, with minor dunite, websterite and orthopyroxenite. Here we report new PGE (platinum group element) data and the results of a new, integrated Sr-Nd-Os-S isotope study. The initial concentrations of Rh and Pd in the parental magma are estimated to be 0.014 ppb and 0.24 ppb, respectively, which are more than one order of magnitude lower than those in undepleted mantle-derived magmas such as many continental picrites. The observed PGE depletions in the Xiarihamu parental magma are attributed to sulfide retention in the source mantle, because the degree of partial melting required to generate the Xiarihamu primary magma was not high enough for a magma of that composition to dissolve all sulfides in the source. The (87Sr/86Sr) i ratios and ɛNd (t) of the Xiarihamu host rocks range from 0.7062 to 0.7105 and from -1.97 to -5.74, respectively, indicating 5-30 wt% crustal contamination in the Xiarihamu magma. These data also reveal that the source mantle for the Xiarihamu magma is isotopically (Sr-Nd) more enriched than that for the average Cenozoic arc basalt. The γOs(t) and δ34S values of sulfide ores from the Xiarihamu deposit range from 78 to 1393 and from 2 to 6‰, respectively. These values clearly indicate addition of crustal Os and S to the Xiarihamu parental magma. Metal tenors such as Ni and Rh are inversely correlated with γOs(t) and δ34S values. This indicates that mixing between

  13. Zircon geochronology and Hf isotopic composition of Mesozoic magmatic rocks from Chizhou, the Lower Yangtze Region: Constraints on their relationship with Cu-Au mineralization

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Hong-Fu

    2012-10-01

    Zircon U-Pb ages and Hf isotopic compositions of Mesozoic magmatic rocks from the Chizhou Area are systematically investigated to reveal the tectonic setting of magmatism and their relationship with Cu-Au mineralization in the Lower Yangtze River Belt, southeastern China. The samples cover nearly all types of magmatic rocks in a 30 × 50 km2 region, including 6 granite porphyries, 6 dacites and 4 granites. The zircon U-Pb geochronology yields a range of 151-124 Ma, with granite porphyries ranging from 151 to 146 Ma, dacites from 132 to 127 Ma and granites from 127 to 124 Ma, indicating two magmatic episodes of the late Jurassic and the early Cretaceous. The earlier episode mainly formed small granite porphyries (generally < 5 km) and is always associated with porphyry Cu-Au deposits. The later episode began with dacites and was then dominated by large granite intrusions (generally > 10 km), which are barren in mineralization. The ore-barren dacites and the granites (131-124 Ma) are poor in inherited zircons. Zircons in these rocks yield a very large ɛHf(t) variation of - 20.8-0.4, suggesting a mixing between mantle-derived and crustal-derived magmas. By contrast, the ore-bearing porphyries (151-146 Ma) are rich in inherited zircons. The magmatic zircons have ɛHf(t) values of - 8.8-0.9, and the inherited ones yield U-Pb ages of 1156-811 Ma with ɛHf(t) values of 2.5-11.5. The existence of quantitative inherited zircons indicates that the crustal rocks of 1156-811 Ma significantly contribute to the formation of the ore-bearing porphyries, either being source or contamination. Since these inherited zircons are igneous as indicated by their oscillatory zonings, they may derive from components of the Grenvillian oceanic crust (ca. 1100-1000 Ma), i.e. the Neoproterozoic magmatic rocks related to arc (970-890 Ma) and Nanhua rift (ca. 825 Ma). Recent studies reveal that the ore-baring porphyries of the Lower Yangtze River Belt have slab melt features and conclude that

  14. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  15. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin

    USGS Publications Warehouse

    Kay, Suzanne M.; Burns, W. Matthew; Copeland, Peter; Mancilla, Oscar

    2006-01-01

    Evidence for a Miocene period of transient shallow subduction under the Neuquén Basin in the Andean backarc, and an intermittent Upper Cretaceous to Holocene frontal arc with a relatively stable magma source and arc-to-trench geometry comes from new 40Ar/39Ar, major- and trace-element, and Sr, Pb, and Nd isotopic data on magmatic rocks from a transect at ∼36°–38°S. Older frontal arc magmas include early Paleogene volcanic rocks erupted after a strong Upper Cretaceous contractional deformation and mid-Eocene lavas erupted from arc centers displaced slightly to the east. Following a gap of some 15 m.y., ca. 26–20 Ma mafic to acidic arc-like magmas erupted in the extensional Cura Mallín intra-arc basin, and alkali olivine basalts with intraplate signatures erupted across the backarc. A major change followed as ca. 20–15 Ma basaltic andesite–dacitic magmas with weak arc signatures and 11.7 Ma Cerro Negro andesites with stronger arc signatures erupted in the near to middle backarc. They were followed by ca. 7.2–4.8 Ma high-K basaltic to dacitic hornblende-bearing magmas with arc-like high field strength element depletion that erupted in the Sierra de Chachahuén, some 500 km east of the trench. The chemistry of these Miocene rocks along with the regional deformational pattern support a transient period of shallow subduction that began at ca. 20 Ma and climaxed near 5 Ma. The subsequent widespread eruption of Pliocene to Pleistocene alkaline magmas with an intraplate chemistry in the Payenia large igneous province signaled a thickening mantle wedge above a steepening subduction zone. A pattern of decreasingly arc-like Pliocene to Holocene backarc lavas in the Tromen region culminated with the eruption of a 0.175 ± 0.025 Ma mafic andesite. The northwest-trending Cortaderas lineament, which generally marks the southern limit of Neogene backarc magmatism, is considered to mark the southern boundary of the transient shallow subduction zone.

  16. Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September-December 1997

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.; Kessler, R.; Doukas, M.P.

    2000-01-01

    Recent time series soil CO2 concentration data from monitoring stations in the vicinity of Mammoth Mountain, California, reveal strong evidence for a magmatic degassing event during the fall of 1997 lasting more than 2 months. Two sensors at Horseshoe Lake first recorded the episode on September 23, 1997, followed 10 days later by a sensor on the north flank of Mammoth Mountain. Direct degassing from shallow intruding magma seems an implausible cause of the degassing event, since the gas released at Horseshoe Lake continued to be cold and barren of other magmatic gases, except for He. We suggest that an increase in compressional strain on the area south of Mammoth Mountain driven by movement of major fault blocks in Long Valley caldera may have triggered an episode of increased degassing by squeezing additional accumulated CO2 from a shallow gas reservoir to the surface along faults and other structures where it could be detected by the CO2 monitoring network. Recharge of the gas reservoir by CO2 emanating from the deep intrusions that probably triggered deep long-period earthquakes may also have contributed to the degassing event. The nature of CO2 discharge at the soil-air interface is influenced by the porous character of High Sierra soils and by meteorological processes. Solar insolation is the primary source of energy for the Earth atmosphere and plays a significant role in most diurnal processes at the Earth surface. Data from this study suggest that external forcing due largely to local orographic winds influences the fine structure of the recorded CO2 signals.

  17. Mineralogical and sulfur isotopic evidence for the incursion of evaporites in the Jinshandian skarn Fe deposit, Edong district, Eastern China

    NASA Astrophysics Data System (ADS)

    Zhu, Qiaoqiao; Xie, Guiqing; Mao, Jingwen; Li, Wei; Li, Yanhe; Wang, Jian; Zhang, Ping

    2015-12-01

    Evaporites have played important role in the formation of diverse metallic ore deposits, especially in the case of magmatic-hydrothermal deposits. However, the relationship between evaporites and skarn Fe deposit remains poorly constrained. In this contribution, we present new sulfur isotope data of pyrite, as well as the composition of halogen-rich minerals (scapolite and amphibole) in the Jinshandian skarn Fe deposit. The data are used to evaluate the evidence for incursion of evaporites in the skarn Fe deposit. The δ34S values for pyrite from the early and late retrograde stage range from +17.4‰ to +18.7‰ (n = 4) and +16.4‰ to +19.4‰ (n = 13), respectively. Both these values are markedly heavier than the common δ34S values of sulfides from magmatic-hydrothermal fluid, indicating that sulfur in the Jinshandian ore-forming system was mostly derived from evaporites. Compared to the amphibole from endoskarn, the scapolite and amphibole from exoskarn show high Cl content up to 4.04% and 3.01%, respectively, suggesting that the hydrothermal fluid with high NaCl content was probably derived from evaporites. The amphiboles from endoskarn are more enriched in F which is probably of magmatic in origin. The data presented in our study suggest that the hydrothermal system of the Jinshandian skarn Fe deposit probably experienced significant incursion of evaporites before or during the late prograde stage.

  18. Monzonitoid magmatism of the copper-porphyritic Lazurnoe deposit (South Primor'e): U-Pb and K-Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic-geochemical studies

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.

    2011-05-01

    Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.

  19. Major magmatic events in Mt Meredith, Prince Charles Mountains: First evidence for early Palaeozoic syntectonic granites

    USGS Publications Warehouse

    Gongurov, N.A.; Laiba, A.A.; Beliatsky, B.V.

    2007-01-01

    Precambrian rocks at Mt Meredith underwent granulite-facies metamorphism M1. Zircon isotope dating for two orthogneisses revealed the following age signatures: 1294±3 and 957±4Ma; 1105±5 and 887±2Ma. The oldest ages could reflect the time of orthogneiss protolith crystallization and the latest age determinations date Grenvillian metamorphism. The metamorphic rocks were intruded by two-mica and garnet-biotite granites. The granites and host rocks underwent amphibolite-facies metamorphism M2. Zircon isotope analysis of the two-mica granites showed age estimation within 550-510Ma and zircon dating of the garnet-biotite granites revealed the ages of 1107±5, 953±8, and 551±4Ma. As Pan-African age signatures were obtained from only the granite samples, it is possible to suggest that the granites were formed at the time of 510-550Ma and the zircons with greater age values were captured by granites from the host rocks.

  20. Magmatism in the Tsagaandelger, Eastern Mongolian volcanic belt: Petrological, geochemical and isotopic constraints on Mesozoic geodynamic setting

    NASA Astrophysics Data System (ADS)

    Oidov, M.; Fujimaki, H.

    2008-12-01

    The vast territory of Mongolia lies in the heart of the Central Asian Orogenic Belt, one of largest provinces of the Phanerozoic continental growth on Earth (Jahn et al., 2004). We present new petrographic, geochemical and Sr-Nd isotopic analyses on Mesozoic igneous rocks emplaced in Central Mongolia. The Mesozoic igneous suites, those exposed in the Tsagaandelger area, pass upwards from alkaline series trachytic rocks and overlain by tuffaceous sediments. Those are intruded by calc alkaline leucocratic granites and covered by Late Mesozoic calc alkaline bimodal volcanic rocks consisting of basalts and rhyolite. Alkaline series volcanic sequences were erupted in Early-Middle Triassic (241 Ma) and characterized by LILE, LREE enrichment and significant Nb-Ta depletion. Rocks have weakly enriched initial 87Sr86Sr ratios of 0.705 to 0.706 and positive ɛNd(t) values (0.7 to 4). The crystallization age of intrusive rocks is 231 Ma. The majority of samples is slightly peraluminous and can be classified as granite, including monzogranite, granodiorite and aplite. Granites are characterized by near- zero ɛNd(t) values (0.7 to 2) and tetrad effect in their REE distribution patterns. Further Cretaceous volcanic sequences have lower contents of LILE and higher contents of HFS and REE, comparing with Triassic volcanic sequences. The Cretaceous volcanic rocks have the initial 87Sr86Sr ratios between 0.705 and 0.719 and near-zero ɛNd(t) values (-0.7 to 1.6). Trace element geochemistry indicates that Mesozoic volcanic rocks from the studied area are arc related. The Triassic volcanic and plutonic rocks could be emplaced in active continental margin settings. Post collisional extensional regime could be started with Early Cretaceous volcanism. The mass balance calculation suggests that the all Mesozoic volcanic and plutonic rocks were derived from sources composed of more than 80% juvenile mantle-derived component. Our data confirm the earlier observations of similar isotopic

  1. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Wang, Qiang; Wyman, Derek A.; Sun, Min; Zhao, Zhen-Hua; Jiang, Zi-Qi

    2013-09-01

    Many Late Paleozoic Cu-Au-Mo deposits occur in the Central Asian Orogenic Belt (CAOB). However, their tectonic settings and associated geodynamic processes have been disputed. This study provides age, petrologic and geochemical data for andesites and granitic porphyries of the Taerbieke gold deposit from the Tulasu Basin, in the northwestern Tianshan Orogenic Belt (western China). LA-ICP-MS zircon U-Pb dating indicates that the granitic porphyries have an Early Carboniferous crystallization age (349 ± 2 Ma) that is broadly contemporaneous with the eruption age (347 ± 2 Ma) of the andesites. The andesites have a restricted range of SiO2 (58.94-63.85 wt.%) contents, but relatively high Al2O3 (15.39-16.65 wt.%) and MgO (2.51-6.59 wt.%) contents, coupled with high Mg# (57-69) values. Geochemically, they are comparable to Cenozoic sanukites in the Setouchi Volcanic Belt, SW Japan. Compared with the andesites, the granitic porphyries have relatively high SiO2 (72.68-75.32 wt.%) contents, but lower Al2O3 (12.94-13.84 wt.%) and MgO (0.10-0.33 wt.%) contents, coupled with lower Mg# (9-21) values. The andesites and granitic porphyries are enriched in both large ion lithophile and light rare earth elements, but depleted in high field strength elements, similar to those of typical arc magmatic rocks. They also have similar Nd-Hf-Pb isotope compositions: ɛNd(t) (+0.48 to +4.06 and -0.27 to +2.97) and zircons ɛHf(t) (+3.4 to +8.0 and -1.7 to +8.2) values and high (206Pb/204Pb)i (18.066-18.158 and 17.998-18.055). We suggest that the Taerbieke high-Mg andesitic magmas were generated by the interaction between mantle wedge peridotites and subducted oceanic sediment-derived melts with minor basaltic oceanic crust-derived melts, and that the magmas then fractionated to produce the more felsic members (i.e., the Taerbieke granitic porphyries) during late-stage evolution. Taking into account the Carboniferous magmatic record from the western Tianshan Orogenic Belt, we suggest that

  2. Layered intrusions as transitional chambers of magmatic systems of large igneous provinces: Evidence from the eastern Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria; Chistyakov, Alexey

    2013-04-01

    Large igneous provinces are usually formed by lava plateaus, dyke swarms, and intrusions. The rocks of these units show wide variations in composition. However, it is unclear which mechanisms and where produced such a compositional diversity. It is also important to understand whether these complexes are comagmatic or not? For this purpose, we studied the above mentioned volcanic and plutonic components of two Paleoproterozoic large igneous provinces in the eastern Fennoscandian Shield: (1) early Paleoproterozoic (2.5-2.35 Ga) province made up of siliceous high-Mg volcanics and layered dunite-harzburgite-bronzitite-norite-gabbronorite-anorthosite (Monchegorsky, Fedorovo-Pansky, Burakovsky, etc.) plutonic complexes, and (2) middle Paleoproterozoic (2.35-1.9 Ga) province made up of high- and low-Ti alkaline and tholeiite basalts and wehrlite-clinopyroxenite-gabbro-alkaline gabbros (Elet'ozero, Gremyakha-Vyrmes) plutonic complexes. It is known that layered intrusions were formed by replenishment of solidifying chambers accompanied by magma differentiation and contamination. Geochemical and isotope data showed that all rocks of these complexes are related in different degree and often close in composition to volcanics in lava plateaus, and can be considered as comagmatic in origin. So, we suggest that these layered complexes represent long-lived magmatic centers - transitional chambers - where melts derived from magma-generation zones were accumulated, subjected to crystallization differentiation, mixed with evolved and fresh magmas, and contaminated. It is highly possible that some batches of evolved magmas arrived to the surface, forming lava successions of different composition. This is consistent with the fact that all volcanics that compose the plateaus are represented by evolved derivatives that presumably formed in transitional chamber, whereas primary melts are practically missing.

  3. Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits

    NASA Technical Reports Server (NTRS)

    Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.

    1986-01-01

    Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.

  4. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  5. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  6. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Yang, Qiong-Yan; Ram Mohan, M.; Tsunogae, T.; Shaji, E.; Satyanarayanan, M.

    2014-11-01

    The Southern Granulite Terrane (SGT) in India preserves the records of the formation and recycling of continental crust from Mesoarchean through Paleoproterozoic to Neoproterozoic and Cambrian, involving multiple subduction-accretion-collision associated with major orogenic cycles. A chain of unmetamorphosed and undeformed alkaline magmatic intrusions occurs along the northern margin of the SGT aligned along paleo-suture zones. Here we investigate two representative plutons from this suite, the Angadimogar syenite (AM) and the Peralimala alkali granite (PM) through field, petrological, geochemical, zircon U-Pb and Lu-Hf studies. Magma mixing and mingling textures and mineral assemblages typical of alkaline rocks are displayed by these plutons. The whole-rock major and trace element data characterize their alkaline nature. In trace element discrimination diagrams, the AM rocks straddle between the VAG (volcanic-arc granites) and WPG (within plate granites) fields with most of the samples confined to the VAG field, whereas the PM rocks are essentially confined to the WPG field. The diversity in some of the geochemical features between the two plutons is interpreted to be the reflection of source heterogeneities. Most zircon grains from the AM and PM plutons display oscillatory zoning typical of magmatic crystallization although some grains, particularly those from the PM pluton, show core-rim structures with dark patchy zoned cores surrounded by irregular thin rims resulting from fluid alteration. The weighted mean 206Pb/238U ages of the magmatic zircons from three samples of the AM syenite are in the range of 781.8 ± 3.8 Ma to 798 ± 3.6 Ma and those from two samples of the PM alkali granite yield ages of 797.5 ± 3.7 Ma and 799 ± 6.2 Ma. A mafic magmatic enclave from the AM pluton shows weighted mean 206Pb/238U age of 795 ± 3.3 Ma. The AM and PM plutons also carry rare xeneocrystic zircons which define upper intercept concordia ages of 3293 ± 13 Ma and 2530

  7. Neoproterozoic granitic magmatism and tectonic evolution of the northern Arabian Shield: evidence from southwest Jordan

    NASA Astrophysics Data System (ADS)

    Ibrahim, K. M.; McCourt, W. J.

    1995-02-01

    The crystalline basement outcrop exposed in southwest Jordan, is subdivided into two broad lithostratigraphic divisions, the older Aqaba complex and the Araba complex separated by a regional unconformity. The Aqaba complex principally comprises calc-alkaline plutonic rods of probable age range 630-580 Ma cut by extensive regional dyke swarms while the Araba complex is characterized by alkaline rhyolitic volcanics and minor coeval granites with an approximate age of 550-540 Ma. The plutonic rocks of the Aqaba complex are interpreted to be the products of subduction at, or dose to, a continental margin, while the Araba complex rods were most probably formed in an extensional setting. The Aqaba complex granitoids are isotopically primitive and were derived from a depleted source region like the mantle. The Arabian Shield of southwest Jordan provides an example of rapid crustal growth during the Neoproterozoic and the new data gives no support to models invoking the presence or involvement of significantly older basement in its development.

  8. Isotopic and physical evidence for persistently high eruption temperatures for Yellowstone-Snake River Plain rhyolites

    NASA Astrophysics Data System (ADS)

    Loewen, M.; Bindeman, I. N.; Melnik, O. E.

    2015-12-01

    Low crystallinity rhyolite lavas and tuffs from the Yellowstone-Snake River plain system were long-thought to erupt at high 800-900 °C temperatures with evidence derived from experimental work and geothermometry (e.g., QUILF, Ti-in-quartz). Despite this evidence, newer experimental phase equilibria studies as well as a reformulation of zircon saturation temperatures support lower temperature magma eruption conditions. Here we present two independent lines of evidence for 850 °C and greater temperatures. We present high precision oxygen isotope thermometry for coexisting quartz, glass, pyroxene, and magnetite in order make temperature estimates independent of phase equilibria. For all analyzed Snake River Plain-Yellowstone rhyolites, we determine 800-1100 °C temperatures for clinopyroxene and 850-1100 °C temperatures for magnetite. Extremely slow oxygen diffusion in pyroxene will preserve oxygen isotope crystal composition for millions of years stored at magmatic temperatures. Interestingly, oxygen in magnetite will reequilibrate in <1000 years, so systematically higher magnetite-quartz temperatures suggests a short lifespan of magmas from liquidus crystallization to eruption. In an alternative approach, we have modeled the physical emplacement of the large volume (up to 70 km3) rhyolite lavas of the recent Central Plateau Member group. Using simple solutions to gravity-driven viscous fluid flow, we have made first-order estimates for extremely high discharge rates in order to enable effusion of sufficient volume in relatively axisymmetric morphologies—where glacial ice caps or prexisiting topography did not otherwise restrict flow. Using these results and simple conductive cooling models, we show that flows erupted at >800 °C and probably ~850 °C in order to be emplaced before cooling below the melt-glass transition and forming a more dome-like and lobate morphology.

  9. Osmium isotope evidence for a large Late Triassic impact event.

    PubMed

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio ((187)Os/(188)Osi) of ~0.477 to unradiogenic values of ~0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous-Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3-7.8 km in diameter) produced a global decrease in seawater (187)Os/(188)Os ratios in the Late Triassic.

  10. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  11. Osmium isotope evidence for a large Late Triassic impact event.

    PubMed

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio ((187)Os/(188)Osi) of ~0.477 to unradiogenic values of ~0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous-Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3-7.8 km in diameter) produced a global decrease in seawater (187)Os/(188)Os ratios in the Late Triassic. PMID:24036603

  12. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    USGS Publications Warehouse

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a

  13. Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation

    USGS Publications Warehouse

    Lovvorn, M.B.; Frison, G.C.; Tieszen, L.L.

    2001-01-01

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ???11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ???12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.

  14. Granitoid formation is ineffective in isotopically homogenizing continental crust: Evidence from archean rocks of the Wind River Mountains, Wyoming

    SciTech Connect

    Frost, C.D. ); Hulsebosch, T.P. ); Chamberlain, K.R.; Frost, B.R. )

    1992-01-01

    The Archean core of the Laramide Wind River uplift records evidence of at least three major granitoid-forming episodes. The oldest, the Dry Creek gneiss (DCG), was emplaced by 2.8 Ga and occupies the northeastern part of the range. Mafic, pelitic and ultramafic inclusions occur in the DCG. Elsewhere in the Wind River Mountains there is evidence for crustal components as old as 3.8 Ga. The Bridger batholith (BB), intruded at 2.67 Ga, is found in the west-central Wind River Mountains. The Wind River batholith (WRB) refers to the youngest Late Archean granodiorites and granites which are found throughout the range and includes granitoids previously name the Louis Lake, Bears Ears, Popo Agie, and Middle Mountain intrusions. Although granitoids of the Wind River batholith have been dated at 2.63 and 2.55 Ga, they are considered together here because there is a complete gradation in rock type and because definite intrusive contacts are scarce. The DCG, BB, and WRB each span the metaluminous/peraluminous boundary and are indistinguishable on Harker diagrams. Each has variable trace element and isotopic characteristics which do not correlate with silica content. Although the isotopic characteristics of these granitoids may be explained by mixing of variable amounts of preexisting continental crust and contemporary depleted mantle, this hypothesis is difficult to reconcile with the evolved nature of even those samples with the most mantle-like isotopic signatures. The authors suggest that each of these granitoid batholiths was formed primarily by remelting of pre-existing heterogeneous continental crust, and that the granite-forming process was not effective in obliterating these trace element and isotopic heterogeneities. Isotopic homogeneity in granitoid batholiths may reflect the isotopic homogeneity of their sources rather than an effective magmatic mixing process.

  15. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Zhang, Qian; Zhao, Hai-Xiang; Zhao, Kui-Dong

    2015-10-01

    Cretaceous tectono-magmatic evolution of the Cathaysia Block in South China is important but their mechanism and geodynamics remain highly disputed. In this study we carried out a detailed geochemical study on the recently found Kuokeng mafic dikes in the western Fujian Province (the Interior Cathaysia Block) to reveal the petrogenesis and geodynamics of the Cretaceous magmatism. Kuokeng mafic dikes were emplaced in three principal episodes: ~ 129 Ma (monzogabbro), ~ 107 Ma (monzodiorite), and ~ 97 Ma (gabbro). Geochemical characteristics indicate that the monzogabbros were derived from the unmodified mantle source, while gabbros were likely derived from metasomatized mantle by subducted slab (fluids and sediments). Sr-Nd isotope compositions indicate that the parental magmas of the monzodiorites were generated by mixing of enriched, mantle-derived, mafic magmas and felsic melts produced by partial melting of crustal materials. Until the Early Cretaceous (~ 123 Ma), the dominant ancient Interior Cathaysia lithospheric mantle exhibited insignificant subduction signature, indicating the melting of asthenospheric mantle and the consequent back-arc extension, producing large-scale partial melting of the crustal materials under the forward subduction regime of the paleo-Pacific plate. The monzodiorites and gabbros appear to be associated with northwestward subduction of Pacific plate under an enhanced lithospheric extensional setting, accompanying with mantle modification, which triggered shallower subduction-related metasomatically enriched lithospheric mantle to melt partially. After ca. 110 Ma, the coastal magmatic belts formed due to a retreat and rollback of the subducting Pacific Plate underneath SE China in the continental margin arc system.

  16. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    USGS Publications Warehouse

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this

  17. Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Bekker, A.; Grokhovskaya, T. L.; Hiebert, R.; Sharkov, E. V.; Bui, T. H.; Stadnek, K. R.; Chashchin, V. V.; Wing, B. A.

    2015-08-01

    We present the results of a pilot investigation of multiple sulfur isotopes for the Ni-Cu-PGE sulfide mineralization of the ˜2.5 Ga Monchegorsk Igneous Complex (MIC). Base Metal Sulfide (BMS) compositions, Platinum Group Element (PGE) distributions, and Platinum Group Mineral (PGM) assemblages were also studied for different types of Ni-Cu-PGE mineralization. The uniformly low S content of the country rocks for the MIC as well as variable Sm-Nd isotope systematics and low-sulfide, PGE-rich mineralization of the MIC suggest that S saturation was reached via assimilation of silicates rather than assimilation of sulfur-rich lithologies. R-factor modeling suggests that the mixing ratio for silicate-to-sulfide melt was very high, well above 15,000 for the majority of our mineralized samples, as might be expected for the low-sulfide, PGE-rich mineralization of the MIC. Small, negative Δ33S values (from -0.23 to -0.04 ‰) for sulfides in strongly metamorphosed MIC-host rocks indicate that their sulfur underwent mass-independent sulfur isotope fractionation (MIF) in the oxygen-poor Archean atmosphere before it was incorporated into the protoliths of the host paragneisses and homogenized during metamorphism. Ore minerals from the MIC have similar Δ33S values (from -0.21 to -0.06 ‰) consistent with country rock assimilation contributing to sulfide saturation, but, also importantly, our dataset suggests that Δ33S values decrease from the center to the margin of the MIC as well as from early to late magmatic phases, potentially indicating that both local assimilation of host rocks and S homogenization in the central part of the large intrusion took place.

  18. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    USGS Publications Warehouse

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  19. Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re-Os isotope system

    NASA Astrophysics Data System (ADS)

    Gannoun, A.; Burton, K. W.; Barfod, D. N.; Schiano, P.; Vlastélic, I.; Halliday, A. N.

    2015-05-01

    This study presents major-, trace element and Re-Os isotope and elemental data for young alkaline basalts (< 10 Ma) from oceanic (Annobon, S. Tomé, Principe), continental (Manengouba) and continent-oceanic boundary (COB, Mt. Cameroon) sectors of the Cameroon volcanic line (CVL). The CVL is a chain of Tertiary to recent, transitional to strongly alkaline intraplate volcanoes extending from the south Atlantic island of Annobon to the continental interior of West Africa (Biu Plateau). The basalts from the oceanic sector display a range of initial 187Os/188Os ratios between 0.128 and 0.190 and those from the COB and continental sector range between 0.142 and 0.560. The samples with high 206Pb/204Pb (e.g. ratios > 20) possess 187Os/188Os isotope compositions between 0.14 and 0.18 (e.g., basalts from Mt Cameroon and Sao Tomé) which reflect the chemical characteristics that are more likely to be primary features of CVL, and are close to the value of 0.153 attributed to the HIMU end-member (Tubuai-Mangaia). However, most of the lavas from the continental sector show highly radiogenic initial 187Os/188Os ratios (0.36 to 0.56) that are outside the range previously observed for ocean island basalts, with shifts to radiogenic Os isotope compositions accompanied by less radiogenic 206Pb/204Pb and increasing SiO2 contents. The increase in 187Os/188Os is also associated with the decrease of Os, Ni, MgO and phenocryst abundances. These data can be explained by fractional crystallisation and assimilation of continental crust by the ascending magma. The systematic shift to unradiogenic lead isotope compositions from the COB into the oceanic sector is positively correlated with variations in 187Os/188Os isotope composition (from 0.140 to 0.128). At first sight this covariation might be attributed to the mixing of HIMU material with the ambient upper mantle (DMM). However, there is a clear covariation of the Os isotope and elemental composition, best explained with contamination of

  20. Late Neoproterozoic magmatism in South Qinling, Central China: Geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Yao, Yuan; Gao, Li'e.; Liu, Chunhua

    2016-06-01

    The Neoproterozoic tectonic evolution of the northern margin of the Yangtze Block in South China remains debated. In this study, we present results from LA-ICP-MS zircon U-Pb geochronology on a suite of intermediate-felsic rocks in South Qinling, Central China which show a mean age of ca. 630 Ma. The zircon εHf(t) values of these rocks mostly range from + 0.44 to + 14.78. Geochemically, the granites and syenite show high total alkali contents, with enrichment in LREE, LILE (Rb, Ba, and K), and HFSE (Th, U, Nb, Ta, Zr, and Hf), and depletion in Sr, P, and Ti, similar to the features of A-type granites. The meta-diorite shows high Na2O, with depletion in Eu, Ti, and LILE (Sr, Rb, Ba, and K), and enrichment in HFSE (Th, U, Nb, Ta, Zr, and Hf). The geochemical features are consistent with formation of the intermediate-felsic suite through fractionation from underplated basaltic magma that originated from sub-continental lithospheric mantle metasomatized by asthenosphere-derived oceanic-island-basalt-like (OIB-like) melts, coupled with minor crustal contamination. We correlate the ca. 630 Ma magmatism with a back-arc rift setting that probably developed in relation to slab tearing during continued slab rollback.

  1. Tomographic, kinematic and gravitational evidence for a slab under Greenland and its potential links to Arctic magmatism.

    NASA Astrophysics Data System (ADS)

    Shephard, Grace; Spakman, Wim; Panet, Isabelle; Gaina, Carmen; Trønnes, Reidar

    2015-04-01

    Seismic tomography and recent satellite gravity data reveal regions of anomalous structure within Earth's present-day mantle. On scales of some tens to hundreds of kilometers in wavelength, individual subducted slabs and mantle plumes can be resolved. When linked with global plate reconstructions and models of mantle convection, subducted slabs of lithosphere can be related to distinct periods of ocean basin closure. Here we explore the origins for a distinct fast seismic feature under present-day Greenland that is apparent across several P and S-wave tomography models. The sub-rounded seismic anomaly of interest is distinct from the more westerly "Farallon" slab, and is located in the mid mantle between ~1000-1600 km depth. We include a discussion of mantle sinking rates, showing that taking 1600 km slab base depth and applying sinking rate of 1.2 cm/yr implies a subduction age of ~133 Ma. We supplement the tomographic evidence for this slab with independent, satellite-derived vertical gravity gradients. Preliminary analysis of the gravity reveals a possible mantle anomaly in the SW Greenland region, complementary in spatial extent to that inferred from tomography. Considering absolute and relative plate reference frames, we suggest that palaeo-Arctic subduction related to the opening of the Amerasia Basin in the Jurassic, may account for this mantle feature. We finally investigate potential geochemical links of this slab feature with high arctic magmatism in the Cretaceous, showing that a time-dependent consideration of surface kinematics and mantle dynamics may reveal new insights into the geodynamic evolution of the Arctic.

  2. On the PETM and ETM2 global warming events: New evidence for a tectonic-magmatic trigger mechanism (Invited)

    NASA Astrophysics Data System (ADS)

    Storey, M.; Condon, D.; Stecher, O.; Hald, N.

    2009-12-01

    The climate record covering the past 70 my shows that global temperatures peaked during the Early Eocene around ˜54 to 52 Ma; the Early Eocene Climatic Optimum (EECO) (1). Preceding and during the EECO were three ephemeral global warming events, each with approximately half the intensity of its predecessor: the Paleocene Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2) and the Eocene Thermal Maximum 3 (ETM3). Each is marked by an abrupt decrease in the δ13C of sedimentary carbon, consistent with the rapid addition of massive amounts of 13C-depleted C, in the form of carbon dioxide and/or methane, into the hydrosphere/atmosphere. These events are regarded as the best deep-time analogues to future climate scenarios through higher CO2 concentration in the atmosphere. There is, however, no consensus on the source of the carbon for these ancient warming events or the triggering mechanism/s for the release. Two ideas are (i) breakdown of marine methane hydrate (2), possibly related to orbital cycles forcing and/or (ii) for the PETM, thermogenic release of methane by massive sill intrusion into C-rich sedimentary basins, with the gas being released via a complex of thousands of hydrothermal vents (3). These two potential carbon sources have quite different isotopic ratios, which in mass balance calculations determine the amount of carbon required to account for the carbon isotope excursions. Better knowledge of the carbon sources/s is essential if these events are to be factored in to models of climate sensitivity to atmospheric CO2 concentration. The PETM has been shown to be synchronous with the onset of peak, continental-breakup related, magmatic activity during the formation of the East Greenland and the Faeroes flood basalt province (4), supporting the sill intrusion model for the source of the methane/CO2 (3). One perceived weakness of this explanation, however, is that it apparently fails to explain the younger ETM2 and ETM3 events. Here we

  3. Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Kuritani, Takeshi; Makishima, Akio; Nakamura, Eizo

    2007-07-01

    We present a Sr, Nd, Hf and Pb isotope investigation of a set of garnet clinopyroxenite xenoliths from Malaita, Solomon Islands in order to constrain crustal recycling in the Pacific mantle. Geological, thermobarometric and petrochemical evidence from previous studies strongly support an origin as a series of high-pressure (> 3 GPa) melting residues of basaltic material incorporated in peridotite, which was derived from Pacific convective mantle related to the Ontong Java Plateau magmatism. The present study reveals isotopic variations in the pyroxenites that are best explained by different extents of chemical reaction with ambient peridotite in the context of a melting of composite source mantle. Isotopic compositions of bimineralic garnet clinopyroxenites affected by ambient peridotite fall within the oceanic basalt array, similar to those of Ontong Java Plateau lavas. In contrast, a quartz-garnet clinopyroxenite, whose major element compositions remain intact, has lower 206Pb/ 204Pb- 143Nd/ 144Nd and higher 87Sr/ 86Sr- 207Pb/ 204Pb ratios than most oceanic basalts. These isotopic signatures show some affinity with proposed recycled sources such as the so-called EM-1 or DUPAL types. Constraints from major and trace element characteristics of the quartz-garnet clinopyroxenite, the large extent of Hf-Nd isotopic decoupling and the good coincidence of Pb isotopes to the Stacey-Kramers curve, all indicate that pollution of southern Pacific mantle occurred by the subduction or delamination of Neoproterozoic granulitic lower crust (0.5-1 Ga). This crustal recycling could have taken place around the suture of Rodinia supercontinent, a part of which resurfaced during mantle upwelling responsible for creating the Cretaceous Ontong Java Plateau.

  4. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  5. Periodic Magmatic Events on Slow-Spreading Mid-Ocean Ridges: Evidence from the North Kolbeinsey Ridge, Atlantic.

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; Yeo, I. A.

