Bonnet, Marie; Cansell, Maud; Placin, Frédéric; David-Briand, Elisabeth; Anton, Marc; Leal-Calderon, Fernando
2010-07-14
Water-in-oil-in-water (W/O/W) double emulsions were prepared, and the kinetics of release of magnesium ions from the internal to the external water phase was followed. Different chelating agents (phosvitin and gluconate) were used to bind magnesium within the prospect of improving the ion retention in the internal aqueous droplets. Magnesium release was monitored for 1 month of storage, for each formulation, with and without chelation, at two storage temperatures (4 and 25 degrees C). Leakage occurred without film rupturing (coalescence) and was mainly due to entropically driven diffusion/permeation phenomena. The experimental results revealed a clear correlation between the effectiveness of chelating agents to delay the delivery and their binding capacity characterized by the equilibrium affinity constant. The kinetic data (percent released versus time curves) were interpreted within the framework of a kinetic model based on diffusion and taking into account magnesium chelation.
2016-01-01
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. PMID:27983843
Hayatshahi, Hamed S; Roe, Daniel R; Galindo-Murillo, Rodrigo; Hall, Kathleen B; Cheatham, Thomas E
2017-01-26
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.
Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis.
Yamagami, Ryota; Bingaman, Jamie L; Frankel, Erica A; Bevilacqua, Philip C
2018-06-01
Most RNA folding studies have been performed under non-physiological conditions of high concentrations (≥10 mM) of Mg 2+ free , while actual cellular concentrations of Mg 2+ free are only ~1 mM in a background of greater than 50 mM Mg 2+ total . To uncover cellular behavior of RNA, we devised cytoplasm mimic systems that include biological concentrations of amino acids, which weakly chelate Mg 2+ . Amino acid-chelated Mg 2+ (aaCM) of ~15 mM dramatically increases RNA folding and prevents RNA degradation. Furthermore, aaCM enhance self-cleavage of several different ribozymes, up to 100,000-fold at Mg 2+ free of just 0.5 mM, indirectly through RNA compaction. Other metabolites that weakly chelate magnesium offer similar beneficial effects, which implies chelated magnesium may enhance RNA function in the cell in the same way. Overall, these results indicate that the states of Mg 2+ should not be limited to free and bound only, as weakly bound Mg 2+ strongly promotes RNA function under cellular conditions.
Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.
Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan
2016-03-01
The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.
Waters, R S; Bryden, N A; Patterson, K Y; Veillon, C; Anderson, R A
2001-12-01
The efficacy of a chelating agent in binding a given metal in a biological system depends on the binding constants of the chelator for the particular metals in the system, the concentration of the metals, and the presence and concentrations of other ligands competing for the metals in question. In this study, we make a comparison of the in vitro binding constants for the chelator, ethylenediaminetetraacetic acid, with the quantitative urinary excretion of the metals measured before and after EDTA infusion in 16 patients. There were significant increases in lead, zinc, cadmium, and calcium, and these increases roughly corresponded to the expected relative increases predicted by the EDTA-metal-binding constants as measured in vitro. There were no significant increases in urinary cobalt, chromium, or copper as a result of EDTA infusion. The actual increase in cobalt could be entirely attributed to the cobalt content of the cyanocobalamin that was added to the infusion. Although copper did increase in the post-EDTA specimens, the increase was not statistically significant. In the case of magnesium, there was a net retention of approximately 85% following chelation. These data demonstrate that EDTA chelation therapy results in significantly increased urinary losses of lead, zinc, cadmium, and calcium following EDTA chelation therapy. There were no significant changes in cobalt, chromium, or copper and a retention of magnesium. These effects are likely to have significant effects on nutrient concentrations and interactions and partially explain the clinical improvements seen in patients undergoing EDTA chelation therapy.
Mithieux, G; Vega, F V; Riou, J P
1990-11-25
We have recently shown that the Ca.EGTA and Mg.EDTA complexes, but not free Ca2+ or Mg2+, inhibit the liver glucose-6-phosphatase (Mithieux, G., Vega, F. V., Beylot, M., and Riou, J. P. (1990) J. Biol. Chem. 265, 7257-7259). In this work, we report that, when complexed with Mg2+, two endogenous dicarboxylic keto acids (alpha-ketoglutarate (alpha-KG) and oxaloacetate (OAA] inhibit the glucose-6-phosphatase activity at low concentrations of substrate. This phenomenon is specific for complexes of Mg2+ with alpha-KG and OAA since 1) the complexes of Mg2+ with a number of other di- or tricarboxylic acids having high structural analogy with alpha-KG and OAA (oxalate, malate, succinate, citrate, aspartate, and glutamate) do not inhibit the glucose-6-phosphatase activity and 2) the Ca.alpha-KG and Ca.OAA chelates do not inhibit the glucose-6-phosphatase activity. In the presence of Mg.alpha-KG or Mg.OAA chelates, the enzyme displays sigmoid kinetics; the Hanes plots deviate from linearity, indicating the positive cooperative dependence of the velocity upon the substrate concentration. Hill coefficients (equal to 1 in the absence of the chelates) of 1.23 and 1.33 have been determined in the presence of Mg.alpha-KG and Mg.OAA complexes, respectively. The disruption of microsomal integrity by detergents abolishes the effect of Mg.alpha-KG and Mg.OAA, suggesting that the magnesium chelates inhibit the translocase component of the glucose-6-phosphatase system.
Los, Ferdinand; Brodska, Helena
2016-01-01
Background The requirements for magnesium (Mg) supplementation increase under regional citrate anticoagulation (RCA) because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT) may not be sufficient to prevent hypomagnesemia. Methods Patients (n = 45) on CRRT (2,000 ml/h, blood flow (Qb) 100 ml/min) with RCA modality (4% trisodium citrate) using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42) and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l) of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings. Results Median balance of Mg was -0.91 (-1.18 to -0.53) mmol/h with Mg 0.75 mmol/l and 0.2 (0.06–0.35) mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12–0.18) mmol/h) with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11–0.25) mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001). The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01). Conclusions Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment. Trial Registration ClinicalTrials.gov Identifier: NCT01361581 PMID:27391902
Enhanced in vitro activity of tigecycline in the presence of chelating agents.
Deitchman, Amelia N; Singh, Ravi Shankar Prasad; Rand, Kenneth H; Derendorf, Hartmut
2018-05-01
The lack of availability of novel antibiotic agents and the rise of resistance to existing therapies has led clinicians to utilise combination therapy to adequately treat bacterial infections. Here we examined how chelators may impact the in vitro activity of tigecycline (TIG) against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) were determined by broth dilution with and without various combinations of chelators (EDTA and other tetracyclines) and metal ions (i.e. calcium, magnesium). Trimethoprim (TMP) was used as a non-chelating control. Addition of metal ions led to increases in MICs, whilst addition of EDTA led to decreases in MICs. The chelating effects of EDTA were reversed by addition of magnesium and most profoundly calcium. Similar effects of EDTA and calcium were observed for tetracycline (TET) and TMP. When other tetracyclines (TET, oxytetracycline (OXY) and chlortetracycline (CHL)) were used as chelators at concentrations below their MICs, TIG MICs decreased for P. aeruginosa but not for E. coli. Some decreases in TIG MICs were observed for K. pneumoniae when TET and CHL were added. A dose-dependent decrease in TIG MIC was observed for TET and was reversed by the addition of calcium. The presence of effects of EDTA and calcium on TMP MICs indicates that mechanisms outside of TIG chelation likely play a role in enhanced activity. Full characterisation of an unexpected interaction such as TIG-TET with different microorganisms could provide valuable insights into the underlying mechanisms and design of physiologically viable chelators as candidates for future combinations regimens. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2016-04-01
Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life. Copyright © 2015 Elsevier Ltd. All rights reserved.
Waters, Robert S; Fernholz, Karen; Bryden, Noella A; Anderson, Richard A
2008-09-01
Serum/plasma measurements do not reflect magnesium deficits in clinical situations, and magnesium load tests are used as a more accurate method to identify magnesium deficiency in a variety of disease states as well as in subclinical conditions. The objective of this study was to determine if people are indeed magnesium deficient or if the apparent magnesium deficiency is due to the composition of the infusate used in the load test. Magnesium load tests were performed on seven patients using three different Mg solution infusions-a Mg-EDTA (ethylene diamine tetraacetic acid)-nutrient cocktail used in EDTA chelation therapy containing several components including vitamins and minerals, and the same cocktail without EDTA and an infusion of an identical amount of magnesium in normal saline solution. There was no significant difference in the amount of magnesium retained in the 24 h after infusion among the three infusates. All infusates resulted in very high magnesium retention compared to previous published magnesium load studies. Magnesium deficiency may be widespread, and the relationship of Mg deficiency to related diseases requires further study.
Demonstration of elastic fibres with reagents for detection of magnesium.
Müller, W; Firsching, R
1991-01-01
Investigation of elastic fibres in various human and animal tissues with the reagents quinalizarin, magneson II, and titan yellow for the detection of magnesium revealed striking positive results. After pretreatment of skin and ligamentum flavum with elastase the tests were negative. The results support the supposition that the amount of magnesium in elastic fibres is sufficient for histochemical detection. It is speculated that the marked chelate-forming property of magnesium, or its antagonistic function to calcium, is associated with the elastic property of the fibres. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:1711022
Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E
2007-05-31
A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.
NASA Technical Reports Server (NTRS)
Oie, T.; Loew, G. H.; Burt, S. K.; MacElroy, R. D.
1984-01-01
The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.
Haddox, J L; Pfister, R R; Slaughter, S E
1996-03-01
Our purpose was to determine whether chelation of Ca2+ and Mg2+ is the mechanism by which sodium citrate inhibits corneal ulceration in the alkali-injured rabbit eye. The right eyes of 60 albino rabbits (2-2.5 kg) were alkali-injured by filling a 12-mm-diameter plastic well placed on the corneal surface with 0.4 ml of 1 N NaOH. After 35 s the alkali was aspirated, and the well was rinsed with physiological saline. Animals were randomly distributed to three treatment groups of equal size. Two drops of the following topical medications were administered on the hour (14 times per day) for 35 days: physiological saline, 10% citrate in saline, and 346 mM Ca2+, 346 mM Mg2+, and 10% citrate in saline. During the experiment, significantly fewer ulcerations occurred in the citrate-treated eyes (five of 20, 25%) than in the saline-treated eyes (13 of 20, 65%) or in the calcium-magnesium-citrate-treated eyes (15 of 20, 75%). When ulcerations did develop in the citrate group, they occurred significantly later and were less severe than those in the saline and calcium-magnesium-citrate groups. There was a significant increase in the number of eyes with signs of band keratopathy and translucent areas in the calcium-magnesium-citrate group when compared with the other two groups. As in previous studies, sodium citrate significantly inhibited the development of corneal ulcers after alkali injury. The annullment of the favorable effect of citrate on ulceration in the alkali-injured eye by the addition of calcium and magnesium shows that the mechanism of action of citrate is the chelation of these divalent cations.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-06-25
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-01-01
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055
USDA-ARS?s Scientific Manuscript database
The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...
Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando
2010-06-15
Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.
Effect of antacid on absorption of the quinolone lomefloxacin.
Shimada, J; Shiba, K; Oguma, T; Miwa, H; Yoshimura, Y; Nishikawa, T; Okabayashi, Y; Kitagawa, T; Yamamoto, S
1992-01-01
The effect of antacid on the absorption of lomefloxacin (LFLX) in humans was studied. When LFLX was orally administered concomitantly with aluminum- and magnesium-containing antacids under fasting conditions, its level in plasma decreased by one-half and its area under the concentration-time curve was reduced by 40% compared with the levels observed after treatment with LFLX alone. The urinary recovery value also decreased by 40%. No such effects were noted after coadministration of LFLX and a nonmetallic antacid. This study confirmed the existence of chelate complexes of LFLX with Al3+ and Mg2+ and examined the chelating strength. The stability constants of LFLX with Al3+ and Mg2+ were measured and compared with those of ofloxacin and norfloxacin; little difference was observed among them. LFLX was found to bind more strongly with Al3+ than with Mg2+. Further, the existence of chelate formation was proven by 13C-nuclear magnetic resonance spectroscopy. The decrease in the LFLX level in plasma in humans could be explained by a reduced absorption of the Al(3+)- and Mg(2+)-LFLX chelate complexes. PMID:1329615
Stable dimeric magnesium(I) compounds: from chemical landmarks to versatile reagents.
Stasch, Andreas; Jones, Cameron
2011-06-07
The chemistry of the s-block metals is dominated by the +1 oxidation state for the Alkali metals (group 1) and the +2 oxidation state for the Alkaline Earth metals (group 2). In recent years, a series of stable dimeric magnesium(I) compounds has been prepared and their chemistry has started to develop. These complexes feature "deformable" Mg-Mg single bonds and are stabilised by sterically demanding and chelating anionic N-ligands that prevent their disproportionation. They have rapidly proven useful in organic and organometallic/inorganic reduction reactions as hydrocarbon soluble, stoichiometric, selective and safe reducing agents. The scope of this perspective focuses on stable molecular compounds of the general type LMgMgL and describes their synthesis, structures, theoretical and spectroscopic studies as well as their further chemistry. Also, comparisons are drawn with related complexes including magnesium(II) hydrides and dimeric zinc(I) compounds.
The role of calcium and magnesium in the concrete tubes of the sandcastle worm.
Sun, ChengJun; Fantner, Georg E; Adams, Jonathan; Hansma, Paul K; Waite, J Herbert
2007-04-01
Sandcastle worms Phragmatopoma californica build mound-like reefs by sticking together large numbers of sand grains with cement secreted from the building organ. The cement consists of protein plus substantial amounts of calcium and magnesium, which are not invested in any mineral form. This study examined the effect of calcium and magnesium depletion on the structural and mechanical properties of the cement. Divalent ion removal by chelating with EDTA led to a partial collapse of cement architecture and cement dislodgement from silica surfaces. Mechanical properties examined were sand grain pull-out force, tube resistance to compression and cement adhesive force. EDTA treatment reduced sand grain pull-out forces by 60% and tube compressive strength by 50% relative to controls. EDTA lowered both the maximal adhesive force and energy dissipation of cement by up to an order of magnitude. The adhesiveness of calcium- and magnesium-depleted cement could not be restored by re-exposure to the ions. The results suggest that divalent ions play a complex and multifunctional role in maintaining the structure and stickiness of Phragmatopoma cement.
Angelbeck, Donald I.; Kirsch, Edwin J.
1969-01-01
Aggregative growth of non-slime-forming strains of Zoogloea ramigera was induced by growing the organisms at a depressed pH. Calcium and magnesium ion was found to reverse aggregative growth of the organisms. Conversely, aggregation was stimulated when the available inorganic cation concentration of the growth medium was lowered by the use of a chelating agent. The aggregative effects of pH depression or cation depletion and the dispersal effects of cation supplementation were observed only during cellular growth. The data suggest that aggregate formation of non-slime-forming strains of Z. ramigera may be related to the calcium or magnesium metabolism of the organisms, or both. Images PMID:4976326
Creatine and creatine forms intended for sports nutrition.
Andres, Susanne; Ziegenhagen, Rainer; Trefflich, Iris; Pevny, Sophie; Schultrich, Katharina; Braun, Hans; Schänzer, Wilhelm; Hirsch-Ernst, Karen Ildico; Schäfer, Bernd; Lampen, Alfonso
2017-06-01
Creatine is a popular ergogenic supplement in sports nutrition. Yet, supplementation of creatine occasionally caused adverse effects such as gastrointestinal complaints, muscle cramps and an increase in body weight. Creatine monohydrate has already been evaluated by different competent authorities and several have come to the conclusion that a daily intake of 3 g creatine per person is unlikely to pose safety concerns, focusing on healthy adults with exclusion of pregnant and breastfeeding women. Possible vulnerable subgroups were also discussed in relation to the safety of creatine. The present review provides an up-to-date overview of the relevant information with special focus on human studies regarding the safety of creatine monohydrate and other marketed creatine forms, in particular creatine pyruvate, creatine citrate, creatine malate, creatine taurinate, creatine phosphate, creatine orotate, creatine ethyl ester, creatine pyroglutamate, creatine gluconate, and magnesium creatine chelate. Limited data are available with regard to the safety of the latter creatine forms. Considering an acceptable creatine intake of 3 g per day, most of the evaluated creatine forms are unlikely to pose safety concerns, however some safety concerns regarding a supplementary intake of creatine orotate, creatine phosphate, and magnesium creatine chelate are discussed here. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.
Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Monteil, Julien; Anton, Marc; Leal-Calderon, Fernando
2010-06-15
Water-in-oil-in-water (W/O/W) double emulsions were prepared and the kinetics of release of magnesium ions from the internal to the external water phase was investigated as a function of the formulation and the globule volume fraction. All the emulsions were formulated using the same surface-active species (polyglycerol polyricinoleate and sodium caseinate). Also, the internal droplet and oil globule diameters were almost identical for all the systems. Two types of W/O/W emulsions were prepared based either on a synthetic oil (miglyol) or on an edible oil (olive oil). The globule volume fraction varied from 11% to 72%. At constant temperature (T=25 degrees C) and irrespective of the oil type, the percentage of magnesium released was lowered by increasing the globule fraction. In all cases, magnesium leakage occurred without film rupturing (no coalescence). Thus, the experimental data were interpreted within the frame of a model based on diffusion. The rate of release was determined by the permeation coefficient of magnesium across the oil phase and by the binding (chelation) of magnesium by caseinate molecules. The data could be adequately fitted by considering a time-dependant permeation coefficient. The better retention of magnesium at high globule fractions could account for two distinct phenomena: (i) the reduction of the relative volume of the outer phase, and (ii) the attenuation of the permeation coefficient over time induced by interfacial magnesium binding, all the more important than the globule fraction increased. Copyright 2010 Elsevier B.V. All rights reserved.
Lin, Zhuangsheng; Goddard, Julie
2018-02-01
Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal of the synthetic additive, ethylenediamine tetraacetic acid. The new synthesis technique improves the throughput of metal-chelating active packaging coatings, enabling potential roll-to-roll fabrication of the materials for antioxidant food packaging applications. © 2018 Institute of Food Technologists®.
Solid-phase materials for chelating metal ions and methods of making and using same
Harrup, Mason K.; Wey, John E.; Peterson, Eric S.
2003-06-10
A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.
Magnesite Step Growth Rates as a Function of the Aqueous Magnesium:Carbonate Ratio
Bracco, Jacquelyn N.; Stack, Andrew G.; Higgins, Steven R.
2014-10-01
Step velocities of monolayer-height steps on the (101 ⁻4) magnesite surface have been measured as functions of the aqueous magnesium-to-carbonate ratio and saturation index (SI) using a hydrothermal atomic force microscope (HAFM). At SI ≤ 1.9 and 80-90 °C, step velocities were found to be invariant with changes in the magnesium-to-carbonate ratio, an observation in contrast with standard models for growth and dissolution of ionically-bonded, multi-component crystals. However, at high saturation indices (SI = 2.15), step velocities displayed a ratio dependence, maximized at magnesium-to-carbonate ratios slightly greater than 1:1. Traditional affinity-based models were unable to describe growth rates at themore » higher saturation index. Step velocities also could not be modeled solely through nucleation of kink sites, in contrast to other minerals whose bonding between constituent ions is also dominantly ionic in nature, such as calcite and barite. Instead, they could be described only by a model that incorporates both kink nucleation and propagation. Based on observed step morphological changes at these higher saturation indices, the step velocity maximum at SI = 2.15 is likely due to the rate of attachment to propagating kink sites overcoming the rate of detachment from kink sites as the latter becomes less significant under far from equilibrium conditions.« less
An improved method for emergent decontamination of ocular and dermal hydrofluoric acid splashes.
Soderberg, Kjell; Kuusinen, Petri; Mathieu, Laurence; Hall, Alan H
2004-08-01
Accidental hydrofluoric acid (HF) splashes often occur in industrial settings. HF easily penetrates into tissues by initial acid action allowing fluoride ions to penetrate deeply, chelating calcium and magnesium. Resultant hypocalcemia and hypomagnesemia can be fatal. This report describes the utilization of Hexafluorine--a hypertonic, amphoteric, chelating decontamination solution--in workplaces where water decontamination followed by calcium gluconate inunction failed to prevent HF burns and systemic toxicity. Between 1998 and 1999, 16 cases of ocular and dermal HF splashes with either 70% HF or 6% HF/15% nitric acid (HNO3) were decontaminated with Hexafluorine at the worksite. HF burns did not develop and medical treatment other than initial decontamination was not reQuired in 12/16 (75%). In 7/16 (44%) cases, lost work time corresponded to duration of hospital observation (mean < 1 d).
Crack, Jason C; Gaskell, Alisa A; Green, Jeffrey; Cheesman, Myles R; Le Brun, Nick E; Thomson, Andrew J
2008-02-06
In Escherichia coli, the switch between aerobic and anaerobic metabolism is primarily controlled by the fumarate and nitrate reduction transcriptional regulator FNR. In the absence of O2, FNR binds a [4Fe-4S]2+ cluster, generating a transcriptionally active dimeric form. Exposure to O2 results in the conversion of the cluster to a [2Fe-2S]2+ form, leading to dissociation of the protein into transcriptionally inactive monomers. The [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion proceeds in two steps. Step 1 involves the one-electron oxidation of the cluster, resulting in the release of Fe2+, generating a [3Fe-4S]1+ cluster intermediate, and a superoxide ion. In step 2, the cluster intermediate spontaneously rearranges to form the [2Fe-2S]2+ cluster, with the release of a Fe3+ ion and two sulfide ions. Here, we demonstrate that, in both native and reconstituted [4Fe-4S] FNR, the reaction environment and, in particular, the presence of Fe2+ and/or Fe3+ chelators can influence significantly the cluster conversion reaction. We demonstrate that while the rate of step 1 is largely insensitive to chelators, that of step 2 is significantly enhanced by both Fe2+ and Fe3+ chelators. We show that, for reactions in Fe3+-coordinating phosphate buffer, step 2 is enhanced to the extent that step 1 becomes the rate determining step and the [3Fe-4S]1+ intermediate is no longer detectable. Furthermore, Fe3+ released during this step is susceptible to reduction in the presence of Fe2+ chelators. This work, which may have significance for the in vivo FNR cluster conversion reaction in the cell cytoplasm, provides an explanation for apparently contradictory results reported from different laboratories.
Effects of magnesium ions on the stabilization of RNA oligomers of defined structures.
Serra, Martin J; Baird, John D; Dale, Taraka; Fey, Bridget L; Retatagos, Kimberly; Westhof, Eric
2002-01-01
Optical melting was used to determine the stabilities of 11 small RNA oligomers of defined secondary structure as a function of magnesium ion concentration. The oligomers included helices composed of Watson-Crick base pairs, GA tandem base pairs, GU tandem base pairs, and loop E motifs (both eubacterial and eukaryotic). The effect of magnesium ion concentration on stability was interpreted in terms of two simple models. The first assumes an uptake of metal ion upon duplex formation. The second assumes nonspecific electrostatic attraction of metal ions to the RNA oligomer. For all oligomers, except the eubacterial loop E, the data could best be interpreted as nonspecific binding of metal ions to the RNAs. The effect of magnesium ions on the stability of the eubacterial loop E was distinct from that seen with the other oligomers in two ways. First, the extent of stabilization by magnesium ions (as measured by either change in melting temperature or free energy) was three times greater than that observed for the other helical oligomers. Second, the presence of magnesium ions produces a doubling of the enthalpy for the melting transition. These results indicate that magnesium ion stabilizes the eubacterial loop E sequence by chelating the RNA specifically. Further, these results on a rather small system shed light on the large enthalpy changes observed upon thermal unfolding of large RNAs like group I introns. It is suggested that parts of those large enthalpy changes observed in the folding of RNAs may be assigned to variations in the hydration states and types of coordinating atoms in some specifically bound magnesium ions and to an increase in the observed cooperativity of the folding transition due to the binding of those magnesium ions coupling the two stems together. Brownian dynamic simulations, carried out to visualize the metal ion binding sites, reveal rather delocalized ionic densities in all oligomers, except for the eubacterial loop E, in which precisely located ion densities were previously calculated. PMID:12003491
Boric acid reversibly inhibits the second step of pre-mRNA splicing.
Shomron, Noam; Ast, Gil
2003-09-25
Several approaches have been used to identify the factors involved in mRNA splicing. None of them, however, comprises a straightforward reversible method for inhibiting the second step of splicing using an external reagent other than a chelator. This investigation demonstrates that the addition of boric acid to an in vitro pre-mRNA splicing reaction causes a dose-dependent reversible inhibition effect on the second step of splicing. The mechanism of action does not involve chelation of several metal ions; hindrance of 3' splice-site; or binding to hSlu7. This study presents a novel method for specific reversible inhibition of the second step of pre-mRNA splicing.
Jiménez-Osés, Gonzalo; Brockway, Anthony J; Shaw, Jared T; Houk, K N
2013-05-01
The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone, and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated.
Jiménez-Osés, Gonzalo; Brockway, Anthony J.; Shaw, Jared T.; Houk, K. N.
2013-01-01
The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated. PMID:23601086
Monolithic porous magnesium silicide.
Hayati-Roodbari, N; Berger, R J F; Bernardi, J; Kinge, S; Hüsing, N; Elsaesser, M S
2017-07-11
Macroporous magnesium silicide monoliths were successfully prepared by a two-step synthesis procedure. The reaction of gaseous magnesium vapor with macro-/mesoporous silicon, which was generated from hierarchically organized meso-/macroporous silica by a magnesiothermic reduction reaction, resulted in monolithic magnesium silicide with a cellular, open macroporous structure. By adjusting the reaction conditions, such as experimental set-up, temperature and time, challenges namely loss of porosity or phase purity of Mg 2 Si were addressed and monolithic magnesium silicide with a cellular network builtup was obtained.
Site-specific protein labeling with PRIME and chelation-assisted Click chemistry
Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.
2016-01-01
This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180
Seyfori, Hossein; Ghasemi, Hossein Ali; Hajkhodadadi, Iman; Nazaran, Mohammad Hassan; Hafizi, Maryam
2018-05-01
The effects of water supplementation of chelated trace minerals (CTM, which is named Bonzaplex designed with chelate compounds technology) on growth performance, apparent total tract digestibility (ATTD) of minerals, and some blood metabolites, TM, and antioxidant enzyme values in African ostriches were investigated from 8 to 12 months of age. A total of 20 8-month-old ostriches (five birds in five replicate pens) was randomly allocated into one of the following four treatments: (1) control (basal diet + tap water), (2) low CTM (basal diet +100 mg/bird/day CTM powder in tap water), (3) medium CTM (basal diet +1 g/bird/day CTM powder in tap water), and (4) high CTM (basal diet +2 g/bird/day CTM powder in tap water). Compared with control, medium CTM improved (P < 0.05) daily weight gain and ATTD of phosphorous, zinc, and copper in 12-month-old ostriches. Furthermore, the feed conversion ratio was lower, and ATTD of magnesium was higher in the medium- and high-CTM groups than that in the control group (P < 0.05). At the end of the trial, ostriches receiving high-CTM treatment exhibited the lower (P < 0.05) serum triglyceride and very low-density lipoprotein cholesterol concentrations and higher copper levels compared to those of the control treatment. Supplementation of higher amounts of CTM (medium and high CTM) also increased the activity of serum superoxide dismutase (P < 0.05). No differences were detected for other blood parameters including glucose, total protein, albumin, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, iron, magnesium, and glutathione peroxidase values. In conclusion, supplementation of CTM at the level of 1 g/bird/day to the drinking water can be recommended for improving growth performance, mineral absorption, and antioxidant status of ostriches fed diets containing the recommended levels of inorganic TM.
IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD
Stoddard, S.D.; Nuckolls, D.E.
1963-12-31
A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)
Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction
Lovley, D.R.; Woodward, J.C.
1996-01-01
The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.
Minerals in thalassaemia major patients: An overview.
Ozturk, Zeynep; Genc, Gizem Esra; Gumuslu, Saadet
2017-05-01
Thalassaemia major (TM) is a hereditary blood disease characterised by reduced or absent production of beta globin chains. Erythrocyte transfusions are given to raise the haemoglobin level in patients with thalassaemia major. However, transfusions have been related to increased risk of iron overload and tissue damage related to excess iron. Both elevated oxidative stress due to iron overload and increased hemolysis lead to over utilisation of minerals required for antioxidant enzymes activities. Iron chelators have been used to prevent iron overload in thalassaemia major patients, but these chelators have the possibility of removing minerals from the body. Thalassaemia patients are more at risk for mineral deficiency because of increased oxidative stress and iron chelation therapies. Growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis are the complications of thalassaemia. Minerals may play a particular role to prevent these complications. In the current review, we provide an overview of minerals including zinc (Zn), copper (Cu), selenium (Se), magnesium (Mg) and calcium (Ca) in thalassaemia major patients. We, also, underline that some complications of thalassaemia can be caused by an increased need for minerals or lack of the minerals. Copyright © 2017 Elsevier GmbH. All rights reserved.
The effects of magnesium sulphate and EDTA in the hypercholesterolaemic rabbit.
Evans, D A; Tariq, M; Sujata, B; McCann, G; Sobki, S
2001-12-01
Numerous clinical reports suggest the beneficial effects of chelation therapy for the treatment of atherosclerosis. However, the results of these studies are inconclusive and controversial. The purpose of this present study was to examine the prophylactic and therapeutic effects of chelation liquid (CHL) in experimental atherosclerosis. Twenty New Zealand white rabbits were fed a 1% cholesterol-supplemented diet for 45 days. In the prophylactic phase of the study subcutaneous 300 mg EDTA + 500 mg magnesium sulphate (MgSO4) injections (five rabbits) and isotonic saline (five rabbits) were given to test and control groups, respectively, along with cholesterol rich diet. The CHL treatment ameliorated the rise of serum cholesterol and serum triglyceride concentrations, lowered serum calcium concentrations and reduced the aortic atheroma. In the therapeutic phase of the experiment the cholesterol diet was stopped and the remaining 10 animals were returned to normal diet. Five of these rabbits were given CHL injections and other five animals were given isotonic saline injections for 121 days. Although the level of cholesterol and triglyceride were not significantly different in the two groups, the serum calcium concentration and the percentage of the area of flate aortic specimen occupied by atheroma were significantly lower in the CHL treated rabbits as compared to controls. It is concluded that CHL injections have a definite prophylactic effect on atherogenesis in the cholesterol-fed rabbit, and may have some therapeutic value in the regression phase. Further confirmatory studies are suggested.
Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang
2015-05-01
Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.
Zayed, M A; El-Dien, F A Nour; Mohamed, Gehad G; El-Gamel, Nadia E A
2006-05-01
The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or dl-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.
2006-05-01
The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.
Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng
2017-11-01
A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.
Arumugam, Jayanthi; Brown, Hayley A.; Jacobs, Hollie K.; Gopalan, Aravamudan S.
2011-01-01
The HOPO sulfonamide reagent, 3, was prepared from commercial 2,3-dihydroxypyridine in four steps in good yields. Sulfonamide 3 readily underwent selective alkylation with dibromides in the presence of base or could be coupled to alcohols using Mitsunobu conditions. The utility of this nucleophilic HOPO reagent was demonstrated by the synthesis some tris and tetraHOPO chelators. This approach for tethering HOPO ligands is unique and flexible as shown by the preparation of HOPO/iminocarboxylic acid chelator 17. PMID:21709749
Development of an iron chelating polyethylene film for active packaging applications.
Tian, Fang; Decker, Eric A; Goddard, Julie M
2012-02-29
Metal-promoted oxidation reactions are a major cause of food quality deterioration. Active packaging offers novel approaches to controlling such oxidation for the purpose of extending shelf life. Herein, we report modification of the surface of polyethylene (PE) films to possess metal chelating activity. Metal chelating carboxylic acids were introduced to the film surface using cross-linking agents [polyethylenimine (PEI) or ethylenediamine (ED)] to increase the number of available carboxylic acids. ATR-FTIR, contact angle, dye assay, and iron chelating assay were used to characterize changes in surface chemistry after each functionalization step. The chelator poly(acrylic acid) (PAA) was attached to the surface at a density of 9.12 ± 0.71 nmol carboxyl groups/cm², and exhibited an iron chelating activity. The results indicate that PAA-modified PE films might have a higher affinity to Fe³⁺ than Fe²⁺ with the optimum binding pH at 5.0. Such inexpensive active packaging materials are promising in food industry for the preservation of liquid and semiliquid food products and have application in heavy metal chelation therapy for biomedical materials as well.
Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements
PENEDO, J. CARLOS; WILSON, TIMOTHY J.; JAYASENA, SUMEDHA D.; KHVOROVA, ANASTASIA; LILLEY, DAVID M.J.
2004-01-01
It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442
Holmsen, Holm; Storm, Eva
1969-01-01
1. The effects of ATP, PPi and EDTA on the skeletal-muscle pyruvate kinase reaction at various concentrations of magnesium (where `magnesium' refers to total Mg2+, both free and in the form of complexes) were investigated. The reaction rate was determined as the amount of pyruvate formed in a recorded time of incubation. 2. At 44mm-magnesium the Km values for ADP and phosphoenolpyruvate were unaltered by the presence of ATP up to 6·8mm in systems buffered with either tris–hydrochloric acid or glycylglycine–sodium hydroxide, but the Km values were different in these systems. The Km for one substrate was independent of the concentration of the second substrate. 3. At 10mm-magnesium in the tris–hydrochloric acid system ATP inhibited the reaction competitively with respect to ADP and phosphoenolpyruvate. In the glycylglycine–sodium hydroxide system the inhibition appeared to be non-competitive. At 10mm-magnesium the Km values were lower than at 44mm-magnesium and dependent on the system used. 4. In the tris–hydrochloric acid system the reaction rate rose with increasing magnesium concentration up to a maximum at a concentration 10–20 times that of ADP. Further increase inhibited the reaction and at 44mm-magnesium the rate was 25–50% of its maximum. This inhibition paralleled that produced by increasing trimethylammonium chloride concentrations and was not due to a specific effect of the Mg2+ ion. 5. In the presence of 6·8mm-ATP no reaction occurred below 4–6mm-magnesium, and further increase apparently abolished the inhibition as the reaction rate increased and became equal to those obtained in the absence of ATP at 10–25mm-magnesium. Further increase in magnesium concentration gave reaction rates that were slightly higher in the presence of ATP than in its absence. The maximal rate in the presence of ATP was distinctly lower than in its absence. When 6·8mm-PPi or 6·8mm-EDTA was present the variations in reaction rate with rising magnesium concentration were similar to that obtained in the presence of ATP below 6–8mm-magnesium but further increase in the magnesium concentration resulted in an increase in the rate up to a maximum comparable with that of the control. The effect of pure chelation was thus a displacement of the reaction maximum to higher magnesium concentrations without changing the maximal rate. When correction had been made for this effect, ATP gave inhibition at 44mm-magnesium that was competitive with respect to ADP (Ki 2·1×10−2m). This degree of inhibition is far less than was reported earlier and its importance for the mechanism of the pyruvate kinase reaction is discussed. PMID:4308294
Synthesis of first row transition metal selenomaltol complexes.
Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J
2018-06-21
We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.
Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.
2013-04-01
Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.
NASA Astrophysics Data System (ADS)
Dai, Jiangdong; Chang, Zhongshuai; Xie, Atian; Zhang, Ruilong; Tian, Sujun; Ge, Wenna; Yan, Yongsheng; Li, Chunxiang; Xu, Wei; Shao, Rong
2018-05-01
The research of superhydrophilic interface is developing rapidly, but the preparations of superhydrophilic surfaces through simple methods are still challenging. Herein, we reported a facile, rapid and environmentally-friendly approach for preparing a novel superhydrophilic and underwater superoleophobic membrane via the thermal oxidation of Cu mesh and one-step coordinated assembly of Fe(III)-CMC chelate hydrogel. Superhydrophilicity was attributed to the hydrophilicity of Fe(III)-CMC chelate hydrogel and nanoneedle-like rough structure of CuO@Cu membrane. The membrane was used to separate a variety of oil/water mixtures and exhibited excellent separation performance. Moreover, the membrane exhibited the excellent durability and superior stability against corrosion conditions. We envision that the Fe(III)-CMC@CuO@Cu membrane with good underwater superoleophobicity could provide a candidate not only for oil/water separation but also many other potential applications such as underwater oil manipulation, self-clean, and bio-adhesion control.
Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam C. Powell, IV
2012-07-19
Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role inmore » recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.« less
NASA Astrophysics Data System (ADS)
Sun, Zhizhong; Niu, Xiaoping; Hu, Henry
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.
Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li
2015-05-01
Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.
Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2015-05-27
Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations.
Frost, Ray L; Adebajo, Moses; Weier, Matt L
2004-02-01
Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.
Gardner, Susan E.; Anderson, Donald C.; Webb, Bette J.; Stitzel, Ann E.; Edwards, Morven S.; Spitzer, Roger E.; Baker, Carol J.
1982-01-01
The relative roles of serum factors required for opsonization of type XIV Streptococcus pneumoniae were investigated by means of luminol-enhanced chemiluminescence (CL), bactericidal, and immunofluorescence assays employing adult sera containing high (>1,000 ng of antibody nitrogen per ml) or low (<200 ng of antibody nitrogen per ml) antibody concentrations as determined by radioimmunoassay. Specific antibody concentration correlated directly with both total and heat-labile CL activity (P < 0.005) and with the bactericidal index (P < 0.05) at a serum concentration of 10%. The importance of specific antibody as an opsonin was confirmed by the abolition of CL activity and immunoglobulin immunofluorescence observed after absorption of heated sera with type XIV pneumococcal cells and by the dose response in CL and bactericidal activity observed with the addition of immunoglobulin G to hypogammaglobulinemic serum. A role for the classical complement pathway in opsonization was indicated by significantly greater CL integrals for high-antibody sera than for low-antibody sera depleted of factor D and by the bactericidal activity noted for untreated, but not magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid-chelated low-antibody sera. The alternative pathway contributed more than half of the CL activity of both high- and low-antibody sera. However, after magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid chelation, only sera with high antibody concentrations or agammaglobulinemic serum reconstituted with immunoglobulin G with high specific antibody levels supported significant bactericidal activity. Therefore, type-specific antibody and complement promote opsonization of type XIV S. pneumoniae, and this may occur via either complement pathway. These results suggest that CL is a suitable tool to delineate serum factors and their contribution to opsonization, but results must be related to other functional assays. PMID:6802760
Liu, Qin; Chen, Dexin; Kang, Zhixin
2015-01-28
A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)
2002-01-01
An aluminum alloy suitable for high temperature applications, such as heavy duty pistons and other internal combustion applications. having the following composition, by weight percent (wt %): Silicon: 11.0-14.0; Copper: 5.6-8.0; Iron: 0-0.8; Magnesium: 0.5-1.5; Nickel: 0.05-0.9; Manganese: 0.5-1.5; Titanium: 0.05-1.2; Zirconium: 0.12-1.2; Vanadium: 0.05-1.2; Zinc: 0.005-0.9; Strontium: 0.001-0.1; Aluminum: balance. In this alloy the ratio of silicon:magnesium is 10-25, and the ratio of copper:magnesium is 4-15. After an article is cast from this alloy, the article is treated in a solutionizing step which dissolves unwanted precipitates and reduces any segregation present in the original alloy. After this solutionizing step, the article is quenched, and is then aged at an elevated temperature for maximum strength.
