Science.gov

Sample records for magnesium-incorporated apatite coatings

  1. Osteoblastic cell response on magnesium-incorporated apatite coatings

    NASA Astrophysics Data System (ADS)

    Qi, Guochao; Zhang, Sam; Khor, Khiam Aik; Lye, Sun Woh; Zeng, Xianting; Weng, Wenjian; Liu, Chunming; Venkatraman, Subbu S.; Ma, Lwin Lwin

    2008-11-01

    Magnesium is one of the most important bivalent ions associated with biological apatite. A series of magnesium-substituted calcium apatite coatings (Ca 10- xMg x)(PO 4) 6(OH) 2, where x = 0, 0.50, 1.00, 1.50 and 2.00, are synthesized onto Ti6Al4V substrate by sol-gel dip-coating method to determine how magnesium influences the synthesis and the resulting structural and biological properties. X-ray diffraction (XRD) analysis shows that the incorporation of magnesium helps formation of Mg-containing β-TCP (β-TCMP) phase. X-ray photoelectron spectroscopy (XPS) is used to study the chemical composition and the results show that the apatite structure can only host magnesium less than ˜2.4 wt.% beyond which magnesium aggregates on the surfaces. The incorporation of magnesium slows down the dissolution of Ca 2+ from the coating. The in vitro behavior of the coatings is evaluated with human osteosarcoma MG63 cells for cell morphology and proliferation. Similar cell morphologies are observed on all coatings. The cell proliferation results show that the incorporation of magnesium up to x = 2 has no adverse effect on cell growth.

  2. Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures.

    PubMed

    Guo, Yaping; Zhou, Yu; Jia, Dechang

    2008-03-01

    Hierarchically porous hydroxycarbonate apatite is known to have a high bioactivity to regenerate bone, but its application in bone graft substitutes has been restricted due to its poor mechanical properties. This drawback has been addressed by (i) depositing calcium carbonate coatings on Ti6Al4V substrates by electrophoresis; and (ii) converting the coatings to hydroxycarbonate apatite coatings with hierarchically porous structures by treatment with a phosphate buffer solution (PBS). After soaking calcium carbonate coatings in PBS for 1 day, calcium-deficient hydroxycarbonate apatite nanocrystals are deposited on the surfaces of calcium carbonate particles via a dissolution-precipitation reaction. The aggregation of the nanocrystals produces plate-like hydroxycarbonate apatite. Mesopores with a pore size of approximately 3.8nm and macropores or apertures with an aperture size of approximately 1 microm are formed within and among the plates, respectively. After soaking for 9 days, the pore size of mesopores decreases and the mesopores disappear partly due to the crystal growth of hydroxycarbonate apatite. Simulated body fluid immersion tests reveal that the good in vitro bioactivity of hydroxycarbonate apatite coatings is attributed to the calcium deficiencies in apatite lattice and the hierarchically porous structures.

  3. The biomimetic apatite-cefalotin coatings on modified titanium.

    PubMed

    Kang, Min-Kyung; Lee, Sang-Bae; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2012-02-03

    Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Release of antibiotic was evaluated by UV/VIS spectrometry, and the antibacterial effect was evaluated on Streptococcus mutans. After the second coating step, we observed a thick homogeneous apatite layer that contained the antibiotic, cefalotin. The titanium formed a rutile phase after the heat treatment, and a carbonated apatite phase appeared after biomimetic coating. We found that the modified titanium increased the loading of cefalotin onto the hydroxyapatite coated surface. The results suggested that modified titanium coated with a cefalotin using biomimetic coating method might be useful for preventing local post-surgical implant infections.

  4. Transformation of nacre coatings into apatite coatings in phosphate buffer solution at low temperature.

    PubMed

    Guo, Yaping; Zhou, Yu

    2008-08-01

    Nacre coatings were deposited on Ti6Al4V substrates by electrophoretic technique, and subsequently converted into apatite coatings with hierarchical porous structures by treatment with a phosphate buffer solution. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy (XPS), and N(2) adsorption-desorption isotherms. The results show that the nacre coatings are converted into the plate-like apatite coatings via a dissolution-precipitation reaction, while the organic components of the nacre are reserved. The mesopores with pore size of 4.4 nm are formed within the plate-like structure, and the macropores are formed among the plate-like structure. Simulated body fluid (SBF) immersion tests reveal that the apatite coatings have a good in vitro bioactivity. Bone-like apatite crystals are formed on the surfaces of the apatite coatings after soaking in SBF for 12 h, and fill up the macropores on the coatings with increasing the soaking time. In addition, XPS indicates that a TiO(x) layer and PO(4) (3-) ions appear on the substrate surfaces by pretreatment with a H(3)PO(4)/HF solution. The TiO(x) layer and PO(4) (3-) ions can induce the formation of apatite crystals, resulting in a composition gradient from the oxide layer to the external apatite layer.

  5. Biomimetic apatite coatings--carbonate substitution and preferred growth orientation.

    PubMed

    Müller, Lenka; Conforto, Egle; Caillard, Daniel; Müller, Frank A

    2007-11-01

    Biomimetic apatite coatings were obtained by soaking chemically treated titanium in SBF with different HCO(3)(-) concentration. XRD, FTIR and Raman analyses were used to characterize phase composition and degree of carbonate substitution. The microstructure, elemental composition and preferred alignment of biomimetically precipitated crystallites were characterized by cross-sectional TEM analyses. According to XRD, the phase composition of precipitated coatings on chemically pre-treated titanium after exposure to SBF was identified as hydroxy carbonated apatite (HCA). A preferred c-axis orientation of the deposited crystals can be supposed due to the high relative peak intensities of the (002) diffraction line at 2theta=26 degrees compared to the 100% intensity peak of the (211) plane at 2theta=32 degrees . The crystallite size in direction of the c-axis of HCA decreased from 26 nm in SBF5 with a HCO(3)(-) concentration of 5 mmol/l to 19 nm in SBF27 with a HCO(3)(-) concentration of 27 mmol/l. Cross-sectional TEM analyses revealed that all distances correspond exactly to the hexagonal structure of hydroxyapatite. The HCO(3)(-) content in SBF also influences the composition of precipitated calcium phosphates. Biomimetic apatites were shown to have a general formula of Ca(10-x-y)Mg(y)(HPO(4))(x-z)(CO(3))(z)(PO(4))(6-x)(OH)(2-x-w)(CO(3))(w/2). According to FTIR and Raman analyses, it can be supposed that as long as the HCO(3)(-) concentration in the testing solutions is below 20 mmol/l, only B-type HCA (0

  6. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates.

    PubMed

    Kawashita, Masakazu; Taninai, Koji; Li, Zhixia; Ishikawa, Kunio; Yoshida, Yasuhiro

    2012-06-01

    We prepared low-crystalline apatite nanoparticles and coated them onto a surface of a Au/Cr-plated quartz substrate by the electrophoretic deposition (EPD) method or by using a self-assembled monolayer of 11-mercaptoundecanoic acid (SAM method). Low-crystalline apatite nanoparticles around 10 nm in size with extremely low contents of undesirable residual products were obtained by adding (NH(4))(2)HPO(4) aqueous droplets into a modified synthetic body fluid solution that contained Ca(CH(3)COO)(2). The apatite nanoparticles were successfully coated by either the EPD method or the SAM method; the nanoparticle coating achieved by the SAM method was more uniform than that achieved by the EPD method. The present SAM method is expected to be a promising technique for obtaining a quartz substrate coated with apatite nanoparticles, which can be used as a quartz crystal microbalance device.

  7. The effect of temperature and initial pH on biomimetic apatite coating.

    PubMed

    Qu, Haibo; Wei, Mei

    2008-10-01

    Bone-like apatite coatings were prepared using a biomimetic method in a simulated body fluid (SBF). The effect of initial pH values and immersing temperatures on biomimetic apatite coating formation was studied. Three different temperatures were used in this study: 24 (room temperature), 40, and 60 degrees C. At each temperature, SBF solutions with three different initial pHs were chosen: low, medium, and high. The total inorganic carbon (TIC) content and pH-time profile of each coating system were recorded during the coating formation. The apatite coatings were characterized using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and Fourier transform infra-red (FTIR). It has been found that SBF temperature has a great effect on the bicarbonate decomposition rate. The bicarbonate ions tend to decompose faster as the temperature increases. The decomposition of bicarbonate ions results in a pH increase in the SBF. With different initial SBF pHs, the decomposition of different amounts of bicarbonate ions is required to reach the critical pH range of apatite formation. With different amounts of bicarbonate ions in the SBF, the surface morphology of the biomimetic apatite coating formed is different. Therefore, the initial pH of the SBF solution plays a vital role in controlling the surface morphology of the biomimetic apatite coating. Also, it was found that as the SBF temperature increased, the critical pH range at which biomimetic apatite coating forms decreased. The critical pH range for the SBF prepared at 24, 40, and 60 degrees C was 6.65-6.71, 6.55-6.65, and 6.24-6.42, respectively. (c) 2008 Wiley Periodicals, Inc.

  8. Fabrication and in vitro characterization of magnetic hydroxycarbonate apatite coatings with hierarchically porous structures.

    PubMed

    Guo, Yaping; Zhou, Yu; Jia, Dechang; Meng, Qingchang

    2008-07-01

    Hydroxycarbonate apatite/Fe(3)O(4) composite coatings (MHACs) with hierarchically porous structures were fabricated by electrophoretic deposition of CaCO(3)/Fe(3)O(4) particles on Ti6Al4V substrates followed by treatment with phosphate buffer solution (PBS) at 37 degrees C. The effects of Fe(3)O(4) on the conversion rate of calcium carbonate to hydroxycarbonate apatite and the porous structures and in vitro bioactivity of MHACs were investigated. After soaking CaCO(3)/Fe(3)O(4) coatings in PBS, hydroxycarbonate apatite nucleates heterogeneously on the surfaces of CaCO(3)/Fe(3)O(4) particles and forms a plate-like structure. Fe(3)O(4) increases the velocity of nucleus formation of hydroxycarbonate apatite. After soaking for 1day, the percentage of unreacted calcium carbonate for MHACs is approximately 9.1%, lower than the approximately 41.0% for hydroxycarbonate apatite coatings (HCACs). As the CaCO(3)/Fe(3)O(4) coatings are converted to MHACs, macropores with a pore size of approximately 4mum on the coatings and mesopores with a pore size of approximately 3.9nm within the hydroxycarbonate apatite plates are formed. The mesopores remain in the MHACs after treatment with PBS for 9 days, while they disappear in the HCACs. Simulated body fluid immersion tests reveal that Fe(3)O(4) improves the in vitro bioactivity of biocoatings. The amount of bone-like apatite precipitated on the surfaces of MHACs is greater than that on the surfaces of HCACs.

  9. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  10. Microwave assisted apatite coating deposition on Ti6Al4V implants.

    PubMed

    Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2013-10-01

    In this work we report a novel microwave assisted technology to deposit a uniform, ultra-thin apatite coating without any cracks on titanium implants in minutes. This method comprises of conventional biomimetic coating in synergism with microwave irradiation to result in alkaline earth phosphate nucleation. The microwave assisted coating process mainly follows the initial stages of biomimetic coating until the step of the Ca-P nuclei formation. After that, due to microwave irradiation more Ca-P nuclei are formed to cover the whole surface of the implant instead of the growth of deposited Ca-P nuclei to Ca-P globules and coatings. It is interesting to note the doping of Mg(2+) to Ca-P apatite coating can significantly change the properties and performances of as-deposited coatings. The hydrophilicity, physical properties, bioactivity, cell adhesion, and growth capability of as-deposited microwave assisted coatings were investigated. The study shows that this coating technology has great potential in biomedical applications. Additionally, since biomimetic coating can be applied to series of implant materials such as polymer, metals and glass, it is expected this microwave assisted coating technology can also be applied to these materials if they can remains stable at 100 °C, the boiling point of water.

  11. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  12. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium.

    PubMed

    Han, Yong; Xu, Kewei

    2004-12-15

    A novel method to rapidly deposit bone apatite-like coatings on titanium implants in simulated body fluid (SBF) is proposed in this article. The processing was composed of two steps; for example, micro-arc oxidation (MAO) of titanium to form titania films, and UV-light illumination of the titania-coated titanium in SBF. The morphology, crystalline structure, and bond strength of the MAO films were investigated as a function of the applied voltage (in the range of 250-400 V) by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, adhesion-tensile test, and scratch test. Results showed that the MAO films were porous and nanocrystalline with pore sizes varying from 1 to 3 microm and grain sizes varying from 10-20 to 70-80 nm; the predominant phase in titania films changed from anatase to rutile, and the bond strength of the films decreased from 43.4 to 32.9 MPa as the applied voltage increased from 250 to 400 V. After UV-light illumination of the films in SBF for 2 h, bone apatite-like coating was deposited on the MAO film formed at 250 V. The bond strength of the apatite/titania bilayer was about 44.2 MPa. However, no apatite was observed on the MAO film formed at 400 V after UV-light illumination.

  13. Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating.

    PubMed

    Liu, Xuanyong; Xie, Youtao; Ding, Chuanxian; Chu, Paul K

    2005-09-01

    Dicalcium silicate coating was deposited onto a Ti-6Al-4V substrate using plasma-spraying technology. The coating was immersed in simulated body fluid (SBF) for 1, 3, 6, 12, 24, and 48 h to investigate early apatite formation on the coating. Osteoblasts were also seeded onto the surface of the dicalcium silicate coating to evaluate its biocompatibility. Cold field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry were used to evaluate the morphologies and determine the chemical composition of the coatings. The surface structural changes caused by immersion in SBF were analyzed using thin-film X-ray diffraction. After the dicalcium silicate coating was soaked in SBF solution 1-6 h, two types of particles containing calcium and phosphorus were formed on the surface. One type consisted of relatively larger particles (P1) precipitated on the surface of the coating from the precursor cluster formed in the SBF solution. The second type was composed of particles (P2) nucleated on the surface of the coating. With increasing immersion time, the particles coalesced to form a surface Ca-P layer. The Ca-P layer was composed of amorphous calcium phosphate that was not transformed to crystalline apatite until the immersion time in SBF exceeded 24 h. The formation mechanism of the Ca-P layer and apatite on the surface of the coating is believed to be involved in the formation of the Si 3-ring active surface site with negative charge. The cell-seeding test revealed that osteoblasts grew and proliferated very well on the surface of the dicalcium silicate coating.

  14. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    PubMed

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants.

  15. Formation of Apatite Coatings on an Artificial Ligament Using a Plasma- and Precursor-Assisted Biomimetic Process

    PubMed Central

    Mutsuzaki, Hirotaka; Yokoyama, Yoshiro; Ito, Atsuo; Oyane, Ayako

    2013-01-01

    A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment) to create a precoating containing amorphous calcium phosphate (ACP) which is an apatite precursor. To grow an apatite layer on the ACP precoating, the ACP-precoated specimen was immersed for 24 h in a simulated body fluid with ion concentrations approximately equal to those in human blood plasma. The plasma surface modification was necessary to create an adequate apatite coating and to improve the coating adhesion depending on the plasma power density. The apatite coating prepared using the optimized conditions formed a thin-film that covered the entire surface of the artificial ligament. The resulting apatite-coated artificial ligament should exhibit improved osseointegration within the bone tunnel and possesses great potential for use in ligament reconstructions. PMID:24048251

  16. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  17. Electrodeposited apatite coating for solid-phase microextraction and sensitive indirect voltammetric determination of fluoride ions.

    PubMed

    Mao, Yuehong; Chen, Yufei; Chu, Lin; Zhang, Xiaoli

    2013-10-15

    Electrodeposition was used to prepare a new solid phase microextraction (SPME) coatings. Two apatite SPME coatings, dicalcium phosphate dihydrate (DCPD or brushite) and hydroxyapatite (HAP) were validly and homogeneously one-step electrodeposited on glassy carbon electrode (GCE) under different conditions. The coatings were characterized by XRD, FTIR, SEM, CV and EIS. The apatite SPME coatings showed excellent and selective adsorbability to fluoride ions. A novel indirect voltammetric strategy for sensitive detection of fluoride was proposed using K3Fe(CN)6 as indicating probe. The detection principle of fluoride ions was based on the increment of steric hindrance after fluoride adsorption, which resulting in the decrease of the amperometric signal to Fe(CN)6(3-). The liner ranges were 0.5-20.0 μmol/L for n-DCPD/GCE with the limit of detection of 0.14 μmol/L and 0.1-50.0 μmol/L for n-HAP/GCE with the limit of detection of 0.069 μmol/L, respectively. The developed method was applied to the analysis of water samples (lake, spring and tap water) and the recovery values were found to be in the range of 90-106%. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Mg substituted apatite coating from alkali conversion of acidic calcium phosphate.

    PubMed

    Navarro da Rocha, Daniel; Cruz, Leila Rosa de Oliveira; de Campos, José Brant; Marçal, Rubens L Santana Blazutti; Mijares, Dindo Q; Coelho, Paulo G; Prado da Silva, Marcelo H

    2017-01-01

    In this work, two solutions were developed: the first, rich in Ca(2+), PO4(3-) ions and the second, rich in Ca(2+), PO4(3-) and Mg(2+), defined as Mg-modified precursor solution. For each Mg-modified precursor solution, the concentrations of Mg(2+) ions were progressively increased by 5%, 10% and 15%wt. The aims of this research were to investigate the influence of magnesium ions substitution in calcium phosphate coatings on titanium surface and to evaluate these coatings by bioactivity assay in McCoy culture medium. The obtained coatings were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, and the presence of Mg ions was confirmed by the inductively coupled plasma atomic emission spectroscopy (ICP) analysis. In vitro bioactivity assay in McCoy culture medium showed bioactivity after 14days in incubation for the HA and 10% Mg-monetite coatings. The high chemical stability of Mg-HA coatings was verified by the bioactivity assays, and no bone-like apatite deposition, characteristic of bioactivity, was observed for Mg-HA coatings, for the time period used in this study. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.

    PubMed

    Yang, Zhengpeng; Si, Shihui; Zeng, Xiaoming; Zhang, Chunjing; Dai, Hongjuan

    2008-05-01

    Apatite (Ca5(PO4)3OH) has long been considered as an excellent biomaterial to promote bone repairs and implant. Apatite formation induced by negatively charged nanocrystalline TiO2 coatings soaked in simulated body fluid (SBF) was investigated using in situ quartz crystal microbalance (QCM), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques, and factors affecting its formation such as pH, size of TiO2 particles and thickness of TiO2 coatings, were discussed in detail. Two different stages were clearly observed in the process of apatite precipitation, indicating two different kinetic processes. At the first stage, the calcium ions in SBF were initially attracted to the negatively charged TiO2 surface, and then the calcium titanate formed at the interface combined with phosphate ions, consequently forming apatite nuclei. After the nucleation, the calcium ions, phosphate ions and other minor ions (i.e. CO3(2-) and Mg2+) in supersaturated SBF deposited spontaneously on the original apatite coatings to form apatite precipitates. In terms of the in situ frequency shifts, the growth-rate constants of apatite (K1 and K2) were estimated, respectively, at two different stages, and the results were (1.96+/-0.14)x10(-3)s(-1) and (1.28+/-0.10)x10(-4)s(-1), respectively, in 1.5 SBF solution. It was found that the reaction rate at the first stage is obviously higher than that at the second stage.

  20. Apatite-coated Silk Fibroin Scaffolds to Healing Mandibular Border Defects in Canines

    PubMed Central

    Zhao, Jun; Zhang, Zhiyuan; Wang, Shaoyi; Sun, Xiaojuan; Zhang, Xiuli; Chen, Jake; Kaplan, David L.; Jiang, Xinquan

    2010-01-01

    Tissue engineering has become a new approach for repairing bony defects. Highly porous osteoconductive scaffolds perform the important role for the success of bone regeneration. By biomimetic strategy, apatite-coated porous biomaterial based on silk fibroin scaffolds (SS) might provide an enhanced osteogenic environment for bone-related outcomes. To assess the effects of apatite-coated silk fibroin (mSS) biomaterials for bone healing as a tissue engineered bony scaffold, we explored a tissue engineered bony graft using mSS seeded with osteogenically induced autologous bone marrow stromal cells (bMSCs) to repair inferior mandibular border defects in a canine model. The results were compared with those treated with bMSCs/SS constructs, mSS alone, SS alone, autologous mandibular grafts and untreated blank defects. According to radiographic and histological examination, new bone formation was observed from 4 weeks post-operation, and the defect site was completely repaired after 12 months for the bMSCs/mSS group. In the bMSCs/SS group, new bone formation was observed with more residual silk scaffold remaining at the center of the defect compared with the bMSCs/mSS group. The engineered bone with bMSCs/mSS achieved satisfactory bone mineral densities (BMD) at 12 months post-operation close to those of normal mandible (p>0.05). The quantities of newly formed bone area for the bMSCs/mSS group was higher than the bMSCs/SS group (p<0.01), but no significant differences were found when compared with the autograft group (p>0.05). In contrast, bony defects remained in the center with undegraded silk fibroin scaffold and fibrous connective tissue, and new bone only formed at the periphery in the groups treated with mSS or SS alone. The results suggested apatite-coated silk fibroin scaffolds combined with bMSCs could be successfully used to repair mandibular critical size border defects and the premineralization of these porous silk fibroin protein scaffolds provided an

  1. Comparison of osteogenic potential between apatite-coated poly(lactide-co-glycolide)/hydroxyapatite particulates and Bio-Oss.

    PubMed

    Kim, Sang-Soo; Kim, Byung-Soo

    2008-05-01

    Previously, we developed a poly(lactide-co-glycolide)/nano-hydroxyapatite (PLGA/HA) composite that overcame the limitations of conventional ceramic bone substitutes. This was achieved by introducing a bone-like apatite layer on the composite to further enhance its osteogenic potential. In this study, we compared the osteogenic potential of the apatite-coated PLGA/HA particulates to that of Bio-Oss, a deproteinized bovine bone material. A mixture of fibrin gel and either apatite-coated PLGA/HA particulates or Bio-Oss was implanted into critical-size rat calvarial defects. As a control, fibrin gel was implanted alone into the defects. At eight weeks after treatment, histological examination showed new bone formation around the grafting materials, and bone formation was similar between the two groups. In the control group, bone was not regenerated and the defects were filled with fibrous tissues. This study showed that a synthetic bone graft material, apatite-coated PLGA/HA particulates, had a comparable bone regeneration potential to the bovine-derived bone graft material, Bio-Oss.

  2. Magnesium incorporated bentonite clay for defluoridation of drinking water.

    PubMed

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin

    2010-08-15

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water.

  3. Quinone-rich polydopamine functionalization of yttria stabilized zirconia for apatite biomineralization: The effects of coating temperature

    NASA Astrophysics Data System (ADS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Abdul Kadir, Mohammed Rafiq

    2015-08-01

    The use of yttria stabilized zirconia (YSZ) as biomedical implants is often offset by its bioinert nature that prevents its osseointegration to occur. Therefore, the functionalization of YSZ surface by polydopamine to facilitate the biomineralization of apatite layer on top of the coated film has incessantly been studied. In this study YSZ discs were first immersed in 2 mg/mL of stirred dopamine solution at coating temperatures between 25 and 80 °C. The specimens were then incubated for 7d in 1.5 SBF. The effect of coating temperature on the properties (chemical compositions and wettability) and the apatite mineralization on top of the generated films was investigated. It was found that at 50 °C, the specimen displayed the highest intensity of Ca 2p peak (1.55 ± 0.42 cps) with Ca/P ratio of 1.67 due to the presence of abundant quinone groups (Cdbnd O). However, the hydrophilicity (40.9 ± 01.7°) was greatly improved at 60 °C accompanied by the highest film thickness of 306 nm. Therefore, it was concluded that the presence of high intensity of quinone groups (Cdbnd O) in polydopamine film at elevated temperature affects the chelation of Ca2+ ions and thus enhance the growth of apatite layer on top of the functionalized YSZ surface.

  4. On the mechanism of apatite-induced precipitation on 45S5 glass pellets coated with a natural-derived polymer

    NASA Astrophysics Data System (ADS)

    Araújo, Marco; Miola, Marta; Bertone, Elisa; Baldi, Giovanni; Perez, Javier; Verné, Enrica

    2015-10-01

    In this work, the bioactive glass 45S5 (also known by its commercial name Bioglass®) was successfully dip-coated by a natural derived biopolymer, increasing its apatite-forming ability. The biopolymer was shown to accelerate the first stages of bioactivity, inducing a fast transition to step 4 (formation of amorphous Casbnd P layer) in the apatite-forming ability mechanism. The faster precipitation of Ca/P crystals in the coated samples resulted in the formation of an intermediate amorphous octacalcium phosphate, which later transforms into an apatite layer with high thickness. The effect of the thickness of the coating was also studied on samples coated with polymer suspensions of different concentrations (0.15% and 1.5%, w/v), revealing that the kinetics of formation of the final hydroxycarbonate apatite layer increases with the thickness of the coating. The mechanism by which this apatite-forming ability is accelerated was also investigated, revealing that certain functional groups present in the structure of the polymer allow it to act as an organic matrix and preferential nucleation site for the growth of the hydroxycarbonate apatite layer.

  5. Enhancing Osteoconductivity of Fibrin Gels with Apatite-Coated Polymer Microspheres

    PubMed Central

    Davis, Hillary E.; Binder, Bernard Y.K.; Schaecher, Phillip; Yakoobinsky, Dana D.; Bhat, Archana

    2013-01-01

    Fibrin gels are a promising material for use in promoting bone repair and regeneration due to their ease of implant formation, tailorability, biocompatibility, and degradation by natural processes. However, these materials lack necessary osteoconductivity to nucleate calcium, integrate with surrounding bone, and promote bone formation. Polymeric substrata formed from poly(lactide-co-glycolide) (PLG) are widely used in bone tissue engineering. A carbonated apatite layer of bone-like mineral can be successfully grown on the surface of PLG microspheres after a multiday incubation process in modified simulated body fluid. Such coatings improve the osteoconductivity of the polymer, provide nucleation sites for cell-secreted calcium, and enhance the potential osseointegration with host tissue. We examined the capacity of mineralized polymeric microspheres suspended within fibrin hydrogels to enhance the osteoconductivity of fibrin gels and increase the osteogenic potential of these materials. The inclusion of microparticles, both nonmineralized and mineralized, reduced the capacity of mesenchymal stem cells (MSCs) to contract the gel. When cultured in osteogenic media, we detected a near linear increase in both calcium and phosphate incorporation in gels containing mineralized microspheres and entrapped MSCs. The osteoconductivity of acellular fibrin gels with mineralized and nonmineralized microspheres was assessed in a rodent calvarial bone defect over 12 weeks. Compared to untreated rodent calvarial bone defects, we detected significant increases in early vascularization when treated with fibrin gels, with greater vascularization, on average, occurring with gels containing microspheres. We detected a trend for increased bone mineral density in gels containing mineralized microspheres after 12 weeks. These findings demonstrate that the osteoconductivity of fibrin gels can be increased by inclusion of mineralized microspheres, but additional signals may be required to

  6. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    PubMed

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate.

  7. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    PubMed

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  8. Optimisation of the enamelling of an apatite-mullite glass-ceramic coating on Ti6Al4V.

    PubMed

    O'Flynn, Kevin P; Stanton, Kenneth T

    2011-09-01

    Apatite-mullite glass-ceramics (AMGCs) are under investigation as a potential alternative to hydroxyapatite (HA) as a coating for cementless fixation of orthopaedic implants. These materials have tailorable mechanical and chemical properties that make them attractive for use as bioactive coatings. Here, AMGC coatings on Ti(6)Al(4)V were investigated to determine an improved heat treatment regime using a systematic examination of the different inputs: composition of glass, nucleation hold and crystallisation hold. An upper limit to the heat treatment temperature was determined by the α + β --> β of Ti(6)Al(4)V at 970°C. The glass composition was modified to produce different crystallisation temperatures and sintering characteristics. A glass was found that is fully crystalline below 970°C and has good sinterability. The effects of different heat treatment time and temperature combinations on the coating and substrate morphologies were examined and the most suitable combination determined. This sample was further investigated and was found to have qualitatively good adhesion and evidence of an interfacial reaction region between the coating and substrate indicating that a chemical reaction had occurred. Oxygen infiltration into the substrate was quantified and the new route was shown to result in a 63% reduction in penetration depth.

  9. Growth and dissolution of apatite precipitates formed in vivo on the surface of a bioactive glass coating film and its relevance to bioactivity

    NASA Astrophysics Data System (ADS)

    Jallot, E.; Benhayoune, H.; Kilian, L.; Irigaray, J. L.; Balossier, G.; Bonhomme, P.

    2000-11-01

    Development of bioactive glasses for use as a coating on Ti6Al4V prostheses requires a better understanding of reactions at the bone/bioactive glass interface. Indeed, the bioactive glasses bond to bone through physico-chemical reactions. In vivo, an apatite rich layer is built up on top of a pure silica rich layer at the bioactive glass periphery. In this paper, we have studied Ti6Al4V cylinders coated with a bioactive glass and implanted in sheep femora for two, three and six months. At each time period, the samples were analysed with scanning transmission electron microscopy coupled with energy dispersive x-ray spectroscopy. In vivo, the bioactive glass dissolution led to the formation on its surface of spherical particles with different sizes. The distributions of Si, Al, Ca, P and Mg concentrations across the particles reveal precipitation of apatite with the incorporation of magnesium. Apatite precipitation is governed by diffusion through an Si layer and occurs under specific supersaturation conditions. Measurements of supersaturation for Ca and P demonstrate that the largest precipitates grow and the smallest dissolve. These results allow us to study the growth and dissolution rate of the apatite precipitates and their relevance to bioactivity. Particles with a radius twice the average radius () grow the fastest and, if the radius increases, the rate of growth decreases. Before three months, the growth of apatite precipitates (≈1 µm) leads to the growth of a Ca-P interfacial layer. After three months, is of the order of 0.5 µm, and the majority of the apatite layer dissolves. The effects of aluminium and magnesium on apatite generation are also studied.

  10. Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium.

    PubMed

    Hu, Hongjie; Qiao, Yuqin; Meng, Fanhao; Liu, Xuanyong; Ding, Chuanxian

    2013-01-01

    To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation. In view of the potential clinical applications, apatite-forming ability of the TiO(2)/CaSiO(3) coating was evaluated by simulated body fluid (SBF) immersion tests, and MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. The results show that deposition of CaSiO(3) significantly enhanced the apatite-forming ability of nanostructured TiO(2) coating in SBF. Meanwhile, the MG63 cells on TiO(2)/CaSiO(3) coating show higher proliferation rate and vitality than that on TiO(2) coating. In conclusion, the porous and nanostructured TiO(2)/CaSiO(3) coating on titanium substrate with good apatite-forming ability and cytocompatibility is a potential candidate for bone tissue engineering and implant coating.

  11. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V.

    PubMed

    Zhou, Huan; Kong, Shiqin; Pan, Yan; Zhang, Zhiguo; Deng, Linhong

    2015-11-01

    Strontium has been shown to be a beneficial dopant to calcium phosphates when incorporated at nontoxic level. In the present work we studied the possibility of solution derived doping strontium into calcium phosphate coatings on titanium alloy Ti6Al4V based implants by a recently reported microwave-assisted method. By using this method strontium doped calcium phosphate nuclei were deposited to pretreated titanium alloy surface dot by dot to compose a crack-free coating layer. The presence of strontium in solution led to reduced roughness of the coating and finer nucleus size formed. In vitro study found that proliferation and differentiation of osteoblast cells seeded on the coating were influenced by strontium content in coatings, showing an increasing followed by a decreasing behavior with increasing substitution of calcium by strontium. It is suggested that this new microwave-assisted strontium doped calcium phosphate coatings may have great potential in implant modification.

  12. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam

    PubMed Central

    Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji

    2016-01-01

    Carbonate apatite (CO3Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam. PMID:28773832

  13. Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys are recently found important in the field of bone repairing for their ideal mechanical performance and excellent biocompatibility. Micro-arc oxidation (MAO) is a simple, controllable and efficient electrochemistry method that can prepare protective ceramic coatings on magnesium alloys. The properties of the MAO coating, such as thickness, microstructure, roughness and composition, can easily be controlled by adjusting the voltage, current density, duration or the electrolyte concentration. In this work, MAO coatings are prepared on ZK61 magnesium alloy at different voltages. The structure characteristics and element distributions of the coating are investigated by XRD, TEM, SEM and EPMA. The MAO samples are immersed in SBF for 7, 14 and 28 days respectively. The corrosion behaviors of the samples in SBF were also investigated by potentiodynamic polarization curves. The corrosion products were characterized by EDS and FT-IR. The MAO coated ZK61 alloy samples showed excellent corrosion resistance and bioactivity. The MAO method demonstrates a great potential in the preparation of degradable and bioactive orthopedic magnesium-based implants.

  14. Application of carbonated apatite coating on a Ti substrate by aqueous spray method.

    PubMed

    Mochizuki, Chihiro; Hara, Hiroki; Takano, Ichiro; Hayakawa, Tohru; Sato, Mitsunobu

    2013-03-01

    The fabrication and characterization of a carbonate-containing apatite film deposited on a Ti plate via an aqueous spray method is described. The mist of the spray solution emitted from a perpendicularly oriented airbrush was made to strike a warmed Ti substrate. The thicknesses of the sprayed film and those heat-treated at 400 °C-700 °C under Ar gas flow were in the range 1.21-1.40 μm. The results of elemental analyses and Fourier transform infrared spectroscopy of the powders that were mechanically collected from the surface of the sprayed film suggest that the film was Ca(10)(PO4)6(CO3) · 2CO2 · 3H2O. The presence of the carbonate ion and the lattice CO2 molecule was confirmed via the aforementioned analyses; the finding was also consistent with the X-ray diffraction patterns of the films and the chemical identity of the sprayed and heat-treated films that were measured using X-ray photoelectron spectroscopy. The sprayed film comprises a characteristic network structure, which contains round particles within the networks, as was observed by field-emission scanning electron microscopy. A scratch test indicated that the shear stress of the sprayed film (21 MPa) significantly improved to 40 and >133 MPa after heat-treatment at 600 °C and 700 °C, respectively, under Ar gas flow for 10 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Osteogenic protein-1 enhances osseointegration of titanium implants coated with peri-apatite in rabbit femoral defect.

    PubMed

    Zhang, Renwen; An, Yuehuei; Toth, Carol A; Draughn, Robert A; Dimaano, Nena M; Hawkins, Monica V

    2004-11-15

    This study evaluated the effect of osteogenic protein-1 (OP-1) carried by Peri-Apatite (PA) on bone healing in the gap surrounding implants in a rabbit model. Cylindrical titanium implants (3 x 9 mm) were uniformly coated with PA precipitated from a calcium and phosphate solution. OP-1 solution containing 60 microg OP-1 was directly loaded on the implants immediately before implantation for the experimental group, whereas buffer solution was loaded on the implants for the control. The implant was placed in the distal femur and surrounded by a 1-mm gap. The implants were retrieved and examined 6 weeks after implantation. Mechanical testing (push-out) data showed that OP-1 enhanced implant fixation by 80%. Histomorphometric measurements indicated that bone ingrowth in the initial gap expressed as a percentage of the whole gap was significantly higher in the specimens treated with OP-1 than the control group (25.4% vs. 8.9%, p < 0.05). The percentage of the surface of implants, which was covered by bone, was significantly higher in the OP-1-treated group compared to the control group (65% vs. 25%, p < 0.05). This study suggests that OP-1 can be loaded on orthopedic implants through PA to enhance the osseointegration of orthopedic implant. (c) 2004 Wiley Periodicals, Inc.

  16. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating.

    PubMed

    Mochizuki, Chihiro; Hara, Hiroki; Oya, Kei; Aoki, Shun; Hayakawa, Tohru; Fujie, Hiromichi; Sato, Mitsunobu

    2014-06-01

    Four carbonated apatite films having average thicknesses of 1.3-0.11μm, proportions of network sizes above 10μm of 41-68%, and average border heights of the characteristic network structure of 0.98-0.29μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600°C, whose film thickness, proportion of network sizes above 10μm, and border height were 0.11μm, 61%, and 0.31μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes

    NASA Astrophysics Data System (ADS)

    Fraga, Alexandre Félix; Filho, Edson de Almeida; Rigo, Eliana Cristina da Silva; Boschi, Anselmo Ortega

    2011-02-01

    Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone.

  18. Triclinic apatites.

    PubMed

    Baikie, Tom; Mercier, Patrick H J; Elcombe, Margaret M; Kim, Jean Y; Le Page, Yvon; Mitchell, Lyndon D; White, T J; Whitfield, Pamela S

    2007-04-01

    Apatites commonly adopt P6(3)/m hexagonal symmetry. More rarely, monoclinic chemical analogues have been recognized, including the biologically significant hydroxyapatite, Ca(10)(PO(4))(6)(OH)(2), but the driving force towards lower symmetry has not been systematically examined. A combination of diffraction observations and ab initio calculations for Ca(10)(AsO(4))(6)F(2) and Ca(10)(VO(4))(6)F(2) show these materials are triclinic P\\bar 1 apatites in which the AsO(4) and VO(4) tetrahedra tilt to relieve stress at the metal and metalloid sites to yield reasonable bond-valence sums. An analysis of the triclinic non-stoichiometric apatites La(10 - x)(GeO(4))(6)O(3 - 1.5x) and Ca(10)(PO(4))(6)(OH)(2 - x)O(x/2) confirms this scheme of tetrahedral rotations, while Cd(10)(PO(4))(6)F(2) and Ca(10)(CrO(4))(6)F(2) are predicted to be isostructural. These distortions are in contrast to the better known P112(1)/b monoclinic dimorphs of chloroapatite and hydroxyapatite, where the impetus for symmetry reduction is ordered anion (OH(-) and Cl(-)) displacements which are necessary to obtain acceptable bond lengths. These results are important for designing apatites with specific structural and crystal-chemical characteristics.

  19. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core-Shell Particle for Protein Adsorption and pH-Controlled Release.

    PubMed

    Tang, I-Ming; Krishnamra, Nateetip; Charoenphandhu, Narattaphol; Hoonsawat, Rassmidara; Pon-On, Weeraphat

    2011-12-01

    Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF)) core and an apatite (Ap) coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF) solution is the source of the calcium phosphate for the apatite formation. The core-shell structure formed after the citric acid-stabilized cobalt ferrite (CFCA) particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug(-1) and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA) was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH.

  20. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core–Shell Particle for Protein Adsorption and pH-Controlled Release

    PubMed Central

    2011-01-01

    Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF)) core and an apatite (Ap) coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF) solution is the source of the calcium phosphate for the apatite formation. The core–shell structure formed after the citric acid–stabilized cobalt ferrite (CFCA) particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug-1 and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA) was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH. PMID:27502643

  1. Study of the interfacial reactions between a bioactive apatite-mullite glass-ceramic coating and titanium substrates using high angle annular dark field transmission electron microscopy.

    PubMed

    Stanton, Kenneth T; O'Flynn, Kevin P; Nakahara, Shohei; Vanhumbeeck, Jean-François; Delucca, John M; Hooghan, Bobby

    2009-04-01

    Glass of generic composition SiO(2) . Al(2)O(3) . P(2)O(5) . CaO . CaF(2) will crystallise predominantly to apatite and mullite upon heat-treatment. Such ceramics are bioactive, osseoconductive, and have a high resistance to fracture. As a result, they are under investigation for use as biomedical device coatings, and in particular for orthopaedic implants. Previous work has shown that the material can be successfully enamelled to titanium with an interfacial reaction zone produced during heat treatment. The present study uses high angle annular dark field transmission electron microscopy (HAADF-TEM) to conduct a detailed examination of this region. Results show evidence of complex interfacial reactions following the diffusion of titanium into an intermediate layer and the production of titanium silicides and titanium phosphides. These results confirm previously hypothesised mechanisms for the bonding of silicate bioceramics with titanium alloys.