    2015-12-01

    The majority of the Earth's solid surface is produced by volcanic eruptions at mid-ocean ridges. Slow-spreading mid-ocean ridge eruptions are thought to be characterized by cyclic or periodic volcanism separated by periods of tectonic extension. Here we present high-resolution acoustic sidescan data from the North Kolbeinsey Ridge, a shallow slow-spreading ridge where high glacial and steady post-glacial sedimentation rates allow relative flow ages to be determined using backscatter amplitude as a proxy for sediment thickness and hence age. We identify a suite of young lava flows within the axial valley, suggesting that a significant length of the segment was magmatically active at the same time. This suite of flows represents the largest magmatic event in the last 7 kyr but still do not constitute enough volume to maintain the thickness of seismic layer 2A, suggesting that larger volume, periodic magmatic events are required to maintain crustal thickness.

  6. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard

    2015-06-01

    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (<10 Ma) large-volume dacitic ignimbrites from the southern portion of the Central Andes have distinctly more radiogenic Sr and heavier O isotopes and thus contrast with older dacitic ignimbrites in northernmost Chile and southern Peru. Results of assimilation and fractional crystallization (AFC) models show that the largest chemical changes occur in the lower crust where magmas acquire a base-level geochemical signature that is later modified by middle to upper crustal AFC. Using geospatial analysis, we estimated the volume of these ignimbrite deposits throughout the Central Andes during the Neogene and examined the spatiotemporal pattern of so-called ignimbrite flare-ups. We observe a N-S migration of maximum ages of the onset of large-volume "ignimbrite pulses" through time: Major pulses occurred at 19-24 Ma (e.g. Oxaya, Nazca Group), 13-14 Ma (e.g. Huaylillas and Altos de Pica ignimbrites) and <10 Ma (Altiplano and Puna ignimbrites). Such "flare-ups" represent magmatic production rates of 25 to >70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1

  7. Magmatic nature of Sn-bearing fluids from isotopic (H,O) data of tourmalines (Solnechnoye deposit, Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Tatiana; Ignatiev, Alexander; Velivetskaya, Tatiana

    2010-05-01

    It was shown, that the main factors, controlled Sn-W ore deposition in hydrothermal systems in connection with granites were: a) cooling, b) mixing of fluids of different composition and genesis, c) heterogenization (boiling) of mineral forming fluids (Heinrich, 1990; et al). The results of physical chemical modelling of water-rock interaction pointed to magmatic nature of tin-bearing fluids in the hydrothermal systems, connected with granites. Tin concentration in model magmatogeneous fluid was calculated to be three times higher than in the model exogenic fluid (Sushchevskaya, Ryzhenko, 1998). New data on the source of ore forming fluids, which had formed the large economic Solnechnoye Sn deposit (Far East of Russia), were obtained from hydrogen and oxygen isotopic composition of tourmalines from successive mineral associations. Hydrogen position in the tourmaline crystal structure allows to suppose, that postproductive processes did not change the initial δD values, in contrast to phyllosilicates, often used for this purpose. During mineral formation at the Solnechnoye deposit tourmaline was formed practically without interruption. Its composition was gradually changed from schorl to dravite, when temperature decreased. The ores of cassiterite-tourmaline type were formed in a vertically dipping fracture zones, extended in a metamorphosed sandstone-shale rocks. Hydrogene and oxygen isotopic composition of fluids were calculated from tourmaline data with the help of equations, proposed in (Kotzer et al., 1993). The temperature intervals for these calculations were accepted as: 1- 450-400o C for quartz-tourmaline preore stage, 2 - 400-350o C -for early productive quartz-cassiterite stage, 3 - 350-300o C - for late quartz- cassiterite stage. The obtained results corresponded to magmatic character of the fluids of productive stage of the Solnechnoye deposit, because their isotopic composition lied in the interval: δ18О (3.2-9.3)‰, δD -(31.7-76.6)‰. The

  8. Late Carboniferous-early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, A.; Oberc-Dziedzic, T.; Fanning, C. M.; Protas, A.; Muszyński, A.

    2016-04-01

    The Trans-European Suture Zone (TESZ) links the East and West European Platforms. It is concealed under Meso-Cenozoic cover. Available seismic data show that the lower crustal layer in the TESZ is an attenuated, 200 km wide, SW margin of Baltica. The attenuation occurred when Rodinia broke-up, which gave rise to evolution of the thinned, thus relatively unstable margin of Baltica. It accommodated accretions during Phanerozoic events. We focus on acid magmatism, specifically granitoid, observed close to the SW border of the TESZ in Poland. This border is defined by the Dolsk Fault Zone (DFZ) and the Kraków-Lubliniec Fault Zone (KLFZ) on which dextral wrenching developed as a result of the Variscan collision between Laurussia and Gondwana. The granitoids at the DFZ and KLFZ were dated at 300 Ma. In the Variscan foreland that overlaps the TESZ, orogenic thickening continued to 307-306 Ma, possibly contributed to melting of the thickened upper continental crust (εNd300 = - 6.0 to - 4.5) and triggered the tectonically controlled magmatism. The wrenching on the TESZ border faults caused tensional openings in the basement, which promoted magmatic centers with extrusions of rhyolites and extensive ignimbrites. The Chrzypsko-Paproć and Małopolska magmatic centers were developed at the DFZ and KLFZ, respectively. The magmatic edifices commenced at 302 Ma with relatively poorly evolved granites, which carried both suprasubduction and anorogenic signatures, then followed by more evolved volcanic rocks (up to 293 Ma). Their geochemistry and inherited zircons suggest that the felsic magmas were mainly derived from upper crustal rocks, with some mantle additions, which included Sveconorwegian and older Baltican components. The complex TESZ, with Baltica basement in the lower crust, was susceptible to transient effects of mantle upwelling that occurred by the end of the Variscan orogeny and resulted in an episode of the "flare-up" magmatism in the North German-Polish Basin.

  9. Late Carboniferous-early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, A.; Oberc-Dziedzic, T.; Fanning, C. M.; Protas, A.; Muszyński, A.

    2016-04-01

    The Trans-European Suture Zone (TESZ) links the East and West European Platforms. It is concealed under Meso-Cenozoic cover. Available seismic data show that the lower crustal layer in the TESZ is an attenuated, ~ 200 km wide, SW margin of Baltica. The attenuation occurred when Rodinia broke-up, which gave rise to evolution of the thinned, thus relatively unstable margin of Baltica. It accommodated accretions during Phanerozoic events. We focus on acid magmatism, specifically granitoid, observed close to the SW border of the TESZ in Poland. This border is defined by the Dolsk Fault Zone (DFZ) and the Kraków-Lubliniec Fault Zone (KLFZ) on which dextral wrenching developed as a result of the Variscan collision between Laurussia and Gondwana. The granitoids at the DFZ and KLFZ were dated at ~ 300 Ma. In the Variscan foreland that overlaps the TESZ, orogenic thickening continued to ~ 307-306 Ma, possibly contributed to melting of the thickened upper continental crust (εNd300 = - 6.0 to - 4.5) and triggered the tectonically controlled magmatism. The wrenching on the TESZ border faults caused tensional openings in the basement, which promoted magmatic centers with extrusions of rhyolites and extensive ignimbrites. The Chrzypsko-Paproć and Małopolska magmatic centers were developed at the DFZ and KLFZ, respectively. The magmatic edifices commenced at ~ 302 Ma with relatively poorly evolved granites, which carried both suprasubduction and anorogenic signatures, then followed by more evolved volcanic rocks (up to 293 Ma). Their geochemistry and inherited zircons suggest that the felsic magmas were mainly derived from upper crustal rocks, with some mantle additions, which included Sveconorwegian and older Baltican components. The complex TESZ, with Baltica basement in the lower crust, was susceptible to transient effects of mantle upwelling that occurred by the end of the Variscan orogeny and resulted in an episode of the "flare-up" magmatism in the North German

  10. Lower crustal earthquake swarms beneath Mammoth Mountain, California - evidence for the magmatic roots to the Mammoth Mountain mafic volcanic field?

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Shelly, D. R.

    2010-12-01

    in the brittle domain to temperatures as high as ~700o C. Above these deep events are two distinct shallower zones of seismicity. The mid-crustal long-period earthquakes between 10 and 20 km are presumably occurring within the silicic crust, but below the rheological transition from brittle to plastic behavior, expected to occur at temperatures of ~350 to 400o C. Above this transition are shallow brittle-failure earthquakes, in the upper 8 kilometers of the silicic crust. These lower crustal brittle-failure earthquakes are similar in depth and tectonic setting to those that occurred beneath the Sierra Nevada crest in the vicinity of Lake Tahoe in late 2003, which Smith et al. (Science, 2004) concluded were associated with a magmatic intrusion in the lower crust. The Mammoth sequences, however, are much shorter in duration (1-2 days compared with several months) and have no detectable accompanying geodetic signal. Thus, there is no clear evidence for a significant intrusion associated with these deep swarms of brittle-failure earthquakes beneath Mammoth Mountain.

  11. Timing of continental arc-type magmatism in northwest India: Evidence from U-Pb zircon geochronology

    SciTech Connect

    Sarkar, G. ); Barman, T.R.; Corfu, F. )

    1989-09-01

    Charnockites and granodiorites, which occur within granulite facies metasediments of the Bhilwara Supergroup of Rajasthan, northwest India, are cogenetic and exhibit petrologic characteristics indicative of a magmatic derivation. Zircon U-Pb data yield a common crystallization age of 1,723 + 14/ - 7 Ma. These rocks, earlier believed to represent oldest (Archean) and deepest crust, actually mark a major Proterozoic event. They are believed to be the products of continental arc magmatism, where a basic layer underplating the lower crust led to intrusion of differentiated melts in crustal domains undergoing dry metamorphism.

  12. Magmatic recharge during formation and resurgence of the Valles caldera, New Mexico, USA: evidence from quartz compositional zoning and geothermometry

    NASA Astrophysics Data System (ADS)

    Wilcock, Jack

    The Valles caldera complex in north-central New Mexico, USA, represents the type example of resurgent caldera system, characterised by eruption of two voluminous high-silica rhyolite ignimbrites (the Otowi and Tshirege Members of the Bandelier Tuff) at 1.608 +/- 0.010 Ma and 1.256 +/- 0.010 Ma, respectively. Refined dating has shown that resurgence occurred shortly after eruption of the Tshirege, or Upper Bandelier Tuff (UBT). Central resurgence of ~1000 m was accompanied by small-volume eruptions of the Deer Canyon Rhyolite, followed closely by the Redondo Creek Rhyodacite. The Cerro del Medio Rhyolite lava dome complex is a product of ring fracture volcanism following resurgence, erupting at 1.229 +/- 0.017 Ma. A central aim of this study was to find evidence for magmatic recharge during this geologically short (~ 27 ka) time period. We have combined cathodoluminescence (CL) imaging and titanium-in-quartz geothermometry techniques to individual quartz crystals from 1) different stratigraphic horizons of the UBT ignimbrite, 2) samples of the Deer Canyon Rhyolite and 3) the Cerro del Medio Rhyolite lavas. CL imaging reveals that ~80% of the erupted volume UBT ignimbrite contains unzoned quartz crystals (average concentration = 28 +/- 2 ppm Ti), recording relatively isothermal temperatures of 647-696°C. An abrupt occurrence of compositionally zoned quartz crystals) within the mid-to-late erupted UBT ignimbrite units 3-5 reveals evidence for interaction with hotter magma. Corresponding titanium-in-quartz measurements of outer, bright CL rims (71 +/- 9 ppm Ti) reveal temperature increases of ~100°C relative to the start of the UBT eruption. We have discovered an interesting heterogeneity within the Deer Canyon Rhyolite lavas, with strong spatial control on eruption of porphyritic lavas containing complexly zoned quartz crystals onto the western regions of the resurgent dome. Conversely, crystal-poor to aphyric lavas containing small, unzoned quartz crystals are

  13. Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Petrinovic, I. A.; Riller, U.; Brod, J. A.; Alvarado, G.; Arnosio, M.

    2006-04-01

    This field-based and analytical laboratory study focuses on the genetic relationship between bimodal volcanic centres and fault types of an important tectonic transfer zone in the southern Central Andes, the NW-SE striking Calama-Olacapato-Toro (COT) volcanic belt. More specifically, tectono-magmatic relationships are examined for the 0.55 Ma Tocomar, the 0.78 Ma San Jerónimo and the 0.45 Ma Negro de Chorrillos volcanic centres in the Tocomar area (66°30 W-24°15 S). Structures of the COT volcanic belt, notably NW-SE striking strike-slip faults and NE-SW trending normal faults, accommodated differential shortening between major N-S striking thrust faults on the Puna Plateau. We present evidence that bimodal volcanism was contemporaneous with activity of these fault types in the COT volcanic belt, whereby eruption and composition of the volcanic rocks in the Tocomar and San Jerónimo-Negro de Chorrillos areas appear to have been controlled by the kinematics of individual faults. More specifically, rhyolitic centres such as the Tocomar are associated with normal faults, whereas shoshonitic-andesitic monogenetic volcanoes, e.g., the San Jerónimo and Negro de Chorrillos centres, formed at strike-slip dominated faults. Thus, the eruption of higher viscous rhyolite magmas appears to have been facilitated in tectonic settings characterized by horizontal dilation whereas ascent and effusive volcanic activity of less viscous and hot basaltic andesites to shoshonites were controlled by subvertical strike-slip faults. While the Tocomar rhyolites are interpreted to be derived from an anatectic crustal source, geochemical characteristics of the San Jerónimo and Negro de Chorrillos shoshonitic andesites are in agreement with a deeper source. This suggests that the composition of erupted volcanic rocks as well as their spatial distribution in the Tocomar area is controlled by the activity of specific fault types. Such volcano-tectonic relationships are also evident from older

  14. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh

    2016-09-01

    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are ~ 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates

  15. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the Proterozoic mantle

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Wooden, J. L.

    1983-01-01

    The Nd and Sr isotopic compositions presently reported for anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield indicate that the massifs were delivered from at least two distinct mantle source regions which were established before 1650 Myr ago. These regions were episodically involved in magmatism over about 500 Myr. One reservoir was isotopically similar to the depleted, modern midocean ridge basalt source. The other reservoir was chondritic-to-moderately-enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout Superior Province, as well.

  16. Repeated episodes of magmatic fluid injections into the hydrothermal system of Campi Flegrei. Geochemical evidences and thermo-fluid-dynamic simulations

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Caliro, S.; De Martino, P.; Avino, R.; Cardellini, C.; Gherardi, F.

    2012-04-01

    Campi Flegrei caldera subsided for the twenty years following the last large crisis of 1982-1984. The subsidence was interrupted by 3 minor uplift episodes each accompanied by swarms of low energy earthquakes and by a peak of the concentration of magmatic fluids discharged by the fumaroles. Since 2000 the behavior of the system changed: the magmatic component of fumaroles started to increase almost continuously, swarms of earthquakes became more frequent and, after a decrease in the subsidence rate, the ground started a general uplifting trend. Contemporaneously the temperature of one of the biggest fumaroles increased, new vents formed and the deeply derived CO2 released by the soils changed degassing pattern and locally increased. In order to investigate these phenomena, long time series of fluid pressure and temperature, estimated on the base of CO2-H2O-H2-CO gas equilibria, were considered. The fumarole external to Solfatara crater (Pisciarelli) shows an annual cycle of CO contents indicating the occurrence of shallow secondary processes which mask the deep signals. On the contrary the fumaroles located inside the crater (BG and BN) do not show evidences of secondary processes and the compositional variations are linked to T-P changes within the hydrothermal system, indicating a pressurization of the upper part of the hydrothermal system. Furthermore, the CO2/CH4 ratio of the fumaroles, a good tracer of the input of magmatic fluids into the hydrothermal system, displayed a general increase with numerous peaks well correlated in the time with pulsed episodes of ground uplifts and seismic swarm suggesting the occurrence of repeated episodes of injections of deep magmatic gases with high CO2 contents. The process was modeled by means of a geothermal simulator which was able to reproduce the H2S/CO2 fumarolic ratios and the PCO2 independently estimated for the fumaroles. Total injected fluid in the simulated events are in the range of fluids emitted during small

  17. Radiogenic isotope evidence for transatlantic atmospheric dust transport

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Abouchami, Wafa; Garrison, Virginia H.; Galer, Stephen J. G.; Andreae, Meinrat O.

    2013-04-01

    Early studies by Prospero and colleagues [1] have shown that African dust reaches all across the Atlantic and into the Caribbean. It may contribute to fertilizing the Amazon rainforest [2,3,4], in addition to enhancing the ocean biological productivity via delivery of iron, a key nutrient element[5]. Radiogenic isotope ratios (Sr, Nd, Pb) are robust tracers of dust sources and can thus provide information on provenance and pathways of dust transport. Here we report Sr, Nd and Pb isotope data on atmospheric aerosols, collected in 2008 on quartz filters, from three different locations in Mali (12.6° N, 8.0° W; 555 m a.s.l.), Tobago (11.3° N, 60.5° W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7° N, 64.6° W; 27 m a.s.l.) to investigate the hypothesis of dust transport across the Atlantic. About 2 cm2 of filter were acid-leached in 0.5 N HBr for selective removal of the anthropogenic labile Pb component (leachate) and possibly the fine soluble particle fraction. The remainder of the filter was subsequently dissolved using a mixture of HF and HNO3 acids, and should be representative of the silicate fraction. Isotopic compositions were measured by TIMS on a ThermoFisher Triton at MPIC, with Pb isotope ratios determined using the triple-spike method. Significant Pb isotope differences between leachates and residues were observed. The variability in Pb isotopic composition among leachates may be attributed to variable and distinct anthropogenic local Pb sources from Africa and South America [6], however, residues are imprinted by filter blank contribution suggesting to avoid the quartz fiber filter for isotopic study of aerosols. The Nd and Sr isotope ratios of aerosol leachates show similar signatures at all three locations investigated. The nearly identical Nd and Sr isotopic compositions in the Mali, Tobago and Virgin islands leachates are comparable to those obtained on samples from the Bodélé depression, Northern Chad [7] and suggest a possible common

  18. Quantitative assessment of magmatic refill and overpressure in crustal reservoirs by monitoring He isotope composition from volcanic gases: the case of Mt Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea

    2016-04-01

    There is agreement in recognizing episodes of magma injection into crustal chambers as main triggers of eruptive activity of volcanoes (Caricchi et al., 2014). These events cause in fact a buildup of the internal pressure in magma chamber, which in turn controls outpouring magma amount, possible failure of wall-rocks, dike opening, up to a potential eruption. Assessment of the time-dependent pressurization while occurring in chamber is therefore challenging aim of current volcanological research. Recent advancements in estimating the time-dependent pressurization as long as occurring in chamber come from inverse modeling of ground deformation data, which does not however calculate internal evolution of the magma reservoir (Gregg et al., 2013; Cannavò et al., 2015). On the other hand, the geochemistry of volcanic gases has basically addressed to the pressure(depth) of gas exsolution so far (Caracausi et al., 2003; Aiuppa et al., 2007; Paonita et al., 2012). We developed an pioneering tool that computes the changes of 3He/4He isotope ratio of volcanic gases with respect to a background, as a function of the time-dependent outflow of volatiles from a chamber subjected to evolution of internal pressure through an injection event. Our approach postulates a low-3He/4He gas endmember coming from resident magmas stored in crust, that mixes with a high-3He/4He gas endmember from deep parental magmas refilling the deep chamber. We couple a mass balance between the two gas endmembers to a physical model of the magma chamber. When a deep input pressurizes the chamber, the latter releases large amounts of the high-3He/4He gas endmember, so as to change 3He/4He of discharged volcanic gases. We applied the model to the long-term series of He isotope ratios from geochemical monitoring of some peripheral gas emissions at the base of Mt Etna, fed by magmatic degassing occurring at 200-400 MPa (Paonita et al., 2012). The isotope ratios have in fact displayed phases of increase

  19. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    He, Zhen-Yu; Klemd, Reiner; Zhang, Ze-Ming; Zong, Ke-Qing; Sun, Li-Xin; Tian, Zuo-Lin; Huang, Bo-Tao

    2015-11-01

    Numerous microcontinents are known to occur in the Central Asian Orogenic Belt (CAOB), one of the largest accretionary orogens and the most significant area of Paleozoic crustal growth in the world. The evolution of the Precambrian crust in these microcontinents is central to understanding the accretionary and collisional tectonics of the CAOB. Here, we present systematic zircon U-Pb dating and Hf isotope studies of Mesoproterozoic gneissic granitoids from the eastern Central Tianshan Arc Terrane (CTA) of the southern CAOB. The investigated intermediate to felsic (SiO2 = 60.48-78.92 wt.%) granitoids belong to the calcic- to calc-alkaline series and usually have pronounced negative Nb, Ta and Ti anomalies, relative enrichments of light rare earth elements (LREEs) and large ion lithophile elements (LILEs) while heavy rare earth elements (HREEs) and high field strength elements (HFSEs) are depleted, revealing typical active continental margin magmatic arc geochemical characteristics. These spatially-distant rocks show consistent zircon U-Pb crystallization ages from ca. 1.45 to 1.40 Ga and thus constitute a previously unknown Mesoproterozoic continental magmatic arc covering hundreds of kilometers in the eastern segment of the CTA. Furthermore the high and mainly positive zircon εHf(t) values between - 1.0 and + 8.6 and the zircon Hf model ages of 1.95 to 1.55 Ga, which are slightly older than their crystallization ages, suggest that they were mainly derived from rapid reworking of juvenile material with a limited input of an ancient crustal component. Therefore, the formation of these granitoids defines an extensive Mesoproterozoic intermediate to felsic, subduction-related intrusive magmatic arc activity that was active from at least 1.45 to 1.40 Ga, involving significant juvenile continental growth in the eastern segment of the CTA. Furthermore the zircon U-Pb and Hf isotopic data challenge the common belief that the CTA was part of the Tarim Craton during Paleo

  20. Linking magmatism with collision in an accretionary orogen

    NASA Astrophysics Data System (ADS)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-05-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  1. Linking magmatism with collision in an accretionary orogen.

    PubMed

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  2. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  3. A 17 Ma onset for the post-collisional K-rich calc-alkaline magmatism in the Maghrebides: Evidence from Bougaroun (northeastern Algeria) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Abbassene, Fatiha; Chazot, Gilles; Bellon, Hervé; Bruguier, Olivier; Ouabadi, Aziouz; Maury, René C.; Déverchére, Jacques; Bosch, Delphine; Monié, Patrick

    2016-04-01

    Bougaroun is the largest pluton (~ 200 km2) in the 1200 km-long Neogene magmatic belt located along the Mediterranean coast of Maghreb. New U-Pb dating on zircons and K-Ar ages on whole rocks and separated minerals document its emplacement at 17 Ma within the Lesser Kabylian basement, a continental block that collided with the African margin during the Neogene. This Upper Burdigalian intrusion is therefore the oldest presently identified K-rich calc-alkaline massif in the whole Maghrebides magmatic lineament and marks the onset of its activity. The Bougaroun peraluminous felsic rocks display a very strong crustal imprint. Associated mafic rocks (LREE-enriched gabbros) have preserved the "orogenic" (subduction-related) geochemical signature of their mantle source. Older depleted gabbros cropping out at Cap Bougaroun are devoid of clear subduction-related imprint and yielded Ar-Ar hornblende ages of 27.0 ± 3.0 Ma and 23.3 ± 3.2 Ma. We suggest that they are related to the Upper Oligocene back-arc rifted margin and Early Miocene oceanic crust formation of the nearby Jijel basin, an extension of the Algerian basin developed during the African (Tethyan) slab rollback. The fact that the Bougaroun pluton intrudes exhumed Kabylian lower crustal units, mantle slices and flysch nappes indicates that the Kabylian margin was already stretched and in a post-collisional setting at 17 Ma. We propose a tectono-magmatic model involving an Early Miocene Tethyan slab breakoff combined with delamination of the edges of the African and Kabylian continental lithospheres. At 17 Ma, the asthenospheric thermal flux upwelling through the slab tear induced the thermal erosion of the Kabylian lithospheric mantle metasomatized during the previous subduction event and triggered its partial melting. We attribute the strong trace element and isotopic crustal signature of Bougaroun felsic rocks to extensive interactions between ascending mafic melts and the African crust underthrust beneath the

  4. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  5. Magmatic tritium

    SciTech Connect

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  6. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  7. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    USGS Publications Warehouse

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  8. Did the San Gabriel Mountains once floor the Los Angeles basin : Evidence from a Late Cenozoic magmatic event

    SciTech Connect

    Hazelton, G.B. . Dept. of Geological Sciences); Nourse, J.A. . Dept. of Geological Sciences)

    1993-04-01

    A series of Late Cenozoic dikes intrude the crystalline basement complex of the San Gabriel Mountains. The dikes range in composition from basalt to rhyolite. Rocks of andesite composition are dominant. Cross-cutting relationships consistently show that the less abundant, high-silica units were emplaced during two or more initial pulses of magmatic activity. This was followed by at least four additional pulses of increasingly quartz-poor magma. The nature of the contacts between the dikes and their host suggest that the dikes were emplaced during progressive unroofing of the San Gabriel Mountains basement complex. In the northeastern corner of the Los Angeles basin, units within the Glendora Volcanics (Shelton, 1955) share many compositional and spatial characteristics with the dikes in the San Gabriel Mountains. The dikes may have served as mid-crustal conduits which fed the overlying Glendora Volcanics during widespread magmatism that accompanied the extensional opening of the Los Angeles basin sphenochasm (Luyendyk, 1991; Wright, 1991). The authors believe that the crystalline basement complex now exposed in the San Gabriel Mountains once floored portions of the Los Angeles basin prior to Miocene extension and magmatism. They feel that unroofing was accomplished by low-angle normal faulting during the opening of the Los Angeles basin.

  9. Role of plate kinematics and plate-slip-vector partitioning in continental magmatic arcs: Evidence from the Cordillera Blanca, Peru

    SciTech Connect

    McNulty, B.A.; Farber, D.L.; Wallace, G.S.; Lopez, R.; Palacios, O.

    1998-09-01

    New structural and geochronological data from the Cordillera Blanca batholith in the Peruvian Andes, coupled with Nazca-South American plate-slip-vector data, indicate that oblique convergence and associated strike-slip partitioning strongly influenced continental magmatic arc evolution. Both the strain field and mode of magmatism (plutonism vs. volcanism) in the late Miocene Peruvian Andes were controlled by the degree to which the arc-parallel component of the plate slip vector was partitioned into the arc. Strong strike-slip partitioning at ca. 8 Ma produced arc-parallel sinistral shear, strike-slip intercordilleran basins and east-west-oriented tension fractures that facilitated emplacement of the Cordillera Blanca batholith (ca. 8.2 {+-} 0.2 Ma). Periods during which the strike-slip component was not partitioned into the arc (ca. 10 and ca. 7 Ma) were associated with roughly arc-normal contraction and ignimbrite volcanism. The data thus support the contention that contraction within continental magmatic arcs favors volcanism, whereas transcurrent shear favors plutonism. The tie between oblique convergence and batholith emplacement in late Miocene Peruvian Andes provides a modern analogue for batholiths emplaced as the result of transcurrent shear in ancient arcs.

  10. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.

    PubMed

    Farquhar, James; Peters, Marc; Johnston, David T; Strauss, Harald; Masterson, Andrew; Wiechert, Uwe; Kaufman, Alan J

    2007-10-11

    The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.

  11. Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1982-01-01

    Oxygen isotopic analysis of wollastonites from the Willsboro Mine, Adirondack Mountains, New York reveals a 400-ft wide zone of 18O depletion at anorthosite contacts. Values of ??18O vary more sharply with distance and are lower (to -1.3) than any yet reported for a granulite fades terrain. Exchange with circulating hot meteoric water best explains these results and implies that the anorthosite was emplaced at relatively shallow depths, <10 km, in marked contrast to the depth of granulite fades metamorphism (23 km). These 18O depletions offer the first strong evidence for shallow emplacement of anorthosite within the Grenville Province and suggest that regional metamorphism was a later and tectonically distinct event. ?? 1982 Nature Publishing Group.

  12. Time scales of Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C. J.

    2002-05-01

    Knowledge of the rates of natural processes is critical to the development of physically realistic models. For magmatic processes, rates are increasingly well determined from short lived isotopes, and from diffusion modified element profiles, on time scales that vary from 10s of 1000s of years to a few years. Our understanding of the melting processes beneath MOR have been revolutionised by the application of U-series isotopes, because they include isotopes with half lives similar to the time scales of melt generation and extraction. For island arcs there is much discussion of how to incorporate suggestions that Ra and Ba are transferred from the slab in a few 1000 years, and yet significantly more time is required to generate the excess Pa isotopes. Once in the crust, crystallisation and differentiation may be driven by cooling, degassing and decompression, and these should be characterised by different time scales. Crystals preserve rich high-resolution records of changing magma compositions, but the time scales of those changes are difficult to establish. Isotope studies have shown that more evolved rock types tend to contain more old crystals that may be 10s of 1000s of years old at the time of eruption. Whether these are xenocrysts, or evidence for long term crystallisation histories remains controversial. Moreover, diffusion modified element profiles, and crystal size distributions, suggest that crystals are often less than a 100 years old. An alternative approach is to consider U-series isotope ratios in the magma, and how these may change with degree of magma evolution. These suggest that differentiation time scales may be up to 200 ky for magmas at the base of the crust, but for magmas that crystallise at shallower levels the time scales are much shorter. In some cases these are in weeks and months, and crystallisation is likely to be due to decompression and degassing. One consequence of the short crystallisation times, is that there may be insufficient

  13. New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages

    USGS Publications Warehouse

    Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B.

    2003-01-01

    New 187Os/188Os ratios of Quaternary Mount Adams volcanic rocks from the Cascade arc in southern Washington vary by >300% (187Os/188Os = 0.165-0.564) and fall into high (>0.319) and low (0.166 to 0.281) groups of 187Os/188Os ratios that are substantially more radiogenic than mantle values. These Os isotope compositions and groupings are interpreted to reflect recycling of discrete intracrustal domains with high 187Os/188Os ratios but differing ages, thus recording the process of crustal hybridization and homogenization. Os isotope compositions provide new constraints on amounts of intracrustal recycling in young subduction-zone environments that reflect the magmatic history of the arc. Sr, Nd, Hf, and Pb isotope variations in this young, mafic are complex are too small to allow such constraints.

  14. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: Strontium, neodymium, lead, and oxygen isotopic evidence

    SciTech Connect

    Cousens, B.L. ); Spera, F.J. ); Dobson, P.F. )

    1993-02-01

    Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from Gran Canaria, Canary Islands, provide evidence for posteruptive mobility of Rb, Sr, and O. Calculated initial [sup 87]Sr/[sup 86]Sr ratios in whole-rock samples from basaltic lavas and feldspar mineral separates from ignimbrites define a magmatic trend in the stratigraphic section, from ratios of 0.70340 at the base of the Mogan Formation to 0.70305 in the lower Fataga Formation. However, calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios in hydrated vitrophyre and devitrified matrix separates range from 0.7035 to 0.7090. [delta][sup 18]O ratios in basalts and feldspars vary little, from +5.7 to +6.1, yet range from +6.5 to +15.0 in the ignimbrite matrices. In contrast to the Sr and O isotope ratios, Pb and Nd isotope ratios are identical within analytical error in feldspars and their silicic ignimbrite matrices. Sequential leaching experiments and the oxygen data suggest that low-temperature, posteruptive interaction with meteoric water, perhaps containing a small seawater component, has modified Rb and Sr concentrations in the matrices, such that calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios are not those of the magmas when they were erupted. Mobilization of Rb and Sr must occur significantly after eurption. Nd and Pb isotope systems appear to be unaffected by this process. Therefore, [sup 87]Sr/[sup 86]Sr ratios determined by whole rock analysis of silicic rocks from hotspot-type oceanic islands are suspect and should not be incorporated into mantle tracer studies, although analysis of phenocrysts may produce useful data. 40 refs., 5 figs., 3 tabs.

  15. Early Variscan magmatism along the southern margin of Laurasia: geochemical and geochronological evidence from the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Koralay, O. Ersin

    2016-05-01

    Massive, fine-grained metavolcanic rocks of the Çamlıca metamorphic unit exposed in the Biga Peninsula, northwestern Anatolia, have provided new Carboniferous ages and arc-related calc-alkaline petrogenesis constraints, suggesting that the Biga Peninsula was possibly involved in the Variscan orogeny. The metavolcanic rocks are mainly composed of metalava and metatuff and have the composition of andesite. Chondrite-normalized REE patterns from these rocks are fractionated (LaN/YbN ~ 2.2 to 8.9). Europium anomalies are slightly variable (Eu/Eu* = 0.6 to 0.7) and generally negative (average Eu/Eu* = 0.68). The metavolcanic rocks have a distinct negative Nb anomaly and negative Sr, Hf, Ba, and Zr anomalies. These large negative anomalies indicate crustal involvement in their derivation. Tectonic discrimination diagrams show that all metavolcanic rocks formed within a volcanic arc setting. Zircon ages (LA-ICP-MS) of two samples yield 333.5 ± 2.7 and 334.0 ± 4.8 Ma. These ages are interpreted to be the time of protolith crystallization. This volcanic episode in the Biga Peninsula correlates with other Variscan age and style of magmatism and, by association with a collisional event leading to the amalgamation of tectonic units during the Variscan contractional orogenic event. Carboniferous calc-alkaline magmatism in the Sakarya Zone is ascribed to arc-magmatism as a result of northward subduction of Paleo-Tethys under the Laurasian margin. Geochemical and U-Pb zircon data indicate that the Sakarya Zone is strikingly similar to that of the Armorican terranes in central Europe. The Biga Peninsula shows a connection between the Sakarya Zone and the Armorican terranes.

  16. Possible Ni-Rich Mafic-Ultramafic Magmatic Sequence in the Columbia Hills: Evidence from the Spirit Rover

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Gellert, R.; McCoy, T.; McSween, H. Y., Jr.; Li, R.

    2006-01-01

    The Spirit rover landed on geologic units of Hesperian age in Gusev Crater. The Columbia Hills rise above the surrounding plains materials, but orbital images show that the Columbia Hills are older [1, 2]. Spirit has recently descended the southeast slope of the Columbia Hills doing detailed measurements of a series of outcrops. The mineralogical and compositional data on these rocks are consistent with an interpretation as a magmatic sequence becoming increasingly olivine-rich down slope. The outcrop sequence is Larry s Bench, Seminole, Algonquin and Comanche. The "teeth" on the Rock Abrasion Tool (RAT) wore away prior to arrival at Larry s Bench; the data discussed are for RAT brushed surfaces.

  17. Neoarchean-Early Paleoproterozoic and Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: Insights from petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Tsunogae, Toshiaki; Yang, Qiong-Yan; Santosh, M.