NASA Astrophysics Data System (ADS)
Zhong, Yuxing; Hu, Jin; Zhang, Yufen; Tang, Shawei
2018-01-01
A calcium myristic superhydrophobicity coating with a hierarchical micro-nanostructure was fabricated on AZ31 magnesium alloy by one-step electroposition. The effects of deposition time on the coating structure, such as morphology, thickness, wettability and phase composition of the coating were studied. The corrosion behavior of the coated samples in 3.5% NaCl solution was also investigated and the corrosion mechanism was discussed. It was found that the deposition time has a visible effect on the morphology, thickness and wettability, which distinctly affects the corrosion resistance of coatings. The corrosion resistance of the coating gradually decreases with the increase in the immersion time due to the disappearance of the air layer which exists on the coating surface. The superhydrophobic surfaces present the temporal limitations to the corrosion resistance of AZ31 magnesium alloy.
One-step preparing magnesium hydroxide particles from mother liquor of salt production
NASA Astrophysics Data System (ADS)
Guo, H.; Peng, C. S.; Ding, Z. W.; Yuan, H. T.; Yang, K.
2018-01-01
In this study, MH particles were prepared from mother liquor of salt production in one-step through employing ammonia gas as precipitant and stearic acid as dispersant respectively. Since adopting microporous plate to bubble ammonia gas, the percent conversion of magnesium was boosted obviously. The influence of operating condition of reacting temperature, stirring rate, ammonia flowrate and pore size of plate to magnesium percent conversion were investigated, the maximum is 88.1 % at optimum condition according to experimental results. The MH particle preparing from mother liquor in optimum condition was characterized by XRD, the result indicated the volume of brucite was reach to 99.7% within the composition of the product. In addition, the size distribution and crystal morphology was also detected, the median particle diameter d50 is 883 nm and possessing good dispersibility. From the thermogravimetric analysis of MH particles, the thermostability of product is suitable as flame-retardant composite materials.
Baskaran, Suresh; Graff, Gordon L.; Song, Lin
1998-01-01
The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.
Signorella, S; Lafarga, R; Daier, V; Sala, L F
2000-02-11
The reduction of CrVI by alpha-D-glucose and beta-D-glucose was studied in dimethyl sulfoxide in the presence of pyridinium p-toluensulfonate, a medium where mutarotation is slower than the redox reaction. The two anomers reduce CrVI by formation of an intermediate CrVI ester precursor of the slow redox step. The equilibrium constant for the formation of the intermediate chromic ester and the rate of the redox steps are different for each anomer. alpha-D-Glucose forms the CrVI-Glc ester with a higher equilibrium constant than beta-D-glucose, but the electron transfer within this complex is slower than for the beta anomer. The difference is attributed to the better chelating ability of the 1,2-cis-diolate moiety of the alpha anomer. The CrV species, generated in the reaction mixture, reacts with the two anomers at a rate comparable with that of CrVI. The EPR spectra show that the alpha anomer forms several linkage isomers of the five-coordinate CrV bis-chelate, while beta-D-glucose affords a mixture of six-coordinate CrV monochelate and five-coordinate CrV bis-chelate. The conversion of the CrV mono- to bis-chelate is discussed in terms of the ability of the 1,2-cis- versus 1,2-trans-diolate moieties of the glucose anomers to bind CrV.
Ion release from magnesium materials in physiological solutions under different oxygen tensions.
Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine
2012-01-01
Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.
Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang
2008-12-15
Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspers, Nicole L.; Han, Seungil; Rajamohan, Francis
2016-10-27
Crystals of phosphorylated JAK1 kinase domain were initially generated in complex with nucleotide (ADP) and magnesium. The tightly bound Mg 2+-ADP at the ATP-binding site proved recalcitrant to ligand displacement. Addition of a molar excess of EDTA helped to dislodge the divalent metal ion, promoting the release of ADP and allowing facile exchange with ATP-competitive small-molecule ligands. Many kinases require the presence of a stabilizing ligand in the ATP site for crystallization. This procedure could be useful for developing co-crystallization systems with an exchangeable ligand to enable structure-based drug design of other protein kinases.
López-Rayo, Sandra; Hernández, Diana; Lucena, Juan J; Escudero, Rosa; Gómez-Gallego, Mar; Sierra, Miguel A
2010-07-14
Iron chelates analogous to o,o-EDDHA/Fe(3+) are the fertilizers chosen to treat iron chlorosis in plants growing on calcareous soil. The isomer o,p-EDDHA/Fe(3+) presents less stability but faster assimilation by the plant than o,o-EDDHA/Fe(3+), because only five coordinating groups are able to complex Fe(3+). The new chelating agent 2-(2-((2-hydroxybenzyl)amino)ethylamino)-2-(2-hydroxyphenyl)acetic acid (DCHA) has been synthesized to obtain an iron fertilizer with intermediate stability between o,o-EDDHA/Fe(3+) and o,p-EDDHA/Fe(3+) and with fast assimilation. Its synthesis has been done starting from phenol, N-acetylethylendiamine, glyoxylic acid, and NaOH in a three-step sequence. The purity of the DCHA chelating agent, its protonation, and Ca(2+), Mg(2+), Fe(3+), and Cu(2+) stability constants, together with its ability to maintain iron in solution in different agronomic conditions, have been determined. The results indicate that the chelate DCHA/Fe(3+) has intermediate stability between those of o,o-EDDHA/Fe(3+) and o,p-EDDHA/Fe(3+) complexes and that it is capable of maintaining the Fe(3+) in agronomic conditions. This new chelating agent may be effective in correcting iron chlorosis in plants.
Synthesis and characterization of an N-(2-hydroxyethyl)-ethylenediaminetriacetic acid resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Yuet Fan
1977-10-01
A chelating ion-exchange resin with N-(2-hydroxyethyl)ethylene-diaminetriacetic acid (HEDTA) used as the ligand chemically bonded to XAD-4 by an ester linkage, HEDTA-4, was synthesized. It is stable under normal experimental conditions with the liquid chromatograph. The structure of the resin was confirmed by an infrared spectrum, and by potentiometric titrations. The capacity of the resin was also obtained by potentiometric titration and by a nitrogen analysis. The resin was used to pack a column of 5 mm internal diameter and 5 cm long. The effect of pH on the retention of different metal ions on the resin was studied. It wasmore » found that the resin was most selective for chromium(III), copper(II), lead(II), mercury(II), uranium(VI), zirconium(IV) and zinc(II) at a pH of less than 3. Furthermore, the resin proves to be functioning with a chelating mechanism rather than ion-exchange, and it can concentrate trace metal ions in the presence of a large excess of calcium and magnesium. This makes the resin potentially useful for purifying and analyzing drinking water.« less
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.
2004-07-01
The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.
Averette, Anna F.; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E.
2016-01-01
Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential. PMID:27695031
Polvi, Elizabeth J; Averette, Anna F; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Veri, Amanda O; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E
2016-10-01
Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential.
Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.
2012-01-01
A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal-chelate-lisinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1. PMID:22200082
Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A
2012-02-22
A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal chelate-lisinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1.
Fortuna, Sara; Fogolari, Federico; Scoles, Giacinto
2015-01-01
The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity. PMID:26496975
Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V
2017-10-01
Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+ ~ Al 3+ > Zn 2+ ≥ Ca 2+ ~ Mg 2+ ~ Mn 2+ (<20% inhibition). Binding was also inhibited by pharmaceutical iron chelators (desferoxamine or EDTA) or by higher concentrations of weak iron chelators (citrate or silibinin). Investigation of the physiological effects of iron binding by curcumin revealed that curcumin uptake by cultured cells was reduced >80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.
Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling.
Tsionou, Maria Iris; Knapp, Caroline E; Foley, Calum A; Munteanu, Catherine R; Cakebread, Andrew; Imberti, Cinzia; Eykyn, Thomas R; Young, Jennifer D; Paterson, Brett M; Blower, Philip J; Ma, Michelle T
2017-10-24
Gallium-68 ( 68 Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68 Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68 Ga 3+ . Ideally, the chelator will rapidly, quantitatively and stably coordinate 68 Ga 3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68 Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68 Ga 3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68 Ga 3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68 Ga 3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low chelator concentrations. NOTP and HBED were only slightly less effective under these conditions. In competition studies with all other chelators, THP demonstrated highest reactivity for 68 Ga 3+ complexation under all conditions. These data point to THP possessing ideal properties for rapid, one-step kit-based syntheses of 68 Ga-biomolecules for molecular PET imaging. LC-MS and 1 H, 13 C{ 1 H} and 71 Ga NMR studies of HBED complexes of Ga 3+ showed that under the analytical conditions employed in this study, multiple HBED-bound Ga complexes exist. X-ray diffraction data indicated that crystals isolated from these solutions contained octahedral [Ga(HBED)(H 2 O)], with HBED coordinated in a pentadentate N 2 O 3 mode, with only one phenolic group coordinated to Ga 3+ , and the remaining coordination site occupied by a water molecule.
Rockey, William M.; Huang, Ling; Kloepping, Kyle C.; Baumhover, Nicholas J.; Giangrande, Paloma H.; Schultz, Michael K.
2014-01-01
Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g. copper-64, 64Cu) to enable radiolabeling for in vivo imaging of tumors. This study investigates the choice of chelator and radiolabeling parameters such as pH and temperature for the development of 64Cu-labeled RNA-based targeted agents for PET imaging. The characterization and optimization of labeling conditions are described for four chelator-aptamer complexes. Three commercially available bifunctional macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid mono N-hydroxysuccinimide [DOTA-NHS]; S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid [p-SCN-Bn-NOTA]; and p-SCN-Bn-3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid [p-SCN-Bn-PCTA]), as well as the polyamino-macrocyclic diAmSar (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane-1,8-diamine) were conjugated to A10–3.2, a RNA aptamer which has been shown to bind specifically to a prostate cancer-specific cell-surface antigen (PSMA). Although a commercial bifunctional version of diAmSar was not available, RNA conjugation with this chelator was achieved in a two-step reaction by the addition of a disuccinimidyl suberate linker. Radiolabeling parameters (e.g. pH, temperature, and time) for each chelator-RNA conjugate were assessed in order to optimize specific activity and RNA stability. Furthermore, the radiolabeled chelator-coupled RNA aptamers were evaluated for binding specificity to their target antigen. In summary, key parameters were established for optimal radiolabeling of RNA aptamers for eventual PET imaging with 64Cu. PMID:21658962
NASA Astrophysics Data System (ADS)
Solihin, Indriani, Mubarok, M. Zaki
2018-05-01
Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)
2002-01-01
A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon 11.0-14.0, Copper 5.6-8.0, Iron 0-0.8, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0-1.0, Titanium 0.05-1.2, Zirconium 0.12-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Aluminum balance . In this alloy the ratio of silicon to magnesium is 10 to 25, and the ratio of copper to magnesium is 4 to 15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400F to 500F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 900F to 1000F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120F to 300F. The resulting cast article is suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.
Greener approach for the extraction of copper metal from electronic waste.
Jadhao, Prashant; Chauhan, Garima; Pant, K K; Nigam, K D P
2016-11-01
Technology innovations resulted into a major move from agricultural to industrial economy in last few decades. Consequently, generation of waste electronic and electrical equipments (WEEE) has been increased at a significant rate. WEEE contain large amount of precious and heavy metals and therefore, can be considered a potential secondary resource to overcome the scarcity of metals. Also, presence of these metals may affect the ecosystem due to lack of adequate management of WEEE. Building upon our previous experimental investigations for metal extraction from spent catalyst, present study explores the concept of green technology for WEEE management. Efforts have been made to recover base metal from a printed circuit board using eco-friendly chelation technology and results were compared with the conventional acid leaching method. 83.8% recovery of copper metal was achieved using chelation technology whereas only 27% could be recovered using acid leaching method in absence of any oxidant at optimum reaction conditions. Various characterization studies (energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction, inductive coupled plasma spectrophotometry) of Printed Circuit Board (PCB) and residues were performed for qualitative and quantitative analysis of samples. Significant metal extraction, more than 96% recovery of chelating agent, recycling of reactant in next chelation cycle and nearly zero discharge to the environment are the major advantages of the proposed green process which articulate the transcendency of chelation technology over other conventional approaches. Kinetic investigation suggests diffusion controlled process as the rate determining step for the chelate assisted recovery of copper from WEEE with activation energy of 22kJ/mol. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B
2014-01-01
Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. PMID:25044339
Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B
2014-08-01
Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Determination of trace elements in triglycine sulfate solutions
NASA Technical Reports Server (NTRS)
Tadros, Shawky H.
1993-01-01
Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.
Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.
Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R
2017-07-13
We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
Tandy, Susan; Schulin, Rainer; Nowack, Bernd
2006-03-01
Phytoextraction is an environmentally friendly in situ technique for cleaning up metal contaminated land. Unfortunately, efficient metal uptake by remediation plants is often limited by low phytoavailability of the targeted metals. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction. Phytoremediation involves several subsequent steps: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. Nutrient solution experiments address the latter two steps. In this context we investigated the influence of the biodegradable chelating agent SS-EDDS on uptake of essential (Cu and Zn) and non-essential (Pb) metals by sunflowers from nutrient solution. EDDS was detected in shoots and xylem sap for the first time, proving that it is taken up into the above ground biomass of plants. The essential metals Cu and Zn were decreased in shoots in the presence of EDDS whereas uptake of the non-essential Pb was enhanced. We suggest that in the presence of EDDS all three metals were taken up by the non-selective apoplastic pathway as the EDDS complexes, whereas in the absence of EDDS essential metal uptake was primarily selective along the symplastic pathway. This shows that synthetic chelating agents do not necessarily increase uptake of heavy metals, when soluble concentrations are equal in the presence and absence of chelates.
NASA Astrophysics Data System (ADS)
Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.
2007-12-01
Chelation of heavy metals is an important factor in enhancing metal solubility and, hence, metal availability to plants to promote phytoremediation. In the present study, we compared the effects of application of a biodegradable chelating agent, namely, ethylenediaminedisuccinic acid (EDDS) on enhancing plant available form of lead (Pb) in Pb-based paint contaminated residential soils compared to that of a more commonly used, but non-biodegradable chelate, i.e., ethylenediaminetetraacetic acid (EDTA). Development of a successful phytoremediation model for metals such as Pb depends on a thorough understanding of the physical and chemical properties of the soil, along with the optimization of a chelate treatment to mobilize Pb from `unavailable' pools to potentially plant available fraction. In this context, we set out to perform batch incubation experiments to investigate the effectiveness of the two aforementioned chelates in enhancing plant available Pb at four different concentrations (0, 5, 10 and 15 mM/kg soil) and three treatment durations (0, 10 and 30 days). We selected 12 contaminated residential soils from two major metropolitan areas (San Antonio, TX and Baltimore, MD) with varying soil physico-chemical properties - the soils from San Antonio were primarily alkaline and those from Baltimore were typically acidic. Total soil Pb concentrations ranged between 256 mg/kg and 4,182 mg/kg. Our results show that both chelates increased the solubility of Pb, otherwise occluded in the complex soil matrix. For both EDTA and EDDS, the exchangeable concentrations of soil Pb also increased with increase in chelate concentration and incubation time. The most effective treatment was 15 mM chelate kg-1 soil incubated for 30 days, which caused many fold increase in potentially plant available Pb (a combination of the soluble and exchangeable fractions) relative to the unamended controls. Step wise multiple linear regression analysis using chelate-extractable Pb and soil properties showed that plant available Pb fraction could be assessed from the two inter-related soil parameters: soil organic matter and soil pH. Although EDTA was more effective in Pb solubilization than EDDS, the rapid kinetics of the Pb-EDTA complexation process and the prolonged persistence of EDTA in soils pose a potential groundwater contamination problem via metal leaching. In contrast to EDTA, EDDS addition caused relatively slow release of Pb from the soil matrix. The biodegradable nature (and short half life) of EDDS in soils makes it a promising chelating agent for use as soil amendment to enhance Pb solubilization and hence, potential plant uptake.
Watkins, Tylan; Buttry, Daniel A
2015-06-11
Raman spectroscopy was employed to assess the complex environment of magnesium salts in the n-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI) room-temperature ionic liquid (RTIL). At room temperature, Mg(TFSI)2 was miscible with BMPyrTFSI and formulated by [Mg(TFSI)2](x)[BMPyrTFSI](1-x) (x ≤ 0.55). Results suggest that at low concentrations of Mg(TFSI)2, anionic complexes in which Mg(2+) is surrounded by at least four TFSI(-) were formed. Above x = 0.2 an average of three TFSI(-) surround each Mg(2+). Below x = 0.12, there is a greater number of monodentate interactions between TFSI(-) oxygens and Mg(2+) cations, whereas above x = 0.12 bidentate ligands dominate. The fraction of TFSI(-) existing in the cis conformation increased with increasing Mg(2+) concentration. Mg(ClO4)2 was also studied as a Mg(2+) source. At equivalent mole fractions to those of the Mg(TFSI)2 salt, Mg(2+) from Mg(ClO4)2 was surrounded by only two TFSI(-) anions as ClO4(-) appeared to compete with TFSI(-) for coordination with Mg(2+). Similar behavior was also observed for the less soluble halide salts MgX2 (X = Cl, Br, I). Additions of chelating ligands were shown to effectively reduce the average number of TFSI(-) around Mg(2+) in a manner consistent with maintaining a sixfold oxygen coordination number around Mg(2+). Furthermore, an alternative class of ionic liquids, known as "solvate" ionic liquids, were produced. In this case glymes (Gm, m + 1 ether oxygens) were mixed with Mg(TFSI)2 so that glymes chelated Mg(2+), creating Mg(Gm)(y)(2+) complexes. The general formula was given by Mg(Gm)(y)(TFSI)2. These solvate ILs melt between 40 and 80 °C. Raman spectra clearly showed the glyme chelating ability and stronger coordination with Mg(2+) with respect to TFSI(-). Finally, linear sweep voltammograms showed the anodic stability of the glymes to improve due to coordination with Mg(2+).
A novel 35 kDa frog liver acid metallophosphatase.
Szalewicz, A; Radomska, B; Strzelczyk, B; Kubicz, A
1999-04-12
The lower molecular weight (35 kDa) acid phosphatase from the frog (Rana esculenta) liver is a glycometalloenzyme susceptible to activation by reducing agents and displaying tartrate and fluoride resistance. Metal chelators (EDTA, 1,10-phenanthroline) inactivate the enzyme reversibly in a time- and temperature-dependent manner. The apoenzyme is reactivated by divalent transition metal cations, i. e. cobalt, zinc, ferrous, manganese, cadmium and nickel to 130%, 75%, 63%, 62%, 55% and 34% of the original activity, respectively. Magnesium, calcium, cupric and ferric ions were shown to be ineffective in this process. Metal analysis by the emission spectrometry method (inductively coupled plasma-atomic emission spectrometry) revealed the presence of zinc, iron and magnesium. The time course of the apoenzyme reactivation, the stabilization effect and the relatively high resistance to oxidizing conditions indicate that the zinc ion is crucial for the enzyme activity. The presence of iron was additionally confirmed by the visible absorption spectrum of the enzyme with a shoulder at 417 nm and by the electron paramagnetic resonance line of high spin iron(III) with geff of 2.4. The active center containing only zinc or both zinc and iron ions is proposed. The frog liver lower molecular weight acid phosphatase is a novel metallophosphatase of lower vertebrate origin, distinct from the mammalian tartrate-resistant, purple acid phosphatases.
Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K
2017-11-01
It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.
Kuang, Gui-Chao; Guha, Pampa M.; Brotherton, Wendy S.; Simmons, J. Tyler; Stankee, Lisa A.; Nguyen, Brian T.; Clark, Ronald J.; Zhu, Lei
2011-01-01
A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)2) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and 1H NMR assays are developed for monitoring the reaction progress in two different solvents – methanol and acetonitrile. Solvent kinetic isotopic effect and pre-mixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)2 suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)2 in mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)2. Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)2-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions. PMID:21809811
Metal chelate affinity precipitation of RNA and purification of plasmid DNA
NASA Technical Reports Server (NTRS)
Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.
2003-01-01
The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.
NASA Astrophysics Data System (ADS)
D'Errico, F.; Farè, S.; Garces, G.
Current Mg alloys have several drawbacks that limit wide and profitable utilization in the industrial sector. From an environmental point of view, lighter metals like magnesium are currently considered unclean products as they require energy-intensive. But they have been proven to be "clean" in the transport sector, as they can reduce fuel consumption. Here the potential of magnesium based materials is addressed through double-tasking: a) establish innovative lean-manufacturing processes, avoid the classic melting step to substantially reduce carbon footprint of the magnesium products; b) encourage the using of no-melt processes, realizing high-resistant ultra-fined microstructures. The "Green Metallurgy 2020", a project funded by European Community in the LIFE+ 2009 Program, started in September 2010, coordinated by Politecnico di Milano (ITA) aims to scale to industrial route such impressive results experienced by CENIM (SPA) for some ultrafine bi-phase Mg -Zr (-Y) produced by no-melting route that achieved up to 400 MPa UTS and elongation capability of about 13%.
DeNardo, Sally J.; Burke, Patricia A.; DeNardo, Gerald L.; Goodman, Simon; Matzku, legal representative, Kerstin; Matzku, Siegfried
2006-04-18
A method of treating tumors, such as prostate tumors, breast tumors, non-Hodgkin's lymphoma, and the like, includes the sequential steps of administering to the patient at least one dose of an antiangiogenic cyclo-arginine-glycine-aspartic acid-containing pentapeptide (cRGD pentapeptide); administering to the patient an anti-tumor effective amount of a radioimmunotherapeutic agent (RIT); and then administering to the patient at least one additional dose of cRGD pentapeptide. The cRGD pentapeptide is preferably cyclo-(Arg-Gly-Asp-D-Phe-[N-Me]-Val), and the RIT is preferably a radionuclide-labeled chelating agent-ligand complex in which chelating agent is chemically bonded to a tumor-targeting molecule, such as a monoclonal antibody.
Gernigon, G; Piot, M; Beaucher, E; Jeantet, R; Schuck, P
2009-11-01
To better understand the origins of the problems occurring during mozzarella cheese whey concentration, lactose crystallization, and spray-drying steps, a physicochemical characterization was achieved. For this purpose, mozzarella cheese wheys were sampled and their content in different compounds such as total nitrogen, noncasein nitrogen, nonprotein nitrogen, lactate, citrate, chloride, sulfate, phosphate anions, calcium, magnesium, potassium, sodium cations, and the sugars glucose and galactose were measured. In a second step, the results were compared with the corresponding content in cheddar cheese wheys, raclette cheese wheys, soft cheese wheys, and Swiss-type cheese wheys. At the end of this survey, it was shown that mozzarella cheese wheys were more concentrated in lactate and in minerals--especially phosphate, calcium, and magnesium--than the other cheese wheys and that they contained galactose. These constituents are known to be hygroscopic. Complementary surveys are now necessary to compare the hygroscopicity of galactose and lactate and discover whether the amounts of these compounds found in mozzarella cheese wheys are a factor in the problems encountered during the concentration, lactose crystallization, and spray-drying steps.
Ahmed, Safia K.; Ward, John P.; Liu, Yang
2017-01-01
Magnesium (Mg) is becoming increasingly popular for orthopaedic implant materials. Its mechanical properties are closer to bone than other implant materials, allowing for more natural healing under stresses experienced during recovery. Being biodegradable, it also eliminates the requirement of further surgery to remove the hardware. However, Mg rapidly corrodes in clinically relevant aqueous environments, compromising its use. This problem can be addressed by alloying the Mg, but challenges remain at optimising the properties of the material for clinical use. In this paper, we present a mathematical model to provide a systematic means of quantitatively predicting Mg corrosion in aqueous environments, providing a means of informing standardisation of in vitro investigation of Mg alloy corrosion to determine implant design parameters. The model describes corrosion through reactions with water, to produce magnesium hydroxide Mg(OH)2, and subsequently with carbon dioxide to form magnesium carbonate MgCO3. The corrosion products produce distinct protective layers around the magnesium block that are modelled as porous media. The resulting model of advection–diffusion equations with multiple moving boundaries was solved numerically using asymptotic expansions to deal with singular cases. The model has few free parameters, and it is shown that these can be tuned to predict a full range of corrosion rates, reflecting differences between pure magnesium or magnesium alloys. Data from practicable in vitro experiments can be used to calibrate the model’s free parameters, from which model simulations using in vivo relevant geometries provide a cheap first step in optimising Mg-based implant materials. PMID:29267244
NASA Astrophysics Data System (ADS)
Santos, C.; Piedade, C.; Uggowitzer, P. J.; Montemor, M. F.; Carmezim, M. J.
2015-08-01
This work reports the one-step fabrication of a novel coating on ultra high purity magnesium using a parallel nano assembling process. The multifunctional biodegradable surface was obtained by adding hydroxyapatite nanoparticles (HapNP) plus graphene oxide (GO). The coating was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), micro-Raman spectroscopy. The thin phosphate coating (thickness of 1 μm) reveals a uniform coverage with cypress like structures. The incorporation of HapNP and GO promotes the hydrophilic behavior of the coating surface. The results revealed that the proposed coating can be used to tailor the surface properties such as wettability by adjusting the contents of HapNP and GO. The in vitro degradation rate of the coated magnesium suggests that the presence of HapNP and GO/HapNP in the phosphate coating decreased the current density compared to the single phosphate coating and uncoated magnesium. This study also reveals the HapNP/GO/phosphate coating induces apatite formation, showing suitable degradability that makes it a promising coating candidate for enhanced bone regeneration.
NASA Astrophysics Data System (ADS)
Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram
2015-05-01
In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.
Coating Systems for Biodegradable Magnesium Applications
NASA Astrophysics Data System (ADS)
Seitz, Jan-Marten; Eifler, Rainer; Vaughan, Matthew; Seal, Chris; Hyland, Margaret; Maier, Hans Jürgen
Current research for degradable magnesium implants has shown a multitude of potential applications for these materials. Within various studies, the research focuses especially on Mg alloys' biocompatibility and also its mechanical and corrosive behaviour in in vitro/in vivo environments. In particular, the corrosive properties of Mg alloys often remain problematic, showing either a rapid or a burst degradation, limiting their applicability. Besides changing the alloy, a magnesium implant's initial corrosion properties can be improved and controllable by means of applied coatings. In general, a multitude of coating solutions (e.g. on basis of phosphates or degradable polymers) are already available for permanent implants. If these are applicable to Mg, the next step requires that they delay corrosion and inhibit burst corrosion. In this study, the applicability and corrosion-delaying properties of PLA and MgF2 coatings on the magnesium alloy LANd442, respecting their singular and combined application, is shown. By means of corrosion tests in a simulated body fluid the use of combined coatings was proven to be advantageous regarding longevity and toughness of the coating system.
Lightweight design of automobile frame based on magnesium alloy
NASA Astrophysics Data System (ADS)
Lyu, R.; Jiang, X.; Minoru, O.; Ju, D. Y.
2018-06-01
The structural performance and lightweighting of car base frame design is a challenging task due to all the performance targets that must be satisfied. In this paper, three kinds of materials (iron, aluminum and magnesium alloy) replacement along with section design optimization strategy is proposed to develop a lightweight car frame structure to satisfy the tensile and safety while reducing weight. Two kinds of cross-sections are considered as the design variables. Using Ansys static structure, the design optimization problem is solved, comparing the results of each step, structure of the base flame is optimized for lightweight.
Effect of an aggressive medium on discontinuous deformation of aluminum-magnesium alloy AlMg6
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Denisov, A. A.; Zolotov, A. E.; Kochegarov, S. S.
2017-01-01
It is experimentally shown that the molecular (chemical) process of surface etching of deformed aluminum-magnesium alloy AlMg6 causes the development of a macroscopic plastic strain step with an amplitude of a few percent. Using numerical simulation of the polycrystalline solid etching process, it is shown that the corrosion front morphology varies during etching from Euclid (flat) to fractal (rough). The results obtained show the key role of the surface state on the development of macroscopic mechanical instability of a material exhibiting the Portevin-Le Chatelier effect.
Impurities Removal in Seawater to Optimize the Magnesium Extraction
NASA Astrophysics Data System (ADS)
Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.
2017-02-01
Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.
New Chelators for Low Temperature Al(18)F-Labeling of Biomolecules.
Cleeren, Frederik; Lecina, Joan; Billaud, Emilie M F; Ahamed, Muneer; Verbruggen, Alfons; Bormans, Guy M
2016-03-16
The Al(18)F labeling method is a relatively new approach that allows radiofluorination of biomolecules such as peptides and proteins in a one-step procedure and in aqueous solution. However, the chelation of the {Al(18)F}(2+) core with the macrocyclic chelators NOTA or NODA requires heating to 100-120 °C. Therefore, we have developed new polydentate ligands for the complexation of {Al(18)F}(2+) with good radiochemical yields at a temperature of 40 °C. The stability of the new Al(18)F-complexes was tested in phosphate buffered saline (PBS) at pH 7.4 and in rat serum. The stability of the Al(18)F-L3 complex was found to be comparable to that of the previously reported Al(18)F-NODA complex up to 60 min in rat serum. Moreover, the biodistribution of Al(18)F-L3 in healthy mice showed the absence of in vivo defluorination since no significant bone uptake was observed, whereas the major fraction of activity at 60 min p.i. was observed in liver and intestines, indicating hepatobiliary clearance of the radiolabeled ligand. The acyclic chelator H3L3 proved to be a good lead candidate for labeling of heat-sensitive biomolecules with fluorine-18. In order to obtain a better understanding of the different factors influencing the formation and stability of the complex, we carried out more in-depth experiments with ligand H3L3. As a proof of concept, we successfully conjugated the new AlF-chelator with the urea-based PSMA inhibitor Glu-NH-CO-NH-Lys to form Glu-NH-CO-NH-Lys(Ahx)L3, and a biodistribution study in healthy mice was performed with the Al(18)F-labeled construct. This new class of AlF-chelators may have a great impact on PET radiochemical space as it will stimulate the rapid development of new fluorine-18 labeled peptides and other heat-sensitive biomolecules.
Wang, Jianfeng; Liu, Zhongmei; Zhou, Zhemin
2017-06-01
Chelating of pullulanases onto nickel (II)-modified magnetic nanoparticles results in one-step purification and immobilization of pullulanase, and facilitates the commercial application of pullulanase in industrial scale. To improve the catalytic behavior, especially the operational stability, of the nanocatalyst in consecutive batch reactions, we prepared various iminodiacetic acid-modified magnetic nanoparticles differed in surface polarity and spacer length, on which the His6-tagged pullulanases were chelated via nickel ions, and then studied the correlation between the MNPs surface property and the corresponding catalyst behavior. When pullulanases were chelated onto the surface-modified MNPs, the thermostability of all pullulanase derivatives were lower than that of free counterpart, being not relevant to the protein orientation guided by the locality of the His6-tag, but related to the MNPs basal surface polarity and the grafted spacer length. After chelating of pullulanases onto MNPs, there were changes observed in the pH-activity profile and the apparent Michaelis constant toward pullulan. The changing tendencies were mainly dependent on the His6-tagged pullulanase orientation, and the changing extents were tuned by the spacer length. The reusability of pullulanase immobilized by N-terminal His6-tag was higher than that of pullulanase immobilized by C-terminal His6-tag. Moreover, the reusability of the immobilized pullulanase tested increased till grafting polyether amine-400 as spacer-arm, therefore the N-terminal His6-tagged pullulanase chelating MNPs grafted polyether amine-400 gave the best reusability, which retained 60% of initial activity after 18 consecutive cycles with a total reaction time of 9h. Additionally, the correlation analysis of the catalyst behaviors indicated that the reusability was independent from other catalytic properties such as thermostability and substrate affinity. All the results revealed that the catalyst behavior can be mainly controlled by the His6-tagged pullulanase orientation than by the MNPs surface property which can tune the catalyst function. Copyright © 2017. Published by Elsevier Inc.
Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G
2017-07-01
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
Turner-McGrievy, Gabrielle M; Barnard, Neal D; Scialli, Anthony R; Lanou, Amy J
2004-09-01
This study investigated the nutrient intake of overweight postmenopausal women assigned to a low-fat vegan diet or a Step II diet. Fifty-nine overweight (body mass index, 26 to 44 kg/m2) postmenopausal women were randomly assigned to a self-selected low-fat vegan or a National Cholesterol Education Program Step II diet in a 14-wk controlled trial on weight loss and metabolism. Nutrient intake, which was measured per 1000 kcal, was the main outcome measure. Statistical analyses included within-group and between-group t tests examining changes associated with each diet. Consumption of a low-fat vegan diet was associated with greater decreases in fat, saturated fat, protein, and cholesterol intakes and greater increases in carbohydrate, fiber, beta-carotene, and total vitamin A intakes than was a Step II diet. The low-fat vegan group also increased thiamin, vitamin B6, and magnesium intakes more than the Step II group, and both groups increased folic acid, vitamin C, and potassium intakes. If considering only food sources of micronutrients, the low-fat vegan group decreased vitamin D, vitamin B12, calcium, selenium, phosphorous, and zinc intakes compared with baseline. However, with incidental supplements included, decreases were evident only in phosphorous and selenium intakes. No micronutrient decreases were found in the Step II group. Individuals on a low-fat vegan or Step II diet should take steps to meet the recommended intakes of vitamin D, vitamin K, folic acid, calcium, magnesium, and zinc. Individuals on a low-fat vegan diet should also ensure adequate intakes of vitamin B12, phosphorous, and selenium.
Legendre, Claire; Avril, Sylvie; Guillet, Catherine; Garcion, Emmanuel
2016-02-01
Overcoming resistance to treatment is an essential issue in many cancers including glioblastoma (GBM), the deadliest primary tumor of the central nervous system. As dependence on iron is a key feature of tumor cells, using chelators to reduce iron represents an opportunity to improve conventional GBM therapies. The aim of the present study was, therefore, to investigate the cytostatic and cytotoxic impact of the new iron chelator deferasirox (DFX) on human GBM cells in well-defined clinical situations represented by radiation therapy and mild-hypoxia. Under experimental normoxic condition (21% O2), deferasirox (DFX) used at 10 μM for 3 days reduced proliferation, led cell cycle arrest in S and G2-M phases and induced cytotoxicity and apoptosis in U251 and U87 GBM cells. The abolition of the antineoplastic DFX effects when cells were co-treated with ferric ammonium sulfate supports the hypothesis that its effects result from its ability to chelate iron. As radiotherapy is the main treatment for GBM, the combination of DFX and X-ray beam irradiation was also investigated. Irradiation at a dose of 16 Gy repressed proliferation, cytotoxicity and apoptosis, but only in U251 cells, while no synergy with DFX was observed in either cell line. Importantly, when the same experiment was conducted in mild-hypoxic conditions (3% O2), the antiproliferative and cytotoxic effects of DFX were abolished, and its ability to deplete iron was also impaired. Taken together, these in vitro results could raise the question of the benefit of using iron chelators in their native forms under the hypoxic conditions often encountered in solid tumors such as GBM. Developing new chemistry or a new drug delivery system that would keep DFX active in hypoxic cells may be the next step toward their application.
Antioxidant capacity and mineral contents of edible wild Australian mushrooms.
Zeng, X; Suwandi, J; Fuller, J; Doronila, A; Ng, K
2012-08-01
Five selected edible wild Australian mushrooms, Morchella elata, Suillus luteus, Pleurotus eryngii, Cyttaria gunnii, and Flammulina velutipes, were evaluated for their antioxidant capacity and mineral contents. The antioxidant capacities of the methanolic extracts of the dried caps of the mushrooms were determined using a number of different chemical reactions in evaluating multi-mechanistic antioxidant activities. These included the Trolox equivalent antioxidant capacity, ferric ion reducing antioxidant power, and ferrous ion chelating activity. Mineral contents of the dried caps of the mushrooms were also determined by inductively coupled plasma-optical emission spectroscopy. The results indicated that these edible wild mushrooms have a high antioxidant capacity and all, except C. gunnii, have a high level of several essential micro-nutrients such as copper, magnesium, and zinc. It can be concluded that these edible wild mushrooms are good sources of nutritional antioxidants and a number of mineral elements.
[Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].
Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y
1996-03-01
Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.
Biofunctionalized anti-corrosive silane coatings for magnesium alloys.
Liu, Xiao; Yue, Zhilian; Romeo, Tony; Weber, Jan; Scheuermann, Torsten; Moulton, Simon; Wallace, Gordon
2013-11-01
Biodegradable magnesium alloys are advantageous in various implant applications, as they reduce the risks associated with permanent metallic implants. However, a rapid corrosion rate is usually a hindrance in biomedical applications. Here we report a facile two step procedure to introduce multifunctional, anti-corrosive coatings on Mg alloys, such as AZ31. The first step involves treating the NaOH-activated Mg with bistriethoxysilylethane to immobilize a layer of densely crosslinked silane coating with good corrosion resistance; the second step is to impart amine functionality to the surface by treating the modified Mg with 3-amino-propyltrimethoxysilane. We characterized the two-layer anticorrosive coating of Mg alloy AZ31 by Fourier transform infrared spectroscopy, static contact angle measurement and optical profilometry, potentiodynamic polarization and AC impedance measurements. Furthermore, heparin was covalently conjugated onto the silane-treated AZ31 to render the coating haemocompatible, as demonstrated by reduced platelet adhesion on the heparinized surface. The method reported here is also applicable to the preparation of other types of biofunctional, anti-corrosive coatings and thus of significant interest in biodegradable implant applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh, Ji-Young; Lim, Sang-Chul; Ahn, Seong Deok; Lee, Sang Seok; Cho, Kyoung-Ik; Bon Koo, Jae; Choi, Rino; Hasan, Musarrat
2013-07-01
In this study, magnesium-doped (Mg-doped) zinc oxide (ZnO) nanoparticles were successfully synthesized by a sonochemical process under mild conditions. The x-ray diffraction pattern indicated that the Mg-doped ZnO nanoparticles maintain a wurtzite structure without impurities. We observed a blue-shift of the bandgap of the Mg-doped ZnO nanoparticles as the Mg-doping ratio increased. We also fabricated thin-film transistor (TFT) devices with the doped-ZnO nanoparticles. Devices using Mg-doped ZnO nanoparticles as a channel layer showed insensibility to white-light irradiation compared with undoped ZnO TFTs.
