Sample records for magnesium forming process

  1. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium... introductions of pollutants into publicly owned treatment works from the process operations of the magnesium...

  2. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium... introductions of pollutants into publicly owned treatment works from the process operations of the magnesium...

  3. Synthesis of superconducting magnesium diboride objects

    DOEpatents

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-08-15

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  4. Synthesis Of Superconducting Magnesium Diboride Objects.

    DOEpatents

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-07-08

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  5. Synthesis of magnesium diboride by magnesium vapor infiltration process (MVIP)

    DOEpatents

    Serquis, Adriana C.; Zhu, Yuntian T.; Mueller, Frederick M.; Peterson, Dean E.; Liao, Xiao Zhou

    2003-01-01

    A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB.sub.2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB.sub.2 matrix, which can act as flux pinning centers.

  6. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  7. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  8. Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.

    2007-05-01

    Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.

  9. Super-formable pure magnesium at room temperature.

    PubMed

    Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick

    2017-10-17

    Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.

  10. An Environmentally Friendly Process Involving Refining and Membrane-Based Electrolysis for Magnesium Recovery from Partially Oxidized Scrap Alloy

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2013-10-01

    Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.

  11. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  12. Study on electrochemically deposited Mg metal

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki

    An electrodeposition process of magnesium metal from Grignard reagent based electrolyte was studied by comparing with lithium. The electrodeposition of magnesium was performed at various current densities. The obtained magnesium deposits did not show dendritic morphologies while all the lithium deposits showed dendritic products. Two different crystal growth modes in the electrodeposition process of magnesium metal were confirmed by an observation using scanning electron micro scope (SEM) and a crystallographic analysis using X-ray diffraction (XRD). An electrochemical study of the deposition/dissolution process of the magnesium showed a remarkable dependency of the overpotential of magnesium deposition on the electrolyte concentration compared with lithium. This result suggests that the dependency of the overpotential on the electrolyte concentration prevent the locally concentrated current resulting to form very uniform deposits.

  13. Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Heiden, Michael J.

    2013-07-08

    In recent years magnesium alloys have attracted significant attention as potential candidates to replace many of the heavier metals used in some automotive applications. However, the limited formability of magnesium and its alloys at room temperature has driven interest in the superplastic forming magnesium as an alternative shaping method. Severe plastic deformation techniques have become a well studied method of refining the grain size and modifying the microstructural characteristics of many magnesium alloys to achieve greater superplastic properties. In this study twin roll cast (TRC) AZ31 magnesium alloy was subjected to equal channel angular pressing (ECAP) and friction stir weldingmore » (FSW). The influence of these severe plastic deformation processes on the grain size, texture and grain boundary character distribution was investigated to identify the optimum severe plastic deformation process for the superplastic forming of AZ31.« less

  14. The Importance of Magnesium in the Human Body: A Systematic Literature Review.

    PubMed

    Glasdam, Sidsel-Marie; Glasdam, Stinne; Peters, Günther H

    2016-01-01

    Magnesium, the second and fourth most abundant cation in the intracellular compartment and whole body, respectively, is of great physiologic importance. Magnesium exists as bound and free ionized forms depending on temperature, pH, ionic strength, and competing ions. Free magnesium participates in many biochemical processes and is most commonly measured by ion-selective electrode. This analytical approach is problematic because complete selectivity is not possible due to competition with other ions, i.e., calcium, and pH interference. Unfortunately, many studies have focused on measurement of total magnesium rather than its free bioactive form making it difficult to correlate to disease states. This systematic literature review presents current analytical challenges in obtaining accurate and reproducible test results for magnesium. © 2016 Elsevier Inc. All rights reserved.

  15. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  16. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  17. Magnesium Front End Research and Development: A Canada-China-USA Collaboration

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang

    The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.

  18. Biomimetic synthesis of calcite films by a polymer-induced liquid-precursor (PILP) process. 1. Influence and incorporation of magnesium

    NASA Astrophysics Data System (ADS)

    Cheng, Xingguo; Varona, Philip L.; Olszta, Matthew J.; Gower, Laurie B.

    2007-09-01

    Magnesium-bearing calcium carbonate films have been synthesized via a polymer-induced liquid-precursor (PILP) mineralization process. A variety of morphological features of biominerals can be mimicked with this PILP process; therefore, our group has proposed that this crystallization system can be used as an effective in vitro model system for examining mechanistic issues related to biomineralization. Here, the effect of the Mg 2+/Ca 2+ ratio on the rate of transformation of the amorphous precursor films was investigated using polarized optical microscopy (POM), and the final crystalline structure and composition were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), inductively coupled plasma spectroscopy (ICP) and energy dispersive spectroscopy (EDS). The entrapment of high levels of magnesium in the deposited precursor films had a pronounced inhibitory effect on the amorphous to crystalline transformation, and furthermore, influenced the polycrystalline nature of the film. The magnesium content incorporated within the calcite lattice (8-26%) resembles the range found in biologically formed high magnesium-bearing calcite, while much lower levels were formed via the conventional solution crystallization process. The formation of non-equilibrium morphologies and similar compositions of magnesium-bearing calcite via the PILP process further supports our hypothesis that the PILP process may play a fundamental role in the formation of calcitic biominerals in nature. In the realm of biomimetic engineering, the PILP process may also establish itself as a new method to produce thin ceramic films with variable compositions under ambient conditions.

  19. Solid solution lithium alloy cermet anodes

    DOEpatents

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  20. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  1. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  2. Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films

    DOEpatents

    Boyle, Timothy J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

  3. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  4. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  5. Making MgO/SiO2 Glasses By The Sol-Gel Process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  6. Peculiarities of physical and chemical processes of clinker formation in raw mixes with increased content of magnesium oxide in presence of barite waste

    NASA Astrophysics Data System (ADS)

    Novoselova, I. N.; Novosyolov, A. G.

    2018-03-01

    The article considers the influence of barite waste on clinker formation processes in raw mixes with the increased content of magnesium oxide. A by-product of the barite concentrate manufacture of Tolcheinskoye deposit has been used as a barite waste, its predominant content of barium sulphate BaSO4 amounts to 76,11%. The impact of BaO and SO3 has been revealed, particularly the impact of barium oxide on clinker formation processes in raw mixes with the increased content of magnesium oxide. It has been clarified that the addition of barite waste into a raw mix causes the formation of dicalcium silicate in two modifications, reduces the amount of alite and influences on the composition of tricalcium aluminate. Barium mono-alluminate is formed in the composition of the intermediate material. Solid solutions with barium oxide are formed in clinker phases. The authors have determined the saturation speed of calcium oxide in magnesium-bearing raw mixes with saturation coefficient (SC) 0,91 and 0,80 in the presence of 2 and 3% barite waste in the temperature range 1300-1450°C.

  7. Agile Thermal Management STT-RX. Catalytic Influence of Ni-based Additives on the Dehydrogentation Properties of Ball Milled MgH2 (PREPRINT)

    DTIC Science & Technology

    2011-12-01

    Wronski: Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystal- line commercial magnesium hydride processed...Catalytic effects of various forms of nickel on the synthesis rate and hydrogen desorption properties of nanocrystalline magnesium hydride (MgH2...dehydrogenation reaction. 15. SUBJECT TERMS magnesium hydride , MgH, thermal energy storage materials, endothermic reaction 16. SECURITY CLASSIFICATION

  8. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...

  9. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...

  10. 40 CFR 471.20 - Applicability; description of the magnesium forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... magnesium forming subcategory. 471.20 Section 471.20 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Magnesium Forming Subcategory § 471.20 Applicability; description of the magnesium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...

  11. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  12. 40 CFR 471.23 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... magnesium forming process wastewater shall not exceed the following values: (a) Rolling spent emulsions... (pounds per million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032...) Sawing or grinding spent emulsions. Subpart B—NSPS Pollutant or pollutant property Maximum for any 1 day...

  13. 40 CFR 471.23 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... magnesium forming process wastewater shall not exceed the following values: (a) Rolling spent emulsions... (pounds per million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032...) Sawing or grinding spent emulsions. Subpart B—NSPS Pollutant or pollutant property Maximum for any 1 day...

  14. 40 CFR 471.23 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... magnesium forming process wastewater shall not exceed the following values: (a) Rolling spent emulsions... (pounds per million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032...) Sawing or grinding spent emulsions. Subpart B—NSPS Pollutant or pollutant property Maximum for any 1 day...

  15. Recovery of nitrogen from saponification wastewater by struvite precipitation.

    PubMed

    Huang, Haiming; Xiao, Xianming; Yang, Liping; Yan, Bo

    2010-01-01

    In general, saponification wastewater produced from the separation process of rare-earth elements contains high ammonium concentration. In this study, a series of experiments were conducted to investigate the parameters to enhance the struvite precipitation potential for ammonium removal from the wastewater having an ammonium concentration of 4,100 mg/L. Experimental results showed that increasing the dose and grain size of pre-formed struvite, which was added as the seeding material in struvite reaction, could increase ammonium removal. The removal efficiency increased 7.6% when the dose of pre-formed struvite with crystal grain size range of 0.098-0.150 mm increased from 0 g/L to 60 g/L. Additionally, struvite precipitation was tested with the intermittent addition of magnesium and phosphate to utilize the struvite crystals formed during the reaction process as the seeding material for the subsequent reaction. The results revealed that intermittently adding magnesium 7 times effectively enhanced ammonium removal by around 8%, which was equivalent to that of using pre-formed struvite as the seeding material. Furthermore, the chemical composition of the struvite recovered with intermittent addition of magnesium was characterized, showing the struvite could be used as fertilizer. An economic evaluation indicated that intermittent addition of magnesium 7 times can save 13.4% cost for recovering per kg NH(4)(+) compared to that of bulk addition.

  16. Genetics of hereditary disorders of magnesium homeostasis.

    PubMed

    Schlingmann, Karl P; Konrad, Martin; Seyberth, Hannsjörg W

    2004-01-01

    Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.

  17. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu

    2016-10-15

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less

  18. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  19. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Fuh-Kuo; Chang, Chih-Kun

    2005-08-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures.

  20. Biomarker selection for determining bone biocompatibility of pure magnesium processed by equal channel angular pressing (ECAP) using immunohistochemistry

    NASA Astrophysics Data System (ADS)

    Handayani, Lisa; Sulistyani, Lilies Dwi; Supriadi, Sugeng; Priosoeryanto, Bambang Pontjo; Latief, Benny Syariefsyah

    2018-02-01

    Since grain refinement is proved to be favorable to improve mechanical properties and corrosion resistance, a new conceptual metal forming process, equal channel angular pressing (ECAP), has been carried out on magnesium, a very promising biodegradable material in the field of oral and maxillofacial surgery. The popularity of immunohisto-chemistry (IHC) has been rising following the discovery of biomarker. In the meantime, more antibodies being produced for research have been continuously rising and becoming more varied. This review provides a conceptual framework to understand the roles of IHC on determination of bone biocompatibility to ECAP magnesium by selecting biomarker and point needed to either select or make an antibody to the target. From the review, it has been concluded that the most suitable biomarkers for biocompatibility test of bone implanted with ECAP magnesium are collagen-1, osteocalcin, smooth muscle actin, and CD68.

  1. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  2. A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium

    NASA Technical Reports Server (NTRS)

    Witzke, Walter R; Prok, George M; Walsh, Thomas J

    1954-01-01

    Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.

  3. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G

    2017-12-01

    Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A nacre protein forms mesoscale hydrogels that “hijack” the biomineralization process within a seawater environment

    DOE PAGES

    Pendola, Martin; Jain, Gaurav; Davidyants, Anastasia; ...

    2016-09-26

    We examined the mineralization performance of a nacre protein, AP7, within seawater mineralization assays that form aragonite and magnesium calcite. Under these conditions AP7 forms hydrogel particles that vary in size and complexity depending upon ionic conditions. These hydrogels “hijack” the mineralization process by limiting nucleation in bulk solution and promoting nucleation within the hydrogels.

  5. Research on plasma and saliva levels of some bivalent cations in patients with chronic periodontitis (salivary cations in chronic periodontitis).

    PubMed

    Manea, A; Nechifor, M

    2014-01-01

    The purpose of this study was to determine whether chronic periodontitis can stand behind modifications in the salivary and blood concentration of some bivalent cations (Calcium, Magnesium, Zinc and Copper). For this purpose, we formed a group of 30 adult patients with clinically onset chronic periodontitis, and another one of 30 healthy patients as control. Both groups were free from acute oral pathology and general illnesses. The groups were divided again according to the habit of smoking. Total saliva samples were obtained as "first time in the morning", then weighed and processed. Cations were read on Atomic Absorption Spectrophotometer and by Ion Chromatography (Magnesium). The same patients were required to undergo laboratory blood tests for Calcium, Magnesium and Zinc. Data obtained was normalised, then statistically interpreted using two-tailed heteroscedastic t-Student tests. Our data confirmed the existence of a connection between salivary calcium, magnesium, zinc and copper, and of blood magnesium, and chronic periodontitis. Salivary calcium and magnesium are affected by smoking.

  6. Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.; Mihama, K.

    1986-12-01

    Magnesium ultrafine particles have clear-cut habits such as hexagonal plates and polyhedra. When magnesium is evaporated downwards using a tube with holes at the bottom, hexagonal plates are formed exclusively throughout the smoke. Their size is controlled by selecting an inert gas. The growth process of an hexagonal plate can be considered to be a coalescent growth of other hexagonal plates.

  7. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziadoń, Andrzej

    2016-08-15

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, themore » following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.« less

  8. Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.

    PubMed

    Zhou, Zhengzhi; Sun, Qunhui; Hu, Zeshan; Deng, Yulin

    2006-07-13

    The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.

  9. 76 FR 1404 - Pure Magnesium in Granular Form From the People's Republic of China: Rescission of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-864] Pure Magnesium in Granular... duty order \\1\\ on pure magnesium in granular form from the People's Republic of China (``PRC'') to... circumstances review. The Department is now rescinding this CCR. \\1\\ See Antidumping Duty Order: Pure Magnesium...

  10. The formation of chondrules at high gas pressures in the solar nebula.

    PubMed

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula.

  11. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOEpatents

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  12. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaofei Guan; Peter A. Zink; Uday B. Pal

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less

  13. Evaluation of Methylene Chloride Emission Control Technologies at Anniston Army Depot

    DTIC Science & Technology

    2007-03-01

    processes to paint stripping at ANAD. Substrate damage, residual compressive stresses , and the volume of hazardous waste should all be investigated...or supported on hooks , and lowered into the salt bath. After stripping, the items are removed and rinsed with water for cooling and removal of resid...ity to stress corrosion. b. 6000 series aluminum: Silicon and magnesium in approxi- mate proportions to form magnesium silicide, thus making them

  14. Effect of Adding SiO2-Al2O3 Sol into Anodizing Bath on Corrosion Resistance of Oxidation Film on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Huicong; Zhu, Liqun; Li, Weiping

    Due to the widely use in automobile and construction field, AZ91D magnesium alloy need to be protected more effectively for its high chemical activity. In this paper, three kinds of films were formed on magnesium alloy. The first kind of film, named as anodic oxidation film, was prepared by anodic oxidation in the alkaline solution. The processes for preparing the second kind of film, named as multiple film, involved coating sol-gel on the samples and heat-treating before anodic oxidation. The third kind of film was prepared by anodic oxidation in the alkaline oxidation solution containning 5% (vol) SiO2-Al2O3 sol, named as modified oxidation film. The corrosion resistance of the three different films was investigated. The results showed that the modified oxidation film had the highest corrosion resistance due to the largest thickness and most dense surface morphology. Sol was discussed to react during the film forming process, which leaded to the difference between modified oxidation film and anodic oxidation film.

  15. Improved biological performance of magnesium by micro-arc oxidation

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2014-01-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  16. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    NASA Astrophysics Data System (ADS)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  17. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  18. The effect of high-pressure torsion on the microstructure and properties of magnesium

    NASA Astrophysics Data System (ADS)

    Figueiredo, Roberto B.; Sabbaghianrad, Shima; Langdon, Terence G.

    2017-05-01

    High-pressure torsion provides the opportunity to introduce significant plastic strain at room temperature in magnesium and its alloys. It is now established that this processing operation produces ultrafine-grained structures and changes the properties of these materials. The present paper shows that the mechanism of grain refinement differs from f.c.c. and b.c.c. materials. It is shown that fine grains are formed at the grain boundaries of coarse grains and gradually consume the whole structure. Also, the processed material exhibits unusual mechanical properties due to the activation of grain boundary sliding at room temperature.

  19. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less

  20. Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.

    PubMed

    Ishizaki, Takahiro; Sakamoto, Michiru

    2011-03-15

    The design of color-tuned magnesium alloy with anticorrosive properties and damping capacity was created by means of a simple and inexpensive method. The vertically self-aligned nano- and microsheets were formed on magnesium alloy AZ31 by a chemical-free immersion process in ultrapure water at a temperature of 120 °C, resulting in the color expression. The color changed from silver with metallic luster to some specific colors such as orange, green, and orchid, depending on the immersion time. The color-tuned magnesium alloy showed anticorrosive performance and damping capacity. In addition, the colored surface with minute surface textures was modified with n-octadecyltrimethoxysilane (ODS), leading to the formation of color-tuned superhydrophobic surfaces. The corrosion resistance of the color-tuned superhydrophobic magnesium alloy was also investigated using electrochemical potentiodynamic measurements. Moreover, the color-tuned superhydrophobic magnesium alloy showed high hydrophobicity not just for pure water but also for corrosive liquids, such as acidic, basic, and some aqueous salt solutions. In addition, the American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the color-tuned superhydrophobic film to the magnesium alloy surface.

  1. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Differential magnesium implant corrosion coat formation and contribution to bone bonding.

    PubMed

    Rahim, Muhammad Imran; Weizbauer, Andreas; Evertz, Florian; Hoffmann, Andrea; Rohde, Manfred; Glasmacher, Birgit; Windhagen, Henning; Gross, Gerhard; Seitz, Jan-Marten; Mueller, Peter P

    2017-03-01

    Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017. © 2016 Wiley Periodicals, Inc.

  3. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  4. A Comparison of the Greenhouse Impacts of Magnesium Produced By Electrolytic and Pidgeon Processes

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Subramania; Koltun, Paul

    With a focus on the global warming impact, this paper deals with the cradle-to-gate life cycle study of the following two practical production systems for producing magnesium ingots: (i) Magnesite ore is processed using the Australian Magnesium process to produce anhydrous magnesium chloride, which is then electrolysed to produce magnesium; and (ii) Dolomite ore is calcined to produce magnesium oxide, which is then thermally reduced with ferrosilicon using the Pidgeon process, based on the current practice used in China for magnesium production

  5. Chemical Hydride Slurry for Hydrogen Production and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH 2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at amore » time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under another project. However, since the cost of reducing magnesium from magnesium oxide makes up 85% of the cost of the slurry, if hydrogen can be stored many times in the slurry, then the cost of storing hydrogen can be spread over many units of hydrogen and can be significantly reduced from the costs of a chemical hydride system. This may be the most important finding of this project. If the slurry is used to carry a rechargeable hydride, the slurry can be stored in a conventional liquid fuel tank and delivered to a release system as hydrogen is needed. The release system will contain only the hydride needed to produce the hydrogen desired. This is in contrast to conventional designs proposed for other rechargeable hydride systems that store all the hydride in a large and heavy pressure and heat transfer vessel.« less

  6. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.

    PubMed

    Roy, Susmita; Onuchic, José N; Sanbonmatsu, Karissa Y

    2017-07-25

    The S-adenosylmethionine (SAM)-I riboswitch is a noncoding RNA that regulates the transcription termination process in response to metabolite (SAM) binding. The aptamer portion of the riboswitch may adopt an open or closed state depending on the presence of metabolite. Although the transition between the open and closed states is critical for the switching process, its atomistic details are not well understood. Using atomistic simulations, we calculate the effect of SAM and magnesium ions on the folding free energy landscape of the SAM-I riboswitch. These molecular simulation results are consistent with our previous wetlab experiments and aid in interpreting the SHAPE probing measurements. Here, molecular dynamics simulations explicitly identify target RNA motifs sensitive to magnesium ions and SAM. In the simulations, we observe that, whereas the metabolite mostly stabilizes the P1 and P3 helices, magnesium serves an important role in stabilizing a pseudoknot interaction between the P2 and P4 helices, even at high metabolite concentrations. The pseudoknot stabilization by magnesium, in combination with P1 stabilization by SAM, explains the requirement of both SAM and magnesium to form the fully collapsed metabolite-bound closed state of the SAM-I riboswitch. In the absence of SAM, frequent open-to-closed conformational transitions of the pseudoknot occur, akin to breathing. These pseudoknot fluctuations disrupt the binding site by facilitating fluctuations in the 5'-end of helix P1. Magnesium biases the landscape toward a collapsed state (preorganization) by coordinating pseudoknot and 5'-P1 fluctuations. The cooperation between SAM and magnesium in stabilizing important tertiary interactions elucidates their functional significance in transcription regulation. Published by Elsevier Inc.

  7. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements

    PubMed Central

    PENEDO, J. CARLOS; WILSON, TIMOTHY J.; JAYASENA, SUMEDHA D.; KHVOROVA, ANASTASIA; LILLEY, DAVID M.J.

    2004-01-01

    It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442

  8. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  9. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  10. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  11. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  12. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  13. Recovery process for electroless plating baths

    DOEpatents

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  14. Recovery process for electroless plating baths

    DOEpatents

    Anderson, R.W.; Neff, W.A.

    1992-05-12

    A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.

  15. Impurities Removal in Seawater to Optimize the Magnesium Extraction

    NASA Astrophysics Data System (ADS)

    Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.

    2017-02-01

    Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.

  16. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    DOE PAGES

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; ...

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC andmore » under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.« less

  17. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Jun; You Guoqiang; Long Siyuan

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in themore » initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.« less

  18. X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.

    PubMed

    Burke, Paul J; Bayindir, Zeynel; Kipouros, Georges J

    2012-05-01

    Magnesium (Mg) and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy may be a suitable solution for forming near-net-shape parts. However, sintering pure magnesium presents difficulties due to surface film that forms on the magnesium powder particles. The present work investigates the composition of the surface film that forms on the surface of pure magnesium powders exposed to atmospheric conditions and on pure magnesium powders after compaction under uniaxial pressing at a pressure of 500 MPa and sintering under argon at 600 °C for 40 minutes. Initially, focused ion beam microscopy was utilized to determine the thickness of the surface layer of the magnesium powder and found it to be ~10 nm. The X-ray photoelectron analysis of the green magnesium sample prior to sintering confirmed the presence of MgO, MgCO(3)·3H(2)O, and Mg(OH)(2) in the surface layer of the powder with a core of pure magnesium. The outer portion of the surface layer was found to contain MgCO(3)·3H(2)O and Mg(OH)(2), while the inner portion of the layer is primarily MgO. After sintering, the MgCO(3)·3H(2)O was found to be almost completely absent, and the amount of Mg(OH)(2) was also decreased significantly. This is postulated to occur by decomposition of the compounds to MgO and gases during the high temperature of sintering. An increase in the MgO content after sintering supports this theory.

  19. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    NASA Astrophysics Data System (ADS)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  20. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    PubMed

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  1. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  2. The Preparation, Characterization and Formation Mechanism of a Calcium Phosphate Conversion Coating on Magnesium Alloy AZ91D.

    PubMed

    Liu, Dong; Li, Yanyan; Zhou, Yong; Ding, Yigang

    2018-05-28

    The poor corrosion resistance of magnesium alloys is one of the main obstacles preventing their widespread usage. Due to the advantages of lower cost and simplicity in operation, chemical conversion coating has drawn considerable attention for its improvement of the corrosion resistance of magnesium alloys. In this study, a calcium phosphate coating was prepared on magnesium alloy AZ91D by chemical conversion. For the calcium phosphate coating, the effect of processing parameters on the microstructure and corrosion resistance was studied by scanning electron microscope (SEM) and electrochemical methods, and the coating composition was characterized by X-ray diffraction (XRD). The calcium phosphate coating was mainly composed of CaHPO₄·2H₂O (DCPD), with fewer cracks and pores. The coating with the leaf-like microstructure provided great corrosion resistance to the AZ91D substrate, and was obtained under the following conditions: 20 min, ambient temperature, and no stirring. At the same time, the role of NH₄H₂PO₄ as the coating-forming agent and the acidifying agent in the conversion process was realized, and the formation mechanism of DCPD was discussed in detail in this work.

  3. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  4. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  5. Investigation of Deteriorated Dissolution of Amorphous Itraconazole: Description of Incompatibility with Magnesium Stearate and Possible Solutions.

    PubMed

    Démuth, B; Galata, D L; Szabó, E; Nagy, B; Farkas, A; Balogh, A; Hirsch, E; Pataki, H; Rapi, Z; Bezúr, L; Vigh, T; Verreck, G; Szalay, Z; Demeter, Á; Marosi, G; Nagy, Z K

    2017-11-06

    Disadvantageous crystallization phenomenon of amorphous itraconazole (ITR) occurring in the course of dissolution process was investigated in this work. A perfectly amorphous form (solid dispersion) of the drug was generated by the electroblowing method (with vinylpyrrolidone-vinyl acetate copolymer), and the obtained fibers were formulated into tablets. Incomplete dissolution of the tablets was noticed under the circumstances of the standard dissolution test, after which a precipitated material could be filtered. The filtrate consisted of ITR and stearic acid since no magnesium content was detectable in it. In parallel with dissolution, ITR forms an insoluble associate, stabilized by hydrogen bonding, with stearic acid deriving from magnesium stearate. This is why dissolution curves do not have the plateaus at 100%. Two ways are viable to tackle this issue: change the lubricant (with sodium stearyl fumarate >95% dissolution can be accomplished) or alter the polymer in the solid dispersion to a type being able to form hydrogen bonds with ITR (e.g., hydroxypropyl methylcellulose). This work draws attention to one possible phenomenon that can lead to a deterioration of originally good dissolution of an amorphous solid dispersion.

  6. Stable Magnesium Isotope Variation in Melilite Mantle of Allende Type B1 CAI EK 459-5-1

    NASA Technical Reports Server (NTRS)

    Kerekgyarto, A. G.; Jeffcoat, C. R.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.

    2014-01-01

    Ca-Al-rich inclusions (CAIs) are the earliest formed crystalline material in our solar system and they record early Solar System processes. Here we present petrographic and delta Mg-25 data of melilite mantles in a Type B1 CAI that records early solar nebular processes.

  7. Laser surface modification of Ti and TiC coatings on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Lee, S. G.; Park, J. S.; Kim, H. G.

    2014-12-01

    In order to enhance the surface properties of magnesium alloy, a highly intense laser surface melting process following plasma spraying of Ti or TiC on AZ31 alloy were employed. When laser surface melting was applied to Ti coated magnesium alloy, the formation of fine Ti particle dispersed surface layer on the substrate occurred. The corrosion potential of the AZ31 alloy with Ti dispersed surface was significantly increased in 3.5 wt % NaCl solution. Additionally, an improved hardness was observed for the laser treated specimens as compared to the untreated AZ31 alloy. Laser melting process following plasma thermal deposition was also applied for obtaining in situ TiC coating layer on AZ31 alloy. The TiC coating layer could be successfully formed via in situ reaction between pure titanium and carbon powders. Incomplete TiC formation was observed in the plasma sprayed specimen, while completely transformed TiC layer was found after post laser melting process. It was also confirmed that the laser post treatment induced enhanced adhesion strength between the coating and the substrate.

  8. The geology of asbestos in the United States and its practical applications

    USGS Publications Warehouse

    Van Gosen, B. S.

    2007-01-01

    Recently, naturally occurring asbestos (NOA) has drawn the attention of numerous health and regulatory agencies and citizen groups. NOA can be released airborne by (1) the disturbance of asbestos-bearing bedrocks through human activities or natural weathering, and (2) the mining and milling of some mineral deposits in which asbestos occurs as an accessory mineral(s). Because asbestos forms in specific rock types and geologic conditions, this information can be used to focus on areas with the potential to contain asbestos, rather than devoting effort to areas with minimal NOA potential. All asbestos minerals contain magnesium, silica, and water as essential constituents, and some also contain major iron and/or calcium. Predictably, the geologic environments that host asbestos are enriched in these components. Most asbestos deposits form by metasomatic replacement of magnesium-rich rocks. Asbestos-forming environments typically display shear or evidence for a significant influx of silica-rich hydrothermal fluids. Asbestos-forming processes can be driven by regional metamorphism, contact metamorphism, or magmatic hydrothermal systems. Thus, asbestos deposits of all sizes and styles are typically hosted by magnesium-rich rocks (often also iron-rich) that were altered by a metamorphic or magmatic process. Rock types known to host asbestos include serpentinites, altered ultramafic and some mafic rocks, dolomitic marbles and metamorphosed dolostones, metamorphosed iron formations, and alkalic intrusions and carbonatites. Other rock types appear unlikely to contain asbestos. These geologic insights can be used by the mining industry, regulators, land managers, and others to focus attention on the critical locales most likely to contain asbestos.

  9. Ab initio crystal structure prediction of magnesium (poly)sulfides and calculation of their NMR parameters.

    PubMed

    Mali, Gregor

    2017-03-01

    Ab initio prediction of sensible crystal structures can be regarded as a crucial task in the quickly-developing methodology of NMR crystallography. In this contribution, an evolutionary algorithm was used for the prediction of magnesium (poly)sulfide crystal structures with various compositions. The employed approach successfully identified all three experimentally detected forms of MgS, i.e. the stable rocksalt form and the metastable wurtzite and zincblende forms. Among magnesium polysulfides with a higher content of sulfur, the most probable structure with the lowest formation energy was found to be MgS 2 , exhibiting a modified rocksalt structure, in which S 2- anions were replaced by S 2 2- dianions. Magnesium polysulfides with even larger fractions of sulfur were not predicted to be stable. For the lowest-energy structures, 25 Mg quadrupolar coupling constants and chemical shift parameters were calculated using the density functional theory approach. The calculated NMR parameters could be well rationalized by the symmetries of the local magnesium environments, by the coordination of magnesium cations and by the nature of the surrounding anions. In the future, these parameters could serve as a reference for the experimentally determined 25 Mg NMR parameters of magnesium sulfide species.

  10. Analysis of Solid State Bonding in the Extrusion Process of Magnesium Alloys --Numerical Prediction and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Alharthi, Nabeel H.

    The automotive industry developments focused on increasing fuel efficiency are accomplished by weight reduction of vehicles, which consequently results in less negative environmental impact. Usage of low density materials such as Magnesium alloys is an approach to replace heavier structural components. One of the challenges in deformation processing of Magnesium is its low formability attributed to the hexagonal close packed (hcp) crystal structure. The extrusion process is one of the most promising forming processes for Magnesium because it applies a hydrostatic compression state of stress during deformation resulting in improved workability. Many researchers have attempted to fully understand solid state bonding during deformation in different structural materials such as Aluminum, Copper and other metals and alloys. There is a lack of sufficient understanding of the extrusion welding in these materials as well as very limited knowledge on this subject for hollow profiles made from Magnesium alloys. The weld integrity and the characteristic of the welding microstructure are generally unknown. In this dissertation three related research projects are investigated by using different tools such as microstructure characterization, mechanical testing, thermo-mechanical physical simulation and finite element numerical modeling. Project 1: Microstructure characterization supported by mechanical testing of the extrusion welding regions in Magnesium alloy AM30 extrudate. The microstructure characterization was conducted using Light Optical Microscopy (LOM), in addition to LOM the electron backscattered diffraction (EBSD) technique was implemented to characterize in depth the deformed and welded microstructure. Project 2: Finite element numerical simulation of AM30 extrudate to model different process parameters and their influence on localized state variables such as strain, strain rate, temperature and normal pressure within the weld zone. Project 3: Physical simulation of the extrusion welding by using Gleeble 3500 thermo-mechanical simulator to create deformation welds in Magnesium alloy AM30 samples in compression test under various temperatures and strain rates conditions. Based on the obtained results from the performed research projects and literature review, a new qualitative criterion of extrusion welding has been introduced as contribution to the field. The criterion and its analysis have provided better understanding of material response to processing parameters and assisted in selecting the processing windows for good practices in the extrusion process. In addition, the new approach contributed to better understanding and evaluating the quality of the solid state bonding of Mg alloy. Accordingly, the criteria help to avoiding formation of potential mechanical and metallurgical imperfections.

  11. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    PubMed

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and bioactivity. The chemical conversion coatings, which are formed through the reaction between the substrate and the environment, have attracted increasing attention owing to the relative low treatment temperature, favorable bonding to substrate and simple implementation process. 2. With the increasing of hydroxyapatite (HA) content, the crack width in the composite coatings and the thickness of the coatings exhibit obviously decreased. The reason is probably that when adding HA into the phytic acid solution, the amount of active hydroxyl groups in the phytic acid are reduced via forming the coordination bond between P-OH groups from phytic acid and P-OH groups from the surface of HA, thus decreasing the coating thickness and hydrogen formation, as well as avoiding coating cracking. 3. By adjusting the HA content to 45 wt.%, a dense and relatively smooth composite coating with ~1.4 μm thickness is obtained on magnesium alloy, and exhibits high corrosion resistance and good bioactivity when compared with the single phytic acid conversion coating.