    2016-10-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms part of the Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb and Lu-Hf isotopic data for meta-igneous rocks including charnockite, felsic gneiss, metagabbro, and mafic granulite from the LHC and evaluate the Neoarchean to Early Paleoproterozoic (ca. 2.5 Ga) and Early Neoproterozoic (ca. 1.0 Ga) arc magmatic events. The trace element geochemical signatures reveal a volcanic arc affinity for the charnockites from Sudare Rocks and Vesleknausen and felsic gneiss from Rundvågshetta, suggesting that the protoliths of these rocks were derived from felsic arc magmas. In contrast, metagabbros from Skallevikshalsen and Austhovde, occurring as boudins in metasediments, show non-arc signatures (within-plate basalt or mid-oceanic ridge basalt). The upper intercept ages of magmatic zircons in charnockite plotted on concordia diagrams yielded 2508 ± 14 Ma (Sudare Rocks) and 2490 ± 18 Ma (Vesleknausen), clearly suggesting a Neoarchean to Early Paleoproterozoic arc magmatic event. A subsequent thermal event during Early Neoproterozoic traced by 206Pb/238U age of oscillatory-zoned core of zircon in mafic granulite from Langhovde (973 ± 10 Ma) is consistent with a similar Early Neoproterozoic magmatic event reported from the LHC, suggesting a second stage of arc magmatism. The timing of peak metamorphism has been inferred from 206Pb/238U mean ages of structureless zircons in metagabbros from Skallevikshalsen and Austhovde, mafic granulite from Langhovde, and felsic gneiss from Rundvågshetta in the range of 551 ± 5.4 to 584 ± 5.0 Ma. Zircon Lu-Hf data of Neoarchean charnockites from Sudare Rocks and Vesleknausen indicate that the protolith magma was sourced from Paleo- to Neoarchean juvenile components mixed with reworked ancient crustal materials. Protolith magmatic rock of the felsic gneiss from Rundvågshetta might

  18. Transition from adakitic to bimodal magmatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: Evidence from petrogenesis and tectonic setting of the dike swarms

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Xu, Xisheng; Liu, Lei

    2016-02-01

    The late Mesozoic magmatic record of SE China is dominated by felsic volcanics and intrusions. However, this magmatism mainly occurred in coastal areas at 110-80 Ma, in contrast to poorly researched dike swarms that were emplaced inland at 165-120 Ma. Here, we focus on Early Cretaceous mafic and felsic dike swarms that provide new insights into the tectono-magmatic evolution of SE China. The swarms were intruded into Neoproterozoic plutons and include granodioritic porphyry, granitic porphyry, and diabase dikes. The granodioritic porphyry (128 ± 2 Ma) dikes are geochemically similar to adakitic rocks, suggesting that inland adakitic magmatism occurred between ca. 175 and ca. 130 Ma. The majority of these adakitic rocks are calc-alkaline and have Sr-Nd-Hf-O isotopic compositions that are indicative of derivation from a Neoproterozoic magmatic arc source within the lower crust. The granitic porphyry and diabase dikes were emplaced coevally at ca. 130 Ma, and the former contain high alkali and high field strength element (HFSE; e.g., Zr, Nb, Ce, and Y) concentrations that together with their high Ga/Al and FeOT/(FeOT + MgO) ratios imply an A-type affinity. The widespread ca. 130 Ma magmatism that formed the A-type granites and coeval diabase dikes defines a NE-SW trending inland belt of bimodal magmatism in SE China. The presence of mafic enclaves in some of the A-type granites, and the Sr-Nd-Hf isotopic compositions of the latter are indicative of inadequate mixing between the basement sediment-derived and coeval mantle-derived basaltic melts that define the bimodal magmatism. The transition from adakitic rocks to bimodal magmatism in the inland region of SE China indicates a change in the prevailing tectonic regime. This change was associated with an increase in the dip angle of the northwestward-subducting paleo-Pacific Plate beneath SE China between the Middle Jurassic and the Early Cretaceous. This resulted in a transition from a local intra-plate extensional

  19. Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways.

    PubMed

    Albarède, Francis; Telouk, Philippe; Lamboux, Aline; Jaouen, Klervia; Balter, Vincent

    2011-09-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zinc shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes is isotopically light with respect to serum, whereas Cu is heavy. Iron and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  20. Helium isotope evidence for plume metasomatism of Siberian continental lithosphere

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Howarth, G. H.; Pernet-Fisher, J. F.; Day, J. M.; Taylor, L. A.

    2013-12-01

    activity), large degree partial-melts percolated through the SCLM towards crustal magma chambers. As a result, xenoliths from the younger Obnazhennaya pipe show strong petrological evidence for plume-related basaltic metasomatism, whereas older Udachnaya samples do not [4]. Thus, we interpret the marked He-isotope disparity between ';pre-plume' Udachnaya and ';post-plume' Obnazhennaya xenoliths to be the direct result of metasomatic refertilization associated with the emplacement of the SFB. The lower He concentrations in Obnazhennaya xenoliths may also point to extensive He-loss during the SFB, that may also be coupled with key volatiles that are outgassed into the atmosphere during flood basalt volcanism (e.g.,CO2). Our new results provide compelling evidence that mantle plume impingement can profoundly modify continental regions and that He isotopes are a very sensitive tracer of metasomatism. [1] Basu et al., 1995. Science, 822-825. [2] Day et al., 2012, AGU Abstract V53A-2796. [3] Pearson et al., 1995. GCA, 59, 959-977. [4] Howarth et al., 2013 Lithos, In review.

  1. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution

  2. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (<10 vol.% vapor) and co-existing low-salinity aqueous vapor (<20 vol.% liquid) inclusions. Results indicate that vapor inclusions have higher concentrations of Cu (typically 1000's of ppm; max. 7277 ppm) compared to brine inclusions (typically 100's of ppm). Brine inclusions also are much higher in Cl (Na), K, Ca, Mn, Zn, and Fe. Only Pb concentrations approach those in the vapor. Metal ratios such as Cu/Fe and Cu/Zn are 2 to 167 times higher in the vapor compared with the brine inclusions. Cu/Pb ratios are 2 to 15 times higher in the vapor than in the brine. PIXE microanalysis for the ~617 Ma 17 Mile Hill deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (<10 vol.%) bubble of carbonic fluid, and adjacent "carbonic" inclusions, which have a thin rim of aqueous liquid (<10 vol.%) wetting the

  3. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  4. Mode and timing of granitoid magmatism in the Västervik area (SE Sweden, Baltic Shield): Sr-Nd isotope and SIMS U-Pb age constraints

    NASA Astrophysics Data System (ADS)

    Kleinhanns, I. C.; Whitehouse, M. J.; Nolte, N.; Baero, W.; Wilsky, F.; Hansen, B. T.; Schoenberg, R.

    2015-01-01

    Observed geochemical and geophysical signatures in the southern Svecofennian domain (SD) and the Transscandinavian Igneous Belt (TIB) are explained through a model of tectonic cycling and episodic south-westward migration of a subduction zone system. The Västervik area is located between these two major tectonic domains and as such has received much attention. Granitoids of the Västervik area were recently re-grouped and classified within the context of this larger regional tectonic model, but a discrepancy between previous relative age estimations and the few available granitoid age determinations was noted. To address this issue, we have dated 13 granitoid samples using a high spatial resolution secondary ion mass spectrometry (SIMS) U-Pb technique. Our new results constrain the intrusion of the majority of granitoids to 1819-1795 Ma, thus placing them into the TIB-1 period. This age range also encompasses our new ages from the central granodiorite belt and the Örö-Hamnö pluton, demonstrating a previous overestimation of older granitoid generations in the Västervik area. Nonetheless, it is shown that Askersund/TIB-0 magmatism, represented by an augen gneiss sample dated to 1846 Ma, is unambiguously present as far south as the Västervik region. The anatectically generated leucogranites reveal TIB-1 ages and, as expected, older inherited zircon derived from the parental metasedimentary Västervik formation. By simple Sr-Nd isotope modeling it is further possible to deduce that most TIB-1 granitoids follow a simple (assimilation-) fractional crystallization petrogenetic trend. The youngest granitoid generation was produced through low-pressure fluid-absent crustal melting. In conclusion, granitoids of the Västervik area fit well into the proposed model for south-westward migration of a subduction zone system active in the Svecofennian domain and represent a new tectonic cycle. It is therefore possible to link the Svecofennian domain and the Transscandinavian

  5. Rb-Sr and oxygen isotopic study of alkalic rocks from the Trans-Pecos magmatic province, Texas: Implications for the petrogenesis and hydrothermal alteration of continental alkalic rocks

    SciTech Connect

    Lambert, D.D.; Malek, D.J.; Dahl, D.A. )

    1988-10-01

    Rb-Sr and O isotopic data for mid-Tertiary alkalic rocks from the Trans-Pecos magmatic province of west Texas demonstrate that hydrothermal alteration and fluid/rock (cation exchange) interactions have affected the isotope geochemistry of these rocks. Strontium and O isotopic data for late-stage minerals in an alkali basalt (hawaiite) still record two episodes of fluid/rock interactions. These data suggest that later meteoric fluids introduced Sr with a Cretaceous marine {sup 87}Sr/{sup 86}Sr ratio into minerals with significant cation exchange capacity. Dilute HCl leaching experiments demonstrate the removal of this labile or exchangeable Sr from the alkali basalt. Rb-Sr isotopic data for the leached alkali basalt and handpicked calcite record a crystallization age of 42 Ma, consistent with K-Ar data for an unaltered alkali basalt (hawaiite) dike from the same area (42.6 {plus minus} 1.3 Ma). Leaching experiments on one phonolite suggest the Sr isotopic variability in unleached phonolite and nepheline trachyte samples may be attributed to Sr in secondary calcite and zeolites, which have an upper Cretaceous marine {sup 87}Sr/{sup 86}Sr ratio. Rb-Sr isotopic data for leached phonolite and sanidine separate yield an age of 36.5 {plus minus} 0.8 Ma, within analytical uncertainty of a K-Ar biotite age (36.0 {plus minus} 1.1 Ma) of another phonolite. These leaching experiments demonstrate that the Rb-Sr isotopic systematics of hydrothermally-altered continental alkalic rocks may be significantly improved, providing more reliable geochronologic and isotopic tracer information necessary in constructing precise models of mantle sources.

  6. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  7. Sulphur isotope evidence for an oxic Archaean atmosphere.

    PubMed

    Ohmoto, Hiroshi; Watanabe, Yumiko; Ikemi, Hiroaki; Poulson, Simon R; Taylor, Bruce E

    2006-08-24

    The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.

  8. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  9. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    PubMed Central

    Oduro, Harry; Harms, Brian; Sintim, Herman O.; Kaufman, Alan J.; Cody, George; Farquhar, James

    2011-01-01

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for 33S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed 36S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant 36S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples. PMID:21997216

  10. A multi-isotope approach to understanding the evolution of Cenozoic magmatism in the northeastern Basin and Range: Results from igneous rocks in the Albion-Raft River-Grouse Creek metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Konstantinou, A.; Strickland, A.; Miller, E. L.

    2012-12-01

    Deep crustal rocks exposed by extensional processes in metamorphic core complexes provide a unique opportunity to address the magmatic and isotopic evolution of the crust and assess the relative crust versus mantle contributions in Cenozoic igneous rocks exposed in the complexes. The Albion-Raft River-Grouse Creek metamorphic core complex exposes mid-crustal rocks that resided at depths of ~15-20 km before the onset of Cenozoic extension. Three major Cenozoic magmatic events are represented in the complex and have been studied using multiple isotopic systems (whole rock Sr and Nd coupled with the Oxygen isotopes in zircon). These three major events are: (1) 42-31 Ma intrusion of a composite plutonic complex of calc-alkaline composition that intrudes both upper crustal rocks (~5-10 km depth) and deeper rocks. (2) A 32-25 Ma plutonic complex, with evolved calc-alkaline composition that intruded in the middle crust (~12-15 km depth), and (3) A 10-8 Ma bimodal (basalt-rhyolite) suite of volcanic rocks that contain high-T anhydrous mineral assemblages erupted across the complex. The pre-extensional crust consisted of an upper crust composed primarily of Neoproterozoic through Triassic metasedimentary rocks (schist and quartzite at its base and limestone at its top). The middle crust consists of late Archean orthogneiss with evolved composition (metamorphosed peraluminous granite) with average 87Sr/86Sr40~0.800, ɛNd40~ -43.4 and δ18Ozirc ~5.7‰. The lower crust is inferred to have been composed of Precambrian intermediate composition igneous rocks with average 87Sr/86Sr40~0.750, ɛNd40~ -37.5 and δ18Ozirc ~5.9‰, and Precambrian mafic rocks with average 87Sr/86Sr40~0.717, ɛNd40~ -25 and δ18Ozirc ~7.0‰. Existing and new data indicate that the 42-31 Ma upper crustal plutonic complex ranges in isotopic composition from 87Sr/86Sri=0.709-0.712, ɛNdi=-15 to -25 and δ18Ozirc 4.7-6.5‰. The composition of the 32-25 Ma middle crustal plutonic complex ranges from 87Sr

  11. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages

    NASA Astrophysics Data System (ADS)

    Cao, Hua-Wen; Zhang, Shou-Ting; Santosh, M.; Zheng, Luo; Tang, Li; Li, Dong; Zhang, Xu-Huang; Zhang, Yun-Hui

    2015-11-01

    The Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore district is located in the East Qinling metallogenic belt on the southern margin of the North China Craton. Two ore fields (Nannihu and Yuku) are recognized in the district, and three types of deposits are identified from the two ore fields as follows: (1) the 6 proximal porphyry-skarn type Mo-W deposits occurring at the inner contact zone of the granite porphyries, (2) the 3 middle skarn-hydrothermal type Zn deposits, and (3) the 8 distal hydrothermal type Pb-Zn-Ag deposits at the periphery of the porphyry. We present C-H-O isotope compositions of hydrothermal quartz and calcite, S-Pb isotope compositions of sulfide minerals, and sphalerite Rb-Sr isochron ages from the 17 deposits. The geochemical and geochronological data from the two ore fields all show systematic temporal and spatial variation, and primarily lead to the following inferences. (1) The temperatures and salinities of the ore-forming fluids decreased during mineralization. The ore-forming fluids gradually evolved from magmatic water to mixed magmatic-meteoric water. (2) The metallogenic components were primarily derived from igneous rocks, with increasing proportions of the materials from the ore-bearing rocks. (3) The mineralization ages of these deposits are close (147-136 Ma), which correspond to the emplacement of the granite intrusions. (4) The three types of deposits and the ore-related late Mesozoic intrusives constitute a unified magmatic-hydrothermal-mineralization system. Finally, we also suggest exploration strategies for the Luanchuan ore district.

  12. MYCORRHIZAL VS. SAPROTROPHIC STATUS OF FUNGI: THE ISOTOPIC EVIDENCE

    EPA Science Inventory

    Relative abundance of carbon (C) and nitrogen (N) isotopes in fungal sporocarps may prove useful in unraveling fungal roles in ecosystems. Sporocarps of known mycorrhizal or saprotrophic genera were collected from a single site in Oregon and isotopically compared to foliage, litt...

  13. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  14. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests

    PubMed Central

    Houlton, Benjamin Z.; Sigman, Daniel M.; Hedin, Lars O.

    2006-01-01

    The nitrogen isotopic composition (15N/14N) of forested ecosystems varies systematically worldwide. In tropical forests, which are elevated in 15N relative to temperate biomes, a decrease in ecosystem 15N/14N with increasing rainfall has been reported. This trend is seen in a set of well characterized Hawaiian rainforests, across which we have measured the 15N/14N of inputs and hydrologic losses. We report that the two most widely purported mechanisms, an isotopic shift in N inputs or isotopic discrimination by leaching, fail to explain this climate-dependent trend in 15N/14N. Rather, isotopic discrimination by microbial denitrification appears to be the major determinant of N isotopic variations across differences in rainfall. In the driest climates, the 15N/14N of total dissolved outputs is higher than that of inputs, which can only be explained by a 14N-rich gas loss. In contrast, in the wettest climates, denitrification completely consumes nitrate in local soil environments, thus preventing the expression of its isotope effect at the ecosystem scale. Under these conditions, the 15N/14N of bulk soils and stream outputs decrease to converge on the low 15N/14N of N inputs. N isotope budgets that account for such local isotopic underexpression suggest that denitrification is responsible for a large fraction (24–53%) of total ecosystem N loss across the sampled range in rainfall. PMID:16728510

  15. Timescales of Magmatic processes in Eastern Sunda Arc: Rindjani and Tambora in light of new geochemical data including short lived U-Th series isotopes

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Viorel

    2010-05-01

    Tambora and Rindjani are active volcanoes situated on the neighbouring islands of Lombok and Sumbawa in the Eastern Sunda Arc. Both are stratovolcanoes situated about 300 km north of the Java Trench and between 170 and 200 km above the Benioff seismic zone (Hamilton, 1974; Hutchinson, 1976). Rindjani's lavas are calc-alkaline ankaramites, hi-Al basalts to andesites, hi-K andesites and dacites. Tambora's lavas are ne-normative relatively potassium rich trachyandesites and trachybasalts including the intermediate (<57% SiO2) members (Foden, 1979, PhD thesis) which is the main difference to Rindjani's lavas. On a more general scale, Tambora's lavas are intermediate between the Hi-Al basalt-andesite of Rindjani and the highly undersaturated K-rich, leucite bearing lavas of G. Soromundi and G. Sangenges (both extinct volcanoes situated on Sumbawa east and respectively west of Tambora). There are other important differences however. Tambora's lavas remain ne-normative throughout the entire suite, whereas Rindjani's become Q-normative in the more evolved members (>53%SiO2). The concentrations of K2O, Rb, Sr and P2O5 are also very different between the two suites (Foden, 1979). Both volcanoes however show minor U-Th series disequilibrium with either Th or U excess but less than 10%, typical of this sector of the Eastern Sunda Arc. Investigating data across the whole arc, (Turner & Foden, 2001) have interpreted that mantle wedge has had a sediment component added as a melt and slab derived fluids added afterwards could not imprint their Th-U disequilibrium over the high Th signature of the sedimentary material. Evidence from volcanoes where the sediment component does not show as markedly (Iya, Werung) in the form of large U238/Th230 and (Ra226/Th230)0 suggests evolutionary timescales for magmatic processes of less than 8000years. Furthermore, in a 2003 paper, Turner et al., investigate the timescales of magmatic evolution of Sangeang Api, another active volcano just off

  16. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of <110 Ma have systematically heavy δ66Zn (relative to JMC 3-0749L) ranging from 0.30‰ to 0.63‰ (n = 44) compared to the mantle (0.28 ± 0.05‰; 2sd) and >120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the <110 Ma basalts negatively correlate with parameters that are sensitive to the degree of partial melting (e.g., Sm/Yb, Nb/Y, [Nb]) and with the concentration of Zn, which also behaves incompatibly during mantle melting. This is inconsistent with a volatile-poor peridotite source and instead suggests partial melting of carbonated peridotites which, at lower degree of melting, generates more Si-depleted (and more Ca-rich) melts. Zinc isotopic compositions are positively correlated with Sm/Yb, Nb/Y, [Nb] and [Zn], indicating that melts produced by lower degrees of melting have heavier Zn isotopic compositions. Carbonated peridotites have a lower solidus than volatile-poor peridotites and therefore at lower melting extents, contribute more to the melts, which will have heavier Zn isotopic compositions. Together with the positive relationships of δ66Zn with CaO and CaO/Al2O3, we propose that the heavy Zn isotopic compositions of the <110 Ma basalts were generated by incongruent partial melting of carbonated peridotites. Combined with previously reported Mg and Sr isotope data, we suggest that the large-scale Zn isotope anomaly indicates the widespread presence of recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic

  17. Magmatism at different crustal levels in the ancient North Cascades magmatic arc

    NASA Astrophysics Data System (ADS)

    Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.

    2013-12-01

    material, possibly during magma production or transport. The Seven-Fingered Jack intrusive complex, emplaced around 15-20 km, preserves a much more discontinuous record of intrusion than the Black Peak. Our data indicate major magmatism in the complex occurred between ~92.1-91.1 Ma. Inheritance in the Seven-Fingered Jack is common, particularly along contacts between intrusions. The Tenpeak intrusive complex, assembled between ~92 Ma and 89 Ma, represents one of the deepest exhumed complexes in the North Cascades. Our geochronology indicates that plutons comprising the complex were intruded rapidly (<200 ka) and followed by periods of magmatic quiescence. Contact relations between contemporaneous intrusions are often mixed, further supporting rapid assembly. Zircon systematics in the Tenpeak are relatively simple, showing no evidence for inheritance from the surrounding host rock or from earlier intrusions. However, zircon oxygen isotope data indicates many magmas contain significant crustal input. The Black Peak, Seven-Fingered Jack, and Tenpeak intrusions illustrate the complicated nature of magmatism at different crustal levels in the 92-87 Ma North Cascades magmatic arc. Our data support incremental assembly of these complexes, but show that many features, such as style of emplacement, zircon chemical and temporal systematics, and magma composition vary between these intrusions.

  18. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: Evidence from the Fuping Complex

    NASA Astrophysics Data System (ADS)

    Tang, Li; Santosh, M.; Tsunogae, Toshiaki; Teng, Xue-Ming

    2016-04-01

    The Fuping, Wutai, and Hengshan Complexes in the North China Craton preserve imprints of widespread late Neoarchean magmatism. Here, we report results from systematic petrology, mineral chemistry, whole-rock major, trace and platinum-group element geochemistry, zircon U-Pb geochronology and Hf-O isotopes from the Yangmuqiao mafic-ultramafic intrusion and coeval tonalite-trondhjemite-granodiorite (TTG) gneiss from the Fuping Complex. The mafic-ultramafic intrusion is composed of pyroxene hornblendites, hornblendites, and minor harzburgites. The salient geochemical features of the mafic-ultramafic intrusion and the Fuping TTG gneiss display subduction-related island arc signature, such as fractionated REE patterns with elevated LREE, enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. The chemistry of the clinopyroxene and chromite in the pyroxene hornblendites shows affinity with Alaskan-type mafic-ultramafic intrusions. Zircons from the pyroxene hornblendite yield weighted mean 207Pb/206Pb age of 2514 ± 15 Ma, and those in the Fuping TTG gneiss show mean age of 2513 ± 13 Ma. Zircon Hf and O isotopic compositions are used as magma source and crustal evolution indicators. Zircon grains in the pyroxene hornblendite display positive εHf(t) values (2.6-6.7), Neoarchean TDM (2570-2723 Ma), and their δ18O values vary from 3.8‰ to 7.0‰ (average 6.2‰). Zircons in the TTG gneiss show εHf(t) values in the range of - 1.8 to 4.9, TDM of 2637-2888 Ma, and δ18O values of 4.1‰-6.7‰ (average of 6.1‰). These results suggest that the parental magma of the late Neoarchean magmatism in the Fuping area was dominantly extracted from the depleted mantle and contaminated to different degrees by crustal components. The pyroxene hornblendites have obviously higher IPGE contents (ΣIPGE = 1.69-2.39 ppb) and lower Pd/Ir ratios (5.97-6.28) than those in the hornblendites (ΣIPGE = 0.56-0.72 ppb, Pd/Ir = 6

  19. Evidence from the Farmington pluton for early Devonian subduction-related magmatism in the Carolina zone of central North Carolina

    NASA Astrophysics Data System (ADS)

    Esawi, E. K.

    2004-04-01

    The Concord plutonic suite consists of numerous gabbroic plutons scattered throughout the Carolina terrane with ages that cluster around 400 Ma. The Farmington pluton is located on the northeastern part of the Mocksville complex and consists mostly of gabbronorites and troctolites. Field, geochemical, and P-T studies of the Farmington gabbros suggest that the rocks are genetically related and formed by transitional to calc-alkaline differentiation of mafic magma. The pluton was formed in a moderate-pressure environment (˜6 kbar) and underwent limited differentiation after emplacement. The overall geological and geochemical features of the Farmington pluton are consistent with a transitional to arc origin. The Concord plutonic suite does not fit well in classical tectonothermal models suggested for the evolution of the Appalachian orogen. However, Field and geochemical data in this report and other data reported recently suggest that the origin of the Farmington pluton and possibly the Concord plutonic suite is that the suite represents a continuous to semi-continuous Taconian-Acadian magmatic event(s).

  20. Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Seccia, D.; Chiarabba, C.; de Gori, P.; Bianchi, I.; Hill, D. P.

    2011-12-01

    We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic Vp model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high-velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low-velocity anomaly (8%-10 % reduction in Vp) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low-velocity volume (˜5% reduction in Vp and as much as 40% reduction in Vs) in the depth interval 8-14 km (6-12 km below mean sea level) beneath the central section of the caldera. The two low-velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.

  1. Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis

    USGS Publications Warehouse

    Seccia, D.; Chiarabba, C.; De Gori, P.; Bianchi, I.; Hill, D.P.

    2011-01-01

    We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic I/P model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high-velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low-velocity anomaly (8%–10 % reduction in I/P) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low-velocity volume (–5% reduction in I/P and as much as 40% reduction in I/S) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low-velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.

  2. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or

  3. Retrograde fluids in granulites: Stable isotope evidence of fluid migration

    SciTech Connect

    Morrison, J. ); Valley, J.W. )

    1991-07-01

    Widespread retrograde alteration assemblages document the migration of mixed H{sub 2}O-CO{sub 2} fluids into granulite facies rocks in the Adirondack Mountains. Fluid migration is manifest by (1) veins and patchy intergrowths of chlorite {plus minus} sericite {plus minus} calcite, (2) small veins of calcite, many only identifiable by cathodoluminescence, and (3) high-density, CO{sub 2}-rich or mixed H{sub 2}O-CO{sub 2} fluid inclusions. The distinct and varied textural occurrences of the alteration minerals indicate that fluid-rock ratios were low and variable on a local scale. Stable isotope ratios of C, O, and S have been determined in retrograde minerals from samples of the Marcy anorthosite massif and adjacent granitic gneisses (charnockites). Retrograde calcite in the anorthosite has a relatively small range in both {delta}{sup 18}O{sub SMOW} and {delta}{sup 13}C{sub PDB} (8.6 to 14.9% and {minus}4.1 to 0.4%, respectively), probably indicating that the hydrothermal fluids that precipitated the calcite had exchanged with a variety of crustal lithologies including marbles and orthogneisses, and that calcite was precipitated over a relatively narrow temperature interval. Values of {delta}{sup 34}S{sub CDT} that range from 2.8 to 8.3% within the anorthosite can also be interpreted to reflect exchange between orthogneisses and metasediments. The recognition of retrograde fluid migration is particularly significant in granulite facies terranes because the controversy surrounding the origin of granulites arises in part from differing interpretations of fluid inclusion data, specifically, the timing of entrapment of high-density, CO{sub 2}-rich inclusions. Results indicate that retrograde fluid migration, which in some samples may leave only cryptic petrographic evidence, is a process capable of producing high-density, CO{sub 2}-rich fluid inclusions.

  4. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-31

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  5. U-Pb ages and Sr, Pb and Nd isotope data for gneisses near the Kolar Schist Belt: Evidence for the juxtaposition of discrete Archean terranes

    NASA Technical Reports Server (NTRS)

    Krogstad, E. J.; Hanson, G. N.; Rajamani, V.

    1988-01-01

    Uranium-lead ages and Sr, Pb, and Nd isotopic data for gneisses near the Kolar Schist Belt and their interpretation as evidence for the juxtaposition of discrete Archean terranes were presented. The granodioritic Kambha gneiss east of the schist belt has a zircon age of 2532 + or - 3 Ma and mantle-like initial Sr, Pb, and Nd isotopic ratios. Therefore these gneisses are thought to represent new crust added to the craton in the latest Archean. By contrast, more mafic Dod gneisses and leucocratic Dosa gneisses west of the schist belt (2632 + or - 7 and 2610 + or - 10 Ma) show evidence for contamination of their magmatic precursors (LREE-enriched mantle-derived for the Dod gneisses) by older (greater than 3.2 Ga) continental crust. Fragments of this older crust may be present as granitic and tonalitic inclusions in the 2.6-Ga gneisses and in shear zones. The antiquity of these fragments is supported by their Nd, Sr, and Pb isotopic compositions and by 2.8 to greater than 3.2 Ga zircon cores.

  6. U-Pb ages and Sr, Pb and Nd isotope data for gneisses near the Kolar Schist Belt: Evidence for the juxtaposition of discrete Archean terranes

    NASA Astrophysics Data System (ADS)

    Krogstad, E. J.; Hanson, G. N.; Rajamani, V.

    Uranium-lead ages and Sr, Pb, and Nd isotopic data for gneisses near the Kolar Schist Belt and their interpretation as evidence for the juxtaposition of discrete Archean terranes were presented. The granodioritic Kambha gneiss east of the schist belt has a zircon age of 2532 + or - 3 Ma and mantle-like initial Sr, Pb, and Nd isotopic ratios. Therefore these gneisses are thought to represent new crust added to the craton in the latest Archean. By contrast, more mafic Dod gneisses and leucocratic Dosa gneisses west of the schist belt (2632 + or - 7 and 2610 + or - 10 Ma) show evidence for contamination of their magmatic precursors (LREE-enriched mantle-derived for the Dod gneisses) by older (greater than 3.2 Ga) continental crust. Fragments of this older crust may be present as granitic and tonalitic inclusions in the 2.6-Ga gneisses and in shear zones. The antiquity of these fragments is supported by their Nd, Sr, and Pb isotopic compositions and by 2.8 to greater than 3.2 Ga zircon cores.

  7. Paleoproterozoic magmatism across the Archean-Proterozoic boundary in central Fennoscandia: Geochronology, geochemistry and isotopic data (Sm-Nd, Lu-Hf, O)

    NASA Astrophysics Data System (ADS)

    Lahtinen, Raimo; Huhma, Hannu; Lahaye, Yann; Lode, Stefanie; Heinonen, Suvi; Sayab, Mohammad; Whitehouse, Martin J.

    2016-10-01

    The central Fennoscandia is characterized by the Archean-Proterozoic (AP) boundary and the Central Finland Granitoid Complex (CFGC), a roundish area of approximately 40,000 km2 surrounded by supracrustal belts. Deep seismic reflection profile FIRE 3A runs across these units, and we have re-interpreted the profile and crustal evolution along the profile using 1.92-1.85 Ga plutonic rocks as lithospheric probes. The surface part of the profile has been divided into five subareas: Archean continent (AC) in the east, AP, CFGC, boundary zone (BZ) and the Bothnian Belt (BB) in the west. There are 12 key samples from which zircons were studied for inclusions and analyzed (core-rim) by ion probe for U-Pb dating and oxygen isotopes, followed by analyzes for Lu-Hf by LA-MC-ICP-MS. The AC plutonic rocks (1.87-1.85 Ga) form a bimodal suite, where the proposed mantle source for the mafic rocks is 2.1-2.0 Ga metasomatized lower part of the Archean subcontinental lithospheric mantle (SCLM) and the source for the felsic melts is related plume-derived underplated mafic material in the lower crust. Variable degrees of contamination of the Archean lower crust have produced "subduction-like" Nb-Ta anomalies in spidergrams and negative εNd (T) values in the mafic-intermediate rocks. The felsic AC granitoids originate from a low degree melting of eclogitic or garnet-bearing amphibolites with titanite ± rutile partly prevailing in the residue (Nb-Ta fractionation) followed by variable degree of assimilation/melting of the Archean lower crust. The AP plutonic rocks (ca. 1.88 Ga) can be divided into I-type and A-type granitoids (AP/A), where the latter follow the sediment assimilation trend in ASI diagram, have high δ18O values (up to 8‰) in zircons and exhibit negative Ba anomalies (Rb-Ba-Th in spidergram), as found in sedimentary rocks. A mixing/assimilation of enriched mantle-derived melts with melts from already migmatized sedimentary rocks ± amphibolites is proposed. The CFGC is

  8. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    NASA Astrophysics Data System (ADS)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI < 1; Alkalinity index, AI < 0). The initial magma was mildly metaluminous which evolved to strongly peralkaline as result of fractional crystallization (plagioclase effect) controlled differentiation between quartz-monzonite and granite. Both rock types have high content of Na2O (5.1-6.3 wt.%), Ba (350-2589 ppm) and Sr (264-1036 ppm); low content of Y (8.7-17 ppm) and Yb (0.96-1.69 ppm); elevated ratios of La/Yb (11-46) and Sr/Y (46-69) and are depleted in Ti, with a positive Sr anomaly suggesting an adakite-like composition and

  9. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  10. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Technical Reports Server (NTRS)

    Taylor, P. N.; Kalsbeek, F.

    1986-01-01

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  11. Stellar condensates in meteorites - Isotopic evidence from noble gases

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Alaerts, L.; Matsuda, J.-I.; Anders, E.

    1979-01-01

    The Murchison carbonaceous chondrite contains three isotopically anomalous noble-gas components of apparently presolar origin: two kinds of Ne-E, (Ne-20)/(Ne-22) less than 0.6, and s-process Kr + Xe (enriched in the even isotopes 82, 84, 86, 128, 130, 132). Their carriers are tentatively identified as spinel and two carbonaceous phases, the principal high-temperature stellar condensates at low and high C/O ratios, respectively.

  12. Stable isotopes may provide evidence for starvation in reptiles.

    PubMed

    McCue, Marshall D; Pollock, Erik D

    2008-08-01

    Previous studies have attempted to correlate stable isotope signatures of tissues with the nutritional condition of birds, mammals, fishes, and invertebrates. Unfortunately, very little is known about the relationship between food limitation and the isotopic composition of reptiles. We examined the effects that starvation has on delta13C and delta15N signatures in the tissues (excreta, carcass, scales, and claws) of six, distantly related squamate reptiles (gaboon vipers, Bitis gabonica; ball pythons, Python regius; ratsnakes, Elaphe obsoleta; boa constrictors, Boa constrictor; western diamondback rattlesnakes, Crotalus atrox, and savannah monitor lizards, Varanus exanthematicus). Analyses revealed that the isotopic composition of reptile carcasses did not change significantly in response to bouts of starvation lasting up to 168 days. In contrast, the isotopic signatures of reptile excreta became significantly enriched in 15N and depleted in 13C during starvation. The isotopic signatures of reptile scales and lizard claws were less indicative of starvation time than those of excreta. We discuss the physiological mechanisms that might be responsible for the starvation-induced changes in 13C and 15N signatures in the excreta, and present a mixing model to describe the shift in excreted nitrogen source pools (i.e. from a labile source pool to a nonlabile source pool) that apparently occurs during starvation in these animals. The results of this study suggest that naturally occurring stable isotopes might ultimately have some utility for characterizing nitrogen and carbon stress among free-living reptiles.

  13. Isotope evidence of hexavalent chromium stability in ground water samples.

    PubMed

    Čadková, Eva; Chrastný, Vladislav

    2015-11-01

    Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts.

  14. Palladium Isotopic Evidence for Nucleosynthetic and Cosmogenic Isotope Anomalies in IVB Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Wittig, Nadine; Humayun, Munir; Leya, Ingo

    2015-08-01

    The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, β-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(α,n)25Mg neutron source for the solar system s-process.

  15. Long-Term Uplift in the Altiplano-Puna Neovolcanic Zone: Evidence of an Active Magmatic Diapir?

    NASA Astrophysics Data System (ADS)

    Fialko, Y.; Pearse, J.

    2012-12-01

    We present InSAR observations of a long-term uplift in the Altiplano-Puna neovolcanic zone (central Andes, South America). Previous observations revealed a a massive Ultra Low Velocity Zone (ULVZ) at depth of 17-19 km (Zandt et al., 2003), and surface deformation that was attributed to Uturuncu, a dormant volcano in the middle of the Altiplano-Puna neovolcanic zone (Pritchard and Simons, 2002). Our time series analysis of combined data from different sensors (ERS-1/2 and ENVISAT), satellite tracks, and observation modes (fine beam and ScanSAR) reveals that the central uplift has persisted at a nearly constant rate of ~1 cm/yr over the last two decades, and is surrounded by a broad zone of subsidence. We use the satellite line-of-sight velocities from different look directions to constrain the depth and geometry of the inferred sources of magmatic unrest. Inversions based on elastic half-space models indicate that the inflation source is located well below the brittle-ductile transition, and likely resides at the depth of the seismically imaged ULVZ. We investigated the effects of inelastic deformation in the ambient crust using finite element models. The models incorporated laboratory-derived rheologies of the ambient crust, and geotherms appropriate for an active neo-volcanic zone such as the one in the Altiplano-Puna province. Based on a large number of numerical simulations constrained by the observed surface velocities, we conclude that the ongoing uplift and peripheral subsidence result from a large mid-crustal diapir fed by a partially molten source region in the middle crust. The observed pattern of surface deformation due to the Altiplano-Puna ULVZ is remarkably similar to that due to the Socorro Magma Body (SMB) in central New Mexico, USA (Pearse and Fialko, 2010), suggesting a common process. mosaic of the mean LOS velocity showing uplift and peripheral subsidence due to the inferred mid-crustal diapir.

  16. Understanding Vesuvius magmatic processes: Evidence from primitive silicate-melt inclusions in medieval scoria clinopyroxenes (Terzigno formation)

    USGS Publications Warehouse

    Lima, A.; Belkin, H.E.; Torok, K.