  2. Photoluminescence of annealed biomimetic apatites.

    PubMed

    Zollfrank, Cordt; Müller, Lenka; Greil, Peter; Müller, Frank A

    2005-11-01

    Biomimetic apatite coatings are widely used in orthopaedic applications to provide bioinert material surfaces with bioactive behaviour by means of initiating bone growth at the implant surface. In this study we manufactured biomimetic calcium phosphate coatings consisting of a calcium deficient carbonated apatite by immersing activated titanium platelets into simulated body fluid. The development of the crystal phases was monitored by X-ray diffractometry in addition to Fourier-transform infrared spectroscopy. The microstructure of the biomimetic apatites and phase composition was analysed using scanning and transmission electron microscopy as well as attached energy dispersive X-ray spectrometry. The samples were annealed in air yielding in an inherent luminescence of the biomimetic apatite up to temperatures of 600 degrees C. The photo-induced emission spectra were recorded in the range from 400 to 750 nm at excitation wavelengths ranging 310-450 nm. A blue (437 nm) and a green (561 nm) emission were found between 200 and 600 degrees C visually appearing white. Photoluminescence of annealed biomimetic apatites might be of interest for histological probing and monitoring of bone re-modelling. The results are discussed in terms of chemical and crystallographic changes in the calcium phosphate layer during heat treatment.

  3. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    NASA Astrophysics Data System (ADS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Titanium alloy β-21S (Ti-15Mo-3Nb-3Al-0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks' solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks' solution.

  4. Operating parameters effect on physico-chemical characteristics of nanocrystalline apatite coatings electrodeposited on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Pham, Thi Nam; Thanh Dinh, Thi Mai; Thom Nguyen, Thi; Phuong Nguyen, Thu; Kergourlay, E.; Grossin, D.; Bertrand, G.; Pebere, N.; Marcelin, S. J.; Charvillat, C.; Drouet, C.

    2017-09-01

    Hydroxyapatite (HAp) was known as a bone implant material due to its biocompatibility, bioactive, chemical stability and its compositional similarity to natural bone. In this work nanocrystalline HAp coatings were prepared on 316L stainless steel (316LSS) substrates using a potentio-dynamic method (potential scanning in the range from 0 to  -1.6 V/SCE) in the presence of dissolved 3  ×  10-2 M Ca(NO3)2  +  1.8  ×  10-2 M NH4H2PO4  +  0.15 M NaNO3 and 6% H2O2 (w/w). We report the influence of experimental conditions such as temperature (25 °C-60 °C), scanning rate (1 mV s-1-10 mV s-1) and scanning times (1 times-7 times) on the morphology, structure and composition of the HAp coatings by FTIR, XRD and SEM analysis. The results show that the morphology and purity of the HAp coating were greatly affected by temperature, scanning rate and reaction time with rate of 5 mV s-1, reaction time of 26.67 min (corresponding 5 scanning times) and 25 °C, giving better coatings. The in vivo test results after 3 months grafting on femur of dogs of HAp/316LSS material showed that: the material did not induce any osteitis, osteomyelitis or structural abnormalities. The osteitis and osteomyelitis were not observed in microscopy images.

  5. Improvement in antibacterial properties of Ti by electrodeposition of biomimetic Ca-P apatite coat on anodized titania

    NASA Astrophysics Data System (ADS)

    Gad El-Rab, Sanaa M. F.; Fadl-allah, Sahar A.; Montser, A. A.

    2012-11-01

    Titanium metal (Ti) with antibacterial function was successfully developed in the present study by electrodeposition of biomimetic Ca-P coat in simple supersaturated calcium and phosphate solution (SCPS). The electrochemical behavior and corrosion resistance of Ca-P deposited on anodized titanium (AT) have been investigated in SCPS by using electrochemical impedance spectroscopy (EIS). The plate-counting method was used to evaluate the antibacterial performance against Staphylococcus aureus (ATCC6538). In vitro antibacterial activity study indicated a significantly reduced number of bacteria S. aureus on Ca-P/AT plate surface when compared with that on Ti or AT surfaces and the corresponding antibacterial mechanism is discussed. The morphology and chemical structure of different titanium samples were systematically investigated by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The study confirmed that the antibacterial properties of the samples were related to chemical composition of sample surface.

  6. Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone.

    PubMed

    Kanno, Cynthia M; Sanders, Rebecca L; Flynn, Steven M; Lessard, Genevieve; Myneni, Satish C B

    2014-05-20

    Elevated levels of fluoride (F(-)) in groundwaters of granitic and basaltic terrains pose a major environmental problem and are affecting millions of people all over the world. Hydroxyapatite (HA) has been shown to be a strong sorbent for F(-); however, low permeability of synthetic HA results in poor sorption efficiency. Here we provide a novel method of synthesizing nano- to micrometer sized HA on the surfaces of granular limestone to improve the sorption efficiency of the HA-based filter. Our experiments with granular limestone (38-63, 125-500 μm) and dissolved PO4(3-) (0.5-5.3 mM) as a function of pH (6-8) and temperature (25-80 °C) indicated rapid formation of nano- to micrometer sized HA crystals on granular limestone with the maximum surface coverage at lower pH and in the presence of multiple additions of aqueous PO4(3-). The HA crystal morphology varied with the above variables. The sorption kinetics and magnitude of F(-) sorption by HA-coated-fine limestone are comparable to those of pure HA, and the F(-) levels dropped to below the World Health Organization's drinking water limit of 79 μM for F(-) concentrations commonly encountered in contaminated potable waters, suggesting that these materials could be used as effective filters. Fluorine XANES spectra of synthetic HA reacted with F(-) suggest that the mode of sorption is through the formation of fluoridated-HA or fluorapatite at low F(-) levels and fluorite at high F(-) loadings.

  7. Water-mediated structuring of bone apatite.

    PubMed

    Wang, Yan; Von Euw, Stanislas; Fernandes, Francisco M; Cassaignon, Sophie; Selmane, Mohamed; Laurent, Guillaume; Pehau-Arnaudet, Gérard; Coelho, Cristina; Bonhomme-Coury, Laure; Giraud-Guille, Marie-Madeleine; Babonneau, Florence; Azaïs, Thierry; Nassif, Nadine

    2013-12-01

    It is well known that organic molecules from the vertebrate extracellular matrix of calcifying tissues are essential in structuring the apatite mineral. Here, we show that water also plays a structuring role. By using solid-state nuclear magnetic resonance, wide-angle X-ray scattering and cryogenic transmission electron microscopy to characterize the structure and organization of crystalline and biomimetic apatite nanoparticles as well as intact bone samples, we demonstrate that water orients apatite crystals through an amorphous calcium phosphate-like layer that coats the crystalline core of bone apatite. This disordered layer is reminiscent of those found around the crystalline core of calcified biominerals in various natural composite materials in vivo. This work provides an extended local model of bone biomineralization.

  8. Ion exchanges in apatites for biomedical application.

    PubMed

    Cazalbou, S; Eichert, D; Ranz, X; Drouet, C; Combes, C; Harmand, M F; Rey, C

    2005-05-01

    The modification of the composition of apatite materials can be made by several processes corresponding to ion exchange reactions which can conveniently be adapted to current coatings and ceramics and are an alternative to setting up of new synthesis methods. In addition to high temperature thermal treatments, which can partly or almost totally replace the monovalent OH- anion of stoichiometric hydroxyapatite by any halogen ion or carbonate, aqueous processes corresponding to dissolution-reprecipitation reactions have also been proposed and used. However, the most interesting possibilities are provided by aqueous ion exchange reactions involving nanocrystalline apatites. These apatites are characterised by the existence on the crystal surface of a hydrated layer of loosely bound mineral ions which can be easily exchanged in solution. This layer offers a possibility to trap mineral ions and possibly active molecules which can modify the apatite properties. Such processes are involved in mineralised tissues and could be used in biomaterials for the release of active mineral species.

  9. Electrical properties of magnesium incorporated zinc tin oxide thin film transistors by solution process.

    PubMed

    Jeon, In Young; Lee, Ji Yoon; Yoon, Dae Ho

    2013-03-01

    Zinc tin oxide (ZTO) films were fabricated on SiO2/Si substrate as a function of Mg concentration (the ratio of 3 to 10 atomic%) using a spin-coating process. For the characterization of thin film transistors (TFTs), Zn0.3Sn0.70 channel TFT exhibited a higher on/off ratio compared to Zn0.5 Sn.0.5O channel TFT because the higher Sn concentration can induce more charge carriers. 3 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs showed stable electrical performances such as I(on/off) - 1 x 10(7), micro(sat) = 1.40 cm2 V(-1) s(-1), and S = 0.39 V/decade. However, 10 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs deteriorated their electrical performances due to Mg segregation. The Mg incorporated Zn0.3Sn0.7O channel TFTs effectively suppress off-current and threshold voltage change during positive gate bias stress due to their strong bonding with oxygen.

  10. Radionuclide removal by apatite

    SciTech Connect

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity and show how apatites might be used to environmental advantage in the future.

  11. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  12. The lunar apatite paradox.

    PubMed

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H

    2014-04-25

    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon.

  13. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    NASA Technical Reports Server (NTRS)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  14. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    NASA Technical Reports Server (NTRS)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  15. Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation

    SciTech Connect

    Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.

    2014-05-19

    The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.

  16. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite

  17. Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: Insight into vital effects

    NASA Astrophysics Data System (ADS)

    Hermans, Julie; André, Luc; Navez, Jacques; Pernet, Philippe; Dubois, Philippe

    2011-03-01

    Biogenic calcites may contain considerable magnesium concentrations, significantly higher than those observed in inorganic calcites. Control of ion concentrations in the calcifying space by transport systems and properties of the organic matrix of mineralization are probably involved in the incorporation of high magnesium quantities in biogenic calcites, but their relative effects have never been quantified. In vitro precipitation experiments performed at different Mg/Ca ratios in the solution and in the presence of soluble organic matrix macromolecules (SOM) extracted from sea urchin tests and spines showed that, at a constant temperature, magnesium incorporation in the precipitated minerals was mainly dependent on the Mg/Ca ratio of the solution. However, a significant increase in magnesium incorporation was observed in the presence of SOM compared with control experiments. Furthermore, this effect was more pronounced with SOM extracted from the test, which was richer in magnesium than the spines. According to SEM observations, amorphous calcium carbonate was precipitated at high Mg/Casolution. The observed predominant effect of Mg/Casolution, probably mediated in vivo by ion transport to and from the calcifying space, was suggested to induce and stabilize a transient magnesium-rich amorphous phase essential to the formation of high magnesium calcites. Aspartic acid rich proteins, shown to be more abundant in the test than in the spine matrix, further stabilize this amorphous phase. The involvement of the organic matrix in this process can explain the observation that sympatric organisms or even different skeletal elements of the same individual present different skeletal magnesium concentrations.

  18. A multi-material coating containing chemically-modified apatites for combined enhanced bioactivity and reduced infection via a drop-on-demand micro-dispensing technique.

    PubMed

    Lim, Poon Nian; Wang, Zuyong; Chang, Lei; Konishi, Toshiisa; Choong, Cleo; Ho, Bow; Thian, Eng San

    2017-01-01

    Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.

  19. Incommensurately Modulated Cadmium Apatites

    NASA Astrophysics Data System (ADS)

    Henning, Peter Alberius; Moustiakimov, Marat; Lidin, Sven

    2000-02-01

    Two cadmium apatites, Cd5(PO4)3Br and Cd5(VO4)3I, earlier reported to be halogenide deficient, were prime suspects of being modulated. In this study, incommensurate ordering was found in satellites occurring in planes perpendicular to c*. The structure of Cd5(PO4)3Br was refined from single-crystal X-ray diffraction data in the four-dimensional super space group R=Poverline3:(00γ): a=16.932(2) Å, c=6.451(1) Å, Z=6, R=0.043. The modulation of the structure is due to a misfit between the large halogenide ions and the surrounding rigid Ca-PO4 substructure. From the refined model of the Cd5(PO4)3Br structure a "chain-packing" model was confirmed with a Br-Br distance of 3.466 Å.

  20. Formation of an ascorbate-apatite composite layer on titanium.

    PubMed

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-09-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  1. Biomimetic apatite formation on Ultra-High Molecular Weight Polyethylene (UHMWPE) using modified biomimetic solution.

    PubMed

    Aparecida, Anahi H; Fook, Marcus V L; Guastaldi, Antonio C

    2009-06-01

    Modifications were performed on a biomimetic solution (SBF), according to previous knowledge on the behavior of ions present in its composition, in order to obtain apatite coatings onto Ultra-High Molecular Weight Polyethylene (UHMWPE) without having to use polymer pre-treatments that could compromise its properties. UHMWPE substrates were immersed into a 30% H(2)O(2) solution for a 24-h period and then submitted to a biomimetic coating method using standard SBF and two other modified SBF solutions. Apatite coatings were only obtained onto UHMWPE when the modified SBF solutions were used. Based on these results, apatite coatings of biological importance (calcium-deficient hydroxyapatite-CDHA, amorphous calcium phosphate-ACP, octacalcium phosphate-OCP, and carbonated HA) can be obtained onto UHMWPE substrates, allowing an adequate conciliation between bonelike mechanical properties and bioactivity.

  2. Ab-initio study of hexagonal apatites

    NASA Astrophysics Data System (ADS)

    Calderin, Lazaro; Stott, Malcom J.

    2001-03-01

    A silicon stabilized mixture of calcium phosphate phases has been recognized as playing an important role in actively resorbable coatings and in ceramics as bone materials. The nature of this material is being investigated using a variety of techniques including a combination of crystallographic analysis of measured x-ray diffraction spectra, and ab initio quantum mechanics simulations. We have used all-electron, density functional based calculations to investigate a group of hexagonal apatites. The fully relaxed crystallographic structures of hydroxyapatite, and related apatites have been obtained. We will present the results and discuss the nature of the bonding in these materials. The x-ray diffraction pattern and the infra-red spectra have also been obtained and will be compared with experiment. Acknowledgments:This work is part of a collaboration with the Applied Ceramics group of M.Sayer, and with Millenium Biologix Inc. Support of the NSERC of Canada through the award of a Co-operative R & D grant to the collaboration is acknowledged.

  3. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites.

    PubMed

    Guo, D G; Wang, A H; Han, Y; Xu, K W

    2009-11-01

    In this study, the physicochemical properties and biocompatibilities of La-containing apatites were intensively investigated together with their characterizations in terms of composition, structure, valent state and morphology using X-ray diffraction, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The results indicate that the La(3+) ion can be incorporated into the crystal lattice of hydroxyapatite resulting in the production of La-incorporated apatites (La(x)Ca(10-x)(PO(4))(6)(OH)(2+x-2y)O(y square y-x) (x> or =0.5, y<1+x/2) or La(x)Ca(10-x)(PO(4))(6)O(y square y-x) (0.5apatites. In contrast to La-free apatite, La-incorporated apatites possess a series of attractive properties, including higher thermal stability, higher flexural strength, lower dissolution rate, larger alkaline phosphatase activity, preferable osteoblast morphology and comparable cytotoxicity. In particular, the sintered La-incorporated apatite block achieves a maximal flexure strength of 66.69+/-0.98 MPa at 5% La content (confidence coefficient 0.95), increased 320% in comparison with the La-free apatite. The present study suggests that the La-incorporated apatite possesses application potential in developing a new type of bioactive coating material for metal implants and also as a promising La carrier for further exploring the beneficial functions of La in the human body.

  4. The Perils of Electron Microprobe Analysis of Apatite

    NASA Astrophysics Data System (ADS)

    Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.

    2010-12-01

    . Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.

  5. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  6. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  7. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    SciTech Connect

    Somrani, Saida; Banu, Mihai; Jemal, Mohamed; Rey, Christian . E-mail: christian.rey@ensiacet.fr

    2005-05-15

    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatitic phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO{sub 4}{sup 2-} ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings.

  8. Factors controlling sulfur concentrations in volcanic apatite

    USGS Publications Warehouse

    Peng, G.; Luhr, J.F.; McGee, J.J.

    1997-01-01

    Apatite crystals from two types of samples were analyzed by electron microprobe for 15 major and trace elements: (1) apatite in H2O- and S-saturated experimental charges of the 1982 El Chicho??n trachyandesite and (2) apatite in volcanic rocks erupted from 20 volcanoes. The SO3 contents of the experimental apatite increase with increasing oxygen fugacity (fo2), from ???0.04 wt% in reduced charges buffered by fayalite-magnetite-quartz (FMQ), to 1.0-2.6 wt% in oxidized charges buffered by manganosite-hausmanite (MNH) or magnetite-hematite (MTH). The SO3 contents of MNH- and MTH-buffered apatite also generally increase with increasing pressure from 2 to 4 kbar and decreasing temperature from 950 to 800??C. The partition coefficient for SO3 between apatite and oxidized melt increases with decreasing temperature but appears to be independent of pressure. Apatites in volcanic rocks show a wide range of SO3 contents (<0.04 to 0.63 wt%). Our sample set includes one group known to contain primary anhydrite and a second group inferred to have been free of primary anhydrite. No systematic differences in apatite S contents are observed between these two groups. Our study was initiated to define the factors controlling S contents in apatite and to evaluate the hypothesis that high S contents in apatite could be characteristic of S-rich anhydrite-bearing magmas such as those erupted from El Chicho??n in 1982 and Pinatubo in 1991. This hypothesis is shown to be invalid, probably chiefly a consequence of the slow intra-crystaline diffusion that limits re-equilibration between early formed apatite and the evolving silicate melt. Contributing factors include early crystallization of most apatite over a relatively small temperature interval, common late-stage magmatic enrichment of S, progressive oxidation during magmatic evolution, and strong controls on S contents in apatite exerted fo2, temperature, and pressure.

  9. In Vitro Biocompability/Osteogenesis and In Vivo Bone Formation Evalution of Peptide-Decorated Apatite Nanocomposites Assisted via Polydopamine.

    PubMed

    Deng, Yi; Sun, Yuhua; Bai, Yanjie; Gao, Xiang; Zhang, Huan; Xu, Anxiu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2016-04-01

    Enhancing the biocompatibility and osteogenic activity of nano-apatite for applications in bone graft substitutes and bone tissue engineering have been the current challenge in regeneration of lost bone. Inspired by mussels, here we have developed facile biomimetic approaches for preparation of two types of peptide-conjugated apatite nanocompsoties assisted by polydopamine (pDA). We exploited polydopamine chemistry for the modification of nano-apatite crystals: polydopamine coated apatite (HA-c-pDA) and polydopamine template-mediated apatite (HA-t-pDA), on which bone forming peptide was subsequently immobilized under weakly basic conditions to obtain peptide-conjugated apatite nanocomposites (HA-c-pep and HA-t-pep, respectively). TEM images revealed that HA-c-pDA displayed typically rod-like morphology, while HA-t-pDA was sponge-like structure where pDA sheets were decorated by needle-like apatite crystals with low degree of crystallinity. In the cell culture experiments, HA-t-pep nanocomposite exhibited higher cell proliferation, spreading, and alkaline phosphatase activity as well as calcium nodule-formation, compared with pristine nano-HA and HA-c-pep nanocomposite. We then implanted the peptide-decorated apatite into rabbit calvarial defects and analyzed bone formation after 2 months. The data revealed that HA-t-pep group exhibited remarkably enhanced bioactivity and bone formation in vivo. Based on these results, our biomimetic approach could be a promising tool to develop peptide-conjugated apatites for bone regeneration. Meanwhile, the excellent biocompatibility and high osteogenesis of the peptide-conjugated apatite nanocomposite might confer its great potentials in bone repair, bone augmentation, as well as coating of biomedical implants.

  10. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    PubMed

    Leeuwenburgh, S; Layrolle, P; Barrère, F; de Bruijn, J; Schoonman, J; van Blitterswijk, C A; de Groot, K

    2001-08-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesium, and carbonate. The ACP-coated disks then were processed further by incubation in calcium phosphate solutions to produce either crystalline carbonated apatite (CA) or octacalcium phosphate (OCP). The resorption behavior of these three biomimetic coatings was studied using osteoclast-enriched mouse bone-marrow cell cultures for 7 days. Cell-mediated degradation was observed for both carbonated apatite and octacalcium phosphate coatings. Numerous resorption lacunae characteristic of osteoclastic resorption were found on carbonated apatite after cell culture. The results showed that carbonated apatite coatings are resorbed by osteoclasts in a manner consistent with normal osteoclastic resorption. Osteoclasts also degraded the octacalcium phosphate coatings but not by classical pit formation.

  11. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid.

    PubMed

    Takeuchi, Akari; Ohtsuki, Chikara; Miyazaki, Toshiki; Tanaka, Hiromi; Yamazaki, Masao; Tanihara, Masao

    2003-05-01

    The fabrication of apatite-organic polymer hybrids is one of several attractive methods for the development of biomaterials as a substitute for bone. Such materials have both bone-bonding ability and mechanical properties analogous to natural bone. The biomimetic process has focused attention on fabricating such hybrids, where bone-like apatite is deposited on an organic polymer surface in solutions that mimic physiological conditions. In this process, a bone-like apatite layer can be coated onto organic substrates either by using a simulated body fluid (SBF) with ion concentrations nearly equal to those of human extracellular fluid, or by using fluids that are supersaturated with respect to apatite at ambient conditions. In this study, we investigated the ability of natural silk and its related materials to facilitate apatite deposition under biomimetic conditions. Cloths made of raw silk or normal silk fibers were soaked in 1.5SBF, which has 1.5 times the ion concentration of SBF. Sericin film, which is made from an extract of degummed raw silk, was soaked in 1.5SBF. The cloth and the film soaked in 1.5SBF then were characterized by scanning electron microscopic (SEM) observation, energy dispersive X-ray microanalysis (EDX), and thin-film X-ray diffraction (TF-XRD). Apatite deposition was observed on the surface of cloth made from raw silk fiber after it was soaked in 1.5SBF, but it was not observed on cloth made from normal silk fibers. The apatite deposition on the raw silk fiber cloth was accelerated when the fibers were subjected to treatment with CaCl(2) solution at a concentration of at least 1 kmol/m(3) before immersion in 1.5SBF. Apatite deposition also was observed on the sericin film after the film was soaked in 1.5SBF for 7 days. These results indicate that apatite deposition on raw silk cloth is attributable to the catalytic effect of sericin because the surface of raw silk consists of sericin whereas that of normal silk contains fibroin. The

  12. Apatite glass-ceramics: a review

    NASA Astrophysics Data System (ADS)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  13. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  14. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2017-03-21

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl2 ·2H2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017.

  15. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    PubMed Central

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  16. Phosphorus removal from wastewater by mineral apatite.

    PubMed

    Bellier, Nathalie; Chazarenc, Florent; Comeau, Yves

    2006-08-01

    Natural apatite has emerged as potentially effective for phosphorus (P) removal from wastewater. The retention capacity of apatite is attributed to a lower activation energy barrier required to form hydroxyapatite (HAP) by crystallization. The aim of our study was to test the P removal potential of four apatites found in North America. Minerals were collected from two geologically different formations: sedimentary apatites from Florida and igneous apatites from Quebec. A granular size ranging from 2.5 to 10mm to prevent clogging in wastewater applications was used. Isotherms (24 and 96 h) were drawn after batch tests using the Langmuir model which indicated that sedimentary apatites presented a higher P-affinity (K(L)=0.009 L/g) than igneous apatites (K(L) approximately 0.004 L/g). The higher density of igneous material probably explained this difference. P-retention capacities were determined to be around 0.3mg P/g apatite (24 h). A 30 mg P/L synthetic effluent was fed during 39 days to four lab-scale columns. A mixture of sedimentary material (apatite and limestone 50-50%, w/w) showed a complete P-retention during 15 days which then declined to 65% until the end of the 39 days lab scale test period. A limitation in calcium may have limited nucleation processes. The same mixture used in a field scale test showed 60% P-retention from a secondary effluent (30 mg COD/L, 10 mg Pt/L) during 65 days without clogging.

  17. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  18. [Studies on the application of apatite to dental materials. (I) --Apatite ceramics-- (author's transl)].

    PubMed

    Aoki, H; Kato, K; Ebihara, M; Inoue, M

    1976-09-01

    Apatite ceramics is composed of hydroxyapatite [Ca10(PO4)6(OH)2] sintered at high temperature. It is known that hydroxyapatite is the main component of bone and tooth minerals. There are two synthetic methods for the apatite powder. One is so called wet synthetic method: Synthesis by the reaction of Ca++ and PO4--- in the aqueous solution of approximately pH 7.0, the other is dry method: Synthesis by the solid state reaction at high temperature. The apatite powder stable below 1400 degrees C was prepared by the latter method in this work. After passing through a sieve, this powder was cold-pressed and then sintered at 1000 degrees C to 1300 degrees C in air. Biological apatite powders were also perpared as a reference. It was found that any apatite ceramics having porosity in the range of 5 to 50% could be obtained under the various sintering conditions. Compressive strength of these apatite ceramics increased with the reduction of the porosity, and those with porosity less than 20% were more than 100 kg/cm2. Vickers hardness was measured. This result showed the same tendency as that of compressibility. Hardness of the apatite ceramics with 90% relative density was almost the same or more as that of enamel. Solubility of the synthetic apatite powder in distilled water and aqueous solution of lactic acid (pH 4.0) was nearly the same as biological apatites. The dissolution rate decreased with the reduction of porosity of the ceramics. It was certified that hot pressing technique was extremely effective to obtain high density ceramics (more than 95% of density) and thus low parosity apatite ceramics. From the facts as described above, it is understood that sintered pure hydroxy-apatite is an excellent ceramics of high mechanical strength.

  19. Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds.

    PubMed

    Drouet, Christophe

    2013-01-01

    Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of "analogs" through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of "bone-like" apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the "bioactivity" of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the "actual" conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a "bone-like carbonate apatite layer" as is sometimes too hastily concluded: "all that glitters is not gold." The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making "bone-like apatites."

  20. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds

    PubMed Central

    2013-01-01

    Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.” PMID:23984373

  1. The evaluation of hydroxyl ions as a nucleating agent for apatite on electrospun non-woven poly( ϵ -caprolactone) fabric.

    PubMed

    Kim, Hyung-Sup; Um, Seung-Hoon; Rhee, Sang-Hoon

    2012-01-01

    The capacity of hydroxyl ions when used as a nucleating agent to form apatite in simulated body fluid (SBF) was investigated. A 25 wt% poly(ϵ-caprolactone) solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and was electrospun under an electric field of 1 kV/cm. Subsequently, non-woven poly(ϵ-caprolactone) fabrics were dipped into 4 M NaOH solution and the experimental group was then directly air-dried (NaOH coated), while the control group was washed with deionized water and air-dried (NaOH treated) under ambient conditions. The non-woven poly(ϵ-caprolactone) fabrics that were coated and treated with NaOH were exposed to SBF for 1 week, which resulted in the deposition of a layer of apatite crystals on the non-woven poly(ϵ-caprolactone) fabric coated with NaOH only. On the other hand, when the non-woven poly(ϵ-caprolactone) fabrics were dipped into 0.05, 0.1, 1 and 4 M NaOH solutions, respectively, air-dried, and then soaked in SBF, the apatite forming capacity was gradually increased according to the concentration of NaOH solution. These results were explained in terms of the degree of apatite supersaturation in SBF induced by the release of hydroxyl ions from the coated NaOH because hydroxyl ions are one of the constituent elements of apatite. These results suggest that hydroxyl ions have a good potential for use as a nucleating agent for apatite on a previously non-bioactive polymer surface.

  2. Crystallinity and diagenesis of sedimentary apatites

    NASA Astrophysics Data System (ADS)

    Shemesh, Aldo

    1990-09-01

    The crystallinity of sedimentary apatites was determined by Fourier transform infrared spectroscopy (FT-IR) using the splitting of a triply degenerate antisymmetric bending vibration of orthophosphate. The crystallinity indices of Recent marine apatites are low (3.0-3.6) while those of onland ancient apatites are high (4.5-7.8), indicating post-depositional recrystallization. The infrared spectra reveal that recrystallization is associated with a decrease in carbonate content substituting for PO 43- and an increase in fluoride order within the apatite structure. The relationship between the crystallinity index and PO 43- δ 18O suggests alteration of the primary isotopic composition by exchange reactions between PO 43- oxygens and surrounding waters. The Monterey samples have a large range of crystallinity index that reflects a set of complex and highly variable diagenetic conditions. This demonstrates the use of FT-IR criteria for differentiating between pristine and altered apatites and, as a consequence, for relating geochemical markers to formation or diagenetic environments. It is suggested that only those samples that have low crystallinity indices (C. I. < 3.8) should be considered as pristine apatite. Spectra of fish remains indicate that differences in rare earth element (REE) patterns correspond to variations in crystallinity, carbonate content and F order in the apatite lattice. The fact that crystallinity is not correlated with geologic age suggests that environmental factors, such as accumulation rate and pore water chemistry, govern the recrystallization process. In general, Sr content decreases and δ 18Op exhibits high variability with increasing crystallinity.

  3. From biomimetic apatites to biologically inspired composites.

    PubMed

    Tampieri, A; Celotti, G; Landi, E

    2005-02-01

    Hydroxyapatite is an elective material for bone substitution. In this outline of our recent activity the crucial role of nanostructured ceramics in the design and preparation of ceramic scaffolds will be described, focussing on our more recent interest in biomimetic apatites, in particular apatites containing HPO42- CO32- and Mg2+ which are similar to the mineral component of bone. The paper describes such nanostructured products and, in particular, innovative synthetic techniques capable of yielding powders with higher reactivity and bioactivity. However, so far the characteristics of artificial bone tissues have been shown to be very different from those of natural bone, mainly because of the absence of the peculiar self-organizing interaction between apatites and the protein component. This causes modification of the structure of apatites and of the features of the overall composite forming human bone tissue. Therefore, attempts to mimic the features and structure of natural bone tissue, leading toward so-called bio-inspired materials, will be speculated upon. New techniques used to reproduce a composite in which a nanosize blade-like crystal of hydroxyapatite (HA) grows in contact with self-assembling fibres of natural polymer will be presented. In this specific case, the amazing ability of biological systems to store and process information at the molecular level, nucleating nanosize apatites (bio-inspired material), is exploited.

  4. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.

    PubMed

    Pino, M; Stingelin, N; Tanner, K E

    2008-11-01

    The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.

  5. The volatile content of Vesta: Clues from apatite in eucrites

    NASA Astrophysics Data System (ADS)

    Sarafian, Adam Robert; Roden, Michael F.; PatiñO-Douce, Alberto E.

    2013-11-01

    Apatite was analyzed by electron microprobe in 3 cumulate and 10 basaltic eucrites. Eucritic apatite is fluorine-rich with minor chlorine and hydroxyl (calculated by difference). We confirmed the hydroxyl content by measuring hydroxyl directly in apatites from three representative eucrites using secondary ionization mass spectroscopy. Overall, most eucritic apatites resemble fluorine-rich lunar mare apatites, but intriguing OH- and Cl-rich apatites suggest a role for water and/or hydrothermal fluids in the Vestan interior or on other related differentiated asteroids. Most late-stage apatite found in mesostasis has little hydroxyl or chlorine and is thought to have crystallized from a degassed magma; however, several apatites exhibit atypical compositions and/or textural characteristics. For example, the isotopically anomalous basaltic eucrite Pasamonte has apatite in the mesostasis with significant OH. Apatites in Juvinas also have significant OH and occur as veinlets crosscutting silicates. Euhedral apatites in the Moore County cumulate eucrite occur as inclusions in pyroxene and are also hydroxyl-rich (0.62 wt% OH). The OH was confirmed by SIMS analysis and this apatite clearly points to the presence of water, at least locally, in the Vestan interior. Portions of Elephant Moraine (EET) 90020 have large and abundant apatites, which may be the product of apatite accumulation in a zone of melt-rock reaction. Relatively chlorine-rich apatites occur in basaltic eucrite Graves Nunataks (GRA) 98098 (approximately 1 wt% Cl). Particularly striking is the compositional similarity between apatite in GRA 98098 and apatites in lunar KREEP, which may indicate the presence of residual magmas from an asteroid-wide magma ocean on Vesta.

  6. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process.

    PubMed

    O'Sullivan, C; O'Hare, P; O'Leary, N D; Crean, A M; Ryan, K; Dobson, A D W; O'Neill, L

    2010-10-01

    A series of doped apatites have been deposited onto titanium (V) substrates using a novel ambient temperature blasting process. The potential of these deposited doped apatites as non-colonizing osteoconductive coatings has been evaluated in vitro. XPS, EDX, and gravimetric analysis demonstrated that a high degree of coating incorporation was observed for each material. The modified surfaces were found to produce osteoblast proliferation comparable to, or better than, a hydroxyapatite finish. Promising levels of initial microbial inhibition were observed from the Sr- and Ag-doped surfaces, with the strontium showing prolonged ability to reduce bacteria numbers over a 30-day period. Ion elution profiles have been characterized and linked to the microbial response and based on the results obtained, mechanisms of kill have been suggested. In this study, the direct contact of coated substrate surfaces with microbes was observed to be a significant contributing factor to the antimicrobial performance and the anticolonizing activity. The silver substituted apatite was observed to out-perform both the SrA and ZnA in terms of biofilm inhibition.

  7. Solubility and trapping of helium in apatite

    NASA Astrophysics Data System (ADS)

    Zeitler, Peter K.; Enkelmann, Eva; Thomas, Jay B.; Watson, E. Bruce; Ancuta, Leonard D.; Idleman, Bruce D.

    2017-07-01

    A fundamental but unquantified assumption in U-Th/He dating of apatite is that grains do not incorporate extraneous helium by solution or other processes, but large age dispersion seen in some samples suggests that this assumption might be violated. Our laboratory experiments show that helium solubility in apatite is quite low and unlikely to lead to age dispersion in most samples. However, in some samples highly variable and sometimes large helium uptake suggests that apatite grains can trap helium in microvoids that could be derived from fluid inclusions or other microstructures, a conclusion supported by crushing and step-heating experiments. The presence of such microvoids raises the possibility that closure and age systematics could be complicated either by trapping of internally generated radiogenic helium and/or alteration of helium diffusion kinetics by impeding diffusion.

  8. From supernova to Solar System: Few years only; first Solar System components apatite and spinel determined

    NASA Astrophysics Data System (ADS)

    Jungck, Matthias H. A.; Niederer, Franz R.

    2017-03-01

    We show data for the very first years of our Solar System development after an interaction between undisturbed, cold interstellar dust and supernova type II explosion gases. All manual work was done in 1976-1982 as part of 3 theses works but fundamentally new data interpretation was reached within the last three years. From the CI1 meteorite Orgueil, we are able to separate 1.4 per mill of material containing supernova related noble gases He, Ne and Ar as well as P. We separate minerals using essentially density gradient centrifugation followed by stepwise heating noble gas analysis. Our procedure loses nearly no material and is in sharp contrast to the otherwise used dissolution of >99% of material to obtain single presolar grains (Anders and Zinner, 1993). Our method safeguards minerals considerably more fragile than SiC or TiC presolar grains, such as apatite, Mg-Al-spinel, graphite clusters and even apatite coated graphite clusters. We find graphite, apatite and Mg-Al-spinel containing highly anomalous noble gases. For the first time, apatite, containing anomalous Ar with an isotope ratio for 38Ar/36Ar of 0.35, twice the normal ratio, is reported. Such a ratio is produced by a 20 solar mass type II supernova in the C-O-Ne-burning shell. Unmatched pure Ne-E from 22Na measured in the same samples sets the timeframe for this interaction to a maximum of only a few years.

  9. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  10. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  11. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    Phosphorus (P) is an important and limiting element for life. One strategy for storing ortho phosphates (Pi) is polymerization. Polymerized Pi's (polyphosphates: (PO3-)n: polyPs) serve as a Pi bank, as well as a catiion chelator, energy source, & regulator of responses to stresses in the stationary phase of culture growth and development1. PolyP biochemistry has been investigated in yeasts, bacteria & plants2. Bigeochemical cycling of P includes the condensation of Pi into pyro (P2O7-4), & polyPs, & the release of Pi from these compounds by the hydrolytic degradation of Pi from phosphomonoester bonds. Alkaline phosphatase (ALP) is one of the predominate enzymes for regenerating Pi in aquatic systems3, & it cleaves Pi from polyPs. ALP is also the enzyme associated with apatite biomineralization in vertebrates4. PolyP was proposed to be the ALP substrate in bone mineralization5. Where calcium ions are plentiful in many aquatic environments, there is no requirement for aquatic life to generate Ca-stores. However, terrestrial vertebrates benefit from a bioavailable Ca-store such as apatite. The Pi storage strategy of polymerizing PO4-3 into polyPs dovetails well with Ca-banking, as polyPs sequester Ca, forming a neutral calcium polyphosphate (Ca-polyP: (Ca(PO3)2)n) complex. This neutral complex represents a high total [Ca+2] & [PO4-3], without the threat of inadvertent apatite precipitation, as the free [Ca+2] & [PO4-3], and therefore apatite saturation, are zero. Recent identification of polyP in regions of bone resorption & calcifying cartilage5 suggests that vertebrates may use polyP chemistry to bank Ca+2 and PO4-3. In vitro experiments with nanoparticulate Ca-polyP & ALP were undertaken to determine if carbonated apatite could precipitate from 1M Ca-polyP in Pi-free “physiological fluid” (0.1 M NaCl, 2 mM Ca+2, 0.8 mM Mg+2, pH ~8.0 ±0.5, 37 °C), as this is estimated to generate the [Ca+2] & [PO4-3] required to form the apatite content of bone tissue

  12. Biological control of apatite growth in simulated body fluid and human blood serum.

    PubMed

    Juhasz, Judith A; Best, Serena M; Auffret, Antony D; Bonfield, William

    2008-04-01

    The surface transformation reactions of bioactive ceramics were studied in vitro in standard K9-SBF solution and in human blood serum (HBS)-containing simulated body fluid (SBF). The calcium phosphate ceramics used for this study were stoichiometric hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP) and brushite. Immersion of each calcium phosphate tested in this study, in simulated body fluid, led to immediate surface precipitation of apatite. The use of HBS resulted in a delay in the onset of precipitation and a significant inhibition of the dissolution reaction normally observed for brushite in solution. However, apatite formation still occurred. The use of HBS and SBF in this investigation, which has shown the ability to induce similar crystal growth as that observed in vivo, suggests that there is scope for the use of serum proteins in simulated body fluid in order to create a protein-rich surface coating on biomedical substrates.

  13. 4He Implantation in Natural Diamond: Implications for Apatite (U-Th)/He Thermochronometry

    NASA Astrophysics Data System (ADS)

    Phillips, D.; Kohn, B. P.; Gleadow, A. J.; Harris, J. W.