  12. Influence of the β-Mg17Al12 Phase Morphology on the Corrosion Properties Of Az91hp Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Lingling; Zhang, Jumei

    2017-09-01

    The morphology of β-Mg17Al12 phase and corrosion behavior of AZ91HP magnesium alloy after spheroidizing treatment were investigated by optical microcope electrochemical and immersion tests in 3.5% NaCl at 25°C. The results show that the coarse divorced eutectic phase of AZ91HP cast magnesium alloy dissolve into Mg matrix during the isothermal process at 415°C, and the lameller β phase precipitated from magnesium solid solution as perlite-type precipitation during the slowly cooling. Next, the spheroidizing treatment at different temperatures for 20h was carried out, and the lameller β phase were spheroridizing by dissolved themselves. After spheroidizing treatment at 300°C for 20h, many small granular β phase are scattering within the magnesium matrix. The corrosion properties of AZ91HP magnesium alloy in 3.5% NaCl decreased obviously after spheroidizing treatment, the polarization measurement of the alloy can be up to -1.412V from -1.56V of the cast. The β-Mg17Al12 phase act as a corrosion barrier and hinder corrosion propagation, if the second phase is in the form of a spherical morphology.

  13. Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"

    NASA Astrophysics Data System (ADS)

    Cole, Gerald S.

    This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.

  14. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  15. Efflorescence of Magnesium Perchlorate by Contact with Mineral Dust Particles

    NASA Astrophysics Data System (ADS)

    Ushijima, S.; Tolbert, M. A.; Gough, R. V.

    2017-12-01

    Liquid water was not uncommon on early Mars and it shaped geologic features on the surface that are still seen today. Due to the extremely cold and dry conditions of Mars currently, only water ice and water vapor have been observed and or detected. However, it has been suggested that liquid may form seasonally based on the observations of recurring slope lineae (RSL). The liquid may be a brine composed of hygroscopic salts such as perchlorates whose hydrated form has recently been detected in an RSL by the Mars Reconnaissance Orbiter. Through a process called deliquescence, the salts can absorb water from the surrounding environment and become a brine above a specific relative humidity (RH) known as the deliquescence relative humidity (DRH). The reverse process, recrystallization or efflorescence, often occurs at a much lower RH called the efflorescence relative humidity (ERH). The hysteresis effect caused by the distinctly different RH values allows for liquid brines to be metastable even under dry conditions. However, there is evidence that ERH can be raised when a mineral particle encounters the surface of the brine or it is immersed inside, effectively diminishing the metastability potential of liquid brines. If the brines are responsible for RSL formation, the brine will inevitably mix with the Martian soil. Thus, it is important to understand the effects that mineral particles can have on efflorescence. Here we use optical trapping to examine efflorescence of magnesium perchlorate in the presence of montmorillonite and halite. Studies on the efflorescence and deliquescence of magnesium perchlorate has shown that its brine could be stable in the subsurface of Mars during certain periods of time. Both montmorillonite and halite have been suggested to be a part of or similar to components of the Martian soil. Results at ambient conditions have shown that efflorescence of magnesium perchlorate is unaffected by the presence of either minerals. Whether the droplet of magnesium perchlorate was pure or exposed to halite or montmorillonite the ERH was near 13% RH at room temperature. Although not under Mars conditions, the results suggest that the stability of magnesium perchlorate brine could be unaffected by the surrounding mineral and could still possibly contribute to RSL formation.

  16. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    NASA Astrophysics Data System (ADS)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack propagation into the top sheet, into the bottom sheet, and interfacial separation. Investigation of the tested welds revealed that the voids in the weld nugget reduced the weld strength, resulting in lower fatigue life. A thin layer of IMCs formed along the faying surface which accelerated the fatigue failure.

  17. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOEpatents

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  18. Growth, stability and decomposition of Mg2Si ultra-thin films on Si (100)

    NASA Astrophysics Data System (ADS)

    Sarpi, B.; Zirmi, R.; Putero, M.; Bouslama, M.; Hemeryck, A.; Vizzini, S.

    2018-01-01

    Using Auger Electron Spectroscopy (AES), Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Low Energy Electron Diffraction (LEED), we report an in-situ study of amorphous magnesium silicide (Mg2Si) ultra-thin films grown by thermally enhanced solid-phase reaction of few Mg monolayers deposited at room temperature (RT) on a Si(100) surface. Silicidation of magnesium films can be achieved in the nanometric thickness range with high chemical purity and a high thermal stability after annealing at 150 °C, before reaching a regime of magnesium desorption for temperatures higher than 350 °C. The thermally enhanced reaction of one Mg monolayer (ML) results in the appearance of Mg2Si nanometric crystallites leaving the silicon surface partially uncovered. For thicker Mg deposition nevertheless, continuous 2D silicide films are formed with a volcano shape surface topography characteristic up to 4 Mg MLs. Due to high reactivity between magnesium and oxygen species, the thermal oxidation process in which a thin Mg2Si film is fully decomposed (0.75 eV band gap) into a magnesium oxide layer (6-8 eV band gap) is also reported.

  19. Relations and interactions between twinning and grain boundaries in hexagonal close-packed structures

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher Duncan

    Improving the formability and crashworthiness of wrought magnesium alloys are the two biggest challenges in current magnesium technology. Magnesium is the best material candidate for enabling required improvements in fuel economy of combustion engines and increases in ranges of electric vehicles. In hexagonal closed-packed (HCP) structures, effects of grain size/morphology and crystallographic texture are particularly important. Prior research has established a general understanding of the dependences of strength and strain anisotropy on grain morphology and texture. Unfortunately, deformation, recrystallization, and grain growth strategies that control the microstructures and textures of cubic metals and alloys have not generally worked for HCPs. For example, in Magnesium, the deformation texture induced by primary forming operations (rolling, extrusion, etc.) is not randomized by recrystallization and may strengthen during grain growth. A strong texture reduces formability during secondary forming (stamping, bending, hemming etc.) Thus, the inability to randomize texture has impeded the implementation of magnesium alloys in engineering applications. When rare earth solutes are added to magnesium alloys, distinct new textures are derived. However, `rare earth texture' derivation remains insufficiently explained. Currently, it is hypothesized that unknown mechanisms of alloy processing are at work, arising from the effects of grain boundary intrinsic defect structures on microstructural evolution. This dissertation is a comprehensive attempt to identify formal methodologies of analyzing the behavior of grain boundaries in magnesium. We focus particularly on twin boundaries and asymmetric tilt grain boundaries using molecular dynamics. We begin by exploring twin nucleation in magnesium single crystals, elucidating effects of heterogeneities on twin nucleation and their relationships with concurrent slip. These efforts highlighted the necessity of imperfections to nucleate {10-12} twins. Subsequent studies encountered the importance of deformation faceting on the high mobility of {10-12} and stabilization of observed twin mode boundaries. Implementation of interfacial defect theory was necessary to decipher the complex mechanisms observed which govern the development of defects in grain boundaries, disconnection pile-up, facet nucleation, interfacial disclination nucleation, disconnection movements, disconnection transformation across interfacial disclinations, cross-faceting, and byproducts of interactions between lattice dislocations and grain boundaries.

  20. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  1. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.

    2017-04-01

    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the critical role of internal molecule re-organization to form crystalline structures. Aggregation of AMC spherulites triggers biomimetic morphologies forming curling laminar structures and rings. The size and number of nesquehonite (MgCO3.3H2O) crystals are controlled by pH and Mg2+ ions at pH < 9. As pH increases, nesquehonite transforms to spherical, rosette-like dypingite and/or hydromagnesite. Crystallization experiments within silica gel impedes the normal growth of prismatic nesquehonite crystals and generates peculiar dendritic crystalline structures. Finally, vapor diffusion techniques resulted in synthesis of NH4+-bearing hydrated compounds after ammonium incorporation when [NH4+]/[Mg2+] ≥ 1 and ≥ 0.5M [NH4+]. Funding: We acknowledge funding from the People programme (Marie Curie Actions - ITN) of the European Union FP7 under REA Grant Agreement n˚ 608001.

  2. Development and Properties of Advanced Internal Magnesium Infiltration (AIMI) Processed MgB2 Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collings, Prof Edward William; Sumption, Prof Michael D; Li, Guangze

    The development, processing, properties, and formation mechanisms of Advanced Internal Magnesium Infiltration (AIMI) MgB2 wires are discussed against a background of the related and original processes, Internal-Magnesium-Diffusion (IMD) and Magnesium-Reactive-Liquid-Infiltration (Mg-RLI). First reviewed are the formation, properties and applications of Mg-RLI bulks as basis for discussions of Mg-RLI-processed and IMD-processed wires. The transition from Mg-RLI- and IMD- to AIMI wires is explained, and the relative performances of powder-in-tube (PIT), IMD and AIMI wires are summarized in the form of an iso-Je diagram of Jc,nb versus Anb/ATOT in which ATOT, Anb, Jc,nb, and Je are, respectively, the wire s cross-sectional area,more » the area inside the chemical barrier, the critical current (Ic) normalized to Anb, and Ic normalized to ATOT. After the details of AIMI wire fabrication selection of starting powders, dopants, and reaction heat treatments are introduced the report goes on to describe in detail the development of high performance AIMI wires: layer Jcs, fill factors, Jes, and the effects of wire size, multifilamentarization, doping with C, and co-doping with C and Dy2O3. The two-stage mechanism of layer formation in AIMI wires is discussed: first the reactive infiltration of liquid Mg into a porous B pack, a process that terminates with the formation of a dense MgB2 layer; second the slow diffusion of Mg into any remaining B through that MgB2 layer. The report concludes with a brief general discussion of anisotropy, current percolation, and the Jc field dependence of MgB2 wires.« less

  3. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions.

    PubMed

    Lopez-Heredia, Marco A; Łapa, Agata; Reczyńska, Katarzyna; Pietryga, Krzysztof; Balcaen, Lieve; Mendes, Ana C; Schaubroeck, David; Van Der Voort, Pascal; Dokupil, Agnieszka; Plis, Agnieszka; Stevens, Chris V; Parakhonskiy, Bogdan V; Samal, Sangram Keshari; Vanhaecke, Frank; Chai, Feng; Chronakis, Ioannis S; Blanchemain, Nicolas; Pamuła, Elżbieta; Skirtach, Andre G; Douglas, Timothy E L

    2018-04-27

    Mineralization of hydrogels is desirable prior to applications in bone regeneration. CaCO 3 is a widely used bone regeneration material and Mg, when used as a component of calcium phosphate biomaterials, has promoted bone-forming cell adhesion and proliferation and bone regeneration. In this study, gellan gum (GG) hydrogels were mineralized with carbonates containing different amounts of calcium (Ca) and magnesium (Mg) by alternate soaking in, firstly, a calcium and/or magnesium ion solution and, secondly, a carbonate ion solution. This alternate soaking cycle was repeated five times. Five different calcium and/or magnesium ion solutions, containing different molar ratios of Ca to Mg ranging from Mg-free to Ca-free were compared. Carbonate mineral formed in all sample groups subjected to the Ca:Mg elemental ratio in the carbonate mineral formed was higher than in the respective mineralizing solution. Mineral formed in the absence of Mg was predominantly CaCO 3 in the form of a mixture of calcite and vaterite. Increasing the Mg content in the mineral formed led to the formation of magnesian calcite, decreased the total amount of the mineral formed and its crystallinity. Hydrogel mineralization and increasing Mg content in mineral formed did not obviously improve proliferation of MC3T3-E1 osteoblast-like cells or differentiation after 7 days. This article is protected by copyright. All rights reserved.

  4. 40 CFR 98.200 - Definition of source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.200 Definition of source category. The magnesium production and processing source category consists of the following processes: (a) Any process in which magnesium metal is produced through smelting (including electrolytic smelting), refining...

  5. 40 CFR 98.200 - Definition of source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.200 Definition of source category. The magnesium production and processing source category consists of the following processes: (a) Any process in which magnesium metal is produced through smelting (including electrolytic smelting), refining...

  6. 40 CFR 98.200 - Definition of source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.200 Definition of source category. The magnesium production and processing source category consists of the following processes: (a) Any process in which magnesium metal is produced through smelting (including electrolytic smelting), refining...

  7. 40 CFR 98.200 - Definition of source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.200 Definition of source category. The magnesium production and processing source category consists of the following processes: (a) Any process in which magnesium metal is produced through smelting (including electrolytic smelting), refining...

  8. Forced-flow chromatographic determination of calcium and magnesium with continuous spectrophotometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, M.D.

    1977-12-01

    Modifications to the forced-flow chromatograph include a flow-through pH monitor to continuously monitor the pH of the final effluent and an active low-pass filter to eliminate noise in the spectrophotometric detector. All separations are performed using partially sulfonated XAD-2 as the ion exchanger. Elution of calcium and magnesium is accomplished using ammonium chloride and ethylenediammonium chloride solutions. Calcium and magnesium are detected by means of Arsenazo I and PAR-ZnEDTA color-forming reagents. Other metal ions are detected by means of PAR and Chromazurol S color-forming reagents. Calcium and magnesium distribution coefficients on partially sulfonated XAD-2 as functions of ammonium chloride andmore » ethylenediammonium chloride concentration are given together with distribution coefficients of other metal ions. Methods for the selective elution of interfering metal ions prior to the elution of calcium and magnesium are described. Beryllium and aluminum are selectively eluted with sulfosalicylic acid. Those elements forming anionic chloride complexes are selectively eluted with HCl-acetone. Nickel is selectively eluted with HCl-acetone-dimethylglyoxime. Synthetic samples containing calcium and magnesium, both alone and in combination with alkali metals, strontium, barium, beryllium, aluminum, transition metals, and rare earths, are analyzed. Hard water samples are analyzed for calcium and magnesium and the results compared to those obtained by EDTA titration, atomic absorption spectroscopy, and plasma emission spectroscopy. Several clinical serum samples are analyzed for calcium and magnesium and the results compared to those obtained by atomic absorption spectroscopy.« less

  9. 76 FR 53408 - Pure Magnesium From the People's Republic of China: Rescission of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... of the Order Merchandise covered by the order is pure magnesium regardless of chemistry, form or size... primary magnesium (including turnings, chips and powder) having a maximum physical dimension (i.e., length...

  10. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    PubMed

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  11. Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics

    DTIC Science & Technology

    2015-09-01

    may contribute to the difference between the measured and expected values (such as varied hydration levels in the starting materials), there has...believe that such impurities forms from the thermal decomposition of the organic binders and dispersants used in the processing. We believe the

  12. The production of fine grained magnesium alloys through thermomechanical processing for the optimization of microstructural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Young, John Paul

    The low density and high strength to weight ratio of magnesium alloys makes them ideal candidates to replace many of the heavier steel and aluminum alloys currently used in the automotive and other industries. Although cast magnesium alloys components have a long history of use in the automotive industry, the integration of wrought magnesium alloys components has been hindered by a number of factors. Grain refinement through thermomechanical processing offers a possible solution to many of the inherent problems associated with magnesium alloys. This work explores the development of several thermomechanical processing techniques and investigates their impact on the microstructural and mechanical properties of magnesium alloys. In addition to traditional thermomechanical processing, this work includes the development of new severe plastic deformation techniques for the production of fine grain magnesium plate and pipe and develops a procedure by which the thermal microstructural stability of severely plastically deformed microstructures can be assessed.

  13. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes and experience significant evaporation. Paleotropical coals with coal balls are under- and overlain by siliciclastic sediments, and, if fresh, would have required ever-wet climatic conditions for peat to accumulate. Pervasive freshwater diagenesis, with low magnesium calcite enveloping individual grains of high-magnesium calcite, results in most coal-ball carbonates having a freshwater or mixed isotopic signature. In some coal balls, cell walls in the root cortex (a soft tissue) separate carbonate of differing magnesium content, resulting in cells filled with low-magnesium (freshwater) calcite adjacent to cells filled with high-magnesium (marine) calcite, suggesting that these cements formed in recently dead or dying roots. The juxtaposition of high-magnesium (marine) calcite and low-magnesium (freshwater) calcite in coal balls suggests that they formed at the marine/freshwater interface in mires that contained salt-tolerant plants. This model of coal-ball formation suggests that coals bearing coal balls accumulated early in marine transgression as glaciers melted and sea level rose. In modern coastal mires, tidal incursion of salt water can maintain high freshwater tables, enabling domed freshwater peat to form in climates that normally would be too dry for tropical freshwater peat accumulation. Peat accumulation in these mires may be due to marine transgression rather than the ever-wet paleoclimates.

  14. A Comparison of University Lecturers' and Pre-service Teachers' Understanding of a Chemical Reaction at the Particulate Level

    NASA Astrophysics Data System (ADS)

    Lee, Kam-Wah Lucille

    1999-07-01

    This study identified a number of views prevalent among two groups of teachers about a single chemical reaction. Teachers' views were identified on the basis of the diagrammatic representations of particles that they made about the combustion of magnesium in air. Two major differences were identified between the university lecturers' and student teachers' views. According to university lecturers, in general, intermediates form between the reactants of magnesium and oxygen gas, whereas in the view of half of the pre-service teachers, the reactants form free particles before forming magnesium oxide. Many pre-service teachers held a view of loosely packed magnesium oxide, a scientifically invalid position. While training future teachers, more attention should be paid to the "atomic" level of chemical description and its associations with the macro and symbolic levels.

  15. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    PubMed Central

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  16. 76 FR 72172 - Continuation of Antidumping Duty Order: Pure Magnesium From the People's Republic of China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Canada by Timminco, Ltd. from pure magnesium of Chinese origin are not within the scope of order. See Memorandum regarding Final Ruling in the Scope Inquiry on Russian and Chinese Magnesium Processed in Canada... Memorandum regarding Final Ruling in the Scope Inquiry on Chinese Magnesium Processed in France, dated...

  17. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment

    NASA Astrophysics Data System (ADS)

    Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2011-06-01

    In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.

  18. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment

    PubMed Central

    Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2011-01-01

    In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes. PMID:27877407

  19. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  20. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role inmore » recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.« less

  1. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.

  2. Simulation of uniaxial deformation of hexagonal crystals (Mg, Be)

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Kesarev, A. G.

    2017-12-01

    Molecular dynamics (MD) simulations were performed for the nanocompression loading of nanocrystalline magnesium and beryllium modeled by an interatomic potential of the embedded atom method (EAM). It is shown that the main deformation modes are prismatic slip and twinning for magnesium, and only prismatic slip for beryllium. The formation of stable configurations of dislocation grids in magnesium and beryllium was observed. Dislocation networks are formed in the habit plane of the twin in a magnesium nanocrystall. Some dislocation reactions are suggested to explain the appearance of such networks. Shockley partial dislocations in a beryllium nanocrystall form grids in the slip plane. A strong anisotropy between slip systems was observed, which is in agreement with experimental data.

  3. Recycling of aluminium scrap for secondary Al-Si alloys.

    PubMed

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems.

  4. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  5. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    NASA Astrophysics Data System (ADS)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  6. Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Seong-Hwan; Metal Forming Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840; Jung, Ki Ho

    Processing through the application of equal-channel angular pressing (ECAP) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. Magnesium has received much attention to date for its lightweight, high strength and excellent elasticity. Mg alloys with addition of CaO is reported to provide the successful casting procedure without usage of greenhouse gas, SF{sub 6}, whereas it is generally used for preventing the oxidation of Mg during casting. In the present investigation, a CaO added AZ31 (AZ31-CaO) magnesium alloy was processed bymore » ECAP at elevated temepratures with a few steps of reduction which result in significant grain refinement to ~ 1.5 μm after 6 passes. Compression testing at room temperature demonstrated the AZ31-CaO alloy after ECAP showed enhanced yield strength more than the as-processed commercial AZ31 alloy while both alloys maintained ductility in spite of significant reduction in grain size. The improved strength in the AZ31-CaO alloy was attributed to the formation of fine Al{sub 2}Ca precipitates which experience breaking-up through ECAP and accelerate the microstructural refinement. Moreover, the preservation of ductility was attributed to the enhancement of strain hardening capability in the AZ31 alloy at room temperature. This study discusses the feasibility of using ECAP to improve both strength and ductility on magnesium alloys by applying the diagram describing the paradox of strength and ductility. - Highlights: • AZ31 and AZ31-CaO magnesium alloys were processed by ECAP up to 6 passes. • AZ31-CaO alloy after ECAP showed improved yield strength without losing ductility. • CaO in AZ31 forms fine Al{sub 2}Ca accelerating microstructural refinement during ECAP. • Feasibility of using ECAP was shown to improve both strength and ductility in Mg.« less

  7. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.

  8. Calcium carbonates: induced biomineralization with controlled macromorphology

    NASA Astrophysics Data System (ADS)

    Meier, Aileen; Kastner, Anne; Harries, Dennis; Wierzbicka-Wieczorek, Maria; Majzlan, Juraj; Büchel, Georg; Kothe, Erika

    2017-11-01

    Biomineralization of (magnesium) calcite and vaterite by bacterial isolates has been known for quite some time. However, the extracellular precipitation has hardly ever been linked to different morphologies of the minerals that are observed. Here, isolates from limestone-associated groundwater, rock and soil were shown to form calcite, magnesium calcite or vaterite. More than 92 % of isolates were indeed able to form carbonates, while abiotic controls failed to form minerals. The crystal morphologies varied, including rhombohedra, prisms and pyramid-like macromorphologies. Different conditions like varying temperature, pH or media components, but also cocultivation to test for collaborative effects of sympatric bacteria, were used to differentiate between mechanisms of calcium carbonate formation. Single crystallites were cemented with bacterial cells; these may have served as nucleation sites by providing a basic pH at short distance from the cells. A calculation of potential calcite formation of up to 2 g L-1 of solution made it possible to link the microbial activity to geological processes.

  9. 21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...

  10. 21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...

  11. 21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...

  12. 21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloral hydrate, pentobarbital, and magnesium... FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate. (a) Specifications. Each milliliter of solution contains 42.5 milligrams (mg) of chloral hydrate, 8.86 mg of...

  13. 21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...

  14. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    NASA Astrophysics Data System (ADS)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  15. A novel photochemical machining process for magnesium aerospace and biomedical microengineering applications

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Simpkins, M.; Almond, H.

    2010-10-01

    Research was carried out to evaluate the feasibility of fabricating perforated (filigree) magnesium microcomponents with metal wire widths of the order of the metal thickness using a photochemical machining (PCM) process. Experimentally, it has been demonstrated for the first time that metal wire widths of 0.15 mm can be achieved within a 2D, 0.25 mm thick magnesium foil to fabricate microcomponents for use as micro air vehicle (MAV) wings or stents through a bespoke PCM process. This etching process differs significantly from the industrial etching process used currently to manufacture magnesium letterpress printing plates and embossing dies.

  16. Methods of deoxygenating metals having oxygen dissolved therein in a solid solution

    DOEpatents

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang

    2017-06-06

    A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.

  17. Concept Study for Military Port Design Using Natural Processes.

    DTIC Science & Technology

    1982-06-15

    exchange methods are so good in this ocean heat sink with its diffused materials because it uses its chemicals to attach the ions and then to make acids...H.L., "Saturation State of Calcium Carbonate in Seawater and its Possible Significance for Scale Formation on OTEC Heat Exchanger ," Abstract...Which Harvest Calcium and Magnesium as Structural Materials E. Forming Structures from Silicates After Ion Exchanging , Using Hot and Cold Forming

  18. Rapid plasma quenching for the production of ultrafine metal and ceramic powders

    NASA Astrophysics Data System (ADS)

    Donaldson, Alan; Cordes, Ronald A.

    2005-04-01

    The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.

  19. Electrochromic materials, devices and process of making

    DOEpatents

    Richardson, Thomas J.

    2003-11-11

    Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.

  20. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  1. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  2. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOEpatents

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  3. Optimization of chlorine fluxing process for magnesium removal from molten aluminum

    NASA Astrophysics Data System (ADS)

    Fu, Qian

    High-throughput and low operational cost are the keys to a successful industrial process. Much aluminum is now recycled in the form of used beverage cans and this aluminum is of alloys that contain high levels of magnesium. It is common practice to "demag" the metal by injecting chlorine that preferentially reacts with the magnesium. In the conventional chlorine fluxing processes, low reaction efficiency results in excessive reactive gas emissions. In this study, through an experimental investigation of the reaction kinetics involved in this process, a mathematical model is set up for the purpose of process optimization. A feedback controlled chlorine reduction process strategy is suggested for demagging the molten aluminum to the desired magnesium level without significant gas emissions. This strategy also needs the least modification of the existing process facility. The suggested process time will only be slightly longer than conventional methods and chlorine usage and emissions will be reduced. In order to achieve process optimization through novel designs in any fluxing process, a system is necessary for measuring the bubble distribution in liquid metals. An electro-resistivity probe described in the literature has low accuracy and its capability to measure bubble distribution has not yet been fully demonstrated. A capacitance bubble probe was designed for bubble measurements in molten metals. The probe signal was collected and processed digitally. Higher accuracy was obtained by higher discrimination against corrupted signals. A single-size bubble experiment in Belmont metal was designed to reveal the characteristic response of the capacitance probe. This characteristic response fits well with a theoretical model. It is suggested that using a properly designed deconvolution process, the actual bubble size distribution can be calculated. The capacitance probe was used to study some practical bubble generation devices. Preliminary results on bubble distribution generated by a porous plug in Belmont metal showed bubbles much bigger than those in a water model. Preliminary results in molten aluminum showed that the probe was applicable in this harsh environment. An interesting bubble coalescence phenomenon was also observed in both Belmont metal and molten aluminum.

  4. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.

    PubMed

    Oumar, Dia; Patrick, Drogui; Gerardo, Buelna; Rino, Dubé; Ihsen, Ben Salah

    2016-10-01

    In this research paper, a combination of biofiltration (BF) and electrocoagulation (EC) processes was used for the treatment of sanitary landfill leachate. Landfill leachate is often characterized by the presence of refractory organic compounds (BOD/COD < 0.13). BF process was used as secondary treatment to remove effectively ammonia nitrogen (N-NH4 removal of 94%), BOD (94% removed), turbidity (95% removed) and phosphorus (more than 98% removed). Subsequently, EC process using magnesium-based anode was used as tertiary treatment. The best performances of COD and color removal from landfill leachate were obtained by applying a current density of 10 mA/cm(2) through 30 min of treatment. The COD removal reached 53%, whereas 85% of color removal was recorded. It has been proved that the alkalinity had a negative effect on COD removal during EC treatment. COD removal efficiencies of 52%, 41% and 27% were recorded in the presence of 1.0, 2.0 and 3.0 g/L of sodium bicarbonate (NaHCO3), respectively. Hydroxide ions produced at the cathode electrode reacted with the bicarbonate ions to form carbonates. The presence of bicarbonates in solution hampered the increase in pH, so that the precipitation of magnesium hydroxides could not take place to effectively remove organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    NASA Astrophysics Data System (ADS)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  6. Magnesium degradation products: effects on tissue and human metabolism.

    PubMed

    Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J

    2014-10-01

    Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account. © 2013 Wiley Periodicals, Inc.

  7. Techno-Economic Analysis of Magnesium Extraction from Seawater via a Catalyzed Organo-Metathetical Process

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete

    2018-03-01

    Magnesium (Mg) has many useful applications especially in the form of various Mg alloys that can decrease weight while increasing strength compared with common steels. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve a significant reduction in total energy and production cost compared with the melting salt electrolysis method currently adapted by US Mg LLC. A process flow sheet for a reference COMET process was set up using Aspen Plus. The energy consumption, production cost, and CO2 emissions were estimated using the Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of 2.0/kg-Mg while consuming about 35.6 kWh/kg-Mg and releasing 7.7 kg CO2/kg-Mg. Under the simulated conditions, the reference COMET process maintains a comparable CO2 emission rate, saves about 40% in production cost, and saves about 15% in energy consumption compared with a simplified US Mg process.

  8. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  9. DISTILLATION OF CALCIUM

    DOEpatents

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  11. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    PubMed

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-07-01

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.

  12. Improvements to the strength and corrosion resistance of aluminum-magnesium-manganese alloys of near-AA5083 chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, Mark Christopher

    Aluminum alloys of the 5000 series (AI-Mg-Mn) are extremely popular in a wide range of applications that call for a balance of moderately high strength, good corrosion resistance, and light weight, all at a moderate cost. One of the most popular 5000 series alloys is designated A1-5083, containing, in addition to aluminum, approximately 4 wt% magnesium and 0.7 wt% manganese. In order to increase the range of versatility of this particular alloy, a number of modifications have been examined that will potentially improve the strength and corrosion resistance characteristics while maintaining a chemical composition that is very close to the proven 5083 alloy. The strength of the 5083-based alloys under study are investigated with two goals in mind---to maximize the potential strength characteristics in a "standard" 5083 form through changes in minor processing parameters or through minor alloying additions. Increasing the standard alloy's potential is possible through improved efficiency of "preprocessing" heat treatments that maximize the homogeneous dispersion of secondary manganese-based particles. For the modified alloy study, additions of scandium and zirconium are shown to improve strength not only by forming secondary particles in the alloy, but also through substitutional solid solution strengthening, even when added at very small levels. Corrosion resistance of these 5083-based alloys is investigated once again through minor alloying additions; specifically zinc, copper, and silver. Zinc is particularly effective in that it changes the corrosion-susceptible binary aluminum-magnesium phase that would otherwise form on grain boundaries following exposure to moderately elevated temperatures for extended periods of time to a ternary aluminum-magnesium-zinc phase. This chemical composition of this ternary phase that forms following zinc additions can be further altered through minor additions of copper and silver. By determining threshold levels for these modifications while maintaining a chemical composition that is very near that of standard Al-5083, it can be shown that even minor modifications to processing and alloying parameters can have a favorable effect on the final bulk properties of the alloy. The increased range of strength and corrosion resistance of these lightly modified alloys make them more attractive in a broadened range of potential applications.

  13. Total control of chromium in tanneries - thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings.

    PubMed

    Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J

    2017-04-01

    This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr 2 O 3 ) and magnesiochromite (MgCr 2 O 4 ) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.

  14. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models.

    PubMed

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  16. Effects of Sn Addition on the Microstructures and Mechanical Properties of Mg-6Zn-3Cu- xSn Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shen, Jun; Sang, Jia-Xin; Li, Yang; He, Pei-Pei

    2015-08-01

    In this paper, Mg-6Zn-3Cu- xSn (ZC63- xSn) magnesium alloys with different Sn contents (0, 1, 2, 4 wt pct) were fabricated and subjected to different heat treatments. The microstructures and mechanical properties of the obtained ZC63- xSn samples were investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, Vickers hardness testing, and tensile testing. It was found that the As-cast Mg-6Zn-3Cu (ZC63) magnesium alloy mainly contained α-Mg grains and Mg(Zn,Cu) particles. Sn dissolved in α-Mg grains when Sn content was below 2 wt pct while Mg2Sn phase forms in the case of Sn content was above 4 wt pct. Addition of Sn refined both α-Mg grains and Mg(Zn,Cu) particles, and increased the volume fraction of Mg(Zn,Cu) particles. Compared with the Sn-free alloy, the microhardness of Sn-containing alloys increased greatly and that of As-extrude ZC63-4Sn sample achieved the highest value. The strength of ZC63 magnesium alloy was significantly enhanced because of Sn addition, which was attributed to grain refinement strengthening, solid solution strengthening, and precipitation strengthening. Furthermore, the ultimate yield stress, yield strength, and elongation of ZC63- xSn magnesium alloys were increased owing to the deceasing grain size induced by extrusion process.

  17. EFFECT OF MAGNESIUM STEARATE CONCENTRATION ON DISSOLUTION PROPERTIES OF RANITIDINE HYDROCHLORIDE COATED TABLETS

    PubMed Central

    Uzunović, Alija; Vranić, Edina

    2007-01-01

    Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates. The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked. During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation), previously proposed by Moore and Flanner. Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response. PMID:17848158

  18. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  19. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  20. Magnesium: Nutrition and Homoeostasis.

    PubMed

    Vormann, Jürgen

    2016-01-01

    The essential mineral magnesium is involved in numerous physiological processes. Recommended dietary intake is often not met and a low magnesium status increases the risk for various diseases. Magnesium status is regulated by several magnesium transport systems either in cellular or paracellular pathways. Numerous drugs either interfere with magnesium absorption in the intestines or the reabsorption from primary urine in the kidney. Low magnesium status has been identified as a significant risk factor for several diseases, including type-2 diabetes, cardiovascular diseases, arrhythmias, as well as general muscular and neurological problems. Therefore, an adequate magnesium supply would be of special benefit to our overall health.

  1. Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.

    PubMed

    Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz

    2018-05-23

    Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.

  2. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  3. Energy and Process Optimization and Benchmarking of Army Industrial Processes

    DTIC Science & Technology

    2006-09-01

    casting is a metal part formed by pouring molten iron, steel, aluminum, zinc , titanium, magnesium, copper, brass, bronze or cobalt, in nearly all...blanketing techniques. The loss of high-priced alloys is also mini- mized, while slag or dross rates are cut in half to help decrease disposal costs...fabricated of iron and steel; hot dip coating such items with aluminum, lead, or zinc ; retin- ning cans and utensils; (3) engraving, chasing and

  4. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    PubMed

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  5. An early-branching microbialite cyanobacterium forms intracellular carbonates.

    PubMed

    Couradeau, Estelle; Benzerara, Karim; Gérard, Emmanuelle; Moreira, David; Bernard, Sylvain; Brown, Gordon E; López-García, Purificación

    2012-04-27

    Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.

  6. Study on microstructure and strengthening mechanism of AZ91-Y magnesium alloy

    NASA Astrophysics Data System (ADS)

    Cai, Huisheng; Guo, Feng; Su, Juan; Liu, Liang; Chen, Baodong

    2018-03-01

    AZ91-Y magnesium alloy with different thicknesses were prepared by die casting process. The main existence forms of Y in alloy and the effects of Y on microstructure and mechanical properties of alloy were studied, the main reason for the change of mechanical properties and fracture mechanism were analyzed. The results show that, yttrium exists mainly in the forms of Al2Y phase and trace solid solution in α-Mg. Yttrium can refine the grain of α-Mg, reduce the amount of eutectic β-Mg17Al12 phase and promote its discrete distribution. The room temperature tensile strength and elongation of alloy increased first and then decreased with the increase of Y content. The designed alloys containing 0.6% Y (measured containing 0.63% Y) have better mechanical properties. The change of mechanical properties of alloy is a comprehensive reflection of the effect of solid solution, grain refinement and second phase. The cracking of Al2Y phase and β-Mg17Al12 phase and crack propagation through Al2Y phase and β-Mg17Al12 phase are the main fracture mechanism of magnesium alloy containing yttrium. The cooling rate does not change the trend of the influence of Y, but affects the degree of influence of Y.