    1999-01-01

    Microthermometric investigations of silicate-melt inclusions and electron microprobe analyses were conducted on experimentally homogenized silicate-melt inclusions and on the host clinopyroxenes from 4 scoria samples of different layers from the Mt. Somma-Vesuvius medieval eruption (Formazione di Terzigno, 893 A.D.). The temperature of homogenization, considered the minimum trapping temperature, ranges from 1190 to 1260??5 ??C for all clinopyroxene-hosted silicate melt inclusions. The major and minor-element compositional trends shown by Terzigno scoria and matrix glass chemical analysis are largely compatible with fractional crystallization of clinopyroxene and Fe-Ti oxides. Sulfur contents of the homogenized silicate-melt inclusions in clinopyroxene phenocrysts compared with that in the host scoria show that S has been significantly degassed in the erupted products; whereas, Cl has about the same abundance in the inclusions and in host scoria. Fluorine is low (infrequently up to 800 ppm) in the silicate-melt inclusions compared to 2400 ppm in the bulk scoria. Electron microprobe analyses of silicate-melt inclusions show that they have primitive magma compositions (Mg# = 75-91). The composition of the host clinopyroxene phenocrysts varies from typical plinian-related (Mg#???85) to non-plinian related (Mg#???85). The mixed source of the host clinopyroxenes and primitive nature of the silicate-melt inclusions implies that these phenocrysts, in part, may be residual and/or have a polygenetic origin. The similar variation trends of major and minor-elements between homogenized silicate-melt inclusions from the Terzigno scoria, and silicate-melt inclusions in olivine and diopside phenocrysts from plinian eruptions (Marianelli et al., 1995) suggest that the trapped inclusions represent melts similar to those that supplied the plinian and sub-plinian magma chambers. These geochemical characteristics suggest that the Vesuvius magmatic system retained a vestige of the most

  17. Geochemical gradients in the Topopah Spring Member of the Paintbrush Tuff: Evidence for eruption across a magmatic interface

    SciTech Connect

    Schuraytz, B.C.; Vogel, T.A.; Younker, L.W.

    1986-06-01

    The Topopah Spring Member of the Paintbrush Tuff in southern Nevada is a classic example of a compositionally zoned ash-flow sheet that is inferred to have resulted from eruption of a compositionally zoned magma body. Geochemical and petrographic analyses of whole-rock tuff samples indicate that the base of the ash-flow sheet and the dominant volume of erupted material are composed of crystal-poor high-silica rhyolite, with a gradational transition into overlying crystal-rich quartz latite at the top of the sequence. These compositional variations are consistent with a model of progressive eruption of a stratified magma body in which relatively cooler, crystal-poor high-silica rhyolitic magma overlay hotter, crystal-rich quartz latitic magma. Major and trace element chemical analyses of whole glassy pumices and analyses of coexisting ilmenite and magnetite phenocrysts from within the pumices provide closer approximations to the chemical and thermal gradients within the inferred magma body. The magmatic gradients inferred from these data indicate that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt rather than gradational, with a distinct liquid-liquid interface separating the two contrasting magmas. Throughout the ash-flow sheet, individual pumice lumps with distinct and variable textural characteristics are present within outcrop, hand-sample, and thin-section scale. Within the lower portion of the ash-flow sheet, the individual pumices are all high-silica rhyolites with relatively small variations in trace-element composition and estimated quench temperatures, and thus are chemically similar to their associated whole-rock tuff composites. In contrast, the chemical variability among pumices within the uppermost quartz latite is as great as that of the entire ash-flow sheet.

  18. Paleozoic magmatism and metamorphism in the Central Tianshan block revealed by U-Pb and Lu-Hf isotope studies of detrital zircons from the South Tianshan belt, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoran; Zhao, Guochun; Eizenhöfer, Paul R.; Sun, Min; Han, Yigui; Hou, Wenzhu; Liu, Dongxing; Wang, Bo; Liu, Qian; Xu, Bing

    2015-09-01

    As a major Precambrian microcontinent in the southernmost Central Asian Orogenic Belt (CAOB), the Central Tianshan block (CTS) in the Chinese Tianshan is essential for understanding the final assembly of the southern CAOB. It experienced multistage Paleozoic magmatism and metamorphism, but the detailed processes are still controversial and far from being completely understood. This paper reports coupled U-Pb and Lu-Hf isotopic data of detrital zircons from late Paleozoic (meta-)sedimentary strata in the South Tianshan belt, which can provide new insight into deciphering the Paleozoic evolution of the eastern segment of the CTS block. Characterized by typical oscillatory zoning and high Th/U ratios (> 0.2), detrital zircons in the Permian sedimentary samples yield dominant age populations at ca. 505-490 Ma, 475-440 Ma, 430-400 Ma and 340-250 Ma, pinpointing the development of four episodes of magmatism in the eastern CTS block. Particularly, Ordovician-Silurian (475-440 Ma) zircons, possessing low negative εHf(t) values, predominate in sedimentary strata in and surrounding the CTS block, indicating that the 475-440 Ma magmatic rocks probably constitute the main body of the CTS block. The origin of this (early Paleozoic) episode of magmatism was most likely related to the southward subduction of the Junggar Ocean beneath the CTS block. Carboniferous-Triassic (340-250 Ma) zircons have dominantly positive εHf(t) values, probably derived from the post-collisional juvenile rocks in the CTS block. Combined with previous studies, our data suggest that the single source terrane for the sampled strata was the CTS block, which had been a topographic high providing substantial detritus to the surrounding areas at least since the Early Permian. In the metasedimentary sample, detrital zircons mostly show partially/fully recrystallized internal textures and low Th/U ratios (< 0.2), probably sourced from the amphibolite- to granulite-facies metamorphosed rocks in the eastern CTS

  19. Magmatic evidence for Neogene lithospheric evolution of the central Andean ``flat-slab'' between 30°S and 32°S

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Abbruzzi, J. M.

    1996-06-01

    Geochemical data from Andean Miocene magmas erupted through the now volcanically-inactive "flat-slab" between 30°S to 32°S, coupled with geological and geophysical data, illuminate details on magmatic and continental lithospheric evolution over a progressively shallowing subduction zone. Pb, Sr and Nd isotopic and trace-element data show that Main Cordilleran, Precordilleran and Pampean magmas were contaminated in both the mantle and crust, and that the nature of the contaminants varied in time and space, reflecting tectonic events. Contaminants included both "enriched" (high LIL-element, high Sr and Pb, and low Nd isotopic ratios) and "depleted" (low LILE-element, low Sr and Pb, and high Nd isotopic ratios) types. In the western region, Main Cordilleran earlier Miocene lavas had contaminants with less "enriched" signatures than later Miocene lavas. Progressive "enrichment" is attributed to: (a) increasing amounts of sediment and tectonically eroded crust being subducted into the mantle wedge; and (b) contamination in a thickening Main Cordilleran lower crust whose composition was progressively "enriched". This "enrichment" occurred through addition of upper crust by an intracrustal mixing process driven by a propagating wedge tip associated with westward wedging, heating and deformation of crust from beneath the shortening Precordillera thrust belt to the east. Further east, magmas erupted through back-arc crust have more "depleted" signatures. Those erupted in the central part through the evolving Precordilleran thrust belt were contaminated by an older, thinner Grenville (˜ 1100 Ma) basement whose "depleted" signature is unique among Central Andean terranes. Late Miocene Pocho lavas erupted further east in conjunction with uplift of the Sierras Pampeanas show "enrichment" through time. Arguably, these magmas could contain a component mechanically removed from the base of the thinning continental lithosphere to the west, and progressively incorporated into the

  20. Possible evidence for fluid-rock oxygen isotope disequilibrium in hydrothermal systems

    SciTech Connect

    Cole, D.R.

    1992-01-01

    There is ample evidence from geothermal systems that isotope temperatures estimated from the oxygen isotope fractionation between alteration phases and coexisting aquifer fluids agree closely with measured bore-hole temperatures. Similar, but limited evidence is found in epithermal vein deposits where isotopes temperature agree well with fluid inclusion homogenization temperature. Conversely, many hydrothermal systems exhibit varying degrees of fluid-rock oxygen isotope equilibration. There appears to be a crude relationship between increasing degree of equilibrium and increasing temperature and salinity. The observed variations in the degree of exchange may have resulted from local, self-sealing of the fracture network prior to equilibration. The ability for fracture to remain open or to propogate allowing continued fluid flow may be the deciding factor in the attainment of isotopic equilibration.

  1. Possible evidence for fluid-rock oxygen isotope disequilibrium in hydrothermal systems

    SciTech Connect

    Cole, D.R.

    1992-04-01

    There is ample evidence from geothermal systems that isotope temperatures estimated from the oxygen isotope fractionation between alteration phases and coexisting aquifer fluids agree closely with measured bore-hole temperatures. Similar, but limited evidence is found in epithermal vein deposits where isotopes temperature agree well with fluid inclusion homogenization temperature. Conversely, many hydrothermal systems exhibit varying degrees of fluid-rock oxygen isotope equilibration. There appears to be a crude relationship between increasing degree of equilibrium and increasing temperature and salinity. The observed variations in the degree of exchange may have resulted from local, self-sealing of the fracture network prior to equilibration. The ability for fracture to remain open or to propogate allowing continued fluid flow may be the deciding factor in the attainment of isotopic equilibration.

  2. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  3. Terminal magmatic activities along the Solonker suture zone in the southern Central Asian Orogenic Belt: New insights from the end-Permian magmatic record

    NASA Astrophysics Data System (ADS)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Xiao, Wen-Jiao; Wang, Tao; Guo, Qian-Qian

    2016-04-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geologic evidence, suggest that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred at 255 to 251 Ma along the Solonker-Xar Moron suture zone. The linear end-Permian magmatism is interpreted as in a setting of continental contraction and crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the earliest phases of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, probably caused by regional lithospheric extension and orogenic collapse. The proposed collision-related magmatism from the southern CAOB is thus a prime example of minor, yet tell-tale linking magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  4. Spectroscopic mapping of the white horse alunite deposit, Marysvale volcanic field, Utah: Evidence of a magmatic component

    USGS Publications Warehouse

    Rockwell, B.W.; Cunningham, C.G.; Breit, G.N.; Rye, R.O.

    2006-01-01

    using AVIRIS in localized, superimposed conduits within propylitically altered rocks in nearby alteration systems of similar age and genesis that have been eroded to deeper levels. The fracture zones bearing pyrophyllite, illite, dickite, natroalunite, and/or APS minerals indicate a magmatic component in the dominantly steam-heated system. ?? 2006 Society of Economic Geologists, Inc.

  5. Geology, petrology and geochronology of the Lago Grande layered complex: Evidence for a PGE-mineralized magmatic suite in the Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, Antonio Sales; Ferreira Filho, Cesar Fonseca; Giustina, Maria Emilia Schutesky Della; Araújo, Sylvia Maria; da Silva, Heloisa Helena Azevedo Barbosa

    2015-12-01

    ultramafic lithotypes render Nd model ages between 2.94 and 3.56 Ga, with variably negative ɛNd (T = 2.72 Ga) values (-0.32 to -4.25). The crystallization sequence of the intrusion and the composition of cumulus minerals, together with lithogeochemical and Nd isotopic results, are consistent with an original mantle melt contaminated with older continental crust. The contamination of mafic magma with sialic crust is also consistent with intra-plate rifting models proposed in several studies of the CMP. Lithogeochemical and isotopic data from the Lago Grande Complex may also be interpreted as the result of melting an old lithospheric mantle, and alternative models should not be disregarded. PGE mineralizations occur in chromitites and associated with base metal sulfides in the Lago Grande Complex. Chromitite has the highest PGE content (up to 10 ppm) and is characterized by high Pt/Pd ratio (4.3). Mantle-normalized profile of chromitite is highly enriched in PPGE and similar to those from Middle Group (MG) and Upper Group (UG) chromitites from the Bushveld Complex. Platinum group minerals (PGM) occur mainly at the edge of chromite crystals in the Lago Grande chromitite, consisting of arsenides and sulfo-arsenides. Sulfide-bearing harzburgite samples of the Lago Grande complex have PGE content of up to 1 ppm and low Pt/Pd (0.2-0.3) ratios. The 2722 ± 53 Ma U-Pb zircon age determined in this study for the Lago Grande Complex overlaps with the crystallization age of the Luanga Complex. Previous interpretation that the Lago Grande and Luanga layered intrusions are part of a magmatic suite (i.e., Serra Leste Magmatic Suite) is now reinforced by similar fractionation sequences, comparable petrological evolution and overlapped U-Pb zircon ages. The occurrence of the same styles of PGE mineralization in the Lago Grande and Luanga complexes, together with remarkably similar chondrite-normalized PGE profiles and PGE minerals for chromitites of both complexes, support the concept that

  6. Isotopic evidence of Cr partitioning into Earth's core.

    PubMed

    Moynier, Frederic; Yin, Qing-Zhu; Schauble, Edwin

    2011-03-18

    The distribution of chemical elements in primitive meteorites (chondrites), as building blocks of terrestrial planets, provides insight into the formation and early differentiation of Earth. The processes that resulted in the depletion of some elements [such as chromium (Cr)] in the bulk silicate Earth relative to chondrites, however, remain debated between leading candidate causes: volatility versus core partitioning. We show through high-precision measurements of Cr stable isotopes in a range of meteorites, which deviate by up to ~0.4 per mil from those of the bulk silicate Earth, that Cr depletion resulted from its partitioning into Earth's core, with a preferential enrichment in light isotopes. Ab initio calculations suggest that the isotopic signature was established at mid-mantle magma ocean depth as Earth accreted planetary embryos and progressively became more oxidized. PMID:21350126

  7. Isotopic evidence of Cr partitioning into Earth's core.

    PubMed

    Moynier, Frederic; Yin, Qing-Zhu; Schauble, Edwin

    2011-03-18

    The distribution of chemical elements in primitive meteorites (chondrites), as building blocks of terrestrial planets, provides insight into the formation and early differentiation of Earth. The processes that resulted in the depletion of some elements [such as chromium (Cr)] in the bulk silicate Earth relative to chondrites, however, remain debated between leading candidate causes: volatility versus core partitioning. We show through high-precision measurements of Cr stable isotopes in a range of meteorites, which deviate by up to ~0.4 per mil from those of the bulk silicate Earth, that Cr depletion resulted from its partitioning into Earth's core, with a preferential enrichment in light isotopes. Ab initio calculations suggest that the isotopic signature was established at mid-mantle magma ocean depth as Earth accreted planetary embryos and progressively became more oxidized.

  8. Isotopic evidence for reduced productivity in the glacial Southern Ocean

    SciTech Connect

    Shemesh, A. ); Macko, S.A. ); Charles, C.D. ); Rau, G.H. )

    1993-10-15

    Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.

  9. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Teng, Fang-Zhen; Zhang, Hong-Fu; Xiao, Yan; Su, Ben-Xun

    2016-07-01

    High-precision Mg isotopic measurements on diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton, revealed multi-stage interactions between the lithospheric mantle and melts of different origins. The garnet-bearing pyroxenites yield variable δ26Mg values from -0.48‰ to -0.10‰, consistent with their origin as reaction products between mantle peridotites and melts from subducted oceanic slab with highly heterogeneous δ26Mg. Most of their constituent olivine, clinopyroxene, and orthopyroxene have indistinguishable δ26Mg ratios around the normal mantle range (-0.25 ± 0.07‰, Teng et al., 2010). The lack of fractionation among these three mineral phases agrees with their similar bonding environments for Mg (6-fold), and hence indicates a general isotopic equilibrium among them. By contrast, garnet has variably lighter δ26Mg values (-0.75‰ to -0.37‰, n = 15), consistent with its higher coordination number for Mg (8-fold), and thus weaker Mg-O bonds. The magnitude of fractionation between garnet and olivine/pyroxene, however, is not correlated with equilibrium temperature, and therefore reflects disequilibrium Mg isotope partitioning. Considering the metasomatic origin of these garnets, the disequilibrium isotopic fractionation is most likely the result of rapid and incomplete metasomatic reaction during which garnets were formed at the expense of isotopically heavier co-existing minerals, particularly spinels. The two garnet-free clinopyroxenites, which display highly enriched light rare earth element (LREE) patterns and very low Ti/Eu ratios, are characterized by extremely light δ26Mg (as low as -1.51‰). Their formation possibly indicates an episode of carbonatite infiltration. In comparison, the three Cr websterites and one Al websterite, as well as an orthopyroxenite, all have mantle-like whole-rock and mineral δ26Mg ratios, with equilibrated clinopyroxene-orthopyroxene pairs. Their presence thus implies different episodes

  10. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Qiu, Lin; Ash, Richard D.; McDonough, William F.; Teng, Fang-Zhen; Rudnick, Roberta L.; Taylor, Lawrence A.

    2016-06-01

    Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰ δ56Fe >0.18‰ δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between -2.5‰ and 4

  11. Origins of etioporphyrins in sediments - Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, Christopher J.; Fookes, Christopher J. R.; Popp, Brian N.; Hayes, J. M.

    1989-01-01

    In samples of the Julia Creek and Condor oil shales (Australia, Albian, and early Tertiary, respectively) etioporphyrin III is significantly depleted in C-13 (4 per mil) relative to porphyrins derived from chlorophylls. This isotopic difference suggests a large contribution from some independent source. The haem group found in cytochromes derived from microbial sources is the most likely candidate.

  12. Origins of etioporphyrins in sediments: Evidence from stable carbon isotopes

    SciTech Connect

    Boreham, C.J. ); Fookes, C.J.R. ); Popp, B.N.; Hayes, J.M. )

    1989-09-01

    In samples of the Julia Creek and Condor oil shales (Australia, Albian, and early Tertiary, respectively) etioporphyrin III is significantly depleted in {sup 13}C (4{per thousand}) relative to porphyrins derived from chlorophylls. This isotopic difference suggest a large contribution from some independent source. The haem group found in cytochromes derived from microbial sources is the most likely candidate.

  13. Runoff generation mechanism at two distinct headwater catchments - isotopic evidence

    NASA Astrophysics Data System (ADS)

    Dohnal, Michal; Votrubová, Jana; Šanda, Martin; Tesař, Miroslav; Vogel, Tomáš; Dušek, Jaromír

    2016-04-01

    Data from two headwater catchments indicate considerably different runoff formation mechanisms. The contributions of different surface and subsurface runoff mechanisms to the catchment discharge formation at these two small forested headwater catchments are studied with help of the natural isotopic signatures of the observed fluxes. The Uhlirska catchment (1.78 sq. km, Jizera Mts., Czech Republic) is situated in headwater area of Cerna Nisa stream. Deluviofluvial granitic sediments in the valley bottom areas (riparian zones/wetlands) are surrounded by gentle hillslopes with shallow soils developed on crystalline bedrock. The Liz catchment (0.99 sq. km, Bohemian Forest, Czech Republic) belongs to hillslope-type catchments without riparian zones situated in headwater area of Volynka River. The soil at Liz is developed on biotite paragneiss bedrock. Autocorrelation analysis of the measured catchment discharge rates reveals different hydrograph characteristics for each of the two catchments. Estimated autocorrelation lengths differ by an order of magnitude. Variations of oxygen-18 isotope concentrations in precipitation, groundwater and streamflow were analyzed. Several significant rainfall-runoff events at each of the two catchments were analyzed in detail. These events exhibit substantial difference in isotopic compositions of event and pre-event water, which facilitates hydrograph separation. Clockwise and counterclockwise hysteretic relationships between the stream discharge and its isotope concentration were identified. Results were confronted with the previously published concepts of the runoff formation at the catchments under study. The research was funded by the Czech Science Foundation, project No. 14-15201J.

  14. Isotope evidence for N2-fixation in Sphagnum peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) < input NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation

  15. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  16. Melt inclusions are not reliable proxies for magmatic liquid composition: evidence from crystal-poor andesites and dacites in the Tequila volcanic field, Mexico

    NASA Astrophysics Data System (ADS)

    Frey, H. M.; Lange, R. A.

    2009-12-01

    A compositional study of >200 melt inclusions in plagioclase and orthopyroxene phenocrysts from six crystal-poor (2-5 vol%) andesite and dacite lavas (60-68 wt% SiO2) from the Tequila volcanic field in the Mexico arc is used to evaluate whether melt inclusions in phenocrysts accurately record magmatic liquid compositions. The crystal-poor andesites and dacites were erupted contemporaneously with crystal-poor rhyolites, and there is a continuum in the SiO2 concentration of the erupted magmas. The liquid line of descent defined by the whole-rock compositions ranges from andesite to rhyolite (60-77 wt% SiO2), as illustrated on Harker diagrams. The crystal-poor andesites and dacites are multiply saturated with five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), most of which crystallized via degassing during magma ascent (Frey and Lange, 2009). By comparison with phase equilibrium experiments from the literature, it is shown that the vast majority of crystals are phenocrysts and not xenocrysts. Textural evidence of rapid crystal growth includes skeletal, hopper, and swallow-tail morphologies and abundant melt inclusions. The inclusions range in size from a few microns to > 50 μm and occur as isolated pockets and extensive channels that mimic the crystal morphology. Inclusions are typically brown glass, with occasional microphenocrysts of titanomagnetite and/or apatite within or adjacent to the melt inclusions. The compositions of the melt inclusions in the plagioclase and orthopyroxene phenocrysts, when plotted on Harker diagrams, vary systematically from one another and from the liquid line of descent defined by the whole rock compositions of erupted magmas. For example, melt inclusions in plagioclase are systematically depleted in Al2O3 relative to the whole rock samples, whereas those in coexisting orthopyroxenes are systematically enriched in Al2O3. The opposite trend is found for FeO, where it

  17. The origin of epigenetic graphite: evidence from isotopes

    USGS Publications Warehouse

    Weis, P.L.; Friedman, I.; Gleason, J.P.

    1981-01-01

    Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.

  18. Isotopic Evidence for a Martian Regolith Component in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Sutton, S.

    2009-01-01

    Noble gas measurements in gas-rich impact-melt (GRIM) glasses in EET79001 shergottite showed that their elemental and isotopic composition is similar to that of the Martian atmosphere [1-3]. The GRIM glasses contain large amounts of Martian atmospheric gases. Those measurements further suggested that the Kr isotopic composition of Martian atmosphere is approximately similar to that of solar Kr. The (80)Kr(sub n) - (80)Kr(sub M) mixing ratio in the Martian atmosphere reported here is approximately 3%. These neutron-capture reactions presumably occurred in the glass-precursor regolith materials containing Sm- and Br- bearing mineral phases near the EET79001/ Shergotty sites on Mars. The irradiated materials were mobilized into host rock voids either during shock-melting or possibly by earlier aeolian / fluvial activity.

  19. Isotopic evidence for long term warmth in the Mesozoic

    PubMed Central

    Price, Gregory D.; Twitchett, Richard J.; Wheeley, James R.; Buono, Giuseppe

    2013-01-01

    Atmospheric CO2 concentrations appear to have been considerably higher than modern levels during much of the Phanerozoic and it has hence been proposed that surface temperatures were also higher. Some studies have, however, suggested that Earth's temperature (estimated from the isotopic composition of fossil shells) may have been independent of variations in atmospheric CO2 (e.g. in the Jurassic and Cretaceous). If large changes in atmospheric CO2 did not produce the expected climate responses in the past, predictions of future climate and the case for reducing current fossil-fuel emissions are potentially undermined. Here we evaluate the dataset upon which the Jurassic and Cretaceous assertions are based and present new temperature data, derived from the isotopic composition of fossil brachiopods. Our results are consistent with a warm climate mode for the Jurassic and Cretaceous and hence support the view that changes in atmospheric CO2 concentrations are linked with changes in global temperatures. PMID:23486483

  20. Stable lead isotopes evidence anthropogenic contamination in Alaskan sea otters

    SciTech Connect

    Smith, D.R.; Estes, J.A.; Flegal, A.R. ); Niemeyer, S. )

    1990-10-01

    Lead concentrations and stable isotopic compositions were measured in teeth of preindustrial and contemporary sea otters (Enhydra lutris) from Amchitka Island, AK, to determine if changes had occurred in the magnitude and source of assimilated lead. Although there was no significant difference in lead concentrations between the two groups of otters ({bar x} {plus minus} {sigma}Pb/Ca atomic = 3.6 {plus minus} 2.9 {times} 10{sup {minus}8}), differences in stable lead isotopic compositions revealed a pronounced change in the source of accumulated lead. Lead {bar x} {plus minus} 2{sigma}{sub {bar x}} in the preindustrial otters ({sup 207}Pb/{sup 206}Pb = 0.828 {plus minus} 0.006) was derived from natural deposits in the Aleutian arc, while lead in the contemporary animals ({sup 207}Pb/{sup 206}Pb = 0.856 {plus minus} 0.003) was primarily industrial lead from Asia and western Canada. The isotopic ratios demonstrate anthropogenic perturbations of the lead cycle in present-day coastal food webs and indicate that lead concentration measurements alone are inadequate in assessing the introduction and transport of contaminant lead in the environment.

  1. Isotopic evidence for chaotic imprint in upper mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, Pietro; Gasperini, Daniela

    2010-05-01

    The intrinsic structure of the isotope data set of samples from the Mid-Atlantic Ridge and East Pacific Rise, believed to represent the isotopic composition of their mantle source, reveals a close relationship between sample spatial distribution and their geochemical features. The spatial distribution of their isotopic heterogeneity is self-similar on a scale between 5000 and 6000 km (about 1/6 of Earth's circumference), suggesting a self-organized structure for the underlying mantle. This implies the imprint of chaotic mantle processes, induced by mantle flow and likely related to an early phase of highly dynamic behavior of the Earth's mantle. The size of the identified self-organized region reflects the large length scale of upper mantle chemical variability, and it is likely frozen since the Proterozoic. The geochemical heterogeneity of the asthenosphere along the ridges is believed to record a transition in the thermal conditions of the Earth's mantle and to be reflected in the l = 6 peak expansion of several geophysical observables.

  2. EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect

    Larsen, Kirsten K.; Trinquier, Anne; Paton, Chad; Schiller, Martin; Wielandt, Daniel; Connelly, James N.; Nordlund, Ake; Krot, Alexander N.; Bizzarro, Martin; Ivanova, Marina A.

    2011-07-10

    With a half-life of 0.73 Myr, the {sup 26}Al-to-{sup 26}Mg decay system is the most widely used short-lived chronometer for understanding the formation and earliest evolution of the solar protoplanetary disk. However, the validity of {sup 26}Al-{sup 26}Mg ages of meteorites and their components relies on the critical assumption that the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 x 10{sup -5} recorded by the oldest dated solids, calcium-aluminium-rich inclusions (CAIs), represents the initial abundance of {sup 26}Al for the solar system as a whole. Here, we report high-precision Mg-isotope measurements of inner solar system solids, asteroids, and planets demonstrating the existence of widespread heterogeneity in the mass-independent {sup 26}Mg composition ({mu}{sup 26}Mg*) of bulk solar system reservoirs with solar or near-solar Al/Mg ratios. This variability may represent heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk at the time of CAI formation and/or Mg-isotope heterogeneity. By comparing the U-Pb and {sup 26}Al-{sup 26}Mg ages of pristine solar system materials, we infer that the bulk of the {mu}{sup 26}Mg* variability reflects heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk. We conclude that the canonical value of {approx}5 x 10{sup -5} represents the average initial abundance of {sup 26}Al only in the CAI-forming region, and that large-scale heterogeneity-perhaps up to 80% of the canonical value-may have existed throughout the inner solar system. If correct, our interpretation of the Mg-isotope composition of inner solar system objects precludes the use of the {sup 26}Al-{sup 26}Mg system as an accurate early solar system chronometer.

  3. Evidence for an ancient osmium isotopic reservoir in Earth.

    PubMed

    Meibom, Anders; Frei, Robert

    2002-04-19

    Iridosmine grains from placer deposits associated with peridotite-bearing ophiolites in the Klamath mountains have extremely radiogenic 186Os/188Os ratios and old Re-Os minimum ages, from 256 to 2644 million years. This indicates the existence of an ancient platinum group element reservoir with a supra-chondritic Pt/Os ratio. Such a ratio may be produced in the outer core as a result of inner core crystallization that fractionates Os from Pt. However, if the iridosmine Os isotopic compositions are a signature of the outer core, then the inner core must have formed very early, within several hundred million years after the accretion of Earth. PMID:11964475

  4. Isotopic Evidence For Chaotic Imprint In The Upper Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Gasperini, D.

    2006-12-01

    Heterogeneities of the asthenospheric mantle along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow mantle, in a convective regime that involves mass transfer from the deep mantle, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper mantle heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper mantle heterogeneities, then if the model of marble-cake mantle (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic mantle processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same mantle process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common mantle processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main mantle process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth

  5. Evidence for an ancient osmium isotopic reservoir in Earth.

    PubMed

    Meibom, Anders; Frei, Robert

    2002-04-19

    Iridosmine grains from placer deposits associated with peridotite-bearing ophiolites in the Klamath mountains have extremely radiogenic 186Os/188Os ratios and old Re-Os minimum ages, from 256 to 2644 million years. This indicates the existence of an ancient platinum group element reservoir with a supra-chondritic Pt/Os ratio. Such a ratio may be produced in the outer core as a result of inner core crystallization that fractionates Os from Pt. However, if the iridosmine Os isotopic compositions are a signature of the outer core, then the inner core must have formed very early, within several hundred million years after the accretion of Earth.

  6. Persistently strong Indonesian Throughflow during marine isotope stage 3: evidence from radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Stumpf, Roland; Kraft, Steffanie; Frank, Martin; Haley, Brian; Holbourn, Ann; Kuhnt, Wolfgang

    2015-03-01

    The Indonesian Throughflow (ITF) connects the western Pacific Ocean with the eastern Indian Ocean, thus forming one of the major near surface current systems of the global thermohaline circulation. The intensity of the ITF has been found to be sensitive to changes in global ocean circulation, fluctuations in sea level, as well as to the prevailing monsoonal conditions of the Indonesian Archipelago and NW Australia. This study presents the first reconstruction of ITF dynamics combining radiogenic isotope compositions of neodymium (Nd), strontium (Sr), and lead (Pb) of the clay-size detrital fraction to investigate changes in sediment provenance, and paleo seawater Nd signatures extracted from the planktonic foraminifera and authigenic Fe-Mn oxyhydroxide coatings of the marine sediments focussing on marine isotope stage 3 (MIS3). Sediment core MD01-2378 was recovered within the framework of the International Marine Global Change Study (IMAGES) and is located in the area of the ITF outflow in the western Timor Sea (Scott Plateau, 13° 04.95‧ S and 121° 47.27‧ E, 1783 m water depth). In order to produce reliable seawater signatures, several extraction methods were tested against each other. The results of the study show that at this core location the extraction of surface water Nd isotope compositions from planktonic foraminifera is complicated by incomplete removal of contributions from Fe-Mn oxyhydroxides carrying ambient bottom water signatures. The bottom water Nd isotope signatures reliably obtained from the sediment coatings (average ɛNd = -5.0) document an essentially invariable water mass composition similar to today throughout the entire MIS3. The radiogenic Nd, Sr, and Pb isotope records of the clay-sized detrital fraction suggest that the Indonesian Archipelago rather than NW Australia was the main particle source at the location of core MD01-2378, and thus indicating a persistently strong ITF during MIS3. Furthermore, the variations of the detrital

  7. A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars

    NASA Astrophysics Data System (ADS)

    Borg, Lars; Drake, Michael J.

    2005-09-01

    There is widespread photogeological evidence for ubiquitous water flowing on the surface of Mars. However, the age of surface and near-surface water cannot be deduced with high precision from photogeology. While there is clear evidence for old and young fluvial features in the photogeologic record, the uncertainty in the absolute calibration of the Martian crater flux results in uncertainties of +/-1.5 Gyr in the middle period of Martian geologic history. Aqueous alteration of primary igneous minerals produces secondary minerals in Martian meteorites. Here we use the ages of secondary alteration minerals in Martian meteorites to obtain absolute ages when liquid water was at or near the surface of Mars. Aqueous alteration events in Martian meteorites occurred at 3929 +/- 37 Ma (carbonates in ALH84001), 633 +/- 23 Ma (iddingsite in nakhlites), and 0-170 Ma (salts in shergottites). Furthermore, these events appear to be of short duration, suggesting episodic rather than continuous aqueous alteration of the meteorites. The Martian meteorites appear to be contaminated by Martian surface Pb characterized by a 207Pb/206Pb ratio near 1. Lead of this composition could be produced by water-based alteration on the Martian surface. The high 129Xe/132Xe ratio in the Martian atmosphere compared to Martian meteorites indicates fractionation of I from Xe within ~100 Myr after nucleosynthesis of 129I. Such fractionation is difficult to achieve through magmatic processes. However, water very efficiently fractionates I from Xe, raising the intriguing possibility that Mars had a liquid water ocean within its first 100 Myr.1.

  8. Multi-Isotopic evidence from West Eifel Xenoliths

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Sprung, P.

    2015-12-01

    Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.

  9. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    NASA Technical Reports Server (NTRS)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  10. Strontium isotope evidence for landscape use by early hominins.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; de Ruiter, Darryl J; Lee-Thorp, Julia A; Codron, Daryl; le Roux, Petrus J; Grimes, Vaughan; Richards, Michael P

    2011-06-01

    Ranging and residence patterns among early hominins have been indirectly inferred from morphology, stone-tool sourcing, referential models and phylogenetic models. However, the highly uncertain nature of such reconstructions limits our understanding of early hominin ecology, biology, social structure and evolution. We investigated landscape use in Australopithecus africanus and Paranthropus robustus from the Sterkfontein and Swartkrans cave sites in South Africa using strontium isotope analysis, a method that can help to identify the geological substrate on which an animal lived during tooth mineralization. Here we show that a higher proportion of small hominins than large hominins had non-local strontium isotope compositions. Given the relatively high levels of sexual dimorphism in early hominins, the smaller teeth are likely to represent female individuals, thus indicating that females were more likely than males to disperse from their natal groups. This is similar to the dispersal pattern found in chimpanzees, bonobos and many human groups, but dissimilar from that of most gorillas and other primates. The small proportion of demonstrably non-local large hominin individuals could indicate that male australopiths had relatively small home ranges, or that they preferred dolomitic landscapes. PMID:21637256

  11. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A

  12. Ruthenium Isotope Fractionation During Crystallization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Fischer-Gödde, M.; Kleine, T.

    2016-08-01

    We present Ru stable isotope data of magmatic iron meteorites. These data are used to examine the effect of core crystallization on the Ru isotopic composition, and to constrain the formation history of different groups of magmatic iron meteorites.

  13. Evidence for deep sea hydrothermal fluid-mineral equilibrium from multiple S isotopes

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Ono, S.; Tivey, M. K.; Seewald, J.

    2010-12-01

    The multiple sulfur isotope systematics of hydrothermal fluids and associated sulfide mineral deposits collected in 2006 in the eastern Manus Basin, Papua New Guinea, provide an opportunity to better understand the processes of mineral precipitation, pore fluid composition, chemosynthetic energy sources, and metal-rich ore deposition in a felsic-hosted back arc hydrothermal system. Recent advances in multiple-stable isotope analytical techniques now enable the precise determination of all four stable isotopes of sulfur in hydrothermal vent fluids and co-precipitated sulfide mineral deposits, which may be used as a tracer to distinguish between sulfide derived from igneous rock, microbial sulfate reduction, and thermochemical reduction of seawater sulfate [1]. Multiple-stable isotopes of sulfur may also help constrain the relative contribution of sulfur derived by degassing of magmatic SO2 and sedimentary sulfide mineral inputs, as either process could generate the isotopically light δ34S (< 0‰) observed in some vent fluids, chalcopyrite chimney linings, and native sulfur collected at Manus Basin. We have analyzed the sulfur isotopic composition of high temperature black smoker vent fluid and associated chalcopyrite lining the inner walls of active conduits from two vent fields within the Manus Basin, including PACMANUS, located on the neovolcanic Pual ridge, and vents on discrete volcanic domes at SuSu Knolls. Preliminary results yield vent fluid δ34SH2S values ranging from -4.89 ± 0.02 to 5.41 ± 0.01, which closely match coexisting inner wall δ34Schalcopyrite values, ranging from -4.43 ± 0.01 to 5.64 ± 0.01. These results contrast with previous studies that report systematic differences in vent fluid δ34SH2S and sulfide minerals from the inner conduits of chimney structures [1, 2, 3]. The Δ33SH2S values of vent fluids range from -0.031 ± 0.027 to 0.011 ± 0.016, and those of chalcopyrite range from -0.042 ± 0.012 to 0.012 ± 0.010. Preliminary results

  14. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    USGS Publications Warehouse

    Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.