Ramp compression of magnesium oxide to 234 GPa
Wang, Jue; Smith, R. F.; Coppari, F.; ...
2014-05-07
Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.
Taylor, Mark R; Conrad, John A; Wahl, Daniel; O'Brien, Patrick J
2011-07-01
DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan
2013-09-01
As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.
Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G
2015-02-21
The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.
In situ magnetic separation of antibody fragments from Escherichia coli in complex media
2013-01-01
Background In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. Results Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. Conclusions We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps. PMID:23688064
Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas
Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David
1988-01-01
The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.
Drying step optimization to obtain large-size transparent magnesium-aluminate spinel samples
NASA Astrophysics Data System (ADS)
Petit, Johan; Lallemant, Lucile
2017-05-01
In the transparent ceramics processing, the green body elaboration step is probably the most critical one. Among the known techniques, wet shaping processes are particularly interesting because they enable the particles to find an optimum position on their own. Nevertheless, the presence of water molecules leads to drying issues. During the water removal, its concentration gradient induces cracks limiting the sample size: laboratory samples are generally less damaged because of their small size but upscaling the samples for industrial applications lead to an increasing cracking probability. Thanks to the drying step optimization, large size spinel samples were obtained.
NASA Astrophysics Data System (ADS)
Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming
One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.
Fast pressure jumps can perturb calcium and magnesium binding to troponin C F29W.
Pearson, David S; Swartz, Darl R; Geeves, Michael A
2008-11-18
We have used rapid pressure jump and stopped-flow fluorometry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL/mol). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000/s and 100/s. Between pCa 8-5.4 and at troponin C concentrations of 8-28 muM, the slow relaxation times were invariant, indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps, respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium-sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200-300 muM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo.
Fast Pressure Jumps Can Perturb Calcium and Magnesium Binding to Troponin C F29W
Pearson, David S.; Swartz, Darl R.; Geeves, Michael A.
2009-01-01
We have used rapid pressure jump and stopped-flow fluorimetry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL.mol-1). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000 s-1 and 100 s-1. Between pCa 8-5.4 and at troponin C concentrations of 8-28 μM, the slow relaxation times were invariant indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200 - 300 μM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo. PMID:18942859
NASA Astrophysics Data System (ADS)
Hu, Hong-J.; Sun, Z.; Ou, Z.-W.
2016-12-01
Extrusion-shear (ES) process for magnesium alloy is a newly developed plastic deformation process, and ES process combines direct extrusion and two steps of ECAE (equal channel angular extrusion). To investigate the effects of the die channel angles on the microstructures and wear behaviors of AZ61 wrought magnesium alloy, the samples used in this study were fabricated by ES process with different die channel angles (120° and 135°). The microstructures of the samples were characterized by optical microscopy (OM), X-ray diffraction (XRD) and (SEM). The cumulative strains in the ES process were predicted by approaches of numerical simulation and theoretical calculation. To characterize the wear resistance of the samples, pin-on-disk tests under dry sliding conditions with various normal loads and reciprocating frequencies were conducted. To define the wear mechanisms of AZ61 magnesium alloy, the worn surfaces after wear tests were analyzed by SEM and energy-dispersive X-ray spectrometer (EDS). Based on the results obtained, die channel angles have significant influences on the grain refinements and wear behaviors of the samples. Decreasing channel angles of the ES die will not only refine the microstructures of magnesium alloys effectively and improve their harnesses, but also improve their wear resistance as decreasing channel angles results in higher friction coefficients and wear rates. With the increase in applied loads and frequencies, wear mechanisms change from mild wear (adhesion, abrasion and oxidation) to severe wear (delamination, plastic deformation and melting). In summary, the wear resistance of ES-processed AZ61 magnesium alloy could be improved by decreasing channel angles of ES dies.
Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system
NASA Astrophysics Data System (ADS)
Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.
2018-05-01
Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.
Stability of gas atomized reactive powders through multiple step in-situ passivation
Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.
2017-05-16
A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.
Earnshaw, D J; Gait, M J
1998-01-01
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells. PMID:9837982
Method of forming catalyst layer by single step infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdes, Kirk; Lee, Shiwoo; Dowd, Regis
Provided herein is a method for electrocatalyst infiltration of a porous substrate, of particular use for preparation of a cathode for a solid oxide fuel cell. The method generally comprises preparing an electrocatalyst infiltrate solution comprising an electrocatalyst, surfactant, chelating agent, and a solvent; pretreating a porous mixed ionic-electric conductive substrate; and applying the electrocatalyst infiltration solution to the porous mixed ionic-electric conductive substrate.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240
Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V
2013-03-01
The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.
Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study
NASA Astrophysics Data System (ADS)
Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten
2014-05-01
An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.
Methylenediphosphonotetrathioate: synthesis, characterization, and chemical properties.
Amir, Aviran; Sayer, Alon Haim; Ezra, Alon; Fischer, Bilha
2013-03-18
Metal chelators are potential therapeutic agents for treating diseases such as Wilson's and Alzheimer's where the pathology involves an excess of metal-ions (Cu(II) and Zn(II)/Cu(II)/Fe(II/III), respectively). In addition to the high affinity of the metal-ion to the chelators, metal selectivity of the chelators is essential to achieve the therapeutic goal, that is, the successful removal of excess of harmful metal-ions in a physiological extracellular medium rich in alkali and alkali earth metal-ions. For this purpose, we synthesized a novel chelator, methylenediphosphonotetrathioate (MDPT) which is the tetrathio analogue of methylenediphosphonic acid (MDP). MDPT was synthesized from bis-methylene(phosphonicdichloride) in a 3-step synthesis and a 31% overall yield. MDPT formed a stable complex with Zn(II) (log K = 10.84), which is 10(7) times more stable than the corresponding Ca(II) complex. Moreover, the MDPT-Zn(II) complex was 50-fold more stable than the MDP-Zn(II) complex. In addition, MDPT was found to inhibit the Cu(I)-catalyzed Fenton reaction (IC50 26 μM) 2.5 times more potently than a Fe(II)-catalyzed Fenton reaction, and 2.5 times more potently than EDTA (IC50 64 μM) in the Cu(I)/H2O2 system, as monitored by electron spin resonance (ESR). Furthermore, MDPT was found to be relatively stable in both acidic (pD 1.9, t(½) = 71.5 h) and basic media (pD 12.4, t(½) = 81 h) as monitored by (31)P/(1)H NMR. However, MDPT was not stable in air because of intramolecular oxidation and disulfide formation (33% oxidation after 27 h). In conclusion, MDPT was found to be a water-soluble chelator showing a clear preference to soft/borderline metal-ions and a remarkable selectivity to those metal-ions vs Ca(II) ions. The relative sensitivity of MDPT to oxidation may limit its use; however, the application of MDPT in acidic or basic media will increase its lifetime.
Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D
2009-06-10
Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification and dietary supplements.
Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan
2017-04-01
A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.
Murphy, Stephen K; Bruch, Achim; Dong, Vy M
2015-01-01
The combination of a small-bite-angle diphosphine bis(dicyclohexylphosphino)methane (dcpm) and [Rh(cod)OMe] 2 catalyses the hydroacylation of 2-vinylphenols with a wide range of non-chelating aldehydes. Here we present a detailed experimental study that elucidates the factors contributing to the broad aldehyde scope and high reactivity. A variety of catalytically relevant intermediates were isolated and a [Rh(dcpm)(vinylphenolate)] complex was identified as the major catalytically relevant species. A variety of off-cycle intermediates were also identified that can re-enter the catalytic cycle by substrate- or 1,5-cyclooctadiene-mediated pathways. Saturation kinetics with respect to the 2-vinylphenol were observed, and this may contribute to the high selectivity for hydroacylation over aldehyde decarbonylation. A series of deuterium labelling experiments and Hammett studies support the oxidative addition of Rh to the aldehyde C-H bond as an irreversible and turnover-limiting step. The small bite angle of dcpm is crucial for lowering the barrier of this step and providing excellent reactivity with a variety of aldehydes.
Design of a Hole Trapping Ligand
La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.; ...
2017-01-18
A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less
Design of a Hole Trapping Ligand
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.
A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less
NASA Astrophysics Data System (ADS)
Yanlei, Li; Yuling, Liu; Chenwei, Wang; Yue, Li
2016-08-01
The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a critical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance. Project supported by the Natural Science Foundation of Hebei Province, China (No. F2015202267) and the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology (No. 2015007).
Acoustic Emission during Intermittent Creep in an Aluminum-Magnesium Alloy
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.
2018-01-01
The use of high-speed methods to measure deformation, load, and the dynamics of deformation bands, as well as the correlation between the intermittent creep characteristics of the AlMg6 aluminum-magnesium alloy and the parameters of the acoustic emission signals, has been studied experimentally. It has been established that the emergence and rapid expansion of the primary deformation band, which generates a characteristic acoustic emission signal in the frequency range of 10-1000 Hz, is a trigger for the development of a deformation step in the creep curve. The results confirm the accuracy of the mechanism of generating an acoustic signal associated with the emergence of a dislocation band on the external surface of the specimen.
NASA Astrophysics Data System (ADS)
Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan
2017-11-01
Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.
DIRECT INGOT PROCESS FOR PRODUCING URANIUM
Leaders, W.M.; Knecht, W.S.
1960-11-15
A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.
Synthesis of methyl (13(2)R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic.
Ogasawara, Shin; Tamiaki, Hitoshi
2015-10-15
The (13(2)R/S)-methoxycarbonyl group of methyl pheophorbides a/a' (chlorophyll a/a' derivatives) was converted to methyl, ethyl, propyl, and isopropyl groups through the C13(2)-alkylation under basic conditions followed by pyrolysis in 2,4,6-collidine with lithium iodide. All the resulting products, methyl 13(2)-alkyl-pyropheophorbides a, predominantly gave the (13(2)R)-stereoisomers with about one tenth of the (13(2)S)-epimers. Their stereochemistry was determined by 1D/2D NMR and their optical properties were characterized by visible absorption and circular dichroism spectroscopy. Methyl (13(2)R)-propyl-pyropheophorbide a was converted to (13(2)R)-propyl-pyrochlorophyll a by ester exchanging and magnesium chelating reactions. The synthetic chlorophyll a analogue showed non-epimerization at the 13(2)-position in pyridine-d5 at 40°C, while naturally occurring chlorophyll a was easily epimerized under the same conditions to give its epimeric mixture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.
2015-01-01
Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714
NASA Astrophysics Data System (ADS)
Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.
2015-07-01
Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.
Men, Guangwen; Chen, Chunrong; Zhang, Shitong; Liang, Chunshuang; Wang, Ying; Deng, Mengyu; Shang, Hongxing; Yang, Bing; Jiang, Shimei
2015-02-14
An "off-the-shelf" fluorescence "turn-on" Mg(2+) chemosensor 3,5-dichlorosalicylaldehyde (BCSA) was rationally designed and developed. This proposed sensor works based on Mg(2+)-induced formation of the 2 : 1 BCSA-Mg(2+) complex. The coordination of BSCA to Mg(2+) increases its structural rigidity generating a chelation-enhanced fluorescence (CHEF) effect which was confirmed by single crystal XRD studies of the BSCA-Mg(2+) complex and TD/DFT calculations. This sensor exhibits high sensitivity and selectivity for the quantitative monitoring of Mg(2+) with a wide detection range (0-40 μM), a low detection limit (2.89 × 10(-7) mol L(-1)) and a short response time (<0.5 s). It can also resist the interference from the other co-existing metal ions, especially Ca(2+). Consequently, this fluorescent sensor can be utilized to monitor Mg(2+) in real time within actual samples from drinking water.
Zhang, Patrick; Liang, Haijun; Jin, Zhen; ...
2017-11-01
We report phosphate beneficiation in Florida generates more than one tonne of phosphatic clay, or slime, per tonne of phosphate rock produced. Since the start of the practice of large-scale washing and desliming for phosphate beneficiation, more than 2 Gt of slime has accumulated, containing approximately 600 Mt of phosphate rock, 600 kt of rare earth elements (REEs) and 80 million kilograms of uranium. The recovery of these valuable elements from the phosphatic clay is one of the most challenging endeavors in mineral processing, because the clay is extremely dilute, with an average solids concentration of 3 percent, and finemore » in size, with more than 50 percent having particle size smaller than 2 μm, and it contains nearly 50 percent clay minerals as well as large amounts of magnesium, iron and aluminum. With industry support and under funding from the Critical Materials Institute, the Florida Industrial and Phosphate Research Institute in conjunction with the Oak Ridge National Laboratory undertook the task to recover phosphorus, rare earths and uranium from Florida phosphatic clay. This paper presents the results from the preliminary testing of two approaches. The first approach involves three-stage cycloning using cyclones with diameters of 12.4 cm (5 in.), 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively, to remove clay minerals followed by flotation and leaching. The second approach is a two-step leaching process. In the first step, selective leaching was conducted to remove magnesium, thus allowing the production of phosphoric acid suitable for the manufacture of diammonium phosphate (DAP) in the second leaching step. The results showed that multistage cycloning with small cyclones is necessary to remove clay minerals. Finally, selective leaching at about pH 3.2 using sulfuric acid was found to be effective for removing more than 80 percent of magnesium from the feed with minimal loss of phosphorus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Patrick; Liang, Haijun; Jin, Zhen
We report phosphate beneficiation in Florida generates more than one tonne of phosphatic clay, or slime, per tonne of phosphate rock produced. Since the start of the practice of large-scale washing and desliming for phosphate beneficiation, more than 2 Gt of slime has accumulated, containing approximately 600 Mt of phosphate rock, 600 kt of rare earth elements (REEs) and 80 million kilograms of uranium. The recovery of these valuable elements from the phosphatic clay is one of the most challenging endeavors in mineral processing, because the clay is extremely dilute, with an average solids concentration of 3 percent, and finemore » in size, with more than 50 percent having particle size smaller than 2 μm, and it contains nearly 50 percent clay minerals as well as large amounts of magnesium, iron and aluminum. With industry support and under funding from the Critical Materials Institute, the Florida Industrial and Phosphate Research Institute in conjunction with the Oak Ridge National Laboratory undertook the task to recover phosphorus, rare earths and uranium from Florida phosphatic clay. This paper presents the results from the preliminary testing of two approaches. The first approach involves three-stage cycloning using cyclones with diameters of 12.4 cm (5 in.), 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively, to remove clay minerals followed by flotation and leaching. The second approach is a two-step leaching process. In the first step, selective leaching was conducted to remove magnesium, thus allowing the production of phosphoric acid suitable for the manufacture of diammonium phosphate (DAP) in the second leaching step. The results showed that multistage cycloning with small cyclones is necessary to remove clay minerals. Finally, selective leaching at about pH 3.2 using sulfuric acid was found to be effective for removing more than 80 percent of magnesium from the feed with minimal loss of phosphorus.« less
Nawaz, Saima; Mullen, Gregory E D; Sunassee, Kavitha; Bordoloi, Jayanta; Blower, Philip J; Ballinger, James R
2017-10-25
Labelling proteins with gallium-68 using bifunctional chelators is often problematic because of unsuitably harsh labelling conditions such as low pH or high temperature and may entail post-labelling purification. To determine whether tris(hydroxypyridinone) (THP) bifunctional chelators offer a potential solution to this problem, we have evaluated the labelling and biodistribution of a THP conjugate with a new single-chain antibody against the prostate-specific membrane antigen (PSMA), an attractive target for staging prostate cancer (PCa). A single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, was prepared in order to achieve biokinetics matched to the half-life of gallium-68. The scFv, J591c-scFv, was engineered with a C-terminal cysteine. J591c-scFv was produced in HEK293T cells and purified by size-exclusion chromatography. A maleimide THP derivative (THP-mal) was coupled site-specifically to the C-terminal cysteine residue. The THP-mal-J591c-scFv conjugate was labelled with ammonium acetate-buffered gallium-68 from a 68 Ge/ 68 Ga generator at room temperature and neutral pH. The labelled conjugate was evaluated in the PCa cell line DU145 and its PSMA-overexpressing variant in vitro and xenografted in SCID mice. J591c-scFv was produced in yields of 4-6 mg/l culture supernatant and efficiently coupled with the THP-mal bifunctional chelator. Labelling yields > 95% were achieved at room temperature following incubation of 5 μg conjugate with gallium-68 for 5 min without post-labelling purification. 68 Ga-THP-mal-J591c-scFv was stable in serum and showed selective binding to the DU145-PSMA cell line, allowing an IC50 value of 31.5 nM to be determined for unmodified J591c-scFv. Serial PET/CT imaging showed rapid, specific tumour uptake and clearance via renal elimination. Accumulation in DU145-PSMA xenografts at 90 min post-injection was 5.4 ± 0.5%ID/g compared with 0.5 ± 0.2%ID/g in DU145 tumours (n = 4). The bifunctional chelator THP-mal enabled simple, rapid, quantitative, one-step room temperature radiolabelling of a protein with gallium-68 at neutral pH without a need for post-labelling purification. The resultant gallium-68 complex shows high affinity for PSMA and favourable in vivo targeting properties in a xenograft model of PCa.
Hennelly, Scott P.; Novikova, Irina V.; Sanbonmatsu, Karissa Y.
2013-01-01
Riboswitch operation involves the complex interplay between the aptamer domain and the expression platform. During transcription, these two domains compete against each other for shared sequence. In this study, we explore the cooperative effects of ligand binding and Magnesium interactions in the SAM-I riboswitch in the context of aptamer collapse and anti-terminator formation. Overall, our studies show the apo-aptamer acts as (i) a pre-organized aptamer competent to bind ligand and undergo structural collapse and (ii) a conformation that is more accessible to anti-terminator formation. We show that both Mg2+ ions and SAM are required for a collapse transition to occur. We then use competition between the aptamer and expression platform for shared sequence to characterize the stability of the collapsed aptamer. We find that SAM and Mg2+ interactions in the aptamer are highly cooperative in maintaining switch polarity (i.e. aptamer ‘off-state’ versus anti-terminator ‘on-state’). We further show that the aptamer off-state is preferentially stabilized by Mg2+ and similar divalent ions. Furthermore, the functional switching assay was used to select for phosphorothioate interference, and identifies potential magnesium chelation sites while characterizing their coordinated role with SAM in aptamer stabilization. In addition, we find that Mg2+ interactions with the apo-aptamer are required for the full formation of the anti-terminator structure, and that higher concentrations of Mg2+ (>4 mM) shift the equilibrium toward the anti-terminator on-state even in the presence of SAM. PMID:23258703
CaSR-mediated interactions between calcium and magnesium homeostasis in mice.
Quinn, Stephen J; Thomsen, Alex R B; Egbuna, Ogo; Pang, Jian; Baxi, Khanjan; Goltzman, David; Pollak, Martin; Brown, Edward M
2013-04-01
Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading.
NASA Astrophysics Data System (ADS)
Gumber, Khushbu; Sidhu, Anjali; Kaur, Robinpreet
2017-04-01
Novel magnesium 1,2,4-triazole-1-carbodithioates were sonochemically synthesized as water-dispersable nanoparticles owing to their water insolubility. The two-step reaction protocol was followed to synthesize the novel triazole ligand system for complexation with magnesium metal due to its low biological toxicity. Different concentrations of Poly Vinyl Pyrrolidine were used to stabilize and standardise the size of nanoparticles, which were characterised by TEM analysis. UV-Visible and infrared spectroscopies were used to analyse the metal ligand interaction, and CHNS analysis was used to propose the structure of the metal complex. The spore germination inhibition technique was used to evaluate the antifungal potential of synthesized nano-complexes against two phytopathogenic test fungi viz . A. alternata and F. moniliforme. The nanoparticles had inflicted moderate in vitro inhibition of fungal growth, which was comparable to standard fungicide Indofil M-45. The in silico toxicity of the compounds was made using the Toxtree analysis software that indicated the compounds belong to class III group of toxicity, which was same as that of commercial standards of DTC.
Complete dechlorination of DDE/DDD using magnesium/palladium system.
Gautam, Sumit Kumar; Suresh, Sumathi
2007-04-01
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.
Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B
2016-08-08
The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Weeber, Marc; Klein, Henny; de Jong-van den Berg, Lolkje T. W.; Vos, Rein
2001-01-01
Proposes a two-step model of discovery in which new scientific hypotheses can be generated and subsequently tested. Applying advanced natural language processing techniques to find biomedical concepts in text, the model is implemented in a versatile interactive discovery support tool. This tool is used to successfully simulate Don R. Swanson's…
Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.
Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy
2017-01-01
Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.
Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B
2016-01-01
The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organic-inorganic nanosystems designed for multiple metal corrosion inhibition
NASA Astrophysics Data System (ADS)
Stockley, Robert
This research focuses on the refinement and discovery of environmentally friendly coatings of metals with increased durability and longer lifetimes as the goal. In the pursuit of an ideal, such as environmentally friendly coatings or "green chemistry," there are many obstacles that must be overcome. This is particularly true in the case of protecting magnesium and its alloys. The relatively low open circuit potential of magnesium makes it highly susceptible to galvanic corrosion when in contact with other metals. It is also easily oxidized when exposed to air or humid conditions and forms a loose hydroxide/oxide layer (Mg(OH)2/MgO). However, for all of its problems, the advantages to using magnesium far outweigh the disadvantages; if and only if, its natural tendency to corrode can be adequately controlled. Magnesium has a high strength to weight ratio, similar to that of glass, making it ideal for a vast array of commercial applications. Magnesium has a high electromagnetic shielding effect (-52.34 dB at 2.45/ GHz for AZ31), making it applicable not only to aircraft instrumentation, but structure as well, due to its low density (d = 1.48 g/cm3). The list of applications for magnesium and its alloys is extensive. Our research has provided insights into the prevention of magnesium corrosion and the applications of "green chemistry" to a metal used across a multitude of industries. Specifically, excellent results were obtained for the electrochemical impedance spectroscopy of LZ91 (magnesium alloy) which demonstrated an impedance of 1.0 x 1010 Ohms to 1.0 x 1011 Ohms. These results suggest our coatings display a pure capacitance behavior in the Bode plot. According to ASTM B117 testing (salt fog testing) the coating on LZ91 panels reached 120 hours, a period considered to be the equivalent of five years of real world conditions, without appreciable corrosion. The possible mechanism for this corrosion protection will also be discussed. These advancements are compelling evidence that our coating is ready for use by industry. From the development of sol-gels and
Fluid extraction using carbon dioxide and organophosphorus chelating agents
Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.
1998-11-24
Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.
Fluid extraction using carbon dioxide and organophosphorus chelating agents
Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa
1998-01-01
Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.
Reactions of cisplatin with cysteine and methionine at constant pH; a computational study.
Zimmermann, Tomás; Burda, Jaroslav V
2010-02-07
Interactions of hydrated cisplatin complexes cis-[Pt(NH(3))(2)Cl(H(2)O)](+) and cis-[Pt(NH(3))(2)(OH)(H(2)O)](+) with cysteine and methionine in an aqueous solution at constant pH were explored using computational methods. Thermodynamic parameters of considered reactions were studied in a broad pH range, taking up to 4 protonation states of each molecule into account. Reaction free energies at constant pH were obtained from standard Gibbs free energies using the Legendre transformation. Solvation free energies and pK(a) values were calculated using the PCM model with UAHF cavities, recently adapted by us for transition metal complexes. The root mean square error of pK(a) values on a set of model platinum complexes and amino acids was equal to 0.74. At pH 7, the transformed Gibbs free energies differ by up to 15 kcal mol(-1) from the Gibbs free energies of model reactions with a constant number of protons. As for cysteine, calculations confirmed a strong preference for kappaS monodenate bonding in a broad pH range. The most stable product of the second reaction step, which proceeds from monodentate to chelate complex, is the kappa(2)S,N coordinated chelate. The reaction with methionine is more complex. In the first step all three considered methionine donor atoms (N, S and O) are thermodynamically preferred products depending on the platinum complex and the pH. This is in accordance with the experimental observation of a pH dependent migration between N and S donor atoms in a chemically related system. The most stable chelates of platinum with methionine are kappa(2)S,N and kappa(2)N,O bonded complexes. The comparison of reaction free energies of both amino acids suggests, that the bidentate methionine ligand can be displaced even by the monodentate cysteine ligand under certain conditions.
Houlihan, Sara; Decarie, Diane; Benes, Cindy; Cleve, Richard; Vidler, Marianne; Magee, Laura A; Ensom, Mary H H; von Dadelszen, Peter
2016-10-01
To evaluate the physical compatibility and chemical stability of mixtures of magnesium sulphate and lidocaine in order to determine the feasibility of manufacturing a prefilled syringe combining these two drugs for use as an intramuscular (IM) loading dose for eclampsia prevention and/or treatment. This ready-to-use mixture will provide a more tolerable and accessible route of administration appropriate for widespread use. Physical compatibility (pH, colour, and formation of precipitate) and chemical stability (maintaining > 90% of initial concentrations) of mixtures of MgSO 4 , using both commercially available MgSO 4 (50%) and MgSO 4 reconstituted from salt (61%), with lidocaine hydrochloride (2%) were evaluated every 14 days over six months. The concentration of lidocaine was determined by a stability indicating high performance liquid chromatographic method, while the concentration of magnesium was determined by an automated chemistry analyzer. No changes in pH, color or precipitates were observed for up to 6 months. The 95% confidence interval of the slope of the curve relating concentration to time, determined by linear regression, indicated that only the admixtures of commercially-available magnesium sulfate and lidocaine as well as the 61% magnesium sulfate solution (reconstituted from salt) maintained at least 90% of the initial concentration of both drugs at 25°C and 40°C at 6 months. Commercially available MgSO4 and lidocaine hydrochloride, when combined, are stable in a pre-filled syringe for at least six months in high heat and humidity conditions. This finding represents the first step in improving the administration of magnesium sulphate in the treatment and prevention of eclampsia in under-resourced settings. Copyright © 2016 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.
Liposome encapsulation of chelating agents
Rahman, Yueh Erh
1976-01-13
A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.
Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.
Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B
2010-01-01
Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.
Cognitive and hippocampus biochemical changes following sleep deprivation in the adult male rat.
Nabaee, Ebrahim; Kesmati, Mahnaz; Shahriari, Ali; Khajehpour, Lotfollah; Torabi, Mozhgan
2018-05-14
Sleep deprivation (SD) influences physiological processes such as cognitive function. The balance of oxidant and antioxidant markers, neurotrophic factors and magnesium are affected by sleep deprivation but there is no difference between pre and post training sleep deprivation. This study was designed to investigate memory retrieval and biochemical factors such as oxidant and antioxidant enzyme, brain-derived neurotrophic factor (BDNF) and magnesium levels in the hippocampus following pre and post-training sleep deprivation. Male Wistar rats (weighing 200 ± 20 g) in below groups were used: control 1, 24, 48 and 72 h SD before training groups, control2, 24 h SD1 after training (being evaluated 24 h after training) and SD2 24 after training (being evaluated 48 h after training). Memory was evaluated 90 min, 24 h or 48 h after training by step-through passive avoidance apparatus. Multiple platforms method was used to induce SD. Oxidant and antioxidant markers including glutathione (GSH), glutathione reductase (GPx), malonedialdehyde (MDA), Total antioxidant concentration, catalase, superoxide dismutase (SOD), magnesium and BDNF were assessed in the hippocampus or/and brain. 72 h pre-training SD impaired short and long-term memory significantly. There was no significant difference in hippocampus oxidant and antioxidant markers compared to control. Hippocampal BDNF and magnesium did not show any changes in all SD groups. Lack of correlation between memory impairment and levels of BDNF, magnesium and/or oxidant and antioxidant balance in the hippocampus is likely to be related to animal locomotor activity in the multiple platforms method. More research is needed to clarify the role of neurochemical systems. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Tukur, J; Ahonsi, B; Salisu, I; Oginni, A B; Okereke, E
2012-07-01
Nigeria has one of the highest rates of maternal mortality in the world. Eclampsia is a major contributor to the deaths especially in Northern Nigeria where the culture of teenage marriage is common. Kano is the state with the highest population in Nigeria. Despite its effectiveness, magnesium sulphate was been used to treat eclampsia and severe preclampsia in only one of 35 general hospitals inthe state as at 2007. In 2008, magnesium sulphate was introduced in 10 General Hospitals in Kano state of Northern Nigeria in a Population Council project funded by the MacArthur Foundation. The aim of the study was to determine if the maternal outcomes improved. Doctors and midwives from the 10 hospitals were trained on the use of magnesium sulphate. The trained health workers later conducted step down trainings at their health facilities. Magnesium sulphate, treatment protocol, patella hammer and calcium gluconate were then supplied to the hospitals. Data was collected through structured data forms. The data was analysed using SPSS. Within a year of the project, 1045 patients with severe preeclampsia and eclampsia were treated. The case fatality rate for severe preeclampsia and eclampsia fell from 20.9% (95% CI 18.7-23.2) recorded before the project to 2.3% (95%CI 1.5-3.5) after the project. The perinatal mortality rate in those that received magnesium sulphate was 12.3% (CI 10.4-14.5) while the 5min APGAR score for 72.9% of the babies was 7 or more. Training of health workers on updated evidence based interventions and providing an enabling environment for their practice are key components to the attainment of the Millennium Development Goals in developing countries. Copyright © 2012. Published by Elsevier B.V.
Garimella, Ravindranath; Halye, Jeffrey L.; Harrison, William; Klebba, Phillip E.; Rice, Charles V.
2009-01-01
The conformation of D-alanine (D-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The D-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH3+ group with the ability to form a contact-ion-pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the D-Ala cation; thus the ion-pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing 15N D-Ala and β-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling and the results demonstrate: 1) the metal-free amine-to-phosphate distance is 4.4 Å and 2) the amine-to-phosphate distance increases to 5.4 Å in the presence of Mg2+ ions. As a result, the zwitterion exists in a nitrogen-oxygen ion-pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of D-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies. PMID:19746945
Equilibrium binding behavior of magnesium to wall teichoic acid.
Thomas, Kieth J; Rice, Charles V
2015-10-01
Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.
Sarris, Jerome; Mischoulon, David; Schweitzer, Isaac
2011-01-01
Studies using augmentation of pharmacotherapies with nutraceuticals in bipolar disorder (BD) have been conducted and preliminary evidence in many cases appears positive. To date, however, no specialized systematic review of this area has been conducted. We present the first systematic review of clinical trials using nutrient-based nutraceuticals in combination with standard pharmacotherapies to treat BD. A subsequent aim of this report was to discuss posited underlying mechanisms of action. PubMed, CINAHL, Web of Science, and Cochrane Library databases, and grey literature were searched during mid-2010 for human clinical trials in English using nutraceuticals such as omega-3, N-acetyl cysteine (NAC), inositol, and vitamins and minerals, in combination with pharmacotherapies to treat bipolar mania and bipolar depression. A review of the results including an effect size analysis (Cohen's d) was subsequently conducted. In treating bipolar depression, positive evidence with large effect sizes were found for NAC (d=1.04) and a chelated mineral and vitamin formula (d=1.70). On the outcome of bipolar mania, several nutraceuticals reduced mania with strong clinical effects: a chelated mineral formula (d=0.83), L-tryptophan (d=1.47), magnesium (d=1.44), folic acid (d=0.40), and branched-chain amino acids (d=1.60). Mixed, but mainly positive, evidence was found for omega-3 for bipolar depression, while no evidentiary support was found for use in mania. No significant effect on BD outcome scales was found for inositol (possibly due to small samples). BD treatment outcomes may potentially be improved by additional use of certain nutraceuticals with conventional pharmacotherapies. However, caution should be extended in interpreting the large effects of several isolated studies, as they have not yet been replicated in larger trials. © 2011 John Wiley and Sons A/S.
Eggenstein, E; Eichinger, A; Kim, H-J; Skerra, A
2014-02-01
Modern strategies in radio-immuno therapy and in vivo imaging require robust, small, and specific ligand-binding proteins. In this context we have previously developed artificial lipocalins, so-called Anticalins, with high binding activity toward rare-earth metal-chelate complexes using combinatorial protein design. Here we describe further improvement of the Anticalin C26 via in vitro affinity maturation to yield CL31, which has a fourfold slower dissociation half-life above 2h. Also, we present the crystallographic analyses of both the initial and the improved Anticalin, providing insight into the molecular mechanism of chelated metal binding and the role of amino acid substitutions during the step-wise affinity maturation. Notably, one of the four structurally variable loops that form the ligand pocket in the lipocalin scaffold undergoes a significant conformational change from C26 to CL31, acting as a lid that closes over the accommodated metal-chelate ligand. A systematic mutational study indicated that further improvement of ligand affinity is difficult to achieve while providing clues on the contribution of relevant side chains in the engineered binding pocket. Unexpectedly, some of the amino acid replacements led to strong increases - more then 10-fold - in the yield of soluble protein from periplasmic secretion in Escherichia coli. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.
Maeng, Wan Young; Yoo, Mi
2015-11-01
Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.
Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Lei, Shan; Tang, Xingyan; Liang, Hua; Liu, Qiangqiang; Gong, Mei; Peng, Rufang
2017-06-01
A new tris(dopamine) derivative, containing three dopamine chelate moieties which were attached to a trimesic acid molecular scaffold, has been prepared and fully characterized by NMR, FTIR and HRMS. The solution thermodynamic stability of the chelator with Fe(III), Mg(II), Zn(II) and Fe(II) ions was investigated. Results demonstrated that the chelator exhibited effective binding ability and improved selectivity to Fe(III) ion. The chelator possessed affinity similar to that of diethylenetriaminepentaacetic acid chelator for Fe(III) ion. The high affinity could be attributed to the favorable geometric arrangement between the chelator and Fe(III) ion coordination preference. The chelator also exhibited high antioxidant activity and nontoxicity to neuron-like rat pheochromocytoma cells. Hence, the chelator could be used as chelating agent for iron overload situations without depleting essential metal ions, such as Mg(II) and Zn(II) ions. Copyright © 2017. Published by Elsevier Inc.
do Rosário Freixo, Maria; Karmali, Amin; Arteiro, José Maria
2008-06-01
Tomato pomace and pectin were used as the sole carbon sources for the production of polygalacturonase from a strain of Coriolus versicolor in submerged culture. The culture of C. versicolor grown on tomato pomace exhibited a peak of polygalacturonase activity (1,427 U/l) on the third day of culture with a specific activity of 14.5 U/mg protein. The production of polygalacturonase by C. versicolor grown on pectin as a sole carbon source increased with the time of cultivation, reaching a maximum activity of 3,207 U/l of fermentation broth with a specific activity of 248 U/mg protein. The levels of different isoenzymes of polygalacturonase produced during the culture growth were analysed by native PAGE. Differential chromatographic behaviour of lignocellulosic enzymes produced by C. versicolor (i.e. polygalacturonase, xylanase and laccase) was studied on immobilized metal chelates. The effect of ligand concentration, pH, the length of spacer arm and the nature of metal ion were studied for enzyme adsorption on immobilized metal affinity chromatography (IMAC). The adsorption of these lignocellulosic enzymes onto immobilized metal chelates was pH-dependent since an increase in protein adsorption was observed as the pH was increased from 6.0 to 8.0. The adsorption of polygalacturonase as well as other enzymes to immobilized metal chelates was due to coordination of histidine residues which are available at the protein surface since the presence of imidazole in the equilibration buffer abolished the adsorption of the enzyme to immobilized metal chelates. A one-step purification of polygalacturonase from C. versicolor was devised by using a column of Sepharose 6B-EPI 30-IDA-Cu(II) and purified enzyme exhibited a specific activity of about 150 U/mg protein, final recovery of enzyme activity of 100% and a purification factor of about 10. The use of short spacer arm and the presence of imidazole in equilibration buffer exhibited a higher selectivity for purification of polygalacturonase on this column with a high purification factor. The purified enzyme preparation was analysed by SDS-PAGE as well as by "in situ" detection of enzyme activity.
Isotopic Exchange in Porous and Dense Magnesium Borohydride.
Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C
2015-09-01
Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roberts, Peter L
2014-07-01
Various chromatographic procedures are used during the purification and manufacture of plasma products such as coagulation factors. These steps contribute to the overall safety of such products by removing potential virus contamination. Virus removal by two affinity chromatography procedures, i.e. monoclonal antibody chromatography and metal chelate chromatography (immobilised metal ion affinity chromatography), used during the manufacture of the high purity factor VIII (Replenate®) and factor IX (Replenine®-VF), respectively, has been investigated. In addition, as these columns are recycled after use, the effectiveness of the sanitisation procedures for preventing possible cross-contamination, has also been investigated. Both chromatographic steps proved effective for eliminating a range of model enveloped and non-enveloped viruses by 4 to >6 and 5 to >8 log for the monoclonal and metal chelate columns, respectively. The effectiveness of the relatively mild column sanitisation conditions used, i.e. ethanol for factor IX and acetic acid for factor VIII, was confirmed using non-spiked column runs. The chemicals used contributed to virus elimination by inactivation and/or by physical removal of the virus. In summary, these studies demonstrate that potential virus contamination between chromatographic runs can be prevented when an effective column recycling and sanitisation procedure is included. Copyright © 2014 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
A process for the preparation of cysteine from cystine
Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David
1989-01-01
The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqeous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In a preferred embodiment the present invention provides an improved process for the preparation (regeneration) of cysteine from cystine, which includes reacting an aqueous solution of cystine at a pH of between about 9 to 13 with a reducing agent selected from hydrogen sulfide or alkali metal sulfides, sulfur dioxide, an alkali metal sulfite or mixtures thereof for a time and at a temperature effective to cleave and reduce the cystine to cysteine with subsequent recovery of the cysteine. In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.
Andersson, Hans; Banchelin, Thomas Sainte-Luce; Das, Sajal; Gustafsson, Magnus; Olsson, Roger; Almqvist, Fredrik
2010-01-15
A conceptually new one-pot strategy for the synthesis of protected substituted piperazines via the addition of Grignard reagents to pyrazine N-oxides is presented. This strategy is high yielding (33-91% over three steps), step-efficient, and fast. The synthesized N,N-diprotected piperazines are convenient to handle and allow for orthogonal deprotection at either nitrogen for selective transformations. In addition, this is a synthetic route to enantiomerically enriched piperazines by using a combination of phenyl magnesium chloride and (-)-sparteine, which resulted in enantiomeric excesses up to 83%.
Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.
Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia
2014-11-01
To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.
NASA Astrophysics Data System (ADS)
Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.