    2007-12-01

    Current apatite (U-Th)/He thermochronometry protocols correct for ejection of α-particles from grain margins. However, the potential for implantation of 4He into apatite grains, from primary or secondary actinide minerals, has received more limited attention. Evidence for significant natural α-fluxes in the near- surface environment is provided by surface feature and He abundance studies on diamond. Intense α- damage induces a green colour centre in diamond, enabling visual assessment of natural α-implantation doses. Diamonds with transparent green coats and/or green spots occur in most primary and detrital diamond deposits worldwide, indicating that α-implantation rates into upper crustal minerals may be more significant than previously envisaged. Experiments on transparent green-coated natural diamonds reveal implanted αHe concentrations up to 0.015 cc/g, attributed to secondary uranium phases deposited by circulating groundwater (Shelkov et al., 1998). Implantation of similar α-dosages into apatite grains would increase (U-Th)/He ages by up to several hundred percent, dependent on α-dose rate, grain dimensions and actinide content. Investigation of actinide-rich granites in Australia has revealed the common juxtaposition of apatite and actinide phases such as monazite and zircon. In addition, secondary actinide-bearing phases (e.g. uraninite) are observed along joints, fractures, miarolitic cavities and weathering fronts, thus providing additional α-sources. These results demonstrate that (U-Th)/He thermochronometry analyses of apatite, particularly from actinide-rich, weathered granites and sediments, need to evaluate the potential for 4He implantation in the near-surface environment. Insight into the extent of this problem may be achievable through multiple analyses of single grains, in situ laser probe analyses, 4He/3He step-heating experiments, abrasion of grains and/or complementary apatite fission track analyses. Reference: Shelkov, D

  14. Magnesium and carbonate in enamel and synthetic apatites.

    PubMed

    LeGeros, R Z; Sakae, T; Bautista, C; Retino, M; LeGeros, J P

    1996-11-01

    This study aimed to: determine the Mg and CO3 distribution in the outer (surface), middle, and inner (closest to the enamel-dentin junction, EDJ) layers of human enamel; and determine the factors affecting the incorporation of Mg into synthetic apatites and the consequence of such incorporation on the properties of the apatites. Results demonstrated that the concentrations of Mg, CO3, and organic components increased from the surface to the inner layers close to the EDJ and a difference in crystallinity from the outer to the inner layers. Initial results indicated that the extent of dissolution of the inner layer enamel is greater than that in the outer or surface enamel. Results on synthetic apatites showed the following: (1) Limited Mg incorporation into apatite was dependent on solution [Mg/Ca] molar ratio, temperature, pH, and the presence of CO3 or fluoride (F); (2) incorporation of Mg causes reduction in crystallinity and an increase in the extent of dissolution of the apatite; (3) the negative effect of Mg on the properties of apatites is synergistic to that of CO3 and antagonistic to that of F; and (4) exposure to acid of Mg-containing apatites causes the dissolution of Mg-rich apatite and precipitation of Mg-poor apatite. The observed decrease in the [Mg/Ca] of enamel and synthetic apatites after acid exposure may explain the observed 'preferential loss' of Mg and CO3 in the initial stages of caries.

  15. Calcium Apatite Deposition Disease: Diagnosis and Treatment

    PubMed Central

    2016-01-01

    Calcium apatite deposition disease (CADD) is a common entity characterized by deposition of calcium apatite crystals within and around connective tissues, usually in a periarticular location. CADD most frequently involves the rotator cuff. However, it can theoretically occur in almost any location in the musculoskeletal system, and many different locations of CADD have been described. When CADD presents in an unexpected location it can pose a diagnostic challenge, particularly when associated with pain or swelling, and can be confused with other pathologic processes, such as infection or malignancy. However, CADD has typical imaging characteristics that usually allows for a correct diagnosis to be made without additional imaging or laboratory workup, even when presenting in unusual locations. This is a review of the common and uncommon presentations of CADD in the appendicular and axial skeleton as well as an updated review of pathophysiology of CADD and current treatments. PMID:28042481

  16. The determination of uranium (IV) in apatite

    USGS Publications Warehouse

    Clarke, Roy S.; Altschuler, Zalman S.

    1956-01-01

    Geologic and mineralogic evidence indicate that the uranium present in apatite may proxy for calcium in the mineral structure as U(IV). An experimental investigation was conducted and chemical evidence was obtained that establishes the presence of U(IV) in apatite. The following analytical procedure was developed for the determination of U(IV). Carbonate-fluorapatite is dissolved in cold 1.5M orthophosphoric acid and fluorapatite is dissolved in cold 1.2M hydrochloric acid containing 1.5 g of hydroxylamine hydrochloride per 100 ml. Uranium (IV) is precipitated by cupferron using titanium as a carrier. The uranium in the precipitate is separated by use of the ethyl acetate extraction procedure and determined fluorimetrically. The validity and the limitations of the method have been established by spike experiments.

  17. Selenite sorption by carbonate substituted apatite

    SciTech Connect

    Moore, Robert C.; Rigali, Mark J.; Brady, Patrick

    2016-08-31

    The sorption of selenite, SeO32–, by carbonate substituted hydroxylapatite was investigated using batch kinetic and equilibrium experiments. The carbonate substituted hydroxylapatite was prepared by a precipitation method and characterized by SEM, XRD, FT-IR, TGA, BET and solubility measurements. The material is poorly crystalline, contains approximately 9.4% carbonate by weight and has a surface area of 210.2 m2/g. Uptake of selenite by the carbonated hydroxylapatite was approximately an order of magnitude higher than the uptake by uncarbonated hydroxylapatite reported in the literature. Distribution coefficients, Kd, determined for the carbonated apatite in this work ranged from approximately 4200 to over 14,000 L/kg. A comparison of the results from kinetic experiments performed in this work and literature kinetic data indicates the carbonated apatite synthesized in this study sorbed selenite 23 times faster than uncarbonated hydroxylapatite based on values normalized to the surface area of each material. Furthermore, the results indicate carbonated apatite is a potential candidate for use as a sorbent for pump-and-treat technologies, soil amendments or for use in permeable reactive barriers for the remediation of selenium contaminated sediments and groundwaters.

  18. Selenite sorption by carbonate substituted apatite

    DOE PAGES

    Moore, Robert C.; Rigali, Mark J.; Brady, Patrick

    2016-08-31

    The sorption of selenite, SeO32–, by carbonate substituted hydroxylapatite was investigated using batch kinetic and equilibrium experiments. The carbonate substituted hydroxylapatite was prepared by a precipitation method and characterized by SEM, XRD, FT-IR, TGA, BET and solubility measurements. The material is poorly crystalline, contains approximately 9.4% carbonate by weight and has a surface area of 210.2 m2/g. Uptake of selenite by the carbonated hydroxylapatite was approximately an order of magnitude higher than the uptake by uncarbonated hydroxylapatite reported in the literature. Distribution coefficients, Kd, determined for the carbonated apatite in this work ranged from approximately 4200 to over 14,000 L/kg.more » A comparison of the results from kinetic experiments performed in this work and literature kinetic data indicates the carbonated apatite synthesized in this study sorbed selenite 23 times faster than uncarbonated hydroxylapatite based on values normalized to the surface area of each material. Furthermore, the results indicate carbonated apatite is a potential candidate for use as a sorbent for pump-and-treat technologies, soil amendments or for use in permeable reactive barriers for the remediation of selenium contaminated sediments and groundwaters.« less

  19. Selenite sorption by carbonate substituted apatite

    SciTech Connect

    Moore, Robert C.; Rigali, Mark J.; Brady, Patrick

    2016-08-31

    The sorption of selenite, SeO32–, by carbonate substituted hydroxylapatite was investigated using batch kinetic and equilibrium experiments. The carbonate substituted hydroxylapatite was prepared by a precipitation method and characterized by SEM, XRD, FT-IR, TGA, BET and solubility measurements. The material is poorly crystalline, contains approximately 9.4% carbonate by weight and has a surface area of 210.2 m2/g. Uptake of selenite by the carbonated hydroxylapatite was approximately an order of magnitude higher than the uptake by uncarbonated hydroxylapatite reported in the literature. Distribution coefficients, Kd, determined for the carbonated apatite in this work ranged from approximately 4200 to over 14,000 L/kg. A comparison of the results from kinetic experiments performed in this work and literature kinetic data indicates the carbonated apatite synthesized in this study sorbed selenite 23 times faster than uncarbonated hydroxylapatite based on values normalized to the surface area of each material. Furthermore, the results indicate carbonated apatite is a potential candidate for use as a sorbent for pump-and-treat technologies, soil amendments or for use in permeable reactive barriers for the remediation of selenium contaminated sediments and groundwaters.

  20. Lunar apatite with terrestrial volatile abundances.

    PubMed

    Boyce, Jeremy W; Liu, Yang; Rossman, George R; Guan, Yunbin; Eiler, John M; Stolper, Edward M; Taylor, Lawrence A

    2010-07-22

    The Moon is thought to be depleted relative to the Earth in volatile elements such as H, Cl and the alkalis. Nevertheless, evidence for lunar explosive volcanism has been used to infer that some lunar magmas exsolved a CO-rich and CO(2)-rich vapour phase before or during eruption. Although there is also evidence for other volatile species on glass spherules, until recently there had been no unambiguous reports of indigenous H in lunar rocks. Here we report quantitative ion microprobe measurements of late-stage apatite from lunar basalt 14053 that document concentrations of H, Cl and S that are indistinguishable from apatites in common terrestrial igneous rocks. These volatile contents could reflect post-magmatic metamorphic volatile addition or growth from a late-stage, interstitial, sulphide-saturated melt that contained approximately 1,600 parts per million H(2)O and approximately 3,500 parts per million Cl. Both metamorphic and igneous models of apatite formation suggest a volatile inventory for at least some lunar materials that is similar to comparable terrestrial materials. One possible implication is that portions of the lunar mantle or crust are more volatile-rich than previously thought.

  1. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation

    PubMed Central

    Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate

  2. The chemistry of five accessory rock-forming apatites

    USGS Publications Warehouse

    Lee, Donald E.; Rose, Harry J.; Brandt, Elaine L. Munson; Van Loenen, Richard E.

    1973-01-01

    Chemical and physical data are given for five samples of rock-forming apatite from diverse geologic environments in Nevada and Colorado.  Four of these apatites contain rare-earth assemblages in which the cerium group is well represented but the yttrium group predominates.  The fifth apatite contains a highly fractionated assemblage of the lighter (cerium group) rare earths similar to the assemblage typical of alkulic rocks.

  3. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I. N.; Petrovic, R.; Janackovic, Dj.

    2007-12-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10(PO 4) 6(OH) 2, or bioglasses in the system SiO 2-Na 2O-K 2O-CaO-MgO-P 2O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* ( λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2O vapors, while the bioglass layers were deposited in O 2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.

  4. Fabrication of DNA-antibody-apatite composite layers for cell-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Yazaki, Yushin; Oyane, Ayako; Araki, Hiroko; Sogo, Yu; Ito, Atsuo; Yamazaki, Atsushi; Tsurushima, Hideo

    2012-12-01

    Surface-mediated gene transfer systems using apatite (Ap)-based composite layers have received increased attention in tissue engineering applications owing to their safety, biocompatibility and relatively high efficiency. In this study, DNA-antibody-apatite composite layers (DA-Ap layers), in which DNA and antibody molecules are immobilized within a matrix of apatite nanocrystals, were fabricated using a biomimetic coating process. They were then assayed for their gene transfer capability for application in a specific cell-targeted gene transfer. A DA-Ap layer that was fabricated with an anti-CD49f antibody showed a higher gene transfer capability to the CD49f-positive CHO-K1 cells than a DNA-apatite composite layer (D-Ap layer). The antibody facilitated the gene transfer capability of the DA-Ap layer only to the specific cells that were expressing corresponding antigens. When the DA-Ap layer was fabricated with an anti-N-cadherin antibody, a higher gene transfer capability compared with the D-Ap layer was found in the N-cadherin-positive P19CL6 cells, but not in the N-cadherin-negative UV♀2 cells or in the P19CL6 cells that were pre-blocked with anti-N-cadherin. Therefore, the antigen-antibody binding that takes place at the cell-layer interface should be responsible for the higher gene transfer capability of the DA-Ap than D-Ap layer. These results suggest that the DA-Ap layer works as a mediator in a specific cell-targeted gene transfer system.

  5. Fabrication of DNA-antibody-apatite composite layers for cell-targeted gene transfer.

    PubMed

    Yazaki, Yushin; Oyane, Ayako; Araki, Hiroko; Sogo, Yu; Ito, Atsuo; Yamazaki, Atsushi; Tsurushima, Hideo

    2012-12-01

    Surface-mediated gene transfer systems using apatite (Ap)-based composite layers have received increased attention in tissue engineering applications owing to their safety, biocompatibility and relatively high efficiency. In this study, DNA-antibody-apatite composite layers (DA-Ap layers), in which DNA and antibody molecules are immobilized within a matrix of apatite nanocrystals, were fabricated using a biomimetic coating process. They were then assayed for their gene transfer capability for application in a specific cell-targeted gene transfer. A DA-Ap layer that was fabricated with an anti-CD49f antibody showed a higher gene transfer capability to the CD49f-positive CHO-K1 cells than a DNA-apatite composite layer (D-Ap layer). The antibody facilitated the gene transfer capability of the DA-Ap layer only to the specific cells that were expressing corresponding antigens. When the DA-Ap layer was fabricated with an anti-N-cadherin antibody, a higher gene transfer capability compared with the D-Ap layer was found in the N-cadherin-positive P19CL6 cells, but not in the N-cadherin-negative UV♀2 cells or in the P19CL6 cells that were pre-blocked with anti-N-cadherin. Therefore, the antigen-antibody binding that takes place at the cell-layer interface should be responsible for the higher gene transfer capability of the DA-Ap than D-Ap layer. These results suggest that the DA-Ap layer works as a mediator in a specific cell-targeted gene transfer system.

  6. Distribution of halogens during fluid-mediated apatite replacement

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.

    2016-04-01

    Apatite (Ca5(PO4)3(F,Cl,OH)) is one the most abundant halogen containing minerals in the crust. It is present in many different rock types and stable up to P-T conditions of the mantle. Although probably not relevant for the halogen budget of the mantle, apatite is potentially a carrier phase of halogens into the mantle via subduction processes and therefore important for the global halogen cycle. Different partitioning behavior of the halogens between apatite and melt/fluids causes fractionation of these elements. In hydrothermal environments apatite reacts via a coupled dissolution-reprecipitation process that leads to apatite halogen compositions which are in (local) equilibrium with the hydrothermal fluid. This behavior enables apatite to be used as fluid probe and as a tool for tracking fluid evolution during fluid-rock interaction. Here, we present a combined experimental and field related study focused on replacement of apatite under hydrothermal conditions, to investigate the partitioning of halogens between apatite and fluids. Experiments were conducted in a cold seal pressure apparatus at 0.2 GPa and temperatures ranging from 400-700°C using halogen bearing solutions of different composition (KOH, NaF, NaCl, NaBr, NaI) to promote the replacement of Cl-apatite. The halogen composition of reacted apatite was analyzed by electron microprobe (EMPA) and secondary ion mass spectrometry (SIMS). The data was used to calculate partition coefficients of halogens between fluid and apatite. Our new partitioning data show that fluorine is the most compatible halogen followed by chlorine, bromine and iodine. Comparison between partition coefficients of the apatite-fluid system and coefficients derived in the apatite-melt system reveals values for F that are one to two orders of magnitude higher. In contrast, Cl and Br show a similar partition behavior in fluid and melt systems. Consequently, apatite that formed by fluid-rock interaction will fractionate F from Cl more

  7. Bond-coating in plasma-sprayed calcium-phosphate coatings.

    PubMed

    Oktar, F N; Yetmez, M; Agathopoulos, S; Lopez Goerne, T M; Goller, G; Peker, I; Ipeker, I; Ferreira, J M F

    2006-11-01

    The influence of bond-coating on the mechanical properties of plasma-spray coatings of hydroxyatite on Ti was investigated. Plasma-spray powder was produced from human teeth enamel and dentine. Before processing the main apatite coating, a very thin layer of Al2O3/TiO2 was applied on super clean and roughened, by Al2O3 blasting, Ti surface as bond-coating. The experimental results showed that bond-coating caused significant increase of the mechanical properties of the coating layer: In the case of the enamel powder from 6.66 MPa of the simple coating to 9.71 MPa for the bond-coating and in the case of the dentine powder from 6.27 MPa to 7.84 MPa, respectively. Both tooth derived powders feature high thermal stability likely due to their relatively high content of fluorine. Therefore, F-rich apatites, such those investigated in this study, emerge themselves as superior candidate materials for calcium phosphate coatings of producing medical devices. The methods of apatite powder production and shaping optimization of powder particles are both key factors of a successful coating. The methods used in this study can be adopted as handy, inexpensive and reliable ways to produce high quality of powders for plasma spray purposes.

  8. In Situ Immobilization of Heavy Metals in Apatite Mineral Formulations

    DTIC Science & Technology

    1995-04-01

    radionuclides. In the Milestone One Report, we reported the characteristics of various lead- contaminated soils, phosphate-containing materials, and... characteristics of apatite slurries. Several candidate emplacement strategies, their applicability, and their advantages and disadvantages are also... characteristics of apatite slurries. Several candidate emplacement strategies are explained, including injection, auguring, horizontal drilling

  9. Time and the crystallization of apatite in seawater

    USGS Publications Warehouse

    Gulbrandsen, R.A.; Roberson, C.E.; Neil, S.T.

    1984-01-01

    Carbonate fluorapatite has been synthesized in seawater in an experiment of nearly 10-years duration. The addition of phosphate to seawater whose fluoride concentration had been increased to 7.6 mg/l brought about an initial amorphous phosphate precipitate. After 20 months, a crystalline magnesium phosphate phase developed within the amorphous phosphate. Crystallization of apatite, which occurred during the last 3 years of the experiment, was accompanied by dissolution of the crystalline magnesium phosphate phase. The MgO content of the apatite (1.9 percent) is high in comparison to Tertiary and older apatite but similar to some young apatite; the CO2 content (3.6 percent) is medium, and the fluorine content (2.2 percent) is low but again similar to some young apatite. The hydroxyl ion (OH-) likely fills the need for additional fluorine-position atoms. The mole ratio of Ca plus substituent elements to P plus substituent elements (1.50) is low in comparison to the expected ratio of 1.67. The substitution of the hydronium ion (H3O+) for Ca may account for this difference. The synthesis of apatite in seawater demonstrates that the factor of time overcomes the well known inhibiting effect of magnesium upon the crystallization of apatite. It also implies that given an adequate supply of phosphate, apatite can form in most ocean environments and likely plays a major pan in the control of the phosphate content of seawater. ?? 1984.

  10. The oxidation state of sulfur in apatite: A new oxybarometer?

    NASA Astrophysics Data System (ADS)

    Fiege, A.; Konecke, B.; Kim, Y.; Simon, A. C.; Becker, U.; Parat, F.

    2016-12-01

    Oxygen fugacity (fO2) of magmatic and hydrothermal systems influences, for instance, crystallization and degassing processes as well as metal solubilities in melts and fluids. Apatite is a ubiquitous mineral in magmatic and hydrothermal environments that can record and preserve volatile zonation. It can contain several thousand μg/g of the redox sensitive element sulfur (S), making S-in-apatite a potential fO2 sensor. Despite the polyvalent properties of S (e.g., S2-, S4+, S6+), the oxidation state and incorporation mechanisms of S in the apatite structure are poorly understood. In this study, the oxidation state of S-in-apatite as a function of fO2 is investigated using X-ray absorption near-edge structures (XANES) spectroscopy at the S K-edge. Apatites crystallized from lamproitic melts at 1000°C, 300 MPa and over a broad range of fO2 and sulfur fugacities (fS2) were measured. Peaks corresponding to S6+ ( 2482 eV), S4+ ( 2478 eV) and S2- ( 2470 eV) were identified in apatite. The integrated S6+/STotal (STotal = S6+ + S4+ + S2-) peak area ratios show a distinct positive correlation with fO2, increasing from 0.17 at FMQ+0 to 0.96 at FMQ+3. Ab-initio calculations were performed to further understand the energetics and geometry of incorporation of S6+, S4+ and S2- into the apatite (F-, Cl-, OH-) end-members. The results confirm that apatite can contain three different oxidations states of S (S6+, S4+, S2-) as a function of fO2. This makes apatite probably the first geologically relevant mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions. We emphasize that the strong dependence of the S oxidation state in apatite as a function of fO2 is also coupled with changing S content of apatite and co-existing melt (i.e., with changing fS2), resulting in a complex correlation between [1] apatite-melt (or fluid) partitioning, [2] redox conditions and [3] the melt and/or fluid composition, making the application of previously

  11. Preparation and Evaluation of Two Apatites with Spherical Nanocrystal Morphology.

    PubMed

    Zhang, Yali; Li, Qihong; Li, Xiaojie; Li, Yong; Wang, Chunhui; Zhao, Yantao; Song, Yingliang; Liu, Yanpu

    2016-03-01

    Spherical nanocrystal of apatite has been proved to be beneficial for osteoblast growth. Two apatites with spherical nanocrystal morphology were prepared in this study by chemical wet method and further sintering process. SEM exhibited that both apatites had spherical nanocrystal morphology. The crystal morphology and size was approaching to each other. XRD showed the apatites separately were hydroxyapatite and tricalcium phosphate phases. The cellular biocompatibility was evaluated by osteoblasts for these two spherical nanocrstal apatites. The MTT result indicated a higher cell proliferation rate for spherical tricalcium phosphate group. The ALP activity assay also strongly favored the tricalcium phosphate group. RT-PCR results indicated that Collagen I had a higher transcription level on the spherical tricalcium phosphate group. SEM results showed robust cell growth on the materials. It was concluded that the spherical nanophase tricalcium phosphate was superior to the cellular biocompatibility of spherical nanophase hydroxyapatite and the results were helpful in the manufacture of more suitable tissue engineering scaffolds.

  12. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    SciTech Connect

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  13. Apatite-Melt Partitioning of Volatiles in Basaltic Systems: Implications for Determining Volatile Abundances in Planetary Bodies from Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials, and due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources [i.e., 1]. Experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in basaltic systems [e.g., 2- 3], reporting that apatite-melt partitioning of volatiles is best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, exchange coefficients may vary as a function of temperature, pressure, melt composition, and/or oxygen fugacity. Furthermore, exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite [3]. In these regions of ternary space, we anticipate that crystal chemistry could influence partitioning behavior. Consequently, we conducted experiments to investigate the effect of apatite crystal chemistry on apatite-melt partitioning of F, Cl, and OH.

  14. Apatite as a Tool for Tracking Magmatic CO2 Contents

    NASA Astrophysics Data System (ADS)

    Riker, J.; Humphreys, M.; Brooker, R. A.

    2014-12-01

    CO2 plays a fundamental role in the evolution of magmatic and volcanic systems, but its low solubility in silicate melts means that direct records of magmatic CO2 concentrations remain elusive. The phosphate mineral apatite is unique among igneous minerals in its capacity to accommodate all major magmatic volatiles (H2O, F, Cl, CO2 and S). Although interest in apatite as a tool for tracking magmatic volatile contents (namely H2O, F, and Cl) has increased in recent years, its potential as a record of magmatic CO2contents remains untapped. We present the results of high-temperature, high-pressure experiments investigating the partitioning behaviour of CO2 between apatite and basaltic melt. Experiments were run in piston cylinder apparatus at 1 GPa and 1250 °C, with a slow initial cooling ramp employed to facilitate crystal growth. Each charge contained the starting basaltic powder doped with Ca-phosphate and variable proportions of H2O, CO2, and F. Run products are glass-rich charges containing 15-25 vol% large, euhedral apatite crystals (± cpx and minor biotite). Experimental apatites and glasses have been characterised by BSE imaging, electron microprobe, and ion microprobe. Apatites range in composition from near-endmember fluorapatite (3.0 wt% F), to near-endmember hydroxyapatite (1.7 wt% H2O), to carbon-rich apatite containing up to 1.6 wt% CO2. Apatite compositions are stoichiometric if all anions (F-, OH-, and CO32—) lie in the channel site, suggesting an "A-type" substitution under these conditions (i.e. CO32— + [] = 2X—, where X is another channel anion and [] is a vacancy; e.g. Fleet et al. 2004). Importantly, CO2 partitions readily into apatite at all fluid compositions considered here. CO2 is also more compatible in apatite than water at our run conditions, with calculated H2O-CO2 exchange coefficients close to or greater than 1. Our results indicate that when channel ions are primarily occupied by H2O and CO2 (i.e. F- and Cl-poor magmatic systems

  15. Sulfur evolution of the 1991 Pinatubo magmas based on apatite

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Streck, M. J.; Pallister, J. S.

    2011-12-01

    The 1991 eruptions of Mt. Pinatubo, Philippines, were triggered by basaltic recharge into the 50 km3 dacitic magma reservoir, and released 20 million tonnes of SO2 into the stratosphere. Three primary juvenile products erupted: dacite, hybrid andesite, and basaltic inclusions. Sulfur bearing apatites occur in all three juvenile components, yet observed S content is variable. Basaltic magma includes only high-S (>0.7 wt.% SO3) apatites, while dacitic and hybrid andesitic magmas carry low- (<0.3 wt.% SO3), med.- (0.3-0.7 wt.% SO3), and high-S apatites. Pre-eruption conditions (~780°C, 220 MPa, NNO+1.7, and 77 ppm S) (Rutherford & Devine, 1996; Scaillet & Evans, 1999) and a partition coefficient of 13 (Baker & Rutherford, 1996) could yield only low-S apatite containing up to 0.25 wt.% SO3, which is consistent with the SO3 concentrations found in large (≤200 μm) apatite microphenocrysts in glass. Med.-S apatite would still be consistent with pre-eruption conditions if melt sulfur was once at the solubility maximum of ~350 ppm (cf., Clemente et al., 2004). However, concentrations of SO3 in nearly 30% of dacite-hosted apatites analyzed exceeded 0.7 wt.%, which is much higher than can be achieved through apatite/melt equilibrium partitioning. Such high-S apatite of dacite occur only as inclusions in other phenocrysts (anhydrite, plagioclase, hornblende, and Fe-Ti oxide) and were likely generated during conditions leading to accumulation of the pre-eruptive, separate S gas phase responsible for the "excess sulfur" at Pinatubo. Other explanations, such as inheritance from mafic magmas or diffusional exchange with closely associated anhydrite, can be ruled out. Evidence against the former is found in distinct crystal populations based on major (e.g. Mg, Cl) and trace elements (e.g. total REE, Eu/Eu*, Sr), separating "silicic" apatites (i.e. those hosted in dacite or andesite, irrespective of S content) from basalt apatites. S element maps of apatites hosted by anhydrite

  16. Bonding strength of the apatite layer formed on glass-ceramic apatite-wollastonite-polyethylene composites.

    PubMed

    Juhasz, J A; Best, S M; Kawashita, M; Miyata, N; Kokubo, T; Nakamura, T; Bonfield, W

    2003-12-01

    Bioactive glass-ceramic apatite-wollastonite (A-W) has been incorporated into polyethylene in particulate form to create new bioactive composites for potential maxillofacial applications. The effects of varying the volume fraction of glass-ceramic A-W filler and the glass-ceramic A-W particle size were investigated by measuring the bonding strength of the bonelike apatite layer formed on the surface of glass-ceramic A-W-polyethylene composites. The bonding strength was evaluated via a modified ASTM C-333 standard in which a tensile stress was applied to the substrate and the strength of the bioactive layer was compared with that formed on commercially available hydroxyapatite-polyethylene composite samples, HAPEX. The composites demonstrated greater bonding strength with increased filler content and reduced filler particle size (maximum 6.9 +/- 0.5 MPa) and a marginally greater bonding strength as compared with HAPEX (2.8 +/- 0.5 MPa), when glass-ceramic A-W-polyethylene composite samples with the same filler content were tested. The higher bonding strength of the apatite layer formed on the A-W-polyethylene composite samples suggests that, in addition to maxillofacial applications, these composites might also be utilized in applications involving higher levels of load bearing.

  17. Chemical solution deposition of the highly c-axis oriented apatite type lanthanum silicate thin films.

    PubMed

    Hori, Shigeo; Takatani, Yasuhiro; Kadoura, Hiroaki; Uyama, Takeshi; Fujita, Satoru; Tani, Toshihiko

    2015-10-28

    Highly c-axis oriented apatite-type lanthanum silicate (LSO) thin films were fabricated by a simple solution coating method. In the solution coating method, LSO thin films are obtained by crystallization of initially deposited amorphous LSO precursor thin films. The degree of orientation was influenced by the precursor morphologies and a dense LSO precursor led to a high c-axis orientation perpendicular to the substrate. The oriented LSO thin films were composed of columnar grains with a single crystal orientation over the entire film thickness. In-plane orientation was not detected, which indicates that the c-axis orientation of the LSO thin films can be attributed to self-orientation.

  18. The compressibility of a natural apatite

    NASA Astrophysics Data System (ADS)

    Matsukage, K. N.; Ono, S.; Kawamoto, T.; Kikegawa, T.

    2004-12-01

    In-situ synchrotron X-ray diffraction (XRD) experiments of a natural apatite with the formula of Ca5(PO4)3F0.94Cl0.06 were carried out using a diamond anvil cell and angle-dispersive technique at Photon Factory (PF), Japan. Pressure volume data were collected up to 7.12 GPa at 300 K. The pressures were determined from the ruby fluorescence spectra shift. The unit-cell parameters and volume decreased systematically with increasing pressure, and a reliable isothermal bulk modulus and its pressure derivative were obtained in this study. The third-order Birch Murnaghan equation of state yielded the isothermal bulk modulus of KT=91.5(38) GPa, its pressure derivative KT‧= 4.0(11), and the zero-pressure volume V0=524.2(3) Å3.

  19. Properties of heterogeneous apatites containing magnesium, fluoride, and carbonate.

    PubMed

    Okazaki, M; LeGeros, R Z

    1996-11-01

    Biological apatites present in the mineral phases of normal and pathological calcifications contain magnesium, Mg, and carbonate, CO3. As a consequence of fluctuations in the composition of the micro-environment, these apatites may sometimes form by heterogeneous precipitation. The purpose of this study was to investigate the properties of (Mg, CO3)-apatites formed heterogeneously in the presence of fluoride, F. Two types of fluoridated (Mg, CO3)-apatites formed from solutions with low and high levels of Mg were prepared at 80 degrees C, pH 7.4. We prepared FMgCO3-MgCO3AP (Type 1) by adding the F-containing solution to those containing calcium, Mg, and phosphate ions during the first half of the precipitation period. We prepared MgCO3-FMgCO3Ap (Type 2) by adding the F-containing solution during the final half of the period. The apatites were analyzed by x-ray diffraction (XRD), infrared absorption spectroscopy, and scanning electron microscopy (SEM). SEM and XRD analyses showed evidence of mixed crystals in the heterogeneous apatites. The presence of Mg inhibits, while F promotes, apatite crystal growth. In addition, Mg incorporation increased with increasing fluoride concentration. The extent of dissolution in acid buffer of both types of heterogeneous apatites increased with Mg: Type 1 > Type 2. These results suggest that the crystal and dissolution properties of heterogeneous fluoridated (Mg, CO3)-apatites are greatly affected by the mode of F incorporation and Mg concentrations in the environment.

  20. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants.

    PubMed

    Kim, Hae-Won; Kim, Hyoun-Ee; Knowles, Jonathan C

    2004-08-01

    Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) films were deposited on a titanium substrate using a sol-gel technique. Different concentrations of F- were incorporated into the apatite structure during the sol preparation. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 500 degrees C. The films obtained were uniform and dense, with a thickness of approximately 5 microm. The dissolution rate of the coating layer decreased with increasing F- incorporation within the apatite structure, which demonstrates the possibility of tailoring the solubility by a functional gradient coating of HA and FHA. The cell proliferation rate on the coating layer decreased slightly with increasing F- incorporation. The alkaline phosphatase (ALP) activity of the cells on all the HA and FHA coated samples showed much higher expression levels compared to pure Ti. This confirmed the improved activity of cell functions on the substrates with the sol-gel coating treatment.

  1. A nitrogen doped TiO2 layer on Ti metal for the enhanced formation of apatite.

    PubMed

    Hashimoto, Masami; Kashiwagi, Kazumi; Kitaoka, Satoshi

    2011-09-01

    Biomedical titanium metals subjected to gas under precisely regulated oxygen partial pressures (P(O2)) from 10(-18) to 10(5) Pa at 973 K for 1 h were soaked in a simulated body fluid (SBF), whose ion concentrations were nearly equal to those of human blood plasma, at 36.5°C for up to 7 days. The effect of oxygen partial pressures on apatite formation was assessed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements. After heating, the weight of the oxide layer (mainly TiO(2)) formed on the titanium metal was found to increase with increased oxygen partial pressure. Nitrogen (N)-doped TiO(2) (Interstitial N) was formed under a P(O2) of 10(-14) Pa. At lower P(O2) (10(-18) Pa), only a titanium nitride layer (TiN and Ti(2)N) was formed. After soaking in SBF, apatite was detected on heat-treated titanium metal samples. The most apatite was formed, based on the growth rate calculated from the apatite coverage ratio, on the titanium metal heated under a P(O2) of 10(-14) Pa, followed by the sample heated under a P(O2) of 10 and 10(4) Pa (in N(2)). The titanium metal heated under a P(O2) of 10(5) Pa (in O(2)) experienced far less apatite formation than the former three titanium samples. Similarly, very little weight change was observed for the titanium metal heated under a P(O2) of 10(-18) Pa (in N(2)). During the experimental observation period (5 days, 36.5°C, SBF), the following relationship held: The growth rate of apatite decreased in the order P(O2) of 10(-14) Pa > P(O2) of 10 Pa ≥ P(O2) of 10(4) Pa > P(O2) of 10(5) Pa > > P(O2) of 10(-18) Pa. These results suggest that N-doped TiO(2) (Interstitial N) strongly induces apatite formation but samples coated only with titanium nitride do not. Thus, controlling the formation of N-doped TiO(2) is expected to improve the bioactivity of biomedical titanium metal.

  2. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold.

  3. Apatite Biomineralization: Model Studies of Composition and Kinetics

    NASA Astrophysics Data System (ADS)

    Tecklenburg, M. M. J.; Urbanawiz, S. A.; Derry, A. W.; Ling, M. L.; Zhou, D.; Pavan, B.

    2014-06-01

    Biomineralization of bone and teeth is modeled via studies of apatite crystallization to assess the effects of constituent ions and centrifugal force on kinetics of the amorphous to crystalline phase transition.

  4. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  5. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    PubMed Central

    Liu, Quan; Matinlinna, Jukka Pekka; Chen, Zhuofan; Pan, Haobo

    2013-01-01

    Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite. PMID:24078928

  6. EPR properties of synthetic apatites, deorganified dentine, and enamel.

    PubMed

    Kenner, G H; Haskell, E H; Hayes, R B; Baig, A; Higuchi, W I

    1998-05-01

    Electron paramagnetic resonance spectroscopy (EPR) was used to study synthetic hydroxyapatite and approximately 1, 2, and 6% synthetic carbonated apatites, deorganified dentine, and enamel. The carbonated apatites were synthesized by hydrolysis of dicalcium phosphate. Comparisons were made with spectra from enamel and deorganified dentine. Microwave power saturation and dose responses were determined for the synthetic materials. The Marquardt version of the Levenberg decomposition method was used to extract individual signals from the apatite data. Two samples of dentine were irradiated with 25 and 100 Gy, respectively, from a 60Co source. The first sample was then deorganified at 200 degreesC using the Soxhlet extraction technique. A third sample was irradiated with 100 Gy after deorganification. The resulting EPR spectra were then compared. It was determined that the dosimetric signal of 2% synthetic carbonated apatite was approximately the same as that of enamel. It was also verified that the dosimetric signal saturates at about 2% in synthetic carbonated apatites. The study established that the precenters responsible for the dosimetric signal (g perpendicular = 2.0018, g parallel = 1.9985) are preferentially concentrated in the surface-accessible region of the mineral component, as shown by the approximately 80% attenuation of the dosimetric signal in dentine following deorganification. The precenters responsible are not destroyed by the deorganification since the magnitude of the dosimetric signal from the dentine specimen irradiated following deorganification was approximately twice that of the comparable untreated, irradiated sample. Finally, the dose response of 2 and 6% synthetic carbonated apatites was determined.

  7. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  8. Rare earth elements in old biogenic apatites

    SciTech Connect

    Grandjean-Lecuyer, P.; Albarede, F. ); Feist, R. )

    1993-06-01

    The REE distributions in individual Upper Devonian conodonts have been measured by ion probe. The patterns of all analyzed conodonts are enriched in middle REE (Eu-Gd) and have a weak or no Ce anomaly. Concentrations and La/Yb or La/Sm ratios vary very little within or among individuals from the same zone, which suggests that uptake or labile REE from sediments was essentially quantitative. Therefore, the REE signature of the primary carriers, probably organic and oxyhydroxides particulates from marine suspensions, was efficiently transferred to biogenic apatites and survived late diagenetic processes. REE patterns of conodonts do not resemble those of present-day seawater and post-Cretaceous biogenic phosphates, which are typically depleted in Nd and Sm with a negative Ce anomaly. Since REE distributions in the modern water column mimic those of nutrients, the authors assume that, in pre-Cretaceous seawater, they were not controlled by surface biological activity. They assume instead that REE in pre-Cretaceous seawater can be explained by mechanisms of desorption-adsorption on particle surfaces. Progressive extraction of LREE from river water by oxyhydroxides leads to precipitates enriched in middle REE. A simple quantitative model was calculated in order to illustrate the proposed mechanism. 43 refs., 5 figs., 1 tab.

  9. Modeling biominerals formed by apatites and DNA.

    PubMed

    Revilla-López, Guillermo; Casanovas, Jordi; Bertran, Oscar; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2013-12-01

    Different aspects of biominerals formed by apatite and DNA have been investigated using computer modeling tools. Firstly, the structure and stability of biominerals in which DNA molecules are embedded into hydroxyapatite and fluoroapatite nanopores have been examined by combining different molecular mechanics methods. After this, the early processes in the nucleation of hydroxyapatite at a DNA template have been investigated using molecular dynamics simulations. Results indicate that duplexes of DNA adopting a B double helix can be encapsulated inside nanopores of hydroxyapatite without undergoing significant distortions in the inter-strand hydrogen bonds and the intra-strand stacking. This ability of hydroxyapatite is practically independent of the DNA sequence, which has been attributed to the stabilizing role of the interactions between the calcium atoms of the mineral and the phosphate groups of the biomolecule. In contrast, the fluorine atoms of fluoroapatite induce pronounced structural distortions in the double helix when embedded in a pore of the same dimensions, resulting in the loss of its most relevant characteristics. On the other hand, molecular dynamics simulations have allowed us to observe the formation of calcium phosphate clusters at the surface of the B-DNA template. Electrostatic interactions between the phosphate groups of DNA and Ca(2+) have been found to essential for the formation of stable ion complexes, which were the starting point of calcium phosphate clusters by incorporating PO3(4) from the solution.