    2008-01-01

    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10??Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.

  15. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the proterozoic mantle

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1983-01-01

    Most workers agree that Proterozoic anorthosite massifs represent the crystallization products of mantle-derived magmas1,2, although the composition of the parental melts is a major unsolved petrological problem 3. As mantle-derived rocks, the massifs can be used as geochemical probes of their late Precambrian upper mantle sources. We report here Nd and Sr isotopic compositions of anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield. Here 75% of the Earth's known anorthosite is found in a 1,600-km belt from the Adirondack Mountains of northern New York State to the eastern coast of Labrador4 (Fig. 1). The results indicate that the massifs were derived from at least two distinct mantle source regions which were established before 1,650 Myr ago, and were episodically involved in magmatism over ???500 Myr. One reservoir, below the Grenville Province, and probably below much of the eastern Superior Province, was isotopically similar to the depleted, modern-day mid-ocean ridge basalt (MORB) source. The other reservoir was chondritic to moderately enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout the Superior Province. ?? 1983 Nature Publishing Group.

  16. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Hauri, Erik H.; Elkins-Tanton, Linda T.; Brown, Stephanie M.

    2014-05-01

    The Siberian Traps flood basalts transferred a large mass of volatiles from the Earth's mantle and crust to the atmosphere. The eruption of the large igneous province temporally overlapped with the end-Permian mass extinction. Constraints on the sources of Siberian Traps volatiles are critical for determining the overall volatile budget, the role of crustal assimilation, the genesis of Noril'sk ore deposits, and the environmental effects of magmatism. We measure sulfur isotopic ratios ranging from -10.8‰ to +25.3‰ Vienna Cañon Diablo Troilite (V-CDT) in melt inclusions from Siberian Traps basaltic rocks. Our measurements, which offer a snapshot of sulfur cycling far from mid-ocean ridge and arc settings, suggest the δ34S of the Siberian Traps mantle melt source was close to that of mid-ocean ridge basalts. In conjunction with previously published whole rock measurements from Noril'sk, our sulfur isotopic data indicate that crustal contamination was widespread and heterogeneous—though not universal—during the emplacement of the Siberian Traps. Incorporation of crustal materials likely increased the total volatile budget of the large igneous province, thereby contributing to Permian-Triassic environmental deterioration.

  17. Petrogenesis of orbicular ijolites from the Prairie Lake complex, Marathon, Ontario: Textural evidence from rare processes of carbonatitic magmatism

    NASA Astrophysics Data System (ADS)

    Zurevinski, Shannon E.; Mitchell, Roger H.

    2015-12-01

    A unique occurrence of orbicular ijolite is hosted in a matrix of contemporaneous holocrystalline ijolite at the 1.1 Ga Prairie Lake Carbonatite Complex (Marathon, Ontario, Canada), and is the only known occurrence of this textural type in a rock of ijolitic composition. This mineralogical and petrological study of this orbicular ijolite highlights many of the differences from other rare occurrences of orbicular rocks described from carbonatites, granites, diorites and lamprophyres. The orbicules occur along distinct, densely packed bands in equigranular nepheline-rich ijolite and range up to 6 cm in diameter. Macroscopically, the orbicules show variability in the mineralogy of their cores. Detailed imaging of the cores shows evidence of quench textures. Radial outward zoning is common near the cores with concentric banding occurring toward the margins of the orbicules. The mineralogy of the orbicules consists of: nepheline; diopside; calcite; apatite; andradite-melanite garnet; titanite; Fe-rich phlogopite; titaniferous magnetite; perovskite; with secondary natrolite, calcite and cancrinite. The mineralogy of the host ijolite is similar to that of the orbicules. Mineral compositions from the orbicular ijolite and the host ijolite are similar. Within the orbicules, anhedral minerals are found occurring in a 'matrix' of garnet throughout the distinct concentric bands. The textures within the concentric bands of the orbicules are best described as annealing recrystallization textures. The rims of the orbicules form interlocking crystals with the host ijolite resulting in near-indistinguishable boundaries. The orbicules are interpreted to represent interaction of a partially-crystallized quenched ijolitic melt, which was in contact with a second pulse of consanguineous ijolite magma. Immersion in the latter resulted in sub-solidus diffusion and annealing recrystallization. Orbicular textures were produced from previously formed quenched ijolite, which was

  18. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials

    PubMed

    Kennett; Cannariato; Hendy; Behl

    2000-04-01

    Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to -6 per mil) coinciding with smaller shifts (up to -3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations.

  19. Neodymium isotope evidence for a chondritic composition of the Moon.

    PubMed

    Rankenburg, K; Brandon, A D; Neal, C R

    2006-06-01

    Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle. PMID:16741118

  20. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials

    PubMed

    Kennett; Cannariato; Hendy; Behl

    2000-04-01

    Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to -6 per mil) coinciding with smaller shifts (up to -3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations. PMID:10753115

  1. Thermophysiology of Tyrannosaurus rex: Evidence from Oxygen Isotopes.

    PubMed

    Barrick, R E; Showers, W J

    1994-07-01

    The oxygen isotopic composition of vertebrate bone phosphate (delta(p)) is related to ingested water and to the body temperature at which the bone forms. The delta(p) is in equilibrium with the individual's body water, which is at a physiological steady state throughout the body. Therefore, intrabone temperature variation and the mean interbone temperature differences of well-preserved fossil vertebrates can be determined from the deltap variation. Values of delta(p) from a well-preserved Tyrannosaurus rex suggest that this species maintained homeothermy with less than 4 degrees C of variability in body temperature. Maintenance of homeothermy implies a relatively high metabolic rate that is similar to that of endotherms.

  2. Carboniferous arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-yuan; Li, Cai; Su, Li; Hu, Pei-yuan; Xie, Chao-ming; Wu, Hao

    2015-03-01

    The Longmu Co-Shuanghu suture zone (LSSZ), which lies between the southern Qiangtang-Baoshan block and northern Qiangtang-Qamdo block on the Tibetan Plateau, represents remnants of the Paleo-Tethys Ocean. Previous investigations have focused on the ophiolite, high-pressure zone, and metamorphic belt in this zone, whereas few studies have considered the arc magmatism. The present study examines a suite of Carboniferous arc-magmatic rocks in the western region of the LSSZ that consist of acidic to basic volcanic rocks, including rhyolite, dacite, andesite, basaltic andesite, basalt, and pyroclastics. Zircon U-Pb dating of three samples (two andesites and one dacite) by laser ablation-inductively coupled plasma-mass spectrometry demonstrates that these rocks were emplaced at ca. 351-346 Ma. The basalts have low Cr and Ni abundances, indicating that they were generated by varying degrees of partial melting of an enriched lithospheric mantle that was metasomatized by subduction-derived components. Zircons in the felsic rocks have positive εHf(t) values of 0.8-14.8, indicating an origin by varying degrees of partial melting of juvenile basaltic lower crust, consisting mainly of underplated magmas with similar compositions to the basalts. Geochemical data show that the volcanic rocks are enriched in light rare earth elements and large ion lithophile elements (e.g., Th, U, and Pb) but are strongly depleted in high field strength elements (e.g., Nb, Ta, and Ti), have high Al2O3 and low Zr concentrations, and are calc-alkaline. These magmas are therefore subduction-related volcanic arc rocks, indicating that Paleo-Tethys subduction began in the early Carboniferous.

  3. Magmatic epidote and its petrologic significance

    SciTech Connect

    Zen, A.; Hammarstrom, J.M.

    1984-09-01

    Epidote is a major magmatic mineral in tonalite and granodiorite in a belt coextensive with the Mesozoic accreted terranes between northern California and southeastern Alaska. Textural and chemical evidence indicates that epidote crystallized as a relatively late but magmatic mineral that formed through reaction with hornblende in the presence of a melt phase. The observed relations concur with experimental data on crystallization of epidote from synthetic granodiorite at 8 kbar total pressure. Plutonic rocks bearing magmatic epidote must have formed under moderately high pressures, corresponding to lower crustal depths, under fairly oxidizing conditions. 23 references, 3 figures, 1 table.

  4. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  5. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons.

    PubMed

    Freeman, K H; Hayes, J M; Trendel, J M; Albrecht, P

    1990-01-18

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  6. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds

    NASA Astrophysics Data System (ADS)

    Burnham, A. D.; Thomson, A. R.; Bulanova, G. P.; Kohn, S. C.; Smith, C. B.; Walter, M. J.

    2015-12-01

    Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≥350 km) mantle.

  7. Zircon from East Antarctica: evidence for Archean intracrustal recycling in the Kaapvaal-Grunehogna Craton from O and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Marschall, H. R.; Hawkesworth, C. J.; Storey, C.; Leat, P. T.; Dhuime, B.

    2010-12-01

    The Grunehogna Craton (GC, East Antarctica) is interpreted as part of the Archean Kaapvaal Craton of southern Africa prior to Gondwana breakup. The basement of the GC is only exposed within a small area comprising the dominantly leucocratic Annandagstoppane (ADT) granite. The granite (and hence the craton) has been dated previously only by Rb-Sr and Pb-Pb mica and whole-rock methods. Here, the crystallisation age of the granite was determined to 3,067 ± 8 Ma by U-Pb dating of zircon. This age is coeval with granitoids and volcanics in the Swaziland and Witwatersrand blocks of the Kaapvaal Craton. Inherited grains in the ADT granite were discovered with ages of up to 3,433 ±7 Ma, and are the first evidence of Palaeoarchean basement in Dronning-Maud Land. The age spectrum of the inherited grains reflects well-known tectono-magmatic events in the Kaapvaal Craton and form important pieces of evidence for the connection of the GC to the Kaapvaal Craton for at least three billion years and probably longer. Whole-rock chemistry and zircon O isotopes demonstrate a supracrustal sedimentary source for the granite, and Hf model ages show that at least two or three different crustal sources were contributing to the magma with model ages of ~3.50, ~3.75 and possibly ~3.90 Ga, respectively. 3.1 Ga granites covering ~60 % of the outcrop area of the Kaapvaal-Grunehogna Craton played a major role in the mechanical stabilisation of the continental crust during the establishment of the craton in the Mesoarchean. Combined zircon Hf-O isotope data and the lack of juvenile additions to the crust in the Mesoarchean strongly suggest that crustal melting and granite formation was caused by the deep burial of clastic sediments and subsequent incubational heating of the crust. Intracrustal recycling of this type may be an important process during cratonisation and the long-term stabilisation of continental crust.

  8. Isotopic evidence for the diets of European Neanderthals and early modern humans

    PubMed Central

    Richards, Michael P.; Trinkaus, Erik

    2009-01-01

    We report here on the direct isotopic evidence for Neanderthal and early modern human diets in Europe. Isotopic methods indicate the sources of dietary protein over many years of life, and show that Neanderthals had a similar diet through time (≈120,000 to ≈37,000 cal BP) and in different regions of Europe. The isotopic evidence indicates that in all cases Neanderthals were top-level carnivores and obtained all, or most, of their dietary protein from large herbivores. In contrast, early modern humans (≈40,000 to ≈27,000 cal BP) exhibited a wider range of isotopic values, and a number of individuals had evidence for the consumption of aquatic (marine and freshwater) resources. This pattern includes Oase 1, the oldest directly dated modern human in Europe (≈40,000 cal BP) with the highest nitrogen isotope value of all of the humans studied, likely because of freshwater fish consumption. As Oase 1 was close in time to the last Neanderthals, these data may indicate a significant dietary shift associated with the changing population dynamics of modern human emergence in Europe. PMID:19706482

  9. "Dirty" subduction during the closure of Tethyan Ocean(s)-evidence from K-rich postcollisional magmatism within Alpine-Himalayan belt

    NASA Astrophysics Data System (ADS)

    Dejan, Prelević

    2014-05-01

    The Alpine-Himalayan accretionary orogen occurs at a diffuse and long lived convergent zone between Eurasia and Gondwana that has been active since Permian-Mesozoic times, resulting in the consumption of major Tethyan ocean(s) along the Alpine-Himalayan system. The convergence involved accretion of small continental slivers, and numerous oceanic island arcs, which eventually resulted in a complex collage enclosing numerous continental crustal blocks intercalated with ophiolitic terrains of various sizes and ages forming superimposed orogenic belts. While the origin and development of the crustal segments of the lithosphere involved in the convergence along the Alpine-Himalayan system is better constrained being more accessible, the "destiny" of the lithospheric mantle beneath this accretionary orogen, the type and the timing of its metasomatic preconditioning is enigmatic. In this contribution I will draw conclusions about the nature of orogenic lithospheric mantle within the Alpine-Himalayan belt by using the geochemical and mineral data of K-rich post-collisional mantle-derived lavas from Spain, Italy, Balkans, Turkey and Iran. The volcanism is activated mostly after subduction ceased. It is diachronous with the most voluminous and widely distributed episode(s) beginning from the late Cretaceous, representing a magmatic response to the post-accretionary orogenesis. These volcanic rocks can be used as geochemical proxies to elucidate mantle geochemistry because they are derived from freshly metasomatized lithospheric mantle that is strongly enriched in radiogenic isotopes and trace elements. The whole rock and mineral chemistry of K-rich postcollisional lavas suggests that the orogenic mantle underwent much more intense and complex material recycling than anticipated only by fluid- or melt- dominated transport. This is based on several fundamental constraints: i) The lavas are strongly incompatible-element enriched with elevated 87Sr/86Sr (both in the whole rock

  10. Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systematics in an oceanic crustal section: Evidence from the Samial ophiolite

    SciTech Connect

    McCulloch, M.T.; Gregory, R.T.; Wasserburg, G.J.; Taylor, H.P. Jr.

    1981-04-10

    The Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systems have been used to distinguish between the effects of seafloor hydrothermal alteration and primary magmatic isotopic variations. The Sm-Nd isotopic system is essentially unaffected by seawater alteration, while the Rb-Sr and /sup 18/O//sup 16/O systems are sensitive to hydrothermal interactions with seawater. Sm-Nd mineral isochrons from the cumulate gabbros of the Samail ophiolite have an initial /sup 143/Nd//sup 144/Nd ratio of e/sub Nd/ = 7.8 +- 0.3, which clearly substantiates the oceanic affinity of this complex. The initial /sup 143/Nd//sup 144/Nd ratios for the harzburgite, plagiogranite, sheeted diabase dikes, and basalt units have a limited range in e/sub Nd/ of from 7.5 to 8.6, indicating that all the lithologies have distinctive oceanic affinities, although there is also some evidence for small isotopic heterogeneities in the magma reservoirs. The Sm-Nd mineral isochrons give crystallization ages of 128 +- 20 m.y. and 150 +- 40 m.y. from Ibra and 100 +- 20 m.y. from Wadi Fizh, which is approximately 300 km NW of Ibra. These crystallization ages are interpreted as the time of formation of the oceanic crust. The /sup 87/Sr//sup 86/Sr initial ratios on the same rocks have an extremely large range of from 0.7030 to 0.7065 and the d/sup 18/O values vary from 2.6 to 12.7. These large variations clearly demonstrate hydrothermal interaction of oceanic crust with seawater.

  11. Timing and sources of granite magmatism in the Ribeira Belt, SE Brazil: Insights from zircon in situ U-Pb dating and Hf isotope geochemistry in granites from the São Roque Domain

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; Andrade, Sandra; Vasconcellos, Antonio Carlos B. C.; Henrique-Pinto, Renato; Ulbrich, Horstpeter H. G. J.

    2016-07-01

    Eight new in situ U-Pb zircon age determinations by SHRIMP and LA-MC-ICPMS reveal that the main granitic magmatism in the São Roque Domain, which is largely dominated by metaluminous high-K calc-alkaline monzogranites with subordinate peraluminous leucogranites, occurred between 604 ± 3 and 590 ± 4 Ma. This small temporal range is ca. 20-30 Ma younger than previously admitted based on U-Pb TIMS dates from literature, some of which obtained in the same occurrences now dated. The observed discrepancy seems related to the presence of small Paleoproterozoic inherited cores in part of the zircon populations used for TIMS multigrain dating, which could also respond for the unusually high (up to 10 Ma) uncertainty associated with most of these dates. The younger age range now identified for the São Roque granite magmatism has important implications for the evolution of the Ribeira Fold Belt. Whilst previously admitted ages ca. 620-630 Ma substantiated correlations with the widespread and intensely foliated high-K calc-alkaline granitoid rocks of the neighbor Socorro-Guaxupé Nappe (potentially associated with an accretionary continental margin), the ˜600-590 Ma interval seems more consistent with a late deformation tectonic setting. Strongly negative ɛHf(t) characterize the magmatic zircons from the São Roque Domain granites. An eastward increase from -22 in the São Roque Granite to -11 in the Cantareira Granite and neighboring stocks suggests an across-domain shift in granite sources. Such eastward younging of sources, also indicated by Sm-Nd isotope data from granites and supracrustal sequences in neighboring domains, is suggestive that some of the first-order limits and discontinuities in this belt are not defined by the strike-slip fault systems traditionally taken to separate distinct domains. Although the negative ɛHf(t) and ɛNd(t) indicate sources with long crustal residence for all studied granite plutons, the observed range is more radiogenic than the

  12. Timing and sources of granite magmatism in the Ribeira Belt, SE Brazil: Insights from zircon in situ U–Pb dating and Hf isotope geochemistry in granites from the São Roque Domain

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; Andrade, Sandra; Vasconcellos, Antonio Carlos B. C.; Henrique-Pinto, Renato; Ulbrich, Horstpeter H. G. J.

    2016-07-01

    Eight new in situ U-Pb zircon age determinations by SHRIMP and LA-MC-ICPMS reveal that the main granitic magmatism in the São Roque Domain, which is largely dominated by metaluminous high-K calc-alkaline monzogranites with subordinate peraluminous leucogranites, occurred between 604 ± 3 and 590 ± 4 Ma. This small temporal range is ca. 20-30 Ma younger than previously admitted based on U-Pb TIMS dates from literature, some of which obtained in the same occurrences now dated. The observed discrepancy seems related to the presence of small Paleoproterozoic inherited cores in part of the zircon populations used for TIMS multigrain dating, which could also respond for the unusually high (up to 10 Ma) uncertainty associated with most of these dates. The younger age range now identified for the São Roque granite magmatism has important implications for the evolution of the Ribeira Fold Belt. Whilst previously admitted ages ca. 620-630 Ma substantiated correlations with the widespread and intensely foliated high-K calc-alkaline granitoid rocks of the neighbor Socorro-Guaxupé Nappe (potentially associated with an accretionary continental margin), the ∼600-590 Ma interval seems more consistent with a late deformation tectonic setting. Strongly negative εHf(t) characterize the magmatic zircons from the São Roque Domain granites. An eastward increase from -22 in the São Roque Granite to -11 in the Cantareira Granite and neighboring stocks suggests an across-domain shift in granite sources. Such eastward younging of sources, also indicated by Sm-Nd isotope data from granites and supracrustal sequences in neighboring domains, is suggestive that some of the first-order limits and discontinuities in this belt are not defined by the strike-slip fault systems traditionally taken to separate distinct domains. Although the negative εHf(t) and εNd(t) indicate sources with long crustal residence for all studied granite plutons, the observed range is more radiogenic than the

  13. Os isotope evidence for a differentiated plume head reservoir for the Ontong Java Nui source

    NASA Astrophysics Data System (ADS)

    Schaefer, B. F.; Hoernle, K.; Parkinson, I. J.; Golowin, R.; Portnyagin, M.; Turner, S.; Werner, R.

    2015-12-01

    Previous Os isotopic investigations of lavas from the Ontong Java Plateau1 observed that geographically widely dispersed samples of differing chemistries preserved an isochron of 123±8 Ma with an initial 187Os/188Os = 0.1289±0.0095. Samples from the Manihiki Plateau, itself a portion of the greater Ontong Java Nui (OJN) magmatic event, preserve a far greater range in Os isotopic signatures than previously reported for the OJP alone. In contrast to the OJP data which points towards a near-chondritic, primitive mantle source for both Kroenke and Kwambaita lavas, the low Ti Manihiki samples preserve 187Os/188Os(i) ranging from 0.1056-0.1714. High Ti Manihiki samples preserve 187Os/188Os(i) = 0.1094-0.1288. Such strongly subchondritic signatures require some component of recycled material in the mantle source, possibly SCLM (TRD low Ti samples ~3.1Ga; and ~2.3-2.6Ga for the high Ti samples). Higher initial Os isotope ratios could indicate the presence of metasomatised lithosphere and/or lower crust. The low Ti samples from Manihiki have been interpreted as the result of a two stage melting process, analogous to boninites2, the depleted source of which has itself been metasomatised by a HIMU component entrained within the plume head. Collectively the Ontong Java and Manihiki samples could conceivably contain mantle sourced from both an undifferentiated, near-chondritic source, as well as ancient, unradiogenic recycled sources. Thus the greater OJN province samples a heterogeneous source containing both primitive and recycled components. It is probable that greater degress of partial melting beneath Ontong Java homogenised these heterogeneities, whereas more complex, multi stage melting processes near the plume margin at Manihiki allowed sampling of the inherent heterogeneities within the plume head. 1: Parkinson et al., 2002, GCA 66(15A) A580. 2: Golowin et al., in prep.

  14. Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn-W deposit, Tasmania

    NASA Astrophysics Data System (ADS)

    Wawryk, Christine M.; Foden, John D.

    2015-02-01

    We present 50 new iron isotopic analyses of source granite and mineral separates from the Renison tin deposit in western Tasmania. The aim of the study is to characterise the composition of minerals within a tin deposit associated with a reduced, S-type magma. We have analysed bulk samples of granite, and separates of pyrrhotite, pyrite, arsenopyrite, magnetite, chalcopyrite and siderite by multi-collector inductively coupled mass spectrometry. The isotopic compositions of mineral separates are consistent with theoretical predictions of equilibrium fractionation based on Mössbauer spectroscopy and other parametric calculations. Mineral-mineral pairs yield temperatures of formation that are in agreement with prior detailed fluid inclusion studies, but are spatially inconsistent with declining fluid temperatures with distance from the causative intrusion, limiting the use of Fe isotopes as a potential geothermometer, at least in this case. Comparison of our data with published data from other deposits clearly demonstrates that pyrite, magnetite and chalcopyrite from the hottest ore fluids (>300-400 °C) at Renison are isotopically heavier than minerals sampled from a deposit formed at similar temperatures, but associated with a more oxidised and less differentiated intrusion.

  15. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-12-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including `snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

  16. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

    PubMed

    Pogge von Strandmann, Philip A E; Stüeken, Eva E; Elliott, Tim; Poulton, Simon W; Dehler, Carol M; Canfield, Don E; Catling, David C

    2015-12-18

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

  17. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

    PubMed

    Pogge von Strandmann, Philip A E; Stüeken, Eva E; Elliott, Tim; Poulton, Simon W; Dehler, Carol M; Canfield, Don E; Catling, David C

    2015-01-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  18. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    PubMed Central

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-01-01

    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  19. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: Implications for magmatic evolution of the Tarim large igneous province

    NASA Astrophysics Data System (ADS)

    Zou, Si-Yuan; Li, Zi-Long; Song, Biao; Ernst, Richard E.; Li, Yin-Qi; Ren, Zhong-Yuan; Yang, Shu-Feng; Chen, Han-Lin; Xu, Yi-Gang; Song, Xie-Yan

    2015-01-01

    Tarim LIP indicate a FOZO-like component may also contribute to Tarim LIP magmatism. Geochemical and Sr-Nd-Pb-Hf isotopic features reflect that diorites and syenitic rocks are probably derived from a FOZO-like mantle source, consistent with a plume mantle origin and then underwent crystal fractionation process.

  20. Nd-isotopic evidence for the origin of the Sudbury complex by meteoritic impact

    NASA Technical Reports Server (NTRS)

    Faggart, B. E.; Basu, A. R.; Tatsumoto, M.

    1985-01-01

    A Neodymium isotopic investigation was undertaken in order to determine the possibility that the Sudbury geological structure in Ontario, Canada was formed by meteoritic impact. Conclusive evidence points to the melting of crustal rocks by way of meteoritic impact in the forming of the Sudbury structure.

  1. Upward flow of magmatic fluids from the Old Woman granodiorite, Old Woman Mountains southeastern California

    NASA Astrophysics Data System (ADS)

    Morrison, Jean; Hoisch, Thomas D.

    1994-05-01

    Isotopic compositions, mineral equilibrium, and field relations at the contact between the midcrustal Cretaceous Old Woman granodiorite and Paleozoic carbonates indicate that water-rich, silica-saturated magmatic fluids were transported upward, away from the pluton, across an impermeable 30- to 40-m thick marble which caps the granodiorite, to higher structural levels along a complex network of hydrologically induced fractures. Within the fractures, fluids reacted to form symmetrical radiating splays of wollastonite with minor amounts of diopside, vesuvianite, and quartz. In many cases, pegmatites are found in the center of these calc-silicate skarns. Cross-cutting pegmatites and wollastonite veins in the aureole indicate that during late stages of crystallization of the granodiorite there were multiple episodes of fluid expulsion. Above the marble layer at higher structural levels, magmatic fluids flowed both laterally and vertically, interacting with lithologies in a more pervasive manner. Values of delta O-18 for calcite in the vein skarns average 11.8% and pegmatite whole rock silicate delta O-18 values average 9.4%. Thus oxygen isotopic compositions are consistent with a magmatic origin for the skarn-forming fluids. Away from the vein skarns, values of delta O-18 for the capping marble range from 18.7 to 22.1% (avg. = 21%) and values of delta C-13 range from -3.8 to -3.0% (avg. = -3.4%). The high delta O-18 values provide evidence that the marble largely retained its premetamorphic isotopic composition, indicating that fluids from the granodiorite did not flow pervasively across the unit. Lithologies at higher structural levels show evidence of more pervasive interaction with magmatic fluids: forsterite-bearing calc-silicates have delta O-18 values down to 11.8% and coarse-grained vesuvianite- and wollastonite-bearing skarns have delta O-18 values of approximately 13%.

  2. Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota

    SciTech Connect

    Nabelek, P.I. Centre National de la Recherche Scientifique, Orleans ); Russ-Nabelek, C.; Haeussler, G.T. )

    1992-01-01

    Oxygen and hydrogen isotope systematics of the Proterozoic Harney Peak Granite were examined in order to constrain its petrogenesis and to examine the role of fluids in a peraluminous granite-pegmatite magmatic system. It is shown that fractional crystallization or subsolidus interaction of the Harney Peak Granite with the magmatic fluid or a fluid derived from the schist cannot explain the difference between the {delta}{sup 18}O values of the core and perimeter granites. Although some oxygen isotope heterogeneity in the granite could be explained by assimilation of the country rocks, assimilation cannot explain all of the difference between the two granite types. Instead, it is proposed that intrusion of the magma which led to the biotite granites in the core of the pluton at the culmination of regional metamorphism initiated melting of the schists at a depth somewhat greater than the present level of erosion. The melts were emplaced into the overlying schist and differentiated into the many tourmaline-rich granite-pegmatite sills and dikes comprising much of the perimeter of the Harney Peak Granite and its satellite plutons. Alternatively, the different melts may have resulted from melting along an isotopically heterogeneous vertical section of the crust in response to the ascent of a thermal pulse.

  3. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    NASA Astrophysics Data System (ADS)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  4. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  5. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California

    NASA Astrophysics Data System (ADS)

    Tipper, Edward T.; Gaillardet, Jérôme; Louvat, Pascale; Capmas, Françoise; White, Art F.

    2010-07-01

    inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.

  6. Petrogenesis of tholeiitic basalts from the Central Atlantic magmatic province as revealed by mineral major and trace elements and Sr isotopes

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Jourdan, Fred; Bussy, François; Chiaradia, Massimo; Costa, Fidel

    2014-02-01

    The petrogenesis of the Kerforne dyke tholeiitic basalts (Brittany, France), the northernmost outcrop of the 200 Ma Central Atlantic magmatic province (CAMP), is constrained by its zoned augite and plagioclase crystals. Augite cores with high Mg/Fe and Cr suggest crystallization from near-primary magmas, with slightly enriched Rare Earth element (REE) patterns. Plagioclase crystals with high-An (An85) rounded cores are MgO- and K-rich, REE-poor, and display 87Sr/86Sr200Ma (0.7058) significantly higher than those of the surrounding ground-mass (0.7052-0.7053) suggesting open-system evolution processes. We propose a differentiation process involving mixing of different mafic magmas which occurred in less than a few hundred years judging from the lack of diffusive re-equilibration of major and trace elements in augite and of 87Sr/86Sr200Ma in plagioclase cores. The relatively large range of incompatible element contents and ratios of observed and calculated magmas are possibly due to fractional crystallization and to moderate amounts of crustal contamination which affected the more primitive magmas in particular. The calculated magmas reach near-primitive compositions and suggest that they originated from melting of a spinel peridotite slightly enriched in LREE vs. HREE.

  7. Petrogenesis of the magmatic complex at Mount Ascutney, Vermont, USA - I. Assimilation of crust by mafic magmas based on Sr and O isotopic and major element relationships

    USGS Publications Warehouse

    Foland, K.A.; Henderson, C.M.B.; Gleason, J.

    1985-01-01

    The Ascutney Mountain igneous complex in eastern Vermont, USA, is composed of three principal units with compositions ranging from gabbro to granite. Sr and O isotopic and major element relationships for mafic rocks, granites, and nearby gneissic and schistose country rock have been investigated in order to describe the petrogenesis of the mafic suite which ranges from gabbro to diorite. The entire complex appears to have been formed within a short interval 122.2??1.2 m.y. ago. The granites with ??18O near +7.8??? had an initial 87Sr/86Sr of 0.70395(??6) which is indistinguishable from the initial ratio of the most primitive gabbro. Initial 87Sr/86Sr ratios and ??18O values for the mafic rocks range from 0.7039 to 0.7057 and +6.1 to +8.6???, respectively. The isotopic ratios are highly correlated with major element trends and reflect considerable crustal contamination of a mantle-derived basaltic parent magma. The likely contaminant was Precambrian gneiss similar to exposed bedrock into which the basic rocks were emplaced. A new approach to modelling of assimilation during the formation of a cogenetic igneous rock suite is illustrated. Chemical and isotopic modelling indicate that the mafic rocks were produced by simultaneous assimilation and fractional crystallization. The relative amounts of fractionation and assimilation varied considerably. The mafic suite was not produced by a single batch of magma undergoing progressive contamination; rather, the various rocks probably were derived from separate batches of magma each of which followed a separate course of evolution. The late stage granite was apparently derived from basaltic magma by fractionation with little or no crustal assimilation. The early intrusive phases are much more highly contaminated than the final one. The observed relationships have important implications for the formation of comagmatic complexes and for isotopic modelling of crustal contamination. ?? 1985 Springer-Verlag.

  8. Lunar tungsten isotopic evidence for the late veneer.

    PubMed

    Kruijer, Thomas S; Kleine, Thorsten; Fischer-Gödde, Mario; Sprung, Peter

    2015-04-23

    According to the most widely accepted theory of lunar origin, a giant impact on the Earth led to the formation of the Moon, and also initiated the final stage of the formation of the Earth's core. Core formation should have removed the highly siderophile elements (HSE) from Earth's primitive mantle (that is, the bulk silicate Earth), yet HSE abundances are higher than expected. One explanation for this overabundance is that a 'late veneer' of primitive material was added to the bulk silicate Earth after the core formed. To test this hypothesis, tungsten isotopes are useful for two reasons: first, because the late veneer material had a different (182)W/(184)W ratio to that of the bulk silicate Earth, and second, proportionally more material was added to the Earth than to the Moon. Thus, if a late veneer did occur, the bulk silicate Earth and the Moon must have different (182)W/(184)W ratios. Moreover, the Moon-forming impact would also have created (182)W differences because the mantle and core material of the impactor with distinct (182)W/(184)W would have mixed with the proto-Earth during the giant impact. However the (182)W/(184)W of the Moon has not been determined precisely enough to identify signatures of a late veneer or the giant impact. Here, using more-precise measurement techniques, we show that the Moon exhibits a (182)W excess of 27 ± 4 parts per million over the present-day bulk silicate Earth. This excess is consistent with the expected (182)W difference resulting from a late veneer with a total mass and composition inferred from HSE systematics. Thus, our data independently show that HSE abundances in the bulk silicate Earth were established after the giant impact and core formation, as predicted by the late veneer hypothesis. But, unexpectedly, we find that before the late veneer, no (182)W anomaly existed between the bulk silicate Earth and the Moon, even though one should have arisen through the giant impact. The origin of the homogeneous (182

  9. Lunar tungsten isotopic evidence for the late veneer.

    PubMed

    Kruijer, Thomas S; Kleine, Thorsten; Fischer-Gödde, Mario; Sprung, Peter

    2015-04-23

    According to the most widely accepted theory of lunar origin, a giant impact on the Earth led to the formation of the Moon, and also initiated the final stage of the formation of the Earth's core. Core formation should have removed the highly siderophile elements (HSE) from Earth's primitive mantle (that is, the bulk silicate Earth), yet HSE abundances are higher than expected. One explanation for this overabundance is that a 'late veneer' of primitive material was added to the bulk silicate Earth after the core formed. To test this hypothesis, tungsten isotopes are useful for two reasons: first, because the late veneer material had a different (182)W/(184)W ratio to that of the bulk silicate Earth, and second, proportionally more material was added to the Earth than to the Moon. Thus, if a late veneer did occur, the bulk silicate Earth and the Moon must have different (182)W/(184)W ratios. Moreover, the Moon-forming impact would also have created (182)W differences because the mantle and core material of the impactor with distinct (182)W/(184)W would have mixed with the proto-Earth during the giant impact. However the (182)W/(184)W of the Moon has not been determined precisely enough to identify signatures of a late veneer or the giant impact. Here, using more-precise measurement techniques, we show that the Moon exhibits a (182)W excess of 27 ± 4 parts per million over the present-day bulk silicate Earth. This excess is consistent with the expected (182)W difference resulting from a late veneer with a total mass and composition inferred from HSE systematics. Thus, our data independently show that HSE abundances in the bulk silicate Earth were established after the giant impact and core formation, as predicted by the late veneer hypothesis. But, unexpectedly, we find that before the late veneer, no (182)W anomaly existed between the bulk silicate Earth and the Moon, even though one should have arisen through the giant impact. The origin of the homogeneous (182

  10. Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf-Pb-Os isotopes

    NASA Astrophysics Data System (ADS)

    Aldanmaz, Ercan; Pickard, Megan; Meisel, Thomas; Altunkaynak, Şafak; Sayıt, Kaan; Şen, Pınar; Hanan, Barry B.; Furman, Tanya

    2015-08-01

    Hf-Pb-Os isotope compositions and highly siderophile element (HSE) abundance variations are used to evaluate the mantle source characteristics and possible effects of differentiation processes in lavas from western Turkey, where the eruption of Late Miocene to Quaternary OIB-type intraplate mafic alkaline lavas followed pre-Middle Miocene convergent margin-type volcanism. Concentrations of Os, Ir, and Ru (IPGE) in the OIB-type intraplate lavas decrease with fractionation for primitive melts (MgO > 10 wt%), suggesting that these elements reside predominantly in olivine and associated HSE retaining trace phases and behave compatibly during olivine-dominated fractionation. Fractional crystallization trends indicate distinctly lower bulk partition coefficients for IPGE in more evolved lavas, possibly reflecting a change in the fractionating assemblages. Pd and Re in the primitive melts display negative correlations with MgO, demonstrating moderately incompatible behavior of these elements during fractionation, while the significantly scattered variation in Pt against MgO may indicate the effects of micronuggets of a Pt-rich alloy. Os-rich alkaline primary lavas (>50 ppt Os) exhibit a limited range of 187Os/188Os (0.1361-0.1404), with some xenolith-bearing lavas displaying depletions in 187Os/188Os (0.1131-0.1232), suggesting slight compositional modification of primitive melts through contamination with highly depleted, Os-rich mantle lithosphere. More radiogenic Os isotope ratios (187Os/188Os > 0.1954) in the evolved lavas reflect contamination of the magmas by high187Os/188Os crustal material during shallow differentiation. The OIB-type lavas show limited variations in Hf and Pb isotopes with 176Hf/177Hf = 0.282941-0.283051, 206Pb/204Pb = 18.683-19.091, 207Pb/204Pb = 15.579-15.646, 208Pb/204Pb = 38.550-38.993; 176Hf/177Hf ratios correlate negatively with 208Pb*/206Pb*, suggesting the effects of similar mantle processes on the evolution of time-integrated Th/U and Lu

  11. Petrology and geochemistry of charnockites (felsic ortho-granulites) from the Kerala Khondalite Belt, Southern India: Evidence for intra-crustal melting, magmatic differentiation and episodic crustal growth

    NASA Astrophysics Data System (ADS)

    Ravindra Kumar, G. R.; Sreejith, C.