2001-12-01
Deciphering the complex strategies by which organisms produce nanocrystalline materials with exquisite morphologies is central to understanding biomineralizing systems. One control on the morphology of biogenic nanoparticles is the specific interactions of their surfaces with the organic functional groups provided by the organism and the various inorganic species present in the ambient environment. It is now possible to directly probe the microscopic structural controls on crystal morphology by making quantitative measurements of the dynamic processes occurring at the mineral-water interface. These observations can provide crucial information concerning the actual mechanisms of growth that is otherwise unobtainable through macroscopic techniques. Here we use in situ molecular-scale observations of step dynamics and growth hillock morphology to directly resolve roles of principal impurities in regulating calcite surface morphologies. We show that the interactions of certain inorganic as well as organic impurities with the calcite surface are dependent upon the molecular-scale structures of step-edges. These interactions can assume a primary role in directing crystal morphology. In calcite growth experiments containing magnesium, we show that growth hillock structures become modified owing to the preferential inhibition of step motion along directions approximately parallel to the [010]. Compositional analyses have shown that Mg incorporates at different levels into the two types of nonequivalent steps, which meet at the hillock corner parallel to [010]. A simple calculation of the strain caused by this difference indicates that we should expect a significant retardation at this corner, in agreement with the observed development of [010] steps. If the low-energy step-risers produced by these [010] steps is perpendicular to the c-axis as seems likely from crystallographic considerations, this effect provides a plausible mechanism for the elongated calcite crystal habits found in natural environments that contain magnesium. In a separate study, step-specific interactions are also found between chiral aspartate molecules and the calcite surface. The L and D- aspartate enantiomers exhibit structure preferences for the different types of step-risers on the calcite surface. These site-specific interactions result in the transfer of asymmetry from the organic molecule to the crystal surface through the formation of chiral growth hillocks and surface morphologies. These studies yield direct experimental insight into the molecular-scale structural controls on nanocrystal morphology in biomineralizing systems.
Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes
Rahman, Yueh Erh
1977-11-10
A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.
Method for preparing radionuclide-labeled chelating agent-ligand complexes
Meares, Claude F.; Li, Min; DeNardo, Sally J.
1999-01-01
Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.
Concepts and goals in the management of transfusional iron overload.
Porter, John B
2007-12-01
In this review, current concepts and goals of iron chelation therapy for thalassemias, sickle cell disease, and myelodysplastic syndromes are discussed. The primary goal of iron chelation therapy is to prevent the accumulation of iron reaching harmful levels by matching iron intake from blood transfusion, with iron excreted by iron chelation. Over 30 years of experience with deferoxamine has shown iron chelation to be an effective therapeutic modality. However, chelation efficiency is limited because most of the body's iron stores are not directly chelatable, and only a small fraction of body iron is chelatable at any moment. Once iron has been deposited in organs other than the liver, for example the heart, removal by chelation is slow and inefficient. Chelation efficiency can be improved by designing regimes where chelators are available 24 hr a day to bind labile iron pools in cells and plasma. Deferoxamine has a short plasma half-life and the parenteral infusions required to achieve steady plasma levels are demanding, with consequent variable adherence to therapy. Once-daily oral administration of deferasirox achieves continuous chelation with trough concentrations sufficient to decrease plasma labile iron species progressively, and achieves an efficiency of chelation not obtainable with deferiprone or deferoxamine monotherapy. 2007 Wiley-Liss, Inc
Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen
2016-11-01
Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcés, Gerardo, E-mail: ggarces@cenim.csic.es
The formation of the long-period stacking ordered structure (LPSO) in a Mg{sub 88}Y{sub 8}Zn{sub 4}(at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissingermore » model was 125 KJmol{sup −1} and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.« less
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.
2015-01-01
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K
2015-11-30
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion
NASA Astrophysics Data System (ADS)
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.
2015-11-01
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
Bergan, T; Klaveness, J; Aasen, A J
2001-01-01
The antibacterial activity of metal ions, metal chelates, and molecules with chelating ability for polyvalent cations have been evaluated. The chelator N, N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (EHPG) exerted moderate-to-good activity against isolates of pathogenic bacteria and fungi. Other chelating agents such as ethylenediamine-tetraacetic acid (EDTA) and diethylene-triamine-pentaacetic acid (DTPA) revealed weak-to-moderate activity. Metal chelation of ligands reduced the activity of EDTA and DTPA. Copyright 2001 S. Karger AG, Basel
Method and apparatus for back-extracting metal chelates
Wai, Chien M.; Smart, Neil G.; Lin, Yuehe
1998-01-01
A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.
Novel hexadentate and pentadentate chelators for 64Cu-based targeted PET imaging
Sin, Inseok; Kang, Chisoo; Bandara, Nilantha; Sun, Xiang; Zhong, Yongliang; Rogers, Buck E.; Chong, Hyun-Soon
2014-01-01
A series of new hexadentate and pentadentate chelators were designed and synthesized as chelators of 64Cu. The new pentadentate and hexadentate chelators contain different types of donor groups and are expected to form neutral complexes with Cu(II). The new chelators were evaluated for complex kinetics and stability with 64Cu. The new chelators instantly bound to 64Cu with high labeling efficiency and maximum specific activity. All 64Cu-radiolabeled complexes in human serum remained intact for 2 days. The 64Cu-radiolabeled complexes were further challenged by EDTA in a 100-fold molar excess. Among the 64Cu-radiolabeled complexes evaluated, 64Cu-complex of the new chelator E was well tolerated with a minimal transfer of 64Cu to EDTA. 64Cu-radiolabeled complex of the new chelator E was further evaluated for biodistribution studies using mice and displayed rapid blood clearance and low organ uptake. 64Cu-chelator E produced a favorable in vitro and in vivo complex stability profiles comparable to 64Cu complex of the known hexadentate NOTA chelator. The in vitro and in vivo data highlight strong potential of the new chelator E for targeted PET imaging application. PMID:24657050
Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J
2012-06-01
Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.
Murphy, Stephen K.; Bruch, Achim
2014-01-01
We report a protocol for branched-selective hydroacylation of vinylphenols with aryl, alkenyl and alkyl aldehydes. This cross-coupling yields α-aryl ketones that can be cyclized to benzofurans, and it enables access to eupomatenoid natural products in four steps or less from eugenol. Excellent reactivity and high levels of branched regioselectivity are obtained. We propose that aldehyde decarbonylation is overcome by using an anionic directing group on the olefin and a small bite-angle diphosphine ligand. PMID:24478146
NASA Astrophysics Data System (ADS)
Carbonaro, Richard F.; Gray, Benjamin N.; Whitehead, Charles F.; Stone, Alan T.
2008-07-01
Anthropogenic chelating agents and biological chelating agents produced by indigenous organisms may dissolve Cr III (hydr)oxides in soils and sediments. The resulting dissolved Cr III-chelating agent complexes are more readily transported through porous media, thereby spreading contamination. With this work, we examine chelating agent-assisted dissolution of amorphous chromium hydroxide (ACH) by the (amino)carboxylate chelating agents iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), tricarballylic acid (TCA), citric acid (CIT), ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediaminetetraacetic acid (CDTA), and trimethylenediaminetetraacetic acid (TMDTA). The extent of chelating agent adsorption onto ACH increased quickly over the first few hours, and then increased more gradually until a constant extent was attained. The extent of chelating agent adsorption versus pH followed "ligand-like" behavior. All chelating agents with the exception of TCA and IDA effectively dissolved significant amounts of ACH within 10 days from pH 4.0 to 9.4. IDA dissolved ACH below pH 6.5 and above pH 7.5. Rates of ACH dissolution normalized to the extent of chelating agent adsorption were pH dependent. IDA, NTA, CIT, and CDTA exhibited an increase in normalized dissolution rate with decreasing pH. EDTA and TMDTA exhibited a maximum in normalized dissolution rate near pH 8.5. Use of acetic acid as a pH buffer in experiments decreased the extent of chelating agent adsorption for IDA, NTA, and CIT but increased normalized rates of chelating agent-assisted dissolution for all chelating agents except EDTA. The results from this study provide the necessary information to calculate the extents and time scales of ACH dissolution in the presence of (amino)carboxylate chelating agents.
Glass microspheres for medical applications
NASA Astrophysics Data System (ADS)
Conzone, Samuel David
Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass microspheres containing 3.7 GBq of 186Re and 8.5 GBq of 188Re could be used to deliver a 100 Gy dose to a cancerous tumor, while limiting the total body dose caused by rhenium dissolution to approximately 1 mGy.
Method and apparatus for back-extracting metal chelates
Wai, C.M.; Smart, N.G.; Lin, Y.
1998-08-11
A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.
Hydroxypyridonate chelating agents and synthesis thereof
Raymond, K.N.; Scarrow, R.C.; White, D.L.
1985-11-12
Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.
Formation of Protoplasts from Resting Spores
Fitz-James, Philip C.
1971-01-01
Coat-stripped spores suspended in hypertonic solutions and supplied with two essential cations can be converted into viable protoplasts by lysozyme digestion of both cortex and germ cell wall. Calcium ions are necessary to prevent membrane rupture, and magnesium ions are necessary for changes indicative of hydration of the core, particularily the nuclear mass. Since remnant spore coat covered such protoplasts of Bacillus subtilis and the germ cell wall of B. cereus spores is not lysozyme digestible, coatless spores of B. megaterium KM were more useful for these studies. Lysozyme digestion in cation-free environment produced a peculiar semi-refractile spore core free of a cortex but prone to rapid hydration and lytic changes on the addition of cations. Strontium could replace Ca2+ but Mn2+ could not replace Mg2+ in these digestions. When added to the spores, dipicolinic acid and other chelates appeared to compete with the membrane for the calcium needed for stabilization during lysozyme conversion to protoplasts. It is argued that calcium could function to stabilize the inner membrane anionic groups over the anhydrous dipicolinic acid-containing core of resting spores. Images PMID:4995380
Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.
Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan
2005-11-01
Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.
Coincidence measurements following 2p photoionization in Mg
NASA Astrophysics Data System (ADS)
Sokell, E.; Bolognesi, P.; Safgren, S.; Avaldi, L.
2014-04-01
Triple Differential Cross-Section (TDCS) measurements have been made to investigate the 2p pho-toionization of Magnesium. In the experiment the photoelectron and the L3-M1M1 Auger electron have been detected in coincidence at four distinct photon energies from 7 to 40 eV above the 2p threshold. Auger decay is usually treated as a two-step process, where the intermediate single hole-state makes the link between the pho-toionization and decay processes. These measurements allow the investigation of the process as a function of excess energy, and specifically to test the validity of the two-step model as the ionization threshold is approached.
Moniz, T; Leite, A; Silva, T; Gameiro, P; Gomes, M S; de Castro, B; Rangel, M
2017-10-01
We formerly hypothesized a mechanism whereby the antimycobacterial efficiency of a set of rhodamine labelled iron chelators is improved via the rhodamine fluorophore which enhances the chelators' permeation properties through membranes. To validate our hypothesis in a cellular context and to understand the influence of the structure of the fluorophore on the chelator's uptake and distribution within macrophages we now report comparative confocal microscopy studies performed with a set of rhodamine labelled chelators. We identify the functional groups of the chelator's framework that favor uptake by macrophages and conclude that the antimycobacterial effect is strongly related with the capacity of the chelator to distribute within the host cell and its compartments, a property that is closely related with the chelators' ability to interact with membranes. The quantification of the chelators' interaction with membranes was assessed through measurement of the corresponding partition constants in liposomes. The overall results support that the compounds which are preferentially taken up are the most efficient antimycobacterial chelators and for that reason we infer that the biological activity is modulated by the structural features of the fluorophore. Copyright © 2017 Elsevier Inc. All rights reserved.
Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2015-09-01
Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5) mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES). Maximum iron chelation was reached in solutions up to viscosity ∼10(2) mPa·s. In more viscous solutions (up to ∼10(4) mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality. © 2015 Institute of Food Technologists®
Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging
Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy
2017-01-01
Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726
Luminescent lanthanide chelates and methods of use
Selvin, Paul R.; Hearst, John
1997-01-01
The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.
Obligatory reduction of ferric chelates in iron uptake by soybeans.
Chaney, R L; Brown, J C; Tiffin, L O
1972-08-01
The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.
NASA Astrophysics Data System (ADS)
Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.
2009-07-01
Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.
Safari, Javad; Gandomi-Ravandi, Soheila; Akbari, Zahra
2012-01-01
An efficient four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles is described by one-step condensation of an aldehyde, benzil, ammonium acetate and primary aromatic amine with nanocrystalline magnesium aluminate in ethanol under ultrasonic irradiation. High yields, short reaction times, mild conditions, simplicity of operation and easy work-up are some advantages of this protocol. PMID:25685459
Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi
2016-01-01
In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites. PMID:27941839
NASA Astrophysics Data System (ADS)
Xiang, Shulin; Wang, Xiaojun; Gupta, Manoj; Wu, Kun; Hu, Xiaoshi; Zheng, Mingyi
2016-12-01
In this work, graphene nanoplatelets (GNPs) reinforced magnesium (Mg) matrix composites were synthesised using the multi-step dispersion route. Well-dispersed but inhomogeneously distributed GNPs were obtained in the matrix. Compared with the monolithic alloy, the nanocomposites exhibited dramatically enhanced Young’s modulus, yield strength and ultimate tensile strength and relatively high plasticity, which mainly attributed to the significant heterogeneous laminated microstructure induced by the addition of GNPs. With increasing of the concentration of GNPs, mechanical properties of the composites were gradually improved. Especially, the strengthening efficiency of all the composites exceeded 100%, which was significantly higher than that of carbon nanotubes reinforced Mg matrix composites. The grain refinement and load transfer provided by the two-dimensional and wrinkled surface structure of GNPs were the dominated strengthening mechanisms of the composites. This investigation develops a new method for incorporating GNPs in metals for fabricating high-performance composites.
A facile method to fabricate a superhydrophobic surface with biomimetic structure on magnesium alloy
NASA Astrophysics Data System (ADS)
Bai, Zigang; Zhu, Jiyuan
2018-06-01
Superhydrophobic surface was obtained via a convenient two-step method in this paper on magnesium alloy. The microstructured oxide or hydroxide layers were constructed on the Mg alloy though hydrothermal process. The treated sample was modified with low-energy surface material. After modification, the contact angle of water droplet on the surface is higher than 150° which indicates superhydrophobicity. With scanning electron microscope(SEM), mammillaria-herrerae-like rough structure was obtained. The composition of the superhydrophobic film was analyzed by using x-ray Diffraction instrument and Fourier-transform infrared spectrometer. Moreover, the superhydrophobic surface has good stability. The potentiodynamic polarization test shows that the corrosion current density of superhydrophobic surface was 1–2 order of magnitudes smaller than the bare substrate, which means the anti-corrosion performance has been improved significantly. This route offers an environmentally-benign and effective way to fabricate superhydrophobic surface without using complicated equipment and dangerous chemicals.
Lotfy, Hayam M; Amer, Sawsan M; Zaazaa, Hala E; Mostafa, Noha S
2015-01-01
Two novel simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed and validated for simultaneous determination of Esomeprazole magnesium trihydrate (ESO) and Naproxen (NAP) namely; absorbance subtraction and ratio difference. The results were compared to that of the conventional spectrophotometric methods namely; dual wavelength and isoabsorptive point coupled with first derivative of ratio spectra and derivative ratio. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for determination of ESO and NAP in their laboratory prepared mixtures and pharmaceutical preparation. No preliminary separation steps are required for the proposed spectrophotometeric procedures. The statistical comparison showed that there is no significant difference between the proposed methods and the reported method with respect to both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.
2018-04-01
The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.
Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA
2012-04-10
A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.
[Susceptibility of enterococci to natural and synthetic iron chelators].
Lisiecki, Paweł; Mikucki, Jerzy
2002-01-01
A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.
Lipowska, Malgorzata; Hayes, Brittany L.; Hansen, Lory; Taylor, Andrew; Marzilli, Luigi G.
1996-07-03
The compounds RNHC(=S)NH(CH(2))(n)()NHC(=S)NHR were prepared in a search for new, relatively small N(2)S(2) ligands. These dithiourea (DTU) ligands are the first chelates containing two potentially bidentate thiourea moieties. A one-step reaction of 1,3-diaminopropane (1) with aryl or alkyl isothiocyanates or of 1,2-diaminoethane (2) with phenyl isothiocyanate afforded the target ligands in excellent yields (95-98%). The Re(V)=O complexes of RNHC(=S)NH(CH(2))(3)NHC(=S)NHR ligands were obtained through ligand exchange reactions with Re(V) precursors. The chemistry required neither protection of the sulfur atoms for ligand synthesis nor deprotection prior to metal complexation. The structure of (1-phenyl-3-(3-phenylthioureido)propyl]thioureato)oxorhenium(V) (7a), determined by X-ray diffraction methods, revealed the expected pseudo-square-pyramidal geometry with an N(2)S(2) basal and an apical oxo donor set. Both coordinated N's (N(c)) were deprotonated. One uncoordinated N (N(u)) was deprotonated, producing a neutral complex containing an unexpected new type of dianionic, four-membered N,S chelate. In the crystal, the N(u) atoms, N(3)H and N(4), of one complex each formed an H-bond with N(4) and N(3)H, respectively, of a symmetry-related complex. The N(c)-C-S bond angles (106.1(6) and 101.5(6) degrees ) were severely distorted from the 120 degrees expected for an sp(2)-hybridized C. However, these small bite angles and the large N-Re-N bond angle (86.1(3) degrees ) allowed for the formation of two four-membered chelate rings with normal Re-N and Re-S bond distances. Attempts to prepare complexes with the PhNHC(=S)NH(CH(2))(2)NHC(=S)NHPh ligand were unsuccessful. These results suggest that a central five-membered chelate ring is too small to accommodate bidentate coordination of both thiourea moieties. NMR studies in methanol established that the neutral complex with one uncoordinated N deprotonated was the favored form in neutral and basic solutions. However, under acidic conditions, a cationic form with both uncoordinated N's protonated was favored.
Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA
2010-02-23
A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.
Effect of water hardness on cardiovascular mortality: an ecological time series approach.
Lake, I R; Swift, L; Catling, L A; Abubakar, I; Sabel, C E; Hunter, P R
2010-12-01
Numerous studies have suggested an inverse relationship between drinking water hardness and cardiovascular disease. However, the weight of evidence is insufficient for the WHO to implement a health-based guideline for water hardness. This study followed WHO recommendations to assess the feasibility of using ecological time series data from areas exposed to step changes in water hardness to investigate this issue. Monthly time series of cardiovascular mortality data, subdivided by age and sex, were systematically collected from areas reported to have undergone step changes in water hardness, calcium and magnesium in England and Wales between 1981 and 2005. Time series methods were used to investigate the effect of water hardness changes on mortality. No evidence was found of an association between step changes in drinking water hardness or drinking water calcium and cardiovascular mortality. The lack of areas with large populations and a reasonable change in magnesium levels precludes a definitive conclusion about the impact of this cation. We use our results on the variability of the series to consider the data requirements (size of population, time of water hardness change) for such a study to have sufficient power. Only data from areas with large populations (>500,000) are likely to be able to detect a change of the size suggested by previous studies (rate ratio of 1.06). Ecological time series studies of populations exposed to changes in drinking water hardness may not be able to provide conclusive evidence on the links between water hardness and cardiovascular mortality unless very large populations are studied. Investigations of individuals may be more informative.
Separation of Be and Al for AMS using single-step column chromatography
NASA Astrophysics Data System (ADS)
Binnie, Steven A.; Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred
2015-10-01
With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC-Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. 10Be and 26Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC-Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.
Natural chelating agents for radionuclide decorporation
Premuzic, E.T.
1985-06-11
This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.
Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation.
Wang, Lu; Yan, WenChao; Chen, JiaChuan; Huang, Feng; Gao, PeiJi
2008-03-01
An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the beta-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more accessible to degradation.
NASA Astrophysics Data System (ADS)
Chang, Shi-Chung; MacRobert, Alexander J.; Porter, John B.; Bown, Stephen G.
1995-03-01
Five-aminolaevulinic acid (ALA) induced protoporphyrin IX (PpIX) has proven to be a useful photosensitizer for photodynamic therapy (PDT). In living cells, the conversion of PpIX to photoinactive haem is catalyzed by ferrochelatase in the presence of tissue iron and inhibition of this final committed step results in increased accumulation of PpIX. The in vivo effect of a new iron chelator, 1,2-diethyl-3-hydroxypyridin-4-one (CP94), on the buildup of PpIX in different bladder layers was evaluated. In CP94 treated rats, 5 - 7 hours after intravesical instillation of ALA solution, the fluorescence intensity of PpIX in the urothelium was doubled whilst in the muscle layer it remained low at a similar level to those seen without the iron chelator. With CP94, further reduction of skin photosensitization is possible as a similar photodynamic effect on the bladder could be achieved at lower ALA concentration. The addition of CP94 seems an effective and convenient way to potentiate ALA induced PpIX tissue selectivity.
Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V
2014-03-01
The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.
Muzíková, J; Hájková, P; Vinklarová, S
2004-07-01
The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.
Aramini, Matteo; Niskanen, Johannes; Cavallari, Chiara; Pontiroli, Daniele; Musazay, Abdurrahman; Krisch, Michael; Hakala, Mikko; Huotari, Simo
2016-02-21
We report the microscopic view of the thermal structural stability of the magnesium intercalated fullerene polymer Mg2C60. With the application of X-ray Raman spectroscopy and X-ray diffraction, we study in detail the decomposition pathways of the polymer system upon annealing at temperatures between 300 and 700 °C. We show that there are at least two energy scales involved in the decomposition reaction. Intermolecular carbon bonds, which are responsible for the formation of a 2D fullerene polymer, are broken with a relatively modest thermal energy, while the long-range order of the original polymer remains intact. With an increased thermal energy, the crystal structure in turn is found to undergo a transition to a novel intercalated cubic phase that is stable up to the highest temperature studied here. The local structure surrounding magnesium ions gets severely modified close to, possibly at, the phase transition. We used density functional theory based calculations to study the thermodynamic and kinetic aspects of the collapse of the fullerene network, and to explain the intermediate steps as well as the reaction pathways in the break-up of this peculiar C60 intermolecular bonding architecture.
Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan
2017-09-05
Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.
Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility
NASA Astrophysics Data System (ADS)
Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.
2011-12-01
Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.
We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.
Macrocyclic bifunctional chelating agents
Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.
1987-01-01
A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.
INFLUENCE OF IRON CHELATION ON R1 AND R2 CALIBRATION CURVES IN GERBIL LIVER AND HEART
Wood, John C.; Aguilar, Michelle; Otto-Duessel, Maya; Nick, Hanspeter; Nelson, Marvin D.; Moats, Rex
2008-01-01
MRI is gaining increasing importance for the noninvasive quantification of organ iron burden. Since transverse relaxation rates depend on iron distribution as well as iron concentration, physiologic and pharmacologic processes that alter iron distribution could change MRI calibration curves. This paper compares the effect of three iron chelators, deferoxamine, deferiprone, and deferasirox on R1 and R2 calibration curves according to two iron loading and chelation strategies. 33 Mongolian gerbils underwent iron loading (iron dextran 500 mg/kg/wk) for 3 weeks followed by 4 weeks of chelation. An additional 56 animals received less aggressive loading (200 mg/kg/week) for 10 weeks, followed by 12 weeks of chelation. R1 and R2 calibration curves were compared to results from 23 iron-loaded animals that had not received chelation. Acute iron loading and chelation biased R1 and R2 from the unchelated reference calibration curves but chelator-specific changes were not observed, suggesting physiologic rather than pharmacologic differences in iron distribution. Long term chelation deferiprone treatment increased liver R1 50% (p<0.01), while long term deferasirox lowered liver R2 30.9% (p<0.0001). The relationship between R1 and R2 and organ iron concentration may depend upon the acuity of iron loading and unloading as well as the iron chelator administered. PMID:18581418
Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite, and peat.
Hernández-Apaolaza, L; Lucena, J J
2001-11-01
The effectiveness of Fe chelates as Fe sources and carriers in soil can be severely limited by the adsorption of Fe chelates or chelating agents in the solid phase. To study this phenomenon, well-characterized peat, Ca-montmorillonite, and ferrihydrite were used as model compounds, and the adsorption of Fe-EDDHA and Fe-EDDHMA chelates were studied. Sorption isotherms for the meso and racemic isomers of these chelates on the soil materials are described. The variability of sorption with pH in peat and ferrihydrite was also determined because both have variable surface charge at different pH values. In montmorillonite, at low concentrations, the retention of Fe from the Fe-EDDHMA chelate is greater than the one of the Fe-EDDHA chelate. As well as the concentration increased, the inverse situation occurs. The behavior of both meso and racemic isomers of chelates in contact with Ca-montmorillonite is similar. The Fe-meso-EDDHA isomer was highly adsorbed on ferrihydrite, but the racemic isomer is not significantly retained by this oxide. For Fe-EDDHMA isomers, the racemic isomer was more retained by the oxide, but a small sorption of the racemic isomer was also observed. Results suggest that Fe-EDDHA chelates were more retained in peat than Fe-EDDHMA chelates. The most retained isomer of Fe-EDDHA was the meso isomer. For Fe-EDDHMA, the adsorption was very low for both racemic and meso isomers.
Mechanism for chelated sulfate formation from SO2 and bis (triphenylphosphine) platinum
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, A. B.
1985-01-01
Structure and energy surface calculations using the atom superposition and electron delocalization molecular orbital theory show that the first step in the reaction between SO2 and the dioxygen complex (PPh3)2PtO2 is the coordination of SO2 with one oxygen atom of the complex, followed by metal-oxygen bond breaking and reorientation, leading to a five-membered cyclic structure. This then rearranges to form the bidentate coordinated sulfate. Alternative pathways are considered and are found to be less favorable.
Inhibition of gravitropism in oat coleoptiles by calcium chelation
NASA Technical Reports Server (NTRS)
Roux, S. J.
1984-01-01
Some cellular event necessary for gravitropism is inhibited by EGTA without interferring with the overall growth. Calcium relieves this inhibition and demonstrates both that inhibition is reversible and was probably due to a reduction in the ability to free calcium required for one or more at the transduction steps of gravitropism. At the near neutral pH used, EGTA is charged and would not be expected to readily cross the membrane. One of its primary effects, then, is probably the bringing of free calcium in the apoplastic space exterior to the cell membranes.
Chelation in Metal Intoxication
Flora, Swaran J.S.; Pachauri, Vidhu
2010-01-01
Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537
Tarwade, Vinod; Selvaraj, Ramajeyam; Fox, Joseph M.
2012-01-01
Described is a Cu-catalyzed directed carbozincation of cyclopropenes with organozinc reagents prepared by I/Mg/Zn exchange. This protocol broadens the scope with respect to functional group tolerance and enables use of aryl iodide precursors, rather than purified diorganozinc precursors. Critical to diastereoselectivity of the carbozincation step is the removal of magnesium halide salts after transmetallation with ZnCl2. PMID:23035947
Zimmermann, P; Weiss, U; Classen, H G; Wendt, B; Epple, A; Zollner, H; Temmel, W; Weger, M; Porta, S
2000-07-14
The impact of three different magnesium diets (70, 1,000 and 9,000 ppm) on total, ionized and bound magnesium as well as ionized calcium in serum and total calcium and magnesium in femoral bone, skeletal muscle, heart and liver of male Sprague-Dawley rats was investigated. The percentage of ionized serum magnesium was unproportionally high in rats fed a low magnesium (70 ppm) diet. Femoral magnesium was correlated with ionized and total serum magnesium. In contrast, there was generally no correlation between total serum magnesium and the magnesium fractions in skeletal muscle, heart and liver. In rats fed the magnesium deficient diet, total cardiac concentration of magnesium was even significantly increased along with total calcium content, while there were no effects on total muscle and liver magnesium. Within the single groups, ionized serum calcium was never proportional to dietary magnesium, but in all three magnesium diet groups together, it was inversely correlated with dietary magnesium. Moreover, ionized serum calcium was inversely correlated with both ionized and total serum magnesium. In all 3 groups together, the concentrations of total calcium and magnesium in heart and skeletal muscle were correlated, within the single groups correlation existed only in the 1000 ppm group. Magnesium influx via calcium channels during low magnesium intake has been seen in non cardiac tissues [35,36], but nothing similar is known about non selective channels for divalent cations in the heart [33]. Thus, magnesium uptake by cardiac cells along with calcium seems to be possible, especially at low intracellular magnesium concentrations, but is still poorly investigated. We suggest that the calcium-antagonistic effect of magnesium is related to the turnover rate of magnesium rather than to its tissue concentrations.
Chelators whose affinity for calcium is decreased by illumination
NASA Technical Reports Server (NTRS)
Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)
1987-01-01
The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.
Chelation therapy to treat atherosclerosis, particularly in diabetes: Is it time to reconsider?
Lamas, Gervasio A; Ergui, Ian
2016-01-01
Summary Reports and case series have suggested a possible beneficial effect of chelation therapy in patients with atherosclerotic disease. Small randomized trials conducted in patients with angina or peripheral artery disease, however, were not sufficiently powered to provide conclusive evidence on clinical outcomes. The Trial to Assess Chelation Therapy (TACT) was the first randomized trial adequately powered to detect the effects of chelation therapy on clinical endpoints. Chelation reduced adverse cardiovascular events in a post myocardial infarction (MI) population. Patients with diabetes demonstrated even greater benefit, with a number needed to treat of 6.5 patients to prevent a cardiac event over 5 years. These results led to the revision of the ACC/AHA guideline recommendations for chelation therapy, changing its classification from class III to class IIb. TACT2, a replicative trial, will assess the effects of chelation therapy on cardiovascular outcomes in diabetic patients with a prior myocardial infarction. PMID:27149141
DeAlba-Montero, I; Guajardo-Pacheco, Jesús; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene; Loredo-Becerra, G M; Martínez-Castañón, Gabriel-Alejandro; Ruiz, Facundo; Compeán Jasso, M E
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli , Staphylococcus aureus , and Enterococcus faecalis . These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis . Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.
DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459
Chelation therapy after the Trial to Assess Chelation Therapy: results of a unique trial
Avila, Maria D.; Escolar, Esteban; Lamas, Gervasio A.
2014-01-01
Purpose of review EDTA chelation therapy has been in off-label use for the treatment of atherosclerosis. We review the results of the first large-scale randomized trial of this treatment. Recent findings The trial to assess chelation therapy was a $30 million National Institutes of Health-funded study of the safety and efficacy of EDTA-based chelation infusions in 1708 post-myocardial infarction (MI) patients. The trial to assess chelation therapy demonstrated a significant (P = 0.035) 18% reduction in a combined primary endpoint of death, MI, stroke, coronary revascularization, or hospitalization for angina. In diabetic patients the benefit was more extreme, with a 41% relative reduction in risk (P = 0.0002) and a 43% reduction in total mortality (P = 0.011). Safety data were favorable. A reduction of oxidative stress by chelation of toxic metals has been proposed as a possible mechanism of action. Summary Recent research suggests that EDTA chelation may be a well-tolerated and effective treatment for post-MI patients. Future replication and mechanistic studies are important prior to implementation in all post-MI patients. PMID:25023079
Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.
Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M
2002-12-18
Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.
Luminescent Properties of Eu(III) Chelates on Metal Nanorods
Zhang, Jian; Fu, Yi; Ray, Krishanu; Wang, Yuan; Lakowicz, Joseph. R.
2013-01-01
In this article, we report the change of optical properties for europium chelates on silver nanorods by near-field interactions. The silver rods were fabricated in a seed-growth method followed by depositing thin layers of silica on the surfaces. The europium chelates were physically absorbed in the silica layers on the silver rods. The silver rods were observed to exhibit two plasmon absorption bands from longitudinal and transverse directions, respectively, centered at 394 and 675 nm, close to absorption and emission bands from the Eu(III) chelates. As a result, the immobilized Eu(III) chelates on the silver rods should have strong interactions with the silver nanorods and lead to greatly improved optical properties. The Eu–Ag rod complexes were observed to have enhanced emission intensity up to 240-fold in comparison with the Eu(III) chelates in the metal-free silica templates. This enhancement is much larger than the value for the Eu(III) chelates on the gold rods or silver spheres indicating the presence of stronger interactions for the Eu(III) chelates with the silver rods. The interactions of Eu(III) chelates with the silver rods were also proven by extremely reduced lifetime. Moreover, the Eu–Ag rod complexes exhibited a polarized emission, which was also due to strong interactions of the Eu(III) chelates with the silver rods. All of these features may promise that the Eu(III)–Ag rod complexes have great potential for use as fluorescence imaging agents in biological assays. PMID:24363816
Effect of Iron Chelation Therapy on Glucose Metabolism in Non-Transfusion-Dependent Thalassaemia.
Chuansumrit, Ampaiwan; Pengpis, Pimprae; Mahachoklertwattana, Pat; Sirachainan, Nongnuch; Poomthavorn, Preamrudee; Sungkarat, Witaya; Kadegasem, Praguywan; Khlairit, Patcharin; Wongwerawattanakoon, Pakawan
2017-01-01
To compare insulin sensitivity, β-cell function and iron status biomarkers in non-transfusion-dependent thalassaemia (NTDT) with iron excess during pre- and post-iron chelation. Subjects with NTDT, aged older than 10 years, with serum ferritin >300 ng/ml, were included. Iron chelation with deferasirox (10 mg/kg/day) was prescribed daily for 6 months. Ten patients with a median age of 17.4 years were enrolled. The comparison between pre- and post-chelation demonstrated significantly lower iron load: median serum ferritin (551.4 vs. 486.2 ng/ml, p = 0.047), median TIBC (211.5 vs. 233.5 µg/dl, p = 0.009) and median non-transferrin binding iron (5.5 vs. 1.4 µM, p = 0.005). All patients had a normal oral glucose tolerance test (OGTT) both pre- and post-chelation. However, fasting plasma glucose was significantly reduced after iron chelation (85.0 vs.79.5 mg/dl, p = 0.047). MRI revealed no significant changes of iron accumulation in the heart and liver after chelation, but there was a significantly lower iron load in the pancreas, assessed by higher T2* at post-chelation compared with pre-chelation (41.9 vs. 36.7 ms, p = 0.047). No adverse events were detected. A trend towards improving insulin sensitivity and β-cell function as well as a reduced pancreatic iron load was observed following 6 months of iron chelation (TCTR20160523003). © 2016 S. Karger AG, Basel.
Development of iron chelators for Cooley's anemia. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosby, W.H.; Green, R.
Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid;more » D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B.« less
EGF stimulates Mg{sup 2+} influx in mammary epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trapani, Valentina; Arduini, Daniela; Luongo, Francesca
2014-11-28
Highlights: • EGF stimulation potentiates Mg{sup 2+} influx into epithelial cells. • EGF-induced Mg{sup 2+} influx does not depend on the concomitantly induced Ca{sup 2+} signal. • EGF-induced Ca{sup 2+} signal is dependent on the presence of extracellular Mg{sup 2+}. • New players in EGF-mediated signaling might be exploited as therapeutic targets. - Abstract: Magnesium is well established as a fundamental factor that regulates cell proliferation. However, the molecular mechanisms linking mitogenic signals, extracellular magnesium availability and intracellular effectors are still largely unknown. In the present study we sought to determine whether EGF regulates magnesium homeostasis in normal HC11 mammarymore » epithelial cells. To this end, we measured Mg{sup 2+} and Ca{sup 2+} fluxes by confocal imaging in live cells loaded with specific fluorescent ion indicators (Mag-Fluo-4 and Fluo-4, respectively). EGF stimulation induces a rapid and sustained increase in intracellular Mg{sup 2+}, concomitantly with a rise in intracellular calcium. The increase in intracellular Mg{sup 2+} derives from an influx from the extracellular compartment, and does not depend on Ca{sup 2+}. On the contrary, the increase in intracellular Ca{sup 2+} derives from intracellular stores, and is impaired in the absence of extracellular magnesium. Inhibition of the EGF receptor tyrosine kinase by Tyrphostin AG1478 markedly inhibits EGF-induced Mg{sup 2+} and Ca{sup 2+} signals. These findings demonstrate that not only does Mg{sup 2+} influx represent an important step in the physiological response of epithelial cells to EGF, but unexpectedly the EGF-induced Mg{sup 2+} influx is essential for the Ca{sup 2+} signal to occur.« less
Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minárik, Peter; Král, Robert; Pešička, Josef
2016-02-15
The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{submore » 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.« less
Mass spectrometric and theoretical investigation of sulfate clusters in nanoscale water droplets
NASA Astrophysics Data System (ADS)
Lemke, K.
2017-12-01
The solvation of sulfate clusters of varying size and charge in water clusters and in nanoscale water droplets has been studied using electrospray ionization (ESI) FT-MS and density functional theory (DFT) molecular simulations. ESI mass spectra of solvated [Mg(MgSO4)m]2+(H2O)n with m≤10 and up to 15 water molecules have been recorded, and ion cluster experiments have been undertaken using a custom-modified FT-ICR mass spectrometer with the ability of IRMPD for ion dissociation. We present equilibrium geometries and energies for [Mg(MgSO4)m]2+(H2O)n, water-free and solvated with up to 100 water molecules, using swarm-based optimizers and DFT level calculations. Dominant cluster species identified following ESI of dilute (1-5 mM) MgSO4 solutions include hexa- and octa-nuclear magnesium sulfate ions, water-free and with a full first shell of water molecules. The largest clusters identified are magnesium sulfate decamers, i.e. [Mg(MgSO4)10]2+(H2O)n, with n≤15. As a very first step towards understanding the distribution and intensity of ESI ion mass spectra, we have identified the global minima of [Mg(MgSO4)m]2+(H2O)n with m≤10 and n≤100, and located likely global minima of magnesium sulfate clusters in the gas phase and in nano-scale water droplets. We will present a summary of the structural and energetic trends of solvated magnesium sulfate clusters, with a particular focus on structural transitions induced by cluster growth and solvation, the occurrence of "magic" number cluster species, their energetic properties and their potential role as atmospheric aqueous species.
Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?
Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet
2018-04-21
Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.
Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald
2006-10-01
A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.
The Chemical Vapor Deposition of Thin Metal Oxide Films
NASA Astrophysics Data System (ADS)
Laurie, Angus Buchanan
1990-01-01
Chemical vapor deposition (CVD) is an important method of preparing thin films of materials. Copper (II) oxide is an important p-type semiconductor and a major component of high T_{rm c} superconducting oxides. By using a volatile copper (II) chelate precursor, copper (II) bishexafluoroacetylacetonate, it has been possible to prepare thin films of copper (II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. In the metalorganic CVD (MOCVD) production of oxide thin films, oxygen gas saturated with water vapor has been used mainly to reduce residual carbon and fluorine content. This research has investigated the influence of water-saturated oxygen on the morphology of thin films of CuO produced by low temperature chemical vapor deposition onto quartz, magnesium oxide and cubic zirconia substrates. ZnO is a useful n-type semiconductor material and is commonly prepared by the MOCVD method using organometallic precursors such as dimethyl or diethylzinc. These compounds are difficult to handle under atmospheric conditions. In this research, thin polycrystalline films of zinc oxide were grown on a variety of substrates by normal pressure CVD using a zinc chelate complex with zinc(II) bishexafluoroacetylacetonate dihydrate (Zn(hfa)_2.2H _2O) as the zinc source. Zn(hfa) _2.2H_2O is not moisture - or air-sensitive and is thus more easily handled. By operating under reduced-pressure conditions (20-500 torr) it is possible to substantially reduce deposition times and improve film quality. This research has investigated the reduced-pressure CVD of thin films of CuO and ZnO. Sub-micron films of tin(IV) oxide (SnO _2) have been grown by normal pressure CVD on quartz substrates by using tetraphenyltin (TPT) as the source of tin. All CVD films were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).