  10. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    NASA Astrophysics Data System (ADS)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  11. Apatite at Olympic Dam, South Australia: A petrogenetic tool

    NASA Astrophysics Data System (ADS)

    Krneta, Sasha; Ciobanu, Cristiana L.; Cook, Nigel J.; Ehrig, Kathy; Kontonikas-Charos, Alkis

    2016-10-01

    The > 10,000 million tonne Olympic Dam Cu-Au-U-Ag deposit, (eastern Gawler Craton, South Australia) is one of the largest orebodies in the World. The deposit is hosted within the Olympic Dam Breccia Complex, placed at the centre of, and resulting from multiple brecciation and Fe-metasomatism of the Roxby Downs Granite (RDG). The latter is part of a larger batholith emplaced at 1.6 Ga. Apatite petrography and chemistry were studied in non-mineralised RDG and coeval granitoids and dolerites, as well as in mineralised RDG from deep (> 2 km) and distal (2.7 km to NE) locations. In both latter cases, although the mineralisation corresponds to the same, early chalcopyrite-pyrite-magnetite ± hematite stage identified in the outer and deeper zones of the deposit itself, the character of granite alteration differs: sericite-chlorite alteration with all feldspar replaced in the deep location; and red-stained K-feldspar on top of prevailing albitization in the distal location. Close-to end-member fluorapatite is a key accessory mineral in all igneous rocks and a common product of early hydrothermal alteration within mineralised granite. Variations in habit, morphology and textures correlate with chemical trends expressed as evolving Cl/F ratios, and concentrations of REE + Y (hereafter REY), Sr, Mn, S, Si and Na. Magmatic apatite is unzoned in the dolerite but features core to REY-enriched rim zonation in the granitoids. Increases in Cl- and Sr-contents correlate with rock basicity. Calculation of Cl in the vapour phase relative to melt at the apatite saturation temperature for zoned apatite in the RDG shows higher values for grains with inclusion-rich cores associated with mafic enclaves, concordant with assimilation of exotic material during magma crystallisation. Hydrothermal alteration of magmatic apatite is most varied in the dolerite where interaction with fluids is expressed as subtle changes in Cl- versus F- and REY-enrichment, and most importantly, S-enrichment in

  12. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C.

  13. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    PubMed

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sol-gel hydroxyapatite coatings on stainless steel substrates.

    PubMed

    Liu, Dean-Mo; Yang, Quanzu; Troczynski, Tom

    2002-02-01

    Thin film hydroxyapatite deposits onto sandblasted 316L stainless steel substrates were prepared using water-based sol-gel technique recently developed in our lab. The coatings were annealed in air at 375 degrees C, 400 degrees C, and 500 degrees C. Phase formation, surface morphology, interfacial microstructure, and interfacial bonding strength of the coatings were investigated. Apatitic structure developed within the coatings while annealing at temperatures > or = 400 degrees C, while those heat-treated at 375 degrees C showed poor crystallinity. The coatings were dense and firmly attached to the underlying substrates, reaching an average bonding strength (as determined through the pull-out test) of 44 MPa. Nano-porous structure was found for the coatings annealed at 500 degrees C, believed to result from grain growth, and causing a slight decrease in the bonding strength. Surface microcracking, although not extensive, occurred after annealing at temperatures > or = 400 degrees C, and was linked to non-uniform thickness of the coating due to roughness of the substrate. A contraction of the coatings as a result of sintering, and phase transition from amorphous (or poor crystalline) to reasonably good crystalline apatite, may be responsible for the loss of structural integrity of the thicker sections of the coatings. It seems quite promising that a dense and adhesive apatite coating can be achieved through water-based sol gel technology after short-term annealing at around 400 degrees C in air.

  15. Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites.

    PubMed

    Pascaud, Patricia; Gras, Pierre; Coppel, Yannick; Rey, Christian; Sarda, Stéphanie

    2013-02-19

    Bisphosphonates (BPs) are well established as successful antiresorptive agents for the prevention and treatment of bone diseases such as osteoporosis and Paget's disease. The aim of this work was to clarify the reaction mechanisms between a BP molecule, tiludronate, and the nanocrystalline apatite surface. The adsorption of tiludronate on well-characterized synthetic biomimetic nanocrystalline apatites with homogeneous but different compositions and surface characteristics was investigated to determine the effect of the nanocrystalline apatite substrate on the adsorption behavior. The results show that the adsorption of tiludronate on nanocrystalline biomimetic apatite surfaces varies over a large range. The most immature apatitic samples exhibited the highest affinity and the greatest amount adsorbed at saturation. Maturation of the nanocrystals induces a decrease of these values. The amount of phosphate ion released per adsorbed BP molecule varied, depending on the nanocrystalline substrate considered. The adsorption mechanism, although associated with a release of phosphate ions, cannot be considered as a simple ion exchange process involving one or two phosphate ions on the surface. A two-step process is proposed consisting of a surface binding of BP groups to calcium ions associated with a proton release inducing the protonation of surface orthophosphate ions and their eventual solubilization.

  16. Cementless hydroxyapatite coated hip prostheses.

    PubMed

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda; Gracia, Luis

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  17. Cementless Hydroxyapatite Coated Hip Prostheses

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  18. Apatite: A new redox proxy for silicic magmas?

    NASA Astrophysics Data System (ADS)

    Miles, A. J.; Graham, C. M.; Hawkesworth, C. J.; Gillespie, M. R.; Hinton, R. W.; Bromiley, G. D.

    2014-05-01

    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this paper we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+ and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO2) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively (Stephens et al., 1985). This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO2, such that logfO=-0.0022(±0.0003)Mn(ppm)-9.75(±0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions.

  19. Tetracycline-loaded biomimetic apatite: an adsorption study.

    PubMed

    Cazalbou, Sophie; Bertrand, Ghislaine; Drouet, Christophe

    2015-02-19

    Biomimetic apatites are appealing compounds for the elaboration of bioactive bone-repair scaffolds due to their intrinsic similarity to bone mineral. Bone surgeries are however often heavy procedures, and the infiltration of pathogens may not be totally avoided. To prevent their development, systemic antibiotic prophylaxis is widespread but does not specifically target surgical sites and involves doses not always optimized. A relevant alternative is a preliminary functionalization by an infection-fighting agent. In this work, we investigated from a physicochemical viewpoint the association of a wide-spectrum antibiotic, tetracycline (TC), and a biomimetic nanocrystalline apatite previously characterized. TC adsorption kinetics and isotherm were thoroughly explored. Kinetic data were fitted to various models (pseudo-first-order, pseudo-second-order, general kinetic model of order n, Elovich, double-exponential, and purely diffusive models). The best fit was found for a double-exponential kinetic model or with a decimal reaction order of 1.4, highlighting a complex process with such TC molecules which do not expose high-affinity end groups for the surface of apatite. The adsorption isotherm was perfectly fitted to the Sips (Langmuir-Freundlich) model, while other models failed to describe it, and the Sips exponent greater than unity (1.08) suggested a joint impact of surface heterogeneity and positive cooperativity between adsorbed molecules. Finally, preliminary insights on TC release from pelletized nanocrystalline apatite, in aqueous medium and neutral pH, were obtained using a recirculation cell, indicating a release profile mainly following a Higuchi-like diffusion-limited rate. This work is intended to shed more light on the interaction between polar molecules not exhibiting high-affinity end groups and biomimetic apatites and is a starting point in view of the elaboration of biomimetic apatite-based bone scaffolds functionalized with polar organic drugs for a

  20. Calibration for Infrared Measurements of OH in Apatite

    NASA Astrophysics Data System (ADS)

    Wang, K. L.; Naab, F.; Zhang, Y.

    2010-12-01

    Apatite is a common accessory mineral, and OH in apatite can indicate the fluid conditions of crystal formation. Previously, water (OH) concentration in apatite has often been estimated through electron microprobe analyses combined with mineral stoichiometry. However, the detection limit, precision, and accuracy of this method are not high. In this work, we calibrated the infrared spectroscopy (IR) method for measurement of OH concentration in apatite by using elastic recoil detection (ERD) analysis to obtain the absolute OH concentration. Large apatite wafers were cut perpendicular to the c-axis of each crystal and doubly polished. ERD measurements were carried out in the Michigan Ion Beam Laboratory at the University of Michigan to determine the hydrogen concentration in each sample. Each ERD spectrum was fitted and a hydrogen standard was used to quantify the hydrogen concentrations. Polarized transmission IR was used on apatite sections that were cut parallel to the c-axis, and doubly polished. IR measurements were made for E-vector parallel to the c-axis. Because the OH peak is intense, very thin samples must be used to avoid absorbance saturation; the thinnest sample (corresponding to the highest OH content) used was 17 µm thick. Four different apatite crystals were successfully analyzed using both the IR and ERD methods. Two were from Durango, Mexico; one from Imilchil, High Atlas Mountains, Morocco; and one from an unknown locality, purchased online from gem dealers. The OH peak near 3550 cm-1 was a relatively simple peak in all four samples. Therefore peak height was used for the absorbance value, A. Using the Beer-Lambert Law, a calibration line was established (R2= 0.95, for IR aperture of 50 µm x 50 µm) where the weight % of H2O is 0.013 times A/d, where d is the thickness in mm. The detection limit of H2O concentration in apatite by IR approaches ppm level for 0.1 mm wafers, the precision is better than 1% relative (depending on H2O content), and

  1. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  2. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  3. Carbon and oxygen isotopes in apatite CO/sub 2/ and co-existing calcite

    SciTech Connect

    Kolodny, Y.; Kaplan, I. R.

    1981-04-01

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO/sub 2/ and in co-existing calcite. Both C and O in apatite CO/sub 2/ are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure.

  4. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  5. Calcium apatite crystals in synovial fluid rice bodies.

    PubMed

    Li-Yu, J; Clayburne, G M; Sieck, M S; Walker, S E; Athreya, B H; DeHoratius, R J; Schumacher, H R

    2002-05-01

    Rice bodies can occur in the joints in many rheumatic conditions, but they are most common in rheumatoid arthritis. They are generally believed to occur rarely in patients with osteoarthritis, but one study reported rice bodies with apatite crystals. To report on a series of joint fluids with rice bodies containing apatite clumps and examine their clinical pictures. All synovial fluid analysis reports for 10 years were reviewed for rice bodies and eight patients were reported on. A series of patients with a variety of diseases with synovial fluid rice bodies found to contain calcific material is described. All were examined by compensated polarised light and alizarin red stain, and four were examined by electron microscopy. The eight patients all had alizarin red S chunks embedded throughout the rice body. Transmission electron microscopy disclosed the presence of a matrix of collagen, fibrin, and amorphous materials containing typical apatite crystals. Clinical diagnoses, radiographic findings, and leucocyte counts varied, but six of the eight patients had had previous repeated corticosteroid injections into the joints. Aggregates of apatites may be more common than previously recognised in rice bodies as they are not routinely sought. Whether they are a result of joint damage or depot steroid injections and whether that might contribute to further joint injury now needs to be investigated.

  6. Calcium apatite crystals in synovial fluid rice bodies

    PubMed Central

    Li-Yu, J; Clayburne, G; Sieck, M; Walker, S; Athreya, B; DeHoratius, R; Schumacher, H

    2002-01-01

    Background: Rice bodies can occur in the joints in many rheumatic conditions, but they are most common in rheumatoid arthritis. They are generally believed to occur rarely in patients with osteoarthritis, but one study reported rice bodies with apatite crystals. Objective: To report on a series of joint fluids with rice bodies containing apatite clumps and examine their clinical pictures. Methods: All synovial fluid analysis reports for 10 years were reviewed for rice bodies and eight patients were reported on. A series of patients with a variety of diseases with synovial fluid rice bodies found to contain calcific material is described. All were examined by compensated polarised light and alizarin red stain, and four were examined by electron microscopy. Results: The eight patients all had alizarin red S chunks embedded throughout the rice body. Transmission electron microscopy disclosed the presence of a matrix of collagen, fibrin, and amorphous materials containing typical apatite crystals. Clinical diagnoses, radiographic findings, and leucocyte counts varied, but six of the eight patients had had previous repeated corticosteroid injections into the joints. Conclusion: Aggregates of apatites may be more common than previously recognised in rice bodies as they are not routinely sought. Whether they are a result of joint damage or depot steroid injections and whether that might contribute to further joint injury now needs to be investigated. PMID:11959760

  7. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    PubMed

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs.

  8. Fabrication of synthetic apatites by solid-state reactions.

    PubMed

    Fazan, F; Shahida, K B N

    2004-05-01

    The paper presents a method of producing synthetic Hydroxyapatite (HA) Ca10(PO4)6(OH)2 and other apatites for biological use by solid-state reaction. The solid-state reaction involves mix-grinding dry powders of beta-tricalcium phosphate powder (TCP) and either calcium hydroxide (Ca(OH)2) or calcium carbonate (CaCO3) or combination thereof, from pure commercial chemicals or derived from natural limestone or from seashells, of total calcium/phosphorus molar ratio between 1.5 to 2.0, to particle size of less than 10 microns, and firing the resultant powder to temperature between 600 degrees C - 1250 degrees C in atmosphere or in controlled atmospheric condition. The resultant apatites formed were characterised using XRD, SEM-EDX and FTIR. The presented reaction process was found to be much simpler compared to conventional methods of producing synthetic apatites since it involves only dry mix-grinding of the reactants before firing at high temperatures based on the required levels of purity. It can also produce synthetic apatites with good reproducibility in a shorter time. Thus the presented method has a great industrial value.

  9. Trace Element Abundances in Extraterrestrial Apatite and Merrillite

    NASA Astrophysics Data System (ADS)

    Ward, D.; Bischoff, A.; Roszjar, J.; Berndt, J.; Whitehouse, M. J.

    2016-08-01

    The trace element abundances (Sc, Ti, V, Cr, Mn, Co, As, Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Pb, Th, U, as well as the REE) of 133 apatite and 163 merrillite grains from 24 meteorites, covering 9 different classes were analyzed by LA-ICP-MS and SIMS.

  10. In Situ Immobilization of Heavy Metals in Apatite Mineral Formulations

    DTIC Science & Technology

    1995-09-01

    Metals into Apatites Milestone Five Report September, 1995 119 PTI Environmental Services. 1994. "Bioavailability of Lead." Rai, D., Felmy , A.R. and Moore...crystalline CdCO 3 . Journal of Solution Chemistry, v. 20, p. 1169- 1187. Rai, D., Felmy , A.R. and Szelmeczka, R.W. 1991a. Hydrolysis constants and

  11. Apatite: a new redox proxy for silicic magmas?

    NASA Astrophysics Data System (ADS)

    Miles, Andrew; Graham, Colin; Hawkesworth, Chris; Gillespie, Martin; Bromiley, Geoff; Hinton, Richard

    2015-04-01

    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this presentation we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO2) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively[1]. This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO2, such that logfO2=-0.0022(±0.0003)Mn(ppm)-9.75(±0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions[2]. [1] Stephens, W. E., Whitley, J. E., Thirlwall, M. F. and Halliday, A. N. (1985) The Criffell zoned pluton: correlated behaviour of rare earth element abundances with isotopic systems. Contributions to Mineralogy and

  12. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.

    2013-12-01

    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  13. Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro.

    PubMed

    Wang, Xiupeng; Ito, Atsuo; Sogo, Yu; Li, Xia; Tsurushima, Hideo; Oyane, Ayako

    2009-09-01

    Ascorbate-apatite and ascorbate-fibroblast growth factor-2 (FGF-2)-apatite composite layers were successfully formed on anodically oxidized Ti rods clinically used for external fixation by a one-step procedure at 25 degrees C, using a metastable supersaturated calcium phosphate solution supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg) and FGF-2. The AsMg-apatite and AsMg-FGF-2-apatite composite layers were evaluated in vitro using fibroblastic NIH3T3 and osteoblastic MC3T3-E1 cells. The AsMg-FGF-2-apatite composite layer markedly enhanced the NIH3T3 cell proliferation and procollagen type capital I, Ukrainian gene expression. Without FGF-2, the AsMg-apatite composite layer whose ascorbate content was 3.64+/-1.27microgcm(-2) obviously enhanced osteoblastic proliferation and differentiation. However, the AsMg-FGF-2-apatite composite layers whose FGF-2 contents were from 0.15+/-0.03 to 0.31+/-0.04microgcm(-2) inhibited osteoblastic differentiation in vitro. Thus, the AsMg-FGF-2-apatite composite layer should be precipitated on the surface of external fixators attached to skin and soft tissue. On the other hand, the AsMg-apatite composite layer should be precipitated at the part attached to bone tissue.

  14. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings.

    PubMed

    Wolke, J G; de Groot, K; Jansen, J A

    1998-03-15

    Radiofrequency magnetron sputter deposition was used to deposit Ca-P sputter coatings on titanium discs, and these coatings were implanted subcutaneously into the backs of rabbits. Half of the as-sputtered coatings were subjected to additional heat treatment for 2 h at 500 degrees C. X-ray diffraction (XRD) demonstrated that annealing at 500 degrees C changed the amorphous sputtered coating into an amorphous-crystalline apatite structure. Scanning electron microscopic (SEM) examination of the sputtered coatings showed excellent coverage of the substrate surface. Annealing of the 4-microm-thick coatings resulted in the appearance of small cracks. SEM demonstrated that until 4 weeks of implantation, all heat-treated coatings were present and all amorphous coatings were completely or mostly dissolved. Fourier transform infrared spectroscopy showed the formation of carbonate apatite (CO3-AP) on these specimens. Furthermore, XRD analysis showed that these CO3-AP precipitated coatings disappeared after 8 weeks of implantation. On the other hand, SEM inspection of these specimens revealed that the 4-microm heat-treated coating was still partially maintained and that small Ca-P crystals were present on the titanium substrate. On the basis of these results, we conclude that apparently 0.1 microm heat-treated Ca-P sputter coating is of sufficient thicknesses to stimulate carbonate apatite deposition under in vivo conditions.

  15. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki

    2015-08-01

    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  16. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  17. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin.

    PubMed

    Deng, Yi; Sun, Yuhua; Chen, Xiaofang; Zhu, Peizhi; Wei, Shicheng

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering.

  18. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  19. Synthesis and characterization of strontium-lanthanum apatites

    SciTech Connect

    Boughzala, K.; Salem, E. Ben; Chrifa, A. Ben; Gaudin, E.; Bouzouita, K. . E-mail: khaled.bouzouita@ipeim.rnu.tn

    2007-07-03

    Two series of strontium-lanthanum apatites, Sr{sub 10-x}La {sub x}(PO{sub 4}){sub 6-x}(SiO{sub 4}) {sub x}F{sub 2} and Sr{sub 10-x}La {sub x}(PO{sub 4}){sub 6-x}(SiO{sub 4}) {sub x}O with 0 {<=} x {<=} 6, were synthesized by solid state reaction in the temperature range of 1200-1400 deg. C. The obtained materials were characterized by powder X-ray diffraction, infrared absorption spectroscopy and solid {sup 31}P Nuclear Magnetic Resonance. Pure solid solutions were obtained within a limited range of unsubstituted phosphate and silicate apatites. A variation of the lattice parameters was observed, with an increase of a and a decrease of c parameters, related to the radius of the corresponding substituted ions.

  20. Collagen-apatite nanocomposite membranes for guided bone regeneration.

    PubMed

    Song, Ju-Ha; Kim, Hyoun-Ee; Kim, Hae-Won

    2007-10-01

    Collagen-apatite nanocomposite is regarded as a potential biomaterial because of its composition and structure, which are similar to those of human hard tissues. However, there have been few investigations of its mechanical and biological benefits in direct comparison with a collagen equivalent. Herein, we successfully produced a biomedical membrane made of a nanocomposite, and systemically evaluated the mechanical, chemical, and biological properties of the nanocomposite in comparison with those of pure collagen. The results showed that significant improvements were achieved by the nanocomposite approach, particularly in terms of the mechanical strength and chemical stability. The present findings point to the potential usefulness of the collagen-apatite nanocomposite membrane in the field of guided bone regeneration (GBR).

  1. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  2. Thermodynamic Mixing Behavior Of F-OH Apatite Crystalline Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.

    2011-12-01

    It is important to establish a thermodynamic data base for accessory minerals and mineral series that are useful in determining fluid composition during petrologic processes. As a starting point for apatite-system thermodynamics, Hovis and Harlov (2010, American Mineralogist 95, 946-952) reported enthalpies of mixing for a F-Cl apatite series. Harlov synthesized all such crystalline solutions at the GFZ-Potsdam using a slow-cooled molten-flux method. In order to expand thermodynamic characterization of the F-Cl-OH apatite system, a new study has been initiated along the F-OH apatite binary. Synthesis of this new series made use of National Institute of Standards and Technology (NIST) 2910a hydroxylapatite, a standard reference material made at NIST "by solution reaction of calcium hydroxide with phosphoric acid." Synthesis efforts at Lafayette College have been successful in producing fluorapatite through ion exchange between hydroxylapatite 2910a and fluorite. In these experiments, a thin layer of hydroxylapatite powder was placed on a polished CaF2 disc (obtained from a supplier of high-purity crystals for spectroscopy), pressed firmly against the disc, then annealed at 750 °C (1 bar) for three days. Longer annealing times did not produce further change in unit-cell dimensions of the resulting fluorapatite, but it is uncertain at this time whether this procedure produces a pure-F end member (chemical analyses to be performed in the near future). It is clear from the unit-cell dimensions, however, that the newly synthesized apatite contains a high percentage of fluorine, probably greater than 90 mol % F. Intermediate compositions for a F-OH apatite series were made by combining 2910a hydroxylapatite powder with the newly synthesized fluorapatite in various proportions, then conducting chemical homogenization experiments at 750 °C on each mixture. X-ray powder diffraction data indicated that these experiments were successful in producing chemically homogeneous

  3. Apatite fission-track thermochronology of the Pennsylvania Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Roden, Mary K.; Miller, Donald S.

    1989-09-01

    Thirty-four apatite fission-track apparent ages and twenty-four track length distributions for ash bed samples from the Valley and Ridge Province and Upper Devonian to Upper Pennsylvania sedimentary samples from the Allegheny Front and Allegheny Plateau of Pennsylvania suggest that these regions represent different thermal (uplift) regimes as well as different structural provinces. The Valley and Ridge Province Tioga and Kalkberg ash bed samples yield apatite fission-track apparent ages and track length distributions that indicate early post-Alleghanian (285-270 Ma) cooling and unroofing that began at ˜250 Ma. Assuming a geothermal gradient of 25°C km -1, a burial depth of at least 3.4 km can be estimated for all the Pennsylvania samples. At the Allegheny structural front and on the western Allegheny Plateau, the apatite fission-track apparent ages (<150 Ma) and track length measurements indicate a Late Jurassic-Early Cretaceous thermal event for these samples possibly resulting from a higher geothermal gradient coinciding with kimberlite intrusion at this time along the Greene-Potter Fault Zone. In northeast Pennsylvania on the Allegheny Plateau, the Upper Paleozoic sedimentary samples yield apatite fission-track apparent ages ≤180 Ma. Narrow track length distributions with long mean lengths (13-14 μm) and small standard deviations (1.3 μm) suggest rapid cooling from temperatures >110°C during the Middle Jurassic-Early Cretaceous for this part of Pennsylvania. This is consistent with the suggested uplift history of the Catskill Mountain region in adjacent New York State.

  4. Improving the apatite fission-track annealing algorithm

    NASA Astrophysics Data System (ADS)

    Luijendijk, Elco; Andriessen, Paul; ter Voorde, Marlies; van Balen, Ronald

    2017-04-01

    Low-temperature thermochronology is a key tool to quantifying the thermal history and exhumation of the crust. The interpretation of one of the most widely-used thermochronometers, apatite fission-track analysis, relies on models that relate fission track density to temperature history. These models have been calibrated to fission-track data from the Otway basin, Australia. We discuss geological evidence that the current benchmark dataset is located in a basin in which rocks may have been warmer in the past than previously assumed. We recalibrate the apatite fission-track annealing algorithm to a dataset from Southern Texas with a well-constrained thermal history. We show that current models underestimate the temperature at which fission tracks anneal completely by 19 ˚C to 34 ˚C. Exhumation rates derived from fission-track data have been underestimated; at normal geothermal gradients estimates may have to be revised upward by 500 to 2000 m. The results also have implications for the (U-Th)/He thermochronometer, because radiation damage influences the diffusivity of helium in apatites. The difference in modelled (U-Th)/He ages is approximately 10% for samples that have undergone a long cooling history. We also present a new Python code that can be used for forward or inverse modelling of fission track data using the new annealing algorithm.

  5. Magnesium incorporation in calcite in the presence of organic ligands

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2015-04-01

    The formation of authigenic Mg-calcites in marine early diagenetic environments is commonly driven by a bio-induced process, the anaerobic oxidation of methane (AOM), which provides inorganic carbon required for the precipitation of such authigenic carbonates. In such settings the availability of major and/or trace divalent metal cations (Me2+) incorporated in calcite and their aqueous speciation are controlled by the presence of aqueous organic molecules that are produced either as (by-)products of biological activity (i.e. exopolymeric substances) or during degradation of allochthonous organic matter in the sediments. Despite the fact that the presence of aqueous organic ligands strongly affects the growth rates and the mineralogy of precipitating CaCO3 polymorphs, till now no study addresses the role of Me2+-ligand aqueous complexes on the extent of Mg and/or other trace element content of Mg-calcites. In order to shed light on this process, relevant to authigenic calcite formation in organic-rich marine sediments and continental soils, we precipitated calcite in the presence of aqueous Mg and a variety of low molecular weight carboxylic- and aminoacids. Our experimental data indicate that the presence of organic ligands augments significantly the saturation state of calcite in the parent fluid during its precipitation. Moreover, they suggest that the higher the ligand concentration, the higher the obtained distribution coefficient of Mg in calcite. The latter is directly proportional to the ratio of Mg2+/Ca2+ aqueous ions for all ligands used. Hydrogeochemical modelling of the aqueous fluids indicate that the observed correlation can be explained by the stronger complexation of Ca2+ with organic ligands compared to Mg2+, which results in higher availability of Mg2+ vs. Ca2+ aqueous ions. Overall the obtained results suggest that the higher the organic ligand aqueous concentration the higher the Mg content of calcite forming from this fluid. These findings are of great importance for the understanding of the mechanisms controlling impurities and trace element incorporation in carbonates forming in marine diagenetic and soil environments.

  6. Surface-Modification of Carbonate Apatite Nanoparticles Enhances Delivery and Cytotoxicity of Gemcitabine and Anastrozole in Breast Cancer Cells.

    PubMed

    Mozar, Fitya Syarifa; Chowdhury, Ezharul Hoque

    2017-06-07

    pH sensitive nanoparticles of carbonate apatite (CA) have been proven to be effective delivery vehicles for DNA, siRNAs and proteins. More recently, conventional anti-cancer drugs, such as doxorubicin, methotrexate and cyclophosphamide have been successfully incorporated into CA for intracellular delivery to breast cancer cells. However, physical and chemical properties of drug molecules appeared to affect their interactions with CA, with hydrophillic drug so far exhibiting better binding affinity and cellular uptakes compared to hydrophobic drugs. In this study, anastrozole, a non-steroidal aromatase inhibitor which is largely hydrophobic, and gemcitabine, a hydrophilic nucleoside inhibitor were used as solubility models of chemotherapy drug. Aggregation tendency of poorly soluble drugs resulting in larger particle-drug complex size might be the main factor hindering their delivery effectiveness. For the first time, surface modification of CA with poly(ethylene glycol) (PEG) has shown promising result to drastically reduce anastrozole- loaded CA particle size, from approximately 1000 to 500 nm based on zeta sizer analysis. Besides PEG, a cell specific ligand, in this case fibronectin, was attached to the particles in order to facilitate receptor mediated endocytosis based on fibronectin-integrin interaction. High-performance liquid chromatography (HPLC) was performed to measure uptake of the drugs by breast cancer cells, revealing that surface modification increased the drug uptake, especially for the hydrophobic drug, compared to the uncoated particles and the free drug. In vitro chemosensitivity assay and in vivo tumor regression study also showed that coated apatite/drug nanoparticle complexes presented higher cytotoxicity and tumor regression effects than uncoated apatite/drug nanoparticles and free drugs, indicating that surface modification successfully created optimum particles size with the consequence of more effective uptake along with favorable

  7. Experimental Constraints on the Partitioning Behavior of F, Cl, and OH Between Apatite and Basaltic Melt

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Barnes, Jessica J.; Vander Kaaden, Kathleen E.; Boyce, Jeremy W.; Ustunisik, Gokce; Whitson, Eric S.

    2017-01-01

    The mineral apatite is present in a wide range of planetary materials. The presence of volatiles (F, Cl, and OH) within its crystal structure (X-site) have motivated numerous studies to investigate the partitioning behavior of F, Cl, and OH between apatite and silicate melt with the end goal of using apatite to constrain the volatile contents of planetary magmas and mantle sources. A number of recent experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in magmatic systems. Apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, the partitioning behavior is likely to change as a function of temperature, pressure, oxygen fugacity, apatite composition, and melt composition. In the present study, we have conducted experiments to assess the partitioning behavior of F, Cl, and OH between apatite and silicate melt over a pressure range of 0-6 gigapascals, a temperature range of 950-1500 degrees Centigrade, and a wide range of apatite ternary compositions. All of the experiments were conducted between iron-wustite oxidation potentials IW minus 1 and IW plus 2 in a basaltic melt composition. The experimental run products were analyzed by a combination of electron probe microanalysis and secondary ion mass spectrometry (NanoSIMS). Temperature, apatite crystal chemistry, and pressure all play important roles in the partitioning behavior of F, Cl, and OH between apatite and silicate melt. In portions of apatite ternary space that undergo ideal mixing of F, Cl, and OH, exchange coefficients remain constant at constant temperature and pressure. However, exchange coefficients vary at constant temperature (T) and pressure (P) in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. The variation in exchange coefficients exhibited by apatite that does not undergo ideal mixing far exceeds the variations

  8. Strontium and magnesium substituted dicalcium phosphate dehydrate coating for carbon/carbon composites prepared by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, Shou-jie; Li, He-jun; Zhang, Lei-lei; Feng, Lei; Yao, Pei

    2015-12-01

    Trace elements substituted apatite coatings have received a lot of interest recently as they have many benefits. In this work, strontium and magnesium substituted DCPD (SM-DCPD) coatings were deposited on carbon/carbon (C/C) composites by pulsed electrodeposition method. The morphology, microstructure, corrosion resistance and in vitro bioactivity of the SM-DCPD coatings are analyzed. The results show that the SM-DCPD coatings exhibit a flake-like morphology with dense and uniform structure. The SM-DCPD coatings could induce the formation of apatite layers on their surface in simulated body fluid. The electrochemical test indicates that the SM-DCPD coatings can evidently decrease the corrosion rate of the C/C composites in simulated body fluid. The SM-DCPD has potential application as the bioactive coatings.

  9. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid

    USGS Publications Warehouse

    Fujimaki, H.

    1986-01-01

    Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10-100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite. ?? 1986 Springer-Verlag.

  10. Intra-grain common Pb correction in apatite by LA-ICP-MS depth profiling and implications for detrital apatite U-Pb dating

    NASA Astrophysics Data System (ADS)

    Stockli, Daniel; Boyd, Patrick; Galster, Federico

    2017-04-01

    Apatite is a common accessory phase in igneous and clastic sedimentary rocks and has been widely employed as a low-temperature thermochronometric tool. While apatite U-Pb dating, characterized by a nominal grain-size sensitive closure temperature range between 375-550°C, is a potential powerful tool to reconstruct the thermal evolution of lower to middle crustal rocks, but the fact that apatite, unlike zircon, incorporates significant amounts of non-radiogenic common Pb and only modest amounts of U and Th (1-10s of ppm) has traditionally presented analytical hurdles that have limited its application. In bedrock samples, non-radiogenic Pb in apatite can be corrected for though the analysis of a U-free cogenetic mineral phase (e.g., feldspar. While these traditional methods work well for igneous samples, this approach is not feasible for detrital apatite samples, hindering the application of detrital apatite U-Pb dating in tectonic or provenance studies, despite the fact that the obvious power of apatite U-Pb dating in detrital provenance studies has been widely recognized. This study presents an intriguing and robust new analytical method for in-situ correction of common Pb in apatite by employing LA-ICP-MS depth profiling. Depth-profiling analysis allows for the incremental recovery of U-Pb ratios at high spatial resolution (<1 micron depth intervals) during progressive (continuous) laser ablation of tape-mounted unfractured apatite grains. As U concentrations in apatite commonly show significant spatial variability related to growth zonation, depth-profile analysis recovers spatially variable U-Pb ratios that define a an intra-grain discordia or radiogenic-common Pb mixing line in Tera-Wasserburg space, allowing for the determination of both the radiogenic lower-intercept and hence the U-Pb age as well as the common Pb composition of individual detrital apatite. This novel method, allows for effective correction for common Pb in detrital apatite U-Pb despite the

  11. Molecular functionalization of tantalum oxide surface towards development of apatite growth

    NASA Astrophysics Data System (ADS)

    Aubry, D.; Volcke, C.; Arnould, Ch.; Humbert, C.; Thiry, P. A.; Delhalle, J.; Mekhalif, Z.

    2009-02-01

    We have studied the apatite growth dynamics on tantalum oxide surfaces. This nucleation is obtained via an organosilane intermediate layer between the apatite and the substrate surface. Four organosilane layers (differing by their terminal functionality) were investigated. Their characterization with atomic force microscopy and other techniques such as X-ray photoelectron spectroscopy (XPS) and wetting measurements highlighted the influence of the organosilane terminal groups on the apatite growth rates. Results revealed that apatite is indeed growing faster on phosphate terminal groups than on the three other groups studied (vinyl, hydroxyl and carboxyl).

  12. [Age and gender changes of apatites from human hard tooth tissues].

    PubMed

    Pikhur, O L; Ryzhak, G A; Iordanishvili, A K; Iankovskiĭ, V V; D'iakonov, M M

    2014-01-01

    Apatites of hard tissues of teeth of persons of different sex and age were studied in detail. It is shown that the crystal structure of apatites depends on changes in the composition of the enamel that happen during a person's life. Limits of the variations of the crystal lattice parameters of the enamel apatites connected with the complicate processes of de- and remineralization have been determined. On the basis of the identified correlations between chemical composition, crystal lattice parameters and age of patients, the complicated interrelated isomorphic replacements occurring in the crystal structure of apatites of hard tooth tissues during aging were analysed.

  13. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite

    NASA Astrophysics Data System (ADS)

    Barfod, Gry Hoffmann; Krogstad, Eirik Jens; Frei, Robert; Albarède, Francis

    2005-04-01

    The mineral apatite is characterized by elevated and highly variable Lu/Hf ratios that, in some cases, allow for single-crystal dating by the Lu-Hf isotopic system. Apatites from the Adirondack Lowlands and Otter Lake area in the Grenville Province, and from the Black Hills, South Dakota, yield Lu-Hf ages that are consistently older than their respective Pb step leaching ages. Isotopic closure for the Lu-Hf system, therefore, occurs before U-Pb system closure in this mineral. In the Adirondack Lowlands, where H 2O activity was low, Lu-Hf systematics of cm-sized apatite crystals remained undisturbed during upper amphibolite facies metamorphism (˜700 to 675 °C) at 1170-1130 Ma. The relatively old Lu-Hf ages of 1270 and 1230 Ma observed for these apatites correlate with decreasing crystal size. In contrast, apatite from the fluid-rich Otter Lake area and Black Hills yields unrealistically low apparent Lu-Hf closure temperatures, implying that in these apatites, fluids facilitated late exchange. The Lu-Hf ages for the metamorphic apatites were thus controlled either by the prevailing temperature and grain size, or by fluid activity.

  14. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring.

  15. The Calcium Phosphate Matrix of FGF-2-Apatite Composite Layers Contributes to Their Biological Effects

    PubMed Central

    Mutsuzaki, Hirotaka; Ito, Atsuo; Sogo, Yu; Sakane, Masataka; Oyane, Ayako; Yamazaki, Masashi

    2014-01-01

    The purpose of the present study was to fabricate fibroblast growth factor (FGF)-2-apatite composite layers on titanium (Ti) pins in one step at 25 °C using a supersaturated calcium phosphate (CaP) solution, and to evaluate the physicochemical characteristics and biological effects of the coated Ti pins compared with coated Ti pins fabricated at 37 °C. Ti pins were immersed in a supersaturated CaP solution containing 0.5, 1.0, or 2.0 µg/mL FGF-2 at 25 °C for 24 h (25F0.5, 25F1.0, and 25F2.0) or containing 4.0 µg/mL FGF-2 at 37 °C for 48 h (37F4.0). Except for the 25F0.5, the chemical compositions and the mitogenic activity levels of FGF-2 of the composite layers formed by these two methods were similar, except for the Ca/P molar ratio, which was markedly smaller at 25 °C (1.55–1.56 ± 0.01–0.02, p = 0.0008–0.0045) than at 37 °C (1.67 ± 0.11). Thus, either the apatite was less mature or the amount of amorphous calcium phosphate was higher in the composite layer formed at 25 °C. In vivo, the pin tract infection rate by visual inspection for 37F4.0 (45%) was lower than that for 25F1.0 (80%, p = 0.0213), and the rate of osteomyelitis for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p = 0.0341). The extraction torque for 37F4.0 (0.276 ± 0.117 Nm) was higher than that for 25F0.5 (0.192 ± 0.117 Nm, p = 0.0142) and that for 25F1.0 (0.176 ± 0.133 Nm, p = 0.0079). The invasion rate of S. aureus for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p = 0.0110). On the whole, the FGF-2-apatite composite layer formed at 25 °C tended to be less effective at improving fixation strength in the bone-pin interface and resisting pin tract infections. These results suggest that the chemistry of the calcium phosphate matrix that embeds FGF-2, in addition to FGF-2 content and activity, has a significant impact on composite infection resistance and fixation strength. PMID:24918287

  16. The calcium phosphate matrix of FGF-2-apatite composite layers contributes to their biological effects.

    PubMed

    Mutsuzaki, Hirotaka; Ito, Atsuo; Sogo, Yu; Sakane, Masataka; Oyane, Ayako; Yamazaki, Masashi

    2014-06-10

    The purpose of the present study was to fabricate fibroblast growth factor (FGF)-2-apatite composite layers on titanium (Ti) pins in one step at 25 °C using a supersaturated calcium phosphate (CaP) solution, and to evaluate the physicochemical characteristics and biological effects of the coated Ti pins compared with coated Ti pins fabricated at 37 °C. Ti pins were immersed in a supersaturated CaP solution containing 0.5, 1.0, or 2.0 µg/mL FGF-2 at 25 °C for 24 h (25F0.5, 25F1.0, and 25F2.0) or containing 4.0 µg/mL FGF-2 at 37 °C for 48 h (37F4.0). Except for the 25F0.5, the chemical compositions and the mitogenic activity levels of FGF-2 of the composite layers formed by these two methods were similar, except for the Ca/P molar ratio, which was markedly smaller at 25 °C (1.55-1.56±0.01-0.02, p=0.0008-0.0045) than at 37 °C (1.67±0.11). Thus, either the apatite was less mature or the amount of amorphous calcium phosphate was higher in the composite layer formed at 25 °C. In vivo, the pin tract infection rate by visual inspection for 37F4.0 (45%) was lower than that for 25F1.0 (80%, p=0.0213), and the rate of osteomyelitis for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p=0.0341). The extraction torque for 37F4.0 (0.276±0.117 Nm) was higher than that for 25F0.5 (0.192±0.117 Nm, p=0.0142) and that for 25F1.0 (0.176±0.133 Nm, p=0.0079). The invasion rate of S. aureus for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p=0.0110). On the whole, the FGF-2-apatite composite layer formed at 25 °C tended to be less effective at improving fixation strength in the bone-pin interface and resisting pin tract infections. These results suggest that the chemistry of the calcium phosphate matrix that embeds FGF-2, in addition to FGF-2 content and activity, has a significant impact on composite infection resistance and fixation strength.

  17. Thermal expansion of solid solutions in apatite binary systems

    SciTech Connect

    Knyazev, Alexander V.; Bulanov, Evgeny N. Korokin, Vitaly Zh.