    2016-10-01

    contents of Y (71-99 ppm; average 87), and low Sr/Y (average 2) ratios with significant negative Eu anomalies (Eu/Eu* = 0.03-0.31; average 0.23) and low Sr (average 160 ppm) contents. The protoliths of the TC are interpreted as being derived from partial melting of thickened oceanic-arc crust composed of Archaean mafic composite source rocks (i.e., eclogite and/or garnet amphibolite) with a garnet amphibolite residue. Geochemical features of the GC, such as high Rb/Sr (average 1.80) and Ba/Sr ratios (average values > 6), are considered as evidence for crustal reworking in their genesis, suggesting remelting of a quartzo-feldspathic (TTG) source, within the plagioclase stability fields. The geochemical features of the felsic ortho-granulite suite, substantiated with published geochronological data on members of the TC, GC, and AC suites, suggest a four-stage crustal evolution of the KKB. The first stage is marked by the formation of an over-thickened oceanic-arc. Zircon Hfc model ages of the TC and GC suites constrain the time of this juvenile magmatic crust-forming event as Meso- to Neoarchaean (2.8 to 2.6 Ga). The second stage corresponds to the production of TTG magmas by melting of the over-thickened oceanic-arc crust, subsequent to basaltic underplating during Palaeoproterozoic (ca. 2.1 Ga). The third stage was initiated by a transition in subduction style from shallow to steep due to continent-arc accretion. This stage is marked by the formation of granitic magmas through partial melting of the TTG crust and their differentiation into GC and TC. The zircon crystallization ages (1.89 and 1.85 Ga) of the GC indicate arc accretion occurred during the Palaeoproterozoic. The fourth stage of crustal evolution is correlated with the Mesoproterozoic (~ 1.5 Ga) emplacement of megacrystic K-feldspar granites (protoliths to the AC and augen gneisses). The distinct petrography, geochemistry and crystallization ages of the AC suggests recurrence of megacrystic, high-K calc

  12. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Rino, Shuji; Maruyama, Shigenori; Hirata, Takafumi

    2010-04-01

    We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga. The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than

  13. Evidence for a long-lived accommodation/transfer zone beneath the Snake River Plain: A possible influence on Neogene magmatism?

    NASA Astrophysics Data System (ADS)

    Konstantinou, Alexandros; Miller, Elizabeth

    2015-12-01

    Geochronologic data compiled from 12 metamorphic core complexes and their flanking regions outline important differences in tectonic and magmatic histories north and south of the Snake River Plain-Yellowstone Province (SRP-Y). Magmatism, crustal flow, metamorphism, and extensional exhumation of core complexes north of the SRP occurred mostly between 55 and 42 Ma as compared to 42-25 Ma south of the SRP, with final exhumation of the southern complexes occurring only during younger Miocene (20-0 Ma) Basin and Range faulting. These significant differences in the timing of events suggest that the now lava-covered SRP, which is at a high angle to Cordilleran trends, may have at times operated as a steep shear or transfer zone accommodating difference in strain to the north and south. Following previous suggestions, we infer that this proposed accommodation or transfer zone developed above an important lithospheric boundary localized above a tear in the subducting slab (shallower slab angle to the south) used to explain both the locus of Late Cretaceous-Paleocene magmatism and the different ages and mechanisms of slab reconfiguration and removal north and south of the SRP during the Cenozoic. The details of these different histories help outline the complex evolution of this zone and also suggest that this zone of lithospheric weakness may have subsequently focused Miocene SRP-Y hot spot magmatism.

  14. Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california

    PubMed

    Lee; Yin; Rudnick; Chesley; Jacobsen

    2000-09-15

    Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust. PMID:10988067

  15. Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california

    PubMed

    Lee; Yin; Rudnick; Chesley; Jacobsen

    2000-09-15

    Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.

  16. Chemical and U-Pb dating investigation of zircons from alnöites on Malaita, Solomon Islands: evidence for prolonged kimberlite-type magmatic activity

    NASA Astrophysics Data System (ADS)

    Simonetti, A.; Neal, C. R.

    2009-12-01

    The Solomon Islands chain is located in an area dominated by the Ontong Java Plateau (OJP). The island of Malaita formed at the obducted leading edge of the OJP and is geologically distinct from the islands to the west. Occurrences of pipe-like bodies of alnöite outcrop within limestones and mudstones in northern Malaita and have been seismically imaged offshore within the OJP. The Malaita alnöite is silica-undersaturated and contains a rich and varied suite of peridotite xenoliths and megacrysts (clinopyroxene, garnet, ilmenite, phlogopite, and minor zircon). The alnöite and associated megacrysts have been the focus of detailed chemical and radiogenic isotope investigations but the exact age of alnöite emplacement remains debatable. Previously reported ages for minerals associated with the Malaita alnöites include an Ar-Ar date of 34 Ma for phlogopite from a mantle xenolith, and a single 206Pb/238U date of 33.9 Ma obtained from a single zircon megacryst. Here we report on a detailed chemical (major and trace element) and U-Pb age investigation of zircon crystals recovered from rivers in the Aluta, Kwainale, and Faufaumela regions of central Malaita. The major element (SiO2, ZrO2, and HfO2) composition and back scattered electron (BSE) imaging of mm- to cm-sized zircons from the three locations were conducted by electron microprobe analysis. The data reveal a variation in the Zr/Hf ratio (45 to 57) for zircons from the Aluta area, whereas this ratio is relatively uniform in most zircons from Kwainale (Zr/Hf 45 to 48). Of importance, the BSE imaging reveals the homogeneous nature of the grains and the lack of inherited components. Trace element compositions of the zircon crystals were obtained by laser ablation (LA)-ICP-MS and these reveal similar chondrite-normalized REE patterns at variable enrichment levels for all grains analyzed; these patterns along with the U, Th, and Pb contents are similar to those documented for mantle-derived zircons formed within

  17. Sr and O Isotope Geochemistry of Volcán Uturuncu, Andean Central Volcanic Zone, Bolivia: Resolving Crustal and Mantle Contributions to Continental Arc Magmatism

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Feeley, T.

    2015-12-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates and in situ Sr isotope ratios (mainly plagioclase) from andesitic to dacitic composition lava flows erupted from Volcán Uturuncu in the Andean Central Volcanic Zone (CVZ). Variation in δ18O values (6.6-11.8‰ relative to SMOW) for the lava suite is large and the data as a whole exhibit no simple correlation with any parameter of compositional evolution. Plagioclase separates from nearly all rocks have δ18O values (6.6-11.8‰) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the back arc regions of the CVZ. Most Uturuncu magmas must therefore contain high 18O crustal material. This hypothesis is further supported by textures and isotopic variation (87Sr/86Sr= 0.7098-0.7165) within single plagioclase phenocrysts suggesting repeated mixing followed by crustal contamination events occurring in the shallow crustal reservoir. The dacite composition rocks show more variable and extend to higher δ18O ratios than andesite composition rocks. These features are interpreted to reflect assimilation of heterogeneous upper continental crust by low 18O andesitic magmas followed by mixing or mingling with similar composition hybrid magmas with high 18O. Conversely, the δ18O values of the andesites suggest contamination of the magmas by continental crust modified by intrusion of mantle derived basaltic magmas. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction

  18. Petrogenesis of Challis volcanics from central and southwestern Idaho - Trace element and Pb isotopic evidence

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Mertzman, Stanley A.

    1991-01-01

    An analysis of the lava flows and ash-flow tuffs in Idaho is conducted to determine the composition of the volcanics in terms of major and trace elements and Pb isotopic substances. Al2O3 is found to be low, MgO content is high, and the concentration of K2O is higher or equal to that of Na2O with respect to the lavas of mafic to intermediate composition. Trace elements and element ratios are compatible with the crustal component, and the Pb isotopic compositions suggest a lack of assimilation during crystallization. The evidence does not support the notion of a magma system related to subduction, and the data regarding Pb isotopes and trace elements point to a connection with the lithosphere. A model is proposed for the Challis volcanics in which they resulted from completely melting within the lithosphere and then extending during the late Mesozoic and early Cenozoic compression.

  19. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic

    PubMed Central

    Richards, Michael P.; Pettitt, Paul B.; Stiner, Mary C.; Trinkaus, Erik

    2001-01-01

    New carbon and nitrogen stable isotope values for human remains dating to the mid-Upper Paleolithic in Europe indicate significant amounts of aquatic (fish, mollusks, and/or birds) foods in some of their diets. Most of this evidence points to exploitation of inland freshwater aquatic resources in particular. By contrast, European Neandertal collagen carbon and nitrogen stable isotope values do not indicate significant use of inland aquatic foods but instead show that they obtained the majority of their protein from terrestrial herbivores. In agreement with recent zooarcheological analyses, the isotope results indicate shifts toward a more broad-spectrum subsistence economy in inland Europe by the mid-Upper Paleolithic period, probably associated with significant population increases. PMID:11371652

  20. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  1. Mercury Isotopic Evidence for Contrasting Mercury Transport Pathways to Coastal versus Open Ocean Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Senn, D. B.; Chesney, E. J.; Bank, M. S.; Maage, A.; Shine, J. P.

    2009-12-01

    Mercury stable isotopes provide a new method for tracing the sources and chemical transformations of Hg in the environment. In this study we used Hg isotopes to investigate Hg sources to coastal versus migratory open-ocean species of fish residing in the northern Gulf of Mexico (nGOM). We report Hg isotope ratios as δ202Hg (mass dependent fractionation relative to NIST 3133) and Δ201Hg (mass independent fractionation of odd isotopes). In six coastal and two open ocean species (blackfin and yellowfin tuna), Hg isotopic compositions fell into two non-overlapping ranges. The tuna had significantly higher δ202Hg (0.1 to 0.7‰) and Δ201Hg (1.0 to 2.2‰) than the coastal fish (δ202Hg = 0 to -1.0‰; Δ201Hg = 0.4 to 0.5‰). The observations can be best explained by largely disconnected food webs with isotopically distinct MeHg sources. The ratio Δ199Hg/Δ201Hg in nGOM fish is 1.30±0.10 which is consistent with laboratory studies of photochemical MeHg degradation and with ratios measured in freshwater fish (Bergquist and Blum, 2007). The magnitude of mass independent fractionation of Hg in the open-ocean fish suggests that this source of MeHg was subjected to extensive photodegradation (~50%) before entering the base of the open-ocean food web. Given the Mississippi River’s large, productive footprint in the nGOM and the potential for exporting prey and MeHg to the adjacent oligotrophic GOM, the different MeHg sources are noteworthy and consistent with recent evidence in other systems of important open-ocean MeHg sources. Bergquist, B. A. and Blum, J. D., 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417-420.

  2. Long Term Trends in Subantarctic Nutrient Consumption: Evidence from Sedimentary and Diatom-Bound Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Bedsole, P.

    2014-12-01

    It has been proposed that the long term increase in Subantarctic opal export during glacial periods, centered around 1 Ma, is related to enhanced iron deposition and, potentially, carbon dioxide drawdown. New bulk sedimentary and diatom-bound nitrogen isotope records are used in combination with opal accumulation data from ODP Site 1090 to investigate controls on export production over the last 3 Ma. Sedimentary nitrogen content tracks opal during periods of high iron accumulation, especially after ~1 Ma. Bulk sedimentary nitrogen isotope trends are negatively correlated with sedimentary N-content and opal accumulation. This may be signal weaker nutrient consumption during times of high production, perhaps as a result of enhanced vertical nutrient supply. Alternatively, this variation in bulk, where high values occur in organic poor intervals, is consistent with other evidence for nitrogen isotopic alteration during periods of low export to the seafloor. The diatom-bound nitrogen isotope record does not have a clear relationship with opal or iron accumulation. A long term shift in the diatom-bound N isotope values is apparent, where the average diatom-bound δ15N from 0.5-1 Ma is 4.4 ‰, and from 2-2.6 Ma is 5.9 ‰. This decrease may reflect long-term changes in nitrate availability. A first order comparison to planktonic/benthic carbon isotopic gradients suggests that enhanced vertical mixing may explain the observed productivity peaks and lower overall diatom-bound N isotope values in the interval centered around 1 Ma.

  3. Mantle fluids in the Karakoram fault: Helium isotope evidence

    NASA Astrophysics Data System (ADS)

    Klemperer, Simon L.; Kennedy, B. Mack; Sastry, Siva R.; Makovsky, Yizhaq; Harinarayana, T.; Leech, Mary L.

    2013-03-01

    The Karakoram fault (KKF) is the 1000 km-long strike-slip fault separating the western Himalaya from the Tibetan Plateau. From geologic and geodetic data, the KKF is argued either to be a lithospheric-scale fault with hundreds of km of offset at several cm/a, or to be almost inactive with cumulative offset of only a few tens of kilometers and to be just the upper-crustal localization of distributed deformation at depth. Here we show 3He/4He ratios in geothermal springs along a 500-km segment of the KKF are 3-100 times the normal ratio in continental crust, providing unequivocal evidence that a component of these hydrologic systems is derived from tectonically active mantle. Mantle enrichment is absent along the Indus-Yarlung suture zone (ISZ) just 35 km southwest of the KKF, suggesting that the mantle fluids flow only within the KKF. Within the last few Ma, the KKF must have accessed tectonically active Tibetan mantle northeast of the "mantle suture" which we therefore locate vertically beneath the KKF, very close to the surface trace of the ISZ. Hence, in southwestern Tibet, Indian crust may not now be underthrusting substantially north of the ISZ, even though Miocene underthrusting may have placed Indian crust north of the ISZ in the lower half of the Tibetan Plateau crust. This is in significant contrast to central and eastern Tibet where underthrust Indian material not only forms the lower half of the Tibetan crust but is also currently underthrusting for ∼200 km north of the ISZ. Our new constraint on KKF penetration to the mantle allows an improved description of the continuously evolving Karakoram fault, as a tectonically significant yet perhaps geologically ephemeral lithospheric structure.

  4. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d

    USGS Publications Warehouse

    Karabanov, E.B.; Prokopenko, A.A.; Williams, D.F.; Colman, Steven M.

    1998-01-01

    The paleoclimatic record from bottom sediments of Lake Baikal (eastern Siberia) reveals new evidence for an abrupt and intense glaciation during the initial part of the last interglacial period (isotope substage 5d). This glaciation lasted about 12 000 yr from 117 000 to 105 000 yr BP according to correlation with the SPEC-MAP isotope chronology. Lithological and biogeochemical evidence of glaciation from Lake Baikal agrees with evidence for the advance of ice sheet in northwestern Siberia during this time period and also with cryogenic features within the strata of Kazantzevo soils in Southern Siberia. The severe 5d glaciation in Siberia was caused by dramatic cooling due to the decrease in solar insolation (as predicted by the model of insulation changes for northern Asia according to Milankovich theory) coupled with western atmospheric transport of moisture from the opea areas of Northern Atlantic and Arctic seas (which became ice-free due to the intense warming during preceeding isotope substage 5e). Other marine and continental records show evidence for cooling during 5d, but not for intense glaciation. Late Pleistocene glaciations in the Northern Hemisphere may have begun in northwestern Siberia.

  5. Geology, geochronology, and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China: Evidence for a Paleo-Mesoproterozoic tectono-magmatic event and associated IOCG systems in the western Yangtze Block

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Ding, Jun; Deng, Jun; Peng, Hui-juan

    2015-05-01

    Numerous Fe-Cu-Au-rare earth element (REE) deposits have been identified within the Paleoproterozoic Dongchuan Group of the Kangdian region of SW China. This region hosts the Yinachang deposit, which contains more than 16.8 Mt Fe, 682.6 kt Cu, and significant amounts of Au and the REEs. Both the Haizi dolerite and a magmatic breccia in the central part of the Kangdian region are thought to be related to the Dongchuan dolerite in the northern part of this region; all three of these units provide evidence of the tectono-magmatic history of the Kunyang Rift and are closely spatially and temporally related to Fe-Cu-Au-REE mineralization in this region. Here, we present a new zircon U-Pb age for the Haizi dolerite (1764.7 ± 5.7 Ma), which is consistent with the known age of the Dongchuan dolerite (1765 ± 57 Ma), allowing the determination of the precise timing of Paleo-Mesoproterozoic intraplate mafic magmatism in this region (1.72-1.77 Ga). The breccia in this region formed during magmatism at around 1.73-1.74 Ga, as documented by zircon U-Pb dating of matrix material within the Yinachang magmatic breccia (1739 ± 13 Ma). The geochemistry of Haizi and Dongchuan dolerite samples provides evidence of intraplate extension in the Kangdian region, the majority of which was concentrated along the Kunyang Rift. The Kangdian region underwent variable degrees of extension, as evidenced by the fact that break-up in the central part of this region occurred earlier than in the north. This also led to the emplacement of deeper-sourced alkaline magmas (usually OIB-type magmas) in the central part of this region. The iron-oxide copper gold (IOCG) mineralization in the Kangdian region is associated with the upwelling of mantle material. A chalcopyrite Re-Os age of 1648 ± 14 Ma from the Yinachang Fe-Cu-Au-REE deposit obtained during this study is some 50-100 Myr younger than the timing of emplacement of the deeply sourced Haizi and Dongchuan dolerites. The Yinachang deposit is a

  6. Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: The 25-26 October 2013 Etna lava fountaining event

    NASA Astrophysics Data System (ADS)

    Greco, Filippo; Currenti, Gilda; Palano, Mimmo; Pepe, Antonio; Pepe, Susi

    2016-04-01

    To evaluate the volcanic processes leading to the 25-26 October 2013 lava fountain at Mount Etna, we jointly investigated gravity, GPS, and DInSAR measurements covering the late-June to early-November time interval. We used finite element modeling to infer a shallow magmatic reservoir which (i) inflated since July 2013, (ii) fed the volcanic activity at the summit craters during 25-26 October, and (iii) deflated due to magma drainage related to this volcanic activity. We suggested that this reservoir belongs to a shallow volume, which is located beneath the summit area and is replenished by magma rising from deep reservoirs and fed the short-term volcanic activity, representing a persistent shallow magmatic plumbing system of Etna. In addition, the model results show that there is a large discrepancy between the erupted and shallow reservoir deflation volumes, which could be reasonably attributable to a highly compressible volatile-rich magma.

  7. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high ??18O calcites (25.0 to 27.2), low ??18O wollastonites (-1.3 to 3.5), and sharp gradients in ??18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn). Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts. ?? 1984 Springer-Verlag.

  8. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence

    NASA Astrophysics Data System (ADS)

    Reis, Nelson Joaquim; Teixeira, Wilson; Hamilton, Mike A.; Bispo-Santos, Franklin; Almeida, Marcelo Esteves; D'Agrella-Filho, Manoel Souza

    2013-08-01

    The Avanavero Large Igneous Province (LIP) constitutes the most important Paleoproterozoic mafic magmatism event in the Guiana Shield, northern Amazonian Craton. It comprises voluminous dykes and sills, the latter intruded into regional sedimentary cover successions such as the Roraima Supergroup and Urupi Formation. Roughly contemporary mafic magmatism such as the Crepori Dolerite occurs in the southern part of the Amazonian Craton (Central Brazil Shield). This study reports new geochemical data for samples from the Avanavero Dolerite and the coeval Quarenta Ilhas Dolerite, as well as reassessing published information on roughly contemporaneous mafic dykes in the shield to address issues related with the tectonic significance of such an intraplate igneous event and paleogeographic reconstructions. The Avanavero magmatism is tholeiitic and is geochemically similar to E-MORB and subcontinental lithospheric mantle basalts. New U-Pb baddeleyite ages of 1795 ± 2 Ma and 1793 ± 1 Ma, respectively, from occurrences in both the Pakaraima and Urupi Blocks at the north and south portions of the Guiana Shield confirm that they belong to the Avanavero LIP. These two ages are within error of a U-Pb age of 1794 ± 4 Ma for an Avanavero dyke in Guyana. Slightly younger published U-Pb ages range from about 1780-1787 Ma, including the Crepori Dolerite in Central Brazil Shield (southern Amazonian Craton). This may indicate that two pulses of magmatism could be associated with the Avanavero event. The paleomagnetic data favour a Laurentia/Baltica/Amazonia link at 1.79 Ga, and this large landmass may have constituted the core of the Columbia supercontinent during Late Proterozoic times.

  9. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  10. U-Pb zircon and geochemical evidence for bimodal mid-Paleozoic magmatism and syngenetic base-metal mineralization in the Yukon-Tanana terrane, Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Wooden, J.L.; Hopkins, M.J.

    2004-01-01

    New SHRIMP (sensitive, high-resolution ion microprobe) U-Pb zircon ages and trace element geochemical data for mafic and felsic metaigneous rocks of the pericratonic Yukon-Tanana terrane in east-central Alaska help define the tectonic setting of mid-Paleozoic magmatism and syngenetic hydrothermal Zn-Pb-Ag mineralization along the ancient Pacific margin of North America. We compare data from similar greenschist-facies sequences of bimodal volcanic and subvolcanic rocks associated with carbonaceous and siliciclastic marine sedimentary rocks, in the Wood River area of the Alaska Range and the Salcha River area of the Yukon-Tanana Upland, and from amphibolite-facies augen gneiss and mafic gneiss (amphibolite) in the Goodpaster River area of the upland. Allowing for analytical uncertainties, igneous crystallization age ranges of 376-353 Ma, 378-346 Ma, and 374-358 Ma are indicated by 13 new SHRIMP U-Pb dates for the Wood River, Salcha River, and Goodpaster River areas, respectively. Bimodal magmatism is indicated by Late Devonian crystallization ages for both augen gneiss (371 ?? 3 and 362 ?? 4 Ma) and associated orthoamphibolite (369 ?? 3 Ma) in the upland and by stratigraphic interleaving of mafic and felsic rocks in the Alaska Range. Metabasites in all three study areas have elevated HFSE (high field strength element) and REE (rare earth element) contents indicative of generation in a within-plate (extensional) tectonic setting. Within-plate trace element signatures also are indicated for peralkaline metarhyolites that host the largest volcanogenic massive sulfide deposits of the Bonnifield district in the Wood River area and for metarhyolite tuff interlayered with the carbonaceous Nasina assemblage, which hosts sedimentary exhalative sulfide occurrences in the Salcha River area. Most of the other felsic metaigneous samples from the Alaska Range and the Yukon-Tanana Upland have geochemical signatures that are similar to those of both average upper continental crust

  11. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan.

    PubMed

    Arnold, Elizabeth R; Hartman, Gideon; Greenfield, Haskel J; Shai, Itzhaq; Babcock, Lindsay E; Maeir, Aren M

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900-2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  12. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan

    PubMed Central

    Greenfield, Haskel J.; Shai, Itzhaq; Babcock, Lindsay E.; Maeir, Aren M.

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900–2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  13. Neoproterozoic-middle Paleozoic tectono-magmatic evolution of the Gorny Altai terrane, northwest of the Central Asian Orogenic Belt: Constraints from detrital zircon U-Pb and Hf-isotope studies

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min; Buslov, Mikhail M.; Cai, Keda; Zhao, Guochun; Zheng, Jianping; Rubanova, Elena S.; Voytishek, Elena E.

    2015-09-01

    The Gorny Altai terrane (GA) is a key area in understanding the crustal evolution of the Central Asian Orogenic Belt (CAOB). This paper reports U-Pb and Hf-isotope data for detrital zircons from Cambrian to early Devonian sedimentary sequences to constrain their provenance, as well as the tectono-magmatic events and crustal growth in this region. Nearly all the detrital zircons are characterized by euhedral to subhedral morphology, high Th/U ratios (ca. 0.1-1.6) and typical oscillatory zoning, indicating a magmatic origin. The three samples from the Gorny Altai Group (middle Cambrian to early Ordovician) yield detrital zircon populations that are composed predominantly of 530-464 Ma grains, followed by a subordinate group of 641-549 Ma old. The Silurian and Devonian samples exhibit similar major zircon populations (555-456 Ma and 525-463 Ma, respectively), but a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sample. Our results suggest that detritus from the nearby Kuznetsk-Altai intra-oceanic island arc served as a unitary source for the Cambrian-Silurian sedimentary sequences, but older detritus from other sources added to the early Devonian sequence. The low abundance of ca. 640-540 Ma detrital zircons may testify that this island arc was under a primitive stage in this period, when mafic volcanic rocks probably dominated. In contrast, the dominant population of ca. 530-470 Ma zircons may indicate an increased amount of granitic rocks in the source area, suggesting that the Kuznetsk-Altai island arc possibly evolved into a mature one in the Cambrian to early Ordovician. The ca. 530-470 Ma detrital zircons are almost exclusively featured by positive εHf(t) values and have two-stage Hf model ages of ca. 1.40-0.45 Ga, indicating that the precursor magmas were sourced predominantly from heterogeneous juvenile materials. We conclude that the late Neoproterozoic to early Paleozoic magmatism in the Kuznetsk-Altai arc made a

  14. U-Pb Dating, whole rock and Sr-Nd-Pb-O isotope geochemistry of collisional magmatism in the CACC: Çiçekdaǧ igneous complex (ÇIC)

    NASA Astrophysics Data System (ADS)

    Deniz, Kiymet; Kagan Kadioglu, Yusuf; Stuart, Finlay; Ellam, Rob; Boyce, Adrian; Condon, Daniel

    2015-04-01

    The closure of Neotethys induced from calcalkaline through alkaline magmatism within the Central Anatolia Crystalline Complex (CACC) during the late Cretaceous-early Paleogene. Timing of these magmatism is very important for understanding the magmato-tectonic evolution and the relation with the collision. Despite the genesis of felsic products are well understood, there is lack of petrogenetic explanation about especially alkaline mafic products. The relation between Neotethyan ophiolites and late alkaline dykes which haven't reported before is the most important undeclared gap. Çiçekdağ igneous complex (ÇIC) is one of the best area for explaining all of these problems within the CACC. In accordance with these purposes, we have carried out detailed petrographic, whole rock geochemical, Sr-Nd-Pb-O isotopic and geochronological (U/Pb and Ar/Ar) study of the rocks in the ÇIC in order to unravel the magmatic history of the CACC and thus constrain the tectonic history. The intrusive rocks of the ÇIC are differentiated into four main group as an ophiolites, calcalkaline series, alkaline series and late alkaline dykes. The felsic and mafic units intruded to the ophiolitic rocks. The calcalkaline series mostly composed of monzonites and monzodiorite porphyry whereas the alkaline series consist of syenites and feldspathoid-bearing gabbros. Variations in the major oxide compositions of both rock series can be attributed with fractionation of clinopyroxene, plagioclase, amphibole, apatite and iron titan oxide minerals. The high 87Sr/86Sr and low 143Nd/144Nd of both series are indicative of mantle sources with large continental crustal components. Feldspar and quartz oxygen isotope data from calcalkaline and alkaline series have a range of δ18O values 5.1-11.4o 8.3-9.2o and 7.7-14.1o 10.2-13.7o respectively and are compatible with the values for I-A-type granitoids. Both rock series represent the mixed (mantle-crustal) origin. The combination of all data suggest that

  15. Reassessment of the Role of Magmatism in the Evolution of the Catalina MCC: Evidence for a Felsic-Intermediate Pluton at Shallow Depths

    NASA Astrophysics Data System (ADS)

    Terrien, J. J.; Finn, C. A.; Baldwin, S. L.

    2005-12-01

    Aeromagnetic and Bouguer gravity data from the Catalina metamorphic core complex (MCC) combined with thermochronologic data provide evidence for the presence of a subsurface shallow level pluton in the region. The Catalina MCC located in southeastern Arizona includes the Tortolita, Santa Catalina and Rincon Mountains. The Catalina MCC trends NW-SE and the direction of extension along the Catalina detachment fault was top to the southwest. Aeromagnetic and Bouguer gravity data from the region show large NW-SE-trending highs, bordered to the NE by parallel NW-SE-trending magnetic and gravity lows. The lows can be attributed to the Wilderness granitic suite, which is exposed at the surface and extends up to 12 km below the surface based on previous gravity modeling (Holt et al., 1986). Forward modeling of the aeromagnetic data and Bouguer gravity data was performed in order to: 1) constrain the nature of the contact between the magnetic body and the Wilderness suite, 2) constrain the depth of the magnetic body and 3) distinguish between upwarping of the lower crust and pluton emplacement as mechanisms in MCC formation. Two NE-SW-trending profiles, which transect both the highs and the lows and one NW-SE profile from the magnetic and gravity highs, were modeled. The models indicate that the contact between the magnetic/dense body and the Wilderness suite is near vertical or steeply dipping to the northwest. The preferred models show the depth to the body ranges from <1 km to ~ 4 km. Several models were explored to distinguish between a pluton and upwarping of the lower crust as the cause of the magnetic/gravity high, features that have been incorporated in most models for MCC formation. Modeling shows upwarping of lower crustal is not possible because the density needed to represent the lower crust is too high to fit the observed gravity data. An alternative explanation is that the body represents a felsic to intermediate pluton. The aeromagnetic map patterns suggest

  16. Magmatic Evolution of the Coso Geothermal Area, California

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Miller, J. S.; Leeman, W. P.; Johnson, B. R.; Monastero, F. C.

    2007-12-01

    Geothermal energy in the Coso field owes its origin to basaltic magmatism. Volcanism commenced ~3.5 Ma ago, coincident with a widespread Pliocene outburst in eastern California. Although most basalts associated with this event are highly potassic, those at Coso are not. Pliocene volcanic rocks at Coso (erupted between 3.5-2 Ma) range from basalt to rhyodacite, show abundant petrographic evidence for open-system behavior (e.g., quartz xenocrysts in basalts), and have compositions consistent with mixing. In contrast, Pleistocene rocks, erupted <1 Ma ago, comprise a strongly bimodal suite of mildly alkalic basalt and high-silica rhyolite. Pleistocene basalts differ from their Pliocene counterparts in generally having more depleted 87Sr/86Sr and ɛNd values (0.703, +7 vs. 0.704, +4); higher TiO2 and Nb; lower MgO; greater stalling depths in the crust. Pliocene rocks are distinctly arc-like even though they were erupted ~10 Ma after subduction ceased. In contrast, Pleistocene basalts have a distinctly OIB-like geochemical signature, with undepleted high field strength elements and plume-like radiogenic isotope ratios; these characteristics are shared with late Cenozoic basalts across the western U.S. Rare Pleistocene basalts that were erupted from within the footprint of the rhyolite field have notably high TiO2 contents (>3 wt%), similar to basalts from the Columbia River and Snake River Plain fields. Unlike Pliocene rocks, which scatter toward isotopic values of local basement with increasing SiO2, Pleistocene rhyolites generally have high and consistent ɛNd (+1 - +2.5). Producing this signature by AFC processes involving basalt and basement rocks requires remarkably consistent mixing and fractionation at small-volume volcanic centers separated by several km. Alternatively, high ɛNd values in the rhyolites could have been produced by partial melting of Pliocene basalts and andesites, which have very similar Nd isotopic compositions. Increasing ɛNd in silicic rocks

  17. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    PubMed

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-28

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  18. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  19. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    PubMed

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  20. Stable isotope evidence for hydrologic conditions during regional metamorphism in the Panamint Mountains, California

    SciTech Connect

    Bergfeld, D.; Nabelek, P.I. . Dept. of Geological Sciences); Labotka, T.C. . Dept. of Geological Sciences)

    1992-01-01

    The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable isotopic analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schists are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon isotopic data indicate that most isotopic changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is evident in the isotopic data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.

  1. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago.

    PubMed

    Hren, M T; Tice, M M; Chamberlain, C P

    2009-11-12

    Stable oxygen isotope ratios (delta(18)O) of Precambrian cherts have been used to establish much of our understanding of the early climate history of Earth and suggest that ocean temperatures during the Archaean era ( approximately 3.5 billion years ago) were between 55 degrees C and 85 degrees C (ref. 2). But, because of uncertainty in the delta(18)O of the primitive ocean, there is considerable debate regarding this conclusion. Examination of modern and ancient cherts indicates that another approach, using a combined analysis of delta(18)O and hydrogen isotopes (deltaD) rather than delta(18)O alone, can provide a firmer constraint on formational temperatures without independent knowledge of the isotopic composition of ambient waters. Here we show that delta(18)O and deltaD sampled from 3.42-billion-year-old Buck Reef Chert rocks in South Africa are consistent with formation from waters at varied low temperatures. The most (18)O-enriched Buck Reef Chert rocks record the lowest diagenetic temperatures and were formed in equilibrium with waters below approximately 40 degrees C. Geochemical and sedimentary evidence suggests that the Buck Reef Chert was formed in shallow to deep marine conditions, so our results indicate that the Palaeoarchaean ocean was isotopically depleted relative to the modern ocean and far cooler (

  2. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago.

    PubMed

    Hren, M T; Tice, M M; Chamberlain, C P

    2009-11-12

    Stable oxygen isotope ratios (delta(18)O) of Precambrian cherts have been used to establish much of our understanding of the early climate history of Earth and suggest that ocean temperatures during the Archaean era ( approximately 3.5 billion years ago) were between 55 degrees C and 85 degrees C (ref. 2). But, because of uncertainty in the delta(18)O of the primitive ocean, there is considerable debate regarding this conclusion. Examination of modern and ancient cherts indicates that another approach, using a combined analysis of delta(18)O and hydrogen isotopes (deltaD) rather than delta(18)O alone, can provide a firmer constraint on formational temperatures without independent knowledge of the isotopic composition of ambient waters. Here we show that delta(18)O and deltaD sampled from 3.42-billion-year-old Buck Reef Chert rocks in South Africa are consistent with formation from waters at varied low temperatures. The most (18)O-enriched Buck Reef Chert rocks record the lowest diagenetic temperatures and were formed in equilibrium with waters below approximately 40 degrees C. Geochemical and sedimentary evidence suggests that the Buck Reef Chert was formed in shallow to deep marine conditions, so our results indicate that the Palaeoarchaean ocean was isotopically depleted relative to the modern ocean and far cooler (

  3. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  4. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    NASA Astrophysics Data System (ADS)

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  5. The Origin of Dark Inclusions in Allende: New Evidence from Lithium Isotopes

    NASA Technical Reports Server (NTRS)

    Sephton, Mark A.; James, Rachael H.; Zolensky, Michael E.

    2006-01-01

    Aqueous and thermal processing of primordial material occurred prior to and during planet formation in the early solar system. A record of how solid materials were altered at this time is present in the carbonaceous chondrites, which are naturally delivered fragments of primitive asteroids. It has been proposed that some materials, such as the clasts termed dark inclusions found in type III chondrites, suggest a sequence of aqueous and thermal events. Lithium isotopes (Li-6 and Li-7) can reveal the role of liquid water in dark inclusion history. During aqueous alteration, Li-7 passes preferentially into solution leaving Li-6 behind in the solid phase and, consequently, any relatively extended periods of interaction with Li-7-rich fluids would have left the dark inclusions enriched in the heavier isotope when compared to the meteorite as a whole. Our analyses of lithium isotopes in Allende and its dark inclusions reveal marked isotopic homogeneity and no evidence of greater levels of aqueous alteration in dark inclusion history.