  7. Blood compatibility of magnesium and its alloys.

    PubMed

    Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine

    2015-10-01

    Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  9. Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications

    NASA Astrophysics Data System (ADS)

    Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert

    This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders priormore » to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.« less

  11. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  12. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    PubMed

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Growth of second stage mineral in Lytechinus variegatus.

    PubMed

    Stock, S R; Seto, Jong; Deymier, A C; Rack, A; Veis, A

    2017-10-30

    Purpose and Aims: Sea urchin teeth consist of calcite and form in two stages with different magnesium contents. The first stage structures of independently formed plates and needle-prisms define the shape of the tooth, and the columns of the second stage mineral cements the first stage structures together and control the fracture behavior of the mature tooth. This study investigates the nucleation and growth of the second stage mineral. Scanning electron microscopy (SEM) and synchrotron microComputed Tomography characterized the structures of the second phase material found in developing of Lytechinus variegatus teeth. Although the column development is a continuous process, defining four phases of column formation captures the changes that occur in teeth of L. variegatus. The earliest phase consists of small 1-2 µm diameter hemispheres, and the second of 5-10 µm diameter, mound-like structures with a nodular surface, develops from the hemispheres. The mounds eventually bridge the syncytium between adjacent plates and form hyperboloid structures (phase three) that appear like mesas when plates separate during the fracture. The mesa diameter increases with time until the column diameter is significantly larger than its height, defining the fourth phase of column development. Energy dispersive x-ray spectroscopy confirms that the columns contain more magnesium than the underlying plates; the ratios of magnesium to calcium are consistent with compositions derived from x-ray diffraction. Columns grow from both bounding plates. The presence of first phase columns interspersed among third stage mesas indicates very localized control of mineralization.

  14. Deformation behaviour of a new magnesium ternary alloy

    NASA Astrophysics Data System (ADS)

    Guglielmi, P.; Kaya, A. Arslan; Sorgente, D.; Palumbo, G.

    2018-05-01

    Magnesium based alloys are yet to fill a greater niche especially in the automotive and aeronautical industry. In fact, such alloys have a big weight saving potential, together with good damping characteristics. However, nowadays about 90% of Magnesium products are produced by casting, mainly using two alloy systems, namely Mg-Al-Zn (AZ91D) and Mg-Al (AM50, AM60). Now the emphasis, especially after having achieved considerable success in creep resistance and understanding of the deformation behaviour of Magnesium, has been shifted towards wrought alloys; AZ31, in this case, is the most popular. In this work a multi-element Magnesium alloy, developed to improve the deformation capacity of such a lightweight material, has been investigated and compared to a commercial AZ31B. The possibility of adopting such a multi-element Magnesium alloy for manufacturing components via unconventional sheet forming (such as superplastic forming, warm hydroforming, incremental forming) has been proved in the present work focusing the attention on the superplastic field. Free inflation tests were thus conducted at 450°C setting constant pressure to investigate the superplastic behaviour (in terms of dome height and strain rate sensitivity index) of both the multi-element Magnesium alloy (Mg-2Zn-Ce) and the commercial one (AZ31B). To enhance information on the thickness distribution and investigate the microstructure evolution, metallographic analyses on the samples used to carry out free inflation tests were also performed. The developed ternary alloy manifested quite a good deformation behaviour (high strain rate sensitivity index), even being tested in the as cast condition; in addition a limited grain coarsening was observed in the specimens after deformation.

  15. [SIGNIFICANCE OF MAGNESIUM IN PHISIOLOGY AND PATHOLOGY OF THE DIGESTIVE SYSTEM].

    PubMed

    Grigus, Ya I; Mikhaylova, O D; Gorbunov A Yu; Vakhrushev, Ya M

    2015-01-01

    The article describes the physiological role of magnesium in the human body and its importance for metabolic processes. The reasons for the development of magnesium deficiency and hypermagnesaemia and its clinical symptoms are shown. The specialties of magnesium metabolism disturbances in gastroenterological pathology are described. Particular attention paid to the correction of magnesium levels with deviations of its content in the organism.

  16. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells.

    PubMed

    Tsao, Yu-Tzu; Shih, Ya-Yi; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K

    2017-02-21

    Magnesium is essential for numerous physiological functions. Magnesium exists mostly in bone and the amount is dynamically regulated by skeletal remodeling. Accelerating bone mass loss occurs when magnesium intake is insufficient; whereas high magnesium could lead to mineralization defects. However, the underlying magnesium regulatory mechanisms remain elusive. In the present study, we investigated the effects of high extracellular magnesium concentration on osteogenic differentiation of mesenchymal stromal/stem cells (MSCs) and the role of magnesium transporter SLC41A1 in the mineralization process. Murine MSCs derived from the bone marrow of BALB/c mouse or commercially purchased human MSCs were treated with osteogenic induction medium containing 5.8 mM magnesium chloride and the osteogenic differentiation efficiency was compared with that of MSCs in normal differentiation medium containing 0.8 mM magnesium chloride by cell morphology, gene expression profile of osteogenic markers, and Alizarin Red staining. Slc41a1 gene knockdown in MSCs was performed by siRNA transfection using Lipofectamine RNAiMAX, and the differentiation efficiency of siRNA-treated MSCs was also assessed. High concentration of extracellular magnesium ion inhibited mineralization during osteogenic differentiation of MSCs. Early osteogenic marker genes including osterix, alkaline phosphatase, and type I collagen were significantly downregulated in MSCs under high concentration of magnesium, whereas late marker genes such as osteopontin, osteocalcin, and bone morphogenetic protein 2 were upregulated with statistical significance compared with those in normal differentiation medium containing 0.8 mM magnesium. siRNA treatment targeting SLC41A1 magnesium transporter, a member of the solute carrier family with a predominant Mg 2+ efflux system, accelerated the mineralization process and ameliorated the inhibition of mineralization caused by high concentration of magnesium. High concentration of magnesium significantly upregulated Dkk1 gene expression and the upregulation was attenuated after the Slc41a1 gene was knocked down. Immunofluorescent staining showed that Slc41a1 gene knockdown promoted the translocation of phosphorylated β-catenin into nuclei. In addition, secreted MGP protein was elevated after Slc41a1 was knocked down. High concentration of extracellular magnesium modulates gene expression of MSCs during osteogenic differentiation and inhibits the mineralization process. Additionally, we identified magnesium transporter SLC41A1 that regulates the interaction of magnesium and MSCs during osteogenic differentiation. Wnt signaling is suggested to be involved in SLC41A1-mediated regulation. Tissue-specific SLC41A1 could be a potential treatment for bone mass loss; in addition, caution should be taken regarding the role of magnesium in osteoporosis and the design of magnesium alloys for implantation.

  17. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minárik, Peter; Král, Robert; Pešička, Josef

    2016-02-15

    The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{submore » 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.« less

  18. Further aspects of ochratoxin A-cation interactions: complex formation with zinc ions and a novel analytical application of ochratoxin A-magnesium interaction in the HPLC-FLD system.

    PubMed

    Poór, Miklós; Kuzma, Mónika; Matisz, Gergely; Li, Yin; Perjési, Pál; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-04-10

    Ochratoxin A (OTA) is a mycotoxin produced by different Aspergillus and Penicillium species. Since its mechanism of action is not fully understood yet, it is important to gain further insight into different interactions of OTA at the molecular level. OTA is found worldwide in many foods and drinks. Moreover, it can also be detected in human and animal tissues and body fluids, as well. Therefore, the development of highly sensitive quantitative methods for the determination of OTA is of utmost importance. OTA most likely forms complexes with divalent cations, both in cells and body fluids. In the present study, the OTA-zinc interaction was investigated and compared to OTA-magnesium complex formation using fluorescence spectroscopy and molecular modeling. Our results show that zinc(II) ion forms a two-fold higher stable complex with OTA than magnesium(II) ion. In addition, based on the enhanced fluorescence emission of OTA in its magnesium-bound form, a novel RP-HPLC-fluorescence detector (FLD) method was also established. Our results highlight that the application of magnesium chloride in alkaline eluents results in an approximately two-fold increase in sensitivity using the HPLC-FLD technique.

  19. Innovative Vacuum Distillation for Magnesium Recycling

    NASA Astrophysics Data System (ADS)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  20. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis

    PubMed Central

    DiNicolantonio, James J; Wilson, William

    2018-01-01

    Because serum magnesium does not reflect intracellular magnesium, the latter making up more than 99% of total body magnesium, most cases of magnesium deficiency are undiagnosed. Furthermore, because of chronic diseases, medications, decreases in food crop magnesium contents, and the availability of refined and processed foods, the vast majority of people in modern societies are at risk for magnesium deficiency. Certain individuals will need to supplement with magnesium in order to prevent suboptimal magnesium deficiency, especially if trying to obtain an optimal magnesium status to prevent chronic disease. Subclinical magnesium deficiency increases the risk of numerous types of cardiovascular disease, costs nations around the world an incalculable amount of healthcare costs and suffering, and should be considered a public health crisis. That an easy, cost-effective strategy exists to prevent and treat subclinical magnesium deficiency should provide an urgent call to action. PMID:29387426

  1. Cleveland-Akron Metropolitan and Three Rivers Watershed Area. Wastewater Management Survey Scope Study. Appendix V. Land Treatment. Phase I Report.

    DTIC Science & Technology

    1973-08-01

    Cincinnati, 1961. 12. Keeney, D. R. "Nitrates in Plants and Waters," Journal of Milk and Food Technology, October, 1970, Vol. 33, No. 10. 13. Kaser, P...nutrients; to supply calcium and sometimes magnesium; to increase the microbial ac- I tivity and improve soil structure and tilth. 9 The following... microbially converted to available inorganic forms (mineralization). This release of applied organic nutri- ents to available forms is a slow process; thus it

  2. Method for the production of mineral wool and iron from serpentine ore

    DOEpatents

    O'Connor, William K [Albany, OR; Rush, Gilbert E [Scio, OR; Soltau, Glen F [Lebanon, OR

    2011-10-11

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  3. Development of Rolling Schedules for Equal Channel Angular Extrusion (ECAE)-Processed AZ31 Magnesium Alloy

    DTIC Science & Technology

    2016-04-01

    Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes, Vincent H Hammond, Michael Eichhorst, Norman Herzig, and Lothar Meyer...Angular Extrusion (ECAE)–Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes and Vincent H Hammond Weapons and Materials Research...successfully reduced into 1.5-mm-thick sheets . Two sets of plates, each with a different texture type, were evaluated. Microscopic examination of

  4. Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching

    NASA Astrophysics Data System (ADS)

    Royani, Ahmad; Sulistiyono, Eko; Prasetiyo, Agus Budi; Subagja, Rudi

    2018-05-01

    Magnesium is widely used in varieties industrial sector. Dolomite is one source of magnesium besides seawater. The extraction of magnesium from dolomite ores can be done by leaching process. In this work, the dolomite leaching to extract magnesium by hydrochloric acid was investigated. The leaching experiments were performed in a spherical glass batch reactor having a capacity of 1000 ml. The effects of the stirring speed, acid concentration, reaction temperature and liquid-solid ratio for each reaction time of 1; 2; and 3 h on the Mg leaching have been evaluated. 5 ml of solution sample were collected from the leached solutions, then it was filtered prior to analysis by ICP OES. The experimental results show that the magnesium extraction increases along with the increase of acid concentration, liquid-solid ratio and temperature. The optimum conditions for magnesium extraction were achieved at temperature 75 °C, extraction time 3 h, the HCl concentration of 2 M, the liquid-solid ratio 20 ml/g and stirring speed of 400 rpm. At this condition 98, 82 % of magnesium were extracted from dolomite. The conclusion obtained from this leaching process is that the magnesium can be extracted from dolomite by using hydrochloric acid solutions.

  5. Process for changing caking coals to noncaking coals

    DOEpatents

    Beeson, Justin L.

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  6. Effects of extracellular magnesium on the differentiation and function of human osteoclasts.

    PubMed

    Wu, Lili; Luthringer, Bérengère J C; Feyerabend, Frank; Schilling, Arndt F; Willumeit, Regine

    2014-06-01

    Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Modification of the anisotropy and strength differential effect of extruded AZ31 by extrusion-shear

    NASA Astrophysics Data System (ADS)

    Jaehnke, M.; Gensch, F.; Mueller, S.

    2018-05-01

    The extrusion of magnesium alloys results in a pronounced fiber texture in which the basal planes are mostly oriented parallel and the c-axes are oriented perpendicular to the extrusion direction. Due to this texture the Strength Differential Effect (SDE), which describes the strength difference between tensile and compression yield strength, and the elastic anisotropy in the sheet plane are obtained during extrusion. The objective of the investigation was to decrease the SDE and anisotropy through specifically influencing the microstructure and texture. To accomplish this objective, the forming processes extrusion (EX) and equal channel angular pressing (ECAP) were combined and integrated into one extrusion die. This combination is called extrusion-shear (ES). With an ES-die, billets of the magnesium alloy AZ31B were formed into a sheet with the thickness of 4 mm and the width of 70 mm. The angles of the used ECAP-applications in the ES-dies were set to 90° and 135°. The results show that the extrusion-shear process is able to decrease the anisotropy and SDE through transformation of the texture compared to conventional extrusion process. Also grain refinement could be observed. However, the outcomes seem to be very sensitive to the process parameters. Only by using the ES-die with an angle of 135° the desired effect could be accomplished.

  8. Evidence of Multi-Component Ion Exchange in Dolomite Formation during Low Salinity Waterflooding

    NASA Astrophysics Data System (ADS)

    Srisuriyachai, Falan; Meekangwal, Suthida

    2017-12-01

    Low salinity waterflooding is a technique performed in many oil reservoirs around the globe. The technique is simply implemented by injecting water with very low ionic activity compared to formation water into an injection well. The injected water will increase reservoir pressure that is compulsory to drive oil moving toward production well. More than just maintaining reservoir pressure as obtained from conventional waterflooding, low salinity water creates shifting of surface condition, resulting in additional amount of liberated oil. Nevertheless, exact oil recovery mechanisms are still discussed. Among these proposed mechanisms, Multi-component Ion Exchange (MIE) together with wettability alteration is believed to be a major mechanism leading to higher oil recovery compared to conventional waterflooding. In this study, detection of calcium and magnesium ions which are Potential Determining Ions (PDI) for carbonate reservoirs are detected during the coreflood experiment. Dolomite rock sample is used to represent carbonate formation and detection of previously mentioned ions is performed by complexometric titration of the effluents. From the study, it is observed that during conventional waterflooding and low salinity waterflooding at low temperature of 30 degrees Celsius, calcium and magnesium ions in the produced water is increased compared to the amount of these ions in the injected water. This incremental of ions can be explained by the dissolution of calcium and magnesium from dolomite which is chemically composed of calcium magnesium carbonate. At this temperature, the portion of calcium ion is always less than magnesium ion even though the amount of calcium ion is higher than magnesium ion in injected water. However, at higher temperatures which are 50 and 70 degrees Celsius, ratio of calcium and magnesium ions in injected and produced water is reversed. Disappearance of magnesium ion in the effluent is more obvious especially at 70 degrees Celsius and by low salinity waterflooding. This can be explained that at lower temperature, calcium ion disappears to form of calcium carboxylate complex with oil and at higher temperature, magnesium ion disappears as magnesium can start to form magnesium carboxylate complex with oil and hence, the amount of both calcium and magnesium ions is decreased compared to lower temperature. In dolomite reservoir, since both calcium ions and magnesium ions are provided from dissolution mechanism, the benefit from multi-component ion exchange will occur at high temperature as both calcium and magnesium ions will be consumed for oil recovery mechanism.

  9. Dissolution profile of dolomite in chloric acid solution: The effect of chloric acid concentration and pulp density

    NASA Astrophysics Data System (ADS)

    Solihin, Indriani, Mubarok, M. Zaki

    2018-05-01

    Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.

  10. Surface effects of corrosive media on hardness, friction, and wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Rengstorff, G. W. P.; Ishigaki, H.

    1985-01-01

    Hardness, friction, and wear experiments were conducted with magnesium oxide exposed to various corrosive media and also with elemental iron and nickel exposed to water and NaOH. Chlorides such as MgCl2 and sodium containing films were formed on cleaved magnesium oxide surfaces. The MgCl2 films softened the magnesium oxide surfaces and caused high friction and great deformation. Hardness was strongly influenced by the pH value of the HCl-containing solution. The lower the pH, the lower the microhardness. Neither the pH value of nor the immersion time in NaOH containing, NaCl containing, and HNO3 containing solutions influenced the microhardness of magnesium oxide. NaOH formed a protective and low friction film on iron surfaces. The coefficient of friction and the wear for iron were low at concentrations of NaOH higher than 0.01 N. An increase in NaOH concentration resulted in a decrease in the concentration of ferric oxide on the iron surface. It took less NaOH to form a protective, low friction film on nickel than on iron.

  11. Carbothermal Production of Magnesium: Csiro's Magsonic™ Process

    NASA Astrophysics Data System (ADS)

    Prentice, Leon H.; Nagle, Michael W.; Barton, Timothy R. D.; Tassios, Steven; Kuan, Benny T.; Witt, Peter J.; Constanti-Carey, Keri K.

    Carbothermal production has been recognized as conceptually the simplest and cleanest route to magnesium metal, but has suffered from technical challenges of development and scale-up. Work by CSIRO has now successfully demonstrated the technology using supersonic quenching of magnesium vapor (the MagSonic™ Process). Key barriers to process development have been overcome: the experimental program has achieved sustained operation, no nozzle blockage, minimal reversion, and safe handling of pyrophoric powders. The laboratory equipment has been operated at industrially relevant magnesium vapor concentrations (>25% Mg) for multiple runs with no blockage. Novel computational fluid dynamics (CFD) modeling of the shock quenching and metal vapor condensation has informed nozzle design and is supported by experimental data. Reversion below 10% has been demonstrated, and magnesium successfully purified (>99.9%) from the collected powder. Safe operating procedures have been developed and demonstrated, minimizing the risk of powder explosion. The MagSonic™ Process is now ready to progress to significantly larger scale and continuous operation.

  12. Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy.

    PubMed

    Yoshida, Toshihiko; Fukumoto, Takumi; Urade, Takeshi; Kido, Masahiro; Toyama, Hirochika; Asari, Sadaki; Ajiki, Tetsuo; Ikeo, Naoko; Mukai, Toshiji; Ku, Yonson

    2017-06-01

    Operative clips used to ligate vessels in abdominal operation usually are made of titanium. They remain in the body permanently and form metallic artifacts in computed tomography images, which impair accurate diagnosis. Although biodegradable magnesium instruments have been developed in other fields, the physical properties necessary for operative clips differ from those of other instruments. We developed a biodegradable magnesium-zinc-calcium alloy clip with good biologic compatibility and enough clamping capability as an operative clip. In this study, we verified the safety and tolerability of this clip for use in canine cholecystectomy. Nine female beagles were used. We performed cholecystectomy and ligated the cystic duct by magnesium alloy or titanium clips. The chronologic change of clips and artifact formation were compared at 1, 4, 12, 18, and 24 weeks postoperative by computed tomography. The animals were killed at the end of the observation period, and the clips were removed to evaluate their biodegradability. We also evaluated their effect on the living body by blood biochemistry data. The magnesium alloy clip formed much fewer artifacts than the titanium clip, and it was almost absorbed at 6 months postoperative. There were no postoperative complications and no elevation of constituent elements such as magnesium, calcium, and zinc during the observation period in both groups. The novel magnesium alloy clip demonstrated sufficient sealing capability for the cystic duct and proper biodegradability in canine models. The magnesium alloy clip revealed much fewer metallic artifacts in CT than the conventional titanium clip. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  14. Microstructure evolution and texture development of hot form-quench (HFQ) AZ31 twin roll cast (TRC) magnesium alloy

    NASA Astrophysics Data System (ADS)

    Alias, J.; Zhou, X.; Das, Sanjeev; El-Fakir, Omer; Thompson, G. E.

    2017-12-01

    The present study on the microstructure evolution of hot form-quench (HFQ) AZ31 twin roll cast magnesium alloy attempt to provide an understanding on the grain structure and heterogeneous intermetallic phase formation in the alloy and texture development following the HFQ process. Grain recrystallization and partial dissolution of eutectic β-Mg17Al12 phase particles were occurred during the solution heat treatment at 450°C, leaving the alloy consists of recrystallized grains and discontinuous or random β-Mg17Al12 phase particles distribution with small volume fraction. The particles act as effective nucleation sites for new grains during recrystallization and variation of recrystallization occurrence contributed to texture alteration. The partial or full β-Mg17Al12 phase dissolution following the HFQ induces void formation that act as fracture nucleation site and the corresponding texture alteration in the recrystallized grains led to poor formability in TRC alloy.

  15. Microstructural and Mechanical Aspects of Reinforcement Welds for Lightweight Components Produced by Friction Hydro Pillar Processing

    NASA Astrophysics Data System (ADS)

    Pinheiro, Gustavo; dos Santos, Jorge; Hort, Norbert; Kainer, Karl Ulrich

    The development of new creep resistant and cost effective die casting magnesium alloys such as AE, MRI, MEZ, ACM, AXJ, AJ, WE have emerged as an alternative to fulfil the actual demands in structural relevant applications as engines blocks, gear and converter boxes. However, magnesium components are in most of the cases screwed with aluminium and steel bolts, which lead the screwed joint to lose the preload force due to relaxation. This barrier limits thus the broad use of magnesium within this segment and should somehow find an adequate solution to be implemented and to help overcoming this limitation. In this context Friction Welding (FW) and particularly Friction Hydro Pillar Processing (FHPP), which can be described as a drill and fill process, appears as an alternative to widespread the use of magnesium. In this context, FHPP is intended to be used to locally reinforce mechanical fastened magnesium components.

  16. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  17. 77 FR 33165 - Pure Magnesium in Granular Form From the People's Republic of China: Final Results of Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Department is aware used to make such excluded reagents are: lime, calcium metal, calcium silicon, calcium.../mischmetal, cryolite, silica/fly ash, magnesium oxide, periclase, ferroalloys, dolomitic lime, and colemanite...

  18. Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal

    NASA Astrophysics Data System (ADS)

    Kurz, Gerrit

    In order to reduce fuel consumption efforts have been made to decrease the weight of automobile constructions by increasing the use of lightweight materials. In this field of application magnesium alloys are important because of their low density. A promising alternative to large surfaced and thin die casting parts has been found in construction parts that are manufactured by sheet metal forming of magnesium. Magnesium alloys show a limited formability at room temperature. A considerable improvement of formability can be achieved by heating the material. Formability increases above a temperature of approximately T = 225 °C.

  19. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  20. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  1. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  2. Forming-Limit Diagrams for Magnesium AZ31B and ZEK100 Alloy Sheets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Carter, Jon T.; Hector, Louis G.; Taleff, Eric M.

    2013-11-01

    Modern design and manufacturing methodologies for magnesium (Mg) sheet panels require formability data for use in computer-aided design and computer-aided engineering tools. To meet this need, forming-limit diagrams (FLDs) for AZ31B and ZEK100 wrought Mg alloy sheets were developed at elevated temperatures for strain rates of 10-3 and 10-2 s-1. The elevated temperatures investigated range from 250 to 450 °C for AZ31B and 300 to 450 °C for ZEK100. The FLDs were generated using data from uniaxial tension, biaxial bulge, and plane-strain bulge tests, all carried out until specimen rupture. The unique aspect of this study is that data from materials with consistent processing histories were produced using consistent testing techniques across all test conditions. The ZEK100 alloy reaches greater major true strains at rupture, by up to 60%, than the AZ31B alloy for all strain paths at all temperatures and strain rates examined. Formability limits decrease only slightly with a decrease in temperature, less than 30% decrease for AZ31B and less than 35% decrease for ZEK100 as the temperature decreases from 450 to 300 °C. This suggests that forming processes at 250-300 °C are potentially viable for manufacturing complex Mg components.

  3. Energy-Efficient and Environmentally Friendly Solid Oxide Membrane Electrolysis Process for Magnesium Oxide Reduction: Experiment and Modeling

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2014-06-01

    This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.

  4. Magnesium affects spinach carotenoid bioaccessibility in vitro depending on intestinal bile and pancreatic enzyme concentrations.

    PubMed

    Corte-Real, Joana; Desmarchelier, Charles; Borel, Patrick; Richling, Elke; Hoffmann, Lucien; Bohn, Torsten

    2018-01-15

    Magnesium may reduce carotenoid bioavailability by forming insoluble complexes with bile salts/fatty acids, inhibiting micelle formation. Here, we investigated whether altering bile/pancreatin concentration influenced potential negative effects of magnesium on carotenoid bioaccessibility. Spinach (4g) was digested in vitro with added magnesium (0, 200, 400mg/L) and canola oil/coffee creamer, at varying bile extract (1 or 8mM) and pancreatin (100 or 990mg/L) concentrations. Bioaccessibility was determined for β-carotene, lutein, and total carotenoids via HPLC. Additionally, lipolysis, particle size, and zeta potential of the micellar fractions were investigated. Increasing magnesium concentrations negatively affected carotenoid bioaccessibility (p<0.001), lipolysis, particle size and zeta potential. The impact of magnesium on carotenoid bioaccessibility was modulated mainly by bile concentration, with samples digested with 1mM of bile being more susceptible to inhibitory effects of magnesium than those digested with 8mM (p<0.001). Thus, magnesium was found to potentially interfere with carotenoid bioaccessibility at various physiologically plausible conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Serum magnesium and calcium levels in infertile women during a cycle of reproductive assistance.

    PubMed

    Grossi, Elena; Castiglioni, Sara; Moscheni, Claudia; Antonazzo, Patrizio; Cetin, Irene; Savasi, Valeria Maria

    2017-05-01

    Magnesium (Mg) and calcium (Ca) are essential cations for women's preconception health. It is well known that, in blood, the concentration of ionized form of these two cations is temporally altered during menstrual cycle, suggesting a correlation between sex steroid hormones and serum calcium and magnesium levels. Evidence from literature suggests that in assisted reproductive technology increasing estrogens during ovarian hyperstimulation may also modulate serum magnesium and calcium levels. Therefore, we first examined total serum magnesium and calcium levels during follicular phase in a large population of infertile patients who underwent intrauterine insemination (IUI). The results were compared to a group of fertile women. Successively, we studied the total serum magnesium and calcium concentrations in infertile patients before and after ovarian hyperstimulation for in vitro fertilization (IVF). Results highlight that total serum concentration of magnesium and calcium does not seem altered in infertile women. During stimulation with gonadotropins, the values of the two cations do not change significantly in ovarian-stimulated women. However, we found a downward trend in the total magnesium and calcium levels in relation to the rising estrogens.

  6. The Origin of Fracture in the I-ECAP of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gzyl, Michal; Rosochowski, Andrzej; Boczkal, Sonia; Qarni, Muhammad Jawad

    2015-11-01

    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener-Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C.

  7. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Emily Ann; Toroker, Maytal Caspary

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  8. Nanostructured magnesium increases bone cell density.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  9. High power rechargeable magnesium/iodine battery chemistry

    DOE PAGES

    Tian, Huajun; Gao, Tao; Li, Xiaogang; ...

    2017-01-10

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less

  10. The analysis of magnesium oxide hydration in three-phase reaction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaojia; Guo, Lin; Chen, Chen

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less

  11. Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application

    NASA Astrophysics Data System (ADS)

    Annur, D.; Suhardi, A.; Amal, M. I.; Anwar, M. S.; Kartika, I.

    2017-04-01

    Magnesium and its alloys is a promising candidate for implant application especially due to its biodegradability. In this study, Mg-7Ca alloys (in weight %) were processed by powder metallurgy from pure magnesium powder and calcium granule. Milling process was done in a shaker mill using stainless steel balls in various milling time (3, 5, and 8 hours) followed by compaction and sintering process. Different sintering temperatures were used (450°C and 550°C) to examine the effect of sintering temperature on mechanical properties and corrosion resistance. Microstructure evaluation was characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. Mechanical properties and corrosion behavior were examined through hardness testing and electrochemical testing in Hank’s solution (simulation body fluid). In this report, a prolonged milling time reduced particle size and later affected mechanical properties of Mg alloy. Meanwhile, the phase analysis showed that α Mg, Mg2Ca, MgO phases were formed after the sintering process. Further, this study showed that Mg-Ca alloy with different powder metallurgy process would have different corrosion rate although there were no difference of Ca content in the alloy.

  12. Endothelialization of Novel Magnesium-Rare Earth Alloys with Fluoride and Collagen Coating

    PubMed Central

    Zhao, Nan; Workman, Benjamin; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) alloys are promising scaffolds for the next generation of cardiovascular stents because of their better biocompatibility and biodegradation compared to traditional metals. However, insufficient mechanical strength and high degradation rate are still the two main limitations for Mg materials. Hydrofluoric acid (HF) treatment and collagen coating were used in this research to improve the endothelialization of two rare earth-based Mg alloys. Results demonstrated that a nanoporous film structure of fluoride with thickness of ~20 μm was formed on the Mg material surface, which improved the corrosion resistance. Primary human coronary artery endothelial cells (HCAECs) had much better attachment, spreading, growth and proliferation (the process of endothelialization) on HF-treated Mg materials compared to bare- or collagen-coated ones. PMID:24670478

  13. Lightweight Heat Pipes Made from Magnesium

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  14. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments withmore » a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.« less

  15. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    PubMed

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  16. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tingting; Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed andmore » that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.« less

  17. Fracture healing using degradable magnesium fixation plates and screws.

    PubMed

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate.

    PubMed

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai

    2014-08-01

    The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

  19. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  20. Eagle Mountain Mine: geology of the former Kaiser Steel Operation in Riverside County, California

    USGS Publications Warehouse

    Force, Eric R.

    2001-01-01

    Iron ore replaces a variety of host rocks along the two unconformities, forming massive to globular bodies, and its mineralogy correlates with deuteric alteration features, not anhydrous skarn. Its pyrite contains as much as 3% cobalt. Iron was only one of five elements that showed mobility in this region on a scale that suggests basic crustal processes. The others in probable order of flux magnitude are silica, magnesium, sodium, and potassium, to form regionally distributed “vitreous quartzite”, dolomite, and secondary feldspars, respectively.

  1. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner

    PubMed Central

    Peter, Mirjam E.; Sevinc Ok, Ebru; Celenk, Fatma Gul; Yilmaz, Mumtaz; Steppan, Sonja; Asci, Gulay; Ok, Ercan; Passlick-Deetjen, Jutta

    2012-01-01

    Background. Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). Methods. BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription–polymerase chain reaction and annexin V staining, respectively. Results. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Conclusions. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations. PMID:21750166

  2. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    NASA Astrophysics Data System (ADS)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  3. Enteric protection of naproxen in a fixed-dose combination product produced by hot-melt co-extrusion.

    PubMed

    Vynckier, A-K; De Beer, M; Monteyne, T; Voorspoels, J; De Beer, T; Remon, J P; Vervaet, C

    2015-08-01

    In this study hot-melt co-extrusion is used as processing technique to manufacture a fixed-dose combination product providing enteric protection to naproxen incorporated in the core and immediate release to esomeprazole magnesium embedded in the coat. The plasticizing effect of naproxen and triethyl citrate (TEC) was tested on the enteric polymers investigated (Eudragit(®) L100-55, HPMC-AS-LF and HPMCP-HP-50). Core matrix formulations containing HPMC-AS-LF, TEC and a naproxen load of 15, 30 and 50% were processed and characterized. The in vitro naproxen release in 0.1N HCl was prevented for 2h for all formulations. The physicochemical state of the drug in the extrudates was determined and a stability study was performed. Intermolecular interactions between naproxen and polymer were identified using attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. When esomeprazole magnesium was formulated in a polyethylene oxide 100K:polyethylene glycol 4K (1:1) matrix, separated from the naproxen-containing layer, the formulation could be easily processed and complete in vitro drug release was observed after 45 min. When co-extruding the core/coat dosage form it was observed that a third layer of polymer, separating the naproxen loaded enteric formulation in the core from the coat, is required to prevent degradation of the acid-labile esomeprazole magnesium at the core/coat interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Novel approach to Zr powder production by smooth ZrCl4 bubbling through molten salt

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Na; Choi, Mi-Seon; Lee, Go-Gi; Kim, Seon-Hyo

    2016-01-01

    A reduction process using ZrCl4 bubbles as a reactant was investigated to produce zirconium metals. ZrCl4 vapor was bubbled through the lance in the bath, in which Mg melt and MgCl2 salt were separated. Zr powder was formed by a reduction of ZrCl4 bubbles in magnesium layer. However, the lance was clogged by the aggregate of zirconium occurred during ZrCl4 vapor injecting leading to interruption of ZrCl4 supply into the bath. This phenomenon could be caused by the presence of magnesium at the lance tip, which passes through MgCl2 salt during bubbling, and then zirconium was formed in the forms of intermetallic compounds with aluminum. In this study, the effect of molten salt on the troubled phenomena was investigated and it was verified that CaCl2 with relatively low Weber number meaning relatively high surface tension as molten salt is effective in inhibiting the lance clogging phenomena. Then, a few micrometer-sized Zr powder with the high purity of 91.6 wt% was obtained smoothly without the formation of intermetallic compound.