    2015-01-15

    Graphical abstract: Thermal dependencies of volume thermal expansion parameter for with thermal expansion diagrams for Pb{sub 5}(PO{sub 4}){sub 3}F{sub x}Cl{sub 1−x}. - Highlights: • Solid solutions in three apatitic binary systems were investigated via HT-XRD. • Thermal expansion coefficients of solid solutions in the systems were calculated. • Features of the thermal deformation of the apatites were described. • Termoroentgenography is a sensitive method for the investigation of isomorphism. - Abstract: High-temperature insitu X-ray diffraction was used to investigate isomorphism and the thermal expansion of apatite-structured compounds in three binary systems in the entire temperature range of the existence of its hexagonal modifications. Most of the studied compounds are highly expandable (α{sub l} > 8 × 10{sup 6} (K{sup −1})). In Pb{sub 5}(PO{sub 4}){sub 3}F–Pb{sub 5}(PO{sub 4}){sub 3}Cl system, volume thermal expansion coefficient is independence from the composition at 573 K. In Pb{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(VO{sub 4}){sub 3}Cl, the compound with equimolar ratio of substituted atoms has constant volume thermal expansion coefficient in temperature range 298–973 K. Ca{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(PO{sub 4}){sub 3}Cl system is characterized by the most thermal sensitive composition, in which there is an equal ratio of isomorphic substituted atoms.

  18. Crystal Chemistry of Th in Apatite: Geochemistry and Environmental Implications

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Rakovan, J.; Elzinga, E.; Pan, Y.; Hughes, J.

    2006-05-01

    Understanding the crystal chemistry of nuclear waste forms is critical to proper evaluation of their potential use and stability. Because of apatite's ability to incorporate rare earth elements and actinides, there is great interest in it as a solid nuclear waste form and an engineered contaminant barrier. However, the crystal chemistry of actinides in the apatite structure is still poorly understood. Through the complementary use of single crystal X-ray diffraction and X-ray absorption spectroscopy, we present here the first direct results on the site occupancy of thorium in apatite structure and the structural distortion created by its substitution. Single crystal X-ray diffraction data were used to refine the structure and site occupancies of a synthetic fluorapatite with approximately 2 wt% Th in the structure. The structure refinements of three separate crystals with R = 0.0167-0.0217 indicate that Th substitutes almost extensively into the Ca2 site. The value of ThCa(2)/ThCa(1), calculated per individual site to account for the different multiplicity of the two Ca sites, is 6.5. X-ray absorption spectroscopy was used to probe the local structure of Th in this synthetic fluorapatite (single crystal form), as well as Th in a natural fluorapatite (powder form) from Mineville, NY with the Th concentration of approximately 2000 ppm. The results from extend X-ray absorption fine structure (EXAFS) also indicate that Th partitions into the Ca2 site and yields Th specific bond distances which are not obtainable from single crystal X-ray diffraction.

  19. H-Isotopic Composition of Apatite in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  20. Annealing kinetics of latent particle tracks in Durango apatite

    SciTech Connect

    Afra, B.; Rodriguez, M. D.; Giulian, R.; Kluth, P.; Lang, M.; Zhang, J.; Ewing, R. C.; Kirby, N.; Trautmann, C.; Toulemonde, M.

    2011-02-01

    Using synchrotron small-angle x-ray scattering we determine the ''latent'' track morphology and the track annealing kinetics in the Durango apatite. The latter, measured during ex situ and in situ annealing experiments, suggests structural relaxation followed by recrystallization of the damaged material. The resolution of fractions of a nanometer with which the track radii are determined, as well as the nondestructive, artefact-free measurement methodology shown here, provides an effective means for in-depth studies of ion-track formation in natural minerals under a wide variety of geological conditions.

  1. Lepidocrocite, an apatite mineral, and magnetic in teeth of chitons (Polyplacophora).

    PubMed

    Lowenstam, H A

    1967-06-09

    X-ray diffraction patterns show that the mature denticles of three extant chiton species are composed of the mineral lepidocrocite and an apatite mineral, probably francolite, in addition to magnetite. Each of the three minerals forms a discrete microarchitectural unit of the chiton denticles. This is the first indication that lepidocrocite is precipitated by marine organisms and an apatite mineral by chitons.

  2. Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth

    NASA Astrophysics Data System (ADS)

    Yakymchuk, Chris

    2017-03-01

    The suprasolidus behaviour of apatite and monazite is examined for an average metapelite composition using phase equilibria modelling coupled with solubility equations of these minerals. Both closed- and open-system scenarios are considered. Partial melting above the solidus requires apatite and monazite breakdown in order to saturate the anatectic melt in phosphorus and the light rare earth elements. In general, melt loss is predicted to increase the stability of apatite and monazite at high temperature. Most apatite is predicted to survive up to ultrahigh temperature conditions except for rocks with low bulk phosphorus concentrations. By contrast, most monazite is expected to be consumed by UHT conditions. Thorium substitution in monazite is expected to increase the stability of monazite to higher temperatures. The presence of LREE-rich apatite decreases the stability of monazite above the solidus, but the breakdown of this apatite during anatexis may generate prograde monazite at the apatite-melt interface in local pockets of melt oversaturation. However, prograde suprasolidus monazite along grain boundaries is expected to be consumed during further partial melting or during melt homogenization when an interconnected melt network develops. Anatectic melts are predicted to be saturated with respect to apatite except at UHT conditions and for rocks with low initial P2O5 bulk concentrations.

  3. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    PubMed

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  4. Apatite bone cement reinforced with calcium silicate fibers.

    PubMed

    Motisuke, Mariana; Santos, Verônica R; Bazanini, Naiana C; Bertran, Celso A

    2014-10-01

    Several research efforts have been made in the attempt to reinforce calcium phosphate cements (CPCs) with polymeric and carbon fibers. Due to their low compatibility with the cement matrix, results were not satisfactory. In this context, calcium silicate fibers (CaSiO3) may be an alternative material to overcome the main drawback of reinforced CPCs since, despite of their good mechanical properties, they may interact chemically with the CPC matrix. In this work CaSiO3 fibers, with aspect ratio of 9.6, were synthesized by a reactive molten salt synthesis and used as reinforcement in apatite cement. 5 wt.% of reinforcement addition has increased the compressive strength of the CPC by 250% (from 14.5 to 50.4 MPa) without preventing the cement to set. Ca and Si release in samples containing fibers could be explained by CaSiO3 partial hydrolysis which leads to a quick increase in Ca concentration and in silica gel precipitation. The latter may be responsible for apatite precipitation in needle like form during cement setting reaction. The material developed presents potential properties to be employed in bone repair treatment.

  5. TREATMENT OF ACID MINE DRAINAGE USING FISHBONE APATITE IITM

    SciTech Connect

    Neal A. Yancey

    2006-10-01

    ABSTRACT. In 2000, a reactive barrier was installed on the East Fork of Ninemile Creek near Wallace, Idaho to treat acid mine discharge. The barrier was filled with fishbone derived Apatite IITM to remove the contaminants of concern (Zn, Pb, and Cd) and raise the pH of the acidic mine discharge. Metal removal has been achieved by a combination of chemical, biological, and physical precipitation. Flow for the water ranges from 5 to 35 gallons per minute. The water is successfully being treated, but the system experienced varying degrees of plugging. In 2002, gravel was mixed with the Apatite IITM to help control plugging. In 2003 the Idaho National Laboratory was ask to provide technical support to the Coeur d’Alene Basin Commission to help identify a remedy to the plugging issue. Air sparging was employed to treat the plugging issues. Plastic packing rings were added in the fall of 2005, which have increased the void space in the media and increased flows during the 10 months of operation since the improvements were made.

  6. Fluoride incorporation into apatite crystals delays amelogenin hydrolysis

    PubMed Central

    DenBesten, Pamela; Zhu, Li; Li, Wu; Tanimoto, Kotaro; Liu, Haichuan; Witkowska, Halina Ewa

    2012-01-01

    Enamel fluorosis has been related to an increase in the amount of amelogenin in fluorosed enamel as compared to normal enamel in the maturation stage. In this study we tested the hypothesis that fluoride incorporated into carbonated apatite alters amelogenin hydrolysis. Recombinant human amelogenin (rh174) was allowed to bind to 0.15 mg of carbonated hydroxyapatite (CAP) or fluoride-containing carbonated hydroxyapatite (F-CAP) synthesized to contain 100, 1000 or 4000 ppm F-. After 3 h digestion with recombinant human MMP20 or KLK4, bound protein was characterized by reverse-phase HPLC. Proteolytic fragments formed after 24 h digestion of amelogenin, were identified by LC tandem mass spectrometry (LCMS/MS). The hydrolysis of amelogenin bound to F100-CAP by both MMP20 and KLK4 was significantly reduced in a dose dependent manner as compared to CAP. After 24 h hydrolysis, the number of cleavage sites in bound amelogenin by MMP20 were similar in CAP and F100-CAP, whereas there were 24 fewer cleavage sites identified for the KLK4 hydrolysis on F100-CAP as compared to CAP. These results suggest that the reduced hydrolysis of amelogenins in fluorosed enamel may be partially due to the increased fluoride content in fluoride containing apatite, contributing to the hypomineralized enamel matrix phenotype observed in fluorosed enamel. PMID:22243219

  7. Structural analysis of a series of strontium-substituted apatites.

    PubMed

    O'Donnell, M D; Fredholm, Y; de Rouffignac, A; Hill, R G

    2008-09-01

    A series of Sr-substituted hydroxyapatites, (Sr(x)Ca(1-)(x))(5)(PO(4))(3)OH, where x=0.00, 0.25, 0.50, 0.75 and 1.00, were made by a standard wet chemical route and investigated using X-ray diffraction (XRD), Rietveld refinement and Raman spectroscopy. We report apatites manufactured by two synthesis routes under 90 degrees C, and only the fully Sr-substituted sample had a small amount of an impurity phase, which is believed to be strontium pyrophosphate. Lattice parameters (a and c), unit cell volume and density were shown to increase linearly with strontium addition and were consistent with the addition of a slightly larger and heavier ion (Sr) in place of Ca. XRD Lorentzian peak widths increased to a maximum at x=0.50, then decreased with increasing Sr content. This indicated an increase in crystallite size when moving away from the x=0.50 composition (d approximately 9.4nm). There was a slight preference for strontium to enter the Ca(II) site in the mixed apatites (6 to 12% depending on composition). The position of the Raman band attributed to v(1)PO(4)(3-) at around 963cm(-1) in hydroxyapatite decreased linearly to 949cm(-1) at full Sr-substitution. The full width at half maximum of this peak also correlated well and increased linearly with increasing crystallite size calculated from XRD.

  8. Ambi-site substitution of Mn in lanthanum germanate apatites

    SciTech Connect

    Kendrick, E.; Knight, K.S.; Slater, P.R.

    2009-08-05

    A neutron diffraction study at 4 K of the Mn doped lanthanum germanate apatite-type oxide ion conductor of nominal starting composition 'La{sub 9.5}Mn{sub 0.5}(GeO{sub 4}){sub 6}O{sub 2.75}' is reported. The structure was refined in space group P6{sub 3}/m, although high thermal displacement parameters were observed for the oxide ion sites (particularly O3, and O4). Reduced thermal displacement parameters were obtained by splitting the O3 site, and allowing the O4 oxygen to move off site, which may indicate local regions of lower symmetry within the structure. In addition, the data suggested ambi-site substitution of Mn, with it being present on both the Ge site and the La site. Assuming no change in La:Mn:Ge ratio, a composition of La{sub 9.18}Mn{sub 0.28}(GeO{sub 4}){sub 5.8}(MnO{sub 4}){sub 0.2}O{sub 2} was determined. As such there are nominally no interstitial oxide ions, but rather cation vacancies on the La site. Therefore, the high conductivity for this sample is most likely related to the introduction of Frenkel-type defects at higher temperature, as previously proposed for other apatite-type systems containing vacancies on the La site.

  9. Evaluation of calcium titanate as apatite growth promoter.

    PubMed

    Coreño, J; Coreño, O

    2005-11-01

    Calcium titanate (CaTiO(3), perovskite) has been used to determine its apatite nucleation ability and propose a possible nucleation initial step. Measurements of calcium leaching from the calcium titanate surface and phosphate adsorption experiments were carried out separately by using commercial calcium titanate suspensions at room temperature. Adsorption behaviour determined by zeta potential measurements shows that phosphate is strongly adsorbed on the calcium titanate surface. It was found that the higher the pH, the higher the Ca present on the calcium titanate surface, but phosphate adsorption followed this trend only up to pH 7.4. Results suggest that phosphate ions are not adsorbed only on Ca sites but also on TiO(2) groups sites of the surface, formed after calcium leaching from the surface. When both ions are simultaneously added in a modified simulated body fluid containing calcium titanate, at 37 degrees C, apatite growth occurs on its surface after 1 week of immersion.

  10. Self Attenuation of Gamma Rays in Titanite, Zircon and Apatite

    NASA Astrophysics Data System (ADS)

    Walsh, C. N.; Baskaran, M.; Brownlee, S. J.; Eakin, M.

    2013-12-01

    Several of the gamma-emitting U-Th series, cosmogenic and anthropogenic radionuclides (210Pb, 234Th, 226Ra, 228Ra, 7Be, 137Cs, etc) have been widely utilized as tracers and chronometers in environmental studies. Precise measurements of these nuclides using gamma-ray spectrometry in environmental matrices require that the proper correction factors for self- and external-absorption be applied. In this study, we examine factors associated with absorption and self attenuation of gamma-rays of 210Pb (46.5 keV), 234Th (63 keV), 226Ra (via 214Pb and 214Bi, 351.9 and 609 keV) and 228Ra (via 228Ac, 338.3 and 911.2 keV) using a well-type germanium gamma-ray detector. Samples of three naturally occurring minerals (titanite, apatite and zircon) were separated into 5 size fractions (<63 μm, 63-125 μm, 125-250 μm, 250-500 μm, and >500 μm) and analyzed for 210Pb, 234Th, 226Ra, and 228Ra. We also analyzed two synthetic silica standards (RGU-1, RGTH-1) that have a relatively uniform grain size of 63 μm. These minerals were chosen based on their varying chemical compositions and densities. Chosen samples are of an age that isotopes of 238U and 232Th are expected to be in secular equilibrium with their daughter products. However, the measured activity ratios between members of the family vary widely. In the case of titanite, the 210Pb/226Ra ratios in 5 size fractions varied between 0.44×0.03 and 0.53×0.03, while in apatite it varied between 0.54×0.03 and 0.67×0.04, without applying any self- and external-absorption correction factors. Using the attenuation coefficients of constituent elements at different energies, we estimate the attenuation coefficient for each of these 4 minerals and determine the self- and external-absorption correction factors. The self- and external-absorption corrected activities agree with the expected activities in these minerals. Our data suggests that variations in the activity levels are dependent on chemical composition, density, and grain

  11. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  12. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride

    PubMed Central

    Ranjkesh, Bahram; Chevallier, Jacques; Salehi, Hamideh; Cuisinier, Frédéric; Isidor, Flemming; Løvschall, Henrik

    2016-01-01

    Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition. PMID:27335901

  13. Apatite grain weathering and soil phosphorus availability in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Spickard, A. M.; Virginia, R. A.

    2016-12-01

    The soils of the McMurdo Dry Valleys exist in an arid, cold, and basic environment where mineral weathering is often thought to be negligible. In wetted sediments along stream margins, however, silicate mineral weathering rates are higher than anticipated. Here we focus on the mineral apatite to better understand weathering in an extreme environment and to better explain spatial variation in phosphorus availability in dry valley soils. In an environment devoid of vascular plants, the dissolution of primary apatite is likely a key component of soil phosphorus cycling and a control of soil, stream, and lake productivity. We separated loose apatite grains from glacial drift from the Lake Fryxell and Bonney Basins of Taylor Valley. We used Scanning Electron Microscopy and ImageJ to analyze grain morphology and surface etch features. Apatite grains varied markedly in morphology and degree of etching, and showed signs of significant chemical alteration. In Bonney Basin soils, where extractable phosphorus tends to be low, apatite grains were elongated and retained intact crystal faces. Grain surface etch pits were mostly restricted to grains from wetted soils. In contrast, in Fryxell Basin soils, where extractable phosphorus is high, apatite grains were rounded and lacked intact crystal faces. Here, etch pits were found on grains from both dry and wetted soils. Apatite grains from both basins had unusual etch-pit morphologies in comparison with published images. Our results indicate that apatite weathering occurs in dry valley soils, and that there are significant differences in the rate of apatite weathering between the Fryxell and Bonney Basins related to environment. Future work should explore variation in the etch-pit morphologies and the chemical or biological mechanisms behind their formation. With climate warming, increases in liquid water availability and stream flow may increase rates of apatite weathering, potentially delivering more phosphorus to phosphorus

  14. Apatite sulfur systematics and crystal population in the 1991 Pinatubo magmas

    NASA Astrophysics Data System (ADS)

    van Hoose, A. E.; Streck, M. J.; Pallister, J. S.

    2010-12-01

    On June 15, 1991, Mount Pinatubo, Philippines, ejected 20 mega-tonnes of sulfur dioxide into the atmosphere, significantly impacting global climate and stratospheric ozone. Recharging basaltic magma mixed into the 50 km3 dacitic magma reservoir 6 to 11 km beneath Mount Pinatubo, and triggered the 1991 eruption. The result of the magma mixing was a hybrid andesite with quenched basalt inclusions that erupted as a dome between June 7 and June 12. On June 15, approximately 5 km3 of anhydrite bearing magma was erupted from the main phenocryst-rich dacitic reservoir. We are using this extraordinary framework of the 1991 Pinatubo eruption to investigate the systematics of sulfur uptake by apatite in order to further develop apatite as a monitor for magmatic sulfur. In the dacite and hybrid andesite, apatite occurs as individual phenocrysts (up to ~200 μm diameter) or included within anhydrite, hornblende, and plagioclase phenocrysts. In the basaltic magmatic inclusions, apatite is found as acicular microphenocrysts. Electron microprobe data collected on apatite yield low- (<0.3 SO3 wt.%), medium- (0.3-0.7 SO3 wt.%), and high-sulfur (>0.7 SO3 wt.%) apatites in all juvenile products, and show that two distinct populations of apatites exist. Apatites crystallizing from silicic melt have predominantly low- to medium-sulfur contents, but high-sulfur apatites with as much as 1.2-1.6 wt.% SO3 occur sporadically and are always found in close proximity to anhydrite. Except for a few low-sulfur apatites, apatite in the basalt is always sulfur-rich with compositions forming a continuous array between 0.9 to 2.4 wt.% SO3. The population of apatite that crystallized from silicic melt has elevated cerium, fluorine, and chlorine and lower magnesium concentrations (average dacite values in wt.%: 0.22 Ce2O3; 1.4 F; 1.1 Cl, 0.14 MgO ;) relative to the population of apatite from the basalt (average basalt values in wt.%: 0.08 Ce2O3; 0.9 F; 0.9 Cl, 0.20 MgO). These compositional

  15. Synthesis and characterization of bulk and coatings of hydroxyapatite using methanol precursor

    SciTech Connect

    Khongwar, Jasper K.; Kannan, K.R.; Buvaneswari, G.

    2008-02-05

    Hydroxyapatite, an important bioceramic was synthesized in the bulk form and developed as a coating by a sol-gel route using alcoholic precursor. The bioactive coating was developed on bio-inert {alpha}-alumina and yttria stabilized zirconia substrates. The apatite phase began to form after the heat treatment of the precursor at 500 deg. C for 10 min. The complete crystallization of the apatite was obtained at 800 deg. C heat treatment for 10 min. The phase composition of the bulk and the coatings was identified by FT-IR spectroscopic and powder X-ray diffraction (XRD) techniques. Surface morphology was determined by scanning electron microscopy. The study indicates different surface textures for the powder and for the coatings on {alpha}-alumina and yttria stabilized zirconia substrates.

  16. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: Effect of surface reactivity and interfacial hydration.

    PubMed

    D'Elia, Noelia L; Gravina, Noel; Ruso, Juan M; Marco-Brown, Jose L; Sieben, Juan M; Messina, Paula V

    2017-05-15

    The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO2) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating.

  17. Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway)

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.; Engvik, Ane K.

    2015-10-01

    Halogen composition of replaced apatite formed during a regional metasomatic event (Bamble Sector, SE Norway) reveals information about the composition and evolution of the hydrothermal fluid. Infiltration and pervasive fluid flow of highly saline fluids into gabbroic bodies lead to scapolitization and amphibolitization, where magmatic Cl-rich apatite reacts with the hydrothermal fluid to form OH- and/or F-rich apatite. Apatite from highly altered samples adjacent to the shear zone has highest F (up to 15,000 µg/g) and lowest Br (4-25 µg/g) concentrations, whereas apatite from least altered samples has very low F (30-200 µg/g) and high Br (30-85 µg/g). In addition, individual replaced apatite grains show a zonation in F with high concentrations along rims and cracks and low F in core regions. Iodine concentrations remain rather constant as low values of 0.18-0.70 µg/g. We interpret all observed compositional features of replaced apatite to be the result of a continuous evolution of the fluid during fluid-rock interaction. Due to its high compatibility, F from the infiltrating fluid is incorporated early into recrystallized apatite (close to shear zone and rims of individual apatite grains). In contrast, Br as an incompatible halogen becomes enriched in the fluid and is highest in the most evolved fluid. Using experimental partition data between replaced apatite and fluid, we calculated F concentrations of the evolving fluid to decrease from 60 to <1 µg/g and Br to increase from ~1200 to ~5000 µg/g; I concentrations of the fluid are constant in the order of 370 µg/g. Although Cl is expected to show a similar behavior as Br, replaced apatite has constant Cl concentrations throughout the alteration sequence (~1 wt.%), which is likely the result of a rather constant Cl activity in the fluid. Chlorine stable isotope values of individual apatite grains are heterogeneous and range from -1.2 to +3.7 ‰. High δ 37Cl values are generally correlated with OH

  18. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid.

    PubMed

    Kawashita, M; Nakao, M; Minoda, M; Kim, H-M; Beppu, T; Miyamoto, T; Kokubo, T; Nakamura, T

    2003-06-01

    Carboxymethylated chitin, gellan gum, and curdlan gels were soaked in a simulated body fluid (SBF) having ion concentrations nearly equal to those of human blood plasma. Some of the gels had been soaked in a saturated Ca(OH)(2) solution, while others had not. The carboxymethylated chitin and gellan gum gels have carboxyl groups, while the curdlan gel has hydroxyl groups. None of the gels formed apatite on their surfaces in the SBF when they had not been subjected to the Ca(OH)(2) treatment, whereas the carboxymethylated chitin and gellan gum gels formed apatite on their surfaces when they had been subjected to the Ca(OH)(2) treatment. The curdlan gel did not form an apatite deposit even after the Ca(OH)(2) treatment. Apatite formation on the carboxymethylated chitin and gellan gum gels was attributed to the catalytic effect of their carboxyl groups for apatite nucleation, and acceleration of apatite nucleation from released Ca(2+) ions. This result provides a guiding principle for obtaining apatite-organic polymer fiber composites. This composite is expected to have an analogous structure to that of natural bone.

  19. Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations.

    PubMed

    Brouillet, Fabien; Laurencin, Danielle; Grossin, David; Drouet, Christophe; Estournes, Claude; Chevallier, Geoffroy; Rey, Christian

    2015-08-01

    Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1-20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.

  20. In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel.

    PubMed

    Deng, Yi; Zhao, Xianghui; Zhou, Yongsheng; Zhu, Peizhi; Zhang, Li; Wei, Shicheng

    2013-12-01

    Biomimetic synthesis of bone-like carbonated apatite with good biocompatibility is a promising strategy for the development of novel biomaterials for bone engineering applications. Most research efforts have been focused on only protein-based or only polysaccharide-based template for synthesis of apatite minerals. To understand the cooperative roles of gelatin and polysaccharide playing in the biomineralization, agar hydrogel, gelatin and agar-gelatin hybrid hydrogel were respectively introduced as mineralization matrix for the in vitro growth of apatite in the study. It was shown that bundle-like carbonated apatite was successfully prepared in agar-gelatin hybrid hydrogel for the first time, through the interaction between apatite and matrix macromolecule under physiological temperature. Moreover, the in vitro biocompatibility of the prepared nanostructured apatite crystals was investigated using CCK-8 assay and alkaline phosphatase activity of osteoblast-like MC3T3-E1. Compared with HA synthesized by traditional method, the obtained apatite in agar-gelatin hybrid hydrogel could provide significantly higher cell viability and alkaline phosphatase activity. Through the study, we could better understand the role of gelatin and polysaccharide in bone formation process, and the product is a promising candidate to be used in bone tissue engineering.

  1. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  2. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    SciTech Connect

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations; and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.

  3. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R.; Ming, D. W.

    1999-01-01

    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  4. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R.; Ming, D. W.

    1999-01-01

    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  5. Apatite mineralization in teeth of the chiton Acanthopleura echinata.

    PubMed

    Lee, A P; Brooker, L R; Macey, D J; van Bronswijk, W; Webb, J

    2000-11-01

    Raman spectroscopy has been used to demonstrate, for the first time, that calcium mineralization in the core of the major lateral teeth of the chiton Acanthopleura echinata takes place as an ordered process, with crystalline carbonated apatite being the first mineral deposited. Deposition begins at the top of the tooth core, under the so-called tab region, progresses down the interior surface of the tab and lepidocrocite layer, and then extends outwards to the anterior surface. Mineralization is not initiated until the lepidocrocite layer has isolated the core of the tooth from the magnetite cap. The last region to be infiltrated is the anterior basal region of the tooth cusp, immediately above the junction zone. The junction zone is also a region of high ion density, as determined by energy dispersive spectroscopy (EDS) analysis, but we show here for the first time that it is free of mineral deposits, acting instead as a transfer and storage region.

  6. Cortical bone screw fixation in ionically modified apatite cements.

    PubMed

    Barralet, J E; Duncan, C O; Dover, M S; Bassett, D C; Nishikawa, H; Monaghan, A; Gbureck, U

    2005-05-01

    Hydroxyapatite cements are used in reconstruction of the face; usually in well-defined cavities where the cement can be stabilized without the need for internal fixation. A hydroxyapatite cement that could enable screw fixation and some loading therefore has considerable potential in maxillofacial reconstruction. It has been demonstrated recently that water demand of calcium phosphate cements can be reduced by ionically modifying the liquid component. This study investigated the capacity of an ionically modified precompacted apatite cement to retain self-tapping cortical bone screws. Screw pullout forces were determined in the direction of the screw long axis and perpendicular to it, using cortical bone and polymethylmethacrylate cement as a control. In bending pullout tests, measured forces to remove screws from ionically modified precompacted cement were insignificantly different from cortical bone. However, pullout forces of bone screws from hydroxyapatite cement decreased with aging time in vitro. (c) 2005 Wiley Periodicals, Inc.

  7. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  8. Bioinspired Collagen-Apatite Nanocomposites for Bone Regeneration.

    PubMed

    Liu, Shuai; Sun, Yue; Fu, Yu; Chang, Datong; Fu, Cuicui; Wang, Gaonan; Liu, Yan; Tay, Franklin R; Zhou, Yanheng

    2016-08-01

    Natural bone has a complex hierarchical nanostructure composed of well-organized collagen fibrils embedded with apatite crystallites. Bone tissue engineering requires scaffolds with structural properties and functionality similar to the natural bone. Inspired by bone, a collagen-apatite (Col-Ap) nanocomposite was fabricated with bonelike subfibrillar nanostructures using a modified bottom-up biomimetic approach and has a potential role in the healing of large bone defects in unresolved apical periodontitis. The bone regeneration potential of the Col-Ap nanocomposite was investigated by comparing it with inorganic beta-tricalcium phosphate and organic pure collagen using a critical-sized rodent mandibular defect model. Micro-computed tomographic imaging and histologic staining were used to evaluate new bone formation in vivo. When compared with the beta-tricalcium phosphate and collagen scaffolds, the Col-Ap nanocomposite scaffold exhibited superior regeneration properties characterized by profuse deposition of new bony structures and vascularization at the defect center. Immunohistochemistry showed that the transcription factor osterix and vascular endothelial growth factor receptor 1 were highly expressed in the Col-Ap group. The results indicate that the Col-Ap nanocomposite activates more bone-forming cells and stimulates more vascular tissue ingrowth. Furthermore, the Col-Ap nanocomposite induces extracellular matrix secretion and mineralization of rat bone marrow stem cells. The increased expression of transforming growth factor beta 1 may contribute to the formation of a mineralized extracellular matrix. The present study lays the foundation for the development of Col-Ap nanocomposite-based bone grafts for future clinical applications in bone regeneration of large periapical lesions after apical curettage or apicoectomy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Fluoride incorporation into apatite crystals delays amelogenin hydrolysis.

    PubMed

    DenBesten, Pamela K; Zhu, Li; Li, Wu; Tanimoto, Kotaro; Liu, Haichuan; Witkowska, Halina E

    2011-12-01

    Enamel fluorosis has been related to an increase in the amount of amelogenin in fluorosed enamel compared with normal enamel in the maturation stage. In this study we tested the hypothesis that fluoride incorporated into carbonated apatite alters amelogenin hydrolysis. Recombinant human amelogenin (rh174) was allowed to bind to 0.15 mg of carbonated hydroxyapatite (CAP) or to fluoride-containing carbonated hydroxyapatite (F-CAP) synthesized to contain 100, 1,000, or 4,000 ppm F(-). After 3 h of digestion with recombinant human matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4), bound protein was characterized by reverse-phase high-performance liquid chromatography (HPLC). Proteolytic fragments of amelogenin formed after 24h of digestion with MMP20 of KLK 4 were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hydrolysis, by both MMP20 and KLK4, of amelogenin bound to F100-CAP was significantly reduced in a dose-dependent manner compared with the hydrolysis of amelogenin bound to CAP. After 24 h of hydrolysis, a similar number of MMP20 cleavage sites was found for amelogenin bound to CAP and amelogenin bound to F100-CAP; however, 24 fewer KLK4 cleavage sites were identified for amelogenin bound to F100-CAP than for amelogenin bound to CAP. These results suggest that the reduced hydrolysis of amelogenins in fluorosed enamel may be partially caused by the increased fluoride content in fluoride-containing apatite, contributing to the hypomineralized enamel matrix phenotype observed in fluorosed enamel.

  10. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy.

    PubMed

    Iafisco, Michele; Delgado-Lopez, Josè Manuel; Varoni, Elena Maria; Tampieri, Anna; Rimondini, Lia; Gomez-Morales, Jaime; Prat, Maria

    2013-11-25

    Nanosized drug carriers functionalized with moieties specifically targeting tumor cells are promising tools in cancer therapy, due to their ability to circulate in the bloodstream for longer periods and their selectivity for tumor cells, enabling the sparing of healthy tissues. Because of its biocompatibility, high bioresorbability, and responsiveness to pH changes, synthetic biomimetic nanocrystalline apatites are used as nanocarriers to produce multifunctional nanoparticles, by coupling them with the chemotherapeutic drug doxorubicin (DOXO) and the DO-24 monoclonal antibody (mAb) directed against the Met/Hepatocyte Growth Factor receptor (Met/HGFR), which is over-expressed on different types of carcinomas and thus represents a useful tumor target. The chemical-physical features of the nanoparticles are fully investigated and their interaction with cells expressing (GTL-16 gastric carcinoma line) or not expressing (NIH-3T3 fibroblasts) the Met/HGFR is analyzed. Functionalized nanoparticles specifically bind to and are internalized in cells expressing the receptor (GTL-16) but not in the ones that do not express it (NIH-3T3). Moreover they discharge DOXO in the targeted GTL-16 cells that reach the nucleus and display cytotoxicity as assessed in an MTT assay. Two different types of ternary nanoparticles are prepared, differing for the sequence of the functionalization steps (adsorption of DOXO first and then mAb or vice versa), and it is found that the ones in which mAb is adsorbed first are more efficient under all the examined aspects (binding, internalization, cytotoxicity), possibly because of a better mAb orientation on the nanoparticle surface. These multifunctional nanoparticles could thus be useful instruments for targeted local or systemic drug delivery, allowing a reduction in the therapeutic dose of the drug and thus adverse side effects. Moreover, this work opens new perspectives in the use of nanocrystalline apatites as a new platform for theranostic

  11. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  12. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment.

    PubMed

    Xing, Jinfeng; Hu, Tiantian; Cang, Long; Zhou, Dongmei

    2016-01-01

    The particle size of apatite is one of the critical factors that influence the adsorption of heavy metals on apatite in the remediation of heavy metal contaminated soils using apatite. However, little research has been done evaluating the impact of different particle sizes of apatite on immobilization remediation of heavy metal polluted soils in field. In this study, the adsorption isothermal experiments of copper on three kinds of apatite was tested, and the field experiment by using different particle sizes apatite [nano-hydroxyapatite (NAP), micro-hydroxyapatite (MAP), ordinary particle apatite (OAP)] at a same dosage of 25.8 t/ha (1.16 %, W/W) was also conducted. Ryegrass was chosen as the test plant. The ryegrass biomass, the copper contents in ryegrass and the copper fractionations in soil were determined after field experiments. Results of adsorption experiments showed that the adsorption amounts of copper on OAP was the lowest among different particles. The adsorption amounts of copper on MAP was higher than NAP at high copper equilibrium concentration (>1 mmol L(-1)), an opposite trend was obtained at low copper concentration (<1 mmol L(-1)). In the field experiment, we found that the application of different apatites could effectively increase the soil pH, decrease the available copper concentration in soil, provide more nutrient phosphate and promote the growth of ryegrass. The ryegrass biomass and the copper accumulation in ryegrass were the highest in MAP among all treatments. The effective order of apatite in phytoremediation of copper contaminated field soil was MAP > NAP > OAP, which was attributed to the high adsorption capacity of copper and the strong releasing of phosphate by MAP.

  13. Biomimetic magnesium-carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger.

    PubMed

    Iafisco, Michele; Ruffini, Andrea; Adamiano, Alessio; Sprio, Simone; Tampieri, Anna

    2014-02-01

    The present work investigates the preparation of biomimetic nanocrystalline apatites co-substituted with Mg, CO3 and Sr to be used as starting materials for the development of nanostructured bio-devices for regeneration of osteoporotic bone. Biological-like amounts of Mg and CO3 ions were inserted in the apatite structure to mimic the composition of bone apatite, whereas the addition of increasing quantities of Sr ions, from 0 up to 12 wt.%, as anti-osteoporotic agent, was evaluated. The chemical-physical features, the morphology, the degradation rates, the ion release kinetics as well as the in vitro bioactivity of the as-prepared apatites were fully evaluated. The results indicated that the incorporation of 12 wt.% of Sr can be viewed as a threshold for the structural stability of Mg-CO3-apatite. Indeed, incorporation of lower quantity of Sr did not induce considerable variations in the chemical structure of Mg-CO3-apatite, while when the Sr doping extent reached 12 wt.%, a dramatically destabilizing effect was detected on the crystal structure thus yielding alteration of the symmetry and distortion of the PO4. As a consequence, this apatite exhibited the fastest degradation kinetic and the highest amount of Sr ions released when tested in physiological conditions. In this respect, the surface crystallization of new calcium phosphate phase when immersed in physiological-like solution occurred by different mechanisms and extents due to the different structural chemistry of the variously doped apatites. Nevertheless, all the apatites synthesized in this work exhibited in vitro bioactivity demonstrating their potential use to develop biomedical devices with anti-osteoporotic functionality.

  14. Laser properties of nd(+3) and ho(+3) doped crystals with the apatite structure.

    PubMed

    Steinbruegge, K B; Henningsen, T; Hopkins, R H; Mazelsky, R; Melamed, N T; Riedel, E P; Roland, G W

    1972-05-01

    A great variety of compounds occur in nature or have been synthesized in the laboratory that crystallize with the apatite structure. We have investigated a number of the apatites and found them to be excellent laser hosts for neodymium and holmium. The apatites described in this paper were grown using the Czochralski method, have low optical losses in the pump and emission spectral regions for neodymium and holmium, and the hosts have been developed to readily accept large concentrations of doping ions. This paper describes the crystal growth, physical properties, spectroscopy, and laser performance of this family of new laser materials.

  15. An efficient biomimetic coating methodology for a prosthetic alloy.

    PubMed

    Adawy, Alaa; Abdel-Fattah, Wafa I

    2013-04-01

    The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6h of the whole soaking process.

  16. Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-01-01

    Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In-situ relationships between liquid and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determination of particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions; and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the analyzed coastal sediments which supports the hypothesis of apatite formation by an OCP precursor.

  17. Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-06-01

    Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid- and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.

  18. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cementsapatite nano-spherulites; (2) the alpha-TCP doped cement aged for 28 days displayed the highest bioactivity and cell proliferation; (3) the deleterious effect of bismuth on cell

  19. Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng; Han, Shuguang; Yan, Yajing

    2013-10-01

    To improve the corrosion resistance and biocompatibility of biomedical titanium, strontium (Sr) and fluorine (F) were simultaneously incorporated in hydroxyapatite (HAp) to form SrFHAp coating on titanium (Ti) via electrodeposition. The microstructure, phase composition, corrosion resistance, and cytocompatibility of the films were studied. Results revealed that by incorporating F- and Sr2+ ions in HAp, the density of the coating markedly increased, i.e., a lower porosity than common HAp coating. The SrFHAp layer was dense and uniform, with nano-needle-like crystals of apatite, which aligned vertically to the substrate. The SrFHAp crystals were calcium-deficient apatite, and Sr2+ ions and F- ions were homogeneously distributed in the coating. The SrFHAp coating showed lower dissolution rate than HA coating. Potentiodynamic polarization test manifested that the SrFHAp-coated titanium exhibited superior corrosion resistance than HAp single-coated sample. In addition, osteoblasts cellular tests revealed that the SrFHAp coating was more effective to improve the in vitro biocompatibility of Ti compared with HAp coating.

  20. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    PubMed

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014.

  1. Hydroxyapatite Coatings on High Nitrogen Stainless Steel by Laser Rapid Manufacturing

    NASA Astrophysics Data System (ADS)

    Das, Ashish; Shukla, Mukul

    2017-08-01

    In this research, the laser rapid manufacturing (LRM) additive manufacturing process was used to deposit multifunctional hydroxyapatite (HAP) coatings on high nitrogen stainless steel. LRM overcomes the limitations of conventional coating processes by producing coatings with metallurgical bond, osseointegration, and infection inhibition properties. The microstructure, microhardness, antibacterial efficacy, and bioactivity of the coatings were investigated. The microstructure studies established that the coatings consist of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. A Vickers microhardness test confirmed the hardness values of deposited HAP coatings to be higher than those of the bare 254SS samples, while a fluorescence activated cell sorting test confirmed their superior antibacterial properties as compared with pristine samples. The coated samples immersed in simulated body fluid showed rapid apatite forming ability. The results obtained in this research signify the potential application of the LRM process in synthesizing multifunctional orthopaedic coatings.

  2. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    SciTech Connect

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  3. Geochemistry of Apatite in Climactic and Pre-Climactic Tephra from Mt. Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Langstaff, M.