  6. Magmatism on the Moon

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie

    2016-04-01

    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  7. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene

    USGS Publications Warehouse

    Nielsen, S.G.; Mar-Gerrison, S.; Gannoun, A.; LaRowe, D.; Klemm, V.; Halliday, A.N.; Burton, K.W.; Hein, J.R.

    2009-01-01

    The first high resolution thallium (Tl) isotope records in two ferromanganese crusts (Fe-Mn crusts), CD29 and D11 from the Pacific Ocean are presented. The crusts record pronounced but systematic changes in 205Tl/203Tl that are unlikely to reflect diagenetic overprinting or changes in isotope fractionation between seawater and Fe-Mn crusts. It appears more likely that the Fe-Mn crusts track the Tl isotope composition of seawater over time. The present-day oceanic residence time of Tl is estimated to be about 20,000??yr, such that the isotopic composition should reflect ocean-wide events. New and published Os isotope data are used to construct age models for these crusts that are consistent with each other and significantly different from previous age models. Application of these age models reveals that the Tl isotope composition of seawater changed systematically between ~ 55??Ma and ~ 45??Ma. Using a simple box model it is shown that the present day Tl isotope composition of seawater depends almost exclusively on the ratio between the two principal output fluxes of marine Tl. These fluxes are the rate of removal of Tl from seawater via scavenging by authigenic Fe-Mn oxyhydroxide precipitation and the uptake rate of Tl during low temperature alteration of oceanic crust. It is highly unlikely that the latter has changed greatly. Therefore, assuming that the marine Tl budget has also not changed significantly during the Cenozoic, the low 205Tl/203Tl during the Paleocene is best explained by a more than four-fold higher sequestration of Tl by Fe-Mn oxyhydroxides compared with at the present day. The calculated Cenozoic Tl isotopic seawater curve displays a striking similarity to that of S, providing evidence that both systems may have responded to the same change in the marine environment. A plausible explanation is a marked and permanent increase in organic carbon export from ~ 55??Ma to ~ 45??Ma, which led to higher pyrite burial rates and a significantly reduced

  8. Further evidence of 777 Ma subduction-related continental arc magmatism in Eastern Dom Feliciano Belt, southern Brazil: The Chácara das Pedras Orthogneiss

    NASA Astrophysics Data System (ADS)

    Koester, E.; Porcher, C. C.; Pimentel, M. M.; Fernandes, L. A. D.; Vignol-Lelarge, M. L.; Oliveira, L. D.; Ramos, R. C.

    2016-07-01

    In this study new SHRIMP U-Pb zircon data for the Chácara das Pedras Gneiss in Porto Alegre, southern Brazil are presented. They represent a small exposure of the crust which was intruded by a large volume of orogenic to anorogenic granitoids at ca. 618-562 m.y. in the Eastern Domain of the Dom Feliciano Belt. The Chácara das Pedras tonalitic orthogneiss has geochemical similarities with subduction-related magmatic rocks of continental arcs. They present high Sr initial ratios (∼0.712), negative ɛNd(t = 777) values (∼-6), TDM varying from 1.8 to 2.0 Ga. The igneous protoliths of these orthogneisses were previously considered to be Paleoproterozoic based on an upper intercept age of discordant zircon analyses. In the present study these orthogneisses were re-sampled and re-analyzed in an attempt to obtain more concordant analytical data. The U-Pb zircon analyses were carried out using the SHRIMP IIe at the Laboratório de Geocronologia de Alta Resolução of the Universidade de São Paulo. The U-Pb concordia age obtained for igneous textural domains of the zircon grains is 777 ± 4 Ma. A few analyses on zircon overgrowths give poorly defined late Cryogenian ages of ca. 650 Ma. Older ages, mostly discordant, were obtained in a few zircon cores, showing an upper intercept age of ca. 1.9 Ga. One sample of the Três Figueiras Granodiorite, which crosscut the orthogneiss in the same outcrop, was also investigated. The zircons of this granodiorite are, however, mostly metamitic, preventing the determination of a reliable age. Some concordant analyses from a few grains define ages ranging in the interval between ca. 603 and 1022 Ma. The youngest (ca. 603 Ma) may represent a maximum age for the granodiorite crystallization. Older ages, with discordance <10%, are of 745, 777, 836 and 1022 Ma. The 777 ± 4 Ma age obtained for the Chácara das Pedras orthogneiss is the first Early Cryogenian magmatic age determined for granitoids in the Porto Alegre region, although

  9. Zircon U-Pb geochronological, geochemical, and Sr-Nd isotope data for Early Cretaceous mafic dykes in the Tancheng-Lujiang Fault area of the Shandong Province, China: Constraints on the timing of magmatism and magma genesis

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Hu, Ruizhong; Zhai, Mingguo; Gao, Shan; Lai, Shaocong; Yan, Jun; Coulson, Ian M.; Zou, Haibo

    2015-02-01

    The timing and source of magmatism that formed Early Cretaceous dolerite dykes in the Tancheng-Lujiang (Tan-Lu) Fault area of the southeastern North China Craton was determined using geochronological, geochemical, and whole-rock Sr-Nd isotopic data. Laser ablation-inductively coupled plasma-mass (LA-ICP-MS) spectrometry U-Pb analysis of zircon yielded consistent ages of 129.6 ± 0.7, 126.8 ± 0.7, 125.5 ± 0.7, 124.9 ± 0.9, 126.4 ± 0.7, and 125.5 ± 0.7 Ma for six samples of the mafic dykes within the NCC. The K2O + Na2O concentrations (5.02-5.21 wt.%) of the dykes indicate they are alkaline and these dykes have K2O concentrations (2.35-2.48 wt.%) that indicate they are shoshonitic. These dolerites are also characterized by high and wide ranging (La/Yb)N (14.5-36.0), have slightly negative Eu anomalies (δEu = 0.70-0.91) and positive Ba, U, K, and Pb anomalies, and are depleted in the high field strength elements (Nb, Ta, P, and Ti). In addition, these mafic dykes are characterized by high radiogenic Sr [(87Sr/86Sr)i = 0.7099-0.7100] and negative εNd (t) values (-14.4 to -13.7). These data suggest that the magmas that formed the dykes were derived through the partial melting (12.0-15.0%) of an enriched region of the mantle that was hybridized during interaction with subducted sedimentary rocks from the Yangtze Craton. The parental magmas then fractionated olivine and Fe-Ti oxides during ascent and underwent negligible crustal contamination during magma emplacement. These mafic magmas were finally emplaced as dyke swarms associated with lithospheric extension.

  10. Fluid inclusion and H-O isotope evidence for immiscibility during mineralization of the Yinan Au-Cu-Fe deposit, Shandong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Gu, X. X.; Liu, L.; Dong, S. Y.; Li, K.; Li, B. H.; Lv, P. R.

    2011-07-01

    The fluid inclusion and H-O isotope studies have provided the evidences for the source of ore-forming fluids, and helped to recognize two types of immiscibility and their relationships with mineralization. Hydrogen and oxygen isotopic geochemistry shows that the earlier ore-forming fluids during the anhydrous skarn stage (I) and the hydrous skarn-magnetite stage (II) were mainly derived from magmatic water, while the later fluids during the quartz-sulfide stage (III) and the carbonate stage (IV) were mainly from magmatic water mixed with small amounts of meteoric water. Various types of fluid inclusions, including abundant vapor- or liquid-rich two-phase aqueous inclusions, daughter minerals-bearing multiphase inclusions, CO 2-H 2O inclusions, and less abundant liquid inclusions, vapor inclusions and melt inclusions, are present in hydrothermal minerals of different stages. The liquid-vapor fluid inclusions are mainly composed of H 2O, with significant amounts of CO 2 and a small amount of CH 4. In the opaque-bearing fluid inclusions, the hematite and fahlore (tetrahedrite) were identified. The homogenization temperature of the aqueous fluid inclusions decreases from Stage I (520-410 °C), through Stage II (430-340 °C) and III (250-190 °C), to Stage IV (190-130 °C). The coexistence of melt inclusions with simultaneously trapped vapor- or liquid-rich two-phase aqueous inclusions and daughter minerals-bearing multiphase inclusions in garnet, diopside and epidote of Stages I and II suggests an immiscibility between silicate melt and hydrothermal fluid. It is an effective mechanism on scavenging and transporting ore-forming components from magmas. The aqueous fluid inclusions with various vapor/liquid ratios (from <10% to >65%) commonly coexist with simultaneously trapped liquid inclusions, vapor inclusions, daughter minerals-bearing multiphase inclusions and CO 2-H 2O inclusions in the quartz of Stage III, and the different kinds of the fluid inclusions have

  11. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to

  12. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil

    NASA Astrophysics Data System (ADS)

    Francisco da Silva Filho, Adejardo; de Pinho Guimarães, Ignez; Santos, Lucilene; Armstrong, Richard; Van Schmus, William Randall

    2016-07-01

    The Pernambuco Alagoas (PEAL) domain shows the major occurrence of granitic batholiths of the Borborema Province, NE Brazil, with Archean to Neoproterozoic range of Nd TDM model ages, giving clues on the role of granites during the Brasiliano orogeny. SHRIMP U/Pb zircon geochronological data for seven granitic intrusions of the PEAL domain divide the studied granitoids into three groups: 1) early-to syn-collision granitoids with crystallization ages ca. 635 Ma (Serra do Catú pluton), 2) syn-collision granitoids with crystallization ages 610-618 Ma (Santana do Ipanema, Água Branca, Mata Grande and Correntes plutons) and 3) late-to post-collision granitoids with ages of ca. 590 Ma (Águas Belas, and Cachoeirinha plutons). The intrusions of group 1 and 2, except the Mata Grande and Correntes plutons, show Nd TDM model ages ranging from 1.2 to 1.5 Ga, while the granitoids from group 3, and Mata Grande Pluton and Correntes plutons have Nd TDM model ages ranging from 1.7 to 2.2 Ga. The studied granitoids with ages <600 Ma are high-K, calc-alkaline, shoshonitic and those with ages <600 Ma are transitional high-K calc-alkaline to alkaline. The volcanic arc signatures associated with the Paleoproterozoic Nd TDM model ages are interpreted as inherited from the source rocks. The oldest ages and lower Nd TDM model ages are recorded from granitoids intruded in the southwest part of the PEAL domain, suggesting that these intrusions are associated with slab-tearing during convergence between the PEAL and the Sergipano domains. Zircon oxygen isotopic data in some of the studied plutons, together with the available Nd isotopic data suggest that the Brasiliano orogeny strongly reworked older crust, of either Paleoproterozoic or Tonian ages. The studied granitoids are coeval with calc-alkaline granitoids of the Transversal Zone and Sergipano domains and rare high-K calc-alkaline granitoids from the Transversal Zone domain. Such large volumes of high-K granitoids with

  13. Geochemistry, U–Pb geochronology, Sm–Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil

    NASA Astrophysics Data System (ADS)

    Francisco da Silva Filho, Adejardo; de Pinho Guimarães, Ignez; Santos, Lucilene; Armstrong, Richard; Van Schmus, William Randall

    2016-07-01

    The Pernambuco Alagoas (PEAL) domain shows the major occurrence of granitic batholiths of the Borborema Province, NE Brazil, with Archean to Neoproterozoic range of Nd TDM model ages, giving clues on the role of granites during the Brasiliano orogeny. SHRIMP U/Pb zircon geochronological data for seven granitic intrusions of the PEAL domain divide the studied granitoids into three groups: 1) early-to syn-collision granitoids with crystallization ages ca. 635 Ma (Serra do Catú pluton), 2) syn-collision granitoids with crystallization ages 610-618 Ma (Santana do Ipanema, Água Branca, Mata Grande and Correntes plutons) and 3) late-to post-collision granitoids with ages of ca. 590 Ma (Águas Belas, and Cachoeirinha plutons). The intrusions of group 1 and 2, except the Mata Grande and Correntes plutons, show Nd TDM model ages ranging from 1.2 to 1.5 Ga, while the granitoids from group 3, and Mata Grande Pluton and Correntes plutons have Nd TDM model ages ranging from 1.7 to 2.2 Ga. The studied granitoids with ages <600 Ma are high-K, calc-alkaline, shoshonitic and those with ages <600 Ma are transitional high-K calc-alkaline to alkaline. The volcanic arc signatures associated with the Paleoproterozoic Nd TDM model ages are interpreted as inherited from the source rocks. The oldest ages and lower Nd TDM model ages are recorded from granitoids intruded in the southwest part of the PEAL domain, suggesting that these intrusions are associated with slab-tearing during convergence between the PEAL and the Sergipano domains. Zircon oxygen isotopic data in some of the studied plutons, together with the available Nd isotopic data suggest that the Brasiliano orogeny strongly reworked older crust, of either Paleoproterozoic or Tonian ages. The studied granitoids are coeval with calc-alkaline granitoids of the Transversal Zone and Sergipano domains and rare high-K calc-alkaline granitoids from the Transversal Zone domain. Such large volumes of high-K granitoids with

  14. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean.

    PubMed

    Garvin, Jessica; Buick, Roger; Anbar, Ariel D; Arnold, Gail L; Kaufman, Alan J

    2009-02-20

    The nitrogen cycle provides essential nutrients to the biosphere, but its antiquity in modern form is unclear. In a drill core though homogeneous organic-rich shale in the 2.5-billion-year-old Mount McRae Shale, Australia, nitrogen isotope values vary from +1.0 to +7.5 per mil (per thousand) and back to +2.5 per thousand over approximately 30 meters. These changes evidently record a transient departure from a largely anaerobic to an aerobic nitrogen cycle complete with nitrification and denitrification. Complementary molybdenum abundance and sulfur isotopic values suggest that nitrification occurred in response to a small increase in surface-ocean oxygenation. These data imply that nitrifying and denitrifying microbes had already evolved by the late Archean and were present before oxygen first began to accumulate in the atmosphere.

  15. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident

    PubMed Central

    Zheng, Jian; Tagami, Keiko; Watanabe, Yoshito; Uchida, Shigeo; Aono, Tatsuo; Ishii, Nobuyoshi; Yoshida, Satoshi; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2012-01-01

    The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination. PMID:22403743

  16. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Huang, Peng

    2016-04-01

    Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments Hu Ning-jinga, Huang Pengb,, Liu Ji-huaa, a First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8 ± 7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997 ± 0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477 ± 0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  17. Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fiannacca, Patrizia; Lustrino, Michele; Romano, Vanessa; Tranchina, Annunziata; Villa, Igor M.

    2016-03-01

    During the dismembering of the Pangea supercontinent, middle-late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive \\varepsilon_{Nd} values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial-temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.

  18. Osmium Isotopic Evidence Against an Impact at the Frasnian-Famennian Boundary

    NASA Astrophysics Data System (ADS)

    Gordon, G. W.; Turekian, K. K.; Rockman, M.; Over, J.

    2007-12-01

    Two sections across the Frasnian-Famennian boundary were analyzed for Re and Os concentrations and 187Os/188Os ratios to evaluate evidence for a meteoritic input coincident with this boundary and its associated mass extinction. These sections are from a siltstone and shale sequence at Irish Gulf in New York, US and a calcareous shale and ferromanganese oxide sequence at La Serre in France. The Irish Gulf section, with an initial 187Os/188Os of ~0.49, does not show the characteristic meteoritic Os imprint with a 187Os/188Os value of about 0.13. Both Re and Os are retained in this section, as indicated by the construction of an isochron with an age of 388 ±41 Ma, consistent with independently determined ages for the Frasnian-Famennian boundary. Although the La Serre section, with Os concentrations as high as 33 ppb and Re concentrations ranging from 1.4 to 7.4 ppb, might be expected to show excellent evidence for a meteoritic contribution, the highly radiogenic isotopic composition (187Os/188Os ranges from 2.42-3.61) instead suggests recent massive Re loss or addition of radiogenic Os. This open system behavior prevents the reconstruction of an initial 187Os/188Os value for the boundary at La Serre. Assuming reasonable Re concentrations prior to loss, however, the Os isotopic value is inconsistent with a large meteoritic component. In addition, this study reinforces the need for Os isotopic evidence, not only enriched PGE concentrations, as substantiation for a meteoritic impact.

  19. [sup 40]Ar/[sup 39]Ar isotopic dates from the Cripple Creek gold-Telluride district, Colorado: Constraints on the timing of magmatism and mineralization

    SciTech Connect

    Kelley, K.D.; Snee, L.W. ); Thompson, T.B. . Dept. of Earth Resources)

    1993-04-01

    The Cripple Creek district is within a Tertiary diatreme-intrusive complex, a steep-walled basin in Proterozoic pelitic and igneous rocks that is filled with terrigenous sedimentary rocks, volcanic and hydrothermal breccias, and tuffs. The orebodies occur as veins in Proterozoic and Tertiary rocks or as deposits localized within hydrothermal breccia bodies or disseminated in diatreme breccias. [sup 40]Ar/[sup 39]Ar dates from igneous rocks demonstrate the approximately contemporaneous emplacement of the most differentiated phonolitic rocks. Three sanidine samples from phonolite yield apparent ages ranging from 30.9 [+-] 0.1 to 31.8 [+-] 0.1 Ma (1 sigma). Biotite and sanidine age spectra from relatively less differentiated tephriphonolite are discordant; the emplacement age is estimated to be between 31.4 [+-] 0.1 and 32.5 [+-] 0.1 Ma. A maximum age of 31.5 [+-] 0.1 Ma was obtained on a whole-rock sample of trachyandesite. The mafic phonolitic rocks are relatively younger. A sample of the Isabella dike, a phonotephrite dike cutting phonolite, yields a whole-rock age of 28.7 [+-] 0.04 Ma. The data suggest that mineralization both predates and postdates emplacement of the mafic phonolitic rocks. Hydrothermal biotite in a vein cutting phonolite yields an age of 29.9 [+-] 0.1 Ma. The age spectrum of adularia from a vein cutting volcaniclastic rocks is difficult to interpret due to the presence of excess argon, but an age is estimated to be between 29.5 and 30.4 Ma. In the vicinity of the phonotephrite dike, field evidence suggests that vein mineralization postdates emplacement of the dike; potassium feldspar from potassium altered phonolite in the vicinity of mineralized rock yields ages of 28.2 [+-] 0.1 and 28.8 [+-] 0.1 Ma.

  20. Magmatic Processes and Systems Deduced from Single Crystals

    NASA Astrophysics Data System (ADS)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.

    2014-12-01

    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  1. Oxygen-Carbon and Strontium Isotope Evidence for the Origin and Evolution of CO2-rich Volatiles from Oligocene to Miocene Mantle Magmas, Southwestern Colorado and Northwestern New Mexico

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.; Zbrozek, M.

    2012-12-01

    Oligocene to Miocene, alkaline mafic to ultramafic, rocks that are exposed in the Navajo volcanic field and dikes on the northern San Juan basin (NVSJ) contain calcite in vugs, veins, and breccias. Oxygen-carbon and Sr isotope signatures of bulk carbonate samples from these rocks were used to test hypotheses on the history of volatiles related to this pulse of mantle magmatism. Elevated fluorine in rocks, and fluorite-calcite breccias in some outcrops, indicate that magmatic volatiles were released by NVSJ melts. Oxygen and carbon isotope data for carbonate samples record a complex paragenetic history. δ13C values are mostly -8‰ to -4‰ with a mean value of -5.3 ± 2.0‰, similar to δ13C for primary mantle-derived carbonate. A subset of δ18O values are +5‰ to +10‰ which are within the accepted range of δ18O values for magmatic carbonate in carbonatite and kimberlite. A majority of δ18O values, however, range from +10‰ to +24‰ revealing that low-δ18O magmatic volatiles were overprinted by processes that caused enrichment of 18O at some stage during melt generation and emplacement. A subset of 87Sr/86Sri data from carbonate samples are nearly identical to 87Sr/86Sri for related rocks, hinting that the melts and volatiles came from the same source. Generally, NVSJ calcite samples have higher 87Sr/86Sri ratios than those of rocks, reflecting different melt-volatile sources or crustal contamination from Paleozoic limestone. Field and petrologic evidence does not lend convincing support for crustal contamination. Limestone fragments comprise less than 1% of xenoliths in NVSJ rocks. Also, rock samples do not show elevated CaO, MgO, FeO, Ba or Sr with increasing δ18O calcite which is expected for contamination of magmas with limestone. We propose that CO2-H2O-F volatiles in NVSJ magmas came from distinct melt-volatile sources, similar to the interpretation of Nowell (1993). Our assertion is that CO2-rich volatiles that exsolved from low δ18O mafic melts

  2. Stable isotope and DNA evidence for ritual sequences in Inca child sacrifice

    PubMed Central

    Wilson, Andrew S.; Taylor, Timothy; Ceruti, Maria Constanza; Chavez, Jose Antonio; Reinhard, Johan; Grimes, Vaughan; Meier-Augenstein, Wolfram; Cartmell, Larry; Stern, Ben; Richards, Michael P.; Worobey, Michael; Barnes, Ian; Gilbert, M. Thomas P.

    2007-01-01

    Four recently discovered frozen child mummies from two of the highest peaks in the south central Andes now yield tantalizing evidence of the preparatory stages leading to Inca ritual killing as represented by the unique capacocha rite. Our interdisciplinary study examined hair from the mummies to obtain detailed genetic and diachronic isotopic information. This approach has allowed us to reconstruct aspects of individual identity and diet, make inferences concerning social background, and gain insight on the hitherto unknown processes by which victims were selected, elevated in social status, prepared for a high-altitude pilgrimage, and killed. Such direct information amplifies, yet also partly contrasts with, Spanish historical accounts. PMID:17923675

  3. Neodymium and lead isotope evidence for enriched early Archean crust in North America

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Housh, Todd B.; Isachsen, Clark E.; Podosek, Frank A.; King, Janet E.

    1989-01-01

    Neodymium and lead isotope measurements and uranium-lead zircon geochronology from Archaean gneisses of the Slave Province in the Northwest Territories of Canada are reported. The gneisses contain zircons with cores older than 3.842 Gyr and an epsilon(Nd) (3.7 Gyr) of - 4.8. This is the oldest reported chondritic model age for a terrestrial sample and provides evidence for strongly enriched pre-3.8-Gyr crust, a reservoir complementary to the depleted mantle already in existence by 3.8 Gyr before the present.

  4. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  5. Nickel isotopes as a new geochemical tracer

    NASA Astrophysics Data System (ADS)

    Gall, L.; Williams, H. M.; Siebert, C.; Halliday, A.

    2010-12-01

    Research into "non-traditional" stable isotope systems has been of great interest over the past decade. The stable isotope system of nickel (Ni) has not been studied as intensively as other transition metals (e.g. Fe, Cr, Cu, Zn, and Mo), even though it is a ubiquitous element in geological environments and is a bioessential trace metal, e.g. for production of methane by methanogens. We have developed a novel chemical separation procedure to isolate Ni from most geological matrices. Because of its chemical behavior during ion-exchange chromatography complete separation of Ni is very complex. We therefore make use of a Ni double spike that allows us to optimize the chemical separation and correct instrumental mass bias during mass spectrometry analysis. This technique allows high precision Ni isotope measurements resulting in long term external reproducibility of USGS rock standard BHVO-2 of 0.09‰ (2s.d.) on δ60/58Ni with typical measurement errors as low as 0.04‰ (2s.d.). We have measured the isotope composition of Ni in a variety of terrestrial samples demonstrating significant isotope variation. In magmatic rocks Ni isotopes appear to be largely homogeneous, with only small variations (no more than 0.2‰) between different rock types, from ultramafic to felsic. There is no evidence of significant isotopic fractionation during melting and differentiation of the silicate Earth. In contrast we find significant systematic isotope variations (up to 1.5‰) between magmatic rocks and FeMn crusts, shales and sulphides. Our data clearly demonstrate mass-dependent fractionation of Ni isotopes in the marine and terrestrial environment by inorganic processes, in addition to the biological fractionations already reported by others, highlighting the potential of Ni isotopes as a powerful new tracer for Earth Surface processes.

  6. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Kelly, W.R.; Hwang, H.-H.

    2006-01-01

    Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO 3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The isotopic composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O isotopes to help identify the major sources of NO 3- and assess the degree of denitrification in the samples. The isotopic evidence suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between ??18O and ??15N also indicate that, depending on sample location and season, NO3- in the river and tile drains lias undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River. ?? ASA, CSSA, SSSA.

  7. Regional and Local Trends in helium isotopes, basin and rangeprovince, western North America: Evidence for deep permeablepathways

    SciTech Connect

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-07-15

    Fluids from the western margin of the Basin and Range have helium isotope ratios as high as {approx}6-7 Ra, indicating a strong mantle melt influence and consistent with recent and current volcanic activity. Moving away from these areas, helium isotope ratios decrease rapidly to ''background'' values of around 0.6 Ra, and then gradually decrease toward the east to low values of {approx}0.1 Ra at the eastern margin of the Basin and Range. Superimposed on this general regional trend are isolated features with elevated helium isotope ratios (0.8-2.1 Ra) compared to the local background. Spring geochemistry and local geology indicate that these ''He-spikes'' are not related to current or recent magmatic activity, suggesting that the spikes may reflect either localized zones deep mantle melting or deep permeable pathways (faults) with high vertical fluid flowrates. A detailed study of one of the He-spikes (Dixie Valley and the Stillwater Range Front Fault system), indicates that features with high 3He/4He ratios are confined to the range front normal faults characteristic of the extensional regime in the Basin and Range, suggesting that these faults are deep permeable pathways. However, not all range front fault systems transmit fluids with a mantle signature, implying that not all have deep permeable pathways.

  8. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    SciTech Connect

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  9. Zirconium—Hafnium Isotope Evidence from Meteorites for the Decoupled Synthesis of Light and Heavy Neutron-rich Nuclei

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-01

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope 96Zr (<=1ɛ in 96Zr/90Zr) for bulk chondrites and CAIs (~2ɛ). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the 96Zr isotope variations are of nucleosynthetic origin. The 96Zr enrichments are coupled with 50Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A <= 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. 96Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M ⊙) SNII.

  10. Late Paleozoic magmatic record of Middle Gobi area, South Mongolia and its implications for tectonic evolution: Evidences from zircon U-Pb dating and geochemistry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingshuai; Miao, Laicheng; Baatar, Munkhtsengel; Zhang, Fochin; Anaad, Chimedtseren; Yang, Shunhu; Li, Xingbo

    2016-01-01

    Late Paleozoic subduction-accretion complexes occur widely in Middle Gobi area and provide a good opportunity for unraveling the Paleozoic tectonic evolution of South Mongolia. The magmatic rocks in the Tsavchir hudug district mainly consist of rhyolites and volcaniclastic rocks. The rhyolites show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, indicating genesis in the subduction zone. A rhyolite sample from the Tsavchir hudug region yielded a SHRIMP 206Pb/238U zircon age of 315 ± 4 Ma (MSWD = 0.79, n = 15). The andesite overlying the Namdain hundy Early Paleozoic ophiolite shows adakite geochemical features, and the two andesite samples yielded SHRIMP 206Pb/238U zircon ages of 325 ± 3 Ma (MSWD = 1.6, n = 14) and 319 ± 4 Ma (MSWD = 0.56, n = 13), respectively, suggesting that the Carboniferous island arc formed on the basis of Early Paleozoic accretionary complex. The granodiorite sample that intrudes the Early Paleozoic accretion complex with adakite geochemical features yielded a SHRIMP 206Pb/238U zircon age of 333 ± 4 Ma (MSWD = 1.6, n = 16), representing the Late Paleozoic island arc intrusive. The SHRIMP U-Pb analyses for the tuff sandstones that occur associated with Early Paleozic oceanic inliers in Middle Gobi area suggest detrital zircons mainly stem from the Devonian-Carboniferous arc. The age data obtained from the ophiolite (528-509 Ma) and tuff sandstone indicate the accretion in Middle Gobi area lasted from Early Paleozoic to Late Paleozoic for at least ca. 200 Ma, suggesting the ocean of the accretionary complex was the major Paleo-Asain ocean basin. The subduction related magmatic belt in Middle Gobi area includes both Early Paleozoic and Late Paleozoic island arc activities, which is consistent with the accretion duration time obtained from accretionary complex and also attests the argument of major Paleo-Asain ocean basin.

  11. 40Ar/39Ar dating of basaltic dykes swarm in Western Cameroon: Evidence of Late Paleozoic and Mesozoic magmatism in the corridor of the Cameroon Line

    NASA Astrophysics Data System (ADS)

    Tchouankoue, Jean Pierre; Simeni Wambo, Nicole Armelle; Kagou Dongmo, Armand; Li, Xian-Hua

    2014-05-01

    40Ar/39Ar ages of three basalt dykes that intrude the Precambrian basement in the southern continental part of the Cretaceous Cameroon Line are presented. Specimen were sampled at Dschang, Maham and Kendem (Cameroon). The ages obtained are 421.3 ± 3.5 Ma (Dschang), 404.22 ± 3.51 Ma (Maham), and 192.10 ± 7.45 Ma (Kendem). The Dschang and Maham samples yield a relatively undisturbed spectrum while the Kendem sample shows an excess of argon but with plateau ages in the frame of the Mesozoic. Plateau ages at Dschang, Maham and Kendem represent more than 80% of the total 39Ar released and are interpreted as emplacement ages. 40Ar/39Ar dating results confirm Devonian and Jurassic K/Ar ages obtained from similar dykes of the same region. Geochemically, the basalt dykes are subalkaline in composition with 45-50 wt.% SiO2. Incompatible trace elements and rare earth elements are lower than that of the Cameroon Line basalts. Overall geochemical characteristics of the basalt dykes much more closely resemble those of tholeiites of the Benue Through in Nigeria that are interpreted as related to the opening of the Atlantic Ocean. The combination of 40Ar/39Ar ages, major, trace and rare earth elements geochemistry data demonstrate a magmatic phase that is significantly older and different of that of the Cretaceous Cameroon Line and younger than the dominantly granitic Neoproterozoic to early Paleozoic magmatism in the region. These findings offer new clues for a better understanding of the tectonic history of the region, particularly the origin of the Cameroon Line and Africa-South America pre-drift reconstitutions.

  12. Chromites from the Gogoł;ów-Jordanów Serpentinite Massif (SW Poland) - evidence of the arc setting magmatism

    NASA Astrophysics Data System (ADS)

    Wojtulek, Piotr; Puziewicz, Jacek; Ntaflos, Theodoros; Bukała, Michał

    2014-05-01

    relatively shallow back arc sub Moho environment (Gonzalez-Jimenez, 2011). The whole rock data from basaltic member of the Ślęża ophiolite unequivocally show their MORB origin (Pin et al., 1988). Thus, our data suggesting back arc origin of chromitites require further examination. References Gonzalez-Jimenez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., Ruiz-Sanchez, R., Griffin, W.L., 2011. High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125, 101-121. Pin, C., Majerowicz, A., Wojciechowska, I., 1988. Upper paleozoic oceanic crust in the Polish Sudetes: Nd-Sm isotope and trace elements evidence. Lithos 21, 195 - 209. Python, M., Ceuleneer, G., Arai, S., 2008. Chromian spinels in mafic-ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos 106, 137-154.

  13. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran

    NASA Astrophysics Data System (ADS)

    Malekzadeh Shafaroudi, Azadeh; Karimpour, Mohammad Hassan

    2015-07-01

    The Sechangi lead-zinc (-copper) deposit lies in the Lut block metallogenic province of Eastern Iran. This deposit consists of ore-bearing vein emplaced along fault zone and hosted by Late Eocene monzonite porphyry. Hydrothermal alteration minerals developed in the wall rock include quartz, kaolinite, illite, and calcite. Microscopic studies reveal that the vein contains galena and sphalerite with minor chalcopyrite and pyrite as hypogene minerals and cerussite, anglesite, covellite, malachite, hematite, and goethite as secondary minerals. Fluorite and quartz are the dominant gangue minerals and show a close relationship with sulfide mineralization. Calculated δ34S values for the ore fluid vary between -9.9‰ and -5.9‰. Sulfur isotopic compositions suggest that the ore-forming aqueous solutions were derived from magmatic source and mixed with isotopically light sulfur, probably leached from the volcanic and plutonic country rocks. Microthermometric study of fluid inclusions indicates homogenization temperatures of 151-352 °C. Salinities of ore-forming fluids ranged from 0.2 to 16.5 wt.% NaCl equivalent. The ore-forming fluids of the Sechangi deposit are medium- to low-temperature and salinity. Fluid mixing may have played an important role during Pb-Zn (-Cu) mineralization. The key factors allowing for metal transport and precipitation during ore formation include the sourcing of magmatic fluids with high contents of metallogenic elements and the mixing of these hydrothermal fluids with meteoric waters resulting in the formation of deposit. In terms of the genetic type of deposit, the Sechangi is classified as a volcanic-subvolcanic hydrothermal-related vein deposit.

  14. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: Evidence from the Miocene of Florida

    SciTech Connect

    MacFadden, B.J.; Bryant, J.D.; Mueller, P.A. )

    1991-03-01

    During the middle Miocene an explosive adaptive radiation resulted in the advent of grazing horses with high-crowned teeth in North America. New Sr isotopic, paleomagnetic, and biostratigrahic evidence from the Miocene marine and nonmarine sequence of the Florida panhandle calibrates the base of this adaptive radiation. The transition from the primitive outgroup species 'Parahippus' leonensis to the most primitive high-crowned horse, 'Merychippus' gunteri occured after about 17.7 Ma. After this event, the lowest known stratigraphic level at which diversification (i.e., presence of two or more sympatric species) of grazing merychippine horses occurs is about 16.2 Ma, or within the early part of Chron C5BR. Although this currently is the only sequence where the parahippine-merychippine transition is directly calibrated, biochronologic evidence from other important, contemporaneous localities in Texas, Nebraska, and California indicate that diversification occured rapidly throughout North America between 15 and 16 Ma.

  15. Geochronological and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Hedge, C.E.

    1984-01-01

    Zircon U/Pb, feldspar common Pb, whole-rock Sm/Nd, and Rb/Sr data indicate that the fine-grained granodiorite (Z103) has yielded conclusive evidence for rocks of early Proterozoic age in the eastern Arabian Shield (21o19' N, 44o50' W). Z103 may have been emplaced approx 1630 m.y. ago and subsequently was severely deformed or perhaps even remobilized at approx 660 m.y. Furthermore, lead isotope data, along with other evidence, show that the 1630 m.y. crustal rocks inherited material from an older, probably Archaean, source at the time of their formation. At that time addition of mantle material considerably modified the Rb-Sr and Sm-Nd systems so that they now yield similar, or only slightly older apparent ages (1600-1800 m.y.).-L.diH.

  16. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.

    PubMed

    Schidlowski, M

    1979-09-01

    The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir.

  17. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.

    PubMed

    Schidlowski, M

    1979-09-01

    The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir. PMID:503456

  18. Oxygen Isotope Zoning in Skarn Garnets: Evidence for Spatial and Temporal Fluid Source Variability in the Sierra Nevada and Mojave

    NASA Astrophysics Data System (ADS)

    Gevedon, M. L.; Ryan-Davis, J.; Lackey, J. S.; Barnes, J.; Kitajima, K.; Valley, J. W.

    2014-12-01

    analyzed via SIMS show the range of isotope compositions possible within a single crystal. All data from the Tungsten Hills skarns suggest meteoric water was less influential farther north in the arc, and that major skarn formation was likely the result of pluton-related magmatic fluids. Magmatic fluids would produce garnets with δ18O > +6‰.

  19. Mineralogical, Chemical, and Isotopic Heterogeneity in Zagami: Evidence for a Complex Petrogenesis

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Misawa, K.; Shih, C-Y.; Niihara, T.; Park, J.