  5. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarpi, B.; Daineche, R.; Girardeaux, C.

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicidemore » interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.« less

  6. Demonstration of elastic fibres with reagents for detection of magnesium.

    PubMed Central

    Müller, W; Firsching, R

    1991-01-01

    Investigation of elastic fibres in various human and animal tissues with the reagents quinalizarin, magneson II, and titan yellow for the detection of magnesium revealed striking positive results. After pretreatment of skin and ligamentum flavum with elastase the tests were negative. The results support the supposition that the amount of magnesium in elastic fibres is sufficient for histochemical detection. It is speculated that the marked chelate-forming property of magnesium, or its antagonistic function to calcium, is associated with the elastic property of the fibres. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:1711022

  7. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    NASA Astrophysics Data System (ADS)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  8. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    NASA Astrophysics Data System (ADS)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  9. Application of FTIR spectroscopy to study the thermal stability of magnesium aspartate-arginine

    NASA Astrophysics Data System (ADS)

    Hacura, Andrzej; Marcoin, Wacława; Pasterny, Karol

    2012-03-01

    FTIR spectroscopy has been applied to study the thermal stability of magnesium aspartatearginine. An attempt has been made, using theoretically predicted IR spectra, to relate the changes in the experimental spectra with the decomposition process of the studied magnesium complex.

  10. The adenosine triphosphate inhibition of the pyruvate kinase reaction and its dependence on the total magnesium ion concentration

    PubMed Central

    Holmsen, Holm; Storm, Eva

    1969-01-01

    1. The effects of ATP, PPi and EDTA on the skeletal-muscle pyruvate kinase reaction at various concentrations of magnesium (where `magnesium' refers to total Mg2+, both free and in the form of complexes) were investigated. The reaction rate was determined as the amount of pyruvate formed in a recorded time of incubation. 2. At 44mm-magnesium the Km values for ADP and phosphoenolpyruvate were unaltered by the presence of ATP up to 6·8mm in systems buffered with either tris–hydrochloric acid or glycylglycine–sodium hydroxide, but the Km values were different in these systems. The Km for one substrate was independent of the concentration of the second substrate. 3. At 10mm-magnesium in the tris–hydrochloric acid system ATP inhibited the reaction competitively with respect to ADP and phosphoenolpyruvate. In the glycylglycine–sodium hydroxide system the inhibition appeared to be non-competitive. At 10mm-magnesium the Km values were lower than at 44mm-magnesium and dependent on the system used. 4. In the tris–hydrochloric acid system the reaction rate rose with increasing magnesium concentration up to a maximum at a concentration 10–20 times that of ADP. Further increase inhibited the reaction and at 44mm-magnesium the rate was 25–50% of its maximum. This inhibition paralleled that produced by increasing trimethylammonium chloride concentrations and was not due to a specific effect of the Mg2+ ion. 5. In the presence of 6·8mm-ATP no reaction occurred below 4–6mm-magnesium, and further increase apparently abolished the inhibition as the reaction rate increased and became equal to those obtained in the absence of ATP at 10–25mm-magnesium. Further increase in magnesium concentration gave reaction rates that were slightly higher in the presence of ATP than in its absence. The maximal rate in the presence of ATP was distinctly lower than in its absence. When 6·8mm-PPi or 6·8mm-EDTA was present the variations in reaction rate with rising magnesium concentration were similar to that obtained in the presence of ATP below 6–8mm-magnesium but further increase in the magnesium concentration resulted in an increase in the rate up to a maximum comparable with that of the control. The effect of pure chelation was thus a displacement of the reaction maximum to higher magnesium concentrations without changing the maximal rate. When correction had been made for this effect, ATP gave inhibition at 44mm-magnesium that was competitive with respect to ADP (Ki 2·1×10−2m). This degree of inhibition is far less than was reported earlier and its importance for the mechanism of the pyruvate kinase reaction is discussed. PMID:4308294

  11. Development of the Electromagnetic Continuous Casting Technology for of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, Joon-Pyo; Kim, Myoung-Gyun; Kim, Jong-Ho; Lee, Gyu-Chang

    Currently, magnesium billets produced by ingot casting or direct chill casting process, result in low-quality surfaces and low productivity, Continuous casting technology to solve these problem has not only high-quality surface billets with fine-grained and homogeneous microstructure but also cost down. The latent heat of fusion per weight (J/g) of magnesium is similar to other metals, however, considering the heat emitted to the mold surface during continuous casting in meniscus region and converting it to the latent heat of fusion per volume, magnesium will be rapidly solidified in the mold during continuous casting, which induces subsequent surface defect formation. In this study, electromagnetic casting and stirring (EMC and EMS) techniques are proposed to control solidification process conveniently by compensating the low latent heat of solidification by volume and to fabricate magnesium billet with high-quality surface. This technique was extended to large scale billets up to 300 mm diameter and continuous casting was successfully conducted. Then magnesium billet was used for the fabrication of prototype automobile pulley.

  12. Magnesium Alloys for Space Hardware Design

    NASA Technical Reports Server (NTRS)

    Aroh, Joseph

    2017-01-01

    There have been advances in magnesium alloy development that NASA has not taken into consideration for space hardware because of a lack of test data. Magnesium alloys offer excellent weight reduction, specific strength, and deep space radiation mitigation. Traditionally, magnesium has been perceived as having too poor of a flammability resistance and corrosion resistance to be used for flight. Recent developments in magnesium alloying has led to the formation of two alloys, WE43 and Elektron 21, which are self-extinguishing and significantly less flammable because of their composition. Likewise, an anodizing process called Tagnite was formulated to deter any concern with galvanic and saltwater corrosion. The Materials Science Branch at Kennedy Space Center is currently researching these new alloys and treatments to better understand how they behave in the harsh environment of space. Successful completion of the proposed testing should result in a more thorough understanding of modern aerospace materials and processes, and possibly the permission to use magnesium alloys in future NASA designs.

  13. Nanoparticle Addition to Enhance the Mechanical Response of Magnesium Alloys Including Nanoscale Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    In this study, various magnesium alloy nanocomposites derived from AZ (Aluminium-Zinc) or ZK (Zinc-Zirconium) series matrices and containing Al2O3, Si3N4, TiC or carbon nanotube (CNT) nanoparticle reinforcement (representative oxide, nitride, carbide or carbon nanoparticle reinforcement, respectively) were fabricated using solidification processing followed by hot extrusion. The main aim here was to simultaneously enhance tensile strength and ductility of each alloy using nanoparticles. The magnesium-oxygen strong affinity and magnesium-carbon weak affinity (comparison of extremes in affinity) are both well known in the context of magnesium composite processing. However, an approach to possibly quantify this affinity in magnesium nanocomposite processing is not clear. In this study accordingly, Nanoscale Electro Negative Interface Density or NENID quantifies the nanoparticle-alloy matrix interfacial area per unit volume in the magnesium alloy nanocomposite taking into consideration the electronegativity of the nanoparticle reinforcement. The beneficial (as well as comparative) effect of the nanoparticles on each alloy is discussed in this article. Regarding the mechanical performance of the nanocomposites, it is important to understand the experimentally observed nanoparticle-matrix interactions during plastic deformation (nanoscale deformation mechanisms). Little is known in this area based on direct observations for metal matrix nanocomposites. Here, relevant multiple nanoscale phenomena includes the emanation of high strain zones (HSZs) from nanoparticle surfaces.

  14. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  15. Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sols.

    PubMed

    Murata, Tsuyoshi; Ishizawa, Hitoshi; Tanaka, Akira

    2008-05-01

    We have successfully developed a process to form high quality MgF(2) thin films with ultralow refractive indices from autoclaved sols prepared from magnesium acetate and hydrofluoric acid. And we have confirmed that our porous MgF(2) coatings have not only high transmittance in the UV region but also high uniformity of film thickness. They can be uniformly formed on phiv 300 mm substrates as a single coating and as a hybrid coating with sublayers formed by physical vapor deposition. They are expected to be applied to various optics that need high transmittance in the UV region.

  16. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  17. Comparative plasma salicylate and urine salicylurate levels following administration of aspirin, magnesium salicylate, and choline magnesium trisalicylate.

    PubMed

    Mason, W D

    1980-11-01

    Eighteen healthy volunteers were administered single doses of commercially available solid dosage forms of aspirin, magnesium salicylate (I), and choline magnesium trisalicylate (II), equivalent to approximately 500 mg of salicylic acid, in a randomized, complete crossover design. Plasma salicylate and urine salicylurate levels were measured by high-pressure liquid chromatography at frequent intervals following dosing; the resultant profiles, areas under the curve (AUC), and percentages of dose excreted as salicylurate were statistically analyzed by an analysis of variance. The plasma salicylate levels following the two dosage forms containing I and II were virtually identical when corrected for small differences in the dose. The plasma salicylic acid level following aspirin was approximately 10% lower during the 1.5--3.0-hr interval due to a portion of unhydrolyzed aspirin, but the dose-corrected AUC for the products tested did not differ significantly (p < 0.05). During the 24 hr following dosing, 66.5 +/- 12.1 68.4 +/- 7.1, and 60.9 +/- 14.1% of the salicylic acid were excreted as urine salicylurate for aspirin, I, and II, respectively, with no significant difference (p < 0.05). Based on this study, there are no significant differences in the rate and extent of absorption of salicylate following the three dosage forms tested, and the elimination kinetics of salicylic acid are not altered by these dosage forms.

  18. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    PubMed

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  20. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation.

    PubMed Central

    Bassi, G S; Murchie, A I; Lilley, D M

    1996-01-01

    The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086

  1. Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiscocks, J., E-mail: j.hiscocks@queensu.ca

    Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition aremore » not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.« less

  2. Influences of die channel angles on microstructures and wear behaviors of AZ61 wrought magnesium alloy fabricated by extrusion-shear process

    NASA Astrophysics Data System (ADS)

    Hu, Hong-J.; Sun, Z.; Ou, Z.-W.

    2016-12-01

    Extrusion-shear (ES) process for magnesium alloy is a newly developed plastic deformation process, and ES process combines direct extrusion and two steps of ECAE (equal channel angular extrusion). To investigate the effects of the die channel angles on the microstructures and wear behaviors of AZ61 wrought magnesium alloy, the samples used in this study were fabricated by ES process with different die channel angles (120° and 135°). The microstructures of the samples were characterized by optical microscopy (OM), X-ray diffraction (XRD) and (SEM). The cumulative strains in the ES process were predicted by approaches of numerical simulation and theoretical calculation. To characterize the wear resistance of the samples, pin-on-disk tests under dry sliding conditions with various normal loads and reciprocating frequencies were conducted. To define the wear mechanisms of AZ61 magnesium alloy, the worn surfaces after wear tests were analyzed by SEM and energy-dispersive X-ray spectrometer (EDS). Based on the results obtained, die channel angles have significant influences on the grain refinements and wear behaviors of the samples. Decreasing channel angles of the ES die will not only refine the microstructures of magnesium alloys effectively and improve their harnesses, but also improve their wear resistance as decreasing channel angles results in higher friction coefficients and wear rates. With the increase in applied loads and frequencies, wear mechanisms change from mild wear (adhesion, abrasion and oxidation) to severe wear (delamination, plastic deformation and melting). In summary, the wear resistance of ES-processed AZ61 magnesium alloy could be improved by decreasing channel angles of ES dies.

  3. ANALYTICAL METHOD FOR THE ABSORPTIOMETRIC DETERMINATION OF BORON IN MAGNESIUM METAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-01-01

    Magnesium is dissolved in H/sub 2/SO/sub 4/ in the presence of CH/sub 3/ OH and B is separated by distillation as methyl borate. Rosocyanin is formed, separated from excess curcumin and dissolved in C/sub 2/H/sub 5/OH for absorptiometric measurement. (auth)

  4. Development of structural test articles from magnesium-lithium and beryllium

    NASA Technical Reports Server (NTRS)

    Alario, R.

    1969-01-01

    Study on the fabrication and testing of a magnesium-lithium box beam shows the formability and machinability characteristics of that alloy to be excellent. Results of forming tests for shrink and stretch flanges show values for both flange heights that may be used in future beryllium design.

  5. FinalReport-DOE BES DMSE-UNR-QLi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qizhen

    The primary goal of this project is to explore the fundamental deformation and failure mechanisms for magnesium with a hexagonal close packed (HCP) crystal structure. It is critical to perform this project for a number of reasons. First, magnesium is the lightest structural metal and its application in various structural components can save the final component weight. Second, the weight reduction from the usage of magnesium-based structural components in transportation vehicles such as automobiles and aircrafts can improve fuel efficiency and reduce the greenhouse gas emissions. Third, structural components often experience dynamic loading such as cyclic loading conditions. Fourth, magnesiummore » with a HCP crystal structure generally has its special deformation responses under loading conditions. This project investigated magnesium based materials (magnesium single crystal, pure polycrystalline magnesium, and some magnesium alloys) under various loading conditions, and also explored some processing routes to manipulate the microstructure and mechanical properties of magnesium. The research results were published in a number of articles and also disseminated through presentations in various conferences such as TMS annual meetings, MRS meetings, the international Plasticity conferences, the Pacific Rim International Congress on Advanced Materials and Processing, and AeroMat. In addition to the contribution to the research/academic community, this project is also beneficial to the general public. With the actual usage of magnesium in the passenger cars, the weight reduction and fuel consumption reduction will save the fuel bill of individual owners.« less

  6. Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments

    NASA Astrophysics Data System (ADS)

    Zhou, Juncen; Li, Qing; Zhang, Haixiao; Chen, Funan

    2014-01-01

    Magnesium alloys have been considered as promising biomedical materials and were studied in different physiological environments. In this work, corrosion behavior of AZ91D magnesium alloy in artificial saliva, simulated body fluid (SBF), and 3.5 wt.% NaCl solution was investigated using electrochemical techniques and a short-term immersion test. In contrast with other physiological environments, the amount of aggressive ions in artificial saliva is small. In addition, a protective film is formed on the surface of samples in artificial saliva. Experimental results suggest that corrosion resistance of AZ91D magnesium alloy in artificial saliva is better than that in c-SBF and 3.5 wt.% NaCl solution.

  7. A Microstructure Study on an AZ31 Magnesium Alloy Tube after Hot Metal Gas Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wu, Xin

    2007-06-01

    An AZ31 magnesium alloy tube has been deformed by the hot metal gas forming (HMGF) technique. Microstructures before and after deformation have been investigated by using Electron Backscattered Diffraction (EBSD) and Electron Microscopy. Due to the inhomogeneous distribution by induction heating, there is a temperature gradient distribution along the tube axis. Accordingly, the deformation mechanism is also different. In the middle area of deformation zone where the temperature is ˜410 °C, almost no twinning has been found, whereas at the edge areas of deformation zone where the temperature is ˜200 °C, a high density of twins has been found. EBSD experiments show a weak (0001) fiber texture along the radial direction of the tube before and after deformation in the high-temperature zone. EBSD experiments on the low temperature deformation region were not successful due to the high stored energy. Schmid factor analysis on the EBSD data shows that, despite the (0001) fiber texture, there are still many grains favoring basal slip along both the axis direction and hoop direction.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Huajun; Gao, Tao; Li, Xiaogang

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less

  9. Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium-calcium phosphate.

    PubMed

    Babaie, Elham; Zhou, Huan; Lin, Boren; Bhaduri, Sarit B

    2015-08-01

    Biocompatible amorphous magnesium calcium phosphate (AMCP) particles were synthesized using ethanol in precipitation medium from moderately supersaturated solution at pH10. Some synthesis parameters such as, (Mg+Ca):P, Mg:Ca ratio and different drying methods on the structure and stability of as-produced powder was studied and characterized using SEM, XRD and cell cytocompatibility. The results showed that depending on the Mg(2+) concentration, nano crystalline Struvite (MgNH4PO4·6H2O) can also be alternatively formed. However, the as-formed AMCP preserved its amorphous structure after 7 days of incubation in SBF for tested phosphate concentration, and equally ionic concentration of magnesium and calcium. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Earth’s first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim E.; Brown, Michael; Gardiner, Nicholas J.; Kirkland, Christopher L.; Smithies, R. Hugh

    2017-02-01

    The geodynamic environment in which Earth’s first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) comprises tonalite-trondhjemite-granodiorite rocks (TTGs) that were formed through partial melting of hydrated low-magnesium basaltic rocks; notably, these TTGs have ‘arc-like’ signatures of trace elements and thus resemble the continental crust produced in modern subduction settings. In the East Pilbara Terrane, Western Australia, low-magnesium basalts of the Coucal Formation at the base of the Pilbara Supergroup have trace-element compositions that are consistent with these being source rocks for TTGs. These basalts may be the remnants of a thick (more than 35 kilometres thick), ancient (more than 3.5 billion years old) basaltic crust that is predicted to have existed if Archaean mantle temperatures were much hotter than today’s. Here, using phase equilibria modelling of the Coucal basalts, we confirm their suitability as TTG ‘parents’, and suggest that TTGs were produced by around 20 per cent to 30 per cent melting of the Coucal basalts along high geothermal gradients (of more than 700 degrees Celsius per gigapascal). We also analyse the trace-element composition of the Coucal basalts, and propose that these rocks were themselves derived from an earlier generation of high-magnesium basaltic rocks, suggesting that the arc-like signature in Archaean TTGs was inherited from an ancestral source lineage. This protracted, multistage process for the production and stabilization of the first continents—coupled with the high geothermal gradients—is incompatible with modern-style plate tectonics, and favours instead the formation of TTGs near the base of thick, plateau-like basaltic crust. Thus subduction was not required to produce TTGs in the early Archaean eon.

  11. Earth's first stable continents did not form by subduction.

    PubMed

    Johnson, Tim E; Brown, Michael; Gardiner, Nicholas J; Kirkland, Christopher L; Smithies, R Hugh

    2017-03-09

    The geodynamic environment in which Earth's first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) comprises tonalite-trondhjemite-granodiorite rocks (TTGs) that were formed through partial melting of hydrated low-magnesium basaltic rocks; notably, these TTGs have 'arc-like' signatures of trace elements and thus resemble the continental crust produced in modern subduction settings. In the East Pilbara Terrane, Western Australia, low-magnesium basalts of the Coucal Formation at the base of the Pilbara Supergroup have trace-element compositions that are consistent with these being source rocks for TTGs. These basalts may be the remnants of a thick (more than 35 kilometres thick), ancient (more than 3.5 billion years old) basaltic crust that is predicted to have existed if Archaean mantle temperatures were much hotter than today's. Here, using phase equilibria modelling of the Coucal basalts, we confirm their suitability as TTG 'parents', and suggest that TTGs were produced by around 20 per cent to 30 per cent melting of the Coucal basalts along high geothermal gradients (of more than 700 degrees Celsius per gigapascal). We also analyse the trace-element composition of the Coucal basalts, and propose that these rocks were themselves derived from an earlier generation of high-magnesium basaltic rocks, suggesting that the arc-like signature in Archaean TTGs was inherited from an ancestral source lineage. This protracted, multistage process for the production and stabilization of the first continents-coupled with the high geothermal gradients-is incompatible with modern-style plate tectonics, and favours instead the formation of TTGs near the base of thick, plateau-like basaltic crust. Thus subduction was not required to produce TTGs in the early Archaean eon.

  12. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028

  13. Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Cheng, S.; Gooding, J. L.; Velbel, M. A.

    1988-01-01

    Nesquehonite, a hydrous magnesium carbonate, occurs as a weathering product on the surface of the Antarctic meteorite LEW 85320 (H5 chondrite). Isotopic measurements of delta(C-13) and delta(O-18) indicate that the nesquehonite formed at near freezing temperatures by reaction of meteoritic minerals with terrestrial water and carbon dioxide. Results from carbon-14 dating suggest that, although the meteorite has been in Antarctica for at least 32,000 to 33,000 years, the nesquehonite formed after AD 1950.

  14. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  15. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis.

    PubMed

    Malpuech-Brugère, C; Rock, E; Astier, C; Nowacki, W; Mazur, A; Rayssiguier, Y

    1998-01-01

    The aim of this study was to assess the potential mechanism underlying the enhanced inflammatory processes during magnesium deficit. In this study, exacerbated response to live bacteria and platelet activating factors was shown in rats fed a magnesium-deficient diet. Peritoneal cells from these animals also showed enhanced superoxide anion production and calcium mobilising potency following in vitro stimulation. The latter effect occurred very early in the course of magnesium deficiency. These studies first showed that an abnormal calcium handling induced by extracellular magnesium depression in vivo may be at the origin of exacerbated inflammatory response.

  16. TRIHALOMETHANE PRECURSOR REMOVAL BY THE MAGNESIUM CARBONATE PROCESS

    EPA Science Inventory

    A project was conducted to determine and improve the ability of the magnesium carbonate process to remove trihalomethane (THM) precursors in treated drinking water. The project was conducted at a drinking water treatment plant in Melbourne, FL, which had been developed and instal...

  17. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  18. A novel multifunctional pharmaceutical excipient: modification of the permeability of starch by processing with magnesium silicate.

    PubMed

    Rashid, Iyad; Al-Remawi, Mayyas; Leharne, Stephen A; Chowdhry, Babur Z; Badwan, Adnan

    2011-06-15

    A directly compressible excipient has been developed by co-processing starch with magnesium silicate. The foregoing was achieved either by co-precipitation of magnesium silicate onto different types of starch or by dry granulation of maize starch with magnesium silicate. A variety of techniques (permeability, water retention/swelling, compression analysis, scanning electron microscopy, tensile strength and disintegration/dissolution studies) were used to characterize these systems. The permeability of the formulations produced using the two methods was evaluated experimentally using Darcy's permeability law. Magnesium silicate, as an anti-adhering agent, increases the permeability of both maize and partially pregelatinized starch, resulting in compacts of high mechanical strength, short disintegration time and low lubricant sensitivity. Such advantages are evident when the properties of the physical mixture of maize starch with magnesium silicate are compared with the co-precipitation and dry granulation techniques. Formulation with this novel excipient system, using paracetamol as a model drug, indicated its suitability as a single multifunctional excipient. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing

    NASA Astrophysics Data System (ADS)

    Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun

    2018-01-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.

  20. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.

    PubMed

    Crutchik, D; Garrido, J M

    2011-01-01

    Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.

  1. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?12

    PubMed Central

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. PMID:26773013

  2. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?

    PubMed

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2-2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. © 2016 American Society for Nutrition.

  3. Method for simultaneously removing SO.sub.2 and NO.sub.X pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-05-17

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium magnesium acetate (CMA). The CMA is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since CMA is a uniquely water-soluble form of calcium and magnesium. When the dispersed particles of CMA are heated to a high temperature, fine calcium and magnesium oxide particles, which are hollow with thin and highly porous walls are formed, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic acetate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  4. Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent

    DOEpatents

    Siriwardane, Ranjani V; Stevens, Jr., Robert W

    2013-06-25

    A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.

  5. Effects of annealing heat treatment on the corrosion resistance of Zn/Mg/Zn multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bae, KiTae; La, JoungHyun; Lee, InGyu; Lee, SangYul; Nam, KyungHoon

    2017-05-01

    Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.

  6. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  7. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements.

    PubMed

    Babaie, Elham; Lin, Boren; Goel, Vijay K; Bhaduri, Sarit B

    2016-10-07

    This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process. The AMP powder was synthesized using a precipitation method. The powder, when in contact with the aqueous PVA solution, forms a putty resulting in a nanocrystalline magnesium phosphate phase of cattiite. The as-prepared cement compositions were evaluated for setting times, exothermicity, compressive strength, biodegradation, and microstructural features before and after soaking in SBF, and in vitro cytocompatibility. Since cattiite is relatively unexplored in the literature, a first time evaluation reveals that it is cytocompatible, just like the other phases in the MgO-P 2 O 5 (Mg-P) system. The cement composition prepared with 15% PVA in an aqueous medium achieved clinically relevant setting times, mechanical properties, and biodegradation. Simulated body fluid (SBF) soaking resulted in coating of bobierrite onto the cement particle surfaces.

  8. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  9. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  10. Influence of hard water ions on the growth of salmonella in poultry processing water

    USDA-ARS?s Scientific Manuscript database

    The influence of magnesium and calcium ions in process water on the growth of Salmonella was evaluated and related to the contamination in process wastewater. Salmonella typhimurium was grown in the laboratory and exposed to 500 mg/kg and 1000 mg/kg of magnesium and calcium ions to simulate hard pr...

  11. Scaling-Up Solid Oxide Membrane Electrolysis Technology for Magnesium Production

    NASA Astrophysics Data System (ADS)

    Pati, Soobhankar; Powell, Adam; Tucker, Steve; Derezinski, Steve

    Metal Oxygen Separation Technologies, Inc. (MOxST) is actively developing Solid Oxide Membrane (SOM) electrolysis technology for production of magnesium directly from its oxide. The vital component of this technology is the oxygen ion-conducting solid zirconia electrolyte separating the molten flux (a mixture of salts and oxide) and the inert anode. The zirconia not only protects the anode from the flux but also prevents anode gas back-reaction, increasing the efficiency. This makes it possible to produce low-cost high-purity magnesium and high-purity oxygen as a byproduct with no direct greenhouse gas emissions. In this paper we discuss the design modifications made to address the scaling-up challenges, particularly for producing magnesium in liquid form. The key accomplishment to date is the successful development of a prototype capable of producing few kilograms of magnesium per day. We will also describe the prerequisite properties of an inert anode and suitable materials for the same.

  12. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    PubMed

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  13. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    NASA Technical Reports Server (NTRS)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  14. Gas-phase spectra of MgO molecules: a possible connection from gas-phase molecules to planet formation

    NASA Astrophysics Data System (ADS)

    Kloska, Katherine A.; Fortenberry, Ryan C.

    2018-02-01

    A more fine-tuned method for probing planet-forming regions, such as protoplanetary discs, could be rovibrational molecular spectroscopy observation of particular premineral molecules instead of more common but ultimately less related volatile organic compounds. Planets are created when grains aggregate, but how molecules form grains is an ongoing topic of discussion in astrophysics and planetary science. Using the spectroscopic data of molecules specifically involved in mineral formation could help to map regions where planet formation is believed to be occurring in order to examine the interplay between gas and dust. Four atoms are frequently associated with planetary formation: Fe, Si, Mg and O. Magnesium, in particular, has been shown to be in higher relative abundance in planet-hosting stars. Magnesium oxide crystals comprise the mineral periclase making it the chemically simplest magnesium-bearing mineral and a natural choice for analysis. The monomer, dimer and trimer forms of (MgO)n with n = 1-3 are analysed in this work using high-level quantum chemical computations known to produce accurate results. Strong vibrational transitions at 12.5, 15.0 and 16.5 μm are indicative of magnesium oxide monomer, dimer and trimer making these wavelengths of particular interest for the observation of protoplanetary discs and even potentially planet-forming regions around stars. If such transitions are observed in emission from the accretion discs or absorptions from stellar spectra, the beginning stages of mineral and, subsequently, rocky body formation could be indicated.

  15. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    PubMed

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. REDUCTION OF FLUORIDE TO METAL

    DOEpatents

    Carlson, O.N.; Schmidt, F.A.; Spedding, F.H.

    1960-08-30

    A process is given for making yttrium metal by reducing yttrium fluoride with calcium plus magnesium. Calcium is added in an excess of from 10 to 20% and magnesium in a quantity to yield a magnesium--yttrium alloy containing from 12 to 25% magnesium when the reaction mass is heated in an inert atmosphere at from 900 to 1106 deg C, but preferably above the melting point of the alloy. Calcium chloride may be added so as to obtain a less viscous slag containing from 30 to 60% calcium chloride. After removal of the slag the alloy is vacuum-heated at about 1100 deg C for volatilization of the magnesium and calcium.

  17. Sol gel method for synthesis of semiconducting ferrite and the study of FTIR, DTA, SEM and CV

    NASA Astrophysics Data System (ADS)

    Alva, Sagir; Hua, Tang Ing; Kalmar Nizar, Umar; Wahyudi, Haris; Sundari, Rita

    2018-03-01

    In this study, a sol gel method using citric acid as anionic surfactant is used for synthesis of magnesium ferrite. Calcinations of magnesium ferrite at temperature (300°C, 600°C and 800°C) have been conducted after sol gel process. Characterization study of the prepared magnesium ferrite related to calcinations using Fourier transform infrared spectrometry (FTIR), Differential thermogravic analysis (DTA), and Scanning electron microscope (SEM) has been discussed. The study of Cyclic voltammetry (CV) of the prepared magnesium ferrite has been examined to assay the semiconducting behavior of magnesium ferrite in relation to its electrochemical behavior.

  18. Effect of Graphite Powder Amount on Surface Films Formed on Molten AZ91D Alloy

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-10-01

    Graphite powder was adopted to prevent AZ91D magnesium alloy from oxidizing during the melting and casting process. The microstructure of the resultant surface films formed on the molten alloy protected by 0, 2.7, 5.4, 8.1, and 10.8 g dm-2 graphite powder at 973 K (700 °C) for holding time of 30 minutes was investigated by scanning electron microscopy, energy dispersive spectrometer, X-ray diffraction, and the thermodynamic method. The results indicated that the surface films were composed of a protective layer and the underneath MgF2 particles with different morphology. The protective layer was continuous with a thickness range from 200 to 550 nm consisting of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium, possibly existing in the form of MgO, MgF2, C, and MgAl2O4. The surface films were the result of the interaction between the graphite powder, the melt, and the ambient atmosphere. The unevenness of the micro surface morphology and the number and size of the underneath MgF2 particles increased with graphite powder amount. The mechanism of the effect of graphite powder amount on the resultant surface films was also discussed.

  19. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  20. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, A. E.; Berger, E.; Freudenthaler, J.

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less

  1. Cathodic Deposition of Mg(OH)2 Coatings on Pure mg in Three mg Salts Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Yongjun, Zhang; Xiaomeng, Pei; Shugong, Jia

    Film-forming effects of cathodic deposition on pure Mg substrate at constant DC in aqueous solutions of magnesium nitrate (Mg(NO3)2ṡ6H2O), magnesium chloride (MgCl2ṡ6H2O) and magnesium sulfate (MgSO4ṡ7H2O) respectively were investigated systematically. Typical processes were studied by potentiodynamic cathodic polarization and galvanostatic polarization and typical samples were analyzed by SEM and XRD. The results indicate that the depositing efficiency is not only the highest but stablest, and deposited coatings show the best uniformity with Mg(NO3)2ṡ6H2O solution employed as depositing medium and applied current density ≥1.0mA cm-2. Cathodic deposition leads to regular mass loss of Mg substrate. The cathodic polarization curve of pure Mg in magnesium nitrate solution shows more obvious pseudo-passivation, several Tafel regions with different slopes appearing before diffusion-limited current density region, and oxygen consumption is the major cathodic reduction reaction under specified current density. However, hydrogen evolution reaction is dominant in both Mg chloride and Mg sulfate solutions. The deposition coatings are all composed of continuous and uniform mesh-like “basic layer” adjacent to substrate and discrete distributed snowball-like particles on the microscopic scale. The phase compositions are all crystal Mg(OH)2, and the coatings deposited in Mg chloride solution have (011) preferred orientation.

  2. PRECIPITATION CHEMISTRY OF MAGNESIUM SULFITE HYDRATES IN MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    The report gives results of laboratory studies defining the precipitation chemistry of MgSO3 hydrates. The results apply to the design of Mg-based scrubbing processes for SO2 removal from combustion flue gas. In Mg-based scrubbing processes, MgSO3 precipitates as either trihydrat...

  3. Superplastic Forming 40 Years and Still Growing

    NASA Astrophysics Data System (ADS)

    Barnes, A. J.

    2007-08-01

    In late 1964 Backofen, Turner & Avery, at MIT, published a paper in which they described the “extraordinary formability” exhibited when fine-grain zinc-aluminum eutectoid (Zn 22 Al) was subjected to bulge testing under appropriate conditions. They concluded their research findings with the following insightful comment “ even more appealing is the thought of applying to superplastic metals forming techniques borrowed from polymer and glass processing.” Since then their insightful thought has become a substantial reality with thousands of tons of metallic sheet materials now being superplastically formed each year. This paper reviews the significant advances that have taken place over the past 40 years including alloy developments, improved forming techniques and equipment, and an ever increasing number of commercial applications. Current and likely future trends are discussed including; applications in the aerospace and automotive markets, faster-forming techniques to improve productivity, the increasing importance of computer modeling and simulation in tool design and process optimization and new alloy developments including superplastic magnesium alloys.

  4. Effect of Al Addition on Microstructure of AZ91D

    NASA Astrophysics Data System (ADS)

    Joshi, Utsavi; Babu, Nadendla Hari

    Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared.

  5. Ballistic Analysis of New Military Grade Magnesium Alloys for Armor Applications

    NASA Astrophysics Data System (ADS)

    Jones, Tyrone L.; Kondoh, Katsuyoshi

    Since 2006, the U.S. Army has been evaluating magnesium (Mg) alloys for ballistic structural applications. While Mg-alloys have been used in military structural applications since WWII, very little research has been done to improve its mediocre ballistic performance. The Army's need for ultra-lightweight armor systems has led to research and development of high strength, high ductility Mg-alloys. The U.S. Army Research Laboratory contracted through International Technology Center-Pacific Contract Number FA-5209-09-P-0158 with the Joining and Welding Research Instituteof Osaka University to develop the next generation of high strength, high ductility Mg-alloys using a novel Spinning Water Atomization Process for rapid solidification. New alloys AMX602 and ZAXE1711 in extruded bar form were characterized for microstructure, mechanical, and ballistic response. Significant increases in ballistic performance were evident when compared to the baseline alloy AZ31B.

  6. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  7. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  8. Magnesium enriched lactic acid bacteria as a carrier for probiotic ice cream production.