21 CFR 331.11 - Listing of specific active ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
... aluminosilicates. (4) Magnesium carbonate. (5) Magnesium glycinate. (6) Magnesium hydroxide. (7) Magnesium oxide..., aluminum hydroxide-magnesium carbonate codried gel, aluminum hydroxide-magnesium trisilicate codried gel... or salt; maximum daily dosage limit 8 grams. (f) Glycine (aminoacetic acid). (g) Magnesium-containing...
21 CFR 331.11 - Listing of specific active ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
... aluminosilicates. (4) Magnesium carbonate. (5) Magnesium glycinate. (6) Magnesium hydroxide. (7) Magnesium oxide..., aluminum hydroxide-magnesium carbonate codried gel, aluminum hydroxide-magnesium trisilicate codried gel... or salt; maximum daily dosage limit 8 grams. (f) Glycine (aminoacetic acid). (g) Magnesium-containing...
Improving the hardness of dry granulated tablets containing sodium lauryl sulfate.
Moore, Francis; Okelo, Geoffrey; Colón, Ivelisse; Kushner, Joseph
2010-11-15
The impact of the addition of a wetting agent, the surfactant sodium lauryl sulfate (SLS), on the tablet hardness of a dry granulated, solid oral dosage form was investigated. In three batches, SLS was added concurrently with: (1) a poorly soluble, highly hydrophobic active pharmaceutical ingredient (API) and the other excipients prior to the initial blending step, (2) magnesium stearate prior to roller compaction, or (3) magnesium stearate prior to tableting. A fourth batch, which did not contain SLS, served as a control. The maximum hardness of 100 mg, 1/4″-SRC tablets for the four batches--SLS added initially, prior to roller compaction, prior to tableting, and no SLS--were 61±3, 71±3, 89±5, and 86±3N, respectively, suggesting reduced processing of SLS improves tablet hardness by ∼50%. Dissolution of the tablets in 900 ml of simulated gastric fluid with paddles at 75 rpm showed that: (1) there was no impact on the insertion point of SLS into the process on API dissolution, and (2) that the presence of SLS improved dissolution by 5% compared to the control tablets. Adding SLS just prior to tableting can improve tablet hardness and yield similar dissolution performance relative to SLS addition prior to the initial blending step. Copyright © 2010 Elsevier B.V. All rights reserved.
Licht, S
2011-12-15
STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaewchangwat, Narongpol; Dueansawang, Sattawat; Tumcharern, Gamolwan; Suttisintong, Khomson
2017-11-15
Five tetradentate ligands were synthesized from l-amino acids and utilized for the synthesis of Cu(II)-chelates 1-5. The efficacy of Cu(II)-chelates as copper (Cu) source and growth stimulator in hydroponic cultivation was evaluated with Lactuca sativa. Their stability test was performed at pH 4-10. The results suggested that Cu(II)-chelate 3 is the most pH tolerant complex. Levels of Cu, Zn, and Fe accumulated in plants supplied with Cu(II)-chelates were compared with those supplied with CuSO 4 at the same Cu concentration of 8.0 μM. The results showed that Cu(II)-chelate 3 significantly enhanced Cu, Zn, and Fe content in shoot by 35, 15, and 48%, respectively. Application of Cu(II)-chelate 3 also improved plant dry matter yield by 54%. According to the results, Cu(II)-chelate 3 demonstrated the highest stimulating effect on plant growth and plant mineral accumulation so that it can be used as an alternative to CuSO 4 for supplying Cu in nutrient solutions and enhancing the plant growth.
Investigation of on-line chelant addition to PWR steam generators. Annual report, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.
1982-11-01
The thermostability of both ethylenediaminetetraacetic acid (EDTA) and hydroxyethylethylenediamininetriacetic acid (HEDTA) metal chelates in all volatile treatment water chemistry (AVT) was shown to be greater than or equal to thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability studies and samples from Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w inmore » AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal is being transported through and cleaning from the MSG's. EDTA metal chelates were removed from chelate solutions by passing the solutions over strong anion exchange resins.« less
Lin, Zhuangsheng; Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2016-06-08
The introduction of metal-chelating ligands to the food-contact surface of packaging materials may enable the removal of synthetic chelators (e.g., ethylenediamine tetra-acetic acid (EDTA)) from food products. In this study, the metal-chelating ligand iminodiacetate (IDA) was covalently grafted onto polypropylene surfaces to produce metal-chelating active-packaging films. The resulting films were able to chelate 138.1 ± 26 and 210.0 ± 28 nmol/cm(2) Fe(3+) and Cu(2+) ions, respectively, under acidic conditions (pH 3.0). The films demonstrated potent antioxidant efficacy in two model food systems. In an emulsified-oil system, the chelating materials extended the lag phase of both lipid hydroperoxide and hexanal formation from 5 to 25 days and were as effective as EDTA. The degradation half-life of ascorbic acid in an aqueous solution was extended from 5 to 14 days. This work demonstrates the potential application of surface-grafted chelating IDA ligands as effective antioxidant active food-packaging materials.
Bottorff, Shalina C; Kasten, Benjamin B; Stojakovic, Jelena; Moore, Adam L; MacGillivray, Leonard R; Benny, Paul D
2014-02-17
Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.
Fisher, Anna E O; Hague, Theresa A; Clarke, Charlotte L; Naughton, Declan P
2004-10-08
Metal ion chelators widely used in experimental protocols and clinical diagnosis are generally assumed to be inert. We previously reported that the ubiquitous chelator EDTA has high levels of superoxide suppressing activity. Here, we report that the common chelators calcium chelator EGTA and contrast agent EHPG have significant activities in suppressing superoxide levels depending on the nature of metal ion chelated. The most active species is Mn(II)-EGTA which exhibited an IC50 value of 0.19 microM for superoxide destruction. In addition, IC50 values for Mn(II)-EHPG and 2Cu(II)-EGTA were 0.69 and 0.60 microM, respectively. In conclusion, Mn(II) and Cu(II) complexes of the common chelators EGTA and EHPG exhibit considerable superoxide scavenging activities. Caution should be employed in their use in biological systems where superoxide has a key role and they may be useful for the development of catalytic anti-oxidants. Copyright 2004 Elsevier Inc.
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...
Myth or Reality-Transdermal Magnesium?
Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus
2017-07-28
In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.
Myth or Reality—Transdermal Magnesium?
Gröber, Uwe; Werner, Tanja; Vormann, Jürgen
2017-01-01
In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract. PMID:28788060
... fortified cereals and eggs. What is Iron Chelation Therapy? Drugs called iron chelators remove extra iron from ... form that must be dissolved in juice or water and taken (by mouth) once a day. Most ...
Kruczyński, T; Henke, F; Neumaier, M; Bowen, K H; Schnöckel, H
2016-02-01
It caused a sensation eight years ago, when the first room temperature stable molecular compound with a Mg-Mg bond (LMgMgL, L = chelating ligand) containing magnesium in the oxidation state +1 was prepared. Here, we report the preparation of a [Mg 16 Cp*8Br 4 K] - cluster anion (Cp* = pentamethylcyclopentadiene) with 27 Mg-Mg bonds. It has been obtained through the reaction of KCp* with a metastable solution of MgBr in toluene. A highly-resolved Fourier transform mass spectrum (FT-MS) of this cluster anion, brought into vacuum by electrospraying its solution in THF, provides the title cluster's stoichiometry. This Mg 16 cluster together with experiments on the metastable solution of MgBr show that: during the formation process of GRs (Grignard reagents) which are involved in most of sophisticated syntheses of organic products, not the highly reactive MgBr radical as often presumed, but instead the metalloid Mg 16 Cp*8Br 4 cluster anion and its related cousins that are the operative intermediates along the pathway from Mg metal to GRs ( e.g. Cp*MgBr).
Njoumi, Sondos; Bellagha, Sihem; Icard-Vernière, Christèle; Picq, Christian; Amiot, Marie Josèphe; Mouquet-Rivier, Claire
2018-03-01
Traditional Mediterranean plant-based dishes could allow tackling malnutrition while preserving the cultural heritage. To determine the effect of the cooking method on mineral bioavailability, the content in minerals and chelators of Mloukhiya, a Mediterranean dish based on jute leaves (Corchorus olitorius) that contains also meat, was monitored during the whole cooking process. Mineral bioaccessibility was assessed by measuring in vitro dialyzability. Model equation was also used to estimate mineral bioavailability. Comparison of Mloukhiya samples collected at different cooking time points showed that the dish total mineral content did not change despite the exchanges between sauce and meat during cooking. However, iron bioavailability decreased, because 58% of heme iron was degraded after 5h of cooking and non-heme iron showed poor bioaccessibility (1.2%), mainly due to its high content of phenolic compounds. The bioaccessibility of other minerals (zinc, calcium, magnesium and potassium) was high, indicating that the food matrix had no or little effect. The mineral bioavailability values predicted by using mathematical models were of the same order of magnitude as the bioaccessibility values. Copyright © 2017 Elsevier Ltd. All rights reserved.
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...
2015-01-01
A propylene cross-bridged macrocyclic chelator with two phosphonate pendant arms (PCB-TE2P) was synthesized from cyclam. Various properties of the synthesized chelator, including Cu-complexation, Cu-complex stability, 64Cu-radiolabeling, and in vivo behavior, were studied and compared with those of a previously reported propylene cross-bridged chelator (PCB-TE2A). PMID:26617972
Laws, Kevin J; Shamlaye, Karl F; Granata, Davide; Koloadin, Leah S; Löffler, Jörg F
2017-06-13
Magnesium-based bulk metallic glasses (BMGs) exhibit high specific strengths and excellent glass-forming ability compared to other metallic systems, making them suitable candidates for next-generation materials. However, current Mg-based BMGs tend to exhibit low thermal stability and are prone to structural relaxation and brittle failure. This study presents a range of new magnesium-precious metal-based BMGs from the ternary Mg-Ag-Ca, Mg-Ag-Yb, Mg-Pd-Ca and Mg-Pd-Yb alloy systems with Mg content greater than 67 at.%. These alloys were designed for high ductility by utilising atomic bond-band theory and a topological efficient atomic packing model. BMGs from the Mg-Pd-Ca alloy system exhibit high glass-forming ability with critical casting sizes of up to 3 mm in diameter, the highest glass transition temperatures (>200 °C) of any reported Mg-based BMG to date, and sustained compressive ductility. Alloys from the Mg-Pd-Yb family exhibit critical casting sizes of up to 4 mm in diameter, and the highest compressive plastic (1.59%) and total (3.78%) strain to failure of any so far reported Mg-based glass. The methods and theoretical approaches presented here demonstrate a significant step forward in the ongoing development of this extraordinary class of materials.
Chelation for Coronary Heart Disease
... also turn to chelation therapy using disodium EDTA (ethylene diamine tetra-acetic acid), a controversial complementary health ... and answers about two trials of an EDTA (ethylene diamine tetra-acetic acid) chelation therapy regimen for ...
Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi
2013-12-15
The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.
CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.
Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B
2015-12-05
Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates
Huang, Saibo; Lin, Huimin; Deng, Shang-gui
2015-01-01
The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476
Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores
2007-10-31
Ferric ethylenediamine- N, N'-bis-(o-hydroxyphenylacetic)acid chelate (Fe(o, o-EDDHA)) is one of the most effective Fe fertilizers in calcareous soils. However, humic substances are occasionally combined with iron chelates in drip irrigation systems in order to lower costs. The reactivity of iron chelate-humic substance mixtures in several soil components and in calcareous soils was investigated through interaction tests, and their behavior was compared to the application of iron chelates and humic substances separately. Two commercial humic substances and two Fe(o, o-EDDHA) chelates (one synthesized in the laboratory and one commercial) were used to prepare iron chelate-humic substance mixtures at 50% (w/w). Various soil components (calcium carbonate, gibbsite, amorphous iron oxide, hematite, tenorite, zincite, amorphous Mn oxide, and peat) and three calcareous soils were shaken for 15 days with the mixtures and with iron chelate and humic substance solutions. The kinetic behavior of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) (Fe bonded to (o,p-EDDHA) and other polycondensated ligands) and of the different nutrients solubilized after the interaction assay was determined. The results showed that the mixtures did not significantly reduce the retention of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) in the soil components and the calcareous soils compared to the iron chelate solutions, but they did produce changes in the retention rate. Moreover, the competition between humic substances and synthetic chelating agents for complexing metal cations limited the effectiveness of the mixtures to mobilize nutrients from the substrates. The presence of Fe(o, p-EDDHA) and other byproducts in the commercial iron chelate had an important effect on the evolution of Fe(o, o-EDDHA) and the nutrient solubilization process.
Effect Of Neodymium Substitution In Structural Characteristics Of Magnesium Ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thankachan, Smitha; Binu, P. J.; Xavier, Sheena
2011-10-20
The effect of Nd{sup 3+} substitution on the structural properties of Magnesium ferrite was studied in the series MgNd{sub x}Fe{sub 2-x}O{sub 4}, where x = 0 to 0.3 in steps of 0.05. The series was prepared by sol-gel technique which is one of the novel technique to prepare nanosized samples. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. XRD analysis reveals the prepared samples are single phasic till x = 0.2. From x0 = .25, a secondary phase of iron neodymium oxide appears along with the spinel phase. Particle size calculation shows the prepared samples aremore » in the 9nm to 11 nm regime. Lattice parameter was found to increase with concentration of Nd. XRD and FTIR analysis confirmed spinel structure of the prepared samples. XRF result shows the expected composition of prepared samples. The frequency dependence of the dielectric constant in the range 100 Hz--120MHz was also studied« less
Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng
2015-05-15
Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P; Steirer, K Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei
2018-05-01
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg 2+ cannot penetrate such interphases. Here, we engineer an artificial Mg 2+ -conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V 2 O 5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.
Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarpi, B.; Daineche, R.; Girardeaux, C.
Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicidemore » interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.« less
Kagan, Margarita; Kivirand, Kairi; Rinken, Toonika
2013-09-10
We studied the modulation of calibration parameters of biosensors, in which glucose oxidase was used for bio-recognition, in the presence of different chlorides by following the transient phase dynamics of oxygen concentration with an oxygen optrode. The mechanism of modulation was characterized with the changes of the glucose oxidase catalytic constant and oxygen diffusion constant. The modulation of two biosensor calibration parameters were studied: the maximum calculated signal change was amplified for about 20% in the presence of sodium and magnesium chlorides; the value of the kinetic parameter decreased along with the addition of salts and increased only at sodium chloride concentrations over 0.5 mM. Besides glucose bioassay, the amplification of calibration parameters was also studied in cascaded two-enzyme lactose biosensor, where the initial step of lactose bio-recognition, the β-galactosidase - catalyzed lactose hydrolysis, was additionally accelerated by magnesium ions. Copyright © 2013 Elsevier Inc. All rights reserved.
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
NASA Astrophysics Data System (ADS)
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei
2018-05-01
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.
Magnesium replacement in formaldehyde: Theoretical rovibrational analysis of X ∼ 3B1 MgCH2
NASA Astrophysics Data System (ADS)
Bassett, Matthew K.; Fortenberry, Ryan C.
2018-02-01
A full, anharmonic set of fundamental vibrational frequencies as well as spectrosocpic constants are provided at high-level for X ∼ 3B1 MgCH2 for the first time. The present data are in line with previous computational and Ar-matrix results, but the anharmonic data show that two brightest frequencies, ν4 and ν5 , are nearly coincident with one another at 560 cm-1. Hence, this area is the best spectral region to search for signatures of this molecule. The rotational constants are also provided indicating a near-prolate rotational progression which should aid in microwave/millimeter-wave analysis of this molecule. Magnesium is known to be a significant component of the Earth, and molecules containing it may be more common in the interstellar medium/circumstellar media than previously thought. More spectral characterization of such molecules like MgCH2 should be undertaken, and this work is a step in that direction.
Capillary electrophoresis-based assay of phosphofructokinase-1.
Malina, Andrew; Bryant, Sherrisse K; Chang, Simon H; Waldrop, Grover L; Gilman, S Douglass
2014-02-15
An assay was developed for phosphofructokinase-1 (PFK-1) using capillary electrophoresis (CE). In the glycolytic pathway, this enzyme catalyzes the rate-limiting step from fructose-6-phosphate and magnesium-bound adenosine triphosphate (Mg-ATP) to fructose-1,6-bisphosphate and magnesium-bound adenosine diphosphate (Mg-ADP). This enzyme has recently become a research target because of the importance of glycolysis in cancer and obesity. The CE assay for PFK-1 is based on the separation and detection by ultraviolet (UV) absorbance at 260 nm of Mg-ATP and Mg-ADP. The separation was enhanced by the addition of Mg²⁺ to the separation buffer. Inhibition studies of PFK-1 by aurintricarboxylic acid and palmitoyl coenzyme A were also performed. An IC₅₀ value was determined for aurintricarboxylic acid, and this value matched values in the literature obtained using coupled spectrophotometric assays. This assay for PFK-1 directly monitors the enzyme-catalyzed reaction, and the CE separation reduces the potential of spectral interference by inhibitors.
Capillary Electrophoresis-Based Assay of Phosphofructokinase-1
Malina, Andrew; Bryant, Sherrisse K.; Chang, Simon H.; Waldrop, Grover L.; Gilman, S. Douglass
2013-01-01
An assay was developed for phosphofructokinase-1 (PFK-1) using capillary electrophoresis (CE). In the glycolytic pathway, this enzyme catalyzes the rate-limiting step from fructose-6-phosphate and magnesium-bound adenosine triphosphate (Mg-ATP) to fructose-1,6-bisphosphate and magnesium-bound adenosine diphosphate (Mg-ADP). This enzyme has recently become a research target because of the importance of glycolysis in cancer and obesity. The CE assay for PFK-1 is based on the separation and detection by UV absorbance at 260 nm of Mg-ATP and Mg-ADP. The separation was enhanced by addition of Mg2+ to the separation buffer. Inhibition studies of PFK-1 by aurintricarboxylic acid and palmitoyl coenzyme A were also performed. An IC50 value was determined for aurintricarboxylic acid, and this value matched values in the literature obtained using coupled spectrophotometric assays. This assay for PFK-1 directly monitors the enzyme-catalyzed reaction, and the CE separation reduces the potential of spectral interference by inhibitors. PMID:24444856
Illy, Nicolas; Majonis, Daniel; Herrera, Isaac; Ornatsky, Olga; Winnik, Mitchell A
2012-08-13
Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.
Questions and Answers on Unapproved Chelation Products
... OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to patients with ... 4. Why did FDA take this action? Companies marketing unapproved OTC chelation products with unsubstantiated treatment claims ...
Di Tucci, Anna Angela; Murru, Roberta; Alberti, Daniele; Rabault, Bertrand; Deplano, Simona; Angelucci, Emanuele
2007-01-01
Transfusional iron overload in patients with chronic anemias can result in multiple organ failure. Experience in the management of iron overload in patients with myelodysplastic syndromes is limited, as many do not receive chelation therapy due to short-life expectancy and the difficulties associated with the administration of the current reference standard chelator, deferoxamine. There have, however, been some reports of reduced transfusion requirement associated with chelation therapy in patients with myelodysplastic syndromes and myelofibrosis. Here, we discuss a patient with primary myelofibrosis and related transfusion-dependent anemia who received chelation therapy with the once-daily oral iron chelator, deferasirox. In addition to the reduced iron levels, the patient demonstrated an unexpected reduction in blood transfusion requirement, ultimately resulting in long-lasting transfusion-free survival. PMID:17391307
Innovative Vacuum Distillation for Magnesium Recycling
NASA Astrophysics Data System (ADS)
Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang
Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.
DiNicolantonio, James J; Wilson, William
2018-01-01
Because serum magnesium does not reflect intracellular magnesium, the latter making up more than 99% of total body magnesium, most cases of magnesium deficiency are undiagnosed. Furthermore, because of chronic diseases, medications, decreases in food crop magnesium contents, and the availability of refined and processed foods, the vast majority of people in modern societies are at risk for magnesium deficiency. Certain individuals will need to supplement with magnesium in order to prevent suboptimal magnesium deficiency, especially if trying to obtain an optimal magnesium status to prevent chronic disease. Subclinical magnesium deficiency increases the risk of numerous types of cardiovascular disease, costs nations around the world an incalculable amount of healthcare costs and suffering, and should be considered a public health crisis. That an easy, cost-effective strategy exists to prevent and treat subclinical magnesium deficiency should provide an urgent call to action. PMID:29387426
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaofei Guan; Peter A. Zink; Uday B. Pal
2012-01-01
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less
Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
2015-06-01
Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.
Natural chelates for radionuclide decorporation
Premuzic, E.T.
1983-08-25
This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.
Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89
Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...
2014-12-18
The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.
Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil
Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei
2016-01-01
A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed. PMID:26878770
Synthetic and natural iron chelators: therapeutic potential and clinical use
Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V
2013-01-01
Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984
Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil.
Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei
2016-02-16
A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.
Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil
NASA Astrophysics Data System (ADS)
Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei
2016-02-01
A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.
Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease.
Marsella, Maria; Borgna-Pignatti, Caterina
2014-08-01
Iron overload is an inevitable consequence of blood transfusions and is often accompanied by increased iron absorption from the gut. Chelation therapy is necessary to prevent the consequences of hemosiderosis. Three chelators, deferoxamine, deferiprone, and deferasirox, are presently available and a fourth is undergoing clinical trials. The efficacy of all 3 available chelators has been demonstrated. Also, many studies have shown the efficacy of the combination of deferoxamine plus deferiprone as an intensive treatment of severe iron overload. Alternating chelators can reduce adverse effects and improve compliance. Adherence to therapy is crucial for good results. Copyright © 2014 Elsevier Inc. All rights reserved.
Supercritical fluid extraction
Wai, Chien M.; Laintz, Kenneth
1994-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Metal regeneration of iron chelates in nitric oxide scrubbing
Chang, Shih-Ger; Littlejohn, David; Shi, Yao
1997-08-19
The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.
Metal regeneration of iron chelates in nitric oxide scrubbing
Chang, S.G.; Littlejohn, D.; Shi, Y.
1997-08-19
The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Seong-Hwan; Metal Forming Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840; Jung, Ki Ho
Processing through the application of equal-channel angular pressing (ECAP) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. Magnesium has received much attention to date for its lightweight, high strength and excellent elasticity. Mg alloys with addition of CaO is reported to provide the successful casting procedure without usage of greenhouse gas, SF{sub 6}, whereas it is generally used for preventing the oxidation of Mg during casting. In the present investigation, a CaO added AZ31 (AZ31-CaO) magnesium alloy was processed bymore » ECAP at elevated temepratures with a few steps of reduction which result in significant grain refinement to ~ 1.5 μm after 6 passes. Compression testing at room temperature demonstrated the AZ31-CaO alloy after ECAP showed enhanced yield strength more than the as-processed commercial AZ31 alloy while both alloys maintained ductility in spite of significant reduction in grain size. The improved strength in the AZ31-CaO alloy was attributed to the formation of fine Al{sub 2}Ca precipitates which experience breaking-up through ECAP and accelerate the microstructural refinement. Moreover, the preservation of ductility was attributed to the enhancement of strain hardening capability in the AZ31 alloy at room temperature. This study discusses the feasibility of using ECAP to improve both strength and ductility on magnesium alloys by applying the diagram describing the paradox of strength and ductility. - Highlights: • AZ31 and AZ31-CaO magnesium alloys were processed by ECAP up to 6 passes. • AZ31-CaO alloy after ECAP showed improved yield strength without losing ductility. • CaO in AZ31 forms fine Al{sub 2}Ca accelerating microstructural refinement during ECAP. • Feasibility of using ECAP was shown to improve both strength and ductility in Mg.« less
Chelation therapy to treat atherosclerosis, particularly in diabetes: is it time to reconsider?
Lamas, Gervasio A; Ergui, Ian
2016-08-01
Case reports and case series have suggested a possible beneficial effect of chelation therapy in patients with atherosclerotic disease. Small randomized trials conducted in patients with angina or peripheral artery disease, however, were not sufficiently powered to provide conclusive evidence on clinical outcomes. The Trial to Assess Chelation Therapy (TACT) was the first randomized trial adequately powered to detect the effects of chelation therapy on clinical endpoints. We discuss results and future research. Expert commentary: Chelation reduced adverse cardiovascular events in a post myocardial infarction (MI) population. Patients with diabetes demonstrated even greater benefit, with a number needed to treat of 6.5 patients to prevent a cardiac event over 5 years, with a 41% relative reduction in risk of a cardiac event (p = 0.0002). These results led to the revision of the ACC/AHA guideline recommendations for chelation therapy, changing its classification from class III to class IIb. TACT2, a replicative trial, will assess the effects of chelation therapy on cardiovascular outcomes in diabetic patients with a prior myocardial infarction. We are seeking participating sites for TACT2.
Arsenic removal in conjunction with lime softening
Khandaker, Nadim R.; Brady, Patrick V.; Teter, David M.; Krumhansl, James L.
2004-10-12
A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.
PRODUCTION OF PURIFIED URANIUM
Burris, L. Jr.; Knighton, J.B.; Feder, H.M.
1960-01-26
A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.
2007-09-01
Preparation of the Grignard reagent To flask E, containing magnesium (52 mg, 2 mmol) and a few crystals of iodine was added a solution of 3...bromodiphenylether (750 mg, 3 mmol) in diethyl ether (3 mL). The entire system was kept under nitrogen. The preparation of the Grignard reagent was initiated by...device represented below was used for the multi-step synthesis of 3-PBA; all reagents were present in the manifold prior to the beginning of the
Magnesium Based Composite via Friction Stir Processing
2013-04-01
study. FSP was carried out with a stepped spiral conical tool with a featureless shoulder and a pin length of 6.5 mm, which was made of H13 tool ...of a high strength rotating tool to locally heat the work piece and produce intense plastic deformation. The interplay between temperature and strain... steel . A set of holes with a depth of about 6 mm were drilled into the plate in the pattern shown in Fig.1 (a) and the B4C powder was then filled into
NASA Astrophysics Data System (ADS)
Velayi, Elmira; Norouzbeigi, Reza
2017-12-01
Robust superhydrophobic ZnO surfaces with micro/nano hybrid hierarchical structures were synthesized on the stainless steel mesh by a facile single-step chemical bath deposition (CBD) method without using further low surface energy materials. The Taguchi L16 experimental design was applied to evaluate the effects of reaction time, type and concentration of the additive, type of the chelating agent, and the molar ratio of the chelating agent to the initial zinc (II) ions. The prepared sample at the optimal conditions exhibited a sustainable and time-independent superhydrophobic behavior with the water contact angle (WCA) of 162.8° ± 2.5° and contact angle hysteresis (CAH) of 1.8° ± 0.5°. The XRD, SEM, TEM and FTIR analyses were used to characterize the prepared samples. Surface characterization using scanning electron microscopy (SEM) indicated accumulation of micro/nano branched ZnO needles on the substrate with the average diameters of ∼85 nm. After 20 abrasion cycles the optimum sample indicated an excellent mechanical robustness via exposure to the pressure of 4.7 kPa. A suitable chemical resistance to the acidic and basic droplets with the pH range of 4 and 9 was observed.
Sun, Ziyan; Cheng, Kai; Wu, Fengyu; ...
2016-10-31
Grafting a robust organic shell around inorganic nanoparticles can optimize their colloidal features to dramatically improve their physicochemical properties. Here, we have developed a polymer coating procedure for providing colloidal stability to the nanoparticles and, more importantly, for applying a fast, facile fluorine-18 labeling of iron oxide nanoparticles (IONPs) for positron emission tomography (PET)/magnetic resonance (MR) dual-modality imaging. The structure of the amphiphilic polymer is based on a backbone of polyacrylic acid, conjugated with multiple oleylamines to form a comb-like branched structure. The dense polymer shell provides high colloidal stability to the IONPs against harsh conditions such as high temperature,more » low pH value, and high ion strength. By incorporating a 1,4,7-triazacyclononane (NOTA) chelator to the comb-like amphiphilic polymer for the chelation of aluminum fluoride ions, we applied a one-step radiolabeling approach for a fast, facile radiofluorination of magnetic nanoparticles. The new strategy can significantly reduce the procedure time and radiation exposure. In conclusion, the PET/MR dual modality imaging was successfully achieved in living subjects by using 18F labeled magnetic nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ziyan; Cheng, Kai; Wu, Fengyu
Grafting a robust organic shell around inorganic nanoparticles can optimize their colloidal features to dramatically improve their physicochemical properties. Here, we have developed a polymer coating procedure for providing colloidal stability to the nanoparticles and, more importantly, for applying a fast, facile fluorine-18 labeling of iron oxide nanoparticles (IONPs) for positron emission tomography (PET)/magnetic resonance (MR) dual-modality imaging. The structure of the amphiphilic polymer is based on a backbone of polyacrylic acid, conjugated with multiple oleylamines to form a comb-like branched structure. The dense polymer shell provides high colloidal stability to the IONPs against harsh conditions such as high temperature,more » low pH value, and high ion strength. By incorporating a 1,4,7-triazacyclononane (NOTA) chelator to the comb-like amphiphilic polymer for the chelation of aluminum fluoride ions, we applied a one-step radiolabeling approach for a fast, facile radiofluorination of magnetic nanoparticles. The new strategy can significantly reduce the procedure time and radiation exposure. In conclusion, the PET/MR dual modality imaging was successfully achieved in living subjects by using 18F labeled magnetic nanoparticles.« less
[Magnesium disorder in metabolic bone diseases].
Ishii, Akira; Imanishi, Yasuo
2012-08-01
Magnesium is abundantly distributed among the body. The half of the magnesium exists in the bone. In addition, magnesium is the second most abundant intracellular cation in vertebrates and essential for maintaining physiological function of the cells. Epidemiologic studies have demonstrated that magnesium deficiency is a risk factor for osteoporosis. The mechanism of bone fragility caused by magnesium deficiency has been intensely studied using animal models of magnesium deficiency. Magnesium deficiency causes decreased osteoblastic function and increased number of osteoclasts. Magnesium deficiency also accelerates mineralization in bone. These observations suggest that disturbed bone metabolic turnover and mineralization causes bone fragility.
Magnesium and extinction of dinosaurs. Was magnesium deficit a major cause?
Durlach, J
1991-01-01
Chinese researchers have recently demonstrated that, before the extinction of dinosaurs, there was an impressive lowering in the magnesium concentration of fossil dinosaur eggshell. The structural and functional importance of eggshell magnesium--mainly in the cone layer--for embryonic viability and hatchability of oviparous species supports the hypothesis that magnesium deficit may have had a direct role in dinosaur extinction. Conversely this low magnesium concentration seems a questionable marker of magnesium deficit. The natural forces involved in the extinction of dinosaurs are more likely to induce magnesium depletion than magnesium deficiency. These very interesting preliminary data call for further research.
Liao, Chen; Sa, Niya; Key, Baris; ...
2015-02-02
We developed a unique class of non-Grignard, aluminum-free magnesium electrolytes based on a simple mixture of magnesium compounds: magnesium hexamethyldisilazide (Mg(HMDS) 2) and magnesium chloride (MgCl 2).
Extracting metals directly from metal oxides
Wai, Chien M.; Smart, Neil G.; Phelps, Cindy
1997-01-01
A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.
Extracting metals directly from metal oxides
Wai, C.M.; Smart, N.G.; Phelps, C.
1997-02-25
A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.
Wai, Chien M.; Smart, Neil G.; Phelps, Cindy
2001-01-01
A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.
Pycup – A bifunctional, cage-like ligand for 64Cu radiolabeling
Boros, Eszter; Rybak-Akimova, Elena; Holland, Jason P.; Rietz, Tyson; Rotile, Nicholas; Blasi, Francesco; Day, Helen; Latifi, Reza; Caravan, Peter
2014-01-01
In developing targeted probes for positron emission tomography (PET) based on 64Cu, stable complexation of the radiometal is key, and a flexible handle for bioconjugation is highly advantageous. Here, we present the synthesis and characterization of the chelator pycup and 4 derivatives. Pycup is a cross-bridged cyclam derivative with a pyridyl donor atom integrated into the cross-bridge resulting in a pentadentate ligand. The pycup platform provides kinetic inertness toward 64Cu de-chelation and offers versatile bioconjugation chemistry. We varied the number and type of additional donor atoms by alkylation of the remaining two secondary amines, providing three model ligands, pycup2A, pycup1A1Bn and pycup2Bn in 3–4 synthetic steps from cyclam. All model copper complexes displayed very slow decomplexation in 5 M HCl and 90 °C (t1/2: 1.5 h for pycup1A1Bn, 2.7 h for pycup2A, 20.3 h for pycup2Bn). The single crystal crystal X-ray structure of the [Cu(pycup2Bn)]2+ complex showed that the copper was coordinated in a trigonal, bi-pyramidal manner. The corresponding radiochemical complexes were at least 94% stable in rat plasma after 24 h. Biodistribution studies conducted in Balb/c mice at 2 h post-injection of 64Cu labeled pycup2A revealed low residual activity in kidney, liver and blood pool with predominantly renal clearance observed. Pycup2A was readily conjugated to a fibrin-targeted peptide and labeled with 64Cu for successful PET imaging of arterial thrombosis in a rat model, demonstrating the utility of our new chelator in vivo. PMID:24294970
Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels.
Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil
2013-12-01
In this study, poly(2-hydroxyethyl methacrylate-glycidylmethacrylate) [poly(HEMA-GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N'-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA-GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30-50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA-GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA-GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0M NaCI at pH8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS-PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. © 2013 Elsevier B.V. All rights reserved.
Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.
2011-01-01
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883
Impact of iron chelators on short-term dissolution of basaltic glass
NASA Astrophysics Data System (ADS)
Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François
2015-08-01
Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.
Rosanoff, Andrea; Dai, Qi; Shapses, Sue A
2016-01-01
Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. PMID:26773013
Effect of acute hyperinsulinemia on magnesium homeostasis in humans.
Xu, Li Hao Richie; Maalouf, Naim M
2017-02-01
Insulin may influence magnesium homeostasis through multiple mechanisms. Acutely, it stimulates the shift of magnesium from plasma into red blood cells and platelets, and in vitro, it stimulates the activity of the TRPM6 channel, a key regulator of renal magnesium reabsorption. We investigated the impact of hyperinsulinemia on magnesium handling in participants with a wide range of insulin sensitivity. Forty-seven participants were recruited, including 34 nondiabetic controls and 13 with type 2 diabetes mellitus. After stabilization under fixed metabolic diet, participants underwent hyperinsulinemic-euglycemic clamp. Serum and urine samples were collected before and during hyperinsulinemia. Change in serum magnesium, urinary magnesium to creatinine (Mg 2 + :Cr) ratio, fractional excretion of urinary magnesium (FEMg 2 + ), and estimated transcellular shift of magnesium were compared before and during hyperinsulinemia. Hyperinsulinemia led to a small but statistically significant decrease in serum magnesium, and to a shift of magnesium into the intracellular compartment. Hyperinsulinemia did not significantly alter urinary magnesium to creatinine ratio or fractional excretion of urinary magnesium in the overall population, although a small but statistically significant decline in these parameters occurred in participants with diabetes. There was no significant correlation between change in fractional excretion of urinary magnesium and body mass index or insulin sensitivity measured as glucose disposal rate. In human participants, acute hyperinsulinemia stimulates the shift of magnesium into cells with minimal alteration in renal magnesium reabsorption, except in diabetic patients who experienced a small decline in fractional excretion of urinary magnesium. The magnitude of magnesium shift into the intracellular compartment in response to insulin does not correlate with that of insulin-stimulated glucose entry into cells. Copyright © 2016 John Wiley & Sons, Ltd.
Rosanoff, Andrea; Dai, Qi; Shapses, Sue A
2016-01-01
Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2-2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. © 2016 American Society for Nutrition.
SUMMARY TECHNICAL REPORT ON FEED MATERIALS FOR THE PERIOD APRIL 1, 1959 TO JUNE 30, 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, J.W. ed.
1959-07-20
Anaconda Acld, Kermac, Moab, Rifle, and Texas Zinc uranium concentrates were evaluated (the laboratory portlon of feed material evaluation). Laboratory equilibrium tests and Pilot Plant 2-inch-column extraction tests demonstrated effective distribution of uranium into a TBPkerosene solvent from aqueous phases containing as little as 0.5N HNO/sub 3/ and varying amounts of added metal nitrates (NaNO/sub 3/). The concentration of assoclated nitric acid in dilute aqueous nitric acld solutions was determined after values were obtained for the equillbrium constant for the reaction of tri-n-butyl phosphate with associated nitric acid and for the equilibrium distribution constant for the partition of associated nitricmore » acld into tri-n-butyl phosphate. Optimum partition of uranium into tri-n-butyl phosphate was realized in the laboratory by using an aqueous uranyl nitrate solution containing sufficient hydrogen ions to promote extraction and a low concentration of associated nitric acid. An Ohmart system for controlling the uranium profile in the A'' extractlon column was installed on Refinery pulse columns. Use of this system improved control but did not stop all column upsets. The effect of 13 to l89 ppm sodium contaminatlon upon hydrofluorination conversion of teraperature at the site of the reaction. Uranyl sulfate was shown to undergo an enantiotroplc transitlon at 755 deg C and to decompose to U/sub 3/O/sub 8/ in an atmosphere of oxygen sulfur dioxide, which gases are evolved during decoraposition. Decontamination of sodium, calcium, nickel, magnesium, gadolinium, and dysprosium was achieved in a laboratory investigatlon of the ADU process. UO/sub 2/ produced by reductions programmed from 700 to ll00 deg F was hydrofluorinated at programmed temperatures of 550 to 1100 deg F and isothermally at ll00 deg F. Good conversion was obtained for material whose source was ADU calcined at 1200 deg F. Uranium derbles were classified by the present method of derby grading and were then examined for slag coverage, slag volume, and slag weight. There was a high degree of overlap of these parameters for adjacent grades. A hydraulic separator for separatlng uranlum from magnesium and magnesium fluorlde was fabrlcated. Excellent separatlon was obtained for +l6 mesh material. A hydrochloric acid dissolution- UF/sub 4/ precipitation process for routing scrap materials to the reductlon-to- metal step was examined. The purification obtained was noted, and process conditions were varied to determine their effect upon UF/sub 4/ density, UF/sub 4/ purity and precipitation time. Three types of uranium scrap were subjected to the HCl dissolution-aqueous precipitation Winlo process to determine the purification achieved. Green salt made from dolomitlc bomb liner residues was found to be grossly contaminated. Acceptable green salt was raade from pickle liquor treated with formaldehyde and from pickle liquor plus black oxide. Nominal 80% yields were obtained in the recovery of magnesium metal by reaction of calcium carblde with magnesium fluoride slag and in the recovery of HF by the reactlon of sulfuric acid wlth magnesium fluoride slag. A sample holder for use in quantitative preferred orientation studies was fabricated. The holder, designed to fit a North American Philips Gonionweter, will accommodate specimens up to l 13/16 inches in diameter and incorporates a precision ball bearing. A satisfactory technique was developed for the analysis of uranium metal for traces of fluoride. A direct flame photometric method is glven for the determination of magnesium in uranium ore concentrates. No chemical separation step is required, except for high-iron-content ores. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaofei; Zink, Peter; Pal, Uday
2012-03-11
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less
A review of pitfalls and progress in chelation treatment of metal poisonings.