    2007-12-01

    Apatite is a common accessory mineral in arc volcanic rocks that potentially records information about the dissolved volatile (S,Cl,F,OH) and trace-element concentrations (Sr, Ba, REEs) of the melt from which it crystallized. In a previous study of apatite from arc and convergent margin volcanic rocks, Peng et al. (1997) reported 0.63 wt.% SO3 in Mazama apatite grains with a corresponding SrO content of 0.18 wt.%, comprising some of the highest SO3 and SrO values in their data. Our electron microprobe study of apatite in climactic and pre-climactic Mazama tephra was done in order to assess possible correlation of apatite SO3 with Sr content of low-Sr and high-Sr recharge magmas identified based on whole-rock and matrix glass data (Bacon and Druitt, 1988) and Sr content of plagioclase (Druitt and Bacon 1989). Samples chosen represent all magmatic components erupted during the ca. 7700 year before present climactic eruption and precursor Llao Rock and Cleetwood eruptions. We compare the S, Cl, and F content of Mazama apatites with recent experimental data for S, Cl, and F partitioning between apatite and melt and with dissolved volatiles previously measured in melt inclusions from corresponding or similar Mazama samples. Our electron microprobe data confirm the presence of rare Mazama apatites with up to 0.78 wt.% SO3 and 0.12 wt.% SrO in Llao Rock, Cleetwood, and climactic scoria and pumice samples. However, high SO3 and SrO apatites are not restricted to high-Sr scoria hosts, but have been observed in low-Sr scoria, in Llao Rock rhyodacitic pumices and in Cleetwood rhyodacitic pumices, thus indicating significant magma mixing prior to the Llao Rock, Cleetwood and climactic eruptions. Most apatite SO3 and SrO data falls within the 0.06 to 0.36 wt.% and 0.04 to 0.12 wt.% range, respectively. Experimental data on SO3 partitioning between apatite and melt and maximum sulfur contents of 300 to 350 ppm measured in climactic and Cleetwood rhyodacitic melt inclusions

  4. U-Th-Pb Systematics in Zircon and Apatite from the Chicxulub Crater, Mexico

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Shaulis, B. J.; Schmieder, M.; Lapen, T. J.

    2016-08-01

    We probe the U-Th-Pb systematics in zircon and apatite to determine if post-impact hydrothermal activity produced discernible effects that are related to the duration, thermal evolution, and chemistry of the hydrothermal system.

  5. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    ScienceCinema

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2016-07-12

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  6. Effects of calcium phosphate precipitation method on acid resistance to apatite powder and bovine tooth.

    PubMed

    Suge, Toshiyuki; Kawasaki, Akiko; Ishikawa, Kunio; Matsuo, Takashi; Ebisu, Shigeyuki

    2008-07-01

    The aims of this study were to evaluate the effects of CPP method on the crystallinity of apatite powder and on the acid resistance of bovine enamel. Crystallinity degrees of apatite powder before and after CPP treatment were measured by powder X-ray diffraction analysis. Polished bovine enamel specimens treated with CPP method or NaF were immersed in a lactic acid solution for up to five days. The demineralized depth of enamel was measured with a surface roughness analyzer. XRD peaks became sharper after the CPP treatment, indicating an increased crystallinity of the apatite powder. The demineralized depth of bovine enamel treated with CPP method was shallower than that of enamel treated with NaF. Results of this study revealed that the CPP method increased the crystallinity of apatite powder and the acid resistance of enamel. Therefore, the CPP method would be useful not only for treating dentin hypersensitivity, but also for the prevention of dental caries.

  7. Dissolution mechanism of calcium apatites in acids: A review of literature

    PubMed Central

    Dorozhkin, Sergey V

    2012-01-01

    Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions. PMID:25237611

  8. Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios.

    PubMed

    Siddharthan, A; Kumar, T S Sampath; Seshadri, S K

    2009-08-01

    Nanocrystalline apatites with different Ca/P ratios were synthesized using eggshell as a calcium source by microwave processing. The apatites were found to have a minor amount of Mg, Sr, Si and Na ions inherited from the eggshells. The presence of several foreign ions results in a perturbed lattice structure indicated by an increase in lattice constants and shift in vibrational frequencies of the functional groups. The apatites were heat treated to investigate the influence of foreign ions on thermal stability. The minor amounts of ions do not affect the thermal stability. The differences in thermal behaviour of these apatites were due to the presence of HPO(2-)(4) ions only and not due to other ions because of their low content.

  9. Detoxification of a highly toxic lead-loaded industrial solid waste by stabilization using apatites.

    PubMed

    Ioannidis, T A; Zouboulis, A I

    2003-02-28

    Apatites are known for their properties to immobilize lead contained in aqueous solutions or contaminated soils. In this study, apatites were examined as stabilization additives for lead-loaded industrial solid toxic wastes. The specific waste was the residue, obtained after thermal treatment of sludges (incineration), which was derived from tetraethyl lead fuel storage tanks. It was found to contain around 30 wt.% lead and 33 wt.% iron. Standard leaching tests (according to DIN 38414 S-4) were applied for the determination of leachability of metals from the ash and, thus, of chemical toxicity; the proposed leaching tests examined both initial and stabilized products in order to evaluate the effectiveness of the applied additives. The results obtained demonstrate the fact that lead concentrations in leachates, after the application of the proposed leaching tests using apatites as additives and with a ratio of 50% solid waste-50 wt.% apatite, could be reduced to the range of 1mg/l.

  10. Dissolution mechanism of calcium apatites in acids: A review of literature.

    PubMed

    Dorozhkin, Sergey V

    2012-02-26

    Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions.

  11. Feasibility of using natural fishbone apatite as a substitute for hydroxyapatite in remediating aqueous heavy metals.

    PubMed

    Admassu, W; Breese, T

    1999-10-29

    Fishbone, a natural, apatite rich substance, was examined for suitability as a substitute for hydroxyapatite in the sequestering of aqueous divalent heavy metal ions. The fishbone exhibited lower metal removal capacity than pure hydroxyapatite, due primarily to its purity ( approximately 70% apatite equivalent). In other ways the fishbone behaves in a similar manner as pure hydroxyapatite in the sequestration process. It was observed that it can remove all Pb(2+), Cu(2+), Cd(2+) and Ni(2+) to below detectable levels as measured by inductively coupled plasma atomic absorption, and the rate of reaction with either Zn(2+), Ni(2+), or Pb(2+) was also found to be similar to hydroxyapatite. Also, a two level, three variable full factorial design was performed for the Pb/apatite reaction and both apatites performed similarly. The main difference, besides capacity, was on exposure to high (2.4 mM) Pb concentrations. The fishbone removed less of the Pb(2+) than capacity correction predicted.

  12. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  13. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  14. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    SciTech Connect

    Chowdhury, E.H.

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  15. Diagenetic uptake of rare earth elements by conodont apatite

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Algeo, T. J.; Cao, L.; Zhao, L.; Chen, Z. Q.; Li, Z.

    2015-12-01

    The rare earth element (REE) composition of bioapatite has long been used as a proxy for ancient seawater chemistry and paleomarine environmental reconstruction, based on the assumption of preservation of a hydrogenous (seawater-derived) REE signal. Recent work, however, has begun to question the provenance of REEs in conodonts, emphasizing the importance of REEs released by the lithogenous fraction of the sediment and subsequently adsorbed onto conodont apatite in the burial environment. Here, we investigate patterns of REE and trace-element abundance in conodonts and their host sediments from the Early to Late Ordovician Huanghuachang and Chenjiahe sections of Hubei Province, South China. Several lines of evidence indicate that REEs in the conodont samples were acquired mainly from clay minerals in the host sediment during burial diagenesis: (1) REEs in conodonts show a strong positive correlation to Th and other lithogenic elements; (2) conodonts and whole-rock samples show general patterns of REE and trace-element enrichment that are highly similar to each other and bear no resemblance to seawater elemental concentrations; (3) similar patterns are observed in Triassic conodonts and whole-rock samples; and (4) Y/Ho ratios in conodonts are mostly <40 (mean ~33), values that are consistent with derivation of >90% of REEs from lithogenous sources. Conodonts show pronounced middle rare earth element (MREE) enrichment, a pattern that is unambiguously of diagenetic origin owing to its association with lower Y/Ho ratios. With increasing MREE enrichment of conodont samples, U concentrations and LaN/YbN ratios shift from high to low, and Mn concentrations from low to high. These patterns suggest that conodont diagenesis was initiated at shallow burial depths under suboxic conditions (i.e., in the zone of Mn(IV) and Fe(III) reduction) but continued at greater burial depths, with most acquisition of secondary REEs at later diagenetic stages. Our findings indicate that (1

  16. The lanthanides and yttrium in minerals of the apatite group; a review

    USGS Publications Warehouse

    Fleischer, Michael; Altschuler, Z.S.

    1982-01-01

    More than 1000 analyses have been tabulated of the distribution of the lanthanides and yttrium in minerals of the apatite group, recalculated to atomic percentages. Average compositions have been calculated for apatites from 14 types of rocks. These show a progressive change of composition from apatites of granitic pegmatites, highest in the heavy lanthanides and yttrium, to those from alkalic pegmatites, highest in the light lanthanides and lowest in yttrium. This progression is clearly shown in plots of S (= at % La+Ce+Pr) vs the ratio La/Nd and of S vs the ratio 100Y/(Y+Ln), where Ln is the sum of the lanthanides. Apatites of sedimentary phosphorites occupy a special position, being relatively depleted in Ce and relatively enriched in yttrium and the heavy lanthanides, consequences of deposition from sea water. Apatites associated with iron ores are close in composition to apatites of carbonatites, alkalic ultramafic, and ultramafic rocks, being enriched in the light lanthanides and depleted in the heavy lanthanides. Their compositions do not support the hypothesis of Parak that the Kiruna-type ores are of sedimentary origin. Table 9 and Figures 1-3 show the dependence of lanthanide distribution on the nature of the host rock. Although a given analysis of the lanthanides does not unequivocally permit certain identification of the host rock, it can indicate a choice of highly probable host rocks.

  17. Micro-CT of Porous Apatite Fiber Scaffolds Studied by Projection X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Moriya, J.; Aizawa, M.; Yoshimura, H.

    2011-09-01

    Hydroxyapatite (HAp) has been widely used as a scaffold for repairing fractured bone. For bone regeneration, the crystal structure, crystal orientation, and composition of HAp as well as the morphology of apatite scaffold are considered to be important. The apatite scaffold constructed by single-crystal fibers with pores showed good results for cellular response. Especially, apatite fiber scaffold (AFS) with large pores, 100 to 250 μm, was found to enhance cell activities such as cell proliferation and differentiation. Here, the three-dimensional (3-D) structure of apatite scaffolds was investigated by means of x-ray computed tomography (x-ray CT) using a scanning electron microscope (SEM) modified projection x-ray microscope. The 3-D structures of apatite fiber scaffolds (AFS) were reconstructed from a series of 180 x-ray projection images taken around a single rotation axis using the Feldkamp-based cone-beam reconstruction method. Extracted cross sections from CT data revealed a network-structure of apatite fibers. The distribution of pores inside the AFS in different preparations was compared.

  18. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods.

    PubMed

    Wu, P; Zeng, Y Z; Wang, C M

    2004-03-01

    Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.

  19. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.

    PubMed

    Wang, Xiaojie; Klocke, Arndt; Mihailova, Boriana; Tosheva, Lubomira; Bismayer, Ulrich

    2008-07-24

    Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.

  20. Apatite deposition on titanium surfaces--the role of albumin adsorption.

    PubMed

    Serro, A P; Fernandes, A C; Saramago, B; Lima, J; Barbosa, M A

    1997-07-01

    Titanium implant surfaces are known to spontaneously nucleate apatite layers when in contact with simulated body fluids. However, adsorption of proteins may influence the process of apatite layer formation. In this study the role of bovine serum albumin (BSA) adsorption in the process of apatite deposition on titanium substrates is investigated. Deposition of calcium phosphate was induced by immersing titanium substrates in a Hank's balanced salt solution (HBSS) for times ranging from 1 to 23 days. The resulting substrates were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), wettability measurements and electrochemical impedance determinations. All these methods indicate the presence of a calcium phosphate layer. The same procedure was repeated substituting HBSS with a solution of BSA in HBSS. Although SEM, EDS and electrochemical impedance spectra do not reveal the presence of an apatite layer, XPS analysis strongly indicates that the inhibition of apatite formation by BSA is only partial. The competition between BSA adsorption and apatite deposition seems to lead to a mixed film where the protein co-exists with calcium phosphate. Wettability studies suggest that this surface film is heterogeneous and porous, similar to the thicker films formed in albumin-free HBSS.

  1. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.

    PubMed

    Molle, P; Liénard, A; Grasmick, A; Iwema, A; Kabbabi, A

    2005-01-01

    Intensive use of phosphates has resulted in high P levels in surface waters and therefore eutrophication problems. Over the last decade many studies have revealed the advantage of using specific materials with efficient phosphorus retention capacities. Recent studies state that Ca materials are of particular interest for long-term retention of P, but can induce negative effects. To improve P retention and avoid negative counter-effects we tested the potential of natural apatites. Apatite sorption was evaluated using batch and open reactor experiments. Batch experiments identify sorption mechanisms and the influence of the ionic characteristics of the solution; open reactor experiments evaluate sorption capacities in relation to the ionic composition of the solution and biomass development. In parallel, observation of the material by electron microscopy was used to give more precision information about the mechanisms involved. This work reveals the strong chemical affinity between apatites and phosphorus. Compared to other calcareous materials apatite is better able to maintain low outlet P levels. After more than 550 days feeding, sorption was still present and low P outlet levels were still being obtained when sufficient contact time and calcium content in the solution were ensured. This work demonstrates the advantages of using apatites for phosphorus removal in constructed wetlands. The behaviour of apatite in phosphorus retention is explained and its suitability for use in such extensive systems defined.

  2. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental

  3. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    NASA Astrophysics Data System (ADS)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  4. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    PubMed

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications.

  5. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  6. Photoactive chitosan switching on bone-like apatite deposition.

    PubMed

    Chiono, Valeria; Gentile, Piergiorgio; Boccafoschi, Francesca; Carmagnola, Irene; Ninov, Momchil; Georgieva, Ventsislava; Georgiev, George; Ciardelli, Gianluca

    2010-02-08

    The work was focused on the synthesis and characterization of the chitosan-g-fluorescein (CHFL) conjugate polymer as a biocompatible amphiphilic water-soluble photosensitizer, able to stimulate hydroxyapatite deposition upon visible light irradiation. Fluorescein (FL) grafting to chitosan (CH) chains was confirmed by UV-vis analysis of water solutions of FL and CHFL and by Fourier transform infrared spectroscopy (FTIR-ATR) analysis of CHFL and CH. Smooth CHFL cast films with 4 microm thickness were obtained by solvent casting. Continuous exposure to visible light for 7 days was found to activate the deposition of calcium phosphate crystals from a conventional simulated body fluid (SBF 1.0x) on the surface of CHFL cast films. EDX and FTIR-ATR analyses confirmed the apatite nature of the deposited calcium phosphate crystals. CHFL films preincubated in SBF (1.0x) solution under visible light irradiation and in the dark for 7 days were found to support the in vitro adhesion and proliferation of MG63 osteoblast-like cells (MTT viability test; 1-3 days culture time). On the other hand, the mineralization ability of MG63 osteoblast-like cells was significantly improved on CHFL films preincubated under visible light exposure (alkaline phosphatase activity (ALP) test for 1, 3, 7, and 14 days). The use of photoactive biocompatible conjugate polymer, such as CHFL, may lead to new therapeutic options in the field of bone/dental repair, exploiting the photoexcitation mechanism as a tool for biomineralization.

  7. Fabrication of bone cement that fully transforms to carbonate apatite.

    PubMed

    Cahyanto, Arief; Maruta, Michito; Tsuru, Kanji; Matsuya, Shigeki; Ishikawa, Kunio

    2015-01-01

    The objective of this study was to fabricate a type of bone cement that could fully transform to carbonate apatite (CO3Ap) in physiological conditions. A combination of calcium carbonate (CaCO3) and dicalcium phosphate anhydrous was chosen as the powder phase and mixed with one of three kinds of sodium phosphate solutions: NaH2PO4, Na2HPO4, or Na3PO4. The cement that fully transformed to CO3Ap was fabricated using vaterite, instead of calcite, as a CaCO3 source. Their stability in aqueous solutions was different, regardless of the type of sodium phosphate solution. Rate of transformation to CO3Ap in descending order was Na3PO4>Na2HPO4>NaH2PO4. Transformation rate could be affected by the pH of solution. Results of this study showed that it was advantageous to use vaterite to fabricate CO3Ap-forming cement.

  8. Constant composition kinetics study of carbonated apatite dissolution

    NASA Astrophysics Data System (ADS)

    Tang, Ruikang; Henneman, Zachary J.; Nancollas, George H.

    2003-03-01

    The carbonated apatites (CAP) may be more suitable models for biominerals such as bone and dental hard tissues than is pure hydroxyapatite (HAP) since they have similar chemical compositions. Although they contain only a relatively small amount of carbonate, the solubility and dissolution properties are different. The solubility product of the CAP particles used in this dissolution study, 2.88×10 -112 mol 18 l -18, was significantly greater than that of HAP, 5.52×10 -118 mol 18 l -18. The kinetics of dissolution of CAP has been studied using the constant composition (CC) method. At low undersaturations, the dissolution reaction appeared to be controlled mainly by surface diffusion with an effective reaction order of 1.9±0.1 with respect to the relative undersaturation. These results together with those obtained by scanning electron microscopy (SEM) suggest a dissolution model. Based on the surface diffusion theory of Burton, Cabrera and Frank (BCF). The interfacial tension between CAP and the aqueous phase calculated from this dissolution model, 9.0 m J m -2, was consistent with its relatively low solubility. An abnormal but interesting dissolution behavior is that the CAP dissolution rate was relatively insensitive to changes in calcium and phosphate concentrations at higher undersaturations, suggesting the importance of the carbonate component under these conditions.

  9. Electrical Characterisation of Oxide Ion Conducting Perovskites and Apatites

    NASA Astrophysics Data System (ADS)

    West, Anthony R.; Abram, Edward J.; Sinclair, Derek C.

    2002-12-01

    There is continuing interest in the development of new solid electrolytes with high levels of oxide ion conductivity as possible electrolytes in solid oxide fuel cells, as well as for a range of sensor applications. When a new material of potential interest has been identified, the next stage is to optimise its processing into a suitable, usable form and to evaluate its electrical properties. Two materials of current interest are discussed here. First, doped LaGaO3, which has very high levels of oxide ion conductivity at intermediate temperatures, but for which the fabrication of dense ceramic samples free from grain boundary impedances can be difficult. Results are presented on the impedance of ceramics taking account of electrode-electrolyte interactions as well as grain boundary constriction resistance effects. A strategy for the analysis of impedance data of such electrically inhomogeneous samples is presented. Second, there is much current interest in doped lanthanum silicate materials with the apatite structure. These are oxide ion conductors whose conductivity can be enhanced considerably by chemical doping. The mechanism(s) responsible for the high level of conductivity has been the subject of much speculation and recent results in this area are presented.

  10. Arsenate substitution in lead hydroxyl apatites: A Raman spectroscopic study.

    PubMed

    Giera, Alicja; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Kwaśniak-Kominek, Monika; Marchlewski, Tomasz

    2016-01-05

    A total of seven compounds of the hydroxylpyromorphite Pb10(PO4)6(OH)2 - hydroxylmimetite Pb10(AsO4)6(OH)2 (HPY-HMI) solid solution series were synthesized at 80°C from aqueous solutions and characterized using Raman spectroscopy. The positions of the bands in all spectra of the series depend on the content of arsenates and phosphates shifting to lower wavenumbers with substitution of (AsO4)(3-) for (PO4)(3-). This shift results from the decreasing bond strength of X-O (where X=P, As) and higher atomic mass of As than P. The position and intensity of major (PO4)(3-) and (AsO4)(3-) bands in Raman spectra exhibit linear correlation with As content, while the ratio of the intensities of these peaks shows exponential correlation. This results due to different polarizability of (PO4)(3-) and (AsO4)(3-) molecules. A small carbonate band develops with increasing As content indicating that hydroxyl lead apatites adopt the (CO3)(2-) ions, particularly at the arsenate end of the series.

  11. Infrared spectra of carbonate apatites: v2-Region bands.

    PubMed

    Fleet, Michael E

    2009-03-01

    The proportions of A and B carbonate ions in a selection of AB carbonate apatites, including hydroxyapatite (CHAP), chlorapatite (CCLAP) and fluorapatite (CFAP), have been obtained using the out-of-plane bend (nu(2)) bands of Fourier transform infrared (FTIR) spectra. Band area ratios (B/A) are in very good agreement with site occupancies from single-crystal X-ray structure refinement; the correlation is linear (1:1) for B/A values ranging up to three. Most compositions have nu(2) spectra with one band for A carbonate (at 878-880 cm(-1)) and one for B (at 870-872 cm(-1)). Na-free AB CHAP has a third prominent band at 862 cm(-1), which is assigned to the stuffed channel species (A2), and Na-bearing CFAP has a third band at 864 cm(-1), which is assigned to a second B carbonate environment (B2). The A2 and B2 assignments are based largely on spectral changes in annealed samples.

  12. New ytterbium-doped apatite crystals for flexible laser design

    SciTech Connect

    Payne, S.A.; DeLoach, L.D.; Smith, L.K.; Krupke, W.F.; Chai, B.H.T.; Loutts, G.

    1994-03-01

    A new class of Yb-lasers is summarized in this article. The apatite family of crystals has been found to impose favorable spectroscopic and laser properties on the Yb{sup 3+} activator ion. Crystals of Yb-doped Ca{sub 5}(PO{sub 4}){sub 3}F, Sr{sub 5}(PO{sub 4}){sub 3}F, Ca{sub x}Sr{sub 5{minus}x}(PO{sub 4}){sub 3}F, and Sr{sub 5}(VO{sub 4}){sub 3}F have been grown and investigated. Several useful laser crystals have been identified which offer a variety of fundamental laser parameters for designing diode-pumped systems. In general, this class of materials is characterized by high emission cross sections (3.6--13.1 {times} 10{sup {minus}20} cm{sup 2}), useful emission lifetimes (0.59--1.26 msec), a strong pump band ({sigma}{sub abs} = 2.0--10.0 {times} 10{sup {minus}20} cm{sup 2}) and pump and extraction wavelengths near 900 and 1,045 nm, respectively. Efficient lasing has been demonstrated for several of the members of this class of materials, and high optical quality crystals have been grown by the Czochralski method.

  13. Use of sol-gel-derived titania coating for direct soft tissue attachment.

    PubMed

    Areva, Sami; Paldan, Hannu; Peltola, Timo; Närhi, Timo; Jokinen, Mika; Lindén, Mika

    2004-08-01

    A firm bond between an implant and the surrounding soft tissue is important for the performance of many medical devices (e.g., stents, canyls, and dental implants). In this study, the performance of nonresorbable and reactive sol-gel-derived nano-porous titania (TiO(2)) coatings in a soft tissue environment was investigated. A direct attachment between the soft tissue and the sol-gel-derived titania coatings was found in vivo after 2 days of implantation, whereas the titanium control implants showed no evidence of soft tissue attachment. The coated implants were in immediate contact with the connective tissue, whereas the titanium controls formed a gap and a fibrous capsule on the implant-tissue interface. The good soft tissue attachment of titania coatings may result from their ability to initiate calcium phosphate nucleation and growth on their surfaces (although the formation of poorly crystalline bonelike apatite does not occur). Thus, the formation of a bonelike CaP layer is not crucial for their integration in soft tissue. The formation of bonelike apatite was hindered by the adsorption of proteins onto the initially formed amorphous calcium phosphate growth centers, thus preventing the dissolution/reprecipitation processes required for the formation of poorly crystalline bonelike apatite. These findings might open novel application areas for sol-gel-derived titania-based coatings.

  14. Pseudomorphic 2A--> 2M--> 2H phase transitions in lanthanum strontium germanate electrolyte apatites.

    PubMed

    Pramana, Stevin S; White, T J; Schreyer, Martin K; Ferraris, Cristiano; Slater, Peter R; Orera, Alodia; Bastow, T J; Mangold, Stefan; Doyle, Stephen; Liu, Tao; Fajar, Andika; Srinivasan, Madhavi; Baikie, Tom

    2009-10-21

    Apatite-like materials are of considerable interest as potential solid oxide fuel cell electrolytes, although their structural vagaries continue to attract significant discussion. Understanding these features is crucial both to explain the oxide ion conduction process and to optimise it. As the composition of putative P6(3)/m apatites with ideal formula [A(I)(4)][A(II)(6)][(BO(4))(6)][X](2) is varied the [A(I)(4)(BO(4))(6)] framework will flex to better accommodate the [A(II)(6)X(2)] tunnel component through adjustment of the A(I)O(6) metaprism twist angle (varphi). The space group theory prescribes that framework adaptation during phase changes must lead to one of the maximal non-isomorphic subgroups of P6(3)/m (P2(1), P2(1)/m, P1[combining macron]). These adaptations correlate with oxygen ion conduction, and become crucial especially when the tunnels are filled by relatively small ions and/or partially occupied, and if interstitial oxygens are located in the framework. Detecting and completely describing these lower symmetry structures can be challenging, as it is difficult to precisely control apatite stoichiometry and small departures from the hexagonal metric may be near the limits of detection. Using a combination of diffraction and spectroscopic techniques it is shown that lanthanum strontium germanate oxide electrolytes crystallise as triclinic (A), monoclinic (M) and hexagonal (H) bi-layer pseudomorphs with the composition ranges: [La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (0 apatite-2A[La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (1 apatite-2M[La(10-x)Sr(x)][(GeO(4))(6)][O(2)][H(delta)] (2 apatite-2M[La(10-x)Sr(x)][(GeO(4))(6)][O(2)][H(delta)] (2.96 apatite-2HFurthermore, at typical fuel cell operating temperatures apatite-2A and apatite-2M will transform to apatite-2H, with the latter showing the highest conduction. The results show that small twist angles and high symmetry

  15. Laser ablation U-Th-Sm/He dating of detrital apatite

    NASA Astrophysics Data System (ADS)

    Guest, B.; Pickering, J. E.; Matthews, W.; Hamilton, B.; Sykes, C.

    2016-12-01

    Detrital apatite U-Th-Sm/He thermochronology has the potential to be a powerful tool for conducting basin thermal history analyses as well as complementing the well-established detrital zircon U-Pb approach in source to sink studies. A critical roadblock that prevents the routine application of detrital apatite U-Th-Sm/He thermochronology to solving geological problems is the costly and difficult whole grain approach that is generally used to obtain apatite U-Th-Sm/He data. We present a new analytical method for laser ablation thermochronology on apatite. Samples are ablated using a Resonetics™ 193 nm excimer laser and liberated 4He is measured using an ASI (Australian Scientific Instruments) Alphachron™ quadrupole mass spectrometer system; collectively known as the Resochron™. The ablated sites are imaged using a Zygo ZescopeTM optical profilometer and ablated pit volume measured using PitVol, a custom MatLabTM algorithm. The accuracy and precision of the method presented here was confirmed using well-characterized Durango apatite and Fish Canyon Tuff (FCT) apatite reference materials, with Durango apatite used as a primary reference and FCT apatite used as a secondary reference. The weighted average of our laser ablation Durango ages (30.5±0.35 Ma) compare well with ages obtained using conventional whole grain degassing and dissolution U-Th-Sm/He methods (32.56±0.43 Ma) (Jonckheere et.al., 1 993; Farley, 2000; McDowell et.al., 2005) for chips of the same Durango crystal. These Durango ages were used to produce a K-value to correct the secondary references and unknown samples. After correction, FCT apatite has a weighted average age of 28.37 ± 0.96 Ma, which agrees well with published ages. As a further test of this new method we have conducted a case study on a set of samples from the British Mountains of the Yukon Territory in NW Canada. Sandstone samples collected across the British Mountains were analyzed using conventional U-Th-Sm/He whole grain

  16. Biocompatibly Coated 304 Stainless Steel as Superior Corrosion-Resistant Implant Material to 316L Steel

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Mandal, Chandranath

    2013-10-01

    Surface treatments of 304 stainless steel by electro-coating and passivating in few inorganic electrolytes were found to be very effective in drastically reducing the corrosion rate of the material in stimulated body fluid (SBF) by several orders in comparison to that of 316L steel, presently being used for orthopedic implants. Polarization studies of electrodeposited hydroxyl apatite coating on 304 steel showed remarkably improved corrosion current. Cyclic polarization of the material in SBF reflected the broadened passivity region, much lower passive current, and narrower hysteresis loops. Similar effects were also found through the formation of inorganic coatings by passivation in NaF, CaNO3, and calcium phosphate buffer solutions. Surface characterization by XRD showed the peaks of the respective coating crystals. The morphology of the coatings studied by SEM showed a flake-type structure for hydroxyapatite coating and fine spherical-subspherical particles for other coatings.

  17. Preparation and characterization of nanostructured titanate bioceramic coating by anodization-hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Qiannan; Liu, Yong; Lei, Ting; Tan, Yanni; Wu, Hong; Li, Jianbo

    2015-02-01

    In this work, nanostructured titanate coatings were prepared on pure titanium substrate by hydrothermal treatment combined with and without anodic oxidation. The morphology and microstructure of coatings were characterized and the corrosion resistance and bioactivity were studied. The results show that the anodization-hydrothermal method is suitable for the formation of nanostructured titanate coating on Ti in concentrated KOH solution. The coatings are composed of K2Ti6O13 and H2Ti2O5·H2O, and can greatly improve the corrosion resistance of Ti substrate. Moreover, the coatings can induce the formation of new apatite layer after the immersion in simulated body fluid, exhibiting good bioactivity. The anodizaiton treatment can not only accelerate the formation of nanostructures, but also can provide nucleation sites for nanostructured titanates, tailoring the morphology of coating. The titanium substrate with nanostructured titanate coating is expected to have significant applications as biomedical materials.

  18. Ion substitutions and non-stoichiometry of carbonated apatite-(CaOH) synthesised by precipitation and hydrothermal methods

    NASA Astrophysics Data System (ADS)

    Frank-Kamenetskaya, Olga; Kol'tsov, Alexander; Kuz'mina, Maria; Zorina, Maina; Poritskaya, Lilya

    2011-04-01

    Apatite-(CaOH), either carbonate-free or with different concentrations of carbonate ions of the predominantly (not less than 60%) B type, was synthesised by precipitation from solutions, by hydrothermal methods from solid compounds and by hydrothermal treatment of calcite. In B type apatite, the concentration of CO32- ions could be up to 20.5 wt.%. The reverse precipitation method and hydrothermal treatment of calcite obtained monophase samples with a maximal concentration of CO32- ions of 10.3-10.5 wt.%. In apatites of a mixed type, the total concentration of CO32- ions did not exceed 8 wt.%. The synthesised apatites could be divided into three groups according to the degree and origin of non-stoichiometry: Apatite of nearly stoichiometric composition. Apatite of this type was synthesised by all methods. Calcium-deficient apatite. The Ca deficit was mainly due to CO32- incorporation. Monophase samples with maximal concentrations of CO32- ions were synthesised by the reverse precipitation method and by hydrothermal treatment of calcite. Calcium-deficient apatite. The Ca deficit was mainly due to a deficit of OH - ions and resulted in the incorporation of water into channels of the crystal structure. This group was synthesised by reverse precipitation and hydrothermal methods. This apatite was a crystal chemical analogue of the apatite formed in the hard tissues of the human body such as teeth, bone and different stones. Apatites formed by the precipitation methods revealed higher variations in composition (including variations in the concentration of CO32- ions), compared to hydrothermally-synthesised samples. The observed effect of aqueous solution composition on the ion substitution and apatite composition was stronger than previously reported.

  19. Plant-driven weathering of apatite--the role of an ectomycorrhizal fungus.

    PubMed

    Smits, M M; Bonneville, S; Benning, L G; Banwart, S A; Leake, J R

    2012-09-01

    Ectomycorrhizal (EcM) fungi are increasingly recognized as important agents of mineral weathering and soil development, with far-reaching impacts on biogeochemical cycles. Because EcM fungi live in a symbiotic relationship with trees and in close contact with bacteria and archaea, it is difficult to distinguish between the weathering effects of the fungus, host tree and other micro-organisms. Here, we quantified mineral weathering by the fungus Paxillus involutus, growing in symbiosis with Pinus sylvestris under sterile conditions. The mycorrhizal trees were grown in specially designed sterile microcosms in which the supply of soluble phosphorus (P) in the bulk media was varied and grains of the calcium phosphate mineral apatite mixed with quartz, or quartz alone, were provided in plastic wells that were only accessed by their fungal partner. Under P limitation, pulse labelling of plants with (14)CO(2) revealed plant-to-fungus allocation of photosynthates, with 17 times more (14)C transferred into the apatite wells compared with wells with only quartz. Fungal colonization increased the release of P from apatite by almost a factor of three, from 7.5 (±1.1) × 10(-10) mol m(-2) s(-1) to 2.2 (±0.52) × 10(-9) mol m(-2) s(-1). On increasing the P supply in the microcosms from no added P, through apatite alone, to both apatite and orthophosphate, the proportion of biomass in roots progressively increased at the expense of the fungus. These three observations, (i) proportionately more plant energy investment in the fungal partner under P limitation, (ii) preferential fungal transport of photosynthate-derived carbon towards patches of apatite grains and (iii) fungal enhancement of weathering rate, reveal the tightly coupled plant-fungal interactions underpinning enhanced EcM weathering of apatite and its utilization as P source.

  20. Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites.

    PubMed

    Takemoto, Shinji; Kusudo, Yuko; Tsuru, Kanji; Hayakawa, Satoshi; Osaka, Akiyoshi; Takashima, Seisuke

    2004-06-01

    We examined the blood compatibility and protein adsorption on hydroxyapatite and hydroxy-carbonate apatite. Those apatites were synthesized under a 0, 5, or 15% CO(2)-containing N(2) atmosphere by a wet-chemical method with a strong ammonia alkali solution of calcium nitrate and diammonium hydrogen phosphate (5:3 in molar ratio) and subsequent calcination in the range of 105-700 degrees C. From infrared (IR) analysis, the carbonate ions substituted both phosphate ions and hydroxyl ions in the hydroxyapatite lattice; the intensities of IR bands assignable to phosphate ions and hydroxyl ions were reduced on calcinations. The specific surface areas of synthesized apatites decreased with increasing calcination temperature. Blood-clotting properties were evaluated in terms of active partial thromboplastin time, prothrombin time, and the amount of fibrinogen for the plasma in contact with the apatites, indicating that all the apatites barely influenced the blood clotting system. The apatites were in contact with a solution containing both bovine serum albumin (BSA) and beta(2)-microglobulin (beta(2)-MG), and the amounts of those proteins adsorbed on them were examined: the amount of absorbed BSA and beta(2)-MG gradually increased with the calcination temperature below 500 degrees C, while it showed a sudden increase when more than 600 degrees C. Hydroxy-carbonate apatite synthesized under a 15% CO(2)-containing N(2) atmosphere and calcined below 400 degrees C had the greatest selectivity in adsorbing beta(2)-MG. Thus, a higher selectivity for beta(2)-MG adsorption was empirically correlated to carbonate ions incorporated in the hydroxyapatite lattice. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 69A: 544-551, 2004

  1. Amelogenin as a promoter of nucleation and crystal growth of apatite

    NASA Astrophysics Data System (ADS)

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan

    2011-02-01

    Human dental enamel forms over a period of 2-4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of amelogenin and the products of its selective proteolytic digestion are presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aimed to establish the physicochemical and biochemical conditions for the growth of apatite crystals under the control of a recombinant amelogenin matrix (rH174) in combination with a programmable titration system. The growth of apatite substrates was initiated in the presence of self-assembling amelogenin particles. A series of constant titration rate experiments was performed that allowed for a gradual increase of the calcium and/or phosphate concentrations in the protein suspensions. We observed a significant amount of apatite crystals formed on the substrates following the titration of rH174 sols that comprised the initial supersaturation ratio equal to zero. The protein layers adsorbed onto the substrate apatite crystals were shown to act as promoters of nucleation and growth of calcium phosphates subsequently formed on the substrate surface. Nucleation lag time experiments have showed that rH174 tends to accelerate precipitation from metastable calcium phosphate solutions in proportion to its concentration. Despite their mainly hydrophobic nature, amelogenin nanospheres, the size and surface charge properties of which were analyzed using dynamic light scattering, acted as a nucleating agent for the crystallization of apatite. The biomimetic experimental setting applied in this study proves as convenient for gaining insight into the fundamental nature of the process of amelogenesis.

  2. Poorly crystalline apatites: evolution and maturation in vitro and in vivo.

    PubMed

    Cazalbou, Sophie; Combes, Christèle; Eichert, Diane; Rey, Christian; Glimcher, Melvin J

    2004-01-01

    Poorly crystalline apatites (PCA) are the major mineral component of mineralized tissues in vertebrates. Their physical-chemical properties are, however, not very well known due to their relative instability and the difficulties to characterize nanocrystalline compounds. Several studies using spectroscopic techniques (Fourier transform infrared [FTIR]; 31P nuclear magnetic resonance [NMR]) have demonstrated the existence, both in precipitated and biological PCA, of labile non-apatitic environments of the mineral ions. These environments are involved in the high surface reactivity and evolution ability of PCA and they are believed to form a hydrated layer at the surface of the nanocrystals in aqueous media. The extent of the hydrated layer may vary considerably depending on the conditions of precipitation and maturation time. As PCA age, the decrease of the non-apatitic environments proportion is associated with a decrease of intracrystalline disorder and an increase of stable apatitic domains. For synthetic and biological apatites, the carbonation rate of the mineral and the uptake of essential or toxic trace elements can be related to the maturation processes. The mineral ions of the hydrated layer can be easily and reversibly substituted by other ions which can either be included in the growing stable apatite lattice during maturation or remain in the hydrated layer. In addition, the non-apatitic environments seem to be involved in the binding of soluble non-collagenic proteins. This phenomenon could be related to calcium phosphate formation; we showed that, at an albumin concentration close to that in human serum, this protein has an inhibitory effect on octacalcium phosphate crystallization on collagen in vitro.

  3. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  4. Ultraviolet-accelerated formation of bone-like apatite on oxidized Ti-24Nb-4Zr-7.9Sn alloy

    NASA Astrophysics Data System (ADS)

    Chen, Min-Fang; Zhang, Jing; You, Chen

    2013-12-01

    A novel method has been developed to rapidly deposit bone-like apatite with the assistance of ultraviolet (UV) light irradiation on the nanostructured titania in the simulated body fluid (SBF). The process has three main steps: Ti-24Nb-4Zr-7.9Sn alloy was heated at 650°C for 3 h, UV-light illumination in air for 4 h and soaking in the SBF for 3 d. A titania coating consisted of main rutile formed on the thermal oxidized Ti-24Nb-4Zr-7.9Sn alloy. The UV not only converted the rutile surface from hydrophilic to hydrophobic but also stimulated high surface activity. After 4 h UV illumination, the contents of Ti3+ and hydroxyl groups on the oxidized sample were increased, while that of lattice O decreased. After 3 d of soaking in the SBF, a compact and uniform layer of carbonated hydroxyapatite (CHA) particles was formed on the UV-illuminated rutile surface whereas there was a few of HA to be viewed on the surface of as-oxidized Ti-24Nb-4Zr-7.9Sn alloy. Our study demonstrates a simple, fast and cost-effective technique for growing bone-like apatite on titanium alloys.

  5. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Corrosion behavior of mesoporous bioglass-ceramic coated magnesium alloy under applied forces.

    PubMed

    Zhang, Feiyang; Cai, Shu; Xu, Guohua; Shen, Sibo; Li, Yan; Zhang, Min; Wu, Xiaodong

    2016-03-01

    In order to research the corrosion behavior of bioglass-ceramic coated magnesium alloys under applied forces, mesoporous 45S5 bioactive glass-ceramic (45S5 MBGC) coatings were successfully prepared on AZ31 substrates using a sol-gel dip-coating technique followed by a heat treatment at the temperature of 400°C. In this work, corrosion behavior of the coated samples under applied forces was characterized by electrochemical tests and immersion tests in simulated body fluid. Results showed that the glass-ceramic coatings lost the protective effects to the magnesium substrate in a short time when the applied compressive stress was greater than 25MPa, and no crystallized apatite was formed on the surface due to the high Mg(2+) releasing and the peeling off of the coatings. Whereas, under low applied forces, apatite deposition and crystallization on the coating surface repaired cracks to some extent, thus improving the corrosion resistance of the coated magnesium during the long-term immersion period.