    PubMed

    Góral, Małgorzata; Kozłowicz, Katarzyna; Pankiewicz, Urszula; Góral, Dariusz

    2018-01-15

    The following strains of bacteria: Lactobacillus rhamnosus B 442, Lactobacillus rhamnosus 1937, and Lactococcus lactis JBB 500 were enriched with magnesium ions using Pulsed Electric Fields. The potentially probiotic strains were added to the mixture in the DVS process and applied for the production of ice cream which were then analyzed physicochemically and microbiologically. Results showed that addition of bacteria enriched with magnesium did not change chemical parameters of the ice cream and did not affect the freezing process, meltability, and hardness. No significant differences were noted in colour of the samples. The ice cream with addition of bacteria enriched with magnesium had higher adhesiveness. The results of viability determination showed that the total number of microorganisms in the ice cream was higher than in the starter cultures. Viability of the bacteria enriched with magnesium in the obtained ice cream was lower in comparison to the control samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Design Considerations for Developing Biodegradable Magnesium Implants

    NASA Astrophysics Data System (ADS)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].

  10. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    PubMed Central

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  11. Role of large thermal fluctuations and magnesium ions in t-RNA selectivity of the ribosome

    PubMed Central

    Guo, Zuojun; Gibson, Meghan; Sitha, Sanyasi; Chu, Steven; Mohanty, Udayan

    2011-01-01

    The fidelity of translation selection begins with the base pairing of codon-anticodon complex between the m-RNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. To test this conjecture, we have developed a theoretical technique to determine the probability that the ternary complex, as a result of large thermal fluctuations, forms contacts leading to stabilization of the GTPase activated state. We argue that the configurational searches for such processes are in the tail end of the probability distribution and show that the probability for this event is localized around the most likely configuration. Small variations in the repositioning of cognate relative to near-cognate complexes lead to rate enhancement of the cognate complex. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome. PMID:21368154

  12. Three years experience of operating and selling recovered struvite from full-scale plant.

    PubMed

    Ueno, Y; Fujii, M

    2001-11-01

    The adoption of phosphorus removal at sewage treatment works (STW) creates two main problems. Firstly large amounts of sludge are produced and secondly the quantity of the effluent deteriorates due to the increase in the phosphorus load of the sidestream. Furthermore, these processes do not remove phosphorus in a form that would enable it to be recycled. Therefore in order to control these process difficulties and produce a recyclable phosphorus product a sidestream struvite crystallisation reactor was developed. The struvite was produced in a fluidised bed reactor using dewatered filtrate from anaerobic sludge digestion. Magnesium hydroxide was added in a magnesium to phosphate ratio of 1:1 and the pH was adjusted to between 8.2-8.8 with the addition of sodium hydroxide. A retention time of 10 days alowed the growth of pellets between 0.5-1.0 mm in size. The recovered struvite contained only minute traces of toxic substances and was sold to fertiliser companies for 27,000 yen tonne(-1). It is used to enhance existing fertilisers, which are widely used on paddy rice, vegetables and flowers.

  13. Electronic and local atomistic structure of MgSiO3 glass under pressure: a study of X-ray Raman scattering at the silicon and magnesium L-edges

    NASA Astrophysics Data System (ADS)

    Fukui, Hiroshi; Hiraoka, Nozomu

    2018-02-01

    We applied X-ray Raman scattering technique to MgSiO3 glass, a precursor to magnesium silicate melts, with respect to magnesium and silicon under high-pressure conditions as well as some polycrystalline phases of MgSiO3 at ambient conditions. We also performed ab initio calculations to interpret the X-ray Raman spectra. Experimentally obtained silicon L-edge spectra indicate that the local environment around silicon started changing at pressure above 10 GPa, where the electronic structure of oxygen is known to change. In contrast, the shape of the magnesium L-edge spectrum changed below 10 GPa. This indicates that the magnesium sites in MgSiO3 glass first distort and that the local structure around magnesium shows a wide variation under pressure. The framework structure consisting of silicon and oxygen changed above 10 GPa, where the coordination number of silicon was more than four. Our results imply that 6-oxygen-coordinated silicon was formed above 20 GPa.

  14. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition.

    PubMed

    Emery, S B; Xin, Y; Ridge, C J; Buszek, R J; Boatz, J A; Boyle, J M; Little, B K; Lindsay, C M

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  15. Crystal Analysis of Multi Phase Calcium Phosphate Nanoparticles Containing Different amount of Magnesium

    NASA Astrophysics Data System (ADS)

    Gozalian, Afsaneh; Behnamghader, Ali Asghar; Moshkforoush, Arash

    In this study, Mg doped hydroxyapatite [(Ca, Mg)10(PO4)6(OH)2] and β-tricalcium phosphate nanoparticles were synthesized via sol gel method. Triethyl phosphite, calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were used as P, Ca and Mg precursors. The ratio of (Ca+Mg)/P and the amount of magnesium (x) were kept constant at 1.67 and ranging x = 0 up to 3 in molecular formula of Ca10-xMgx (PO4)6(OH)2, respectively. Phase composition and chemical structure were performed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Phase percentages, crystallite size, degree of crystallinity and lattice parameters were investigated. The presence of magnesium led to form the Mg doped tricalcium phosphate (β-TCMP) and Mg doped hydroxyapatite (Mg-HA). Based on the results of this study, lattice parameters, degree of crystallinity and crystallite size decreased with magnesium content. In addition, with increasing magnesium content, the amount of CaO phase decreased whereas the amount of MgO phase increased significantly. Obtained results can be used for new biomaterials design.

  16. Hot granules medium pressure forming process of AA7075 conical parts

    NASA Astrophysics Data System (ADS)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  17. Fluid Bed Dehydration of Magnesium Chloride

    NASA Astrophysics Data System (ADS)

    Adham, K.; Lee, C.; O'Keefe, K.

    Molten salt electrolysis of MgCl2 is commonly used for the production of magnesium metal. However, the electrolysis feed must be completely dry with minimum oxygen content. Therefore, complete dehydration of the MgCl2 brine or the hydrated prill is a required process, which is very challenging because of the ease of thermal degradation due to hydrolysis of magnesium chloride.

  18. Implementing New Non-Chromate Coatings Systems (Briefing Charts)

    DTIC Science & Technology

    2011-02-09

    Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium. YES NO • Approval of...Aluminum and magnesium anodizing • Hard Chrome Plating • Type II conversion coating on aluminum alloys under chromated primer • Type II conversion coating...Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II Type III Type IC Type IC Fatigue Critical 50% 50% Type II Type IC FRC-SE (JAX) Fully Integrated FRC

  19. Combined Effect of Long Processing Time and Na2SiF6 on the Properties of PEO Coatings Formed on AZ91D

    NASA Astrophysics Data System (ADS)

    Rehman, Zeeshan Ur; Koo, Bon Heun

    2016-08-01

    In this study, protective ceramic coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) to improve the corrosion and mechanical properties of AZ91D magnesium alloy. The process was conducted in silicate-fluoride-based electrolyte solution. It was found that the average micro-hardness of the coating was significantly increased with an increase in the PEO processing time. The highest value of the average micro-hardness ~1271.2 HV was recorded for 60-min processing time. The phase analysis of the coatings indicated that they were mainly composed of Mg2SiO4, MgO, and MgF2 phases. The surface and cross-sectional study demonstrated that porosity was largely reduced with processing time, together with the change in pore geometry from irregular to spherical shape. The results of the polarization test in 3.5 wt.% NaCl solution revealed that aggressive corrosion took place for 5-min sample; however, the corrosion current was noticeably decreased to 0.43 × 10-7 A/cm2 for the 60-min-coated sample. The superior nobility and hardness for long processing time are suggested to be due to the dense and highly thick coating, coupled with the presence of MgF2 phase.

  20. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  1. NACA Research on Slurry Fuels

    NASA Technical Reports Server (NTRS)

    Pinns, M L; Olson, W T; Barnett, H C; Breitwieser, R

    1958-01-01

    An extensive program was conducted to investigate the use of concentrated slurries of boron and magnesium in liquid hydrocarbon as fuels for afterburners and ramjet engines. Analytical calculations indicated that magnesium fuel would give greater thrust and that boron fuel would give greater range than are obtainable from jet hydrocarbon fuel alone. It was hoped that the use of these solid elements in slurry form would permit the improvement to be obtained without requiring unconventional fuel systems or combustors. Small ramjet vehicles fueled with magnesium slurry were flown successfully, but the test flights indicated that further improvement of combustors and fuel systems was needed.

  2. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  3. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy.

    PubMed

    Ren, Yufu; Babaie, Elham; Lin, Boren; Bhaduri, Sarit B

    2017-08-18

    Due to the combination of many unique properties, magnesium alloys have been widely recognized as suitable metallic materials for fabricating degradable biomedical implants. However, the extremely high degradation kinetics of magnesium alloys in the physiological environment have hindered their clinical applications. This paper reports for the first time the use of a novel microwave-assisted coating process to deposit magnesium phosphate (MgP) coatings on the Mg alloy AZ31 and improve its in vitro corrosion resistance. Newberyite and trimagnesium phosphate hydrate (TMP) layers with distinct features were fabricated at various processing times and temperatures. Subsequently, the corrosion resistance, degradation behavior, bioactivity and cytocompatibility of the MgP coated AZ31 samples were investigated. The potentiodynamic polarization tests reveal that the corrosion current density of the AZ31 magnesium alloy in simulated body fluid (SBF) is significantly suppressed by the deposited MgP coatings. Additionally, it is seen that MgP coatings remarkably reduced the mass loss of the AZ31 alloy after immersion in SBF for two weeks and promoted precipitation of apatite particles. The high viability of preosteoblast cells cultured with extracts of coated samples indicates that the MgP coatings can improve the cytocompatibility of the AZ31 alloy. These attractive results suggest that MgP coatings, serving as the protective and bioactive layer, can enhance the corrosion resistance and biological response of magnesium alloys.

  4. Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes

    NASA Astrophysics Data System (ADS)

    Seyfoori, A.; Mirdamadi, Sh.; Khavandi, A.; Raufi, Z. Seyed

    2012-11-01

    Degradation behavior of coated magnesium alloys is among most prominent factors for their biomedical applications. In this study, bio-corrosion behavior of micro-arc oxidized magnesium AZ31 alloys formed in silicate and phosphate baths was investigated in r-SBF medium. For this purpose polarization behavior and open circuit profile of the coated samples were achieved by electrochemical and immersion tests, respectively. Moreover, the morphology and composition of the coatings were evaluated before and after immersion test using scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The results showed that the phosphate film had better corrosion resistance and greater thickness than silicate film and, in turn, the lesser degradability in SBF solution, so that Ca2+ and PO43- containing compounds were more abundant on silicate film than phosphate film. Moreover phosphate film had greater surface roughness and lesser hydrophilic nature.

  5. Calcium phosphate coating on magnesium alloy for modification of degradation behavior

    NASA Astrophysics Data System (ADS)

    Cui, Fu-zhai; Yang, Jing-xin; Jiao, Yan-peng; Yin, Qing-shui; Zhang, Yu; Lee, In-Seop

    2008-06-01

    Magnesium alloy has similar mechanical properties with natural bone, but its high susceptibility to corrosion has limited its application in orthopedics. In this study, a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity. Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2, NaH2PO4 and NaHCO3, then the calcium phosphate coating formed. Through adjusting the immersion time, the thickness of uniform coatings can be changed from 10 to 20 μm. The composition, phase structure and morphology of the coatings were investigated. Bonding strength of the coatings and substrate was 2-4 MPa in this study. The coatings significantly decrease degradation rate of the original Mg alloy, indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.

  6. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS.

    PubMed

    Zhao, Daoli; Wang, Tingting; Nahan, Keaton; Guo, Xuefei; Zhang, Zhanping; Dong, Zhongyun; Chen, Shuna; Chou, Da-Tren; Hong, Daeho; Kumta, Prashant N; Heineman, William R

    2017-03-01

    The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H 2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H 2 with an electrochemical H 2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H 2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H 2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH) 2 , MgO, MgCO 3 and Mg 3 (PO 4 ) 2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby avoid the need for subsequent removal by surgery if complications arise. In vivo biodegradation rate is one of the crucial parameters for the development of these alloys. Promising alloys are first evaluated in vivo by being implanted subcutaneously in mice for 1month. Here, we evaluated several magnesium alloys with widely varying corrosion rates in vivo using multiple characterization techniques. Since the alloys biodegrade by reacting with water forming H 2 gas, we used a recently demonstrated, simple, fast and noninvasive method to monitor the biodegradation process by just pressing the tip of a H 2 sensor against the skin above the implant. The analysis of 9 organs (intestine, kidney, spleen, lung, heart, liver, skin, brain and skull) for accumulation of Mg and Zn revealed no significant accumulation of magnesium in these organs. Zinc accumulation in intestine, kidney and lung was observed for the faster corroding implant ZJ41. The surfaces of explanted alloys were analyzed to determine the composition of the insoluble biodegradation products. The results suggest that these tested alloys are potential candidates for biodegradable implant applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Evaluating the Upset Protrusion Joining (UPJ) Method to Join magnesium Castings to Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen D.

    2015-08-19

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparingmore » performance results of the joints made with the UPJ process to those made with the SPR process.« less

  8. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-MgCl2 electrolyte by molten salts electrolysis method

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Wu, Lin; Yang, Fengli; Li, Mingzhou; Hu, Xianwei; Wang, Zhaowen; Shi, Zhongning; Gao, Bingliang

    Aluminum-magnesium alloys were prepared from magnesium oxide by molten salt electrolysis method. 10w%RECl3-63.5w%KCl-23.5w%MgCl2-3w%MgO was taken as electrolyte. The results showed that RE could be attained in aluminum-magnesium alloy, and it was proved that the RE was reduced directly by aluminum. Magnesium in the alloy was produced by electrolysis on cathode. The content of RE in the alloy was about 0.8wt %-1.2wt%, and the content of Mg in the alloy was lwt%˜6wt% with electrolytic times. The highest current efficiency was 81.3% with 0.8A/cm2 current density. The process of electrolysis was controlled together by electrochemical polarization and concentration polarization.

  9. Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke

    2018-04-01

    Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.

  10. Wear Properties of ECAP-Processed AM80 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gopi, K. R.; Shivananda Nayaka, H.; Sahu, Sandeep

    2017-07-01

    AM80 magnesium alloy was subjected to equal-channel angular pressing (ECAP), and microstructural evolution was studied using scanning electron microscope (SEM). Grain size was found to decrease up to 3 µm after four passes. An increase in number of ECAP passes led to a corresponding increase in hardness of the processed samples. Unprocessed and ECAP-processed samples were subjected to wear test using pin-on-disk wear test machine to study the wear behavior. Effects of varying loads (30 and 40 N) with sliding distances (2500 and 5000 m) were studied. The results showed reduction in wear mass loss for the ECAP-processed samples in comparison with unprocessed condition. Coefficient of friction (COF) was studied for different loads, and improvement in COF values was observed for ECAP-processed samples compared to unprocessed condition. Worn surfaces were studied using SEM and energy-dispersive x-ray spectrometer, and they exhibited plastic deformation, delamination, plowing, wear debris and oxidation in the sliding direction. X-ray diffraction analysis was conducted on the worn surfaces to identify the phases. It revealed the presence of magnesium oxide and magnesium aluminum oxide which led to oxidation wear in the sliding direction. Wear mechanism was found to be abrasive and oxidation wear.

  11. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model.

    PubMed

    Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P

    2017-08-01

    Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017. © 2016 Wiley Periodicals, Inc.

  12. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  13. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  14. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    PubMed Central

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-01-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh·g−1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems. PMID:25011939

  15. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-07-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh.g-1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.

  16. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy.

    PubMed

    Minárik, Peter; Jablonská, Eva; Král, Robert; Lipov, Jan; Ruml, Tomáš; Blawert, Carsten; Hadzima, Branislav; Chmelík, František

    2017-04-01

    Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  19. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  20. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion.

    PubMed

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-11-12

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L(-1), 1:1 and 1 L min(-1), respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible.

  1. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion

    PubMed Central

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-01-01

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L–1, 1:1 and 1 L min–1, respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible. PMID:26558521

  2. Magnesium in North America: A Changing Landscape

    NASA Astrophysics Data System (ADS)

    Slade, Susan

    The changing landscape of North American manufacturing in the context of global competition is impacting the market of all raw materials, including magnesium. Current automotive fuel economy legislation and pending legislation on the emissions of greenhouse gases are impacting magnesium's largest consuming industries, such as aluminum, automotive components, steel and transition metals. These industries are all considering innovative ways to efficiently incorporate the needed raw materials into their processes. The North American magnesium market differs from other regions based on maturity, supply streams, changing manufacturing capabilities and trade cases, combined with the transformation of North American manufacturing.

  3. Biodegradable Magnesium Alloys: A Review of Material Development and Applications

    PubMed Central

    Persaud-Sharma, Dharam; McGoron, Anthony

    2012-01-01

    Magnesium based alloys possess a natural ability to biodegrade due to corrosion when placed within aqueous substances, which is promising for cardiovascular and orthopedic medical device applications. These materials can serve as a temporary scaffold when placed in vivo, which is desirable for treatments when temporary supportive structures are required to assist in the wound healing process. The nature of these materials to degrade is attributed to the high oxidative corrosion rates of magnesium. In this review, a summary is presented for magnesium material development, biocorrosion characteristics, as well as a biological translation for these results. PMID:22408600

  4. Development of Thixomolded{reg_sign} magnesium products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.; Fan, R.; Kang, K.

    1995-10-01

    Thixomolding{reg_sign} is a racial new process which merges the technologies of die-casting and plastic injection molding for the net shape molding of magnesium based alloys. Properties of Thixomolded{reg_sign} magnesium alloys are discussed and compared with those of traditional die casting. Magnesium alloys are of great interest to automobile manufacturers because of the potential weight savings and corresponding energy savings due to increased fuel economy. For this reason, one of the first target markets for Thixomolded{reg_sign} products is the automotive industry. The use of Thixomolding{reg_sign} in the production of an automobile part is examined.

  5. Enhanced cell attachment and hemocompatibility of titanium by nanoscale surface modification through severe plastic integration of magnesium-rich islands and porosification.

    PubMed

    Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali

    2017-10-11

    Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.

  6. Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate

    NASA Astrophysics Data System (ADS)

    Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong

    2016-10-01

    High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.

  7. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  8. Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density

    NASA Astrophysics Data System (ADS)

    Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.

    2017-08-01

    The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.

  9. Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiang; Liu Yaohui, E-mail: liuyaohui2005@yahoo.com; Fang Shijie

    2010-06-15

    The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pitsmore » on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.« less

  10. The experiment of magnesium ECAP miniplate as alternative biodegradable material (on male white New Zealand rabbits)

    NASA Astrophysics Data System (ADS)

    Wiwanto, Siska; Sulistyani, Lilies Dwi; Latief, Fourier Dzar Eljabbar; Supriadi, Sugeng; Priosoeryanto, Bambang Pontjo; Latief, Benny Syariefsyah

    2018-02-01

    Study of biodegradations of Magnesium ECAP (Equal Channel Angular Pressing) miniplate in the osteosynthesis system has been used as a new material for plate and screw in oral and maxillofacial surgery. This miniplate and screw that were made of Magnesium ECAP were implanted in the femurs of New Zealand rabbits. The degradation process was detected through pocket gas that appeared in hard and soft tissues surrounding in the implanted miniplates and screws. From the changes on the tissues, we can assess the biodegradation process by measuring the gas pocket through micro-CT Scan. Upon the first month of study we euthanized the rabbits and made a micro-CT Scan to see how far the effect of the gas pocket was. Histological analyses were performed to investigate the local tissue response adjacent to the Magnesium ECAP miniplates. We analyzed the femur of a rabbit a month, three months, and five months after implantation. The result showed a degradation rate in the implanted Magnesium ECAP miniplate of 0.61±0.39 mm/year. Unlike the screws, miniplates have higher water content and blood flow than bone, therefore they degrade faster. This study shows promising results for further development of Magnesium ECAP and in the production of osteosynthesis material for rigid fixation in Oral and Maxillofacial skeleton.

  11. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases

    NASA Astrophysics Data System (ADS)

    Stanienda-Pilecki, Katarzyna

    2017-09-01

    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  12. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium–gadolinium composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin

    2016-03-15

    In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less

  13. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, S. B., E-mail: samuel.emery@navy.mil; Little, B. K.; Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structuremore » at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.« less

  14. Media calcification, low erythrocyte magnesium, altered plasma magnesium, and calcium homeostasis following grafting of the thoracic aorta to the infrarenal aorta in the rat--differential preventive effects of long-term oral magnesium supplementation alone and in combination with alkali.

    PubMed

    Schwille, P O; Schmiedl, A; Schwille, R; Brunner, P; Kissler, H; Cesnjevar, R; Gepp, H

    2003-03-01

    Calcifications in arterial media are clinically well documented, but the role played by magnesium in pathophysiology and therapy is uncertain. To clarify this, an animal model in which the juxtacardial aorta was grafted to the infrarenal aorta, and the subsequent calcifications in the media of the graft and their response to oral supplementation with three magnesium-containing and alkalinizing preparations was investigated. Groups of highly inbred rats were formed as follows: sham-operation (Sham, n = 12), aorta transplantation (ATx, n = 12), ATx + magnesium citrate (MgC, n = 12), ATx + MgC + potassium citrate (MgCPC, n = 12), ATx + MgC + MgCPC (MgCPCSB, n = 12). At 84 (+/-2) days after ATx with or without treatment the following observations were made: (1) weight gain and general status were normal; (2) ATx rats developed massive media calcification, mineral accumulation in the graft, decreased erythrocyte magnesium and plasma parathyroid hormone, and increased plasma ionized magnesium and calcium, and uric acid; (3) Mg-treated rats developed variable degrees of metabolic alkalosis, but only MgCPCSB supplementation prevented calcifications. Additional findings after ATx alone were: imbalance in endothelin and nitric oxide production, the mineral deposited in media was poorly crystallized calcium phosphate, calcium exchange between plasma and graft, and bone resorption were unchanged. The superior anti-calcification effect of MgCPCSB was characterized by complete restoration of normal extracellular mineral homeostasis and uric acid, but sub-optimal normalization of erythrocyte magnesium. It was concluded that in the rat: (1) ATx causes loss of cellular magnesium, excess of extracellular magnesium and calcium in the presence of apparently unchanged bone resorption, and increased uricemia; (2) ATx facilitates enhanced influx of calcium into vascular tissue, leading to calcium phosphate deposition in the media; (3) ATx-induced calcification is prevented by dietary supplementation with a combination of magnesium, alkali citrate and bases. Although the described circulatory model of media calcification in the rat requires further investigation, the data allow ascribing a fundamental role to magnesium and acid-base metabolism.

  15. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  16. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  17. Supercooling and Ice Formation of Perchlorate Brines under Mars-relevant Conditions

    NASA Astrophysics Data System (ADS)

    Primm, K.; Gough, R. V.; Tolbert, M. A.

    2015-12-01

    Perchlorate salts, discovered in the Martian regolith at multiple landing sites, may provide pathways for liquid water stability on current Mars. It has previously been assumed that if perchlorate brines form in the Martian regolith via melting or deliquescence, they would be present only briefly because efflorescence into a crystal or freezing to ice would soon occur. Here, we used a Raman microscope to study the temperature and relative humidity (RH) conditions at which magnesium perchlorate brine will form ice. Although ice is thermodynamically predicted to form whenever the saturation with respect to ice (Sice) is greater than or equal to 1, ice formation by perchlorate brines did not occur until elevated Sice values were reached: Sice= 1.17, 1.29, and 1.25 at temperatures of 218 K, 230.5 K, and 244 K, respectively. If a magnesium perchlorate particle was allowed to deliquesce completely prior to experiencing ice supersaturation, the extent of supercooling was increased even further. These high supersaturation values imply perchlorate brines can exist over a wider range of conditions than previously believed. From these experiments it has been found that magnesium perchlorate exhibits supercooling well into the previous theoretical ice region of the stability diagram and that liquid brines on Mars could potentially exist for up to two additional hours per sol. This supercooling of magnesium perchlorate will help with the exploration of Mars by the Mars 2020 spacecraft by helping to understand the phase and duration of water existing in the Martian subsurface.

  18. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  19. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Wan; Lee, Hyeong-Shin; Kim, Dong-Hyun

    Highlights: ► Mg–BCP were successfully prepared through in situ aqueous co-precipitation method. ► The amount of β-TCP phase was changed with the magnesium substitution level. ► The substitution of magnesium led to a decrease in the unit cell volume. ► Mg–BCP could be able to develop a new apatite phase on the surface faster than BCP. -- Abstract: In situ preparation of magnesium (Mg) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added magnesium were varied with the calcium in order to obtain constant (Ca + Mg)/P ratiosmore » of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized magnesium substituted BCP powders. The results have shown that substitution of magnesium in the calcium deficient apatites revealed the formation of biphasic mixtures of different HAp/β-TCP ratios after heating at 1000 °C. The ratios of the formation of phase mixtures were dependent on the content of magnesium. After immersing in Hanks’ balanced salt solution (HBSS) for 1 week, 1 wt% magnesium substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. On the other hand, in the case of pure BCP powders, the formation of new precipitates was detected after immersion in HBSS for 2 weeks. On the basis of these results, magnesium substituted BCP could be able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. In addition, the retention time to produce the new apatite phase in implantation operation for the BCP powder could be controlled by the amount of magnesium substitution.« less

  20. Mathematical Modeling of the Effect of Roll Diameter on the Thermo-Mechanical Behavior of Twin Roll Cast AZ31 Magnesium Alloy Strips

    NASA Astrophysics Data System (ADS)

    Hadadzadeh, Amir; Wells, Mary

    Although the Twin Roll Casting (TRC) process has been used in the aluminum sheet production industry for more than 60 years, the usage of this process to fabricate magnesium sheets is still at its early stages. Similar to other manufacturing processes, the development of the TRC process for magnesium alloys has followed a typical route of preliminary studies using a laboratory-scale facility, followed by pilot-scale testing and most recently attempting to use an industrial-scale twin roll caster. A powerful tool to understand and quantify the trends of the processing conditions and effects of scaling up from a laboratory size TRC machine to an industrial scale one is develop a mathematical model of the process. This can elucidate the coupled fluid-thermo-mechanical behavior of the cast strip during the solidification and then deformation stages of the process. In the present study a Thermal-Fluid-Stress model has been developed for TRC of AZ31 magnesium alloy for three roll diameters by employing the FEM commercial package ALSIM. The roll diameters were chosen as 355mm, 600mm and 1150mm. The effect of casting speed for each diameter was studied in terms of fluid flow, thermal history and stress-strain evolution in the cast strip in the roll bite region.

  1. Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    He, Yongyi; Chen, Li; Yan, Zongcheng; Zhang, Yalei

    2015-09-01

    Plasma electrolytic oxidation (PEO) films on AZ31 magnesium alloys were prepared in alkaline silicate electrolytes (base electrolyte) with the addition of different volume concentrations of CH3OH, which was used to adjust the thickness of the vapor sheath. The compositions, morphologies, and thicknesses of ceramic layers formed with different CH3OH concentrations were determined via X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. PEO coatings mainly comprised Mg, MgO, and Mg2SiO4. The addition of CH3OH in base electrolytes affected the thickness, pores diameter, and Mg2SiO4 content in the films. The films formed in the electrolyte containing 12% CH3OH exhibited the highest thickness. The coatings formed in the electrolyte containing different concentrations of CH3OH exhibited similar corrosion resistance. The energy consumption of PEO markedly decreased upon the addition of CH3OH to the electrolytes. The result is helpful for energy saving in the PEO process. supported by National Natural Science Foundation of China (No. 21376088), the Project of Production, Education and Research, Guangdong Province and Ministry of Education (Nos. 2012B09100063, 2012A090300015), and Guangzhou Science and Technology Plan Projects of China (No. 2014Y2-00042)

  2. Influence of pH and Metal Cations on Aggregative Growth of Non-Slime-forming Strains of Zoogloea ramigera

    PubMed Central

    Angelbeck, Donald I.; Kirsch, Edwin J.

    1969-01-01

    Aggregative growth of non-slime-forming strains of Zoogloea ramigera was induced by growing the organisms at a depressed pH. Calcium and magnesium ion was found to reverse aggregative growth of the organisms. Conversely, aggregation was stimulated when the available inorganic cation concentration of the growth medium was lowered by the use of a chelating agent. The aggregative effects of pH depression or cation depletion and the dispersal effects of cation supplementation were observed only during cellular growth. The data suggest that aggregate formation of non-slime-forming strains of Z. ramigera may be related to the calcium or magnesium metabolism of the organisms, or both. Images PMID:4976326

  3. Corrosion of Magnesium in Multimaterial System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Vineet V.; Agnew, Sean

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances andmore » Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.« less

  4. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean

    PubMed Central

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-01-01

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications. PMID:20007788

  5. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean.

    PubMed

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-12-29

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.

  6. Anisotropy of mechanical and thermal properties of AZ31 sheets prepared using the ARB technique

    NASA Astrophysics Data System (ADS)

    Halmešová, K.; Trojanová, Z.; Džugan, J.; Drozd, Z.; Minárik, P.; Knapek, M.

    2017-07-01

    In the accumulative roll bonding (ARB) technique, repeated stacking of material followed by conventional roll-bonding is carried out. For this process the surfaces are cleaned with ethanol and then joined together by rolling. The rolled material is then cut into two halves, again surface treated and roll-bonded. This process may be repeated several times. For the magnesium alloy AZ31 (Mg-3Al-1Zn) rolling at an elevated temperature of 400 °C is necessary for ARB because of the low plasticity of hexagonal magnesium alloys at lower temperatures. Samples for this study were prepared using 1 to 3 ARB passes through the rolling mill. It was found that the ARB substantially refined the grain size of sheets to the micrometer scale. The microstructure and texture of the deformed samples were studied by light and electron microscopy. The mechanical properties of the ARB samples were explored using tensile test-pieces cut from the sheets with the tensile axis taken either parallel or perpendicular to the rolling direction, where a significant anisotropy in both mechanical properties and Young’s modulus was found. Anisotropy is explained on the basis of the specific microstructure and texture formed during the ARB process.

  7. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.

    PubMed

    Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin

    2018-05-04

    The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  8. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    PubMed Central

    Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin

    2018-01-01

    The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process. PMID:29734700

  9. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    PubMed

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  10. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less

  11. Synthesis of a novel slow-release potassium fertilizer from modified Pidgeon magnesium slag by potassium carbonate.

    PubMed

    Li, Yongling; Cheng, Fangqin

    2016-08-01

    A novel slow-release potassium fertilizer (SPF) was synthesized using Pidgeon magnesium slag (PMS) and potassium carbonate, which could minimize fertilizer nutrient loss and PMS disposal problems. Orthogonal experiments were conducted to determine the optimum conditions for synthesis. The potassium (K)-bearing compounds of SPF existed mainly in the form of crystalline phases Ca1.197K0.166SiO4, K2MgSiO4, and K4CaSi3O9, and in the noncrystalline phase. The active silicon content of SPF was 2.09 times as much as that of magnesium slag, and the slow-release character of SPF met the requirement for partly slow-release fertilizer in the national standard (GB/T23348-2009). The best models for describing the K release kinetics in water and 2% citric acid were the Elovich model and the first-order model, respectively. The heavy metal contents of SPF conformed to the national standard for organic-inorganic compound fertilizers, and the leaching mass concentrations of heavy metals and Fluorine were far lower than the limit values of the identification standard for hazardous waste identification for extraction toxicity (GB5085.3-2007), and also met the class II quality standard for ground water. The environmental risk of SPF is therefore very low, but because SPF is alkaline, its effect on soil pH should be taken into account. PMS is the solid waste resulting from the production of magnesium metal by Pidgeon's reduction process. Utilization of PMS in the high-technology and high-value areas may promote the high-efficiency development of worldwide collection metallic magnesium industry and contribute to the reduction of emissions of fine dust to air. This paper presents one of the new techniques in the use of PMS as a slow-release fertilizer by adding K2CO3. The product can serve as a very cost-effective and reliable artificial fertilizer.

  12. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  13. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    PubMed

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  14. Magnesium in Disease Prevention and Overall Health12

    PubMed Central

    Volpe, Stella Lucia

    2013-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation and has been recognized as a cofactor for >300 metabolic reactions in the body. Some of the processes in which magnesium is a cofactor include, but are not limited to, protein synthesis, cellular energy production and storage, reproduction, DNA and RNA synthesis, and stabilizing mitochondrial membranes. Magnesium also plays a critical role in nerve transmission, cardiac excitability, neuromuscular conduction, muscular contraction, vasomotor tone, blood pressure, and glucose and insulin metabolism. Because of magnesium’s many functions within the body, it plays a major role in disease prevention and overall health. Low levels of magnesium have been associated with a number of chronic diseases including migraine headaches, Alzheimer’s disease, cerebrovascular accident (stroke), hypertension, cardiovascular disease, and type 2 diabetes mellitus. Good food sources of magnesium include unrefined (whole) grains, spinach, nuts, legumes, and white potatoes (tubers). This review presents recent research in the areas of magnesium and chronic disease, with the goal of emphasizing magnesium’s role in disease prevention and overall health. PMID:23674807

  15. Phase composition and corrosion resistance of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Morozova, G. I.

    2008-03-01

    The effects of phase composition of castable experimental and commercial alloys based on the Mg-Al, Mg-Al-Mn, Mg-Al-Zn-Mn, and Mg-Zn-Zr systems and of the form of existence of iron and hydrogen admixtures on the rate of corrosion of the alloys in 3% solution of NaCl are studied. The roles of heat treatment in the processes of hydrogen charging and phase formation in alloy ML5pch and of hydrogen in the process of formation of zirconium hydrides and zinc zirconides in alloys of the Mg-Zn-Zr system and their effect on the corrosion and mechanical properties of alloy ML12 are discussed.