Andersen, Ole; Aaseth, Jan
2016-12-01
Most acute and chronic human metal poisonings are due to oral or inhalation exposure. Almost 80% of published animal experiments on chelation in metal poisoning used single or repeated intraperitoneal, intramuscular or intravenous administration of metal and chelator, impeding extrapolation to clinical settings. Intramuscular administration of dimercaptopropanol (BAL) has until now been used in acute arsenic, lead, and mercury poisonings, but repeated BAL administration increased the brain uptake of As, Pb and Hg in experimental animals. Also, diethyl dithiocarbamate (DDC) has been used as antidote in acute experimental animal parenteral Cd poisoning, and both DDC and tetraethylthiuram disulfide (TTD, disulfiram, Antabuse) have been used in nickel allergic patients. However, even one dose of DDC given immediately after oral Cd or Ni increased their brain uptake considerably. The calcium salt of ethylenediamminetetraacetic acid (CaEDTA) but not dimercaptosuccinic acid (DMSA) increased the brain uptake of Pb. In oral Cd or Hg poisoning, early oral administration of DMSA or dimercaptopropane sulfonate (DMPS) increased survival and reduced intestinal metal uptake. Oral administration of Prussian Blue or resins with fixed chelating groups that are not absorbed offer chelation approaches for decorporation after oral exposure to various metals. Diethylenetriaminepentaacetic acid (DTPA) nebulizers for pulmonary chelation after inhalation exposure need further development. Also, combined chelation with more than one compound may offer extensive advances. Solid knowledge on the chemistry of metal chelates together with relevant animal experiments should guide development of chelation procedures to alleviate and not aggravate the clinical status of poisoned patients. Copyright © 2016 Elsevier GmbH. All rights reserved.
Biological and Clinical Aspects of Lanthanide Coordination Compounds
Misra, Sudhindra N.; M., Indira Devi; Shukla, Ram S.
2004-01-01
The coordinating chemistry of lanthanides, relevant to the biological, biochemical and medical aspects, makes a significant contribution to understanding the basis of application of lanthanides, particularly in biological and medical systems. The importance of the applications of lanthanides, as an excellent diagnostic and prognostic probe in clinical diagnostics, and an anticancer material, is remarkably increasing. Lanthanide complexes based X-ray contrast imaging and lanthanide chelates based contrast enhancing agents for magnetic resonance imaging (MRI) are being excessively used in radiological analysis in our body systems. The most important property of the chelating agents, in lanthanide chelate complex, is its ability to alter the behaviour of lanthanide ion with which it binds in biological systems, and the chelation markedly modifies the biodistribution and excretion profile of the lanthanide ions. The chelating agents, especially aminopoly carboxylic acids, being hydrophilic, increase the proportion of their complex excreted from complexed lanthanide ion form biological systems. Lanthanide polyamino carboxylate-chelate complexes are used as contrast enhancing agents for Magnetic Resonance Imaging. Conjugation of antibodies and other tissue specific molecules to lanthanide chelates has led to a new type of specific MRI contrast agents and their conjugated MRI contrast agents with improved relaxivity, functioning in the body similar to drugs. Many specific features of contrast agent assisted MRI make it particularly effective for musculoskeletal and cerebrospinal imaging. Lanthanide-chelate contrast agents are effectively used in clinical diagnostic investigations involving cerebrospinal diseases and in evaluation of central nervous system. Chelated lanthanide complexes shift reagent aided 23Na NMR spectroscopic analysis is used in cellular, tissue and whole organ systems. PMID:18365075
Synthesis of nano-sized lithium cobalt oxide via a sol-gel method
NASA Astrophysics Data System (ADS)
Li, Guangfen; Zhang, Jing
2012-07-01
In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.
2,4-dinitrophenylhydrazine carbonyl assay in metal-catalysed protein glycoxidation.
Stefek, M; Trnkova, Z; Krizanova, L
1999-01-01
Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose (fructose) resulted in a significant increase in protein content of 2,4-dinitrophenylhydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.
Garcia-Junceda, E; Shen, G J; Sugai, T; Wong, C H
1995-07-01
Three DHAP-dependent aldolases, rhamnulose-1-phosphate aldolase (Rham-1PA), fuculose-1-phosphate aldolase (Fuc-1PA) and tagatose-1,6-diphosphate aldolase (TDPA) have been cloned and overexpressed in Escherichia coli using two different expression vectors: pTrcHis for the expression of Rham-1PA and Fuc-1PA and pRSET for the expression of TDPA. In each case the recombinant enzyme is synthesized as a fusion protein with a hexahistidine tag on the N-terminus. The three enzymes have been purified in only one step by chelation affinity chromatography. The effects of cultivation temperature and concentration of inducer have been studied in order to optimize the expression of the recombinant proteins and to avoid the formation of inclusion bodies.
Inouye, Satoshi
2018-01-01
A dihydrofolate reductase-deficient Chinese hamster ovary (CHO-K1/dhfr - ) cell line stably expressing Gaussia luciferase with a histidine-tag sequence at the carboxyl terminus (GLase-His) was established. Recombinant GLase-His was purified from serum-containing culture medium by single-step Ni-chelate column chromatography in the presence of 2 M NaCl and 0.01% Tween 20. The protein yield of GLase-His with over 95% purity was 0.5 mg from 0.9 L of the cultured medium. The enzymatic properties of purified GLase-His were characterized. Interestingly, non-ionic detergent Tween 20 stabilized and stimulated GLase-His activity and its luminescence activity was stimulated 2-fold by the synergistic effect of 0.01% Tween 20 and 150 mM NaCl. Copyright © 2017 Elsevier Inc. All rights reserved.
Diaz-Tocados, Juan M; Peralta-Ramirez, Alan; Rodríguez-Ortiz, María E; Raya, Ana I; Lopez, Ignacio; Pineda, Carmen; Herencia, Carmen; Montes de Oca, Addy; Vergara, Noemi; Steppan, Sonja; Pendon-Ruiz de Mier, M Victoria; Buendía, Paula; Carmona, Andrés; Carracedo, Julia; Alcalá-Díaz, Juan F; Frazao, Joao; Martínez-Moreno, Julio M; Canalejo, Antonio; Felsenfeld, Arnold; Rodriguez, Mariano; Aguilera-Tejero, Escolástico; Almadén, Yolanda; Muñoz-Castañeda, Juan R
2017-11-01
Although magnesium has been shown to prevent vascular calcification in vitro, controlled in vivo studies in uremic animal models are limited. To determine whether dietary magnesium supplementation protects against the development of vascular calcification, 5/6 nephrectomized Wistar rats were fed diets with different magnesium content increasing from 0.1 to 1.1%. In one study we analyzed bone specimens from rats fed 0.1%, 0.3%, and 0.6% magnesium diets, and in another study we evaluated the effect of intraperitoneal magnesium on vascular calcification in 5/6 nephrectomized rats. The effects of magnesium on established vascular calcification were also evaluated in uremic rats fed on diets with either normal (0.1%) or moderately increased magnesium (0.6%) content. The increase in dietary magnesium resulted in a marked reduction in vascular calcification, together with improved mineral metabolism and renal function. Moderately elevated dietary magnesium (0.3%), but not high dietary magnesium (0.6%), improved bone homeostasis as compared to basal dietary magnesium (0.1%). Results of our study also suggested that the protective effect of magnesium on vascular calcification was not limited to its action as an intestinal phosphate binder since magnesium administered intraperitoneally also decreased vascular calcification. Oral magnesium supplementation also reduced blood pressure in uremic rats, and in vitro medium magnesium decreased BMP-2 and p65-NF-κB in TNF-α-treated human umbilical vein endothelial cells. Finally, in uremic rats with established vascular calcification, increasing dietary magnesium from 0.1% magnesium to 0.6% reduced the mortality rate from 52% to 28%, which was associated with reduced vascular calcification. Thus, increasing dietary magnesium reduced both vascular calcification and mortality in uremic rats. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Strategies for the preparation of bifunctional gadolinium(III) chelators
Frullano, Luca; Caravan, Peter
2012-01-01
The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications. PMID:22375102
Hypersensitivity reaction with deferasirox
Sharma, Atul; Arora, Ekta; Singh, Harmanjit
2015-01-01
Thalassemias comprise a group of hereditary blood disorders. Thalassemia major presents with anemia within the first 2 years of life requiring frequent blood transfusions for sustaining life. Regular blood transfusions lead to iron overload-related complications. Prognosis of thalassemia has improved because of the availability of iron-chelating agents. Oral iron chelators are the mainstay of chelation therapy. Deferasirox is a new-generation oral iron chelator for once daily usage. We herein describe a patient of beta thalassemia major who developed an allergic manifestation in the form of erythematous pruritic skin rashes to the oral iron chelator deferasirox. This is a rare adverse reaction reported with deferasirox that led to a therapeutic dilemma in this particular case. PMID:25969661
Magnesium-based implants: a mini-review.
Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine
2014-01-01
The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.
Electrodeposition of magnesium and magnesium/aluminum alloys
Mayer, Anton
1988-01-01
Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.
Method for production of magnesium
Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.
1998-01-01
A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.
Method for production of magnesium
Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.
1998-07-21
A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.
Electrodeposition of magnesium and magnesium/aluminum alloys
Mayer, A.
1988-01-21
Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.
Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin
2017-09-01
Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Heijnen, M L; van den Berg, G J; Beynen, A C
1996-09-01
Dietary raw (RS2) vs. retrograded resistant starch (RS3) raises apparent magnesium absorption in rats. The mechanism proposed is that RS2 enhances magnesium avaibility for absorption; it does this by increasing ileal solubility of magnesium due to a reduction in pH as a consequence of RS2 fermentation in the gut. The mechanism implies that dietary RS2 vs. RS3 would raise true magnesium absorption and stimulate reabsorption of endogenous magnesium, leading to a lower fecal excretion of endogenous magnesium. Dietary lactulose vs. glucose raises apparent magnesium absorption, and the mechanism proposed is similar to that for the stimulatory effect of RS2 vs. RS3. Thus, we measured in rats fed RS3, RS2, glucose or lactulose true magnesium absorption on the basis of the retention of the orally and intraperitoneally administered radiotracer 28Mg. Feeding rats RS2 instead of RS3 significantly enhanced apparent but not true magnesium absorption, because RS2 lowered fecal excretion of endogenous magnesium. When compared with dietary glucose, lactulose significantly raised both apparent and true magnesium absorption, but did not affect fecal excretion of endogenous magnesium. It is suggested that the proposed mechanism by which RS2 and lactulose would enhance magnesium absorption is disproved by the present data.
Terasaki, M; Rubin, H
1985-01-01
When extracellular magnesium is reduced by a factor of 50 (from 1.0 to 0.02 mM), the total intracellular magnesium of a spontaneously transformed clone of 3T3 cells decreases by 30-50%. Protein synthesis rates in these cells were measured as the intracellular magnesium decreased. Protein synthesis rates and magnesium content were found to decrease in parallel with each other. At 3 hr, a decrease to 84% of control values of magnesium content was accompanied by a decrease to 85% of control values of leucine incorporation rates. A larger inhibition had occurred by 12 hr, when the magnesium had decreased to 67% and leucine incorporation rates had decreased to 57%. When magnesium was restored to magnesium-deprived cells, both magnesium content and leucine incorporation increased about 2-fold by 1 hr. In the experiments reported here, initial small changes in magnesium content are associated with changes in protein synthesis rates. This strongly suggests that magnesium is present at a regulatory rather than excess concentration for protein synthesis. The results are consistent with a role for intracellular magnesium in the regulation of protein synthesis and support the hypothesis that magnesium has a central role in the regulation of metabolism and growth. PMID:2997785
NASA Astrophysics Data System (ADS)
Kamran, J.; Hasan, B. A.; Tariq, N. H.; Izhar, S.; Sarwar, M.
2014-06-01
In this study the effect of multi-passes warm rolling of AZ31 magnesium alloy on texture, microstructure, grain size variation and hardness of as cast sample (A) and two rolled samples (B & C) taken from different locations of the as-cast ingot was investigated. The purpose was to enhance the formability of AZ31 alloy in order to help manufacturability. It was observed that multi-passes warm rolling (250°C to 350°C) of samples B & C with initial thickness 7.76mm and 7.73 mm was successfully achieved up to 85% reduction without any edge or surface cracks in ten steps with a total of 26 passes. The step numbers 1 to 4 consist of 5, 2, 11 and 3 passes respectively, the remaining steps 5 to 10 were single pass rolls. In each discrete step a fixed roll gap is used in a way that true strain per step increases very slowly from 0.0067 in the first step to 0.7118 in the 26th step. Both samples B & C showed very similar behavior after 26th pass and were successfully rolled up to 85% thickness reduction. However, during 10th step (27th pass) with a true strain value of 0.772 the sample B experienced very severe surface as well as edge cracks. Sample C was therefore not rolled for the 10th step and retained after 26 passes. Both samples were studied in terms of their basal texture, microstructure, grain size and hardness. Sample C showed an equiaxed grain structure after 85% total reduction. The equiaxed grain structure of sample C may be due to the effective involvement of dynamic recrystallization (DRX) which led to formation of these grains with relatively low misorientations with respect to the parent as cast grains. The sample B on the other hand showed a microstructure in which all the grains were elongated along the rolling direction (RD) after 90 % total reduction and DRX could not effectively play its role due to heavy strain and lack of plastic deformation systems. The microstructure of as cast sample showed a near-random texture (mrd 4.3), with average grain size of 44 & micro-hardness of 52 Hv. The grain size of sample B and C was 14μm and 27μm respectively and mrd intensity of basal texture was 5.34 and 5.46 respectively. The hardness of sample B and C came out to be 91 and 66 Hv respectively due to reduction in grain size and followed the well known Hall-Petch relationship.
Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.
1983-09-01
The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study andmore » from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition.« less
Glyphosate, a chelating agent-relevant for ecological risk assessment?
Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram
2018-02-01
Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.
Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Brusseau, Mark L.; Zhang, Xiang; Fu, Xiaori; Danish, Muhammad; Qiu, Zhaofu; Sui, Qian
2015-01-01
The performance of Fe(III)-based catalyzed sodium percarbonate (SPC) for stimulating the oxidation of tetrachloroethene (PCE) for groundwater remediation applications was investigated. The chelating agents citric acid monohydrate (CIT), oxalic acid (OA), and Glutamic acid (Glu) significantly enhanced the degradation of PCE. Conversely, ethylenediaminetetraacetic acid (EDTA) had a negative impact on PCE degradation, which may due to its strong Fe chelation and HO• scavenging abilities. However, excessive SPC or chelating agent will retard PCE degradation. In addition, investigations using free radical probe compounds and radical scavengers revealed that PCE was primarily degraded by HO• radical oxidation in both the chelated and non-chelated systems, while O2•− also participated in the non-chelated system and the OA and Glu modified systems. According to the electron paramagnetic resonance (EPR) studies, the presence of HO• in the Fe(III)/SPC system was maintained much longer than that in the Fe(II)/SPC system. The results indicated that the addition of CIT, OA or Glu indeed enhanced the generation of HO• in the first 10 min and promoted degradation efficiency by increasing the amount of Fe(III) and maintaining the concentration of HO• radicals in solution. In conclusion, chelated Fe(III)-based catalyzed SPC oxidation is a promising method for the remediation of PCE-contaminated groundwater. PMID:26549979
Aydinok, Yesim; Evans, Patricia; Manz, Chantal Y.; Porter, John B.
2012-01-01
Background Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transferrin bound iron to explore the origin of chelatable iron and to predict clinical response to deferiprone. Design and Methods Non-transferrin bound iron levels were determined at baseline and after 1 week of chelation in 32 patients with thalassemia major receiving deferiprone alone, desferrioxamine alone, or a combination of the two chelators. Samples were taken at baseline, following a 2-week washout without chelation, and after 1 week of chelation, this last sample being taken 10 hours after the previous evening dose of deferiprone and, in those receiving desferrioxamine, 24 hours after cessation of the overnight subcutaneous infusion. Absolute or relative non-transferrin bound iron levels were related to transfusional iron loading rates, liver iron concentration, 24-hour urine iron and response to chelation therapy over the subsequent year. Results Changes in non-transferrin bound iron at week 1 were correlated positively with baseline liver iron, and inversely with transfusional iron loading rates, with deferiprone-containing regimens but not with desferrioxamine monotherapy. Changes in week 1 non-transferrin bound iron were also directly proportional to the plasma concentration of deferiprone-iron complexes and correlated significantly with urine iron excretion and with changes in liver iron concentration over the next 12 months. Conclusions The widely used assay chosen for this study detects both endogenous non-transferrin bound iron and the iron complexes of deferiprone. The week 1 increments reflect chelatable iron derived both from liver stores and from red cell catabolism. These increments correlate with urinary iron excretion and the change in liver iron concentration over the subsequent year thus predicting response to deferiprone-containing chelation regimes. This clinical study was registered at clinical.trials.gov with the number NCT00350662. PMID:22180427
Magnesium Metabolism and its Disorders
Swaminathan, R
2003-01-01
Magnesium is the fourth most abundant cation in the body and plays an important physiological role in many of its functions. Magnesium balance is maintained by renal regulation of magnesium reabsorption. The exact mechanism of the renal regulation is not fully understood. Magnesium deficiency is a common problem in hospital patients, with a prevalence of about 10%. There are no readily available and easy methods to assess magnesium status. Serum magnesium and the magnesium tolerance test are the most widely used. Measurement of ionised magnesium may become more widely available with the availability of ion selective electrodes. Magnesium deficiency and hypomagnesaemia can result from a variety of causes including gastrointestinal and renal losses. Magnesium deficiency can cause a wide variety of features including hypocalcaemia, hypokalaemia and cardiac and neurological manifestations. Chronic low magnesium state has been associated with a number of chronic diseases including diabetes, hypertension, coronary heart disease, and osteoporosis. The use of magnesium as a therapeutic agent in asthma, myocardial infarction, and pre-eclampsia is also discussed. Hypermagnesaemia is less frequent than hypomagnesaemia and results from failure of excretion or increased intake. Hypermagnesaemia can lead to hypotension and other cardiovascular effects as well as neuromuscular manifestations. Causes and management of hypermagnesaemia are discussed. PMID:18568054
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Omar, M. M.; Ibrahim, Amr A.
2010-02-01
Novel Schiff base (H 2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H 2L] complexes are found from the elemental analyses data having the formulae [M(H 2L)Cl 2]· yH 2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H 2L)Cl 2]Cl·H 2O, [Th(H 2L)Cl 2]Cl 2·3H 2O and [UO 2(H 2L)](CH 3COO) 2·2H 2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO 2(II) complexes are electrolytes. IR spectra show that H 2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern method. The ligand (H 2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.
Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... magnesium and produced by decomposing raw materials into magnesium metal. Pure primary magnesium is used... products (including, but not limited to, butt ends, stubs, crowns and crystals) with the following primary magnesium contents: (1) Products that contain at least 99.95% primary magnesium, by weight (generally...
Bandyopadhyay, S; Huang, X; Cho, H; Greig, N H; Youdim, M B; Rogers, J T
2006-01-01
Iron closely regulates the expression of the Alzheimer's Amyloid Precursor Protein (APP) gene at the level of message translation by a pathway similar to iron control of the translation of the ferritin L- and H mRNAs by Iron-responsive Elements in their 5' untranslated regions (5'UTRs). Using transfection based assays in SH-SY5Y neuroblastoma cells we tested the relative efficiency by which iron, copper and zinc up-regulate IRE activity in the APP 5'UTR. Desferrioxamine (high affinity Fe3+ chelator), (ii) clioquinol (low affinity Fe/Cu/Zn chelator), (iii) piperazine-1 (oral Fe chelator), (iv) VK-28 (oral Fe chelator), were tested for their relative modulation of APP 5' UTR directed translation of a luciferase reporter gene. Iron chelation based therapeutic strategies for slowing the progression of Alzheimer's disease (and other neurological disorders that manifest iron imbalance) are discussed with regard to the relative neural toxic action of each chelator in SH-SY5Y cells and in H4 glioblastoma cells.
Extraction of metals using supercritical fluid and chelate forming legand
Wai, Chien M.; Laintz, Kenneth E.
1998-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Extraction of metals using supercritical fluid and chelate forming ligand
Wai, C.M.; Laintz, K.E.
1998-03-24
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.
Sierra, Miguel A; Gómez-Gallego, Mar; Alcázar, Roberto; Lucena, Juan J; Yunta, Felipe; García-Marco, Sonia
2004-11-07
The effect of the length and the structure of the tether on the chelating ability of EDDHA-like chelates have not been established. In this work, PDDHA (propylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid), BDDHA (butylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid) and XDDHA (p-xylylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid) have been obtained and their chemical behaviour has been studied and compared with that of EDDHA following our methodology. The purity of the chelating agents, and their protonation, Ca(II), Mg(II), Fe(III) and Cu(II) stability constants and pM values have been determined. The stability constants and pM values indicate that EDDHA forms the most stable chelates followed by PDDHA. However, the differences among the pFe values are small when a nutrient solution is used, and in these conditions the XDDHA/Fe(III) chelate is the most stable. The results obtained in this work indicate that all the chelating agents studied can be used as iron chlorosis correctors and they can be applied to soil/plant systems.
Magnesium: Nutrition and Homoeostasis.
Vormann, Jürgen
2016-01-01
The essential mineral magnesium is involved in numerous physiological processes. Recommended dietary intake is often not met and a low magnesium status increases the risk for various diseases. Magnesium status is regulated by several magnesium transport systems either in cellular or paracellular pathways. Numerous drugs either interfere with magnesium absorption in the intestines or the reabsorption from primary urine in the kidney. Low magnesium status has been identified as a significant risk factor for several diseases, including type-2 diabetes, cardiovascular diseases, arrhythmias, as well as general muscular and neurological problems. Therefore, an adequate magnesium supply would be of special benefit to our overall health.
Relationship among chelator adherence, change in chelators, and quality of life in thalassemia.
Trachtenberg, Felicia L; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A; Neufeld, Ellis J; Yamashita, Robert
2014-10-01
Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of health-related quality of life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Thalassemia Longitudinal Cohort participants in the USA, UK, and Canada completed the SF-36v2 (ages 14+) and the PF-28 CHQ (parents of children <14 years). Chelation adherence was defined as self-reported percent of doses administered in the last 4 weeks. Two hundred and fifty-eight adults/adolescents (mean 29.7 years) and 133 children (mean 8.5 years) completed a mean of 2.8-years follow-up. Children made few chelator changes, whereas a mean of 2.2 changes was observed among the 37% of adults/adolescents who made chelator changes, mainly due to patient preference or medical necessity. Physical HRQOL improved among those with lower iron burden (better health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from deferoxamine (DFO) infusion to oral deferasirox (p = 0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical quality of life . Strategies to balance medical needs with family, work, and personal life may assist in adherence.
Phenomenon of hot-cold hemolysis: chelator-induced lysis of sphingomyelinase-treated erythrocytes.
Smyth, C J; Möllby, R; Wadström, T
1975-01-01
Staphylococcus aureus produces a phospholipase C specific for sphingomyelin (beta-hemolysin). Erythrocytes with approximately 50% sphingomyelin in their membranes, e.g., from sheep, have been shown to have up to 60% of this phospholipid hydrolyzed by this enzyme at 37 C in isotonic buffered saline without hemolysis. Cooling of sphingomyelinase C-treated erythrocytes to 4 C causes complete lysis of the cells, a phenomenon known as hot-cold hemolysis. The addition of ethylenediaminetetraacetate (EDTA) to sheep erythrocytes preincubated with sphingomyelinase C was found to induce rapid hemolysis at 37 C. The treated cells became susceptible to chelator-induced hemolysis and to hot-cold hemolysis simultaneously, and the degree of lysis of both mechanisms increased equally with prolonged preincubation with sphingomyelinase C. Erythrocytes of species not readily susceptible to hot-cold hemolysis were equally insusceptible to chelator-induced lysis. Chelators of the EDTA series were the most effective, whereas chelators more specific for Ca2+, Zn2+, Fe2+, Cu2+, and Mg2+ were without effect. The rate of chelator-induced lysis was dependent on the preincubation period with beta-hemolysin and on the concentration of chelator added. The optimal concentration of EDTA was found to equal the amount of exogenously added Mg2+, a cation necessary for sphingomyelinase C activity. Hypotonicity increased the rate of chelator-induced hemolysis, whereas increasing the osmotic pressure to twice isotonic completely inhibited chelator-induced lysis. The data suggest that exogenously added and/or membrane-bound divalent cations are important for the stability of sphingomyelin-depleted membranes. The phenomenon of hot-cold hemolysis may be a consequence of the temperature dependence of divalent ion stabilization. Images PMID:333
Peguero, Julio G; Arenas, Ivan; Lamas, Gervasio A
2014-08-01
Medical practitioners have treated atherosclerotic disease with chelation therapy for over 50 years. Lack of strong of evidence led conventional practitioners to abandon its use in the 1960s and 1970s. This relegated chelation therapy to complementary and alternative medicine practitioners, who reported good anecdotal results. Concurrently, the epidemiologic evidence linking xenobiotic metals with cardiovascular disease and mortality gradually accumulated, suggesting a plausible role for chelation therapy. On the basis of the continued use of chelation therapy without an evidence base, the National Institutes of Health released a Request for Applications for a definitive trial of chelation therapy. The Trial to Assess Chelation Therapy (TACT) was formulated as a 2 × 2 factorial randomized controlled trial of intravenous EDTA-based chelation vs. placebo and high-dose oral multivitamins and multiminerals vs. oral placebo. The composite primary endpoint was death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. A total of 1708 post-MI patients who were 50 years or older with a creatinine of 2.0 or less were enrolled and received 55,222 infusions of disodium EDTA or placebo with a median follow-up of 55 months. Patients were on evidence-based post-MI medications including statins. EDTA proved to be safe. EDTA chelation therapy reduced cardiovascular events by 18%, with a 5-year number needed to treat (NNT) of 18. Prespecified subgroup analysis revealed a robust benefit in patients with diabetes mellitus with a 41% reduction in the primary endpoint (5-year NNT = 6.5), and a 43% 5-year relative risk reduction in all-cause mortality (5-year NNT = 12). The magnitude of benefit is such that it suggests urgency in replication and implementation, which could, due to the excellent safety record, occur simultaneously. Copyright © 2014 Elsevier Inc. All rights reserved.
Čabarkapa, Andrea; Dekanski, Dragana; Živković, Lada; Milanović-Čabarkapa, Mirjana; Bajić, Vladan; Topalović, Dijana; Giampieri, Francesca; Gasparrini, Massimiliano; Battino, Maurizio; Spremo-Potparević, Biljana
2017-08-01
The CaNa 2 EDTA chelation therapy is often practiced with antioxidant supplementation. Dry olive leaf extract (DOLE) is natural product with antioxidant and DNA protective properties. The effects of DOLE on the levels of DNA damage were investigated ex vivo in peripheral blood lymphocytes (PBLs) of 19 workers occupationally exposed to lead (Pb), before and after CaNa 2 EDTA chelation therapy. DOLE demonstrated pronounced radical scavenging activity in concentrations ≥1 mg/mL, and showed no genotoxicity per se, in concentrations 0.125-1 mg/mL. The level of DNA damage in PBLs of workers before chelation therapy was elevated (24.21 ± 14.26) compared to controls (6.0 ± 3.37). The incubation of PBLs before chelation therapy with selected concentration of DOLE lead to a severe increase of DNA damage (64.03 ± 20.96), exhibiting prooxidant rather than antioxidant effect. After the five-day CaNa 2 EDTA chelation regimen, DNA damage in PBLs of workers decreased (8.26 ± 4.62) significantly compared to baseline. Treatment of PBLs with DOLE after chelation, again produced high level of damage (41.82 ± 23.17) and the acute prooxidant effects of DOLE remained, but, DNA damage was less severe than before chelation. The DOLE exhibits prooxidant effect in presence of Pb in lymphocytes of exposed workers, and its effect is less pronounced following the removal of Pb after standard chelation therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optical response measurements of a new class of upconverting luminescent reporters
NASA Astrophysics Data System (ADS)
Xiao, Xudong; Haushalter, Jeanne P.; Weiss, Michael; Faris, Gregory W.
2004-06-01
We have prepared and characterized several lanthanide ion complexes of multidentate ligands or chelates in an effort to develop new luminescent reporters that will be immune to autofluorescence and photobleaching. Our study has involved the characterization of various chelates of Eu, Er, and Tm with respect to relative luminescent efficiency and excited state lifetimes. Included in the list of chelates studied are TTFA, EDTA, DPA, DOTA and DTPA as well as mixed and double chelates. In addition to determining the relative efficiencies and luminescence lifetimes of the lanthanide chelates, we have explored various excitation mechanisms and determined optimum excitation wavelengths. This paper will address the various hurdles encountered in the development of this new class of reporters.
Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei
2016-11-01
The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.
Magnesium in atherosclerotic cardiovascular disease and sudden death.
Singh, R B; Singh, V P; Cameron, E A
1981-01-01
Magnesium ions are important for maintaining the functional and structural integrity of the myocardium. Epidemiologic studies suggest that myocardial hypomagnecytia can predispose to sudden cardiac death and that hard water protective factor preventing heart attack could be magnesium. Recent studies show that infarcted portion of the myocardium has lowered magnesium content as compared to noninfarcted segment. Magnesium deficiency sensitises the myocardium to the toxic effect of various drugs, hypoxia etc. and magnesium administration is protective. The metabolic, biochemical and electrophysiologic effects of magnesium appear to be significant in treatment of myocardial ischaemia. Magnesium is a metal-coenzyme and activates adenosine-triphosphatase which may be inhibited by nonglucose fuels like lactate and free fatty acids. Magnesium deficiency may be responsible for the chronic electrical instability of the myocardium predisposing to sudden cardiac death. The acute precipitating stress dependent trigger which lie in the brain may also be related to magnesium. In addition to fast Na and Ca channels there could be a Mg-carrying transport system maintaining the electrical activity of the myocardium. There is sufficient evidence to suggest the use of magnesium salts against ischaemic heart disease and sudden cardiac death. Magnesium is cardioprotective and influences action potential duration, membrane potential and perhaps maintains the fast response. The therapeutic and prophylactic value of magnesium needs further assessment.
Champagne, Catherine M
2008-01-01
Magnesium plays a role in a number of chronic, disease-related conditions. This article reviews current pertinent literature on magnesium, focusing on hypertension and cardiovascular diseases and implications for relationships with diabetes and metabolic syndrome. A major role for magnesium is in the regulation of blood pressure. While data are not entirely consistent, it does appear that an inverse relationship between magnesium intake and blood pressure is strongest for magnesium obtained from food rather than that obtained via supplements. Hypertension associated with preeclampsia appears to be alleviated when magnesium is administered; in addition, women with adequate intakes of magnesium are less likely to be affected by preeclampsia than those with an inadequate intake. A role for magnesium in other cardiovascular diseases has been noted in that increased magnesium intake may improve serum lipid profiles. Dietary magnesium is also recommended to aid in the prevention of stroke and is important for skeletal growth and development. Magnesium may also play a role in the development of diabetes mellitus, obesity, and metabolic syndrome. There are data from some studies, such as the DASH and PREMIER studies, that suggest that lifestyle changes (including adequate magnesium intake) can benefit blood pressure control, promote weight loss, and improve chronic disease risk.
Reusable chelating resins concentrate metal ions from highly dilute solutions
NASA Technical Reports Server (NTRS)
Bauman, A. J.; Weetal, H. H.; Weliky, N.
1966-01-01
Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.
Assessment of iron chelates efficiency for photo-Fenton at neutral pH.
De Luca, Antonella; Dantas, Renato F; Esplugas, Santiago
2014-09-15
In this study, homogeneous photo-Fenton like at neutral pH was applied to remove sulfamethoxazole from water. The process was performed using different chelating agents in order to solubilize iron in a neutral water solution. The chelating agents tested were: ethylenediaminetetraacetic acid (EDTA); nitrilotriacetic acid (NTA); oxalic acid (OA) and tartaric acid (TA). The iron leaching was monitored over reaction time to evaluate the chelates stability and their resistance to HO· and UV-A radiation. Chelates of EDTA and NTA presented more stability than OA and TA, which also confirmed their higher efficiency. Total Organic Carbon (TOC) analyses were also performed to evaluate the contribution in terms of solution contamination related to the use of chelating agents. The better properties of biodegradability in respect of EDTA combined with better efficiency in terms of microcontaminant removal and the smallest TOC contribution indicate that NTA could represent a useful option to perform photo-Fenton processes at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oxidation-Induced Degradable Nanogels for Iron Chelation
NASA Astrophysics Data System (ADS)
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-02-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells.
3-hydroxy-2(1H)-pyridinone chelating agents
Raymond, K.N.; Xu, J.
1997-04-29
Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.
3-hydroxy-2(1H)-pyridinone chelating agents
Raymond, Kenneth N.; Xu, Jide
1997-01-01
Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatimah, Soja Siti, E-mail: soja-sf@upi.edu; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor; Bahti, Husein H.
2016-02-08
The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, andmore » using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.« less
NASA Astrophysics Data System (ADS)
Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna
2016-02-01
The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.
Oxidation-Induced Degradable Nanogels for Iron Chelation
Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.
2016-01-01
Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174
Magnesium-phosphate-glass cements with ceramic-type properties
Sugama, T.; Kukacka, L.E.
1982-09-23
Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.
Magnesium phosphate glass cements with ceramic-type properties
Sugama, Toshifumi; Kukacka, Lawrence E.
1984-03-13
Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.
NASA Astrophysics Data System (ADS)
Patel, Jayesh B.; Yang, Xinliang; Mendis, Chamini L.; Fan, Zhongyun
2017-04-01
Casting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology. The application of high shear process to direct chill and twin roll casting process is demonstrated with examples from magnesium melts.
Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids
Qu, Jun; Luo, Huimin
2016-09-06
A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.
Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites
NASA Astrophysics Data System (ADS)
Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou
2017-11-01
Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.
Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2014-07-01
Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.
40 CFR 461.60 - Applicability; description of the magnesium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries. ...
40 CFR 461.60 - Applicability; description of the magnesium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries. ...
40 CFR 461.60 - Applicability; description of the magnesium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries. ...
Magnesium deficiency: What is our status
USDA-ARS?s Scientific Manuscript database
Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...
McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian
2016-11-22
A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.
Nanostructured magnesium has fewer detrimental effects on osteoblast function.
Weng, Lucy; Webster, Thomas J
2013-01-01
Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.
Nanostructured magnesium has fewer detrimental effects on osteoblast function
Weng, Lucy; Webster, Thomas J
2013-01-01
Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891
Inhibitory activity of chelating agent against bacteria associated with poultry processing
USDA-ARS?s Scientific Manuscript database
Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...
Tang, Wenshu; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku
2013-07-01
By doping a proper amount of Mg(2+) (~10%) into α-Fe2O3 during a solvent thermal process, ultrafine magnesium ferrite (Mg0.27Fe2.50O4) nanocrystallites were successfully synthesized with the assistance of in situ self-formed NaCl "cage" to confine their crystal growth. Their ultrafine size (average size of ~3.7 nm) and relatively low Mg-content conferred on them a superparamagnetic behavior with a high saturation magnetization (32.9 emu/g). The ultrafine Mg0.27Fe2.50O4 nanoadsorbent had a high specific surface area of ~438.2 m(2)/g, and demonstrated a superior arsenic removal performance on both As(III) and As(V) at near neutral pH condition. Its adsorption capacities on As(III) and As(V) were found to be no less than 127.4 mg/g and 83.2 mg/g, respectively. Its arsenic adsorption mechanism was found to follow the inner-sphere complex mechanism, and abundant hydroxyl groups on its surface played the major role in its superior arsenic adsorption performance. It could be easily separated from treated water bodies with magnetic separation, and could be easily regenerated and reused while maintaining a high arsenic removal efficiency. This novel superparamagnetic magnesium ferrite nanoadsorbent may offer a simple single step adsorption treatment option to remove arsenic contamination from water without the pre-/post-treatment requirement for current industrial practice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peptides Enhance Mg Content of Calcite: Toward a Process-Based Understanding of Proxy Models
NASA Astrophysics Data System (ADS)
Dove, P.; Stephenson, A.; Wu, L.; Wu, K.; de Yoreo, J.; Hoyer, J.
2008-12-01
Investigations of modern organisms relating magnesium content of calcified skeletons to temperature often exhibit unexplained deviations from the signature expected for inorganically precipitated calcite. These 'vital effects' are believed to have kinetic and taxonomic origins but the mechanistic basis for measured offsets remains unclear. A complicating factor is that mineralization is isolated from the external environment within an organic-rich matrix whose roles in mineralization are implicated but not well understood. Here we show that a simple hydrophilic peptide, sharing the same acidic character as macromolecules isolated from sites of calcification, increases the magnesium content of calcite up to 3 mol%. Using in situ AFM, we demonstrate that (Asp3Gly)6Asp3 also enhances growth rate and step edge energy of calcite compared to inorganic controls. Kinetic and thermodynamic measurements indicate that biomolecules interact with calcite surfaces to lower the energy barrier to desolvating the more strongly hydrated magnesium ion, thereby increasing the probability of its incorporation relative to calcium. Comparisons to previous studies that correlate Mg content of carbonate minerals with temperature show this peptide-induced Mg- enhancement is equivalent to offsets of several degrees Centigrade. The findings suggest local macromolecule chemistry influences Mg signatures- a plausible origin of vital effects. Further, studies of nonskeletal carbonates have long-asked whether the natural marine humic and protein substances found in sedimentary environments may influence mineralization. These insights provide a physical basis for anecdotal evidence that organic chemistry modulates the mineralization of inorganic carbonates.
High magnesium mobility in ternary spinel chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan
Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less
High magnesium mobility in ternary spinel chalcogenides
Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan; ...
2017-11-24
Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less
Impact of magnesium:calcium ratio on calcification of the aortic wall.
Villa-Bellosta, Ricardo
2017-01-01
An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio.