  7. Volatile History of the Bishop Tuff from Apatite Phenocrysts and Inclusions

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Boyce, J. W.

    2009-12-01

    Apatite is a common mineral found in a wide variety of volcanic rocks and contains all of the volatile elements within its structure as either major or minor components. Such characteristics make apatite a useful tool for developing a better understanding of complex magmatic systems and their evolution. For some elements, such as F, Cl, and OH, an apatite phenocryst can participate in chemical exchange within the magma chamber on very short timescales (Brenan, 1993, Chem. Geol.), thus giving insight into the volatiles in the system immediately prior to eruption. For other elements (including S), natural and experimental data indicate that variations can be preserved for longer timescales, potentially providing a different, yet equally interesting record. With an especially well-studied ignimbrite and air fall sequence and previously published melt inclusion work, the Bishop Tuff is an ideal system in which to test the utility of apatite crystals for studying volatile evolution of a large volume magma body. The Bishop Tuff has a nine unit air fall sequence (Wilson and Hildreth, 1997, 2003, J. Geol.) from which three units were chosen to represent early (unit #2), middle (#5), and late (#8) air fall periods. Along with apatite phenocrysts, apatite inclusions within zircon phenocrysts were used to investigate the prospect that a host could protect the crystal from volatile exchange with the melt in a manner analogous to melt inclusions. This would potentially extend the record deeper into the history of the magma. Fifty analyses of volatile, major, and trace elements were performed at UCLA using the JOEL JXA-8200 electron microprobe. Apatite phenocrysts from the Bishop Tuff are very poor in Cl with measured values (<200 ppm), often within error of zero. In these same crystals, we observe S-depleted rims (<2000 ppm) and S-rich cores (>4500 ppm), possibly representing an earlier magmatic phase, or xenocrystic remnants. Interestingly, we observe similar S variations in

  8. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  9. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    NASA Astrophysics Data System (ADS)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  10. The use of Apatite II™ to remove divalent metal ions zinc(II), lead(II), manganese(II) and iron(II) from water in passive treatment systems: column experiments.

    PubMed

    Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos

    2010-12-15

    The conventional passive treatments for remediation of acid mine drainage using calcite are not totally efficient in the removal of certain heavy metal ions. Although pH increases to 6-7 and promotes the precipitation of trivalent and some divalent metals as hydroxides and carbonates, the remaining concentrations of some divalent metals ions do not fulfill the environmental regulations. In this study, Apatite II™, a biogenic hydroxyapatite, is used as an alternative reactive material to remove Zn(II), Pb(II), Mn(II) and Fe(II). Apatite II™ reacted with acid water releasing phosphate and increasing pH up to 6.5-7, inducing metals to precipitate mainly as metal-phosphates: zinc precipitated as hopeite, Zn(3)(PO(4))(2)·4H(2)O, lead as pyromorfite, Pb(5)(PO(4))(3)OH, manganese as metaswitzerite, Mn(3)(PO(4))(2)·4H(2)O and iron as vivianite, Fe(3)(PO(4))(2)·8H(2)O. Thus, metal concentrations from 30 to 75 mg L(-1) in the inflowing water were depleted to values below 0.10 mg L(-1). Apatite II™ dissolution is sufficiently fast to treat flows as high as 50 m/a. For reactive grain size of 0.5-3mm, the treatment system ends due to coating of the grains by precipitates, especially when iron and manganese are present in the solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Fabrication and apatite inducing ability of different porous titania structures by PEO treatment.

    PubMed

    Rao, X; Chu, C L; Sun, Q; Zheng, Y Y

    2016-09-01

    Plasma electrolytic oxidation (PEO) was employed to grow different porous titania structures on Ti6Al4V alloy (TC4) substrate using various parameters. It was found that the PEO voltage and working frequency could affect the morphology, the pore size, the pore density, the thickness and the phase composition of titania structures. Thereafter, three typical porous titania structures with nanosize pores, microsize pores and microsize grooves were respectively selected to estimate their bioactivity using SBF immersion test. After soaking at different durations (3-28d), the surface morphology, the chemical composition as well as the phase structure of deposited apatite layers on porous titania were evaluated using SEM, EDS, and XRD. The formation of various biomimetic apatite layers indicated the different influence due to the characteristics of porous titania structures. The porous titania structure with nanosize pores could induce a fast apatite growth at the early immersion stage (~7d), while the one with microsize pores exhibited the best apatite inducing ability at long term immersion (~28d). Based on the experimental results, the formation mechanism of biomimetic apatite affected by the pore structure of titania was discussed as well.

  12. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.

    PubMed

    Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Langenati, Ratih; Sandri, Monica; Sprio, Simone

    2005-06-01

    The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.

  13. Challenges Associated with Apatite Remediation of Uranium in the 300 Area Aquifer

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.

    2008-05-01

    Sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium-contaminated groundwater at the Hanford 300 Area. The proposed approach involves both the direct formation of autunite by the application of a polyphosphate mixture, as well as the formation of apatite in the aquifer as a continuing source of phosphate for long-term treatment of uranium. After a series of bench-scale tests, a field treatability test was conducted in a well at the 300 Area. The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated that while the direct formation of autunite appears to have been successful, the outcome of the apatite formation of the test was more limited. Two separate overarching issues impact the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. This paper summarizes these issues.

  14. Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains?

    PubMed

    Celotti, Giancarlo; Tampieri, Anna; Sprio, Simone; Landi, Elena; Bertinetti, Luca; Martra, Gianmario; Ducati, Caterina

    2006-11-01

    In the last decade synthetic apatites mimicking the human natural one have been widely prepared and characterized from the physico-chemical point of view; however a shading zone is still remaining related to the evaluation and distinction of the less crystalline part, almost amorphous, and the crystallographically well ordered, nano-sized part, inside the apatite itself. Actually natural apatite forming bone tissue can include both types of crystals whose prevalence is dependent from the specific bone evolution stage and the specialized tissue performance. The quantitative description of such a combination usually represents a puzzling problem, but the result can also clarify the definition of "crystallinity in apatite" that appears still controversial. Many different synthetic apatites, including those nucleated on organic templates, were analyzed with different techniques (X-ray diffraction, transmission electron microscopy, and so on) to clarify the true nature of the disordered part. The results, manipulated by the classical methodologies devised for substances with highly perturbed structural order, led to establish that only specifically prepared amorphous calcium phosphate is really a glass, while the distorted portion coexisting with more or less crystalline regions is simply nanocrystalline. Moreover, at the conceptual limit of crystallinity tending to zero, the two models surprisingly cease to be conflicting.

  15. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches.

    PubMed

    Weber, Christina G; Mueller, Michaela; Vandecandelaere, Nicolas; Trick, Iris; Burger-Kentischer, Anke; Maucher, Tanja; Drouet, Christophe

    2014-03-01

    Biomimetic nanocrystalline calcium-deficient apatite compounds are particularly attractive for the setup of bioactive bone-repair scaffolds due to their high similarity to bone mineral in terms of chemical composition, structural and substructural features. As such, along with the increasingly appealing development of moderate temperature engineered routes for sample processing, they have widened the armamentarium of orthopedic and maxillofacial surgeons in the field of bone tissue engineering. This was made possible by exploiting the exceptional surface reactivity of biomimetic apatite nanocrystals, capable of easily exchanging ions or adsorbing (bio)molecules, thus leading to highly-versatile drug delivery systems. In this contribution we focus on the preparation of hybrid materials combining biomimetic nanocrystalline apatites and enzymes (lysozyme and subtilisin). This paper reports physico-chemical data as well as cytotoxicity evaluations towards Cal-72 osteoblast-like cells and finally antimicrobial assessments towards selected strains of interest in bone surgery. Biomimetic apatite/enzyme hybrids could be prepared in varying buffers. They were found to be non-cytotoxic toward osteoblastic cells and the enzymes retained their biological activity (e.g. bond cleavage or antibacterial properties) despite the immobilization and drying processes. Release properties were also examined. Beyond these illustrative examples, the concept of biomimetic apatites functionalized with enzymes is thus shown to be useable in practice, e.g. for antimicrobial purposes, thus widening possible therapeutic perspectives.

  16. Apatite fission-track thermochronology of the southern Appalachian Basin: Maryland, West Virginia, and Virginia

    SciTech Connect

    Roden, M.K. )

    1991-01-01

    Apatite fission-track apparent ages (246 {plus minus} 37 to 95 {plus minus} 18 Ma) for 26 samples of upper Devonian (Hampshire and Chemung Formations) and middle Devonian age (Tioga Ash Bed) from the southern Appalachian Basin of Maryland, Virginia, and West Virginia, along with confined track length distributions for 13 of these samples, suggest that uplift was contemporaneous with Triassic-Jurassic extension along the Atlantic continental margin. Uplift, as measured by apatite fission-track analysis, began earliest in the northwestern section on the Cumberland Plateau at {approximately}225 {plus minus} 25 Ma. This area probably required the least amount of erosional unroofing ({approximately}3.1 km). Samples from the Valley and Ridge Province of northern West Virginia, Virginia, and Maryland yield progressively younger apatite fission-track apparent ages to the east (ranging from 163 {plus minus} 10 to 95 {plus minus} 18 Ma). This is consistent with deeper burial in the eastern Appalachian Basin as indicated by increasing CAI indices and geodynamic modeling. The southwestern Virginia samples yield a mean apatite fission-track apparent age of 176 {plus minus} 11 Ma, which agrees with the Middle Jurassic apatite fission-track ages to the north.

  17. LSO apatite-YSZ composite as a solid electrolyte for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Noviyanti, Atiek Rostika; Hastiawan, Iwan; Yuliyati, Yati. B.; Rahayu, Iman; Rosyani, Desy; Syarif, Dani Gustaman

    2017-05-01

    LSO (Lanthanun Silicate Oxide) Apatite-YSZ (Yttria-stabilized zirconia) composite has been synthesized by combining the LSO apatite with commercial YSZ with different composition ratio (LSO Apatite:YSZ = 60:40wt.% and 50:50 wt. %). Structure, morphology, and conductivity of sintered pellets composite (sintered at 1330oC for 3 hours) were characterized by XRD, SEM, and impedance spectroscopy, respectively. The sintered density of the composite materials with 50:50 wt. % and 60:40 wt. % (apatite: YSZ) ratios were 3.785 g.cm-3 and 3.770 g.cm-3, respectively. The typical peak of LSO and YSZ were observed in the X-ray pattern of the composite materials. The conductivity of the LSO apatite : YSZ composite 50:50wt. % and 60:40 wt. % ratios showed high level of ionic conductivities with values of 1.26 × 10-3 S/cm and 1.60 × 10-4 S/cm, respectively,with very low level of activation energy (0.95-1.02 eV) at 700 °C. These results indicate that the LSO-YSZ composite materials are good conductors that can be used as solid electrolyte in SOFC applications.

  18. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  19. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed

  20. Thermal Barrier Coatings Resistant to Glassy Deposits

    NASA Astrophysics Data System (ADS)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  1. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite.

    PubMed

    Ozeki, K; Goto, T; Aoki, H; Masuzawa, T

    2014-01-01

    Sr-substituted hydroxyapatite thin films were prepared by sputtering technique from mixture targets of hydroxyapatite (HA) and strontium apatite (SrAp). The HA and SrAp powders were mixed at 0-100% Sr/(Sr+Ca) target ratios. The coated films were recrystallized by a hydrothermal treatment to reduce film dissolution. The films were then characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP). The osteocompatiblity of the films was also evaluated by the size of the bone formation area in osteoblast cells.In the XRD patterns, peaks shifted to lower 2θ values with increasing Sr/(Sr+Ca) target ratios, which indicated Sr incorporation into the HA lattice. In the SEM observation of the hydrothermally treated films, the surface was covered with globular particles, and the size of the globular particles increased from Sr0 to Sr40, and then the size decreased from Sr60 to Sr100. The ICP analysis showed that the Sr/(Sr+Ca) film ratios were almost the same as the target ratios. In the cell culture, the bone formation area on the Sr-substituted HA films increased with increasing Sr concentration, and saturated at Sr60.

  2. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok

    2017-03-01

    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro

  3. Amelogenin Promotes the Formation of Elongated Apatite Microstructures in a Controlled Crystallization System

    PubMed Central

    Wang, Lijun; Guan, Xiangying; Du, Chang; Moradian-Oldak, Janet; Nancollas, George H.

    2009-01-01

    The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that play a pivotal role in controlling the oriented and elongated growth of highly ordered apatitic crystals during enamel biomineralization. However, the mechanisms of amelogenin-mediated mineralization have not yet been fully elucidated. Here we report that amelogenin dramatically accelerates the nucleation kinetics by decreasing the induction time in a dose-dependent manner in a controlled constant composition (CC) in vitro crystallization system. Remarkably, at very low protein concentrations, elongated microstructures which are similar in appearance to apatitic crystals in enamel were formed at relatively low supersaturations, through interfacial structural match/synergy between structured amelogenin assemblies and apatite nanocrystallites. This heterogeneous crystallization study provides experimental evidence to support the concept that templating by amelogenin very early in the crystallization process facilitates the formation of developing enamel crystals. PMID:20333260

  4. Apatite (U-Th)/He thermochronology dataset interpretation: New insights from physical point of view

    NASA Astrophysics Data System (ADS)

    Gautheron, Cécile; Mbongo-Djimbi, Duval; Gerin, Chloé; Roques, Jérôme; Bachelet, Cyril; Oliviero, Erwan; Tassan-Got, Laurent

    2015-04-01

    The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer to constrain burial and exhumation phases in a variety of geological contexts. However, the interpretation of AHe data depends on a precise knowledge of He diffusion in apatite. Several studies suggest that radiation damage generated by U and Th decay can create traps for He atoms, increasing He retention for irradiated minerals. The radiation damage also anneals with temperature and the amount of damage in an apatite crystal is at any time a balance between production and annealing, controlled by U-Th concentration, grain chemistry and thermal history (Flowers et al., 2009; Gautheron et al., 2009; 2013). However the models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight on this issue, multidisciplinary studies on apatite combining diffusion experiments by Elastic Recoil Diffusion Analysis (ERDA) with a multi-scale theoretical diffusion calculation based on Density Functional Theory (DFT) and Kinetic Monte Carlo were performed. ERDA experiments were conducted on different macro-crystals, and we probed the shape of a He profile implanted into a planar and polished surface of the crystal. The helium profile evolves with temperature and allows quantifying the He diffusivity and damage impact. Additionally, DFT calculations of a damage-free crystal of apatite with different F and Cl compositions, in similar proportion as natural ones, have been run to find the favored paths of a helium atom between interstitial sites, leading to a computation of the activation energy and the diffusion coefficient. We show that damage free apatite crystals are characterized by low retention behavior and closure temperature range from 33-36°C for pure F-apatite to higher value for Cl riche apatite (up to 12°C higher), for typical grain size and cooling rate (Mbongo-Djimbi et al., in review). Using ERDA and DFT approaches, we

  5. Young asteroidal fluid activity revealed by absolute age from apatite in carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Cheng; Li, Qiu-Li; Yurimoto, Hisayoshi; Sakamoto, Naoya; Li, Xian-Hua; Hu, Sen; Lin, Yang-Ting; Wang, Ru-Cheng

    2016-09-01

    Chondritic meteorites, consisting of the materials that have formed in the early solar system (ESS), have been affected by late thermal events and fluid activity to various degrees. Determining the timing of fluid activity in ESS is of fundamental importance for understanding the nature, formation, evolution and significance of fluid activity in ESS. Previous investigations have determined the relative ages of fluid activity with short-lived isotope systematics. Here we report an absolute 207Pb/206Pb isochron age (4,450+/-50 Ma) of apatite from Dar al Gani (DaG) 978, a type ~3.5, ungrouped carbonaceous chondrite. The petrographic, mineralogical and geochemical features suggest that the apatite in DaG 978 should have formed during metamorphism in the presence of a fluid. Therefore, the apatite age represents an absolute age for fluid activity in an asteroidal setting. An impact event could have provided the heat to activate this young fluid activity in ESS.

  6. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2009-04-02

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  7. Uptake of cadmium by synthetic mica and apatite: Observation by micro-PIXE

    NASA Astrophysics Data System (ADS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Komarneni, Sridhar; Kamiya, Tomihiro; Sakai, Takuro; Oikawa, Masakazu; Satoh, Takahiro

    2003-09-01

    This study investigated the uptake of Cd by a mixture containing equal mass of two powerful sorbents for Cd, a synthetic mica named 'Na-4-mica' and an apatite, by micro-particle-induced X-ray emission (micro-PIXE) analysis. Divalent Cd ions were found to be selectively taken up by the apatite from the mixture even though it has one order of magnitude lower distribution coefficient for Cd 2+ than Na-4-mica. This was mainly attributed to the fact that the kinetics of uptake by the apatite were more rapid than those by Na-4-mica. Regarding the uptake of Cd colloids containing hydroxides and carbonates, no clear selectivity for solid phases was observed and Cd colloids appeared to be preferentially taken up by smaller particles of solid phases.

  8. The quantitative determination of calcite associated with the carbonate-bearing apatites

    USGS Publications Warehouse

    Silverman, Sol R.; Fuyat, Ruth K.; Weiser, Jeanne D.

    1951-01-01

    The CO2 combined as calcite in carbonate-bearing apatites as been distinguished from that combined as carbonate-apatite, or present in some form other than calcite, by use of X-ray powder patterns, differential thermal analyses, and differential solubility tests. These methods were applied to several pure apatite minerals, to one fossil bone, and to a group of phosphorites from the Phosphoria formation of Permian age from Trail Canyon and the Conda mine, Idaho, and the Laketown district, Utah. With the exceptions of pure fluorapatite, pure carbonate-flueorapatite, and one phosphorite from Trail Canyon, these substances contain varying amounts of calcite, but in all the samples an appreciable part of the carbonite content is not present as calcite. The results of solubility tests, in which the particle size of sample and the length of solution time were varied, imply that the carbonate content is not due to shielded calcite entrapped along an internal network of surfaces.

  9. Échange terres rares légères Ca dans l'apatite

    NASA Astrophysics Data System (ADS)

    Iqdari, Abderrahmane; Velde, Bruce; Benalioulhaj, Noureddine; Dujon, Saint-Clair; El Yamine, Nacer

    2003-04-01

    Diffusion experiments were carried out on natural apatite crystals that were immersed in molten light rare earth element (REE) chloride salt at temperatures between 900 and 1150 °C for periods up to 35 days. Electron microprobe analysis of the crystals showed that light REEs replaced Ca according to electronic balance, i.e. 2 REE3+ for 3 Ca2+. These diffusion profiles indicate that a maximum amount of substitution in the structure occurs when two of the ten Ca ions in apatite are replaced by the REE diffusing elements. Anisotropic diffusion is observed between a and c crystallographic directions. Comparison of maximum distance indicates that the larger ions move more easily in the apatite structure. We conclude that the light REEs diffuse within the channel structures of the mineral, and that this diffusion is controlled by the substitution type of elements in the calcium sites. To cite this article: A. Iqdari et al., C. R. Geoscience 335 (2003).

  10. Young asteroidal fluid activity revealed by absolute age from apatite in carbonaceous chondrite.

    PubMed

    Zhang, Ai-Cheng; Li, Qiu-Li; Yurimoto, Hisayoshi; Sakamoto, Naoya; Li, Xian-Hua; Hu, Sen; Lin, Yang-Ting; Wang, Ru-Cheng

    2016-09-29

    Chondritic meteorites, consisting of the materials that have formed in the early solar system (ESS), have been affected by late thermal events and fluid activity to various degrees. Determining the timing of fluid activity in ESS is of fundamental importance for understanding the nature, formation, evolution and significance of fluid activity in ESS. Previous investigations have determined the relative ages of fluid activity with short-lived isotope systematics. Here we report an absolute (207)Pb/(206)Pb isochron age (4,450±50 Ma) of apatite from Dar al Gani (DaG) 978, a type ∼3.5, ungrouped carbonaceous chondrite. The petrographic, mineralogical and geochemical features suggest that the apatite in DaG 978 should have formed during metamorphism in the presence of a fluid. Therefore, the apatite age represents an absolute age for fluid activity in an asteroidal setting. An impact event could have provided the heat to activate this young fluid activity in ESS.

  11. Fourier transform infrared determination of CO2 evolved from carbonate in carbonated apatites.

    PubMed

    Cassella, A R; de Campos, R C; Garrigues, S; de la Guardia, M; Rossi, A

    2000-07-01

    A quantitative method based on FTIR has been developed to determine carbonate in synthetic apatites. The method measures the evolved CO2 after reaction of 50 mg apatite with 2 mL of hydrochloric acid (0.5 M) in a reaction vessel, heated to 40 degrees C. The CO2 evolved was swept by a carrier of nitrogen to a laboratory-made infrared gas cell of 39 mm pathlength and 490 microL volume. The signals were recorded as a function of time and the areas of the chemigram peaks obtained from the measurements in the wavenumber range of 2,500-2,150 cm(-1), were interpolated using a calibration curve. The method can be used to study apatites with carbonate contents below 0.2% with a sampling frequency of 8 h(-1).

  12. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior.

    PubMed

    Song, Yang; Zhang, Shaoxiang; Li, Jianan; Zhao, Changli; Zhang, Xiaonong

    2010-05-01

    Preparing stabilized apatite on biodegradable Mg alloy may improve biocompatibility and promote osteointegration. In the present work, three kinds of Ca-P coatings, brushite (DCPD, CaHPO(4).2H(2)O), hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)) and fluoridated hydroxyapatite (FHA, Ca(5)(PO(4))(3)(OH)(1-)(x)F(x)) are fabricated by electrodeposition on a biodegradable Mg-Zn alloy. The crystalline structures, morphologies and compositions of these Ca-P coatings have been characterized by X-ray diffrection, scanning electron microscopy and energy-dispersive spectoscopy. The effects of these coatings on the degradation behavior and mineralization activity of the Mg-Zn alloy have also been investigated. The experimental results showed that these coatings decreased the degradation rate of Mg-Zn alloy, while the precipitates on the uncoated and DCPD-coated Mg-Zn alloy in modified simulated biological fluid had low Ca/P molar ratios, which delayed bone-like apatite formation. Both the HA and FHA coating could promote the nucleation of osteoconductive minerals (bone-like apatite or beta-TCP) for 1month. However, the HA coating transformed from DCPD through alkali heat treatment was fragile and less stable, and therefore its long-term corrosion resistance was not satisfactory. Instead, the FHA was more stable and had better corrosion resistance, and thus it should be better suited as a coating of Mg implants for orthopedic applications. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP).

    PubMed

    Choimet, Maëla; Tourrette, Audrey; Drouet, Christophe

    2015-10-15

    The chemical interaction between DNA macromolecules and hard tissues in vertebrate is of foremost importance in paleogenetics, as bones and teeth represent a major substrate for the genetic material after cell death. Recently, the empirical hypothesis of DNA "protection" over time thanks to its adsorption on hard tissues was revisited from a physico-chemical viewpoint. In particular, the existence of a strong interaction between phosphate groups of DNA backbone and the surface of apatite nanocrystals (mimicking bone/dentin mineral) was evidenced on an experimental basis. In the field of nanomedicine, DNA or RNA can be used for gene transport into cells, and apatite nanocarriers then appear promising. In order to shed some more light on interactions between DNA molecules and apatite, the present study focuses on the adsorption of a "model" nucleotide, cytidine 5' monophosphate (CMP), on a carbonated biomimetic apatite sample. The follow-up of CMP kinetics of adsorption pointed out the rapidity of interaction with stabilization reached within few minutes. The adsorption isotherm could be realistically fitted to the Sips model (Langmuir-Freundlich) suggesting the influence of surface heterogeneities and adsorption cooperativity in the adsorption process. The desorption study pointed out the reversible character of CMP adsorption on biomimetic apatite. This contribution is intended to prove helpful in view of better apprehending the molecular interaction of DNA fragments and apatite compounds, independently of the application domain, such as bone diagenesis or nanomedicine. This study may also appear informative for researchers interested in the origins of life on Earth and the occurrence and behavior of primitive biomolecules.

  14. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    NASA Astrophysics Data System (ADS)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m < 1 suggests that the ATP/apatite adsorption process is mostly guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  15. Green apatites: hydride ions, electrons and their interconversion in the crystallographic channel.

    PubMed

    Hayashi, Katsuro; Hosono, Hideo

    2016-03-21

    Hydride (H(-)) ions and electrons in channel sites of the lattice of calcium phosphate apatites are characterized. Solid-state chemical reduction using TiH2 is effective for doping of H(-) ions into apatites. Irradiation of the H(-) ion-doped apatite with ultraviolet (UV) light induces green coloration. Electron paramagnetic resonance (EPR) reveals that this colour centre is attributed to electrons captured at a vacant anion site in the crystallographic channel, forming F(+) centres. Transient H(0) atoms are detected at low temperatures by EPR. The concentration of UV-induced electrons in the apatite at room temperature decays according to second-order kinetics because of the chemical reactions involving two electrons; overall, electron generation and thermal decay can be described as: H(-) + O(2-) ↔ 2e(-) + OH(-). (1)H magic angle spinning nuclear magnetic resonance spectroscopy is used to identify H(-) ions in the apatite, which are characterized by a chemical shift of +3.4 ppm. Various types of O-H groups including OH(-) ions in the channel and protons bound to phosphate groups are concurrently formed, and are identified by considering the relationship between the O-H stretching frequency and the (1)H chemical shift. The complementary results obtained by EPR and NMR reveal that the H(-) ions and transient H(0) atoms are located at the centre of Ca3 triangles in the apatite, while the electrons are located in the centre of Ca6 octahedra. These findings provide an effective approach for identifying new classes of mixed-oxide-hydride or -electride crystals.

  16. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters.

    PubMed

    Baig, A A; Fox, J L; Young, R A; Wang, Z; Hsu, J; Higuchi, W I; Chhettry, A; Zhuang, H; Otsuka, M

    1999-05-01

    The use of the metastable equilibrium solubility (MES) concept to describe the solubility properties of carbonated apatites (CAPs) and human dental enamel (HE) has been well established in previous studies using a range of CAPs with varying carbonate contents and crystallinities. It was shown in these studies that the mean value of the CAP MES is directly related to the broadening parameter full width at half maximum (FWHM) of the 002 reflection of the X-ray diffraction profile. The apparent solubility of the CAPs increased monotonically with an increase in the broadening of the diffraction peaks, and when this peak broadening was taken into account, carbonate had no additional effect upon the MES. The broadening of the diffraction peaks has been used as an indicator of crystallinity, and is generally influenced by both crystallite size and microstrain. The purpose of the present study was to extract the crystallite size and microstrain parameters separately from the X-ray diffraction peaks and then to determine their relationships to the corresponding MES values. The samples studied were CAPs synthesized by precipitation from Ca(NO3)2 and NaH2PO4 solutions in carbonate containing media at temperatures of 95, 80, and 70 degrees C, and powdered HE. The crystallite size and microstrain parameters were determined simultaneously with the refinement of the structural parameters with the Rietveld method of whole-pattern-fitting structure-refinement. A modified pseudo-Voigt function was used to model the observed peak profiles. The MES distributions for the CAPs and HE were determined by a previously described method. The results of this study showed that the CAPs possessed an MES distribution and therefore provided further support that MES distribution is a common phenomenon, regardless of the method of CAP synthesis. The crystallite size decreased and the microstrain increased with increasing carbonate content and decreasing temperature of synthesis of the CAPs. A plot

  17. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis.

    USGS Publications Warehouse

    Kolker, A.

    1982-01-01

    The modal mineralogy for 32 Fe-Ti oxides and apatites supports the 2:1 oxide:apatite ratio for these samples from New York, Quebec, Norway and Sweden. Accessory minerals include: biotite, clinoamphibole, spinel, zircon and sulphides, oxygen fugacities range from 10-11 to 10-20, and T 600o to 1000oC. - K.A.R.

  18. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium.

    PubMed

    Raicevic, S; Wright, J V; Veljkovic, V; Conca, J L

    2006-02-15

    Addition of an amendment or reagent to soil/sediment is a technique that can decrease mobility and reduce bioavailability of uranium (U) and other heavy metals in the contaminated site. According to data from literature and results obtained in field studies, the general mineral class of apatites was selected as a most promising amendment for in situ immobilization/remediation of U. In this work we presented theoretical assessment of stability of U(VI) in four apatite systems (hydroxyapatite (HAP), North Carolina Apatite (NCA), Lisina Apatite (LA), and Apatite II) in order to determine an optimal apatite soil amendment which could be used for in situ remediation of uranium. In this analysis we used a theoretical criterion which is based on calculation of the ion-ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. The presented results of this analysis indicate (i) that the mechanism of immobilization of U by natural apatites depends on their chemical composition and (ii) that all analyzed apatites represent, from the point of view of stability, promising materials which could be used in field remediation of U-contaminated sites.

  19. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies.

    PubMed

    Tõnsuaadu, K; Gruselle, M; Villain, F; Thouvenot, R; Peld, M; Mikli, V; Traksmaa, R; Gredin, P; Carrier, X; Salles, L

    2006-12-15

    The sorption mechanism of Ru3+ ions on hydroxy (HAp), carbonate (CO3HAp), and fluor apatites (FAp) has been studied in detail. Ru apatites were obtained by reaction of the apatites with RuCl3 in aqueous solution. The structure and composition of the ruthenium-modified apatites were studied by several techniques: elemental analysis, XRD, EXAFS, IR, NMR, SEM-EDS, TEM, and thermal analysis. The amount of Ru in the modified apatite varies from 7.8 to 10.5 wt% and is not related to the initial composition or the specific surface area of the apatite. The different characterization techniques show that in the Ru-modified apatites Ru is surrounded by six oxygen atoms and do not contain any chlorine. For Ru-HAp and Ru-CO3HAp the new phase is amorphous whereas it is crystalline for FAp. The catalytic oxidation ability is higher for Ru-HAp and Ru-CO3HAp compared to Ru-FAp apatite in the oxidation of benzylic alcohol.

  20. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  1. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  2. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Yao, Zhiwen; Tang, Changyu; Darvell, B. W.; Zhang, Hualin; Pan, Lingzhan; Liu, Jingsong; Chen, Zhiqing

    2009-07-01

    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  3. In vitro apatite formation on organic polymers modified with a silane coupling reagent.

    PubMed

    Shirosaki, Yuki; Kubo, Masaaki; Takashima, Seisuke; Tsuru, Kanji; Hayakawa, Satoshi; Osaka, Akiyoshi

    2005-09-22

    Gamma-methacryloxypropyltrimethoxysilane (gamma-MPS) was grafted to high-density polyethylene, polyamide and silicone rubber substrates by the emulsion polymerization procedure in order to provide these organic polymers with in vitro apatite-forming ability. The contact angles towards distilled water of the gamma-MPS-grafted specimens were lower than those of the original organic polymer specimens, indicating that the grafted substrates were more hydrophilic. The in vitro apatite formation in a simulated body fluid (Kokubo solution) was confirmed for several of the gamma-MPS-grafted specimens.

  4. In vitro apatite formation on organic polymers modified with a silane coupling reagent

    PubMed Central

    Shirosaki, Yuki; Kubo, Masaaki; Takashima, Seisuke; Tsuru, Kanji; Hayakawa, Satoshi; Osaka, Akiyoshi

    2005-01-01

    γ-Methacryloxypropyltrimethoxysilane (γ-MPS) was grafted to high-density polyethylene, polyamide and silicone rubber substrates by the emulsion polymerization procedure in order to provide these organic polymers with in vitro apatite-forming ability. The contact angles towards distilled water of the γ-MPS-grafted specimens were lower than those of the original organic polymer specimens, indicating that the grafted substrates were more hydrophilic. The in vitro apatite formation in a simulated body fluid (Kokubo solution) was confirmed for several of the γ-MPS-grafted specimens. PMID:16849191

  5. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties.

    PubMed

    Yao, Fang; LeGeros, John P; LeGeros, Racquel Z

    2009-07-01

    The mineral in bone is an impure hydroxyapatite, with carbonate as the chief minor substituent. Fluoride has been shown to stimulate osteoblastic activity and inhibit osteoclastic resorption in vitro. CO(3)- and F-substituted apatite (CFA) has been considered as potential bone graft material for orthopedic and dental applications. The objective of this study was to determine the effects of simultaneously incorporated CO(3) and F on the crystallographic physico-chemical properties of apatite. The results showed that increasing CO(3) and Na content in apatites with relatively constant F concentration caused a decrease in crystallite size and an increase in the extent of calcium release; increasing F content in apatites with relatively constant CO(3) concentration caused an increase in crystallite size and a decrease in the extent of Ca release. These findings suggest that CFAs as bone graft materials of desired solubility can be prepared by manipulating the relative concentrations of CO(3) and F incorporated in the apatite.

  6. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings.

    PubMed

    Han, Yong; Chen, Donghui; Sun, Jifeng; Zhang, Yumei; Xu, Kewei

    2008-09-01

    Using ultraviolet (UV) irradiation of micro-arc oxidized (MAO) titania coating in distilled water for 0.5 and 2h, we have achieved an enhanced bioactivity and cell response to titania surface. The MAO coating appears porous and predominantly consists of nanocrystallized anatase TiO(2). Compared with the MAO coating, the UV-irradiated coatings do not exhibit any obvious change in surface roughness, morphology, grain size and phase component; however, they have more abundant basic Ti-OH groups and become more hydrophilic because the water contact angle decreases significantly from 17.9+/-0.8 degrees to 0 degrees . In simulated body fluid (SBF), bonelike apatite-forming ability is significantly stronger on the UV-irradiated coatings than the MAO coating. SaOS-2 human osteoblast-like cell attachment, proliferation and alkaline phosphatase of the cell are greater on the UV-irradiated coatings relative to the MAO coating. UV irradiation of titania results in the conversion of Ti(4+) to Ti(3+) and the generation of oxygen vacancies, which could react with the absorbed water to form basic Ti-OH groups. The enhanced bioactivity and cell response of the UV-irradiated coatings are proven to result from abundant Ti-OH groups on the coating surfaces. After storing the UV-irradiated coatings in the dark for two weeks, the basic Ti-OH groups on the coatings slightly decrease in amount and can induce apatite formation after a short period of SBF immersion, and show relative long-term stability.

  7. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.; Ketcham, Richard A.; Shuster, David L.; Farley, Kenneth A.

    2009-04-01

    Helium diffusion from apatite is a sensitive function of the volume fraction of radiation damage to the crystal, a quantity that varies over the lifetime of the apatite. Using recently published laboratory data we develop and investigate a new kinetic model, the radiation damage accumulation and annealing model (RDAAM), that adopts the effective fission-track density as a proxy for accumulated radiation damage. This proxy incorporates creation of crystal damage proportional to α-production from U and Th decay, and the elimination of that damage governed by the kinetics of fission-track annealing. The RDAAM is a version of the helium trapping model (HeTM; Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249, 148-161), calibrated by helium diffusion data in natural and partially annealed apatites. The chief limitation of the HeTM, now addressed by RDAAM, is its use of He concentration as the radiation damage proxy for circumstances in which radiation damage and He are not accumulated and lost proportionately from the crystal. By incorporating the RDAAM into the HeFTy computer program, we explore its implications for apatite (U-Th)/He thermochronometry. We show how (U-Th)/He dates predicted from the model are sensitive to both effective U concentration (eU) and details of the temperature history. The RDAAM predicts an effective He closure temperature of 62 °C for a 28 ppm eU apatite of 60 μm radius that experienced a 10 °C/Ma monotonic cooling rate; this is 8 °C lower than the 70 °C effective closure temperature predicted using commonly assumed Durango diffusion kinetics. Use of the RDAAM is most important for accurate interpretation of (U-Th)/He data for apatite suites that experienced moderate to slow monotonic cooling (1-0.1 °C/Ma), prolonged residence in the helium partial retention zone, or a duration at temperatures appropriate for radiation

  8. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite

    NASA Astrophysics Data System (ADS)

    Shuster, David L.; Farley, Kenneth A.

    2009-01-01

    Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage. Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy ( E a) and the frequency factor ( D o/ a2) of diffusion and yielded a higher He closure temperature ( T c) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in E a and ln( D o/a 2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites. To investigate the potential consequences of annealing of radiation damage, samples of

  9. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view

    NASA Astrophysics Data System (ADS)

    Mbongo Djimbi, Duval; Gautheron, Cécile; Roques, Jérôme; Tassan-Got, Laurent; Gerin, Chloé; Simoni, Eric

    2015-10-01

    The quantification of the different parameters influencing He diffusion in apatite is an important issue for the interpretation of (U-Th)/He thermochronometric ages. Key issues include understanding the role of chemical composition and the mechanism modifying diffusivity by radiation damage, both requiring a realistic description at the atomic level. In this contribution, we restrict ourselves on the influence of the chemical composition especially on the effect of Cl-atoms on the He diffusion in the damage-free apatite crystal. For this purpose, a multi-scale theoretical diffusion study has been conducted using periodic Density Functional Theory calculations for two different apatite compositions (pure fluorine apatite and apatite with one chlorine and 3 fluorine atoms per cell called Cl0.25-apatite) representative of damage-free crystals. Different He insertion sites and diffusion pathways are first investigated. The Density Functional Theory approach coupled to the Nudged Elastic Band method is used to determine the energy barriers between the insertion sites. A statistical method, based on Transition State Theory, is used to compute the jump rate between sites and the different results are used as output for a 3D random walk simulation, which determines the diffusion trajectories and the diffusion coefficients. The calculated diffusion coefficients for pure F-apatite exhibit a slightly anisotropic behavior with an activation energy Ea = 95.5 kJ/mol and a frequency factor D0 = 1.9 × 10-3 cm2/s along the c axis; Ea = 106.1 kJ/mol and D0 = 4.1 × 10-3 cm2/s in the plane orthogonal to c. Closure temperatures for a 60 μm grain radius and 10 °C/Ma cooling rate range from 33 to 36 °C and depend on crystal geometry for a given grain size. Surprisingly, even though He diffusion is strongly blocked across the Cl atoms in Cl0.25-apatite, where Ea is significantly higher (166.7 kJ/mol), He atoms can still diffuse along the c axis through workaround pathways. Closure

  10. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells

    PubMed Central

    HATAKEYAMA, WATARU; TAIRA, MASAYUKI; CHOSA, NAOYUKI; KIHARA, HIDEMICHI; ISHISAKI, AKIRA; KONDO, HISATOMO

    2013-01-01

    The development of new osteoconductive bone substitute materials is expected in medicine. In this study, we attempted to produce new hydroxylapatite (HAP)/collagen (Col) composites using two HAP particles of different sizes and porcine type I collagen. The two HAP particles were either nano-sized (40 nm in average diameter; n-HAP) or had macro-pore sizes of 0.5–1.0 mm in length with fully interconnected pores (m-HAP). The aim of this study was to investigate the effects of apatite particle size in two HAP/Col composites on the osteogenic differentiation profile in osteoblast-like cells (SaOS-2). We created a collagen control sponge (Col) and two HAP/Col composite sponges (n-HAP/Col and m-HAP/Col) using freeze-drying and dehydrothermal cross-linking techniques, and then punched out samples of 6 mm in diameter and 1 mm in height. The SaOS-2 cells were cultured on three test materials for 1, 2, 3 and 4 weeks. Total RNA was extracted from the cultured cells and the expression of osteogenic differentiation-related genes was evaluated by reverse transcription PCR (RT-PCR) using primer sets of alkaline phosphatase (ALP), type 1 collagen (COL1), bone sialoprotein (BSP) and osteocalcin precursor [bone gamma-carboxyglutamate (gla) protein (BGLAP)] genes, as well as the β-actin gene. The cells were also cultured on Col, n-HAP/Col and m-HAP/Col specimens for 1 and 4 weeks, and were then observed under a scanning electron microscope (SEM). The experimental results were as follows: RT-PCR indicated that osteogenic differentiation, particularly the gene expression of BSP, was most accelerated when the cells were cultured on n-HAP/Col specimens, followed by m-HAP/Col, whilst the weakest accelaeration was observed when the cells were cultured on Col specimens. As shown by the SEM images, the SaOS-2 cells were fibroblastic when cultured on Col specimens for up to 4 weeks; they were fibroblastic when cultured on n-HAP/Col specimens for 1 week, but appeared as spheroids, while

  11. Hydroxyapatite coatings.

    PubMed

    Lacefield, W R

    1988-01-01

    Four coating techniques were evaluated to determine which is most suitable for producing a dense, highly adherent coating onto metallic and ceramic implant materials. Two of the selected coating methods have serious limitations for use in this particular application, and did not meet the specified criteria for satisfactory coating as defined in the initial stages of the study. For example, the dip coating-sintering technique was judged to be unsatisfactory because of the adverse effect of the high-temperature sintering cycle on the mechanical properties of the metallic substrate materials. These materials could not be used in load-bearing applications because of the excessive grain growth and loss of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates, and the loss of ductility in the cast Co-Cr-Mo alloy. Another area of concern was that bond strength between the HA coating and the substrate was not high enough to insure that interfacial failure would not occur during the lifetime of the implant. The immersion-coating technique, in which the metal substrate is immersed into the molten ceramic, was shown in a previous study to be the best method of coating a bioreactive glass onto a Co-Cr-Mo implant. Heating HA above its melting temperature, however, caused undesired compositional and structural changes, and upon solidification very limited adherence between the modified ceramic and substrate material occurred under the conditions of this study. The HIP technique, in which the Ti powder substrate and the HA powder coating are sintered together in a high-pressure autoclave, shows great promise for the fabrication of high-quality composite implants. Initial studies have indicated that high-density Ti substrates with a small grain size that are well bonded to a dense HA coating can be produced under optimum conditions. Sintering and densification additives, such as SiO2 powder, do not appear to be necessary. The main drawback to this

  12. Compositional Variation of Terrestrial Mantle Apatites and Implications for the Halogen and Water Budgets of the Terrestrial Mantle

    NASA Astrophysics Data System (ADS)

    Roden, M.; Patino Douce, A. E.; Chaumba, J. B.; Fleisher, C.; Yogodzinski, G. M.