  16. Template-free magnesium oxide hollow sphere inclusion in organic-inorganic hybrid films via sol-gel reaction.

    PubMed

    Kang, Eun-Seok; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-06-06

    Magnesium oxide hollow spheres without a template core were conveniently prepared by stabilized bubble formation in a hybrid solution containing a magnesium acetate precursor, thus avoiding the complicated preparation process using a template. The hollow sphere could be aligned along the radial striation by spin coating, and its diameter from a micrometer to submicrometer dimension could be easily modified by the solution composition. It was also possible to control the open or closed hollow sphere by changing the solvent. Thus, the produced magnesium oxide hollow sphere is envisioned to have applications in many areas such as medicine, analysis, optics, and so on.

  17. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE PAGES

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias; ...

    2016-08-19

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less

  18. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less

  19. To evaluate the effect of various magnesium stearate polymorphs using powder rheology and thermal analysis.

    PubMed

    Okoye, Patrick; Wu, Stephen H; Dave, Rutesh H

    2012-12-01

    The effects of magnesium stearate (MgSt) polymorphs-anhydrate (MgSt-A), monohydrate (MgSt-M), and dihydrate (MgSt-D)-on rheological properties of powders were evaluated using techniques such as atomic analysis and powder rheometry. Additional evaluation was conducted using thermal analysis, micromeritics, and tableting forces. In this study, binary ratios of neat MgSt polymorphs were employed as lubricants in powder blends containing acetaminophen (APAP), microcrystalline cellulose (MCC), and lactose monohydrate (LAC-M). Powder rheometry was studied using permeability, basic flow energy (BFE), density, and porosity analysis. Thermal conductivity and differential scanning calorimetric analysis of MgSt polymorphs were employed to elucidate MgSt effect on powder blends. The impact of MgSt polymorphs on compaction characteristics were analyzed via tablet compression forces. Finally, the distribution of atomized magnesium (Mg) ions as a function of intensity was evaluated using laser-induced breakdown spectroscopy (LIBS) on tablets. The results from LIBS analysis indicated the dependency of the MgSt polymorphic forms on the atomized Mg ion intensity, with higher Mg ion intensity suggesting higher lubricity index (i.e. greater propensity to over-lubricate). The results from lubricity index suggested the tendency of blends to over-lubricate based on the MgSt polymorphic forms. Finally, tableting forces suggested that MgSt-D and MgSt-A offered processing benefits such as lower ejection and compression forces, and that MgSt-M showed the most stable compression force in single or combined polymorphic ratios. These results suggested that the initial moisture content, crystal arrangement, intra- and inter-molecular packing of the polymorphs defined their effects on the rheology of lubricated powders.

  20. The Superheat Phenomenon in the Combustion of Magnesium Particles

    NASA Technical Reports Server (NTRS)

    Shafirovich, E. IA.; Goldshleger, U. I.

    1992-01-01

    Magnesium is known to be a likely fuel for engines that could work in the CO2 atmospheres of Mars and Venus. The present paper reports temperature measurements of magnesium samples during combustion in CO2. The burning sample temperature increases with the decrease in the initial size. The temperature of the 1-mm samples is 300-400 K higher than the boiling point of magnesium. The stability of the superheated drop is explained by the presence of a porous shell on the surface. An attempt has been made to describe vaporization on the superheated drop by the Knudsen-Langmuir equation. During combustion at high-pressure fragment ejection of the flame is observed in high-speed motion pictures. This phenomenon is shown to be connected with the drop superheat. The repeated fracture of the outer shell formed in the flame ensures the complete burnout of metal particles at high pressure.

  1. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE PAGES

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; ...

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH 4) 2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimizedmore » LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  2. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  3. Fatigue strength of a magnesium MA2-1 alloy after equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Dobatkin, S. V.; Prosvirnin, D. V.; Bannykh, I. O.; Kopylov, V. I.; Serebryany, V. N.

    2010-09-01

    The fatigue strength of a magnesium MA2-1 alloy is studied after annealing and equal-channel angular pressing (ECAP). The ultrafine-grained structure formed upon ECAP is shown to increase the plasticity of the material during static tension, to decrease the cyclic life to failure, and not to decrease the fatigue limit. The mechanisms of crack nucleation and growth during cyclic deformation are investigated.

  4. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  5. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  6. Observations of Metallic Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Potter, Andrew E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Anderson, Carrie M.; Burger, Matthew H.

    2010-01-01

    From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.

  7. Effects of dietary calcium, phosphorus and magnesium on intranephronic calculosis in rats.

    PubMed

    Woodward, J C; Jee, W S

    1984-12-01

    The effects of varying dietary levels of calcium, phosphorus and magnesium on the incidence and severity of intranephronic calculosis were studied. Renal calculi were induced by feeding female rats the AIN-76TM semipurified diet for 4 weeks. During this time period, dietary levels of 350, 450 or 550 mg calcium per 100 g diet did not influence the occurrence of urolithiasis. Increasing dietary magnesium levels from 50 to 350 mg was beneficial in preventing the occurrence of calculi if the diet contained 400 mg or less phosphorus. The protective effects of dietary magnesium were counteracted when dietary phosphorus levels were increased from 400 mg to 550 or 700 mg. If the dietary content of phosphorus and magnesium permitted the formation of renal calculi, the severity of the condition was also influenced by the dietary level of calcium. Some animal groups fed semipurified diets did not have microscopic or radiographic evidence of renal calculi but were found to have significantly elevated renal calcium values. It was suggested that these animals might be in a precalculus-forming state.

  8. Magnesium-based methods, systems, and devices

    DOEpatents

    Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum

    2017-12-12

    An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.

  9. Bone regeneration capacity of magnesium phosphate cements in a large animal model.

    PubMed

    Kanter, Britta; Vikman, Anna; Brückner, Theresa; Schamel, Martha; Gbureck, Uwe; Ignatius, Anita

    2018-03-15

    Magnesium phosphate minerals have captured increasing attention during the past years as suitable alternatives for calcium phosphate bone replacement materials. Here, we investigated the degradation and bone regeneration capacity of experimental struvite (MgNH 4 PO 4 ·6H 2 O) forming magnesium phosphate cements in two different orthotopic ovine implantation models. Cements formed at powder to liquid ratios (PLR) of 2.0 and 3.0 g ml -1 were implanted into trabecular bone using a non-load-bearing femoral drill-hole model and a load-bearing tibial defect model. After 4, 7 and 10 months the implants were retrieved and cement degradation and new bone formation was analyzed by micro-computed tomography (µCT) and histomorphometry. The results showed cement degradation in concert with new bone formation at both defect locations. Both cements were almost completely degraded after 10 months. The struvite cement formed with a PLR of 2.0 g ml -1 exhibited a slightly accelerated degradation kinetics compared to the cement with a PLR of 3.0 g ml -1 . Tartrat-resistant acid phosphatase (TRAP) staining indicated osteoclastic resorption at the cement surface. Energy dispersive X-ray analysis (EDX) revealed that small residual cement particles were mostly accumulated in the bone marrow in between newly formed bone trabeculae. Mechanical loading did not significantly increase bone formation associated with cement degradation. Concluding, struvite-forming cements might be promising bone replacement materials due to their good degradation which is coupled with new bone formation. Recently, the interest in magnesium phosphate cements (MPC) for bone substitution increased, as they exhibit high initial strength, comparably elevated degradation potential and the release of valuable magnesium ions. However, only few in vivo studies, mostly including non-load-bearing defects in small animals, have been performed to analyze the degradation and regeneration capability of MPC derived compounds. The present study examined the in vivo behavior of magnesiumammoniumphosphate hexahydrate (struvite) implants with different porosity in both mechanically loaded and non-loaded defects of merino sheep. For the first time, the effect of mechanical stimuli on the biological outcome of this clinically relevant replacement material is shown and directly compared to the conventional unloaded defect situation in a large animal model. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, TiChang; Wang, XiaoPing; Hu, TianYang

    2017-10-01

    The effects of MgO on the carbothermic reduction behavior of vanadium titanomagnetite concentrates (VTC) from Chengde, China, were investigated via temperature-programmed heating under nitrogen atmosphere in a sealed furnace. Gaseous product content was measured by using an infrared gas analyzer, and it was found that the addition of MgO to VTC with char decreased the reduction rate and reduction degree, and the utilization of CO in VTC reduction was also reduced. X-ray diffraction results showed that magnesium titanate (Mg2TiO4) was formed but FeTi2O5 was not observed in the VTC reduction process by adding 6 wt.% MgO, which can be explained by thermodynamic analysis. Scanning electron microscopy revealed that the enrichment of Mg in the unreacted core was the main reason that the further reduction of VTC was restricted. However, comparatively pure particles of Mg2TiO4 were generated, and the titanium and iron were separated well due to the combination of magnesium and titanium.

  11. Chemical surface alteration of biodegradable magnesium exposed to corrosion media.

    PubMed

    Willumeit, Regine; Fischer, Janine; Feyerabend, Frank; Hort, Norbert; Bismayer, Ulrich; Heidrich, Stefanie; Mihailova, Boriana

    2011-06-01

    The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In this paper magnesium samples were incubated under cell culture conditions (i.e. including CO(2)) in electrolyte solutions and cell growth media, with and without proteins. Chemical mapping by high-resolution electron-induced X-ray emission spectroscopy and infrared reflection microspectroscopy revealed a complex structure of the formed corrosion layer. The presence of CO(2) in concentrations close to that in blood is significant for the chemistry of the oxidised layer. The presence of proteins leads to a less dense but thicker passivation layer which is still ion and water permeable, as osmolality and weight measurements indicate. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)(1-x)Mgx]O2 prepared from spent lithium ion batteries.

    PubMed

    Weng, Yaqing; Xu, Shengming; Huang, Guoyong; Jiang, Changyin

    2013-02-15

    To reduce cost and secondary pollution of spent lithium ion battery (LIB) recycling caused by complicated separation and purification, a novel simplified recycling process is investigated in this paper. Removal of magnesium is a common issue in hydrometallurgy process. Considering magnesium as an important additive in LIB modification, tolerant level of magnesium in leachate is explored as well. Based on the novel recycling technology, Li[(Ni(1/3)Co(1/3)Mn(1/3))(1-x)Mg(x)]O(2) (0 ≤ x ≤ 0.05) cathode materials are achieved from spent LIB. Tests of XRD, SEM, TG-DTA and so on are carried out to evaluate material properties. Electrochemical test shows an initial charge and discharge capacity of the regenerated LiNi(1/3)Co(1/3)Mn(1/3)O(2) to be 175.4 mAh g(-1) and 152.7 mAh g(-1) (2.7-4.3 V, 0.2C), respectively. The capacity remains 94% of the original value after 50 cycles (2.7-4.3 V, 1C). Results indicate that presence of magnesium up to x=0.01 has no significant impact on overall performance of Li[(Ni(1/3)Co(1/3)Mn(1/3))(1-x)Mg(x)]O(2). As a result, magnesium level as high as 360 mg L(-1) in leachate remains tolerable. Compared with conventional limitation of magnesium content, the elimination level of magnesium exceeded general impurity-removal requirement. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

    PubMed

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-04-22

    Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.

  14. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    NASA Astrophysics Data System (ADS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  15. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  16. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications.

  17. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine.

    PubMed

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2015-09-01

    The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Optimisation of a sol-gel synthesis route for the preparation of MgF2 particles for a large scale coating process.

    PubMed

    Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E

    2015-12-07

    A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.

  19. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    PubMed Central

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  20. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance.

    PubMed

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-03-28

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO₃ solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface.

  1. Texture evolution during thermomechanical processing in rare earth free magnesium alloys

    NASA Astrophysics Data System (ADS)

    Miller, Victoria Mayne

    The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.

  2. Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing

    NASA Astrophysics Data System (ADS)

    Kandemir, Sinan

    2018-04-01

    It is a challenging task to effectively incorporate graphene nanoplatelets (GNPs) which have recently emerged as potential reinforcement for strengthening metals into magnesium-based matrices by conventional solidification processes due to their large surface areas and poor wettability. A solidification processing which combines mechanical stirring and ultrasonic dispersion of reinforcements in liquid matrix was employed to develop AZ91 magnesium alloy matrix composites reinforced with 0.25 and 0.5 wt.% GNPs. The microstructural studies conducted with scanning and transmission electron microscopes revealed that fairly uniform distribution and dispersion of GNPs through the matrix were achieved due to effective combination of mechanical and ultrasonic stirring. The GNPs embedded into the magnesium matrix led to significant enhancement in the hardness, tensile strength and ductility of the composites compared to those of unreinforced AZ91 alloy. The strength enhancement was predominantly attributed to the grain refinement by the GNP addition and dislocation generation strengthening due to the coefficient of thermal expansion mismatch between the matrix and reinforcement. The improved ductility was attributed to the refinement of β eutectics by transforming from lamellar to the divorced eutectics due to the GNP additions. In addition, the strengthening efficiency of the composite with 0.25 wt.% GNP was found to be higher than those of the composite with 0.5 wt.% GNP as the agglomeration tendency of GNPs is increased with increasing GNP content. These results were compared with those of the GNP-reinforced magnesium composites reported in the literature, indicating the potential of the process introduced in this study in terms of fabricating light and high-performance metal matrix composites.

  3. Properties of Reactive Atomic Species Generated at High Temperatures and Their Low Temperature Reactions to Form Novel Substances

    DTIC Science & Technology

    1979-01-01

    product is magnesium pinacolate, minor but important are the magnesium enolate of acetone and isopropoxide in 1:1 ratio. The double ketyl is a...tungsten, molybdenum and titanium were either unknown or had been made in very poor yield. Our vaporization techniques make these compounds readily...excess cyclooctatetraene. Mono and binuclear complexes of titanium have been isolated; the latter, triscyclooctatetraenedititanium was shown to be a

  4. Evaluation of Rapid-Setting Concretes for Airfield Spall Repair

    DTIC Science & Technology

    1991-04-01

    repair concretes for Rapid Runway Repair (RRR). The three were a methyl methacrylate binder (Silikal RI7AF), a magnesium phosphate mortar mix (Set-45...reld Methyl methacrylate Rapid-setting 82 Blended cement Pavement materials 16. PRICE CODE Magnesium phosphate cement Rapid runway repair Spall repair 17...conditions, and for use during RRR training. Silikal is a methyl methacrylate , which forms a solid mass within minutes after its two components are mixed. It

  5. Magnesiothermic conversion of the silica-mineralizing golden algae Mallomonas caudata and Synura petersenii to elemental silicon with high geometric precision

    PubMed Central

    Petrack, Janina; Jost, Steffen; Boenigk, Jens

    2014-01-01

    Summary Chrysophyceae, also known as golden algae, contain characteristic, three-dimensional biomineralized silica structures. Their chemical composition and microscopic structure was studied. By high-temperature conversion of the skeleton of Mallomonas caudata and Synura petersenii into elementary silicon by magnesium vapour, nanostructured defined replicates were produced which were clearly seen after removal of the formed magnesium oxide with acid. PMID:24991491

  6. The role of potassium, magnesium and calcium in the Enhanced Biological Phosphorus Removal treatment plants.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2005-09-01

    Cations as potassium and magnesium play an important role in maintaining the stability of Enhanced Biological Phosphorus Removal (EBPR) process. In this paper potassium, magnesium and calcium behaviour in EBPR treatment plants has been studied. An ASM2d model extension which takes into account the role of potassium and magnesium in the EBPR process has been developed. Finally, a simulation of the effect on P removal of a shortage of K and Mg was studied. The experimental results showed that K and Mg play an important role in the EBPR process being cotransported with P into and out of bacterial cells. It has been observed that calcium is not involved in P release and uptake. The values of the molar ratios K/P (0.28 mol K mol P(-1)) and Mg/P (0.36 mol Mg mol P(-1)) were obtained accomplishing the charge balance, with different K/Mg mass ratios and without phosphorus precipitation. Model predictions accurately reproduced experimental data. The simulations carried out showed the important effect of the K and Mg influent concentration for P removal efficiency. The results illustrate that the proposed ASM2d model extension must be considered in order to accurately simulate the phosphorus removal process.

  7. Magnesium sulphate for treatment of tetanus in adults.

    PubMed

    Mathew, P J; Samra, T; Wig, J

    2010-01-01

    There are reports that suggest that magnesium sulphate alone may control muscle spasms thereby avoiding sedation and mechanical ventilation in tetanus, but this has not been confirmed. We examined the efficacy and safety of intravenous magnesium sulphate for control of rigidity and spasms in adults with tetanus. A prospective clinical study of intravenous magnesium sulphate was carried out over a period of two years in a tertiary care teaching hospital. In addition to human tetanus immunoglobulin and parenteral antibiotics, patients with tetanus received magnesium sulphate 70 mg/kg intravenously followed by infusion. The infusion was increased by 0.5 g/hour every six hours until cessation of spasms or abolishment of patellar tendon jerk. The primary outcome measure was efficacy determined by control of spasms. Secondary outcomes included frequency of autonomic instability, duration of ventilatory support, hospital stay and mortality. Thirty-three patients were enrolled. At presentation, the incidence of severity of tetanus was as follows: Grade I: 5 (15%), Grade II: 13 (39%), Grade III: 14 (42%) and Grade IV: 1 (3%). Rigidity and mild spasms were controlled with magnesium therapy alone in six patients; all were Grades I or II. Additional sedatives were required in severe forms of tetanus. The average duration of ventilatory support was 18.3 +/- 16.0 days and the overall mortality was 22.9%. Asymptomatic hypocalcaemia was a universal finding. Magnesium sulphate therapy alone may not be efficacious for the treatment of severe tetanus.

  8. Challenges in detecting magnesium stearate distribution in tablets.

    PubMed

    Lakio, Satu; Vajna, Balázs; Farkas, István; Salokangas, Henri; Marosi, György; Yliruusi, Jouko

    2013-03-01

    Magnesium stearate (MS) is the most commonly used lubricant in pharmaceutical industry. During blending, MS particles form a thin layer on the surfaces of the excipient and drug particles prohibiting the bonding from forming between the particles. This hydrophobic layer decreases the tensile strength of tablets and prevents water from penetrating into the tablet restraining the disintegration and dissolution of the tablets. Although overlubrication of the powder mass during MS blending is a well-known problem, the lubricant distribution in tablets has traditionally been challenging to measure. There is currently no adequate analytical method to investigate this phenomenon. In this study, the distribution of MS in microcrystalline cellulose (MCC) tablets was investigated using three different blending scales. The crushing strength of the tablets was used as a secondary response, as its decrease is known to result from the overlubrication. In addition, coating of the MCC particles by MS in intact tablets was detected using Raman microscopic mapping. MS blending was more efficient in larger scales. Raman imaging was successfully applied to characterize MS distribution in MCC tablets despite low concentration of MS. The Raman method can provide highly valuable visual information about the proceeding of the MS blending process. However, the measuring set-up has to be carefully planned to establish reliable and reproducible results.

  9. Evaluation of the lubricating effect of magnesium stearate and glyceryl behenate solid lipid nanoparticles in a direct compression process.

    PubMed

    Martínez-Acevedo, Lizbeth; Zambrano-Zaragoza, María de la Luz; Vidal-Romero, Gustavo; Mendoza-Elvira, Susana; Quintanar-Guerrero, David

    2018-05-02

    The aim of this study was to develop solid lipid nanoparticles (SLN) and introduce them into a direct compression process to evaluate their lubricant properties. The study consisted of preparing glyceryl behenate SLN (Compritol® 888 ATO) by hot dispersion, and magnesium stearate SLN by a novel nanoprecipitation/ion exchange method. The ejection force was measured for nanosystems and raw materials in a formulation typically used for direct compression. The smallest particle sizes obtained were 456 nm for Compritol® 888 ATO and 330 nm for magnesium stearate. Results show that the NPs used as lubricants in a direct compression model formulation provided efficient lubrication by maintaining the lubricating properties of the system, thereby decreasing the amount of lubricant used compared to the raw material. The lubricating effect showed an increase of 15-30% for magnesium stearate and Compritol® 888 ATO, compared to the raw material at concentrations above 2%. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys

    PubMed Central

    Klose, Christian; Demminger, Christian; Mroz, Gregor; Reimche, Wilfried; Bach, Friedrich-Wilhelm; Maier, Hans Jürgen; Kerber, Kai

    2013-01-01

    In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations. PMID:23344376

  11. The Next Generation of Magnesium Based Material to Sustain the Intergovernmental Panel on Climate Change Policy

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Farè, S.; Garces, G.

    Current Mg alloys have several drawbacks that limit wide and profitable utilization in the industrial sector. From an environmental point of view, lighter metals like magnesium are currently considered unclean products as they require energy-intensive. But they have been proven to be "clean" in the transport sector, as they can reduce fuel consumption. Here the potential of magnesium based materials is addressed through double-tasking: a) establish innovative lean-manufacturing processes, avoid the classic melting step to substantially reduce carbon footprint of the magnesium products; b) encourage the using of no-melt processes, realizing high-resistant ultra-fined microstructures. The "Green Metallurgy 2020", a project funded by European Community in the LIFE+ 2009 Program, started in September 2010, coordinated by Politecnico di Milano (ITA) aims to scale to industrial route such impressive results experienced by CENIM (SPA) for some ultrafine bi-phase Mg -Zr (-Y) produced by no-melting route that achieved up to 400 MPa UTS and elongation capability of about 13%.

  12. Magnesium fluoride reduction-vessel liners. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham-Brown, C.E.

    1986-03-26

    The work described in this report details a program that demonstrated a method by which magnesium fluoride, the by-product of the reduction reaction of uranium tetrafluoride to uranium metal could be used to replace the present graphite used to line the reduction vessel. Utilization of magnesium fluoride (MgF2) as a reduction-vessel liner has the potential to decrease carbon contamination and thereby reduce DU derby rejects due to chemistry. Additionally, there would be the elimination of the cost of the graphite crucible liner and the associated disposal costs by replacement with the by-product of the reduction reaction, which is magnesium fluoride.more » The process would ultimately result in reduced manufacturing costs for derby metal and higher yield of finished penetrators. This was to be accomplished in such a manner as to produce uranium metal derbies which would be accommodated into the present Nuclear Metals-Carolina Metals penetrator production process with minimal changes in equipment and procedures.« less

  13. An Investigation of Physico-Mechanical Properties of Ultrafine-Grained Magnesium Alloys Subjected to Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kozulyn, A. A.; Skripnyak, V. A.; Krasnoveikin, V. A.; Skripnyak, V. V.; Karavatskii, A. K.

    2015-01-01

    The results of investigations of physico-mechanical properties of specimens made from the structural Mg-based alloy (Russian grade Ma2-1) in its coarse-grained and ultrafine-grained states after SPD processing are presented. To form the ultrafine-grained structure, use was made of the method of orthogonal equal-channel angular pressing. After four passes through the die, a simultaneous increase was achieved in microhardness, yield strength, ultimate tensile strength and elongation to failure under conditions of uniaxial tensile loading.

  14. Earth's first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim; Brown, Michael; Gardiner, Nicholas; Kirkland, Christopher; Smithies, Hugh

    2017-04-01

    The geodynamic setting in which Earth's first stable cratonic nuclei formed remains controversial. Most exposed Archaean continental crust comprises rocks of the tonalite-trondhjemite-granodiorite (TTGs) series that were produced from partial melting of low magnesium basaltic source rocks and have 'arc-like' trace element signatures that resemble continental crust produced in modern supra-subduction zone settings. The East Pilbara Terrane, Western Australia, is amongst the oldest fragments of preserved continental crust of Earth. Low magnesium basalts of the Paleoarchaean Coucal Formation, at the base of the Pilbara Supergroup, have trace element compositions consistent with the putative source rocks for TTGs. These basalts may be remnants of the ≥35 km-thick pre-3.5 Ga plateau-like basaltic crust that is predicted to have formed if mantle temperatures were much hotter than today. Using phase equilibria modelling of an average uncontaminated Coucal basalt, we confirm their suitability as TTG source rocks. The results suggest that TTGs formed by 20-30% melting along high geothermal gradients (≥700 °C/GPa), which accord with apparent geotherms recorded by >95% of Archaean rocks worldwide. Moreover, the trace element composition of the Coucal basalts demonstrates that they were derived from an earlier generation of mafic/ultramafic rocks, and that the arc-like signature in Archaean TTGs was inherited through an ancestral source lineage. The protracted multistage process required for production and stabilisation of Earth's first continents, coupled with the high geothermal gradients, are incompatible with modern-style subduction and favour a stagnant lid regime in the early Archaean.

  15. Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co-culture model

    PubMed Central

    Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer

    2017-01-01

    Implant-associated infections commonly result from biofilm-forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co-culture model. Primary hOBs and S. epidermidis were co-cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm-bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm-bound S. epidermidis on the magnesium-coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co-culture. The number of vital hOBs on the magnesium-coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium-coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co-culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals. PMID:28260022

  16. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  17. Recent advances in magnesium assessment: From single selective sensors to multisensory approach.

    PubMed

    Lvova, Larisa; Gonçalves, Carla Guanais; Di Natale, Corrado; Legin, Andrey; Kirsanov, Dmitry; Paolesse, Roberto

    2018-03-01

    The development of efficient analytical procedures for the selective detection of magnesium is an important analytical task, since this element is one of the most abundant metals in cells and plays an essential role in a plenty of cellular processes. Magnesium misbalance has been related to several pathologies and diseases both in plants and animals, as far as in humans, but the number of suitable methods for magnesium detection especially in life sample and biological environments is scarce. Chemical sensors, due to their high reliability, simplicity of handling and instrumentation, fast and real-time in situ and on site analysis are promising candidates for magnesium analysis and represent an attractive alternative to the standard instrumental methods. Here the recent achievements in the development of chemical sensors for magnesium ions detection over the last decade are reviewed. The working principles and the main types of sensors applied are described. Focus is placed on the optical sensors and multisensory systems applications for magnesium assessment in different media. Further, a critical outlook on the employment of multisensory approach in comparison to single selective sensors application in biological samples is presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes

    NASA Astrophysics Data System (ADS)

    Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi

    2016-06-01

    Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.

  19. Laser-assisted micro sheet forming

    NASA Astrophysics Data System (ADS)

    Holtkamp, Jens; Gillner, Arnold

    2008-01-01

    The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures

  20. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rather, Sami ullah, E-mail: rathersami@gmail.com

    2014-12-15

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less

  1. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

  2. Potential Evaporite Biomarkers from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Thomas-Keprta, Kathie; Allen, Carlton C.; McKay, David S.

    2001-01-01

    The Dead Sea is located on the northern branch of the African-Levant Rift systems. The rift system, according to one model, was formed by a series of strike slip faults, initially forming approximately two million years ago. The Dead Sea is an evaporite basin that receives freshwater from springs and from the Jordan River. The Dead Sea is different from other evaporite basins, such as the Great Salt Lake, in that it possesses high concentrations of magnesium and has an average pH of 6.1. The dominant cation in the Great Salt Lake is sodium, and the pH is 7.7. Calcium concentrations are also higher in the Dead Sea than in the Great Salt Lake. Both basins are similar in that the dominant anion is chlorine and the salinity levels are approximately 20 %. Other common cations that have been identified from the waters of the Dead Sea and the Great Salt Lake include sodium and potassium. A variety of Archea, Bacteria, and a single genus of a green algal, Dunaliella, has been described from the Dead Sea. Earlier studies concentrated on microbial identification and analysis of their unique physiology that allows them to survive in this type of extreme environment. Potential microbial fossilization processes, microbial fossils, and the metallic ions associated with fossilization have not been studied thoroughly. The present study is restricted to identifying probable microbial morphologies and associated metallic ions. XRD (X Ray Diffraction) analysis indicates the presence of halite, quartz, and orthoclase feldspar. In addition to these minerals, other workers have reported potassium chloride, magnesium bromide, magnesium chloride, calcium chloride, and calcium sulfate. Halite, calcium sulfate, and orthoclase were examined in this report for the presence of microbes, microbially induced deposits or microbial alteration. Neither the gypsum nor the orthoclase surfaces possesses any obvious indications of microbial life or fossilization. The sand-sized orthoclase particles are weathered with 122 extensive fan-shaped mineral deposits. The gypsum deposits are associated with halite minerals and also exhibit extensive weathering. Halite minerals represent the only substrates that have probable rod-shaped microbial structures with long, filamentous, apical extensions. EDS (energy dispersive x-ray) analysis of the putative microbes indicates elevated calcium levels that are enriched with magnesium. The rod-shaped structures exhibit possible fossilization stages. Rhombohedralshaped minerals of magnesium-enriched calcium carbonate are deposited on the microbial surfaces, and eventually coat the entire microbial surface. The sodium chloride continues to crystallize on nearby halite surface and even crystallizes on the fossilized microbial remains. The putative fossils are found exclusively on halite surfaces, and all contained elevated levels of calcium magnesium cations. Both of these metallic cations are associated with microbial activity and fossilization. Their morphological diversity is low in comparison with the reported living Dead Sea microbial population. If we examine the fossil record for multicellular organisms, fossilization rates are lower for soft-bodied organisms than for those possessing hard parts, i.e. shells, bones. For example, smaller, single celled organisms would have a smaller chance of fossilization; their fossilized shapes could be mistaken for abiotic products. Another consideration is that dead organisms in the water column are probably utilized as a food source by other microbes before fossilization processes are completed. This may be an important consideration as we attempt to model and interpret ancient microbial environments either on Earth or on Mars.

  3. Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada

    PubMed Central

    Power, Ian M; Wilson, Siobhan A; Thom, James M; Dipple, Gregory M; Southam, Gordon

    2007-01-01

    Background This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg5(CO3)4(OH)2·5H2O), by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg5(CO3)4(OH)2·4H2O) playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared. Results Field observations show that evaporation of wetland water produces carbonate films of nesquehonite (MgCO3·3H2O) on the water surface and crusts on exposed surfaces. In contrast, benthic microbial mats possessing filamentous cyanobacteria (Lyngbya sp.) contain platy dypingite (Mg5(CO3)4(OH)2·5H2O) and aragonite. Bulk carbonates in the benthic mats (δ13C avg. = 6.7‰, δ18O avg. = 17.2‰) were isotopically distinguishable from abiotically formed nesquehonite (δ13C avg. = 9.3‰, δ18O avg. = 24.9‰). Field and laboratory experiments, which emulated natural conditions, were conducted to provide insight into the processes for magnesium carbonate precipitation in this environment. Field microcosm experiments included an abiotic control and two microbial systems, one containing ambient wetland water and one amended with nutrients to simulate eutrophic conditions. The abiotic control developed an extensive crust of nesquehonite on its bottom surface during which [Mg2+] decreased by 16.7% relative to the starting concentration. In the microbial systems, precipitation occurred within the mats and was not simply due to the capturing of mineral grains settling out of the water column. Magnesium concentrations decreased by 22.2% and 38.7% in the microbial systems, respectively. Laboratory experiments using natural waters from the Atlin site produced rosettes and flakey globular aggregates of dypingite precipitated in association with filamentous cyanobacteria dominated biofilms cultured from the site, whereas the abiotic control again precipitated nesquehonite. Conclusion Microbial mats in the Atlin wetland create ideal conditions for biologically induced precipitation of dypingite and have presumably played a significant role in the development of this natural Mg-carbonate playa. This biogeochemical process represents an important link between the biosphere and the inorganic carbon pool. PMID:18053262

  4. The structural characterization and H(2) sorption properties of carbon-supported Mg(1-x)Nix nanocrystallites.

    PubMed

    Bogerd, René; Adelhelm, Philipp; Meeldijk, Johannes H; de Jong, Krijn P; de Jongh, Petra E

    2009-05-20

    Magnesium (hydride) is a promising system for the reversible on-board storage of hydrogen, but suffers from slow sorption kinetics and a high thermodynamic stability of the hydride. We explored a combined approach to tackle these problems: nanosizing and carbon-supporting the magnesium, and doping it with nickel. Samples were prepared by melt infiltration with magnesium of nanoporous carbon onto which 1-12 wt% nickel nanoparticles had been predeposited. For loadings up to 15 wt% MgH2, 10-30 nm crystallites with different compositions were formed inside the porous carbon, each giving a specific H2 desorption signature. Surprisingly, higher Mg loadings resulted in more homogeneously mixed samples, which was due to the facilitated wetting of the carbon with the magnesium due to the presence of nickel. Hydrogen release temperatures close to that of Mg2NiH4 were observed for high MgH2 loadings (50 wt%) and small amounts of Ni (Mg(0.95)Ni(0.05)). The favourable H2 desorption properties could mainly be attributed to excellent kinetics due to the efficient mixing of magnesium, nickel and carbon on the nanoscale.

  5. The structural characterization and H2 sorption properties of carbon-supported Mg1-xNix nanocrystallites

    NASA Astrophysics Data System (ADS)

    Bogerd, René; Adelhelm, Philipp; Meeldijk, Johannes H.; de Jong, Krijn P.; de Jongh, Petra E.

    2009-05-01

    Magnesium (hydride) is a promising system for the reversible on-board storage of hydrogen, but suffers from slow sorption kinetics and a high thermodynamic stability of the hydride. We explored a combined approach to tackle these problems: nanosizing and carbon-supporting the magnesium, and doping it with nickel. Samples were prepared by melt infiltration with magnesium of nanoporous carbon onto which 1-12 wt% nickel nanoparticles had been predeposited. For loadings up to 15 wt% MgH2, 10-30 nm crystallites with different compositions were formed inside the porous carbon, each giving a specific H2 desorption signature. Surprisingly, higher Mg loadings resulted in more homogeneously mixed samples, which was due to the facilitated wetting of the carbon with the magnesium due to the presence of nickel. Hydrogen release temperatures close to that of Mg2NiH4 were observed for high MgH2 loadings (50 wt%) and small amounts of Ni (Mg0.95Ni0.05). The favourable H2 desorption properties could mainly be attributed to excellent kinetics due to the efficient mixing of magnesium, nickel and carbon on the nanoscale.