Brain, Matthew; Anderson, Mike; Parkes, Scott; Fowler, Peter
2012-12-01
To describe magnesium flux and serum concentrations in ICU patients receiving continuous venovenous haemodiafiltration (CVVHDF). Samples were collected from 22 CVVHDF circuits using citrate anticoagulation solutions (Prismocitrate 10/2 and Prism0cal) and from 26 circuits using Hemosol B0 and heparin anticoagulation. CVVHDF prescription, magnesium supplementation and anticoagulation choice was by the treating intensivist. We analysed 334 sample sets consisting of arterial, prefilter and postfilter blood and effluent. Magnesium loss was calculated from an equation for conservation of mass, and arterial magnesium concentration was described by an equation for exponential decay. Using flow rates typical of adults receiving CVVHDF, we determined a median half-life for arterial magnesium concentration to decay to a new steady state of 4.73 hours (interquartile range [IQR], 3.73-7.32 hours). Median arterial magnesium concentration was 0.88mmol/L (IQR, 0.83-0.97mmol/L) in the heparin group and 0.79mmol/L (IQR, 0.69-0.91mmol/L) in the citrate group. Arterial magnesium concentrations fell below the reference range regularly in the citrate group and, when low, there was magnesium flux from dialysate to patient. Magnesium loss was greater in patients receiving citrate. Exponential decline in magnesium concentrations was sufficiently rapid that subtherapeutic serum magnesium concentrations may occur well before detection when once-daily sampling was used. Measurements should be interpreted with regard to timing of magnesium infusions. We suggest that continuous renal replacement therapy fluids with higher magnesium concentrations be introduced in the critical care setting.
Composition of single-step media used for human embryo culture.
Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin
2017-04-01
To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Serum magnesium and the risk of prediabetes: a population-based cohort study.
Kieboom, Brenda C T; Ligthart, Symen; Dehghan, Abbas; Kurstjens, Steef; de Baaij, Jeroen H F; Franco, Oscar H; Hofman, Albert; Zietse, Robert; Stricker, Bruno H; Hoorn, Ewout J
2017-05-01
Previous studies have found an association between serum magnesium and incident diabetes; however, this association may be due to reverse causation, whereby diabetes may induce urinary magnesium loss. In contrast, in prediabetes (defined as impaired fasting glucose), serum glucose levels are below the threshold for urinary magnesium wasting and, hence, unlikely to influence serum magnesium levels. Thus, to study the directionality of the association between serum magnesium levels and diabetes, we investigated its association with prediabetes. We also investigated whether magnesium-regulating genes influence diabetes risk through serum magnesium levels. Additionally, we quantified the effect of insulin resistance in the association between serum magnesium levels and diabetes risk. Within the population-based Rotterdam Study, we used Cox models, adjusted for age, sex, lifestyle factors, comorbidities, kidney function, serum levels of electrolytes and diuretic use, to study the association between serum magnesium and prediabetes/diabetes. In addition, we performed two mediation analyses: (1) to study if common genetic variation in eight magnesium-regulating genes influence diabetes risk through serum magnesium levels; and (2) to quantify the proportion of the effect of serum magnesium levels on diabetes that is mediated through insulin resistance (quantified by HOMA-IR). A total of 8555 participants (mean age, 64.7 years; median follow-up, 5.7 years) with normal glucose levels (mean ± SD: 5.46 ± 0.58 mmol/l) at baseline were included. A 0.1 mmol/l decrease in serum magnesium level was associated with an increase in diabetes risk (HR 1.18 [95% CI 1.04, 1.33]), confirming findings from previous studies. Of interest, a similar association was found between serum magnesium levels and prediabetes risk (HR 1.12 [95% CI 1.01, 1.25]). Genetic variation in CLDN19, CNNM2, FXYD2, SLC41A2, and TRPM6 significantly influenced diabetes risk (p < 0.05), and for CNNM2, FXYD2, SLC41A2 and TRPM6 this risk was completely mediated by serum magnesium levels. We found that 29.1% of the effect of serum magnesium levels on diabetes was mediated through insulin resistance, whereas for prediabetes 13.4% was mediated through insulin resistance. Low serum magnesium levels are associated with an increased risk of prediabetes and this increased risk is similar to that of diabetes. Furthermore, common variants in magnesium-regulating genes modify diabetes risk through serum magnesium levels. Both findings support a potential causal role of magnesium in the development of diabetes, where the hypothesised pathway is partly mediated through insulin resistance.
Phase change of hydromagnesite, Mg5(CO3)4(OH)2 4H2O by thermal decomposition
NASA Astrophysics Data System (ADS)
Yamamoto, G. I.; Kyono, A.; Tamura, T.
2017-12-01
In recent years, the global warming is the most important environment problem, and thus attempts of CO2 geological storage have been made to remove carbon dioxide from the atmosphere all over the world (XUE and Nakao 2008). Regarding mineral CO2 sequestration, CO2 is chemically stored in solid carbonates by carbonation of minerals. Magnesium and calcium carbonates have long been known as a good CO2 storage. Hydrous magnesium carbonates can be, however, considered as much better candidates for CO2 storage because they precipitate easily from aqueous solutions. The typical hydrous magnesium carbonates are nesquehonite, MgCO3 3H2O and hydromagnesite, Mg5(CO3)4(OH)2 4H2O. Concerning their thermal properties, the former has been studied in detail, whereas, the latter is not enough. In this study, we performed in-site high-temperature X-ray diffraction (XRD) and thermogravimetric and differential thermal (TG-DTA) analyses to reveal the phase change of hydromagnesite at high temperature. The high-temperature XRD and TG-DTA were measured up to 320 oC and 550 oC, respectively. The results of in-site high-temperature XRD showed that, no significant change was observed up to 170 oC. With increasing temperature, the intensities of started to decrease at 200 oC, and all peaks disappeared at 290 oC. Above the temperature of the decomposition a few peaks corresponding to periclase appeared. The results of TG-DTA clearly showed that there were two weight loss steps in the temperature range of 200 to 340 oC and 340 to 500 oC, which correspond to the dehydration and decarbonation of hydromagnesite, respectively. These weight losses were accompanied by the endothermic maxima in the DTA. The dihydroxylation of hydromagnesite is spread over the two steps. Therefore, hydromagnesite decomposes into periclase, carbon dioxide, and water without passing through magnesite around 300 oC as following reaction: Mg5(CO3)4(OH)2 4H2O → 5MgO + 4CO2 + 5H2O.
Knighton, J.B.
1963-11-01
A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)
Sodium-dependent magnesium uptake by ferret red cells.
Flatman, P W; Smith, L M
1991-01-01
1. Magnesium uptake can be measured in ferret red cells incubated in media containing more than 1 mM-magnesium. Uptake is substantially increased if the sodium concentration in the medium is reduced. 2. Magnesium uptake is half-maximally activated by 0.37 mM-external magnesium when the external sodium concentration is 5 mM. Increasing the external sodium concentration increases the magnesium concentration needed to activate the system. 3. Magnesium uptake is increased by reducing the external sodium concentration. Uptake is half-maximum at sodium concentrations of 17, 22 and 62 nM when the external magnesium concentrations are 2, 5 and 10 mM respectively. 4. Replacement of external sodium with choline does not affect the membrane potential of ferret red cells over a 45 min period. 5. Magnesium uptake from media containing 5 mM-sodium is inhibited by amiloride, quinidine and imipramine. It is not affected by ouabain or bumetanide. Vanadate stimulates magnesium uptake but has no effect on magnesium efflux. 6. When cell ATP content is reduced to 19 mumol (1 cell)-1 by incubating cells for 3 h with 2-deoxyglucose, magnesium uptake falls by 50% in the presence of 5 mM-sodium and is completely abolished in the presence of 145 mM-sodium. Some of the inhibition may be due to the increase in intracellular ionized magnesium concentration ([Mg2+]i) from 0.7 to 1.0 mM which occurs under these conditions. 7. Magnesium uptake can be driven against a substantial electrochemical gradient if the external sodium concentration is reduced sufficiently. 8. These findings are discussed in terms of several possible models for magnesium transport. It is concluded that the majority of magnesium uptake observed in low-sodium media is via sodium-magnesium antiport. A small portion of uptake is through a parallel leak pathway. It is believed that the antiport is responsible for maintaining [Mg2+]i below electrochemical equilibrium in these cells at physiological external sodium concentration. Thus in ferret red cells the direction of magnesium transport can be reversed by reversing the sodium gradient. PMID:1822527
Effects of extracellular magnesium on the differentiation and function of human osteoclasts.
Wu, Lili; Luthringer, Bérengère J C; Feyerabend, Frank; Schilling, Arndt F; Willumeit, Regine
2014-06-01
Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Smith, Scott M.; Zwart, Sara R.
2015-01-01
Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248
Smith, Scott M; Zwart, Sara R
2015-12-08
Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.
ERIC Educational Resources Information Center
da Silva, J. J. R. Frausto
1983-01-01
Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)
Literature Survey on Decorporation of Radionuclides from the Human Body
2002-04-01
66 8. Adverse Health Effects Associated with... effects ........................................... 66 Table 11- Common foods with chelating effects ...Mn Tetracycline Fe, MR, Mn, Mo, Al, Ca Table 11- Common foods with chelating effects Foodstuff Chelate Cq hhPe 1314 99 M. 75’s Eggs 59Fe Soybean 65Zn
In situ removal of contamination from soil
Lindgren, Eric R.; Brady, Patrick V.
1997-01-01
A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.
In situ removal of contamination from soil
Lindgren, E.R.; Brady, P.V.
1997-10-14
A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.
Iron chelation therapy for transfusional iron overload: a swift evolution.
Musallam, Khaled M; Taher, Ali T
2011-01-01
Chronic transfusional iron overload leads to significant morbidity and mortality. While deferoxamine (DFO) is an effective iron chelator with over four decades of experience, it requires tedious subcutaneous infusions that reflect negatively on patient compliance. The novel oral iron chelators deferiprone (L1) and deferasirox (DFRA) opened new horizons for the management of transfusional siderosis. A large body of evidence is now available regarding their efficacy and safety in various populations and settings. Nevertheless, experience with both drugs witnessed some drawbacks, and the search for an ideal and cost-effective iron chelator continues.
Chelate effects in sulfate binding by amide/urea-based ligands.
Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin
2015-07-07
The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.
SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF
Magnusson, L.B.
1958-04-01
A process is described for the separation of neptunium, from aqueous solutions of neptunium, plutonium, uraniunn, and fission prcducts. This separation from an acidic aqueous solution of a tetravalent neptuniunn can be made by contacting the solution with a certain type of chelating,; agent, preferably dissolved in an organic solvent, to form a neptunium chelate compound. When the organic solvent is present, the neptunium chelate compound is extracted; otherwise, it precipitates from the aqueous solution and is separated by any suitable means. The chelating agent is a fluorinated BETA -diketone. such as trifluoroacetyl acetone.
3-hydroxy-2(1H)-pyridinone chelating agents
Raymond, K.; Xu, J.
1999-04-06
Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.
3-hydroxy-2(1H)-pyridinone chelating agents
Raymond, Kenneth; Xu, Jide
1999-01-01
Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.
2006-03-03
Chelating agents bind lead in soft tissues and are used in the treatment of lead poisoning to enhance urinary and biliary excretion of lead, thus decreasing total lead levels in the body. During the past 30 years, environmental and dietary exposures to lead have decreased substantially, resulting in a considerable decrease in population blood lead levels (BLLs) and a corresponding decrease in the number of patients requiring chelation therapy. Chelating agents also increase excretion of other heavy metals and minerals, such as zinc and, in certain cases, calcium. This report describes three deaths associated with chelation-therapy--related hypocalcemia that resulted in cardiac arrest. Several drugs are used in the treatment of lead poisoning, including edetate disodium calcium (CaEDTA), dimercaperol (British anti-Lewisite), D-penicillamine, and meso-2,3-dimercaptosuccinic acid (succimer). Health-care providers who are unfamiliar with chelating agents and are considering this treatment for lead poisoning should consult an expert in the chemotherapy of lead poisoning. Hospital pharmacies should evaluate whether continued stocking of Na2EDTA is necessary, given the established risk for hypocalcemia, the availability of less toxic alternatives, and an ongoing safety review by the Food and Drug Administration (FDA). Health-care providers and pharmacists should ensure that Na2EDTA is not administered to children during chelation therapy.
Diamantidis, Michael D; Neokleous, Nikolaos; Agapidou, Aleka; Vetsiou, Evaggelia; Manafas, Achilles; Fotiou, Paraskevi; Vlachaki, Efthymia
2016-05-01
The life expectancy of thalassemic patients has increased, and now approaches that of healthy individuals, thanks to improved treatment regimens. However, pregnancy in women with β-Thalassemia Μajor remains a challenging condition. Recent advances in managing this haemoglobinopathy offer the potential for safe pregnancies with favorable outcome. However, clinical data regarding the use of chelation therapy during pregnancy are limited, and it is unclear whether these agents impose any risk to the developing fetus. Successful pregnancies following unintentional treatment with deferoxamine or deferasirox have rarely been reported. Generally, chelators are not recommended during pregnancy. Regarding the new oral chelators, data on fetotoxicity are lacking. In the present study, we describe the evolution and successful outcome of nine pregnancies in six Greek thalassemic women who received deferasirox inadvertently during early pregnancy, and review the literature regarding fetal anomalies due to chelators. Use of chelation before embarking upon a non-programmed pregnancy remains a difficult and unresolved question. In our study, chelation treatment during pregnancy did not prevent the delivery of healthy children. Nonetheless, the use of deferasirox is contraindicated in pregnant women, based on the product label. Deferasirox should only be used during pregnancy if the potential benefit outweighs the potential fetal risk.
Neufeld, Ellis J.
2006-01-01
For nearly 30 years, patients with transfusional iron overload have depended on nightly deferoxamine infusions for iron chelation. Despite dramatic gains in life expectancy in the deferoxamine era for patients with transfusion-dependent anemias, the leading cause of death for young adults with thalassemia major and related disorders has been cardiac disease from myocardial iron deposition. Strategies to reduce cardiac disease by improving chelation regimens have been of the highest priority. These strategies have included development of novel oral iron chelators to improve compliance, improved assessment of cardiac iron status, and careful epidemiologic assessment of European outcomes with deferiprone, an oral alternative chelator available for about a decade. Each of these strategies is now bearing fruit. The novel oral chelator deferasirox was recently approved by the Food and Drug Administration (FDA); a randomized clinical trial demonstrates that deferasirox at 20 to 30 mg/kg/d can maintain or improve hepatic iron in thalassemia as well as deferoxamine. A randomized trial based on cardiac T2* magnetic resonance imaging (MRI) suggests that deferiprone can unload myocardial iron faster than deferoxamine. Retrospective epidemiologic data suggest dramatic reductions in cardiac events and mortality in Italian subjects exposed to deferiprone compared with deferoxamine. These developments herald a new era for iron chelation, but many unanswered questions remain. PMID:16627763
The Effect of Different Tea Varieties on Iron Chelation
NASA Astrophysics Data System (ADS)
Truong, S. K.; Karim, R.
2016-12-01
The chief objectives of this experiment are to distinguish which type of tea of four variants, pomegranate blackberry green, green, lemon chamomile (herbal), and earl grey (black), are capable of chelating the most iron (III) chloride (FeCl3) through titration. We hypothesized that if each tea variety chelates differing amounts of iron chloride, and if we conduct an experiment in which four different teas are mixed in the same amount of water, iron chloride, and iron chloride indicator EDTA, then the pomegranate blackberry green tea will bind to the most iron due to its large amount of fruit antioxidants. To summarize our methodology, we prepared three solutions of each tea, dissolved with 1 gram of FeCl3 to test three trials per tea variety. The chelation process took place overnight as teas cooled. Six drops of iron chloride indicator added to each solution began the titration. The necessary amount of 0.1M EDTA (ethylenediaminetetraacetic acid) drops required for each solution to turn to a universal amber color from its original dark tone indicates how many free iron molecules were left unbound by the tea solution. After careful analysis of the data, we discovered that blackberry pomegranate green tea possessed the best chelating abilities with 97.48% of FeCl3 adsorbed. Green tea followed with 96.67%. Herbal tea chelated 94.24% of the iron while earl grey absorbed the least amount at 93.43%. From our conclusion, we drew that since blackberry pomegranate green tea contained the highest amount of polyphenols and antioxidants as well as epigallocatechin gallate (EGCG) found in green teas, it was able to chelate the most amount of iron. The substances mentioned in blackberry pomegranate green tea possess the ability to form strong bonds with multiple heavy metals, such as iron (III) chloride atoms. Overall, each variety of tea contains different organic substances. Each of these substances possesses a unique chelating ability, determining how well the type of tea can bond to iron. Among the teas being tested in this experiment, blackberry pomegranate green tea absorbed the most iron, thus acting as the superior chelating agent. Our experiment opens up new opportunities for investigations in chelation therapy and heavy metal poisoning through the knowledge of biological chelating agents.
Lamas, Gervasio A; Goertz, Christine; Boineau, Robin; Mark, Daniel B; Rozema, Theodore; Nahin, Richard L; Lindblad, Lauren; Lewis, Eldrin F; Drisko, Jeanne; Lee, Kerry L
2013-03-27
Chelation therapy with disodium EDTA has been used for more than 50 years to treat atherosclerosis without proof of efficacy. To determine if an EDTA-based chelation regimen reduces cardiovascular events. Double-blind, placebo-controlled, 2 × 2 factorial randomized trial enrolling 1708 patients aged 50 years or older who had experienced a myocardial infarction (MI) at least 6 weeks prior and had serum creatinine levels of 2.0 mg/dL or less. Participants were recruited at 134 US and Canadian sites. Enrollment began in September 2003 and follow-up took place until October 2011 (median, 55 months). Two hundred eighty-nine patients (17% of total; n=115 in the EDTA group and n=174 in the placebo group) withdrew consent during the trial. Patients were randomized to receive 40 infusions of a 500-mL chelation solution (3 g of disodium EDTA, 7 g of ascorbate, B vitamins, electrolytes, procaine, and heparin) (n=839) vs placebo (n=869) and an oral vitamin-mineral regimen vs an oral placebo. Infusions were administered weekly for 30 weeks, followed by 10 infusions 2 to 8 weeks apart. Fifteen percent discontinued infusions (n=38 [16%] in the chelation group and n=41 [15%] in the placebo group) because of adverse events. The prespecified primary end point was a composite of total mortality, recurrent MI, stroke, coronary revascularization, or hospitalization for angina. This report describes the intention-to-treat comparison of EDTA chelation vs placebo. To account for multiple interim analyses, the significance threshold required at the final analysis was P = .036. Qualifying previous MIs occurred a median of 4.6 years before enrollment. Median age was 65 years, 18% were female, 9% were nonwhite, and 31% were diabetic. The primary end point occurred in 222 (26%) of the chelation group and 261 (30%) of the placebo group (hazard ratio [HR], 0.82 [95% CI, 0.69-0.99]; P = .035). There was no effect on total mortality (chelation: 87 deaths [10%]; placebo, 93 deaths [11%]; HR, 0.93 [95% CI, 0.70-1.25]; P = .64), but the study was not powered for this comparison. The effect of EDTA chelation on the components of the primary end point other than death was of similar magnitude as its overall effect (MI: chelation, 6%; placebo, 8%; HR, 0.77 [95% CI, 0.54-1.11]; stroke: chelation, 1.2%; placebo, 1.5%; HR, 0.77 [95% CI, 0.34-1.76]; coronary revascularization: chelation, 15%; placebo, 18%; HR, 0.81 [95% CI, 0.64-1.02]; hospitalization for angina: chelation, 1.6%; placebo, 2.1%; HR, 0.72 [95% CI, 0.35-1.47]). Sensitivity analyses examining the effect of patient dropout and treatment adherence did not alter the results. Among stable patients with a history of MI, use of an intravenous chelation regimen with disodium EDTA, compared with placebo, modestly reduced the risk of adverse cardiovascular outcomes, many of which were revascularization procedures. These results provide evidence to guide further research but are not sufficient to support the routine use of chelation therapy for treatment of patients who have had an MI. clinicaltrials.gov Identifier: NCT00044213.
A Comparison of the Greenhouse Impacts of Magnesium Produced By Electrolytic and Pidgeon Processes
NASA Astrophysics Data System (ADS)
Ramakrishnan, Subramania; Koltun, Paul
With a focus on the global warming impact, this paper deals with the cradle-to-gate life cycle study of the following two practical production systems for producing magnesium ingots: (i) Magnesite ore is processed using the Australian Magnesium process to produce anhydrous magnesium chloride, which is then electrolysed to produce magnesium; and (ii) Dolomite ore is calcined to produce magnesium oxide, which is then thermally reduced with ferrosilicon using the Pidgeon process, based on the current practice used in China for magnesium production
Total synthesis of (±)-antroquinonol d.
Sulake, Rohidas S; Jiang, Yan-Feng; Lin, Hsiao-Han; Chen, Chinpiao
2014-11-21
Total synthesis of (±)-antroquinonol D, which is isolated from very expensive and rarely found Antrodia camphorata and which has potential anticancer properties, was achieved from 4-methoxyphenol. In addition, a Michael addition to dimethoxy cyclohexadienones was studied. The main step involved chelation and substrate-controlled diastereoselective reduction of cyclohexenone and lactonization. Lactone synthesis facilitated the diastereoselective reduction of ketone, which help control the desired stereochemistry at the crucial stereogenic center in the natural product. Other key reactions in the synthesis involved a Michael addition of dimethyl malonate on cyclohexadienone, dihydroxylation, and Wittig olefination. A sesquiterpene side chain was synthesized through coupling with geranyl phenyl sulfide and Bouveault-Blanc reduction.
An overview of the kinetic parameters of class B beta-lactamases.
Felici, A; Amicosante, G; Oratore, A; Strom, R; Ledent, P; Joris, B; Fanuel, L; Frère, J M
1993-01-01
The catalytic properties of three class B beta-lactamases (from Pseudomonas maltophilia, Aeromonas hydrophila and Bacillus cereus) were studied and compared with those of the Bacteroides fragilis enzyme. The A. hydrophila beta-lactamase exhibited a unique specificity profile and could be considered as a rather specific 'carbapenemase'. No relationships were found between sequence similarities and catalytic properties. The problem of the repartition of class B beta-lactamases into sub-classes is discussed. Improved purification methods were devised for the P. maltophilia and A. hydrophila beta-lactamases including, for the latter enzyme, a very efficient affinity chromatography step on a Zn(2+)-chelate column. Images Figure 1 PMID:8471035
Biochemical characterization of the THIN-B metallo-beta-lactamase of Janthinobacterium lividum.
Docquier, Jean-Denis; Lopizzo, Teresa; Liberatori, Sabrina; Prenna, Manuela; Thaller, Maria Cristina; Frère, Jean-Marie; Rossolini, Gian Maria
2004-12-01
The THIN-B metallo-beta-lactamase, a subclass B3 enzyme produced by the environmental species Janthinobacterium lividum, was overproduced in Escherichia coli by means of a T7-based expression system. The enzyme was purified (>95%) by two ion-exchange chromatography steps and subjected to biochemical analysis. The native THIN-B enzyme is a monomeric protein of 31 kDa. It exhibits the highest catalytic efficiencies with carbapenem substrates and cephalosporins, except for cephaloridine, which acts as a poor inactivator. Individual rate constants for inactivation by chelators were measured, suggesting that inactivation occurred by a mechanism involving formation of a ternary complex.
Biochemical Characterization of the THIN-B Metallo-β-Lactamase of Janthinobacterium lividum
Docquier, Jean-Denis; Lopizzo, Teresa; Liberatori, Sabrina; Prenna, Manuela; Thaller, Maria Cristina; Frère, Jean-Marie; Rossolini, Gian Maria
2004-01-01
The THIN-B metallo-β-lactamase, a subclass B3 enzyme produced by the environmental species Janthinobacterium lividum, was overproduced in Escherichia coli by means of a T7-based expression system. The enzyme was purified (>95%) by two ion-exchange chromatography steps and subjected to biochemical analysis. The native THIN-B enzyme is a monomeric protein of 31 kDa. It exhibits the highest catalytic efficiencies with carbapenem substrates and cephalosporins, except for cephaloridine, which acts as a poor inactivator. Individual rate constants for inactivation by chelators were measured, suggesting that inactivation occurred by a mechanism involving formation of a ternary complex. PMID:15561856
Tsao, Yu-Tzu; Shih, Ya-Yi; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K
2017-02-21
Magnesium is essential for numerous physiological functions. Magnesium exists mostly in bone and the amount is dynamically regulated by skeletal remodeling. Accelerating bone mass loss occurs when magnesium intake is insufficient; whereas high magnesium could lead to mineralization defects. However, the underlying magnesium regulatory mechanisms remain elusive. In the present study, we investigated the effects of high extracellular magnesium concentration on osteogenic differentiation of mesenchymal stromal/stem cells (MSCs) and the role of magnesium transporter SLC41A1 in the mineralization process. Murine MSCs derived from the bone marrow of BALB/c mouse or commercially purchased human MSCs were treated with osteogenic induction medium containing 5.8 mM magnesium chloride and the osteogenic differentiation efficiency was compared with that of MSCs in normal differentiation medium containing 0.8 mM magnesium chloride by cell morphology, gene expression profile of osteogenic markers, and Alizarin Red staining. Slc41a1 gene knockdown in MSCs was performed by siRNA transfection using Lipofectamine RNAiMAX, and the differentiation efficiency of siRNA-treated MSCs was also assessed. High concentration of extracellular magnesium ion inhibited mineralization during osteogenic differentiation of MSCs. Early osteogenic marker genes including osterix, alkaline phosphatase, and type I collagen were significantly downregulated in MSCs under high concentration of magnesium, whereas late marker genes such as osteopontin, osteocalcin, and bone morphogenetic protein 2 were upregulated with statistical significance compared with those in normal differentiation medium containing 0.8 mM magnesium. siRNA treatment targeting SLC41A1 magnesium transporter, a member of the solute carrier family with a predominant Mg 2+ efflux system, accelerated the mineralization process and ameliorated the inhibition of mineralization caused by high concentration of magnesium. High concentration of magnesium significantly upregulated Dkk1 gene expression and the upregulation was attenuated after the Slc41a1 gene was knocked down. Immunofluorescent staining showed that Slc41a1 gene knockdown promoted the translocation of phosphorylated β-catenin into nuclei. In addition, secreted MGP protein was elevated after Slc41a1 was knocked down. High concentration of extracellular magnesium modulates gene expression of MSCs during osteogenic differentiation and inhibits the mineralization process. Additionally, we identified magnesium transporter SLC41A1 that regulates the interaction of magnesium and MSCs during osteogenic differentiation. Wnt signaling is suggested to be involved in SLC41A1-mediated regulation. Tissue-specific SLC41A1 could be a potential treatment for bone mass loss; in addition, caution should be taken regarding the role of magnesium in osteoporosis and the design of magnesium alloys for implantation.
Magnesium status and the effect of magnesium supplementation in feline hypertrophic cardiomyopathy.
Freeman, L M; Brown, D J; Smith, F W; Rush, J E
1997-07-01
Magnesium deficiency has been associated with the development of cardiovascular disease in several species. Cats may be predisposed to alterations in magnesium status because of recent changes in the composition of commercial feline diets. The purposes of this study were 1) to examine the dietary history of cats with hypertrophic cardiomyopathy (HCM), 2) to study magnesium status of cats with HCM compared to normal cats, and 3) to determine the effects of magnesium supplementation in cats with HCM. In part 1 of the study, diets of 65 cats with HCM were examined retrospectively. Forty of the 45 cats for which diets could be determined (89%) ate a diet designed to be magnesium-restricted and/or to produce an acidic urine. In part 2 of the study, 10 cats with HCM were compared to 10 healthy control cats for serum creatinine and magnesium; urine creatinine and magnesium, urine specific gravity and pH, and fractional excretion of magnesium. Urine creatinine and specific gravity were higher in control cats than in cats with HCM. No other differences were found between the 2 groups. In part 3, cats with HCM were supplemented with either 210 mg magnesium chloride (n = 15) or 210 mg lactose (n = 15) for 12 wk. No differences between the 2 groups were found for changes in either magnesium status or echocardiographic parameters. However, the 30 cats with HCM, as a group, did show significant improvements in measures of cardiac hypertrophy over the 12-week period. This was likely the result of treatment with other medications, rather than the magnesium supplementation. The results of this study suggest that cats with HCM are likely to be fed magnesium-restricted diets, but that they do not appear to have altered magnesium status compared to healthy controls.
Han, Hedong; Fang, Xin; Wei, Xin; Liu, Yuzhou; Jin, Zhicao; Chen, Qi; Fan, Zhongjie; Aaseth, Jan; Hiyoshi, Ayako; He, Jia; Cao, Yang
2017-05-05
The findings of prospective cohort studies are inconsistent regarding the association between dietary magnesium intake and serum magnesium concentration and the risk of hypertension. We aimed to review the evidence from prospective cohort studies and perform a dose-response meta-analysis to investigate the relationship between dietary magnesium intake and serum magnesium concentrations and the risk of hypertension. We searched systematically PubMed, EMBASE and the Cochrane Library databases from October 1951 through June 2016. Prospective cohort studies reporting effect estimates with 95% confidence intervals (CIs) for hypertension in more than two categories of dietary magnesium intake and/or serum magnesium concentrations were included. Random-effects models were used to combine the estimated effects. Nine articles (six on dietary magnesium intake, two on serum magnesium concentration and one on both) of ten cohort studies, including 20,119 cases of hypertension and 180,566 participates, were eligible for inclusion in the meta-analysis. We found an inverse association between dietary magnesium intake and the risk of hypertension [relative risk (RR) = 0.92; 95% CI: 0.86, 0.98] comparing the highest intake group with the lowest. A 100 mg/day increment in magnesium intake was associated with a 5% reduction in the risk of hypertension (RR = 0.95; 95% CI: 0.90, 1.00). The association of serum magnesium concentration with the risk of hypertension was marginally significant (RR = 0.91; 95% CI: 0.80, 1.02). Current evidence supports the inverse dose-response relationship between dietary magnesium intake and the risk of hypertension. However, the evidence about the relationship between serum magnesium concentration and hypertension is limited.
Shah, G M; Winer, R L; Cutler, R E; Arieff, A I; Goodman, W G; Lacher, J W; Schoenfeld, P Y; Coburn, J W; Horowitz, A M
1987-10-01
While the use of magnesium-containing compounds is usually contraindicated in dialysis patients, the risk of toxicity from hypermagnesemia can be reduced by lowering the magnesium concentration in dialysate. We examined the effects of a magnesium-free dialysate on both serum magnesium level and the peritoneal removal rate of magnesium over 12 weeks in 25 stable patients undergoing continuous ambulatory peritoneal dialysis (CAPD). After 2 weeks, the serum magnesium level decreased from 2.2 to 1.9 mg/dL (0.9 to 0.8 mmol/L) (P less than .02) and the peritoneal removal rate increased from 66 to 83 mg/d (2.8 to 3.5 mmol/d) (P less than .05), with both values remaining stable thereafter. There was a strong association between these parameters (r = -0.62, P less than .05), suggesting that the serum magnesium level decreased as a result of the initial increased peritoneal removal rate. For an additional 4-week period, a subgroup of nine patients received magnesium-containing, phosphate binding agents instead of those containing only aluminum. During this phase, serum inorganic phosphorus was well controlled. The serum magnesium level increased only from 1.8 to 2.5 mg/dL (0.7 to 1.0 mmol/L) (P less than .05), due in great part to the concomitant 41% rise in peritoneal magnesium removal from 91 to 128 mg/d (3.8 to 5.3 mmol/d) (P less than .05). No toxicity was noted during the entire 16-week study period, nor did serum calcium change. Thus, serum magnesium levels remained within an acceptable range as magnesium-containing phosphate binders were given through the use of magnesium-free peritoneal dialysate.(ABSTRACT TRUNCATED AT 250 WORDS)
40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium... introductions of pollutants into publicly owned treatment works from the process operations of the magnesium...
40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium... introductions of pollutants into publicly owned treatment works from the process operations of the magnesium...
Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui; ...
2017-08-24
Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g -1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
Effect of magnesium on arrhythmia incidence in patients undergoing coronary artery bypass grafting.
Mohammadzadeh, Alireza; Towfighi, Farshad; Jafari, Naser
2018-06-01
Cardiac arrhythmia after coronary artery bypass grafting (CABG) surgery is a common complication of cardiac surgery. The effect of serum magnesium, hypomagnesaemia treatment and prophylactic administration of magnesium in the development and prevention of arrhythmias is controversial and there are many different ideas. This study evaluates the therapeutic effects of magnesium in cardiac arrhythmia after CABG surgery. The clinical trial enrolled 250 patients who underwent CABG. Based on the initial serum levels of magnesium, patients were divided into two groups: hypomagnesium and normomagnesium. Based on bioethics committee requirements, patients in the hypo-magnesium group received magnesium treatments until they attained normal magnesium blood levels. Both groups underwent CABG with normal blood levels of magnesium. After surgery, each group was randomly divided into two subgroups: one subgroup received a bolus dose of magnesium sulphate (30 mg/kg in 5 min) and the other subgroup received a placebo. Subgroups were under observation in the intensive care unit for 3 days and arrhythmias were recorded. Data from all four subgroups were analysed statistically and interpreted. The results of this study showed that the occurrence of arrhythmia was not significantly different among subgroups (P > 0.05). There was no significant relationship between blood levels of magnesium and arrhythmia during the 3 days post-surgery (P > 0.05). The results of this study showed that magnesium sulphate administration did not significantly improve the incidence of arrhythmias in hypo- and normo-magnesium patients after CABG. There was no significant correlation between post-operative serum levels of magnesium and arrhythmia during 3 days. © 2017 Royal Australasian College of Surgeons.
Impact of magnesium:calcium ratio on calcification of the aortic wall
2017-01-01
Objective An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Approach and results Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Conclusion Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio. PMID:28570619
Daily magnesium intake and serum magnesium concentration among Japanese people.
Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori
2008-01-01
The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. The mean (+/-standard deviation) daily magnesium intake was 322 (+/-132), 323 (+/-163), and 322 (+/-147) mg/day for men, women, and the entire group, respectively. The mean (+/-standard deviation) serum magnesium concentration was 20.69 (+/-2.83), 20.69 (+/-2.88), and 20.69 (+/-2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log(10)X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed.
Wu, Ningjie; Kang, Chi Soo; Sin, Inseok; Ren, Siyuan; Liu, Dijie; Ruthengael, Varyanna C.; Lewis, Michael R.; Chong, Hyun-Soon
2016-01-01
Positron emission tomography (PET) using copper-64 is a sensitive and non-invasive imaging technique for diagnosis and staging of cancer. A bifunctional chelator that can present rapid radiolabeling kinetics and high complex stability with 64Cu is a critical component for targeted PET imaging. Bifunctional chelates 3p-C-NE3TA, 3p-C-NOTA, and 3p-C-DE4TA were evaluated for complexation kinetics and stability with 64Cu in vitro and in vivo. Hexadentate 3p-C-NOTA and heptadentate 3p-C-NE3TA possess a smaller TACN-based macrocyclic backbone, while nonadentate 3p-C-DE4TA is constructed on a larger CYCLEN-based ring. The frequently explored chelates of 64Cu, octadentate C-DOTA and hexadentate C-NOTA were also comparatively evaluated. Radiolabeling kinetics of bifunctional chelators with 64Cu was assessed under mild conditions. All bifunctional chelates instantly bound to 64Cu in excellent radiolabeling efficiency at room temperature. C-DOTA was less efficient in binding 64Cu than all other chelates. All 64Cu-radiolabeled bifunctional chelates remained stable in human serum without any loss of 64Cu for 2 days. When challenged by an excess amount of EDTA, 64Cu complexes of 3p-C-NE3TA and 3p-C-NOTA were shown to be more stable than 64Cu-C-DOTA and 64Cu-C-DE4TA. 3p-C-NE3TA and 3p-C-NOTA displayed comparable in vitro and in vivo complex stability to 64Cu-C-NOTA. In vivo biodistribution result indicates that the 64Cu-radiolabeled complexes of 3p-C-NOTA and 3p-C-NE3TA possess excellent in vivo complex stability, while 64Cu-3p-C-DE4TA was dissociated as evidenced by high renal and liver retention in mice. The results of in vitro and in vivo studies suggest that the bifunctional chelates 3p-C-NOTA and 3p-C-NE3TA offer excellent chelation chemistry with 64Cu for potential PET imaging applications. PMID:26666778
NASA Astrophysics Data System (ADS)
Snow, M. A.; Machol, J. L.; Richard, E. C.
2016-12-01
Solar spectral irradiance (SSI) has been measured since the beginning of the satellite era in 1978, but the observational record has many gaps in both wavelength and time. We describe our current effort in linking several such datasets ranging from the Extreme Ultraviolet to the Near Ultraviolet (0-400 nm). This wavelength range includes two important solar activity proxies, the Magnesium II core—to-wing ratio and the Lyman alpha irradiance, and special attention will be applied to these two wavelength intervals.
A Novel Nuclease Activity that is Activated by Ca2+ Chelated to EGTA
Dominguez, Kenneth; Ward, W. Steven
2010-01-01
Most nucleases require a divalent cation as a cofactor, usually Mg2+ or Ca2+, and are inhibited by the chelators EDTA and EGTA. We report the existence of a novel nuclease activity, initially identified in the luminal fluids of the mouse male reproductive tract but subsequently found in other tissues, that requires EGTA chelated to calcium to digest DNA. We refer to this unique enzyme as CEAN (Chelated EGTA Activated Nuclease). Using a fraction of vas deferens luminal fluid, plasmid DNA was degraded in the presence of excess Ca2+ (Ca2+:EGTA = 16) or excess EGTA (Ca2+:EGTA = 0.25), but required the presence of both. Higher levels of EGTA (Ca2+:EGTA = 0.10) prevented activity, suggesting that unchelated EGTA may be a competitive inhibitor. The EGTA-Ca2+ activation of CEAN is reversible as removing EGTA-Ca2+ stops ongoing DNA degradation, but adding EGTA-Ca2+ again reactivates the enzyme. This suggests the possibility that CEAN binds directly to EGTA-Ca2+. CEAN has a greater specificity for the chelator than for the divalent cation. Two other chelators, BAPTA and sodium citrate, do not activate CEAN in the presence of cation, but chelated EDTA does. EGTA chelated to other divalent cations such as Mn2+, Zn2+, and Cu2+ activate CEAN, but not Mg2+. The activity is lost upon boiling suggesting that it is a protein. These data suggest that EGTA and EDTA may not always prevent DNA from nuclease damage. PMID:19938954
Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease.