    2013-01-01

    Textural variations in the shergottite Zagami were initially interpreted as evidence that it formed in a heterogeneous lava flow. Variations in initial Sr-87/Sr-86 ratios between a Coarse Grained (CG) and a Fine Grained (FG) lithology and evidence for more extensive fractionation of the Rb/Sr ratio in a Dark Mottled Lithology (DML) are consistent with such an interpretation. More recently, Niihara et al. and Misawa et al. have reported the mineralogy and Sr-isotopic systematics of an Olivine Rich Lithology (ORL) found in association with the coarse-grained DML lithology in the Kanagawa Zagami specimen [6,7]. Here we call this lithology DML(Ka) to maintain a distinction with DML(USNM) as studied. An Ar-Ar study by Park et al. of a late stage K-rich melt enriched in K2O to approx 7% and intruded into ORL yielded an Ar-Ar age of 202+/0 7 Ma. The present work extends the study of Kanagawa Zagami to Nd-isotopes.

  20. PRESOLAR GRAINS FROM NOVAE: EVIDENCE FROM NEON AND HELIUM ISOTOPES IN COMET DUST COLLECTIONS

    SciTech Connect

    Pepin, Robert O.; Palma, Russell L.; Gehrz, Robert D.; Starrfield, Sumner

    2011-12-01

    Presolar grains in meteorites and interplanetary dust particles carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable {sup 3}He in these particles indicates space exposure to solar wind irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured {sup 4}He/{sup 20}Ne, {sup 20}Ne/{sup 22}Ne, {sup 21}Ne/{sup 22}Ne, and {sup 20}Ne/{sup 21}Ne isotope ratios, and a low upper limit on {sup 3}He/{sup 4}He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low {sup 4}He/{sup 20}Ne and high {sup 20}Ne/{sup 22}Ne ratios are the most diagnostic, reflecting the large predicted {sup 20}Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.

  1. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Wei; Li, Wen-Yuan; Gao, Yong-Bao; Li, Chusi; Ripley, Edward M.; Kamo, Sandra

    2014-02-01

    The sulfide-bearing Yulonggou and Yaqu mafic intrusions are located in the southern margin of the Qilian Block, Qinghai Province, western China. They are small dike-like bodies mainly composed of gabbros and diorites. Disseminated sulfides (pyrrhotite, pentlandite, and chalcopyrite) are present as concordant lenses within the intrusions. Precise CA-ID-TIMS zircon U-Pb dating yields the crystallization ages of 443.39 ± 0.42 and 440.74 ± 0.33 Ma for the Yulonggou and Yaqu intrusions, respectively. Whole rock samples from both intrusions show light rare earth element (REE) enrichments relative to heavy REE and pronounced negative Nb-Ta anomalies relative to Th and La, which are consistent with the products of arc basaltic magmatism. The Yulonggou intrusion has negative ɛ Nd values from -5.7 to -7.7 and elevated (87Sr/86Sr) i ratios from 0.711 to 0.714. In contrast, the Yaqu intrusion has higher ɛ Nd values from -4.1 to +8.4 and lower (87Sr/86Sr) i ratios from 0.705 to 0.710. The δ34S values of sulfide separates from the Yulonggou and Yaqu deposits vary from 0.8 to 2.4 ‰ and from 2 to 4.3 ‰, respectively. The γ Os values of sulfide separates from the Yulonggou and Yaqu deposits vary between 80 and 123 and between 963 and 1,191, respectively. Higher γ Os values coupled with higher δ34S values for the Yaqu deposit relative to the Yulonggou deposit indicate that external sulfur played a bigger role in sulfide mineralization in the Yaqu intrusion than in the Yulonggou intrusion. Mixing calculations using Sr-Nd isotope data show that contamination with siliceous crustal materials is more pronounced in the Yulonggou intrusion (up to 20 wt%) than in the Yaqu intrusion (<15 wt%). The distribution of sulfides in both intrusions is consistent with multiple emplacements of sulfide-saturated magmas from depth. The Yulonggou and Yaqu sulfide deposits are not economically valuable under current market condition due to small sizes and low Ni grades, which can be explained

  2. Evidence for extinct 135Cs from Ba isotopes in Allende CAIs?

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Mezger, K.; Desch, S. J.; Scherer, E. E.; Horstmann, M.

    2014-05-01

    The abundance and distribution of isotopes throughout the Solar System can be used to constrain the number and type of nucleosynthetic events that contributed material to the early nebula. Barium is particularly well suited to quantifying the degree of isotope heterogeneity in the Solar System because it comprises seven stable isotopes that were synthesized by three different nucleosynthetic processes (s-, r-, and p-processes), all of which contributed material to the Solar System. There is also potential contribution to 135Ba from short-lived radioisotope 135Cs, conclusive evidence for which is yet to be reported. Four Allende (CV3) Ca,Al-rich inclusions (CAI 1, CAI 2, CAI 4, CAI 5) and one Allende dark inclusion (DI) were analyzed for Ba isotope variability. Two CAIs (CAI 2 and CAI 5) display 135Ba excesses that are not accompanied by 137Ba anomalies. Calcium-aluminum-rich inclusion 1 displays a 135Ba excess that is possibly coupled with a 137Ba excess, and the remaining refractory inclusions (CAI 2 and DI) have terrestrial Ba isotope compositions. These Ba isotope data are presented in conjunction with published whole rock Ba isotope data from individual Allende CAIs. The enrichment in 135Ba and absence of coupled 137Ba excesses in CAI 2 and CAI 5 is interpreted to indicate that the anomalies are not purely nucleosynthetic in origin but also contain contributions (16-48 ppm) from the decay of short-lived 135Cs. The majority of Allende CAIs studied to date may also have similar contributions from 135Cs on the basis of higher than expected 135Ba excesses if the Ba isotope anomalies were purely nucleosynthetic in origin. The 135Ba anomalies appear not to be coupled with superchondritic Cs/Ba, which may imply that the contribution to 135Ba did not occur via in situ decay of live 135Cs. However, it is feasible that the CAIs had a superchondritic Cs/Ba during decay of 135Cs, but Cs was subsequently removed from the system during aqueous alteration on the parent body

  3. A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: evidence for multiple fluid reservoirs

    NASA Astrophysics Data System (ADS)

    Kontak, Daniel J.; Kyser, Kurt

    2011-04-01

    A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au-(Bi-Sb-Cu-Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded ( P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1-2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280-340°C. In contrast, type 2 is a high-salinity (20-25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160-200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = -44‰ to-54‰; and (3) δ34Saspy = +7.8

  4. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.

    2000-01-01

    The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal extension and magamatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults sip 30°-50° near the surface and flatten and merge leozoic miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at different times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undeformed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 percent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granitic rocks as well as bimodal 14.0-4.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granitic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger. The close spatial and temporal relation between crustal extension and magmatism suggest a genetic and probably a dynamic relation between these geologic processes. We propose a rectonic-magmatic model that requires heat to be transported into the crust by mantle-derived mafic magmas. These magmas pond at lithologic or rheologic boundaries, begin the crystallize, and partially melt the surrounding crustal rocks. With time, the thermally weakened crust is extended (given a regional extensional stress field) concurrent with granitic magmatism and bimodal volcanism.

  5. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving

  6. Pliocene-Quaternary Post-collisional Magmatism in the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Bewick, Samuel; Harris, Nigel; Parkinson, Ian; Hammond, Sam; Adamia, Shota

    2014-05-01

    Whole-rock elemental and isotopic analyses are presented for Pliocene-Quaternary volcanism from northern Georgia. Intense magmatic activity erupted through the thickened crust (50-60km) of the Greater Caucasus mountain belt, tens of millions of years following continental collision between the Arabian and Eurasian plates. Compositions range from basaltic-andesite to dacite (56-67 wt% SiO2). Enrichment of large ion lithophile elements (LILEs) and light rare earth elements (LREEs) relative to the high field strength elements (HFSEs) is seen in all samples. Rare earth element patterns have small enrichments in the middle to heavy REE ((Dy/Yb)N ratios (1.22-1.65)). Strontium (87Sr/86Sr of 0.7041-0.7049) and Pb isotope ratios suggest a source that has been enriched relative to DMM with Pb isotopes plotting on an array sub-parallel to, but enriched compared to the northern hemisphere reference line (Δ7/6 = 10.7-11.3). LILE enrichment may be indicative of a source enriched by subduction related fluids. Compositions are also similar to local crustal samples. On Pb isotope plots, samples lie on a trend extending towards radiogenic crustal values. Trace elements and isotopes are used to decipher the importance of these two signatures. Heavy REE data provide evidence melting was relatively shallow ( 10wt%) indicate fractionation occurred deep in the crust. Further investigation will allow the sources for Greater Caucasus magmatism to be better constrained and the petrologic evolution of the magmas to be compared with those from the wider Arabia-Eurasia collision zone and hence integrated into a post-collisional tectonic model for the region.

  7. Mars: Fluvial Erosion Driven by Magmatism

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; Skinner, J. A.; Chapman, M. G.

    2002-12-01

    Mars at present has a thin, dry, and cold atmosphere relative to Earth's. The cold temperatures suggest that any subsurface water (perhaps combined with carbon dioxide as clathrate) would likely be frozen within a couple kilometers or more of the surface. This condition may have been prevalent following widespread fluvial dissection that formed numerous valley networks in highland rocks during the Noachian. The sources of some ancient and of most relatively young valley systems, particularly the large outflow channels, occur within or near volcanic rocks or display morphologic evidence for volcanic and/or tectonic associations. Such geologic relations have led many investigators to propose that magmatic activity has been a significant (if not dominant) driver of younger fluvial erosion on the surface of Mars. Magmatism may have provided the heat to raise local subsurface temperatures to near or above the freezing point of water; furthermore, intrusive activity may have fractured aquifers that provided conduits for release of substantial volumes of ground volatiles. Evidence of such interactions includes lengthy outflow channels sourced from fissures or depressions in volcanic rocks of the Tharsis/Valles Marineris, Elysium, and eastern Hellas regions. Depressions filled with chaotic terrain at the heads of the circum-Chryse outflow channels may be sites where large volumes of magmatic material may have interacted with water and perhaps carbon dioxide in rocks beneath the cryosphere, leading to catastrophic expulsion of the volatiles and collapse of country rock. Other evidence for magmatically driven erosion may include the low Hellas rim areas, where Malea and Hesperia Plana reside, and the channeled flanks of possible Noachian volcanoes in Thaumasia (south Tharsis region). Mars Global Surveyor's MOLA topography data and MOC images and Mars Odyssey's THEMIS images are providing new insights into the possible interactions between magmatism and fluvial erosion on

  8. Mantle to Surface Fluid Transfer Above a Flat Slab Subduction Zone: Isotopic Evidence from Hot Springs in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Jessup, M. J.; Hilton, D. R.; Shaw, C. A.; Hughes, C. A.

    2015-12-01

    Thermal springs in the Cordillera Blanca, Peru, provide geochemical evidence for deeply circulated hydrothermal fluids that carry significant mantle-derived helium. The Cordillera Blanca is a ~200 km-long NNW-SSE trending mountain range in the Peruvian Andes located above an amagmatic flat-slab subduction segment. The west side of the range is bounded by the Cordillera Blanca detachment that preserves a progression of top to the west ductile shear to brittle normal faulting since ~5 Ma. We report aqueous and stable isotope geochemical results from fluid and gas samples collected in 2013 and 2015 from 13 hot springs emanating from the Cordillera Blanca detachment and associated hanging wall faults. Most springs are vigorously bubbling (degassing), and range in temperature, pH, and conductivity from 17-89 °C, 5.95-8.87, and 0.17-21.5 mS, respectively. The hottest springs issue directly from the northern segment of the detachment. Geochemically, springs are CO2-rich, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including Fe, Cu, As, Zn, Sb, and Tl. Notably, As contents are ≤11 ppm, indicating that thermal waters may be adversely impacting local water quality. Water δ18O and δD, trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260 °C) saline fluid with cold meteoric recharge along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the hot springs range from 0.62 to 1.98 RC/RA, indicating the presence of ~25% mantle-derived helium, assuming mixing of an asthenospheric end-member with the crustal helium reservoir. CO2/3He and carbon stable isotope ratios indicate a carbon source derived from mixing of crustal sources with minor mantle carbon. Overall, the volatile signature overlaps with orogen-wide datasets where crustal overprinting has modified mantle contributions at active arc volcanoes. Given the long duration since active magmatism in the Cordillera

  9. Molybdenum Isotopic evidence of anoxia at Permo-Triassic boundary from Spiti Valley Himalaya

    NASA Astrophysics Data System (ADS)

    Rai, V. K.; Shukla, A. D.; Kamath, S.

    2013-12-01

    Permo-Triassic (PT) extinction was the most devastating event in the history of life on Earth which occurred around 251 Ma ago. The exact cause of extinction remains uncertain. To understand the cause of extinction, we studied the redox sensitive elements, sulfur and Mo isotopes from the PT section of Spiti valley of Himalaya, India. In Spiti valley, 1-10 cm of ferruginous band of sediments separates the Permian shale from Triassic limestone. Analyses of redox sensitive elements such as As, Mo, As, Ni, Sb, Th, Mn and Fe show clear evidence of anoxia or euxinia. Here we present molybdenum abundance and isotopes analysis of PT sedimentary section which has potential to distinguish between sulfidic deep water (Euxinia), suboxic and oxic conditions. Mo is redox sensitive and the most abundant transition metal in present day ocean. It enters the ocean through rivers (δ98/95Mo~ 0‰) and remains in the water as moderately unreactive MoO4-- form. Under the oxidizing marine conditions similar to present day, Mo from water column is slowly removed by incorporation into ferromanganese phases with preferential removal of lighter Mo isotopes (δ98/95Mo ~-0.7‰). As a result, the ocean water is enriched in heavier isotope (δ98/95Mo ~2.3‰). However, in euxinic conditions with sulfidic deep water ([H2S]>100μM), Mo is quantitatively removed from the solution as MoS4-- without isotopic fractionation. Therefore Mo isotopic composition of sediments deposited under these conditions represents the Mo composition of water. Earlier studies of different PT sections showed prevalence of anoxic or euxinic condition during P-T transition, therefore the Mo isotope analysis of PT sediments should let us know about extent of anoxia at the Spiti site which was open towards and well connected to super-ocean during end Permian. Mo concentration in the PT sedimentary section from Spiti showed clear enrichment with Mo content of 77 ppm at the boundary with δ98/95Mo value of 0.75‰. Whereas

  10. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    PubMed Central

    Fleming, Nicholas E.C.; Newton, Jason; Houghton, Jonathan D.R.

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position) were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that

  11. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  12. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  13. Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water

    SciTech Connect

    Siegel, D.I. )

    1991-05-01

    New analyses of the isotopic composition of water, {sup 14}C-dating of dissolved inorganic carbon, and order-of-magnitude Darcy calculations suggest that a dilute body of water, trending north-south in the Cambrian-Ordovician aquifer of Iowa, was emplaced as vertical recharge of Pleistocene-age water from the base of the Des Moines lobe of late Wisconsin time. The recharge occurred through more than 300 m of overlaying Silurian to Mississippian age rocks. The {delta}{sup 18}O values range from {minus}10{per thousand} to {minus}9{per thousand} for the dilute water body and are consistent with a mixture of Des Moines lobe meltwater and precipitation found today in the north-central US. These results suggest that (1) the climate at the end of the last glaciation was mild and (2) a ground-water stable isotope signature similar to that of modern precipitation in an aquifers recharge area is not a priori evidence for relatively recent recharge.

  14. Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees

    PubMed Central

    Fahy, Geraldine E.; Richards, Michael; Riedel, Julia; Hublin, Jean-Jacques; Boesch, Christophe

    2013-01-01

    Observations of hunting and meat eating in our closest living relatives, chimpanzees (Pan troglodytes), suggest that among primates, regular inclusion of meat in the diet is not a characteristic unique to Homo. Wild chimpanzees are known to consume vertebrate meat, but its actual dietary contribution is, depending on the study population, often either unknown or minimal. Constraints on continual direct observation throughout the entire hunting season mean that behavioral observations are limited in their ability to accurately quantify meat consumption. Here we present direct stable isotope evidence supporting behavioral observations of frequent meat eating among wild adult male chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d’Ivoire. Meat eating among some of the male chimpanzees is significant enough to result in a marked isotope signal detectable on a short-term basis in their hair keratin and long-term in their bone collagen. Although both adult males and females and juveniles derive their dietary protein largely from daily fruit and seasonal nut consumption, our data indicate that some adult males also derive a large amount of dietary protein from hunted meat. Our results reinforce behavioral observations of male-dominated hunting and meat eating in adult Taï chimpanzees, suggesting that sex differences in food acquisition and consumption may have persisted throughout hominin evolution, rather than being a recent development in the human lineage. PMID:23530185

  15. Stable isotope evidence for an amphibious phase in early proboscidean evolution

    PubMed Central

    Liu, Alexander G. S. C.; Seiffert, Erik R.; Simons, Elwyn L.

    2008-01-01

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  16. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    PubMed

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  17. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  18. Isotopic evidence for microbial sulphate reduction in the early Archaean era.

    PubMed

    Shen, Y; Buick, R; Canfield, D E

    2001-03-01

    Sulphate-reducing microbes affect the modern sulphur cycle, and may be quite ancient, though when they evolved is uncertain. These organisms produce sulphide while oxidizing organic matter or hydrogen with sulphate. At sulphate concentrations greater than 1 mM, the sulphides are isotopically fractionated (depleted in 34S) by 10-40/1000 compared to the sulphate, with fractionations decreasing to near 0/1000 at lower concentrations. The isotope record of sedimentary sulphides shows large fractionations relative to seawater sulphate by 2.7 Gyr ago, indicating microbial sulphate reduction. In older rocks, however, much smaller fractionations are of equivocal origin, possibly biogenic but also possibly volcanogenic. Here we report microscopic sulphides in approximately 3.47-Gyr-old barites from North Pole, Australia, with maximum fractionations of 21.1/1000, about a mean of 11.6/1000, clearly indicating microbial sulphate reduction. Our results extend the geological record of microbial sulphate reduction back more than 750 million years, and represent direct evidence of an early specific metabolic pathway--allowing time calibration of a deep node on the tree of life.

  19. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  20. Isotopic Evidence for Neogene Hominid Paleoenvironments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Kingston, John D.; Marino, Bruno D.; Hill, Andrew

    1994-05-01

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition (δ13C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed δ13C values offer no evidence for a shift from more-closed C3 environments to C4 grassland habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  1. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley

    SciTech Connect

    Kingston, J.D.; Hill, A. ); Marino, B.D. )

    1994-05-13

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  2. Growth and Evolution of the Kerala Khondalite Belt, Southern India: Mineral and Whole rock Chemical Evidence for Intracrustal Melting and Magmatic Petrogenesis

    NASA Astrophysics Data System (ADS)

    Gundlupet Rangasetty, R.; Chettootty, S.

    2011-12-01

    The Kerala Khondalite Belt (KKB) constitutes an important lower crustal segment in the southern Indian granulite terrain. Dominant rock types, except sillimanite bearing gneisses, are classified as sodic and potassic granitoids and a general supracrustal origin is ascribed to these rocks. We present here new results from our studies on mineral and whole rock major- and trace-element and REE systematic of major litho units of the belt. We address the petrogenesis, physical conditions during crystallization and tectonic setting of KKB rocks. Granitoids (gneiss and variants of charnockites) makeup more than 70% of exposed rock types in KKB. They are classified as sodic and potassic groups based on K2O/Na2O ratios. Mineral chemical analysis of granitoids, especially biotites from different groups document igneous parentage and as potential indicator of nature of the magma. Biotites from sodic group are Mg2+-rich (XMg:0.47-0.63), denote calc-alkaline host in contrast to those from potassic groups, which are Fe2+-types with much lower XMg (0.37-0.44) and suggest an alkaline host. Biotites in potassic group are poorer in A12O3 than sodic, indicating evolved nature of the magmatic protolith. Decrease in ΣAl with increasing Fe/(Fe+Mg) values of biotites indicate progressive oxidising condition during magma evolution. Compositional variation of biotite allow us to speculate that the host magmas of sodic charnockites as calc-alkaline, arc-type with features typical of Archaean TTGs and potassic groups as partial melts of meta-igneous lower crust with little mantle contribution. The sodic group has geochemical affinity to Archaean tonalities with low-K, calc-alkaline, metaluminous to peraluminous chemistry. Compositionally contrasting K-rich rocks are essentially of granitic composition. Most oxides in both the groups, with exceptions of K2O and Na2O, show negative correlation with SiO2. The sodic group is enriched in Sr and depleted in Rb and Th. They exhibit geochemical

  3. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Wu, Fu-Yuan; Li, Xian-Hua; Yang, Jin-Hui; Gou, Guo-Ning; Guo, Hai-Feng

    2015-09-01

    Back-arc extension and asthenosphere upwelling associated with oceanic lithospheric subduction affect the structure and thermal regime of the arc lithosphere, which often triggers widespread extension-related mafic magmatism. Although it is commonly accepted that the Neo-Tethyan oceanic lithosphere subducted beneath the southern Lhasa block, resulting in the well-known Late Mesozoic Gangdese magmatic arc, the possible role of contemporary back-arc extension and asthenosphere upwelling has been disputed due to a lack of evidence for extension-related mafic magmatism. Here, we report detailed petrological, geochronological, geochemical, and Sr-Nd-Hf-O isotopic data for the Dagze diabases located in the north of the Gangdese district, southern Lhasa block. The zircon U-Pb analyses indicate that they were generated in the Late Cretaceous (ca. 92 Ma) instead of the Eocene (42-38 Ma) as previously believed. These mafic rocks are characterized by variable MgO (4.0-12.2 wt %) and Mg# (42 to 71) values combined with flat to slightly enriched ([La/Yb]N = 1.87-5.23) light rare earth elements (REEs) and relative flat heavy REEs ([Gd/Yb]N = 1.36-1.87) with negative Ta, Nb, and Ti anomalies (e.g., [Nb/La]PM = 0.16-0.51). They also have slightly variable ɛNd(t) (-1.25 to +4.71) and low initial 87Sr/86Sr (0.7045-0.7058) values with strong positive igneous zircon ɛHf(t) (+8.0 to +12.1) and low δ18O (5.31-6.12‰) values. The estimated primary melt compositions are similar to peridotite-derived experimental melts. Given their high melting temperature (1332 to 1372°C) and hybrid geochemical characteristics, we propose that the Dagze mafic magmas likely represent mixtures of asthenospheric and enriched lithospheric mantle-derived melts that underwent minor crustal assimilation and fractional crystallization of clinopyroxene. Taking into account the spatial and temporal distribution of Mesozoic mafic-felsic magmatic rocks and regional paleomagnetic and basin data, we suggest that

  4. The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic-hydrothermal contributions

    NASA Astrophysics Data System (ADS)

    Huston, David L.; Relvas, Jorge M. R. S.; Gemmell, J. Bruce; Drieberg, Susan

    2011-07-01

    Assessment of geological, geochemical and isotopic data indicates that a significant subgroup of volcanic-hosted massive sulphide (VHMS) deposits has a major or dominant magmatic-hydrothermal source of ore fluids and metals. This group, which is typically characterised by high Cu and Au grades, includes deposits such as those in the Neoarchean Doyon-Bousquet-LaRonde and Cambrian Mount Lyell districts. These deposits are distinguished by aluminous advanced argillic alteration assemblages or metamorphosed equivalents intimately associated with ore zones. In many of these deposits, δ34Ssulphide is low, with a major population below -3‰; δ34Ssulphate differs from coexisting seawater and Δ34Ssulphate-sulphide ˜ 20-30‰. These characteristics are interpreted as the consequence of disproportionation of magmatic SO2 as magmatic-hydrothermal fluids ascended and cooled and as a definitive evidence for a significant magmatic-hydrothermal contribution. Other characteristics that we consider diagnostic of significant magmatic-hydrothermal input into VHMS ore fluids include uniformly high (>3 times modern seawater values) salinities or very 18O-enriched (δ18O > 5‰) ore fluids. We do not consider other criteria [e.g. variable salinity, moderately high δ18Ofluid (2-5‰), δ34Ssulphide near 0‰, metal assemblages or a spatial association with porphyry Cu or other clearly magmatic-hydrothermal deposits] that have been used previously to advocate significant magmatic-hydrothermal contributions to be diagnostic as they can be produced by non-magmatic processes known to occur in VHMS mineral systems. However, in general, a small magmatic-hydrothermal contribution cannot be excluded in most VHMS systems considered. Conclusive data that imply minimal magmatic-hydrothermal contributions are only available in the Paleoarchean Panorama district where coeval seawater-dominated and magmatic-hydrothermal systems appear to have been physically separated. This district, which is

  5. Manganese mineralization in andesites of Brestovačka Banja, Serbia: evidence of sea-floor exhalations in the Timok Magmatic Complex

    NASA Astrophysics Data System (ADS)

    Pačevski, Aleksandar; Cvetković, Vladica; Šarić, Kristina; Banješević, Miodrag; Hoefer, Heidi Eva; Kremenović, Aleksandar

    2016-08-01

    Andesites near Brestovačka Banja belong to the Late Cretaceous Timok Magmatic Complex (TMC), which hosts the world-class Bor metallogenic zone including numerous porphyry-copper and epithermal deposits. Two main volcanic phases are recognized in the TMC. The newly discovered Mn mineralization reported here is associated with the second volcanic phase of Turonian-Campanian age. Manganese mineralization containing 58 % MnO on average, occurs as black veins, lumps and nests filling cracks and cavities within an autoclastic andesite, which was deposited in a subaqueous environment. This rock also contains minor Fe mineralization, which is contemporaneous with the manganese mineralization. Manganese mineralization predominantly consists of Mn-Ca silicates (macfallite, pumpellyite-Mn, orientite, bustamite) and Mn oxides (pyrolusite, manganite). Micrometer-scale mineral intergrowths and locally preserved botryoidal and colloform textures are characteristic features of this uncommon mineral assemblage. The features could indicate that the mineralization was formed by deposition from a primary colloidal assemblage and is of sub-marine hydrothermal origin. Orientite is the only Mn mineral with grain size reaching several tenths of micrometers and showing prismatic crystal habit. Scarce to rare associated minerals are hollandite, crednerite, an unknown REE mineral, powellite, pyrite, barite and galena, in decreasing abundance. Trace element analyses of the Mn mineralization show different element contents and REE patterns compared to those of the volcanic host-rock. Manganese mineralization shows relatively high contents of Cu - 1784 ppm, Mo - 20 ppm and As - 268 ppm. These elements are commonly enriched in the Cu deposits of the Bor zone and their relatively high contents in the studied Mn crusts indicate sea-floor hydrothermal vents as a source of the metals.

  6. Mid-Neoproterozoic ridge subduction and magmatic evolution in the northeastern margin of the Indochina block: Evidence from geochronology and geochemistry of calc-alkaline plutons

    NASA Astrophysics Data System (ADS)

    Qi, Xuexiang; Santosh, M.; Zhao, Yuhao; Hu, Zhaocuo; Zhang, Chao; Ji, Fengbao; Wei, Cheng

    2016-04-01

    The mid-Neoproterozoic medium- to high-K calc-alkaline magmatic rocks in the northeastern margin of the Indochina block, SW China, provide important insights into the relationship of the Indochina block with the Gondwana supercontinent. Here we report zircon LA-ICP-MS U-Pb data from the early and late stage plutons which yield weighted mean 206Pb/238U ages of 765 Ma and 732-739 Ma suggesting mid-Neoproterozoic emplacement. The zircon εHf(t) values show a range of - 3.2 to + 2.4 (average + 0.1 ± 0.9) with TDMC of 1510 to 1870 Ma for the early plutons, and - 5.4 to + 5.1 (average + 2.1 to - 3.9) with TDMC of 1366 to 1985 Ma for late plutons. Both groups show similar geochemical characteristics including high Mg#, enrichment of LILE and LREE, slight negative Eu anomalies, and strongly negative Nb, Ta and Ti anomalies, with all the samples falling within the continental/island arc field in tectonic discrimination diagrams. These features suggest that the early and late stage magmas were produced by the mixing of mantle-derived magma and crust-derived magma in different proportion within an active continental margin, in subduction-related continental-arc tectonic setting. The linear zoning and roughly parallel distribution of the two generations of intrusions with a hiatus of 20 Ma might suggest an episode of ridge subduction with asthenosphere upwelling through the slab window that generated the second phase of plutons.

  7. Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy.

    PubMed

    Valley, J W; Eiler, J M; Graham, C M; Gibson, E K; Romanek, C S; Stolper, E M

    1997-03-14

    The martian meteorite ALH84001 contains small, disk-shaped concretions of carbonate with concentric chemical and mineralogical zonation. Oxygen isotope compositions of these concretions, measured by ion microprobe, range from delta18O = +9.5 to +20.5 per thousand. Most of the core of one concretion is homogeneous (16.7 +/- 1.2 per thousand) and over 5 per thousand higher in delta18O than a second concretion. Orthopyroxene that hosts the secondary carbonates is isotopically homogeneous (delta18O = 4.6 +/- 1.2 per thousand). Secondary SiO2 has delta18O = 20.4 per thousand. Carbon isotope ratios measured from the core of one concretion average delta13C = 46 +/- 8 per thousand, consistent with formation on Mars. The isotopic variations and mineral compositions offer no evidence for high temperature (>650 degrees C) carbonate precipitation and suggest non-equilibrium processes at low temperatures (< approximately 300 degrees C). PMID:9054355

  8. Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy

    NASA Technical Reports Server (NTRS)

    Valley, J. W.; Eiler, J. M.; Graham, C. M.; Gibson, E. K.; Romanek, C. S.; Stolper, E. M.

    1997-01-01

    The martian meteorite ALH84001 contains small, disk-shaped concretions of carbonate with concentric chemical and mineralogical zonation. Oxygen isotope compositions of these concretions, measured by ion microprobe, range from delta18O = +9.5 to +20.5 per thousand. Most of the core of one concretion is homogeneous (16.7 +/- 1.2 per thousand) and over 5 per thousand higher in delta18O than a second concretion. Orthopyroxene that hosts the secondary carbonates is isotopically homogeneous (delta18O = 4.6 +/- 1.2 per thousand). Secondary SiO2 has delta18O = 20.4 per thousand. Carbon isotope ratios measured from the core of one concretion average delta13C = 46 +/- 8 per thousand, consistent with formation on Mars. The isotopic variations and mineral compositions offer no evidence for high temperature (>650 degrees C) carbonate precipitation and suggest non-equilibrium processes at low temperatures (< approximately 300 degrees C).

  9. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica.

    PubMed

    Sugiyama, Nawa; Somerville, Andrew D; Schoeninger, Margaret J

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1-550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma's zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29). PMID:26332042

  10. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica

    PubMed Central

    Sugiyama, Nawa; Somerville, Andrew D.; Schoeninger, Margaret J.

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1–550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma’s zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29). PMID:26332042

  11. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica.

    PubMed

    Sugiyama, Nawa; Somerville, Andrew D; Schoeninger, Margaret J

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1-550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma's zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29).

  12. Cierco Pb-Zn-Ag vein deposits: Isotopic and fluid inclusion evidence for formation during the mesozoic extension in the pyrenees of Spain

    USGS Publications Warehouse

    Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B.

    1996-01-01

    The Cierco Pb-Zn-Ag vein deposits, located in the central Pyrenees of Spain, crosscut Paleozoic metasedimentary rocks and are in close proximity to Hercynian granodiorite dikes and plutons. Galena and sphalerite in the deposits have average ??34S values of -4.3 and -0.8 per mil (CDT), respectively. Coexisting mineral pairs give an isotopic equilibration temperature range of 89?? to 163??C which overlaps with the 112?? to 198??C range obtained from primary fluid inclusions. Coexisting quartz has a ??18O value of 19 ?? 1 per mil (VSMOW). The fluid which deposited these minerals is inferred to have had ??18OH2o and ??34SH2s values of 5 ?? 1 and -1 ?? 1 per mil, respectively. Chemical and microthermometric analyses of fluid inclusions in quartz and sphalerite indicate salinities of 3 to 29 wt percent NaCl equiv with Na+ and Ca2+ as the dominant cations in solution. The Br/Cl and I/Cl ratios differ from those characteristic of magmatic waters and pristine seawater, but show some similarity to those observed in deep ground waters in crystalline terranes, basinal brines, and evaporated seawater, Barite, which postdates the sulfides, spans isotopic ranges of 13 to 21 per mil, 10 to 15 per mil, and 0.7109 to 0.7123 for ??34S, ??18O, and 87Sr/86Sr, respectively. The three parameters are correlated providing strong evidence that the barites are products of fluid mixing. We propose that the Cierco deposits formed along an extensional fault system at the margin of a marine basin during the breakup of Pangea at some time between the Early Triassic and Early Cretaceous. Sulfide deposition corresponded to an upwelling of hydrothermal fluid from the Paleozoic basement and was limited by the amount of metals carried by the fluid. Barite deposition corresponded to the waning of upward flow and the collapse of sulfate-rich surface waters onto the retreating hydrothermal plume. Calcite precipitated late in the paragenesis as meteoric or marine waters descended into the fault system

  13. Global mantle convection: Evidence from carbon and nitrogen isotopes in super-deep diamonds (Invited)

    NASA Astrophysics Data System (ADS)

    Palot, M.; Cartigny, P.; Harris, J.; Kaminsky, F. V.; Stachel, T.

    2009-12-01

    Constraining the convective regime of the Earth’s mantle has profound implications for our understanding of the Earth’s cooling and the geodynamics of plate tectonics. Although subducting plates seem to be occasionally deflected at 660 km, evidence from seismic tomography and fluid dynamics suggest that substantial amounts of material reach the core-mantle boundary. Most geochemists, on the other hand, based on evidence from noble gases, would argue for the presence of separate upper and lower mantle reservoirs. Diamond provides a unique opportunity to sample those parts of the mantle that remains inaccessible by any other means. Some mineral associations in diamond, such as majoritic garnet, calcic and magnesian perovskite and manganoan ilmenite with ferropericlase have been recognised as originated from the transition zone down to the lower mantle (Stachel et al., 1999; Kaminsky et al., 2001). In addition, nitrogen in these diamonds is potentially a good tracer for mantle geodynamics. Exchanges between an inner reservoir (characterised by negative δ15N) via degassing at oceanic ridges with an outer reservoir (characterised by positive δ15N) via recycling at a subduction zones can lead to isotopic contrast in a stratified mantle. Because of common super-deep mineral inclusion assemblages in diamonds from Juina (Brazil) and Kankan (Guinea), we carried out a detailed study of nitrogen and carbon isotopes. The Juina diamonds show broadly similar ranges of δ15N from +3.8‰ down to -8.8‰ for both upper (UM) and lower (LM) mantle diamonds. This important feature is also found for UM and LM diamonds from Kankan, although the range of δ15N differs with values from +9.6‰ down to -39.4‰. Both sets of results suggest extensive material-isotopic exchange through the 660km discontinuity, contrary to the idea of an isolated reservoir. Transition zone (TZ) diamonds are enriched in 13C with δ13C from -3.1‰ up to +3.8‰ at Kankan but those of Juina are depleted

  14. Isotopic inhomogeneity of leaf water: Evidence and implications for the use of isotopic signals transduced by plants

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; DeNiro, Michael J.; Rundel, Philip W.

    1989-10-01

    Variations as large as 11%. in δ18O values and 50%. in δD values were observed among different fractions of water in leaves of ivy (Hedera helix) and sunflower (Helianthus annuus). This observation contradicts previous experimental approaches to leaf water as an isotopically uniform pool. Using ion analysis of the water fractions to identify sources within the leaf, we conclude that the isotopic composition of the water within cells, which is involved in biosynthesis and therefore recorded in the plant organic matter, differs substantially from that of total leaf water. This conclusion must be taken into account in studies in which isotope ratios of fossil plant cellulose are interpreted in paleoclimatic terms. In addition, our results have implications for attempts to explain the Dole effect and to account for the variations of 18O/16O ratios in atmospheric carbon dioxide, since the isotopic composition of cell water, not of total leaf water, influences theδ18O values of O2 and CO2 released from plants into the atmosphere.