  6. Magnesium cinnamate complex, [Mg(cinn)2(H2O)2]n; structural, spectroscopic, thermal, biological and pharmacokinetical characteristics

    NASA Astrophysics Data System (ADS)

    Puszyńska-Tuszkanow, Mariola; Zierkiewicz, Wiktor; Grabowski, Tomasz; Daszkiewicz, Marek; Maciejewska, Gabriela; Adach, Anna; Kucharska-Ziembicka, Katarzyna; Wietrzyk, Joanna; Filip-Psurska, Beata; Cieślak-Golonka, Maria

    2017-04-01

    The composition and structure of the magnesium complex with cinnamic acid, [Mg(cinn)2(H2O)2]n(1), were determined using single crystal X-ray diffraction data, IR, NMR spectroscopies, thermal and mass spectrometry analysis. Magnesium cinnamate complex, like the isostructural cobalt(II) species reported in the literature, appears to belong to the group of coordination polymers forming layered solids with pseudooctahedral coordination around the metal centre and Osbnd Csbnd O bridging units. The vibrational assignments of the experimental spectra of the complex (1) were performed on the basis of the DFT results obtained for the [Mg(cinn)4(H2O)2]2- ion, serving as a model. The complex was found to exhibit a very low cytotoxicity against neoplastic: A549 (lung), MCF-7 (breast), P388 (murine leukemia) and normal BALB3T3 (mouse fibroblasts) cell lines. In silico pharmacokinetical parameter calculations for (1) and seven known magnesium complexes with carboxylic acids: lactic, malic, glutamic, hydroaspartic and aspartic allowed for comparison of their potential bioavailability. Magnesium cinnamate complex appeared to exhibit a superior lipophilic property that suggests an optimal pharmacokinetics profile.

  7. Effect of clayey groundwater on the dissolution rate of SON68 simulated nuclear waste glass at 70 °C

    NASA Astrophysics Data System (ADS)

    De Echave, T.; Tribet, M.; Jollivet, P.; Marques, C.; Gin, S.; Jégou, C.

    2018-05-01

    To predict the long-term behavior of high-level radioactive waste glass, it is necessary to study aqueous dissolution of the glass matrix under geological repository conditions. The present article focuses on SON68 (an inactive surrogate of the R7T7 glass) glass alteration in synthetic clayey groundwater at 70 °C. Experiments in deionized water as reference were also performed in the same conditions. Results are in agreement with those of previous studies showing that magnesium present in the solution is responsible for higher glass alteration. This effect is transient and pH-dependent: Once all the magnesium is consumed, the glass alteration rate diminishes. Precipitation of magnesium silicate of the smectite group seems to be the main factor for the increased glass alteration. A pH threshold of 7.5-7.8 was found, above which precipitation of these magnesium silicates at 70 °C is possible. TEM observations reveal that magnesium silicates grow at the expense of the passivating gel, which partly dissolves, forming large pores which increase mass transfer between the reacting glass surface and the bulk solution.

  8. Two-Dimensional Magnesium Phosphate Nanosheets Form Highly Thixotropic Gels That Up-Regulate Bone Formation.

    PubMed

    Laurenti, Marco; Al Subaie, Ahmed; Abdallah, Mohamed-Nur; Cortes, Arthur R G; Ackerman, Jerome L; Vali, Hojatollah; Basu, Kaustuv; Zhang, Yu Ling; Murshed, Monzur; Strandman, Satu; Zhu, Julian; Makhoul, Nicholas; Barralet, Jake E; Tamimi, Faleh

    2016-08-10

    Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration.

  9. Organosilane self-assembled layers (SAMs) and hybrid silicate magnesium-rich primers for the corrosion protection of aluminum alloy 2024 T3

    NASA Astrophysics Data System (ADS)

    Wang, Duhua

    Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.

  10. Precipitation and Hardening in Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  11. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    NASA Astrophysics Data System (ADS)

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-11-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  12. Some Structural Properties of the Mixed Lead-Magnesium Hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Kaaroud, K.; Ben Moussa, S.; Brigui, N.; Badraoui, B.

    2018-02-01

    Lead-magnesium hydroxyapatite solid solutions Pb(10- x)Mg x (PO4)6(OH)2 have been prepared via a hydrothermal process. They were characterized by X-ray powder diffraction, Transmission Electron Microscopy (TEM), chemical and IR spectroscopic analyses. The results of the structural refinement indicated that the limits of lead-magnesium solid solutions ( x ≤ 1.5), a regular decrease of the lattice constant a and a preferential magnesium distribution in site S(I). Through the progressive replacement of Pb2+ ( r = 0.133 nm) by the smaller cation Mg2+ ( r = 0.072 nm), all interatomic distances decrease in accordance with the decrease of the cell parameters. According to what could be expected from the coordinance of the metallic sites S(I) (hexacoordination) and S(II) (heptacoordination), the small magnesium cation preferentially occupies the four sites S(I). The results of the TEM analysis confirm the presence of magnesium in the starting solution and reveals the decrease in the average size of crystals. The IR spectra show the presence of the absorption bands characteristic for the apatite structure.

  13. The Simulation of Magnesium Wheel Low Pressure Die Casting Based on PAM-CAST™

    NASA Astrophysics Data System (ADS)

    Peng, Yinghong; Wang, Yingchun; Li, Dayong; Zeng, Xiaoqin

    2004-06-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST™, was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively.

  14. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  15. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  16. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    NASA Astrophysics Data System (ADS)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  17. The influence of chosen metals administration in drinking water on magnesium balance in rats.

    PubMed

    Kiełczykowska, Małgorzata; Pasternak, Kazimierz; Boguszewska, Anna; Musik, Irena

    2004-01-01

    The aim of our study was to estimate the influence of chromium, lead and aluminium on the magnesium level in serum and tissues of rats. Male Wistar rats received Cr, Pb and Al at the concentration of 500 mg of metal x dm(-3) in the form of drinking water for three or six weeks. After the period of administration the animals were sacrificed under ketamine narcosis and blood from the heart as well as the tissues of the liver, kidney, brain, spleen, femoral muscle and heart muscle were collected. Magnesium concentration was measured in serum and tissue homogenates. Chromium caused the increase of Mg level in some tissues after six weeks and no changes in serum. Lead influenced Mg level in serum and tissues mainly after six weeks but the changes were more diverse and depending on the tissue. After six weeks' administration aluminium caused the magnesium release from serum and its storage in tissues.

  18. Corrosion behavior of mesoporous bioglass-ceramic coated magnesium alloy under applied forces.

    PubMed

    Zhang, Feiyang; Cai, Shu; Xu, Guohua; Shen, Sibo; Li, Yan; Zhang, Min; Wu, Xiaodong

    2016-03-01

    In order to research the corrosion behavior of bioglass-ceramic coated magnesium alloys under applied forces, mesoporous 45S5 bioactive glass-ceramic (45S5 MBGC) coatings were successfully prepared on AZ31 substrates using a sol-gel dip-coating technique followed by a heat treatment at the temperature of 400°C. In this work, corrosion behavior of the coated samples under applied forces was characterized by electrochemical tests and immersion tests in simulated body fluid. Results showed that the glass-ceramic coatings lost the protective effects to the magnesium substrate in a short time when the applied compressive stress was greater than 25MPa, and no crystallized apatite was formed on the surface due to the high Mg(2+) releasing and the peeling off of the coatings. Whereas, under low applied forces, apatite deposition and crystallization on the coating surface repaired cracks to some extent, thus improving the corrosion resistance of the coated magnesium during the long-term immersion period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy

    PubMed Central

    Cao, Lin; Wang, Lina; Fan, Lingying; Xiao, Wenjun; Lin, Bingpeng; Xu, Yimeng; Liang, Jun; Cao, Baocheng

    2017-01-01

    Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca–P) coating was prepared by arginine–glycine–aspartic acid–cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca–P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca–P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca–P coating and the Ca–P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca–P coating Mg alloys were greatly improved compared with that of the uncoated sample. PMID:28772717

  20. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof-of-concept prototypes are built and tested, demonstrating the potential of the system as HVAC for transportation vehicles. The performance of the concept-demonstration-unit show both high heating/cooling power and high energy densities. An extended cycling test shows degradation on the performance of the system. To solve this problem, a metal hydride hydrogen compressor is proposed for aiding the recharge process of the system.

  1. Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

    NASA Astrophysics Data System (ADS)

    Karwande, Amit H.; Rao, Seeram Srinivasa

    2018-04-01

    Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.

  2. Solid State Joining of Magnesium to Steel

    NASA Astrophysics Data System (ADS)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva P.; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  3. Numerical Modelling of Effects of Biphasic Layers of Corrosion Products to the Degradation of Magnesium Metal In Vitro

    PubMed Central

    Ahmed, Safia K.; Ward, John P.; Liu, Yang

    2017-01-01

    Magnesium (Mg) is becoming increasingly popular for orthopaedic implant materials. Its mechanical properties are closer to bone than other implant materials, allowing for more natural healing under stresses experienced during recovery. Being biodegradable, it also eliminates the requirement of further surgery to remove the hardware. However, Mg rapidly corrodes in clinically relevant aqueous environments, compromising its use. This problem can be addressed by alloying the Mg, but challenges remain at optimising the properties of the material for clinical use. In this paper, we present a mathematical model to provide a systematic means of quantitatively predicting Mg corrosion in aqueous environments, providing a means of informing standardisation of in vitro investigation of Mg alloy corrosion to determine implant design parameters. The model describes corrosion through reactions with water, to produce magnesium hydroxide Mg(OH)2, and subsequently with carbon dioxide to form magnesium carbonate MgCO3. The corrosion products produce distinct protective layers around the magnesium block that are modelled as porous media. The resulting model of advection–diffusion equations with multiple moving boundaries was solved numerically using asymptotic expansions to deal with singular cases. The model has few free parameters, and it is shown that these can be tuned to predict a full range of corrosion rates, reflecting differences between pure magnesium or magnesium alloys. Data from practicable in vitro experiments can be used to calibrate the model’s free parameters, from which model simulations using in vivo relevant geometries provide a cheap first step in optimising Mg-based implant materials. PMID:29267244

  4. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    DTIC Science & Technology

    2014-07-01

    corrosion studies (16). A schematic of the SWAP process and example of the powder produced is included in figure 4. This alloy contains amounts of Al ...advanced powder -based alloy and ZAXE1711 (both from Japan) were produced using a Spinning Water Atomization Process (SWAP) to yield powder particles with...and ZAXE1711 Mg alloy powders and (b) morphology of coarse Mg alloy powder prepared by SWAP

  5. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  6. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    PubMed

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China.

    PubMed

    Nie, Zhiqiang; Zheng, Minghui; Liu, Wenbin; Zhang, Bing; Liu, Guorui; Su, Guijin; Lv, Pu; Xiao, Ke

    2011-12-01

    Magnesium production is considered to be one potential source of unintentional persistent organic pollutants (unintentional POPs). However, studies on the emissions of unintentional POPs from magnesium metallurgy are still lacking. Emissions of unintentional POPs, such as polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), polychlorinated naphthalenes (PCNs), hexachlorobenzene (HxCBz) and pentachlorobenzene (PeCBz) are covered under the Stockholm Convention. In this study, these emissions were investigated through a magnesium smelting process. Stack gas and fly ash samples from a typical magnesium plant in China were collected and analyzed to estimate the emissions of unintentional POPs from magnesium metallurgy. Emissions factors of 412 ng TEQ t(-1) for PCDD/Fs, 18.6 ng TEQ t(-1) for dl-PCBs, 3329 μg t(-1) for PCNs, 820 μg t(-1) for HxCBz, and 1326 μg t(-1) for PeCBz were obtained in 2009. Annual emissions from magnesium metallurgy in China were estimated to be 0.46 g WHO-TEQ for PCDD/Fs and dl-PCBs, 1651 g for PCNs, 403 g for HxCBz and 653 g for PeCBz, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Lunar sample 14425 - Characterization and resemblance to high-magnesium microtektites

    NASA Technical Reports Server (NTRS)

    Berliner, L.; Fujii, H.

    1985-01-01

    Measurements by energy-dispersive X-ray analysis of the surface of lunar sample 14425, a large glass bead, yield a noritic composition enriched in aluminum and magnesium and, as compared with other norites, depleted in iron and especially calcium. The sample is close in composition to the most basic microtektites. Spherical inclusions of nickel-iron, flattened where they protrude, are found to be enriched in sulfur and phosphorus, at least at the surface. The inclusions form approximately 1 percent of the volume.

  9. Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: Insight into vital effects

    NASA Astrophysics Data System (ADS)

    Hermans, Julie; André, Luc; Navez, Jacques; Pernet, Philippe; Dubois, Philippe

    2011-03-01

    Biogenic calcites may contain considerable magnesium concentrations, significantly higher than those observed in inorganic calcites. Control of ion concentrations in the calcifying space by transport systems and properties of the organic matrix of mineralization are probably involved in the incorporation of high magnesium quantities in biogenic calcites, but their relative effects have never been quantified. In vitro precipitation experiments performed at different Mg/Ca ratios in the solution and in the presence of soluble organic matrix macromolecules (SOM) extracted from sea urchin tests and spines showed that, at a constant temperature, magnesium incorporation in the precipitated minerals was mainly dependent on the Mg/Ca ratio of the solution. However, a significant increase in magnesium incorporation was observed in the presence of SOM compared with control experiments. Furthermore, this effect was more pronounced with SOM extracted from the test, which was richer in magnesium than the spines. According to SEM observations, amorphous calcium carbonate was precipitated at high Mg/Casolution. The observed predominant effect of Mg/Casolution, probably mediated in vivo by ion transport to and from the calcifying space, was suggested to induce and stabilize a transient magnesium-rich amorphous phase essential to the formation of high magnesium calcites. Aspartic acid rich proteins, shown to be more abundant in the test than in the spine matrix, further stabilize this amorphous phase. The involvement of the organic matrix in this process can explain the observation that sympatric organisms or even different skeletal elements of the same individual present different skeletal magnesium concentrations.

  10. The role of magnesium and thyroid function in early pregnancy after in-vitro fertilization (IVF): New aspects in endocrine physiology.

    PubMed

    Stuefer, Sibilla; Moncayo, Helga; Moncayo, Roy

    2015-06-01

    The initiation of a pregnancy is a process that requires adequate energetic support. Recent observations at our Institution suggest a central role of magnesium in this situation. The aim of this study was to evaluate magnesium, zinc, selenium and thyroid function as well as anti-Müllerian hormone in early pregnancy following in-vitro fertilization as compared to spontaneous successful pregnancies. A successful outcome of pregnancy after IVF treatment was associated with 2 parameters: higher levels of anti-Müllerian hormone as well as higher levels of magnesium in the pre-stimulation blood sample. These two parameters, however, showed no correlation. Spontaneous pregnancies as well as pregnancies after IVF show a fall of magnesium levels at 2-3 weeks of gestation. This drop of magnesium concentration is larger following IVF as compared to spontaneous pregnancies. Parallel to these changes TSH levels showed an increase in early IVF-pregnancy. At this time point we also observed a positive correlation between fT4 and TSH. This was not observed in spontaneous pregnancies. Thyroid antibodies showed no correlation to outcomes. In connection with the initiation of pregnancy following ovarian stimulation dynamic changes of magnesium and TSH levels can be observed. A positive correlation was found between fT4 and TSH in IVF pregnancies. In spontaneous pregnancies smaller increases of TSH levels are related to higher magnesium levels. We propose that magnesium plays a role in early pregnancy as well as in pregnancy success independently from anti-Müllerian hormone. Neither thyroid hormones nor thyroid antibodies were related to outcome.

  11. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G

    2016-11-21

    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca 2+ and Mg 2+ from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca 2+ and Mg 2+ and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  12. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOEpatents

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  13. Macroscopic and microscopic variation in recovered magnesium phosphate materials: Implications for phosphorus removal processes and product re-use

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates re...

  14. Influence of hard water ions on the growth rate of Salmonella Typhimurium

    USDA-ARS?s Scientific Manuscript database

    The influence of magnesium and calcium ions in process water on the growth of Salmonella typhimurium was evaluated to address the concerns for food quality and safety. Salmonella typhimurium was exposed to media containing 500 ppm and 1000 ppm of magnesium and calcium ions for 45 minutes followed by...

  15. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    NASA Astrophysics Data System (ADS)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  16. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  17. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  18. Innovative forming and fabrication technologies : new opportunities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.; Hryn, J.; Energy Systems

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metalmore » alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.« less

  19. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Banerjee; J Finkelstein; A Smirnov

    2011-12-31

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg{sub 4}(3,5-PDC){sub 4}(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-Dmore » network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing multiple desolvation routes, we were unable to measure BET surface areas greater than 51.9 m{sup 2}/g for compound 1.« less

  20. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Finkelstein, Jeffrey; Smirnov, A.

    2015-10-15

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg4(3,5-PDC)4(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network withmore » a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing multiple desolvation routes, we were unable to measure BET surface areas greater than 51.9 m{sup 2}/g for compound 1.« less

  1. Properties of boride-added powder metallurgy magnesium alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.

  2. Reaction Mechanisms of Magnesium Potassium Phosphate Cement and its Application

    NASA Astrophysics Data System (ADS)

    Qiao, Fei

    Magnesium potassium phosphate cement (MKPC) is a kind of cementitious binder in which the chemical bond is formed via a heterogeneous acid-base reaction between dead burned magnesia powder and potassium phosphate solution at room temperature. Small amount of boron compounds can be incorporated in the cement as a setting retarder. The final reaction product of MgO-KH2PO4-H 2O ternary system is identified as magnesium potassium phosphate hexahydrate, MgKPO4·6H2O. However, the mechanisms and procedures through which this crystalline product is formed and the conditions under which the crystallization process would be influenced are not yet clear. Understanding of the reaction mechanism of the system is helpful for developing new methodologies to control the rapid reaction process and furthermore, to adjust the phase assemblage of the binder, and to enhance the macroscopic properties. This study is mainly focused on the examination of the reaction mechanism of MKPC. In addition, the formulation optimization, microstructure characterization and field application in rapid repair are also systematically studied. The chemical reactions between magnesia and potassium dihydrogen phosphate are essentially an acid-base reaction with strong heat release, the pH and temperature variation throughout the reaction process could provide useful information to disclose the different stages in the reaction. However, it would be very difficult to conduct such tests on the cement paste due to the limited water content and fast setting. In the current research, the reaction mechanism of MKPC is investigated on the diluted MKPC system through monitoring the pH and temperature development, identification of the solid phase formed, and measurement of the ionic concentration of the solution. The reaction process can be explained as follows: when magnesia and potassium phosphate powder are mixed with water, phosphate is readily dissolved, which is instantly followed by the dissociation of magnesia. With the increase of magnesium ions in the solution, MgHPO4·7H2O is the first product precipitated, and its crystallization is accompanied with the increase of both pH and temperature. Beyond pH of 7, MgHPO4·7H 2O is transformed to Mg2KH(PO4)2·15H 2O, leading to a slight decrease of pH. The following dramatic increase of pH may be due to the formation of Mg2KH(PO4) 2·15H2O. Finally, Mg2KH(PO4) 2·15H2O gradually transforms to MgKPO4·6H 2O and leads to the second decrease of pH. Both increasing molar ratio of magnesium to phosphate (M/P) and decreasing the weight ratio of liquid to solid can speed up the reaction rate while addition of small amount of boron compounds can prolong the process even though the products are not changed. The retarding mechanism of boron compounds is related to their buffering effect on the pH of the solution, i.e. decreasing pH development rate, leads to delaying the formation of reaction products. The performance of MKPC based cementitious materials can be significantly influenced by M/P molar ratio, addition of setting retarder, water content, fly ash replacement of magnesia and aggregate usage. Therefore, the formulation of MKPC based materials is optimized in terms of workability, compressive strength, and cost consideration. With optimized formulation, MKPC mortars show high early compressive and flexural strength, superior bond strength to ordinary Portland cement mortar/concrete substrate, and low drying shrinkage. Undoubtedly, the mechanical properties of this cement is closely related to its inner composition and microstructure. The microstructure examination shows that the phase assemblage and the morphology characteristics of MKPC paste vary with the different formulae. In the formulation with lower M/P ratio of 2, KH2PO4 residues can be found in a flat, smooth, and bulky mass form. The reaction product MgKPO4·6H2O, can be observed as acicular crystal habit with large aspect ratio of 30. With the increase of M/P ratio, MgKPO4·6H2O is crystallized in a larger size and the morphology is changed from acicular to bladed and then prismatic shape. The magnesia residues can be well identified in all of the formulations.

  3. Perovskite phase thin films and method of making

    DOEpatents

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  4. Serum magnesium and risk of new onset heart failure in men: the Kuopio Ischemic Heart Disease Study.

    PubMed

    Kunutsor, Setor K; Khan, Hassan; Laukkanen, Jari A

    2016-10-01

    Serum magnesium is an essential intracellular cation involved in processes that regulate cardiovascular function and has been linked to the risk of several cardiovascular disease outcomes. We aimed to investigate the association of serum magnesium concentrations with risk of incident heart failure (HF). We studied 2181 middle-aged men without prevalent HF (aged 42-61 years) enrolled in the finnish Kuopio Ischemic Heart Disease prospective cohort study with serum magnesium measurements made at baseline. Hazard ratios (95 % confidence intervals [CI]) for HF were assessed. During a median follow-up of 24.8 years, 278 HF events occurred. Baseline serum magnesium was weakly and inversely associated with several clinical markers and was continuously associated with risk of HF. The age-adjusted HR (95 % CIs) for HF per 1 standard deviation (SD) higher serum magnesium levels was 0.86 (0.76-0.97). The HR (95 % CIs) was 0.87 (0.76-0.98) after controlling for measures of adiposity, socio-economic variables, medical history, blood pressure, renal function, alcohol consumption, and lipids. These findings remained consistent in analyses accounting for incident coronary heart disease. The results were comparable across several clinically relevant subgroups and analyses with atrial fibrillation as a competing risk yielded similar results. Serum magnesium was continuously, inversely and independently associated with future risk of HF. Further research is needed to assess any potential relevance of serum magnesium in HF prevention.

  5. Situational analysis of facilitators and barriers to availability and utilization of magnesium sulfate for eclampsia and severe preeclampsia in the public health system in Brazil.

    PubMed

    Lotufo, Fátima Aparecida; Parpinelli, Mary Angela; Osis, Maria José; Surita, Fernanda Garanhani; Costa, Maria Laura; Cecatti, José Guilherme

    2016-08-30

    Eclampsia is the main cause of maternal death in Brazil. Magnesium sulfate is the drug of choice for seizure prevention and control in the management of severe preeclampsia and eclampsia. Despite scientific evidence demonstrating its effectiveness and safety, there have been delays in managing hypertensive disorders, including timely access to magnesium sulfate. To conduct a general situational analysis on availability and use of magnesium sulfate for severe preeclampsia and eclampsia in the public health system. A situational analysis was conducted with two components: a documental analysis on information available at the official websites on the policy, regulation and availability of the medication, plus a cross sectional study with field analysis and interviews with local managers of public obstetric health services in Campinas, in the southeast of Brazil. We used the fishbone cause and effect diagram to organize study components. Interviews with managers were held during field observations using specific questionnaires. There was no access to magnesium sulfate in primary care facilities, obstetric care was excluded from urgency services and clinical protocols for professional guidance on the adequate use of magnesium sulfate were lacking in the emergency mobile care service. Magnesium sulfate is currently only administered in referral maternity hospitals. The lack of processes that promote the integration between urgency/emergency care and specialized obstetric care possibly favors the untimely use of magnesium sulfate and contributes to the high maternal morbidity/mortality rates.

  6. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity.

    PubMed

    Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long

    2017-06-25

    Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.

  7. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

    PubMed Central

    Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long

    2017-01-01

    Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055

  8. OPTIMIZATION OF FUROSEMIDE LIQUISOLID TABLETS PREPARATION PROCESS LEADING TO THEIR MASS AND SIZE REDUCTION.

    PubMed

    Kurek, Mateusz; Woyna-Orlewicz, Krzysztof; Khalid, Mohammad Hassan; Jachowicz, Renata

    2016-09-01

    The great number of drug substances currently used in solid oral dosage forms is characterized by poor water solubility. Therefore, various methods of dissolution rate enhancement are an important topic of research interest in modem drug technology. The purpose of this study was to enhance the furosemide dissolution rate from liquisolid tablets while maintaining an acceptable size and mass. Two types of dibasic calcium phosphate (Fujicalin®/Emcompress®) and microcrystalline cellulose (Vivapur® 102/Vivapur® 12) were used as carriers and magnesium aluminometasilicate (Neusilin® US2) was used as a coating material. The flowable liquid retention potential for those excipients was tested by measuring the angle of slide. To evaluate the impact of used excipients on tablet properties fourteen tablet formulations were prepared. It was found that LS2 tablets containing spherically granulated dibasic calcium phosphate and magnesium aluminometasilicate exhibit the best dissolution profile and mechanical properties while tablets composed only with Neusilin® US2 was characterized by the smallest size and mass with preserved good mechanical properties and furosemide dissolution.

  9. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Formulating Precursors for Coating Metals and Ceramics

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Gatica, Jorge E.; Reye, John T.

    2005-01-01

    A protocol has been devised for formulating low-vapor-pressure precursors for protective and conversion coatings on metallic and ceramic substrates. The ingredients of a precursor to which the protocol applies include additives with phosphate esters, or aryl phosphate esters in solution. Additives can include iron, chromium, and/or other transition metals. Alternative or additional additives can include magnesium compounds to facilitate growth of films on substrates that do not contain magnesium. Formulation of a precursor begins with mixing of the ingredients into a high-vapor-pressure solvent to form a homogeneous solution. Then the solvent is extracted from the solution by evaporation - aided, if necessary, by vacuum and/or slight heating. The solvent is deemed to be completely extracted when the viscosity of the remaining solution closely resembles the viscosity of the phosphate ester or aryl phosphate ester. In addition, satisfactory removal of the solvent can be verified by means of a differential scanning calorimetry essay: the absence of endothermic processes for temperatures below 150 C would indicate that the residual solvent has been eliminated from the solution beyond a detectable dilution level.

  11. Control of the shell structural properties and cavity diameter of hollow magnesium fluoride particles.

    PubMed

    Nandiyanto, Asep Bayu Dani; Ogi, Takashi; Okuyama, Kikuo

    2014-03-26

    Control of the shell structural properties [i.e., thickness (8-25 nm) and morphology (dense and raspberry)] and cavity diameter (100-350 nm) of hollow particles was investigated experimentally, and the results were qualitatively explained based on the available theory. We found that the selective deposition size and formation of the shell component on the surface of a core template played important roles in controlling the structure of the resulting shell. To achieve the selective deposition size and formation of the shell component, various process parameters (i.e., reaction temperature and charge, size, and composition of the core template and shell components) were tested. Magnesium fluoride (MgF2) and polystyrene spheres were used as models for shell and core components, respectively. MgF2 was selected because, to the best of our knowledge, the current reported approaches to date were limited to synthesis of MgF2 in film and particle forms only. Therefore, understanding how to control the formation of MgF2 with various structures (both the thickness and morphology) is a prospective for advanced lens synthesis and applications.

  12. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  13. PRODUCTION OF URANIUM

    DOEpatents

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  14. Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment

    NASA Astrophysics Data System (ADS)

    Liu, Huihui; He, Xiongwei; Guo, Peng

    2017-04-01

    Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.

  15. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation.

    PubMed

    Tang, Wenshu; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-07-01

    By doping a proper amount of Mg(2+) (~10%) into α-Fe2O3 during a solvent thermal process, ultrafine magnesium ferrite (Mg0.27Fe2.50O4) nanocrystallites were successfully synthesized with the assistance of in situ self-formed NaCl "cage" to confine their crystal growth. Their ultrafine size (average size of ~3.7 nm) and relatively low Mg-content conferred on them a superparamagnetic behavior with a high saturation magnetization (32.9 emu/g). The ultrafine Mg0.27Fe2.50O4 nanoadsorbent had a high specific surface area of ~438.2 m(2)/g, and demonstrated a superior arsenic removal performance on both As(III) and As(V) at near neutral pH condition. Its adsorption capacities on As(III) and As(V) were found to be no less than 127.4 mg/g and 83.2 mg/g, respectively. Its arsenic adsorption mechanism was found to follow the inner-sphere complex mechanism, and abundant hydroxyl groups on its surface played the major role in its superior arsenic adsorption performance. It could be easily separated from treated water bodies with magnetic separation, and could be easily regenerated and reused while maintaining a high arsenic removal efficiency. This novel superparamagnetic magnesium ferrite nanoadsorbent may offer a simple single step adsorption treatment option to remove arsenic contamination from water without the pre-/post-treatment requirement for current industrial practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    PubMed

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  17. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  18. Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy.

    PubMed

    Wong, Hoi Man; Zhao, Ying; Leung, Frankie K L; Xi, Tingfei; Zhang, Zhixiong; Zheng, Yufeng; Wu, Shuilin; Luk, Keith D K; Cheung, Kenneth M C; Chu, Paul K; Yeung, Kelvin W K

    2017-04-01

    To achieve enhanced biological response and controlled degradation of magnesium alloy, a modified biodegradable polymer coating called polycaprolactone (PCL) is fabricated by a thermal approach in which the heat treatment neither alters the chemical composition of the PCL membrane nor the rate of magnesium ion release, pH value, or weight loss, compared with the untreated sample. The changes in the crystallinity, hydrophilicity, and oxygen content of heat-treated PCL coating not only improve the mechanical adhesion strength between the coating and magnesium substrate but also enhance the biological properties. Moreover, the thermally modified sample can lead to higher spreading and elongation of osteoblasts, due to the enhanced hydrophilicity and CO to CO functional group ratio. In the analyses of microcomputed tomography from one to four weeks postoperation, the total volume of new bone formation on the heat-treated sample is 10%-35% and 70%-90% higher than that of the untreated and uncoated controls, respectively. Surprisingly, the indentation modulus of the newly formed bone adjacent to the heat-treated sample is ≈20% higher than that of both controls. These promising results reveal the clinical potential of the modified PCL coating on magnesium alloy in orthopedic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analytical electron microscopy of biogenic and inorganic carbonates

    NASA Technical Reports Server (NTRS)

    Blake, David F.

    1989-01-01

    In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples.

  20. Control of autoclave scaling during acid pressure leaching of nickeliferous laterite ore

    NASA Astrophysics Data System (ADS)

    Queneau, P. B.; Doane, R. E.; Cooperrider, M. W.; Berggren, M. H.; Rey, P.

    1984-09-01

    An operating problem encountered at the Moa Bay operation in Cuba, where nickeliferous laterite ore is processed by sulfuric acid pressure leaching, is the formation of alunite and hematite deposits on the autoclave walls. The AMAX Extractive Research & Development, Inc., metallurgical laboratory (Golden, Colorado) has made substantial improvements in the Moa Bay process in the area of metal recovery, energy consumption, and feed versatility. One of the advantages of AMAX's process is its ability to treat substantial portions of nickel-and magnesium-rich serpentine while maintaining acid utilization efficiency. Scale formation is minimized by combining staged acid addition with vigorous agitation and 270 °C operation. This paper describes how advantage can be taken of MgSO4· XH2O precipitation both to inhibit alunite scaling and to disperse hematite scale within the MgSO4 · XH2O matrix. Cooling the autoclave from its 270 ·C operating temperature down to 180 ·C takes advantage of the reverse solubility of magnesium sulfate. The magnesium dissolves, liberating entrained hematite, thus providing a means for control of autoclave scale with minimum process disruption.

  1. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals.

  2. Low serum magnesium levels are associated with increased risk of fractures: a long-term prospective cohort study.

    PubMed

    Kunutsor, Setor Kwadzo; Whitehouse, Michael Richard; Blom, Ashley William; Laukkanen, Jari Antero

    2017-07-01

    Magnesium, which is an essential trace element that plays a key role in several cellular processes, is a major component of bone; however, its relationship with risk of major bone fractures is uncertain. We aimed to investigate the association of baseline serum magnesium concentrations with risk of incident fractures. We analyzed data on 2245 men aged 42-61 years in the Kuopio Ischemic Heart Disease prospective cohort study, with the assessment of serum magnesium measurements and dietary intakes made at baseline. Hazard ratios [95% confidence intervals (CI)] for incident total (femoral, humeral, and forearm) and femoral fractures were assessed. During a median follow-up of 25.6 years, 123 total fractures were recorded. Serum magnesium was non-linearly associated with risk of total fractures. In age-adjusted Cox regression analysis, the hazard ratio (HR) (95% CIs) for total fractures in a comparison of the bottom quartile versus top quartile of magnesium concentrations was 2.10 (1.30-3.41), which persisted on adjustment for several established risk factors 1.99 (1.23-3.24). The association remained consistent on further adjustment for renal function, socioeconomic status, total energy intake, and several trace elements 1.80 (1.10-2.94). The corresponding adjusted HRs for femoral fractures were 2.56 (1.38-4.76), 2.43 (1.30-4.53) and 2.13 (1.13-3.99) respectively. There was no evidence of an association of dietary magnesium intake with risk of any fractures. In middle-aged Caucasian men, low serum magnesium is strongly and independently associated with an increased risk of fractures. Further research is needed to assess the potential relevance of serum magnesium in the prevention of fractures.