Wang, Nan; Jin, Xin; Guo, Dongbo; Tong, Gangsheng; Zhu, Xinyuan
2017-02-13
Iron accumulation in substantia nigra pars compacta (SNpc) has been proved to be a prominent pathophysiological feature of Parkinson's diseases (PD), which can induce the death of dopaminergic (DA) neurons, up-regulation of reactive oxygen species (ROS), and further loss of motor control. In recent years, iron chelation therapy has been demonstrated to be an effective treatment for PD, which has shown significant improvements in clinical trials. However, the current iron chelators are suboptimal due to their short circulation time, side effects, and lack of proper protection from chelation with ions in blood circulation. In this work, we designed and constructed iron chelation therapeutic nanoparticles protected by a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) to delay the saturation of iron chelators in blood circulation and prolong the in vivo lifetime, with HIV-1 trans-activating transcriptor (TAT) served as a shuttle to enhance the blood-brain barrier (BBB) permeability. We explored and investigated whether the Parkinsonian neurodegeneration and the corresponding symptoms in behaviors and physiologies could be prevented or reversed both in vitro and in vivo. The results demonstrated that iron chelator loaded therapeutic nanoparticles could reverse functional deficits in Parkinsonian mice not only physiologically but also behaviorally. On the contrary, both untreated PD mice and non-TAT anchored nanoparticle treated PD mice showed similar loss in DA neurons and difficulties in behaviors. Therefore, with protection of zwitterionic polymer and prolonged in vivo lifetime, iron chelator loaded nanoparticles with delayed saturation provide a PD phenotype reversion therapy and significantly improve the living quality of the Parkinsonian mice.
Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.
Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A
2016-10-01
Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Clioquinol-zinc chelate: a candidate causative agent of subacute myelo-optic neuropathy.
Arbiser, J. L.; Kraeft, S. K.; van Leeuwen, R.; Hurwitz, S. J.; Selig, M.; Dickersin, G. R.; Flint, A.; Byers, H. R.; Chen, L. B.
1998-01-01
BACKGROUND: 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol) was used clinically three decades ago as an oral antiparasitic agent and to increase intestinal absorption of zinc in patients with acrodermatitis enteropathica, a genetic disorder of zinc absorption. Use of clioquinol was epidemiologically linked to subacute myelo-optic neuropathy (SMON), characterized by peripheral neuropathy and blindness, which affected 10,000 patients in Japan. Discontinuation of oral clioquinol use led to elimination of SMON, however, the mechanism of how clioquinol induces neurotoxicity is unclear. MATERIALS AND METHODS: We tested the effect of clioquinol-metal chelates on neural crest-derived melanoma cells. The effect of clioquinol chelates on cells was further studied by electron microscopy and by a mitochondrial potential-sensitive fluorescent dye. RESULTS: Of the ions tested, only clioquinol-zinc chelate demonstrated cytotoxicity. The cytotoxicity of clioquinol-zinc chelate was extremely rapid, suggesting that its primary effect was on the mitochondria. Electron microscopic analysis demonstrated that clioquinol-zinc chelate caused mitochondrial damage. This finding was further confirmed by the observation that clioquinol-zinc chelate caused a decrease in mitochondrial membrane potential. CONCLUSIONS: We demonstrate that clioquinol, in the presence of zinc, is converted to a potent mitochondrial toxin. The phenomenon of clioquinol mediated toxicity appears to be specific to zinc and is not seen with other metals tested. Since clioquinol has been shown to cause increased systemic absorption of zinc in humans, it is likely that clioquinol-zinc chelate was present in appreciable levels in patients with SMON and may be the ultimate causative toxin of SMON. Images Fig. 2 Fig. 3 PMID:9848083
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... salt or by hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications of the Food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium hydroxide. 184.1428 Section 184.1428 Food... Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS...
A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu
Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less
Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"
NASA Astrophysics Data System (ADS)
Cole, Gerald S.
This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.
The Impact of Magnesium Sulfate Therapy on Angiogenic Factors in Preeclampsia
VADNAIS, Mary A.; RANA, Sarosh; QUANT, Hayley S.; SALAHUDDIN, Saira; DODGE, Laura E.; LIM, Kee-Hak; KARUMANCHI, S. Ananth; HACKER, Michele R.
2011-01-01
Objective The objective was to evaluate whether intravenous magnesium sulfate (magnesium) alters levels of angiogenic factors in women with preeclampsia. Study Design This was a prospective cohort study comparing women with preeclampsia treated with magnesium for seizure prophylaxis to those who were not. Serum levels of angiogenic factors, soluble fms-like tyrosine kinase 1, soluble endoglin and placental growth factor, were measured at the time of diagnosis and approximately 24 hours later. Secondary analysis compared women receiving magnesium for preeclampsia to women receiving magnesium for preterm labor. Analysis of covariance was used to compare levels at 24 hours, adjusting for levels at enrollment and potential confounders. Results Angiogenic factor levels did not differ between preeclampsia groups with and without magnesium or between preeclampsia and preterm labor groups treated with magnesium (all P > 0.05). Conclusion Magnesium likely decreases seizure risk in preeclampsia by a mechanism other than altering angiogenic factor levels. PMID:22247820
The Impact of Magnesium Sulfate Therapy on Angiogenic Factors in Preeclampsia.
Vadnais, Mary A; Rana, Sarosh; Quant, Hayley S; Salahuddin, Saira; Dodge, Laura E; Lim, Kee-Hak; Karumanchi, S Ananth; Hacker, Michele R
2012-01-01
OBJECTIVE: The objective was to evaluate whether intravenous magnesium sulfate (magnesium) alters levels of angiogenic factors in women with preeclampsia. STUDY DESIGN: This was a prospective cohort study comparing women with preeclampsia treated with magnesium for seizure prophylaxis to those who were not. Serum levels of angiogenic factors, soluble fms-like tyrosine kinase 1, soluble endoglin and placental growth factor, were measured at the time of diagnosis and approximately 24 hours later. Secondary analysis compared women receiving magnesium for preeclampsia to women receiving magnesium for preterm labor. Analysis of covariance was used to compare levels at 24 hours, adjusting for levels at enrollment and potential confounders. RESULTS: Angiogenic factor levels did not differ between preeclampsia groups with and without magnesium or between preeclampsia and preterm labor groups treated with magnesium (all P > 0.05). CONCLUSION: Magnesium likely decreases seizure risk in preeclampsia by a mechanism other than altering angiogenic factor levels.
Magnesium degradation products: effects on tissue and human metabolism.
Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J
2014-10-01
Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account. © 2013 Wiley Periodicals, Inc.
Sakaguchi, Yusuke; Hamano, Takayuki; Isaka, Yoshitaka
2017-02-06
Magnesium, an essential mineral for human health, plays a pivotal role in the cardiovascular system. Epidemiological studies in the general population have found an association between lower dietary magnesium intake and an elevated risk of cardiovascular events. In addition, magnesium supplementation was shown to improve blood pressure control, insulin sensitivity, and endothelial function. The relationship between magnesium and cardiovascular prognosis among patients with chronic kidney disease (CKD) has been increasingly investigated as it is becoming evident that magnesium can inhibit vascular calcification, a prominent risk of cardiovascular events, which commonly occurs in CKD patients. Cohort studies in patients receiving dialysis have shown a lower serum magnesium level as a significant risk for cardiovascular mortality. Interestingly, the cardiovascular mortality risk associated with hyperphosphatemia is alleviated among those with high serum magnesium levels, consistent with in vitro evidence that magnesium inhibits high-phosphate induced calcification of vascular smooth muscle cells. Furthermore, a harmful effect of high phosphate on the progression of CKD is also attenuated among those with high serum magnesium levels. The potential usefulness of magnesium as a remedy for phosphate toxicity should be further explored by future intervention studies.
Sakaguchi, Yusuke; Hamano, Takayuki; Isaka, Yoshitaka
2017-01-01
Magnesium, an essential mineral for human health, plays a pivotal role in the cardiovascular system. Epidemiological studies in the general population have found an association between lower dietary magnesium intake and an elevated risk of cardiovascular events. In addition, magnesium supplementation was shown to improve blood pressure control, insulin sensitivity, and endothelial function. The relationship between magnesium and cardiovascular prognosis among patients with chronic kidney disease (CKD) has been increasingly investigated as it is becoming evident that magnesium can inhibit vascular calcification, a prominent risk of cardiovascular events, which commonly occurs in CKD patients. Cohort studies in patients receiving dialysis have shown a lower serum magnesium level as a significant risk for cardiovascular mortality. Interestingly, the cardiovascular mortality risk associated with hyperphosphatemia is alleviated among those with high serum magnesium levels, consistent with in vitro evidence that magnesium inhibits high-phosphate induced calcification of vascular smooth muscle cells. Furthermore, a harmful effect of high phosphate on the progression of CKD is also attenuated among those with high serum magnesium levels. The potential usefulness of magnesium as a remedy for phosphate toxicity should be further explored by future intervention studies. PMID:28178182
Maurois, Pierre; Pages, Nicole; Bac, Pierre; German-Fattal, Michèle; Agnani, Geneviève; Delplanque, Bernadette; Durlach, Jean; Poupaert, Jacques; Vamecq, Joseph
2009-02-01
Magnesium deficiency may be induced by a diet impoverished in magnesium. This nutritional deficit promotes chronic inflammatory and oxidative stresses, hyperexcitability and, in mice, susceptibility to audiogenic seizures. Potentiation by low-magnesium concentrations of the opening of N-methyl-D-aspartate (NMDA) receptor/calcium channel in in vitro and ex vivo studies, and responsiveness to magnesium of in vivo brain injury states are now well established. By contrast, little or no specific attention has been, however, paid to the in vivo NMDA receptor function/excitability in magnesium deficiency. The present work reports for the first time that, in mice undergoing chronic nutritional deprivation in magnesium (35 v. 930 parts per million for 27 d in OF1 mice), NMDA-induced seizure threshold is significantly decreased (38 % of normal values). The attenuation in the drop of NMDA seizure threshold (percentage of reversal) was 58 and 20 % upon acute intraperitoneal administrations of magnesium chloride hexahydrate (28 mg magnesium/kg) and the antioxidant ebselen (20 mg/kg), respectively. In nutritionally magnesium-deprived animals, audiogenic seizures are completely prevented by these compound doses. Taken as a whole, our data emphasise that chronic magnesium deprivation in mice is a nutritional in vivo model for a lowered NMDA receptor activation threshold. This nutritional model responds remarkably to acute magnesium supply and moderately to acute antioxidant administration.
Rapid recovery from major depression using magnesium treatment.
Eby, George A; Eby, Karen L
2006-01-01
Major depression is a mood disorder characterized by a sense of inadequacy, despondency, decreased activity, pessimism, anhedonia and sadness where these symptoms severely disrupt and adversely affect the person's life, sometimes to such an extent that suicide is attempted or results. Antidepressant drugs are not always effective and some have been accused of causing an increased number of suicides particularly in young people. Magnesium deficiency is well known to produce neuropathologies. Only 16% of the magnesium found in whole wheat remains in refined flour, and magnesium has been removed from most drinking water supplies, setting a stage for human magnesium deficiency. Magnesium ions regulate calcium ion flow in neuronal calcium channels, helping to regulate neuronal nitric oxide production. In magnesium deficiency, neuronal requirements for magnesium may not be met, causing neuronal damage which could manifest as depression. Magnesium treatment is hypothesized to be effective in treating major depression resulting from intraneuronal magnesium deficits. These magnesium ion neuronal deficits may be induced by stress hormones, excessive dietary calcium as well as dietary deficiencies of magnesium. Case histories are presented showing rapid recovery (less than 7 days) from major depression using 125-300 mg of magnesium (as glycinate and taurinate) with each meal and at bedtime. Magnesium was found usually effective for treatment of depression in general use. Related and accompanying mental illnesses in these case histories including traumatic brain injury, headache, suicidal ideation, anxiety, irritability, insomnia, postpartum depression, cocaine, alcohol and tobacco abuse, hypersensitivity to calcium, short-term memory loss and IQ loss were also benefited. Dietary deficiencies of magnesium, coupled with excess calcium and stress may cause many cases of other related symptoms including agitation, anxiety, irritability, confusion, asthenia, sleeplessness, headache, delirium, hallucinations and hyperexcitability, with each of these having been previously documented. The possibility that magnesium deficiency is the cause of most major depression and related mental health problems including IQ loss and addiction is enormously important to public health and is recommended for immediate further study. Fortifying refined grain and drinking water with biologically available magnesium to pre-twentieth century levels is recommended.
plutonium from uranium and fission products in an aqueous acidic solution by use of a chelating agent. The concentration is adjusted to about 1 N bar. The aqueous solution is then contacted with a water-immiscible organic solvent solution and the chelating agent. The chelating agents covered by this invention comprise
Chelation Treatment for Autism Spectrum Disorders: A Systematic Review
ERIC Educational Resources Information Center
Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin
2013-01-01
Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…
McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores
2017-12-15
Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaves, Sílvia; Piemontese, Luca; Hiremathad, Asha; Santos, Maria A
2018-01-01
Hydroxypyridinones (HPs) are a family of N-heterocyclic metal chelators, which have been an attractive target in the development of a variety of new pharmaceutical drugs, due to their high metal chelating efficacy/specificity and easy derivatization to tune the desired biological properties. In fact, along the last decades, hydroxypyridinone derivatives, but mostly 3-hydroxy-4-pyridinone (3,4-HP), have been intensively used in drug design, following either a multitarget approach, in which one chelating unity is extrafunctionalized (hybridized) to enable the interaction with other important specific biological sites, or a polydenticity approach, in which more than one chelating moiety is conveniently attached to one scaffold, to increase the metal chelating efficacy. This review represents an update of the most recent publications (2014-2016) in mono-HP hybrids, namely as potential anti-Alzheimer's drugs, inhibitors of metalloenzymes and anti-microbials, and also polychelating compounds (poly- HP), in view of potential application, such as anti-microbial/biostatic agents, luminescent biosensors or diagnostic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Coimbra, João T S; Moniz, Tânia; Brás, Natércia F; Ivanova, Galya; Fernandes, Pedro A; Ramos, Maria J; Rangel, Maria
2014-12-18
The dynamics and interaction of 3-hydroxy-4-pyridinone fluorescent iron chelators, exhibiting antimicrobial properties, with biological membranes were evaluated through NMR and molecular dynamics simulations. Both NMR and MD simulation results support a strong interaction of the chelators with the lipid bilayers that seems to be strengthened for the rhodamine containing compounds, in particular for compounds that include ethyl groups and a thiourea link. For the latter type of compounds the interaction reaches the hydrophobic core of the lipid bilayer. The molecular docking and MD simulations performed for the potential interaction of the chelators with DC-SIGN receptors provide valuable information regarding the cellular uptake of these compounds since the results show that the fluorophore fragment of the molecular framework is essential for an efficient binding. Putting together our previous and present results, we put forward the hypothesis that all the studied fluorescent chelators have access to the cell, their uptake occurs through different pathways and their permeation properties correlate with a better access to the cell and its compartments and, consequently, with the chelators antimicrobial properties.
Wai, Chien M.; Laintz, Kenneth E.
1999-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Liu, Dan; Islam, Ejazul; Li, Tingqiang; Yang, Xiaoe; Jin, Xiaofen; Mahmood, Qaisar
2008-05-01
Lab scale and pot experiments were conducted to compare the effects of synthetic chelators and low molecular weight organic acids (LMWOA) on the phytoextraction of multi-contaminated soils by two ecotypes of Sedum alfredii Hance. Through lab scale experiments, the treatment dosage of 5 and 10 mM for synthetic chelators and LMWOA, respectively, and the treatment time of 10 days were selected for pot experiment. In pot experiment, the hyperaccumulating ecotype (HE) was found more tolerant to the metal toxicity compared with the non-hyperaccumulating ecotype (NHE). EDTA for Pb, EDDS for Cu, and DTPA for Cu and Cd were found more effective to enhance heavy metal accumulation in the shoots of S. alfredii Hance. Compared with synthetic chelators, the phytoextraction ability of LMWOA was lesser. Considering the strong post-harvest effects of synthetic chelators, it is suggested that higher dosage of LMWOA could be practiced during phytoextraction, and some additional measures could also be taken to lower the potential environmental risks of synthetic chelators in the future studies.
Which psychosocial factors are related to chelation adherence in thalassemia? A systematic review.
Evangeli, Michael; Mughal, Kulsoom; Porter, John B
2010-06-01
Good adherence to iron chelation therapy in thalassemia is crucial. Although there is evidence that adherence is related to regimen factors, there has been less emphasis on the relationship between psychosocial (psychological, demographic and social) factors and adherence. We present a systematic review of psychosocial correlates of chelation adherence in thalassemia. Nine studies met the inclusion criteria. Information was extracted regarding the study characteristics and the relationship between psychosocial factors and chelation adherence. Methodological quality was rated. The studies took place in a range of countries, were mostly cross sectional in design, and examined adherence to deferoxamine (DFO) only. Sample sizes ranged from 15 to 1573. A variety of psychosocial variables were examined. Definitions of adherence varied between studies and non adherence rates were also variable (9 to 66%). Older age was consistently associated with lower levels of chelation adherence. There were few other consistent findings. The methodological quality of studies was variable. There is a need for more methodologically sophisticated and theoretically informed studies on psychosocial correlates of chelation adherence. We offer specific suggestions.
Ionic association and solvation in solutions of magnesium and nickel perchlorates in acetonitrile
NASA Astrophysics Data System (ADS)
Kalugin, O. N.; Agieienko, V. N.; Otroshko, N. A.; Moroz, V. V.
2009-02-01
The paper presents the conductometric data on solutions of Mg(ClO4)2 and Ni(ClO4)2 in acetonitrile over the temperature ranges 5-55°C for Mg(ClO4)2 and 25-75°C for Ni(ClO4)2. The extended Lee-Wheaton equation for unsymmetrical electrolytes was used to determine the limiting equivalent conductivities of the Mg2+, Ni2+, and ClO{4/-} ions and first-step ionic association constants with the formation of [KtClO4]+ ion pairs. Lower ionic association constants for Ni(ClO4)2 compared with Mg(ClO4)2 were a consequence of stronger non-Coulomb repulsion in the formation of [KtClO4]+ ion pairs because of the formation of a firmer solvation shell by the nickel compared with magnesium cation. The structure-dynamic parameter of ionic solvation was estimated. It was found that spatial-time correlations in the nearest environment of ions increased in the series ClO{4/-} > Mg2+ > Ni2+.
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements formore » electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.« less
Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan
2015-01-01
Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions. PMID:26816631
Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts
Wai, Chien M.; Smart, Neil G.; Lin, Yuehe
1998-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Zhou, Tao; Chen, Kai; Kong, Li-Min; Liu, Mu-Song; Ma, Yong-Min; Xie, Yuan-Yuan; Hider, Robert C
2018-05-30
Macromolecular chelators have potential applications in the medical area, for instance, in treatment of iron overload-related disorders and in the treatment of external infections. In this investigation, several novel iron(III)-selective hydroxypyridinone hexadentate-terminated first and second generation dendrimeric chelators were synthesized using a convergent strategy. Their iron chelating ability was demonstrated by UV/Visible spectrometry and high resolution mass spectrometry (HRMS). The iron binding affinities were also investigated by the competition with a fluorescent iron chelator CP691. The result indicated that these dendrimers possesses a high affinity for iron with a very high pFe 3+ value, which is close to that of an isolated hexadentate unit. These dendrimeric chelators were found to exhibit inhibitory effect on the growth of both Gram-positive and Gram-negative bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chelation in root canal therapy reconsidered.
Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas
2005-11-01
The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.
2012-01-01
Background Type 2 diabetes mellitus is a major global public health problem in the worldwide and is increasing in aging populations. Magnesium intake may be one of the most important factors for diabetes prevention and management. Low magnesium intake may exacerbate metabolic abnormalities. In this study, the relationships of magnesium intake with metabolic parameters, depression and physical activity in elderly patients with type 2 diabetes were investigated. Methods This cross-sectional study involved 210 type 2 diabetes patients aged 65 years and above. Participants were interviewed to obtain information on lifestyle and 24-hour dietary recall. Assessment of depression was based on DSM-IV criteria. Clinical variables measured included anthropometric measurements, blood pressure, and biochemical determinations of blood and urine samples. Linear regression was applied to determine the relationships of magnesium intake with nutritional variables and metabolic parameters. Results Among all patients, 88.6% had magnesium intake which was less than the dietary reference intake, and 37.1% had hypomagnesaemia. Metabolic syndromes and depression were associated with lower magnesium intake (p < 0.05). A positive relationship was found between magnesium intake and HDL-cholesterol (p = 0.005). Magnesium intake was inversely correlated with triglyceride, waist circumference, body fat percent and body mass index (p < 0.005). After controlling confounding factor, HDL-cholesterol was significantly higher with increasing quartile of magnesium intake (p for trend = 0005). Waist circumference, body fat percentage, and body mass index were significantly lower with increase quartile of magnesium intake (p for trend < 0.001). The odds of depression, central obesity, high body fat percentage, and high body mass index were significantly lower with increasing quartile of magnesium intake (p for trend < 0.05). In addition, magnesium intake was related to high physical activity level and demonstrated lower serum magnesium levels. Serum magnesium was not significantly associated with metabolic parameters. Conclusions The majority of elderly type 2 diabetes who have low magnesium intake may compound this deficiency with metabolic abnormalities and depression. Future studies should determine the effects of increased magnesium intake or magnesium supplementation on metabolic control and depression in elderly people with type 2 diabetes. PMID:22695027
Transition-metal phosphors with cyclometalating ligands: fundamentals and applications.
Chi, Yun; Chou, Pi-Tai
2010-02-01
One goal of this critical review is to provide advanced methodologies for systematic preparation of transition-metal based phosphors that show latent applications in the field of organic light emitting diodes (OLEDs). We are therefore reviewing various types of cyclometalating chelates for which the favorable metal-chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature. On the other hand, fine adjustment of ligand-centered pi-pi* electronic transitions allows tuning of emission wavelength across the whole visible spectrum. The cyclometalating chelates are then classified according to types of cyclometalating groups, i.e. either aromatic C-H or azolic N-H fragment, and the adjacent donor fragment involved in the formation of metallacycles; the latter is an N-containing heterocycle, N-heterocyclic (NHC) carbene fragment or even diphenylphosphino group. These cyclometalating ligands are capable to react with heavy transition-metal elements, namely: Ru(II), Os(II), Ir(III) and Pt(II), to afford a variety of highly emissive phosphors, for which the photophysical properties as a function of chelate or metal characteristics are systematically discussed. Using Ir(III) complexes as examples, the C--N chelates possessing both C-H site and N-heterocyclic donor group are essential for obtaining phosphors with emission ranging from sky-blue to saturated red, while the N--N chelates such as 2-pyridyl-C-linked azolates are found useful for serving as true-blue chromophores due to their increased ligand-centered pi-pi* energy gap. Lastly, the remaining NHC carbene and benzyl phosphine chelates are highly desirable to serve as ancillary chelates in localizing the electronic transition between the metal and remaining lower energy chromophoric chelates. As for the potential opto-electronic applications, many of them exhibit remarkable performance data, which are convincing to pave a broad avenue for further development of all types of phosphorescent displays and illumination devices (94 references).
NASA Astrophysics Data System (ADS)
Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.
2013-10-01
Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.
Dietary and Plasma Magnesium and Risk of Coronary Heart Disease Among Women
Chiuve, Stephanie E.; Sun, Qi; Curhan, Gary C.; Taylor, Eric N.; Spiegelman, Donna; Willett, Walter C.; Manson, JoAnn E.; Rexrode, Kathryn M.; Albert, Christine M.
2013-01-01
Background Magnesium is associated with lower risk of sudden cardiac death, possibly through antiarrhythmic mechanisms. Magnesium influences endothelial function, inflammation, blood pressure, and diabetes, but a direct relation with coronary heart disease (CHD) risk has not been established. Methods and Results We prospectively examined the association between dietary and plasma magnesium and risk of CHD among women in the Nurses' Health Study. The association for magnesium intake was examined among 86 323 women free of disease in 1980. Information on magnesium intake and lifestyle factors was ascertained every 2 to 4 years through questionnaires. Through 2008, 3614 cases of CHD (2511 nonfatal/1103 fatal) were documented. For plasma magnesium, we conducted a nested case–control analysis, with 458 cases of incident CHD (400 nonfatal/58 fatal) matched to controls (1:1) on age, smoking, fasting status, and date of blood sampling. Higher magnesium intake was not associated with lower risk of total CHD (P‐linear trend=0.12) or nonfatal CHD (P‐linear trend=0.88) in multivariable models. However, magnesium intake was inversely associated with risk of fatal CHD. The RR comparing quintile 5 to quintile 1 of magnesium intake was 0.61 (95% CI, 0.45 to 0.84; P‐linear trend=0.003). The association between magnesium intake and risk of fatal CHD appeared to be mediated partially by hypertension. Plasma magnesium levels above 2.0 mg/dL were associated with lower risk of CHD, although not independent of other cardiovascular biomarkers (RR, 0.67; 95% CI, 0.44 to 1.04). Conclusions Dietary and plasma magnesium were not associated with total CHD incidence in this population of women. Dietary magnesium intake was inversely associated with fatal CHD, which may be mediated in part by hypertension. PMID:23537810
Ismail, Yasmin; Ismail, Abbas A; Ismail, Adel A A
2010-03-01
A major use of serum magnesium measurements in clinical practice is to identify patients with deficiency. However, numerous studies have shown that magnesium deficiency is common and may be present in over 10% of hospitalized patients, as well as in the general population. An important cause for under diagnosis of deficiency is that serum magnesium, the most commonly used test, can be normal despite negative body stores. This article focuses on the limitations of "normal" magnesium results and highlights the importance of lifestyle or "modus vivendi" as a pragmatic means of identifying those individuals potentially at risk for negative body magnesium stores. Researched peer reviewed articles on magnesium published between 1990 and 2008 in MEDLINE and EMBASE, using database keywords "magnesium, deficiency, diagnosis, treatment and hypomagnesaemia". Bibliographies of retrieved articles have been searched and followed. We have also performed a manual search of each individual issue in which most of these reports have appeared. In 183 peer reviewed studies published from 1990 to 2008, magnesium deficiency was associated with increased prevalence and risk in 11 major conditions. Similarly, in 68 studies performed over the same period, magnesium deficiency was found to predict adverse events and a decreased risk of pathology was noted when supplementation or treatment was instituted. The perception that "normal" serum magnesium excludes deficiency is common among clinicians. This perception is probably enforced by the common laboratory practice of highlighting only abnormal results. A health warning is therefore warranted regarding potential misuse of "normal" serum magnesium because restoration of magnesium stores in deficient patients is simple, tolerable, inexpensive and can be clinically beneficial.
Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide
NASA Astrophysics Data System (ADS)
Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.
2017-06-01
The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.
Daily Magnesium Intake and Serum Magnesium Concentration among Japanese People
Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori
2008-01-01
Background The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. Methods The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. Results The mean (±standard deviation) daily magnesium intake was 322 (±132), 323 (±163), and 322 (±147) mg/day for men, women, and the entire group, respectively. The mean (±standard deviation) serum magnesium concentration was 20.69 (±2.83), 20.69 (±2.88), and 20.69 (±2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log10X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. Conclusion The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed. PMID:18635902
Zeglis, Brian M.; Davis, Charles B.; Aggeler, Robert; Kang, Hee Chol; Chen, Aimei; Agnew, Brian J.; Lewis, Jason S.
2013-01-01
An enzyme- and click chemistry-mediated methodology for the site-selective radiolabeling of antibodies on the heavy chain glycans has been developed and validated. To this end, a model system based on the prostate specific membrane antigen-targeting antibody J591, the positron-emitting radiometal 89Zr, and the chelator desferrioxamine has been employed. The methodology consists of four steps: (1) the removal of sugars on the heavy chain region of the antibody to expose terminal N-acetylglucosamine residues; (2) the incorporation of azide-modified N-acetylgalactosamine monosaccharides into the glycans of the antibody; (3) the catalyst-free click conjugation of desferrioxamine-modified dibenzocyclooctynes to the azide-bearing sugars; and (4) the radiolabeling of the chelator-modified antibody with 89Zr. The site-selective labeling methodology has proven facile, reproducible, and robust, producing 89Zr-labeled radioimmunoconjguates that display high stability and immunoreactivity in vitro (>95%) in addition to high selective tumor uptake (67.5 ± 5.0 %ID/g) and tumor-to-background contrast in athymic nude mice bearing PSMA-expressing subcutaneous LNCaP xenografts. Ultimately, this strategy could play a critical role in the development of novel well-defined and highly immunoreactive radioimmunoconjugates for both the laboratory and clinic. PMID:23688208
Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š
2018-02-01
In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya
2011-06-01
In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.
Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya
2011-01-01
In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes. PMID:27877407
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... DEPARTMENT OF COMMERCE International Trade Administration A-570-896 Magnesium Metal from the... order on magnesium metal from the People's Republic of China (``PRC'').\\1\\ Respondent, Tianjin Magnesium International Co., Ltd. (``TMI''), requested a review on April 27, 2009, and Petitioner, US Magnesium LLC (``US...
21 CFR 184.1431 - Magnesium oxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... bulky white powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...
21 CFR 184.1426 - Magnesium chloride.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...
21 CFR 184.1431 - Magnesium oxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4) occurs naturally as... a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate. Heating these...
21 CFR 184.1426 - Magnesium chloride.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...
21 CFR 184.1431 - Magnesium oxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... bulky white powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... addition of sodium hydroxide to a water soluble magnesium salt or by hydration of reactive grades of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS Reg. No. 1309-42-8) occurs...
Investigation of Tin as a Constituent of Inorganic Coatings for Magnesium Alloys
1975-05-01
WORDS (Continue on revete side if neceeeary and identify by block number) Inorganic Coatings Coatings for Magnesium Tin Magnesium Corrosion PR suaJEC...stannous pyrophosphate 10 grams dextrine water to one (1) liter (1) White, E.L. and F.W. Fink Corrosion protection of Magnesium and Magnesium alloys
21 CFR 184.1426 - Magnesium chloride.
Code of Federal Regulations, 2011 CFR
2011-04-01
... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...
21 CFR 184.1426 - Magnesium chloride.
Code of Federal Regulations, 2010 CFR
2010-04-01
... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...
21 CFR 184.1443 - Magnesium sulfate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...
21 CFR 184.1443 - Magnesium sulfate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...
21 CFR 184.1431 - Magnesium oxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... light magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours) produces...
Genetics of hereditary disorders of magnesium homeostasis.
Schlingmann, Karl P; Konrad, Martin; Seyberth, Hannsjörg W
2004-01-01
Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.
Robertson, Emma J.; Wolf, Julie M.
2012-01-01
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091
Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P
2015-01-01
Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.
Vasconcelos, Natália L; Gomes, Eduardo D; Oliveira, Eduarda P; Silva, Carlos J; Lima, Rui; Sousa, Nuno; Salgado, António J; Silva, Nuno A
2016-08-01
Damage to the spinal cord can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole and magnesium have been widely investigated as neuroprotective agents in animal models of spinal cord injury. As these drugs protect the injured spinal cord through different mechanisms, we aimed to investigate if their neuroprotective efficacy could be cumulative. This study aimed to investigate the neuroprotective efficacy of combined administration of riluzole and magnesium chloride in a contusive model of thoracic spinal cord injury. An in vivo experiment was set using female Wistar Han rats that underwent a thoracic spinal cord contusion (T8) using a weight drop method. An hour after injury, animals were randomly distributed to receive (1) saline, (2) riluzole (2.50 mg/kg), (3) magnesium chloride (24.18 mg/kg) in a polyethylene glycol formulation, or (4) a combined treatment (riluzole and magnesium). Subsequent treatments were given in four intraperitoneal injections (spaced 12 hours apart). The Basso, Beattie, and Bresnahan locomotor rating scale, an activity box test, and a swimming test were used to evaluate behavioral recovery over a 4-week period. Histologic analysis of the spinal cords was performed to measure the extent and volume of the lesion, axonal preservation, serotonergic and glutamatergic fiber sparing, motor neuron survival, and inflammation. Our results show that only the riluzole treatment significantly improved behavioral recovery up to 4 weeks after injury when compared with saline controls (6.2±1.8), with animals achieving weight-supported stepping (9.1±1.2). Riluzole also promoted tissue sparing with significant differences achieved from 200 to 600 µm (caudally to the lesion epicenter), and reduced lesion volume, with animals presenting a significantly smaller lesion (3.23±0.26 mm(3)) when compared with the saline-treated group (4.74±0.80 mm(3)), representing a 32% decrease in lesion volume. Riluzole treatment induced significant axonal preservation, as well as serotonergic fiber sparing, caudally to the injury epicenter. Our results suggest that the combined treatment, although simultaneously targeting two excitotoxic-related mechanisms, did not further improve behavioral and histologic outcome when compared with riluzole given alone. Copyright © 2016 Elsevier Inc. All rights reserved.
DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature.
Seemann, Johanna; Waldron, Bradley; Parker, David; Roesch, Frank
2017-01-01
The widespread acceptance and application of 68 Ga-PET depends on our ability to develop radiopharmaceuticals that can be prepared in a convenient and suitable manner. A kit-type labelling protocol provides such characteristics and requires chelators that can be radiolabelled under exceptionally mild conditions. Recently the DATA chelators have been introduced that fulfil these requirements. In continuing their development, the synthesis and radiolabelling of the first DATA bifunctional chelator (BFC) and peptide conjugate are described. A BFC derived from the DATA ligand (2,2'-(6-((carboxymethyl)amino)-1,4-diazepane-1,4-diyl)diacetic acid) has been synthesised in five steps from simple building blocks, with an overall yield of 8 %. DATA M5 -3 t Bu (5-[1,4-Bis-tert-butoxycarbonylmethyl-6-(tert-butoxycarbonylmethyl-methyl-amino)-[1, 4]diazepan-6-yl]-pentanoic acid) has been coupled to [DPhe 1 ][Tyr 3 ]-octreotide (TOC) and the resulting peptide conjugate (DATATOC) radiolabelled with purified 68 Ga derived via four different 68 Ge/ 68 Ga generator post-processing (PP) methods. The stability and lipophilicity of the radiotracer have been assessed and a kit-type formulation for radiolabelling evaluated. 68 Ga-DATATOC has been prepared with a > 95 % radiochemical yield (RCY) within 1 (fractionated and acetone-PP) and 10 min (ethanol- and NaCl-PP) at 23 °C (pH 4.2-4.9, 13 nmol). The radiolabelled peptide is stable in the presence of human serum. Lipophilicity of 68 Ga-DATATOC was calculated as logP = -3.2 ± 0.3, with a HPLC retention time ( t R = 10.4 min) similar to 68 Ga-DOTATOC (logP = -2.9 ± 0.4, t R = 10.3 min). Kit-type labelling from a lyophilised solid using acetone-PP based labelling achieves > 95 % RCY in 10 min at 23 °C. The favourable labelling properties of the DATA chelators have been retained for DATATOC. High radiochemical purity can be achieved at 23 °C in less than 1 min and from a kit formulation. The speed, reliability, ease, flexibility and simplicity with which 68 Ga-DATATOC can be prepared makes it a very attractive alternative to current standards.
Synthesis of internally functionalized silica nanoparticles for theranostic applications
NASA Astrophysics Data System (ADS)
Walton, Nathan Isaac
This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using hydroboration, to make the nanoparticles into water-dispersible boron carriers that also have potential boron neutron capture therapy (BNCT) applications. Lastly, Chapter 4 provides a general description of NCT, specifically that involving boron-10 and gadolinium-157. It further describes the synthetic methodology used in producing fatty acid coated boron nanoparticles (BNPs). The BNPs are encapsulated with silica to add a hydrophilic shell so that they can potentially be used in biological systems as BNCT agents. The silica shell is also modified with a fluorophore, dansyl chloride, so that the particle hybrid could be imaged during cell studies.
Abu Samra, Omayma; Auda, Wafaa; Kamhawy, Heba; Al-Tonbary, Youssef
2015-06-01
Objectives Thalassemia is the most common genetic disorder in Egypt, with an estimated carrier rate of 9-10%. It is a genetic blood disorder which can be fatal if proper chelation is not received. The introduction of chelating agents capable of removing excessive iron from the body has dramatically increased life expectancy and improved the overall quality of life. The aim of this study was to assess the impact of educational programmes regarding chelation therapy on the quality of life of thalassemic children. Methods The study was carried out at the Mansoura University Children's Hospital in the period between March 2010 and May 2011. It included 173 B-thalassemia children (84 boys and 89 girls) with age ranging between 8-18 years. The researcher used a predesigned interviewing questionnaire to collect data regarding children's knowledge about thalassemia and its management, especially regarding chelation therapy. The paediatric quality-of-life inventory tool (Peds QL 4.0 generic core) was also used to assess the studied children's quality of life. Results There was a significant statistical difference of the studied children's knowledge regarding chelation therapy and their quality of life. Conclusion There was a positive effect of the educational programme in improving children's knowledge score and their quality of life. Application of educational programmes for thalassemic children and their nurses regarding chelation therapy and its importance in preventing thalassemia complications is established.
Magnesium Electrorefining in Non-Aqueous Electrolyte at Room Temperature
NASA Astrophysics Data System (ADS)
Kwon, Kyungjung; Park, Jesik; Kusumah, Priyandi; Dilasari, Bonita; Kim, Hansu; Lee, Churl Kyoung
Magnesium, of which application is often limited by its poor corrosion resistance, is more vulnerable to corrosion with existence of metal impurities such as Fe. Therefore, for the refining and recycling of magnesium, high temperature electrolysis using molten salts has been frequently adopted. In this report, the purification of magnesium scrap by electrolysis at room temperature is investigated with non-aqueous electrolytes. An aprotic solvent of tetrahydrofuran (THF) was used as a solvent of the electrolyte. Magnesium scrap was used as anode materials and ethyl magnesium bromide (EtMgBr) was dissolved in THF for magnesium source. The purified magnesium can be uniformly electrodeposited on copper electrode under potentiostatic conditions. The deposits were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.
Volpe, Stella Lucia
2015-01-01
Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014.
Simultaneous purification and storage of hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hynek, S.; Fuller, W.; Weber, R.
1998-08-01
Specially coated magnesium particles have been shown to selectively absorb hydrogen from a hydrogen-rich gas stream such as reformate. These coated magnesium particles can store the absorbed hydrogen as required and subsequently deliver pure hydrogen, just as uncoated magnesium particles can. These coated magnesium particles could be used in a device that accepts a steady stream of reformate, as from a methane reformer, stores the selectively absorbed hydrogen indefinitely, and delivers purified hydrogen on demand. Unfortunately, this coating (magnesium nitride) has been shown to degrade over a period of several weeks, so that the magnesium within evidences progressively lower storagemore » capacity. The authors are investigating two other coatings, one of which might be applicable to hydridable metals other than magnesium, to replace magnesium nitride.« less
Johnson, Ian; Liu, Huinan
2013-01-01
Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028
21 CFR 862.1495 - Magnesium test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...
21 CFR 862.1495 - Magnesium test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...
21 CFR 862.1495 - Magnesium test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of...