  3. Properties of Rolled AZ31 Magnesium Alloy Sheet Fabricated by Continuous Variable Cross-Section Direct Extrusion

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Feng; Li, Xue Wen; Shi, Wen Yong

    2018-03-01

    Rolling is currently a widely used method for manufacturing and processing high-performance magnesium alloy sheets and has received widespread attention in recent years. Here, we combined continuous variable cross-section direct extrusion (CVCDE) and rolling processes. The microstructure and mechanical properties of the resulting sheets rolled at different temperatures from CVCDE extrudate were investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and electron backscatter diffraction. The results showed that a fine-grained microstructure was present with an average grain size of 3.62 μm in sheets rolled from CVCDE extrudate at 623 K. Dynamic recrystallization and a large strain were induced by the multi-pass rolling, which resulted in grain refinement. In the 573-673 K range, the yield strength, tensile strength and elongation initially increased and then declined as the CVCDE temperature increased. The above results provide an important scientific basis of processing, manufacturing and the active control on microstructure and property for high-performance magnesium alloy sheet.

  4. Theoretical Combustion Performance of Several High-Energy Fuels for Ramjet Engines

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Breitwieser, Roland; Gammon, Benson E

    1958-01-01

    An analytical evaluation of the air and fuel specific-impulse characteristics of magnesium, magnesium octene-1 slurries, aluminum, aluminum octene-1 slurries, boron, boron octene-1 slurries, carbon, hydrogen, alpha-methylnaphthalene, diborane, pentaborane, and octene-1 is presented. While chemical equilibrium was assumed in the combustion process, the expansion was assumed to occur at fixed composition.

  5. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOEpatents

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  6. Nanofiltration Results: Membrane Removal of Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from Simulated Geothermal Brines

    DOE Data Explorer

    Jay Renew

    2016-02-06

    Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

  7. Method for forming porous sintered bodies with controlled pore structure

    DOEpatents

    Whinnery, LeRoy Louis; Nichols, Monte Carl

    2000-01-01

    The present invention is based, in part, on a method for combining a mixture of hydroxide and hydride functional siloxanes to form a polysiloxane polymer foam, that leaves no residue (zero char yield) upon thermal decomposition, with ceramic and/or metal powders and appropriate catalysts to produce porous foam structures having compositions, densities, porosities and structures not previously attainable. The siloxanes are mixed with the ceramic and/or metal powder, wherein the powder has a particle size of about 400 .mu.m or less, a catalyst is added causing the siloxanes to foam and crosslink, thereby forming a polysiloxane polymer foam having the metal or ceramic powder dispersed therein. The polymer foam is heated to thermally decompose the polymer foam and sinter the powder particles together. Because the system is completely nonaqueous, this method further provides for incorporating reactive metals such as magnesium and aluminum, which can be further processed, into the foam structure.

  8. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.

  9. Spectroscopic investigation of the pH controlled inclusion of doxycycline and oxytetracycline antibiotics in cationic micelles and their magnesium driven release.

    PubMed

    Cesaretti, Alessio; Carlotti, Benedetta; Gentili, Pier Luigi; Clementi, Catia; Germani, Raimondo; Elisei, Fausto

    2014-07-24

    This work presents a steady-state and time-resolved UV-visible spectroscopic investigation of two antibiotics belonging to the family of tetracyclines (doxycycline and oxytetracycline) in the micellar medium provided by p-dodecyloxybenzyltrimethylammonium bromide (pDoTABr). The spectroscopic analysis has been performed in absorption and emission with femtosecond time resolution, and at pH 5.0 and 8.7 where doxycycline and oxytetracycline are present in their neutral-zwitterionic and monoanionic forms, respectively. The experimental data have been processed by sophisticated data mining methods such as global/target analysis and the maximum entropy method. The results unambiguously indicate that, when doxycycline and oxytetracycline are in their zwitterionic form, they are entrapped within the micelle, while when they are in their monoanionic form, they preferentially show a strong one-to-one interaction with the positively charged surfactant heads. Thus, the pH of the solution controls the inclusion of the investigated drugs into the micelle. When the drugs are entrapped inside the micelles, their spectroscopic and dynamical properties after photoexcitation change appreciably. Interestingly, the entrapped drugs are still able to strongly bind Mg(2+) cations, crucial in determining the biological functioning of tetracyclines. The femtosecond resolved measurements reveal that the drugs are efficiently pulled out of the micelles by Mg(2+). In fact, magnesium-tetracycline complexes are detected in the aqueous phase. The present study suggests the potential promising use of ammonium surfactant micelles embedding doxycycline and oxytetracycline as "smart" drug delivery systems allowing their pH controlled inclusion and Mg(2+) induced release.

  10. Buried superconducting layers comprised of magnesium diboride nanocrystals formed by ion implantation

    NASA Astrophysics Data System (ADS)

    Zhai, H. Y.; Christen, H. M.; White, C. W.; Budai, J. D.; Lowndes, D. H.; Meldrum, A.

    2002-06-01

    Superconducting layers of MgB2 were formed on Si substrates using techniques that are widely used and accepted in the semiconductor industry. Mg ions were implanted into boron films deposited on Si or Al2O3 substrates. After a thermal processing step, buried superconducting layers comprised of MgB2 nanocrystals were obtained which exhibit the highest Tc reported so far for MgB2 on silicon (Tconsetapproximately33.6 K, DeltaTc=0.5 K, as measured by current transport). These results show that our approach is clearly applicable to the fabrication of superconducting devices that can be operated at much higher temperatures (approximately20 K) than the current Nb technology (approximately6 K) while their integration with silicon structures remains straight-forward.

  11. Potentiation of lymphocyte proliferative responses by nickel sulfide

    NASA Technical Reports Server (NTRS)

    Jaramillo, A.; Sonnenfeld, G.

    1992-01-01

    Crystalline nickel sulfide (NiS) induced a spleen cell proliferation that resembles a mixed lymphocyte reaction (MLR). It depended on cell-cell interaction, induced high levels of interleukin-1 (IL-1) and interleukin-2 (IL-2) and the responding cell subpopulation was composed of CD4+ T lymphocytes. Furthermore, the proliferation was inhibited in a dose-dependent manner by magnesium. Crystalline NiS also increased significantly the spleen cell proliferative response to concanavalin A (Con A) and lipopolysaccharide (LPS) with magnesium potentiating the combined effects of crystalline NiS and mitogens. Interestingly, crystalline NiS did not show any effect on the induction of IL-2 by Con A. The results described herein suggest that crystalline NiS can potentiate both antigenic (MLR) and mitogenic (Con A and LPS) proliferative responses in vitro. Crystalline NiS appears to potentiate these responses by acting in the form of ionic nickel on several intracellular targets for which magnesium ions have different noncompetitive interactions. The effects of magnesium on the potentiating action of crystalline NiS are different depending upon the type of primary stimulatory signal for proliferation (mitogenic or antigenic).

  12. The role of calcium and magnesium in the concrete tubes of the sandcastle worm.

    PubMed

    Sun, ChengJun; Fantner, Georg E; Adams, Jonathan; Hansma, Paul K; Waite, J Herbert

    2007-04-01

    Sandcastle worms Phragmatopoma californica build mound-like reefs by sticking together large numbers of sand grains with cement secreted from the building organ. The cement consists of protein plus substantial amounts of calcium and magnesium, which are not invested in any mineral form. This study examined the effect of calcium and magnesium depletion on the structural and mechanical properties of the cement. Divalent ion removal by chelating with EDTA led to a partial collapse of cement architecture and cement dislodgement from silica surfaces. Mechanical properties examined were sand grain pull-out force, tube resistance to compression and cement adhesive force. EDTA treatment reduced sand grain pull-out forces by 60% and tube compressive strength by 50% relative to controls. EDTA lowered both the maximal adhesive force and energy dissipation of cement by up to an order of magnitude. The adhesiveness of calcium- and magnesium-depleted cement could not be restored by re-exposure to the ions. The results suggest that divalent ions play a complex and multifunctional role in maintaining the structure and stickiness of Phragmatopoma cement.

  13. Iron-magnesium alloy in the Earth's Core

    NASA Astrophysics Data System (ADS)

    Dubrovinskaia, N.; Dubrovinsky, L.; Abrikosov, I.

    2005-12-01

    Composition of the Earth's outer core is a geochemical parameter crucial for understanding the evolution and current dynamics of our planet. Since it was recognized that the liquid metallic outer core is about 10% less dense than pure iron, different elements lighter than iron, including Si, S, O, C, and H, were proposed as major or at least significantly abundant in Earth's core. However, combination of experimental results with theoretical and geochemical considerations shows that it is unlikely that any one of these elements can account for the density deficit on its own. In series of experiments in a multianvil apparatus and in electrically- and laser-heated diamond anvil cells, we demonstrate that high pressure promotes solubility of magnesium in iron and at megabar pressure range more than 10 at% of Mg can dissolve in Fe. At pressures above 95 to 100 GPa, molten iron reacts with periclase MgO forming an iron-magnesium alloy and iron oxide. Our observations suggest that magnesium can be an important light element in Earth's outer core, but it cannot account for the seismologically determined density deficit on its own.

  14. Empirically constructed dynamic electric dipole polarizability function of magnesium and its applications

    NASA Astrophysics Data System (ADS)

    Babb, James F.

    2015-08-01

    The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.

  15. Oral Application of Magnesium-L-Threonate Attenuates Vincristine-induced Allodynia and Hyperalgesia by Normalization of Tumor Necrosis Factor-α/Nuclear Factor-κB Signaling.

    PubMed

    Xu, Ting; Li, Dai; Zhou, Xin; Ouyang, Han-Dong; Zhou, Li-Jun; Zhou, Hang; Zhang, Hong-Mei; Wei, Xu-Hong; Liu, Guosong; Liu, Xian-Guo

    2017-06-01

    Antineoplastic agents, including vincristine, often induce neuropathic pain and magnesium deficiency clinically, but the causal link between them has not been determined. No drug is available for treating this form of neuropathic pain. Injection of vincristine (0.1 mg · kg · day, intraperitoneally, for 10 days) was used to induce nociceptive sensitization, which was accessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Magnesium-L- threonate was administered through drinking water (604 mg · kg · day). Extracellular and intracellular free Mg were measured by Calmagite chromometry and flow cytometry. Molecular biologic and electrophysiologic experiments were performed to expose the underlying mechanisms. Vincristine injection induced allodynia and hyperalgesia (n = 12), activated tumor necrosis factor-α/nuclear factor-κB signaling, and reduced free Mg in cerebrospinal fluid by 21.7 ± 6.3% (mean ± SD; n = 13) and in dorsal root ganglion neurons by 27 ± 6% (n = 11). Reducing Mg activated tumor necrosis factor-α/nuclear factor-κB signaling in cultured dorsal root ganglion neurons. Oral application of magnesium-L-threonate prevented magnesium deficiency and attenuated both activation of tumor necrosis factor-α/nuclear factor-κB signaling and nociceptive sensitization (n = 12). Mechanistically, vincristine induced long-term potentiation at C-fiber synapses, up-regulated N-methyl-D-aspartate receptor type 2B subunit of N-methyl-D-aspartate receptor, and led to peptidergic C-fiber sprouting in spinal dorsal horn (n = 6 each). The vincristine-induced pathologic plasticity was blocked by intrathecal injection of nuclear factor-κB inhibitor (n = 6), mimicked by tumor necrosis factor-α, and substantially prevented by oral magnesium-L-threonate (n = 5). Vincristine may activate tumor necrosis factor-α/nuclear factor-κB pathway by reduction of intracellular magnesium, leading to spinal pathologic plasticity and nociceptive sensitization. Oral magnesium-L-threonate that prevents the magnesium deficiency is a novel approach to prevent neuropathic pain induced by chemotherapy.

  16. A Comparative Evaluation of Serum Magnesium in Diabetes Mellitus Type 2 Patients with and without Periodontitis - A Clinico-biochemical Study.

    PubMed

    Shetty, Akshatha; Bhandary, Rahul; Thomas, Biju; Ramesh, Amitha

    2016-12-01

    Magnesium is an essential cation playing a crucial role in many physiological functions and its imbalance is associated with greater number of pathological situations. Oxidative stress is usually increased due to decreased essential nutrients. Hence, any imbalance of essential nutrients like serum magnesium can significantly play a role in the pathobiology of periodontitis in the presence of diabetes, as diabetes and chronic periodontitis are two chronic diseases that have been biologically linked. To evaluate the association of serum magnesium in type 2 diabetes mellitus and chronic periodontitis patients, also to evaluate and associate the influence of serum magnesium on periodontal health. A single blinded, randomized study was conducted that comprised of 120 subjects divided into four groups. Individuals with periodontitis and type 2 diabetes mellitus formed the test group. Subjects with chronic periodontitis diagnosed clinically according to 1999 American Academy of Periodontology classification, without any medical history and drug history were included as the study subjects. Gingival Index and Plaque Index were scored for all the groups at baseline and after 21 days of scaling and root planing. Scaling and root planing was done only in the test group. Blood was drawn from the patients at baseline and 21 days after scaling and root planning and estimation of serum magnesium level was done using semi-autoanalyzer. Data obtained was statistically analyzed using the paired t-test, one-way ANOVA, post-hoc test. The result of the present study showed that mean serum magnesium among healthy was 1.40±0.565mmol/l as compared to 1.01±0.287mmol/l among subjects with periodontitis, 0.920±0.23mmol/l among diabetics with periodontitis and 0.93±0.29mmol/l among diabetics without periodontitis. Serum magnesium was significantly decreased in chronic periodontitis and diabetic patients with and without chronic periodontitis as compared to controls. Imbalance of serum magnesium level was seen in patients with chronic periodontitis and type 2 diabetes mellitus. Hence, it can be a biomarker which can predict the occurrence of type 2 diabetes mellitus and chronic periodontitis.

  17. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  18. ATP and magnesium promote cotton short-form ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations.

    PubMed

    Kuriata, Agnieszka M; Chakraborty, Manas; Henderson, J Nathan; Hazra, Suratna; Serban, Andrew J; Pham, Tuong V T; Levitus, Marcia; Wachter, Rebekka M

    2014-11-25

    We report a fluorescence correlation spectroscopy (FCS) study of the assembly pathway of the AAA+ protein ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a ring-forming ATPase responsible for activation of inhibited Rubisco complexes for biological carbon fixation. A thermodynamic characterization of simultaneously populated oligomeric states appears critical in understanding Rca structure and function. Using cotton β-Rca, we demonstrate that apparent diffusion coefficients vary as a function of concentration, nucleotide, and cation. Using manual fitting procedures, we provide estimates for the equilibrium constants for the stepwise assembly and find that in the presence of ATPγS, the Kd for hexamerization is 10-fold lower than with ADP (∼0.1 vs ∼1 μM). Hexamer fractions peak at 30 μM and dominate at 8-70 μM Rca, where they comprise 60-80% of subunits with ATPγS, compared with just 30-40% with ADP. Dimer fractions peak at 1-4 μM Rca, where they comprise 15-18% with ATPγS and 26-28% with ADP. At 30 μM Rca, large aggregates begin to form that comprise ∼10% of total protein with ATPγS and ∼25% with ADP. FCS data collected on the catalytically impaired WalkerB-D173N variant in the presence of ATP provided strong support for these results. Titration with free magnesium ions lead to the disaggregation of larger complexes in favor of hexameric forms, suggesting that a second magnesium binding site with a Kd value of 1-3 mM mediates critical subunit contacts. We propose that closed-ring toroidal hexameric forms are stabilized by binding of Mg·ATP plus Mg2+, whereas Mg·ADP promotes continuous assembly to supramolecular aggregates such as spirals.

  19. Barriers and enablers to implementing antenatal magnesium sulphate for fetal neuroprotection guidelines: a study using the theoretical domains framework.

    PubMed

    Bain, Emily; Bubner, Tanya; Ashwood, Pat; Van Ryswyk, Emer; Simmonds, Lucy; Reid, Sally; Middleton, Philippa; Crowther, Caroline A

    2015-08-18

    Strong evidence supports administration of magnesium sulphate prior to birth at less than 30 weeks' gestation to prevent very preterm babies dying or developing cerebral palsy. This study was undertaken as part of The WISH (Working to Improve Survival and Health for babies born very preterm) Project, to assess health professionals' self-reported use of antenatal magnesium sulphate, and barriers and enablers to implementation of 2010 Australian and New Zealand clinical practice guidelines. Semi-structured, one-to-one interviews were conducted with obstetric and neonatal consultants and trainees, and midwives in 2011 (n = 24) and 2012-2013 (n = 21) at the Women's and Children's Hospital, South Australia. Transcribed interview data were coded using the Theoretical Domains Framework (describing 14 domains related to behaviour change) for analysis of barriers and enablers. In 2012-13, health professionals more often reported 'routinely' or 'sometimes' administering or advising their colleagues to administer magnesium sulphate for fetal neuroprotection (86% in 2012-13 vs. 46% in 2011). 'Knowledge and skills', 'memory, attention and decision processes', 'environmental context and resources', 'beliefs about consequences' and 'social influences' were key domains identified in the barrier and enabler analysis. Perceived barriers were the complex administration processes, time pressures, and the unpredictability of preterm birth. Enablers included education for staff and women at risk of very preterm birth, reminders and 'prompts', simplified processes for administration, and influential colleagues. This study has provided valuable data on barriers and enablers to implementing magnesium sulphate for fetal neuroprotection, with implications for designing and modifying future behaviour change strategies, to ensure optimal uptake of this neuroprotective therapy for very preterm infants.

  20. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  1. Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy.

    PubMed

    Vogel, Christian; Adam, Christian; McNaughton, Don

    2013-09-01

    The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 μm(2) easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm(-1). Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm(-1), respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples.

  2. Assessment of Oil Pretreatment Technologies to Improve Performance of Reverse Osmosis Systems

    DTIC Science & Technology

    1992-06-19

    CVHIZ H H 14 1C H2 NH 1 cnxz I I C, C-C - C-H H H 1 H-C-H N NAPHTHENES Cyclhe zaoa. C Hsa CH, CHa CnHZn CH2 C > CH, CH, CH2 AROMATICS (no general...aromatics, and naphthenes , plus related hydrocarbon derivatives of sulfur, oxygen, and nitrogen that were not removed by refining. Olefins are absent...magnesium (Davidson, 1978). Lime, caustic soda or magnesium in the oxide or carbonate form are usually used. Figure 3.14. presents a typical flow diagram

  3. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  4. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 1. Calcium and magnesium.

    PubMed

    Gątarska, Anna; Tońska, Elżbieta; Ciborska, Joanna

    2016-01-01

    Natural mineral waters may be an essential source of calcium, magnesium and other minerals. In bottled waters, minerals occur in an ionized form which is very well digestible. However, the concentration of minerals in underground waters (which constitute the material for the production of bottled waters) varies. In view of the above, the type of water consumed is essential. The aim of the study was to estimate the calcium and magnesium contents in products available on the market and to evaluate calcium and magnesium consumption with natural mineral water by different consumer groups with an assumed volume of the consumed product. These represented forty different brands of natural mineral available waters on Polish market. These waters were produced in Poland or other European countries. Among the studied products, about 30% of the waters were imported from Lithuania, Latvia, Czech Republic, France, Italy and Germany. The content of calcium and magnesium in mineral waters was determined using flame atomic absorption spectrometry in an acetylene-air flame. Further determinations were carried out using atomic absorption spectrometer--ICE 3000 SERIES-THERMO-England, equipped with a GLITE data station, background correction (a deuterium lamp) as well as other cathode lamps. Over half of the analysed natural mineral waters were medium-mineralized. The natural mineral waters available on the market can be characterized by a varied content of calcium and magnesium and a high degree of product mineralization does not guarantee significant amounts of these components. Among the natural mineral waters available on the market, only a few feature the optimum calcium-magnesium proportion (2:1). Considering the mineralization degree of the studied products, it can be stated that the largest percentage of products with significant calcium and magnesium contents can be found in the high-mineralized water group. For some natural mineral waters, the consumption of 1 litre daily may ensure the recommended intake levels of calcium and magnesium in some consumer groups to a considerable degree. For 1-3-year-old children it is recommended to consume less than 1 litre daily of natural mineral waters containing an excess of 700 mg of calcium and 80 mg of magnesium in 1 litre.

  5. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses

    PubMed Central

    Kohara, S.; Akola, J.; Morita, H.; Suzuya, K.; Weber, J. K. R.; Wilding, M. C.; Benmore, C. J.

    2011-01-01

    The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth’s mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO3) composition is a good glass former, whereas the forsterite (Mg2SiO4) composition is at the limit of glass formation. Here, the structure of MgSiO3 and Mg2SiO4 composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg2SiO4 glass is associated with a topologically ordered and very narrow ring distribution. The MgOx polyhedra have a variety of irregular shapes in MgSiO3 and Mg2SiO4 glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgOx-MgOx polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg2+ remains similar. This unusual structure-property relation of Mg2SiO4 glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity. PMID:21873237

  6. Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Wan, L.; Guo, Z. H.

    Isothermal compression experiment of AZ80 magnesium alloy was conducted by Gleeble thermo-mechanical simulator in order to quantitatively investigate the work hardening (WH), strain rate sensitivity (SRS) and temperature sensitivity (TS) during hot processing of magnesium alloys. The WH, SRS and TS were described by Zener-Hollomon parameter (Z) coupling of deformation parameters. The relationships between WH rate and true strain as well as true stress were derived from Kocks-Mecking dislocation model and validated by our measurement data. The slope defined through the linear relationship of WH rate and true stress was only related to the annihilation coefficient Ω. Obvious WH behaviormore » could be exhibited at a higher Z condition. Furthermore, we have identified the correlation between the microstructural evolution including β-Mg17Al12 precipitation and the SRS and TS variations. Intensive dynamic recrystallization and homogeneous distribution of β-Mg17Al12 precipitates resulted in greater SRS coefficient at higher temperature. The deformation heat effect and β-Mg17Al12 precipitate content can be regarded as the major factors determining the TS behavior. At low Z condition, the SRS becomes stronger, in contrast to the variation of TS. The optimum hot processing window was validated based on the established SRS and TS values distribution maps for AZ80 magnesium alloy.« less

  7. Physiology of Calcium, Phosphate, Magnesium and Vitamin D.

    PubMed

    Allgrove, Jeremy

    2015-01-01

    The physiology of calcium and the other minerals involved in its metabolism is complex and intimately linked to the physiology of bone. Five principal humoral factors are involved in maintaining plasma concentrations of calcium, magnesium and phosphate and in coordinating the balance between their content in bone. The transmembrane transport of these elements is dependent on a series of complex mechanisms that are partly controlled by these hormones. The plasma concentration of calcium is initially sensed by a calcium-sensing receptor, which then sets up a cascade of events that initially determines parathyroid hormone secretion and eventually results in a specific action within the target organs, mainly bone and kidney. This chapter describes the physiology of these humoral factors and relates them to the pathological processes that give rise to disorders of calcium, phosphate and magnesium metabolism as well as of bone metabolism. This chapter also details the stages in the calcium cascade, describes the effects of calcium on the various target organs, gives details of the processes by which phosphate and magnesium are controlled and summarises the metabolism of vitamin D. The pathology of disorders of bone and calcium metabolism is described in detail in the relevant chapters. © 2015 S. Karger AG, Basel.

  8. Connectivity, Doping, and Anisotropy in Highly Dense Magnesium Diboride (MgB2)

    NASA Astrophysics Data System (ADS)

    Li, Guangze

    Magnesium diboride (MgB2) is a superconducting material which can be potentially used in many applications such as magnetic resonance imaging system (MRI), wind turbine generators and high energy physics facilities. The major advantages of MgB2 over other superconductors include its relatively high critical temperature of about 39 K, its low cost of raw materials, its simple crystal structure, and its round multifilament form when in the form of superconducting wires. Over the past fourteen years, much effort has been made to develop MgB2 wires with excellent superconducting properties, particularly the critical current density J c. However, this research has been limited by technical difficulties such as high porosity and weak connectivity in MgB2, relatively small flux pinning strength, low upper critical field B c2 and relatively high anisotropy. The goal of this dissertation is to understand the relationship between superconducting properties, microstructure, and reaction mechanisms in MgB 2. In particular, the influences of connectivity, B c2, anisotropy and flux pinning were investigated in terms of the effects of these variables on the Jcs and n-values of MgB2 superconducting wires (n-value is a parameter which indicates the sharpness of resistive V-I transition). The n -values of traditional "Powder in Tube (PIT)" processed MgB2 wires were improved by optimizing precursor species after the identification of microstructural defects such as so-called "sausaging problems". Also, it was found that "high porosity and weak connectivity" was one of the most critical issues which limited the J c performance in typical MgB2. To overcome this problem, highly dense, well-connected MgB2 conductors were successfully fabricated by adopting an innovative "Advanced Internal Magnesium Infiltration (AIMI)" process. A careful study on the reaction kinetics together with the microstructural evidence demonstrated how the MgB2 layer was formed as the infiltration process proceeded. As a result, it is possible to control the MgB2 layer growth in the AIMI-processed MgB 2 wires. The best AIMI wires, with improved density and connectivity, accomplished an outstanding layer Jc, which was 1.0 x 105 A/cm2 at 4.2 K and 10 T, nearly 10 times higher than the Jcs of PIT wires. The engineering Je of AIMI wires, namely the critical current over the whole cross-sectional area in the wire, achieved 1.7 x 104 A/cm2 at 4.2 K, 10 T, 200 % higher than those of PIT wires. Finally, two promising dopants, Dy2O3 and O, were engineered to incorporate with MgB2. Dy 2O3 nanopowders, co-doped with C in AIMI wires, enhanced the Jc performance at elevated temperatures such as 20 K. Oxygen, on the other hand, doped into MgB2 thin films through a newly-developed O2 annealing process, improved Bc2 to 14 T at 21 K. Both of the doping studies were helpful to understand the superconducting nature of MgB2.

  9. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

    PubMed Central

    Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848

  10. Magnesium degradation as determined by artificial neural networks.

    PubMed

    Willumeit, Regine; Feyerabend, Frank; Huber, Norbert

    2013-11-01

    Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  12. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  13. An Open and Shut Case: The Interaction of Magnesium with MST Enzymes

    PubMed Central

    2016-01-01

    The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous ions is documented at nanomolar concentrations, which is a potentially physiologically relevant mode of regulation for siderophore biosynthesis in vivo. PMID:27373320

  14. Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions.

    PubMed

    Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando

    2010-06-15

    Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.

  15. Al₂O₃ Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique.

    PubMed

    Baiocco, Gabriele; Rubino, Gianluca; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2018-01-09

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al₂O₃ film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al₂O₃ coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  16. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique

    PubMed Central

    Rubino, Gianluca; Ucciardello, Nadia

    2018-01-01

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy. PMID:29315222

  17. Photophysical analysis of 1,10-phenanthroline-embedded porphyrin analogues and their magnesium(II) complexes.

    PubMed

    Ishida, Masatoshi; Lim, Jong Min; Lee, Byung Sun; Tani, Fumito; Sessler, Jonathan L; Kim, Dongho; Naruta, Yoshinori

    2012-11-05

    The synthesis, characterization, photophysical properties, and theoretical analysis of a series of tetraaza porphyrin analogues (H-Pn: n=1-4) containing a dipyrrin subunit and an embedded 1,10-phenanthroline subunit are described. The meso-phenyl-substituted derivative (H-P1) interacts with a Mg(2+) salt (e.g., MgCl(2), MgBr(2), MgI(2), Mg(ClO(4))(2), and Mg(OAc)(2)) in MeCN solution, thereby giving rise to a cation-dependent red-shift in both the absorbance- and emission maxima. In this system, as well as in the other H-Pn porphyrin analogues used in this study, the four nitrogen atoms of the ligand interact with the bound magnesium cation to form Mg(2+)-dipyrrin-phenanthroline complexes of the general structure MgX-Pn (X=counteranion). Both single-crystal X-ray diffraction analysis of the corresponding zinc-chloride derivative (ZnCl-P1) and fluorescence spectroscopy of the Mg-adducts that are formed from various metal salts provide support for the conclusion that, in complexes such as MgCl-P1, a distorted square-pyramidal geometry persists about the metal cation wherein a chloride anion acts as an axial counteranion. Several analogues (HPn) that contain electron-donating and/or electron-withdrawing dipyrrin moieties were prepared in an effort to understand the structure-property relationships and the photophysical attributes of these Mg-dipyrrin complexes. Analysis of various MgX-Pn (X=anion) systems revealed significant substitution effects on their chemical, electrochemical, and photophysical properties, as well as on the Mg(2+)-cation affinities. The fluorescence properties of MgCl-Pn reflected the effect of donor-excited photoinduced electron transfer (d-PET) processes from the dipyrrin subunit (as a donor site) to the 1,10-phenanthroline acceptor subunit. The proposed d-PET process was analyzed by electron paramagnetic resonance (EPR) spectroscopy and by femtosecond transient absorption (TA) spectroscopy, as well as by theoretical DFT calculations. Taken together, these studies provide support for the suggestion that a radical species is produced as the result of an intramolecular charge-transfer process, following photoexcitation. These photophysical effects, combined with a mixed dipyrrin-phenanthroline structure that is capable of effective Mg(2+)-cation complexation, lead us to suggest that porphyrin-inspired systems, such as HPn, have a role to play as magnesium-cation sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation.

    PubMed

    Wang, Haosen; Hao, Zhixiu; Wen, Shizhu

    2017-01-01

    Intramedullary interlocking nailing is an effective technique used to treat long bone fractures. Recently, biodegradable metals have drawn increased attention as an intramedullary interlocking nailing material. In this study, numerical simulations were implemented to determine whether the degradation rate of magnesium alloy makes it a suitable material for manufacturing biodegradable intramedullary interlocking nails. Mechano-regulatory and bone-remodeling models were used to simulate the fracture healing process, and a surface corrosion model was used to simulate intramedullary rod degradation. The results showed that magnesium alloy intramedullary rods exhibited a satisfactory degradation rate; the fracture healed and callus enhancement was observed before complete dissolution of the intramedullary rod. Delayed magnesium degradation (using surface coating techniques) did not confer a significant advantage over the non-delayed degradation process; immediate degradation also achieved satisfactory healing outcomes. However, delayed degradation had no negative effect on callus enhancement, as it did not cause signs of stress shielding. To avoid risks of individual differences such as delayed union, delayed degradation is recommended. Although the magnesium intramedullary rod did not demonstrate rapid degradation, its ability to provide high fixation stiffness to achieve earlier load bearing was inferior to that of the conventional titanium alloy and stainless steel rods. Therefore, light physiological loads should be ensured during the early stages of healing to achieve bony healing; otherwise, with increased loading and degraded intramedullary rods, the fracture may ultimately fail to heal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ignition behavior of magnesium powder layers on a plate heated at constant temperature.

    PubMed

    Chunmiao, Yuan; Dezheng, Huang; Chang, Li; Gang, Li

    2013-02-15

    The minimum temperature at which dust layers or deposits ignite is considered to be very important in industries where smoldering fires could occur. Experiments were conducted on the self-ignition behavior of magnesium powder layers. The estimated effective thermal conductivity k for modeling is 0.17 W m(-1)K(-1). The minimum ignition temperature (MIT) of magnesium powder layers for four different particle sizes: 6, 47, 104 and 173 μm, are also determined in these experiments. A model was developed describing temperature distribution and its change over time while considering the melting and boiling of magnesium powder. Parameter analysis shown that increasing particle size from 6 to 173 μm increased MIT from 710 to 760 K, and increased thickness of the dust layer led to a decreased MIT. The calculation termination time more than 5000 s didn't significantly impact MIT. Comparing predicted and experimental data showed satisfactory agreement for MIT of magnesium powder layers at various particle sizes. According to the ignition process of magnesium powder layer, a meaningful definition for the most sensitive ignition position (MSIP) was proposed and should be taken into consideration when preventing smoldering fires induced by hot plates. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Nickel-cobalt laterites: a deposit model: Chapter H in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Marsh, Erin; Anderson, Eric J.; Gray, Floyd

    2013-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are supergene enrichments of Ni±Co that form from intense chemical and mechanical weathering of ultramafic parent rocks. These regolith deposits typically form within 26 degrees of the equator, although there are a few exceptions. They form in active continental margins and stable cratonic settings. It takes as little as one million years for a laterite profile to develop. Three subtypes of Ni-Co laterite deposits are classified according to the dominant Ni-bearing mineralogy, which include hydrous magnesium (Mg)-silicate, smectite, and oxide. These minerals form in weathering horizons that begin with the unweathered protolith at the base, saprolite next, a smectite transition zone only in profiles where drainage is very poor, followed by limonite, and then capped with ferricrete at the top. The saprolite contains Ni-rich hydrous Mg-silicates, the Ni-rich clays occur in the transition horizon, and Ni-rich goethite occurs in the limonite. Although these subtypes of deposits are the more widely used terms for classification of Ni-Co laterite deposits, most deposits have economic concentrations of Ni in more than one horizon. Because of their complex mineralogy and heterogeneous concentrations, mining of these metallurgically complex deposits can be challenging. Deposits range in size from 2.5 to about 400 million tonnes, with Ni and Co grades of 0.66–2.4 percent (median 1.3) and 0.01–0.15 percent (median 0.08), respectively. Modern techniques of ore delineation and mineralogical identification are being developed to aid in streamlining the Ni-Co laterite mining process, and low-temperature and low-pressure ore processing techniques are being tested that will treat the entire weathered profile. There is evidence that the production of Ni and Co from laterites is more energy intensive than that of sulfide ores, reflecting the environmental impact of producing a Ni-Co laterite deposit. Tailings may include high levels of magnesium, sulfate, and manganese and have the potential to be physically unstable.

Top