    2011-12-01

    Apatite in ultramafic xenoliths from various tectonic enviroments including arc (Kamchatka), plume (Hawaii), and intraplate (Lunar Crater, Nunivak, Colorado Plateau) were analyzed by electron microprobe with the aim of characterizing the Cl and F contents, and from these measured compositions to infer the nature of fluids/melts that the apatites equilibrated with. The impetus for the study derived from the generalization of O'Reilly and Griffin (1) that mantle-derived metasomatic apatites tend to be Cl-rich and mantle-derived igneous apatites tend to be F-rich. Our work largely corroborates their generalization with Cl- and/or H2O-rich compositions characterizing the apatites from Nunivak and Kamchatka while apatites from igneous or Group II xenoliths tend to be Cl-poor and be either nearly pure fluorapatite or a mix of hydroxylapatite and fluorapatite. We attribute the Cl-rich nature of the Kamchatka apatites to formation from Cl-rich fluids generated from subducted lithosphere; however the Nunivak occurrence is far removed from subducted lithosphere and may reflect a deep seated source for Cl as also indicated by brine inclusions in diamonds, Cl-rich apatites in carbonate-bearing xenoliths and a Cl-rich signature in some plumes such as Iceland, Azores and Samoa. One curious aspect of mantle-derived apatite compositions is that xenoliths with evidence of carbonatitic metasomatism commonly have Cl-rich apatites while apatites from carbonatites are invariably Cl-poor - perhaps reflecting loss of Cl in fluids evolved from the carbonatitic magma. Apatites from Group II xenoliths at Hawaii are solid solutions between fluorapatite and hydroxylapatite and show no evidence for deep-seated Cl at Hawaii. Samples of the terrestrial mantle are almost uniformly characterized by mineral assemblages with a single Ca-rich phosphate phase but the mantles of Mars, Vesta and the Moon have two Ca-rich phosphates, apatite and volatile-poor merrillite - apatite compositions existing

  13. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors

    PubMed Central

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H. H.; Friedrich, Heiner; Brylka, Laura J.; Hilbers, Peter A. J.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2011-01-01

    Bone is a composite material, in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals1,2. In the periodic 67 nm cross-striated pattern of the collagen fibril3–5, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow6–9. This process is believed to be directed by highly acidic non-collagenous proteins6,7,9–11; however, the role of the collagen matrix12–14 during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography15 with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation. PMID:20972429

  14. The impact of bacteria of circulating water on apatite-nepheline ore flotation.

    PubMed

    Evdokimova, G A; Gershenkop, A Sh; Fokina, N V

    2012-01-01

    A new phenomenon has been identified and studied-the impact of bacteria on the benefication process of non-sulphide ores using circulating water supply-a case study of apatite-nepheline ore. It is shown that bacteria deteriorate the floatability of apatite due to their interaction with active centres of calcium-containing minerals and intense flocculation, resulting in a decrease of the flotation process selectivity thus deteriorating the quality of concentrate. Based on the comparative analysis of primary sequences of 16S rRNA genes, there have been identified dominating bacteria species, recovered from the circulating water used at apatite-nepheline concentrating mills, and their phylogenetic position has been determined. All the bacteria were related to γ-Proteobacteria, including the Acinetobacter species, Pseudomonas alcaliphila, Ps. plecoglossicida, Stenotrophomonas rhizophila. A method of non-sulphide ores flotation has been developed with consideration of the bacterial factor. It consists in use of small concentrations of sodium hypochlorite, which inhibits the development of bacteria in the flotation of apatite-nepheline ores.

  15. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Wang, Jiecheng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3PO 4) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  16. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    EPA Science Inventory

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  17. Degrees of saturation with respect to apatites in fruit juices and acidic drinks.

    PubMed

    Larsen, M J

    1975-01-01

    Some fruit juices and carbonated acidic drinks, recognized as agents causing dental erosions, were analyzed for calcium, phosphate, fluoride and pH. Ionic activity/concentration products for hydroxyapatite and fluorapatite were calculated. It was found that all liquids analyzed were unsaturated with respect to both apatites, which explains their erosive effect.

  18. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    EPA Science Inventory

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  19. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.

    PubMed

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H H; Friedrich, Heiner; Brylka, Laura J; Hilbers, Peter A J; de With, Gijsbertus; Sommerdijk, Nico A J M

    2010-12-01

    Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.

  20. Effect of fluoride-substituted apatite on in vivo bone formation.

    PubMed

    Inoue, Miho; Rodriguez, Andrea P; Nagai, Noriyuki; Nagatsuka, Hitoshi; LeGeros, Racquel Z; Tsujigiwa, Hidetsugu; Inoue, Masahisa; Kishimoto, Etsuo; Takagi, Shin

    2011-05-01

    Biological apatites are characterized by the presence of minor constituents such as magnesium (Mg), chloride (Cl), or fluoride (F) ions. These ions affect cell proliferation and osteoblastic differentiation during bone tissue formation. F-substituted apatites are being explored as potential bonegraft materials. The aim of the present study is to investigate the mechanism of bone formation induced by fluoride-substituted apatite (FAp) by analyzing the effect of FAp on the process of in vivo bone formation. FAps containing different F concentrations (l-FAp: 0.48 wt%, m-FAp: 0.91 wt%, h-FAp: 2.23 wt%) and calcium-deficient apatite (CDA), as positive control, were implanted in rat tibia and bone formation was evaluated by histological examination, immuhistochemistry, in situ hybridization and tartrate-resistant acid phosphatase examinations. The results showed that l-FAp, m-FAp, h-FAp, and CDA biomaterials allowed migration of macrophages, attachment, proliferation, and phenotypic expression of bone cells leading to new bone formation in direct apposition to the particles. However, the l-FAp preparation allowed faster bone conduction compared to the other experimental materials. These results suggest that FAp with low F concentration may be an efficient bonegraft material for dental and medical application.

  1. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites.

    PubMed

    Errassifi, F; Sarda, S; Barroug, A; Legrouri, A; Sfihi, H; Rey, C

    2014-04-15

    The aim of the current work was to study the physico-chemical interactions of a bisphosphonate molecule, risedronate, with a well-characterised synthetic nanocrystalline apatite (NCA) as a model bone mineral. We adopted a global approach, using complementary physico-chemical techniques such as FTIR, RAMAN and NMR spectroscopies in order to learn more about the interaction process of risedronate with the apatitic surface. The results obtained suggest that risedronate adsorption corresponds to an ion substitution reaction with phosphate ions occurring at the crystal surface. This mechanism explains the greater amount adsorbed (N) for NCA, compared to well crystallised stoichiometric hydroxyapatite, attributable to the well-developed hydrated layer at the surface of the nanocrystals. However, most calcium ions remain attached to the solid phase and the formation of insoluble risedronate calcium salts must also be considered as a competitive reaction to the adsorption. Thus a calcium risedronate salt was synthesised and fully characterised for comparison to the solids after adsorption. Following spectroscopic results, it can be concluded that a strong interaction was established between risedronate ions and calcium ions at the apatitic surface. However, under these experimental conditions there is no nucleation of a distinct calcium risedronate salt and the apatite crystals retain their integrity.

  2. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study.

    PubMed

    Loong, C K; Rey, C; Kuhn, L T; Combes, C; Wu, Y; Chen, S; Glimcher, M J

    2000-06-01

    The novelty of very large neutron-scattering intensity from the nuclear-spin incoherence in hydrogen has permitted the determination of atomic motion of hydrogen in synthetic hydroxyapatite and in deproteinated isolated apatite crystals of bovine and rat bone without the interference of vibrational modes from other structural units. From an inelastic neutron-scattering experiment, we found no sharp excitations characteristic of the vibrational mode and stretch vibrations of OH ions around 80 and 450 meV (645 and 3630 cm(-1)), respectively, in the isolated, deproteinated crystals of bone apatites; such salient features were clearly seen in micron- and nanometer-size crystals of pure hydroxyapatite powders. Thus, the data provide additional definitive evidence for the lack of OH(-) ions in the crystals of bone apatite. Weak features at 160-180 and 376 meV, which are clearly observed in the apatite crystals of rat bone and possibly in adult mature bovine bone, but to a much lesser degree, but not in the synthetic hydroxyapatite, are assigned to the deformation and stretch modes of OH ions belonging to HPO(4)-like species.

  3. Ab initio simulation on the crystal structure and elastic properties of carbonated apatite.

    PubMed

    Ren, Fuzeng; Lu, Xiong; Leng, Yang

    2013-10-01

    Ab initio quantum mechanical (QM) calculations were employed to study the crystal structure and elastic properties of carbonated apatite (CAp). Two locations for the carbonate ion in the apatite lattice were considered: carbonate substituting for OH(-) ion (type-A), and for PO4(3-) ion (type-B) with possible charge compensation mechanisms. A combined type-AB substitution (two carbonate ions replacing one phosphate group and one hydroxyl group, respectively) was also investigated. The results show that the most energetically stable substitution is type-AB, followed by type-A and then type-B. The most stable configuration of type-A has its carbonate triangular plane almost parallel to c-axis at z=0.46. The lowest energy configuration of type-B is that with a sodium ion substituting for a calcium ion for charge balance and the carbonate lying on the b/c-plane of apatite. Lattice parameter changes after carbonate substitution in hydroxyapatite (HA) agree with reported experimental results qualitatively: for type-A, lattice parameter a increases but c decreases; and for type-B, lattice parameter a decreases but c increases. Using the calculated CAp stable structures, we also calculated the elastic properties of CAp and compared them with those of HA and biological apatites.

  4. In-situ time resolved studies of apatite formation pathways - implications for biological and environmental systems

    NASA Astrophysics Data System (ADS)

    Borkiewicz, O.; Rakovan, J.; Cahill, C. L.

    2006-05-01

    The mineral apatite, Ca5(PO4)3(F,OH,Cl), is of great significance in a variety of fields including life and environmental sciences. Apatite is the main constituent of almost all hard tissues of human body and plays major role in the metabolic processes. Recently, it has gained a considerable amount of attention as a promising candidate for the use in the in-situ metal sequestration of metal ions for environmental remediation, sometimes called phosphate induced metal stabilization (PIMS). We report preliminary results of in-situ time resolved X-ray diffraction studies of apatite formation pathways from aqueous solutions, performed at the X7B beamline of the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. A series of experiments with different Ca/P and liquid/solid ratios in the starting material, and range of temperatures were performed. In the first stage of the experiment, calcium acetate and ammonium phosphate solutions are mixed at room temperature, resulting in the formation of an initial precipitate. The solution is then press-filtered and the remaining slurry, of the desired liquid/solid ratio, is placed inside a heating cell and analyzed within 10 min. of the initial precipitation. The initial precipitate was identified as brushite (CaHPO4 - 2H2O) in all experiments, independent of the initial Ca/P ratio in solution). In the experiment conducted at ambient temperature brushite was the only phase present in the solution/slurry throughout the duration of the analysis. Under the conditions of elevated temperature, however, a sequence of phase transitions, from brushite to apatite with intermediate monetite (CaHPO4) was observed. The pathway of the transitions and the final product was independent of both the Ca/P ratio and the temperature of the reaction. The rate of the transformation, however, increased with increasing temperature. Numerous studies of apatite formation from solution using standard X-ray diffraction experiments

  5. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid

    NASA Astrophysics Data System (ADS)

    Mathez, Edmond A.; Webster, James D.

    2005-03-01

    The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of D Clapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ˜3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing D Clapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes "saturated" in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which D Clapatite/melt and D Clfluid/melt begin to increase also depends on composition. The experiments reveal that D Fapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so D Fapatite/melt is constant for a wide range of composition. The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.

  6. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  7. New evolutionary insights into granite genesis preserved in the trace element compositions of apatite and zircon

    NASA Astrophysics Data System (ADS)

    Miles, A.; Graham, C.; Gillespie, M.; Hawkesworth, C. J.; Hinton, R. W.

    2010-12-01

    The chemical architecture of key accessory minerals like zircon and apatite has proved pivotal in assessing the early mechanisms of crustal growth and differentiation. However, the exact stages at which they crystallise during the evolution of granite plutons and the processes they record remain poorly constrained. We present a combined micro-analytical and petrological study of these important accessory minerals. The results reveal the significance of early and previously unrecognised incremental assembly of intermediate zones in the I-type (margins) to S-type (centre) zoned Scottish Caledonian pluton, Criffel. Within intermediate zones, two distinct I- and S-type trends are seen in trace element compositions of apatites enclosed by zircon and other major phases respectively (Fig. 1). The fluorine concentrations of apatite included within different phases have been used as a proxy for the degree of melt differentiation and S-type melt involvement, and indicate that zircon-hosted apatite compositions often preserve the earliest and most primitive record of I-type magmas. Together with textural evidence, this provides some of the first geochemical evidence that zircon started crystallising at a relatively early stage of magma evolution, placing important constraints on the interpretations of zircon O and Hf isotopic data. The systematic increase in δ18O from ~6‰ to >8‰ recorded by zircon from progressively more central zones of the pluton requires additions of an 18O-enriched component to the magma. Near-Gaussian zircon 18O probability distributions indicate effective magma mixing prior to zircon crystallisation, yet differences of up to 4‰ between zircon and their host whole-rock δ18O values demonstrate isotopic disequilibrium and early crystallisation of zircon from a magma of lower δ18O. Thus, the earliest records of magmatic processes indicate that final intermediate bulk compositions are primarily the product of both I- and S-type magma components

  8. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and

  9. The formation of Luoboling porphyry Cu-Mo deposit: Constraints from zircon and apatite

    NASA Astrophysics Data System (ADS)

    Li, Cong-ying; Hao, Xi-luo; Liu, Ji-qiang; Ling, Ming-xing; Ding, Xing; Zhang, Hong; Sun, Wei-dong

    2017-02-01

    The Luobuling porphyry Cu-Mo deposit belongs to the Late Cretaceous Zijinshan Cu-Au-Mo mineralization field in southeastern China. Due to intensive hydrothermal alteration and weathering, it is very difficult to collect fresh whole rock samples for geochemical and isotopic studies in Luobuling. Zircon and apatite are accessory minerals that are resistant to hydrothermal alterations. In this study, we compared the trace element and isotope compositions of zircon and apatite from ore-bearing and barren samples to understand the formation of the Luoboling Cu-Mo deposit. Zircon U-Pb LA-ICP-MS dating shows that the Luoboling porphyries formed at 100 Ma (100.3 ± 1.2 Ma, 100.6 ± 1.5 Ma and 98.6 ± 1.2 Ma), which belongs to the late stage mineralization of the Zijinshan mineralization field. Zhongliao porphyritic granodiorite has the same age as the deposit (99.5 ± 1.6 Ma). The age of barren Sifang granodiorite is slightly older (109.7 ± 0.8 Ma). All these zircon grains have high Ce4+/Ce3+ ratios, indicating high oxygen fugacities. The ore-bearing samples show variable εHf(t) of - 7.3 to 0.2, suggesting either heterogeneous sources or mixing of two different magmas. Interestingly, the Hf isotope composition of barren samples is systematically higher (εHf(t) of - 3.6 to 5.5), implying a lower contribution of crustal materials. The OH mole percent of apatite grains from barren samples (LBL22-03 and SF09-05) is 0.5, which is higher than that of apatite from the ore-bearing samples (LBL20-01 LBL20-02 and LBL22-02), indicating lower F, Cl contents or higher water contents in the magma. In apatite from the ore-bearing samples, Sr is high, indicating the absence of plagioclase crystallization. In contrast, barren samples have varied and lower Sr, indicating that apatite crystallization was accompanied by plagioclase. These patterns were controlled by water contents because the crystallization of plagioclase is suppressed by high water contents in magmas. It also suggests

  10. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  11. Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature

    NASA Astrophysics Data System (ADS)

    Liu, Weihua; Mei, Yuan; Etschmann, Barbara; Brugger, Joël; Pearce, Mark; Ryan, Chris G.; Borg, Stacey; Wykes, Jeremey; Kappen, Peter; Paterson, David; Boesenberg, Ulrike; Garrevoet, Jan; Moorhead, Gareth; Falkenberg, Gerald

    2017-01-01

    Element substitution that occurs during fluid-rock interaction permits assessment of fluid composition and interaction conditions in ancient geological systems, and provides a way to fix contaminants from aqueous solutions. We conducted a series of hydrothermal mineral replacement experiments to determine whether a relationship can be established between arsenic (As) distribution in apatite and fluid chemistry. Calcite crystals were reacted with phosphate solutions spiked with As(V), As(III), and mixed As(III)/As(V) species at 250 °C and water-saturated pressure. Arsenic-bearing apatite rims formed in several hours, and within 48 h the calcite grains were fully replaced. X-ray Absorption Near-edge Spectroscopy (XANES) data show that As retained the trivalent oxidation state in the fully-reacted apatite grown from solutions containing only As(III). Extended X-ray Fine Spectroscopy (EXAFS) data reveal that these As(III) ions are surrounded by about three oxygen atoms at an Assbnd O bond length close to that of an arsenate group (AsO43-), indicating that they occupy tetrahedral phosphate sites. The three-coordinated As(III)-O3 structure, with three oxygen atoms and one lone electron pair around As(III), was confirmed by geometry optimization using ab initio molecular simulations. The micro-XANES imaging data show that apatite formed from solutions spiked with mixed As(III) and As(V) retained only As(V) after completion of the replacement reaction; in contrast, partially reacted samples revealed a complex distribution of As(V)/As(III) ratios, with As(V) concentrated in the center of the grain and As(III) towards the rim. Most natural apatites from the Ernest Henry iron oxide copper gold deposit, Australia, show predominantly As(V), but two grains retained some As(III) in their core. The As-anomalous amphibolite-facies gneiss from Binntal, Switzerland, only revealed As(V), despite the fact that these apatites in both cases formed under conditions where As(III) is

  12. An empirical test of helium diffusion in apatite: borehole data from the Otway basin, Australia

    NASA Astrophysics Data System (ADS)

    House, Martha A.; Farley, Kenneth A.; Kohn, Barry P.

    1999-07-01

    We have analyzed helium ages of apatites from several boreholes in the Otway basin, Australia, to evaluate whether laboratory helium diffusivity can be accurately extrapolated to conditions relevant in nature. Downhole apatite helium ages define a broad swath of values from 78-71 Ma at the surface (15°C) to nearly zero at depths corresponding to ambient temperatures of ˜80°C. The width of the swath results from uncertainties in corrected borehole temperatures, differences in the thermal history experienced by the various boreholes, and possibly from slightly different helium diffusivities among the detrital apatite grains studied. In the eastern Otway basin, the shape and position of the helium age profile is in good agreement with predictions based on the extrapolation of laboratory diffusivity data for Durango apatite coupled with published thermal histories for this part of the basin. In contrast, helium ages are much younger than predicted in the western Otway basin. Based on measured ages from Otway sediments, which have been essentially isothermal over the last few million years, an empirical diffusivity ( D/ a2) of 2×10 -15 s -1 can be assigned to apatites residing at downhole temperatures of 67-97°C. This empirical diffusivity is consistent with laboratory diffusion measurements, demonstrating that such measurements are reasonably accurate and can be applied with confidence to natural geologic settings. Given this confirmation of the laboratory diffusivity data, the discrepancy between the observed and modeled helium age profiles in the western Otway basin suggests that these sediments recently experienced higher temperatures than presently supposed.

  13. Controlled release of insulin in blood from strontium-substituted carbonate apatite complexes.

    PubMed

    Ahmad, Aiman; Othman, Iekhsan; Md Zain, Anuar Zaini; Chowdhury, Ezharul Hoque

    2015-01-01

    Diabetes mellitus is a chronic disease accompanied by a multitude of problems worldwide with subcutaneously administered insulin being the most common therapy currently. Controlledrelease insulin is assumed to be of high importance for long-term glycaemic control by reducing the number of daily injections. Long-acting insulin also mimics the basal insulin levels in normal individuals that may be lacking in diabetic patients. Nanoparticles of carbonate apatite as established for efficient intracellular transport of DNA and siRNA have the potential to be used for sustained release of insulin as responsive nano-carriers. The flexibility in the synthesis of the particles over a wide range of pHs with eventual adjustment of pH-dependent particle dissolution and the manageable variability of particle-integrity by incorporating selective ions into the apatite structure are the promising features that could help in the development of sustained release formulations for insulin. In particular strontium-incorporated carbonate apatite particles were formulated and compared with those of unsubstituted apatite in the context of insulin binding and subsequent release kinetics in DMEM, simulated buffer and finally human blood over a period of 20 hours. Clearly, the former demonstated to have a stronger electrostatic affinity towards the acidic insulin molecules and facilitate to some extent sustained release of insulin by preventing the initial burst effect at physiological pH in comparison with the latter. Thus, our findings suggest that optimization of the carbonate apatite particle composition and structure would serve to design an ideal insulin nano-carrier with a controlled release profile.

  14. Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution

    NASA Astrophysics Data System (ADS)

    Olsen, A. A.; Morra, B.

    2016-12-01

    We ran a series of experiments to test the hypothesis that release of plant nutrients contained in apatite will be accelerated by the growth of Langstrath Stringless green bean in the presence of atmospheric CO2 meant to simulate possible future atmospheric conditions due a higher demand of nutrients and growth rate caused by elevated CO2. We hypothesize that elevated atmospheric CO2 will lead to both increased root growth and organic acid exudation. These two traits will lead to improved acquisition of P derived from apatite. Experiments were designed to investigate the effect of these changes on soil mineral weathering using plants grown under two conditions, ambient CO2 (400ppm) and elevated CO2 (1000ppm). Plants were grown in flow-through microcosms consisting of a mixture of quartz and apatite sands. Mini-greenhouses were utilized to control CO2 levels. Plant growth was sustained by a nutrient solution lacking in Ca and P. Calcium and P content of the leachate and plant tissue served as a proxy for apatite dissolution. Plants were harvested biweekly during the eight-week experiment and analyzed for Ca and P to calculate apatite dissolution kinetics. Preliminary results suggest that approximately four times more P and Ca are present in the leachate from experiments containing plants under both ambient and elevated CO2 levels than in abiotic experiments; however, the amounts of both P and Ca released in experiments conducted under both ambient and elevated CO2 levels are similar. Additionally, the amount of P in plant tissue grown under ambient and elevated CO2 conditions is similar. Plants grown in elevated CO2 had a greater root to shoot ratio. The planted microcosms were found to have a lower pH than abiotic controls most likely due to root respiration and exudation of organic acids.

  15. High carbonate level of apatite in kidney stones implies infection, but is it predictive?

    PubMed

    Englert, Kate M; McAteer, James A; Lingeman, James E; Williams, James C

    2013-10-01

    The presence of infectious microorganisms in urinary stones is commonly inferred from stone composition, especially by the presence of struvite in a stone. The presence of highly carbonated apatite has also been proposed as a marker of the presence of bacteria within a stone. We retrospectively studied 368 patients who had undergone percutaneous nephrolithotomy (PCNL), and who also had culture results for both stone and urine. Urine culture showed no association with stone mineral content, but stone culture was more often positive in struvite-containing stones (73 % positive) and majority apatite stones (65 %) than in other stone types (54 %, lower than the others, P < 0.02). In 51 patients in whom the carbonate content of apatite could be measured, carbonate in the apatite was weakly predictive of positive stone culture with an optimal cutoff value of 13.5 % carbonate (sensitivity 0.61, specificity 0.80). In positive cultures of stones (all mineral types combined), organisms that characteristically produce urease were present in 71 % of the cases, with no difference in this proportion among different types of stone. In summary, the type of mineral in the stone was predictive of positive stone culture, but this correlation is imperfect, as over half of non-struvite, non-apatite stones were found to harbor culturable organisms. We conclude that mineral type is an inadequate predictor of whether a stone contains infectious organisms, and that stone culture is more likely to provide information useful to the management of patients undergoing PCNL.

  16. Atom probe tomography of apatites and bone-type mineralized tissues.

    PubMed

    Gordon, Lyle M; Tran, Lawrence; Joester, Derk

    2012-12-21

    Nanocrystalline biological apatites constitute the mineral phase of vertebrate bone and teeth. Beyond their central importance to the mechanical function of our skeleton, their extraordinarily large surface acts as the most important ion exchanger for essential and toxic ions in our body. However, the nanoscale structural and chemical complexity of apatite-based mineralized tissues is a formidable challenge to quantitative imaging. For example, even energy-filtered electron microscopy is not suitable for detection of small quantities of low atomic number elements typical for biological materials. Herein we show that laser-pulsed atom probe tomography, a technique that combines subnanometer spatial resolution with unbiased chemical sensitivity, is uniquely suited to the task. Common apatite end members share a number of features, but can clearly be distinguished by their spectrometric fingerprint. This fingerprint and the formation of molecular ions during field evaporation can be explained based on the chemistry of the apatite channel ion. Using end members for reference, we are able to interpret the spectra of bone and dentin samples, and generate the first three-dimensional reconstruction of 1.2 × 10(7) atoms in a dentin sample. The fibrous nature of the collagenous organic matrix in dentin is clearly recognizable in the reconstruction. Surprisingly, some fibers show selectivity in binding for sodium ions over magnesium ions, implying that an additional, chemical level of hierarchy is necessary to describe dentin structure. Furthermore, segregation of inorganic ions or small organic molecules to homophase interfaces (grain boundaries) is not apparent. This has implications for the platelet model for apatite biominerals.

  17. The status of strontium in biological apatites: an XANES investigation.

    PubMed

    Bazin, D; Daudon, M; Chappard, Ch; Rehr, J J; Thiaudière, D; Reguer, S

    2011-11-01

    Osteoporosis represents a major public health problem and increases patient morbidity through its association with fragility fractures. Among the different treatments proposed, strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk. While the localization of Sr(2+) cations in the bone matrix has been extensively studied, little is known regarding the status of Sr(2+) cations in natural biological apatite. In this investigation the local environment of Sr(2+) cations has been investigated through XANES (X-ray absorption near-edge structure) spectroscopy in a set of pathological and physiological apatites. To assess the localization of Sr(2+) cations in these biological apatites, numerical simulations using the ab initio FEFF9 X-ray spectroscopy program have been performed. The complete set of data show that the XANES part of the absorption spectra may be used as a fingerprint to determine the localization of Sr(2+) cations versus the mineral part of calcifications. More precisely, it appears that a relationship exists between some features present in the XANES part and a Sr(2+)/Ca(2+) substitution process in site (I) of crystal apatite. Regarding the data, further experiments are needed to confirm a possible link between the relationship between the preparation mode of the calcification (cellular activity for physiological calcification and precipitation for the pathological one) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Is it possible to draw a line between life and chemistry through the localization of Sr in apatite? The question is open for discussion. A better structural description of these physiological and pathological calcifications will help to develop specific therapies targeting the demineralization process in the case of osteoporosis.

  18. Sulfur isotopic zoning in apatite crystals: A new record of dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, Rita; Boehnke, Patrick; Burgisser, Alain

    2017-10-01

    The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-phase (solid, immiscible liquid, gaseous, dissolved ions) and multi-valent (from S2- to S6+) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often enigmatic to extract from rock records, particularly for intrusive systems. We apply a novel method of measuring S isotopic ratios in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We interrogate the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe. Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We discuss a range of possible natural scenarios and favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO+1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. Our conclusions have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  19. Isotope dilution analysis of Ca and Zr in apatite and zircon (U-Th)/He chronometry

    NASA Astrophysics Data System (ADS)

    Guenthner, William R.; Reiners, Peter W.; Chowdhury, Uttam

    2016-05-01

    Because radiation damage influences He diffusivity, correlations between (U-Th)/He ages and effective uranium (eU, eU = U + 0.235 × Th) concentrations of single apatite and zircon grains are important for understanding thermal histories. Here we describe a method for quantifying eU concentrations in apatite and zircon grains using isotope dilution ICP-MS measurements of Zr and Ca and stoichiometry of zircon (ZrSiO4) and apatite (Ca5(PO4)3F) to obtain grain masses. Combined with independent U and Th measurements, these yield eU concentrations not based on the traditional morphologic measurements and assumptions. Additional benefits of this method include correct identification of an apatite or zircon and volume estimates for crystal shards. In some cases, this method gives eU concentrations consistent with those calculated with the morphologic approach, but often significant differences are observed between concentrations calculated from the two methods. Differences in eU concentrations for our apatite grains are greater and less than morphology estimates, and the majority are between 0.7 and 31%. With the exception of two grains, all of our zircon grains have differences between 3 and 34% less than morphology estimates. These differences could result from incorrect grain width measurements, mischaracterized grain shape, or incorrect volume calculations of the pure mineral phase due to inclusions. These morphologic errors—combined with evidence for the accuracy of our isotope dilution method from analyses of reference materials—suggest that eU concentrations calculated from morphology may often be significantly inaccurate. Finally, we demonstrate that differences between the two measurements of eU cause age-eU correlation variations for representative thermal histories.

  20. Regulatory Aspects of Coatings

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a history of the development and uses of edible coating regulations, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The chapter also...

  1. Postmagmatic magnetite-apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

    NASA Astrophysics Data System (ADS)

    Apukhtina, Olga B.; Kamenetsky, Vadim S.; Ehrig, Kathy; Kamenetsky, Maya B.; McPhie, Jocelyn; Maas, Roland; Meffre, Sebastien; Goemann, Karsten; Rodemann, Thomas; Cook, Nigel J.; Ciobanu, Cristiana L.

    2016-01-01

    An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper-gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite-apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite-apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite-ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite-apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite-apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

  2. Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites

    SciTech Connect

    Nadeau, S.L.; Epstein, S.; Stolper, E.

    1999-06-01

    The authors report H and C contents and {delta}D and {delta}{sup 13}C values of apatites from 15 alkaline intrusive complexes ranging in age from 110 Ma to 2.6 Ga. Sampling focused on carbonatites, but included silicate rocks as well. Heating temperatures up to 1,500 C is needed to extract fully H{sub 2}O and CO{sub 2} from these apatites. Apatites from carbonatite-rich intrusive complexes contain 0.2--1.1 wt% H{sub 2}O and 0.05--0.70 wt% CO{sub 2}; apatites from two silicate-rich alkaline complexes with little or no carbonatite are generally poorer in both volatile components (0.1--0.2% H{sub 2}O and 0.01--0.11% CO{sub 2}). D/H ratios in apatites from these rocks are bimodally distributed. The authors suggest that the {delta}D values of group I apatites represent primitive, mantle-derived values and that the group II apatites crystallized from degassed magmas, resulting in lower H{sub 2}O contents and {delta}D values. In contrast to H{sub 2}O contents and {delta}D values, CO{sub 2} contents and {delta}{sup 13}C values of gas released at high temperatures from multiple aliquots of these apatite samples are variable. This suggests the presence of more than one C-bearing component in these apatites, one of which is proposed to be dissolved carbonate; the other could be associated with hydrocarbons.

  3. A fast method for apatite selective leaching from granitic rocks followed through rare earth elements and phosphorus determination by inductively coupled plasma optical emission spectrometry.

    PubMed

    Gásquez, José A; DeLima, Edmilson; Olsina, Roberto A; Martinez, Luis D; de la Guardia, Miguel

    2005-10-15

    Rare earth elements (REE) and phosphorus (P) in apatite were determined using inductively coupled plasma optical emission spectrometry (ICP-OES) after partial dissolution of the granitic rocks and pure apatite. The dissolution was performed with nitric acid in an open system and the matrix elements were separated by a cation exchange procedure. Samples of pure apatite from granitic rocks were dissolved with, 0.14 mol L(-1) nitric acid. The results showed that the release of REE is due to apatite leaching because it could be assessed by comparing the chondrite-normalised pattern corresponding to the rocks and the pure apatite. Similar results were found for absolute REE abundance from the partial dissolution of the rocks and pure apatite. This simple and rapid method can be applied for the determination of REE in apatite as an indicator for mineral exploration, although its use in petrology could be possible.

  4. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%.

  5. Effect of modification substrate on the microstructure of hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.

    2017-01-01

    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.

  6. Reduction And Stabilization (Immobilization) Of Pertechnetate To An Immobile Reduced Technetium Species Using Tin(II) Apatite

    SciTech Connect

    Duncan, J. B.

    2012-11-02

    Synthetic tin(II)apatite reduces pertechnetate from the mobile +7 to a non-mobile oxidation state and sequesters the technetium, preventing re-oxidization to mobile +7 state under acidic or oxygenated conditions. Previous work indicated technetium reacted Sn(II)apatite can achieve an ANSI leachability index of 12.8 in Cast Stone. An effect by pH is observed on the distribution coefficient, the highest distribution coefficient being l70,900 observed at pH levels of 2.5 to 10.2. The tin apatite was resistant to releasing technetium under test conditions.

  7. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition

    NASA Astrophysics Data System (ADS)

    Liu, G. Y.; Hu, J.; Ding, Z. K.; Wang, C.

    2011-01-01

    In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.

  8. Partitioning of F and Cl Between Apatite and a Synthetic Shergottite Liquid (QUE 94201) at 4 Gpa from 1300 TO 1500 C

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Vander Kaaden, K. E.; Boyce, J. W.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (Xsite), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to accurately determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multicomponent silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al., recently reported that the exchange coefficients vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing, and McCubbin et al. reported substantial deviations in the Cl-F exchange Kd along the F-Cl apatite join that could be explained by the preferential incorporation of F into apatite. In the present study, we assess the effect of apatite crystal chemistry on F-Cl exchange equilibria between apatite and melt at 4 GPa over the temperature range of 1300-1500 C. The goal of these experiments is to assess the variation in the Ap-melt Cl-F exchange Kd over a broad range of F:Cl ratios in apatite. The results of these experiments could be used to understand at what

  9. New insights on He diffusion in apatite and implication for (U-Th)/He thermochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Gautheron, C.; Tassan-Got, L.; Gerin, C.; Mbongo, D.; Roques, J.; Oliviero, E.; Bachelet, C.; Simoni, E.

    2013-12-01

    The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer to constrain exhumation and relief evolution in a variety of geological contexts, as it allows dating and estimating the amount of denudation. However, the interpretation of AHe data depends on a precise knowledge of He diffusion in apatite, which is sensible in the 55 to 120°C range. Several studies suggest that radiation damage generated by U and Th decay can create traps for He atoms, increasing He retention as a function of the number of traps. The radiation damage also anneals with temperature and the amount of damage in an apatite crystal will be a balance between production and annealing, controlled by U-Th concentration, grain chemistry and thermal history (Shuster et al., 2006; Flowers et al., 2009; Gautheron et al., 2009; 2013). However these models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight on this issue, multidisciplinary studies on apatite combining diffusion experiments by Elastic Recoil Diffusion Analysis (ERDA) with diffusion calculation Density Functional Theory (DFT) were performed. ERDA experiments were conducted on different macro-crystals, and we probed the shape of a He profile implanted into a planar and polished surface of the crystal. The helium profile evolves with temperature and allows the quantification of He diffusivity. Additionally, DFT calculations of a crystal of apatite have been run to find the favored paths of a helium atom between interstitial sites, leading to a computation of the activation energy and the diffusion coefficient. Crystals with different F and Cl compositions, in similar proportion as natural ones, have been investigated and show chemical variations due to steric effects. Using ERDA and DFT approaches, we demonstrate that in addition to the damage, the grain chemistry strongly impacts He diffusivity and needs to be taken into account. Shuster, D., Flowers

  10. Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction

    NASA Astrophysics Data System (ADS)

    Marotta, James Scott

    The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

  11. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    PubMed

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  12. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  13. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  14. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    PubMed

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks.

  15. Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings.

    PubMed

    Yang, Y; Bumgardner, J D; Cavin, R; Carnes, D L; Ong, J L

    2003-06-01

    The influence of properties of calcium phosphate (CaP) coatings on bone cell activity and bone-implant osseointegration is not well-established. This study investigated the effects of characterized CaP coatings of various heat treatments on osteoblast response. It was hypothesized that heat treatments of CaP coatings alter the initial osteoblast attachment. The 400 degrees C heat-treated coatings were observed to exhibit poor crystallinity and significantly greater phosphate or apatite species compared with as-sputtered and 600 degrees C heat-treated coatings. Similarly, human embryonic palatal mesenchyme (HEPM) cells, an osteoblast precursor cell line, seeded on 400 degrees C heat-treated coatings, exhibited significantly greater cell attachment compared with Ti surfaces, as-sputtered coatings, and 600 degrees C heat-treated coatings. The HEPM cells on Ti surfaces and heat-treated coatings were observed to attach through filopodia, and underwent cell division, whereas the cells on as-sputtered coatings displayed fewer filopodia extensions and cell damage. Analysis of the data suggested that heat treatment of CaP coatings affects cell attachment.

  16. Multilayered DNA coatings: in vitro bioactivity studies and effects on osteoblast-like cell behavior.

    PubMed

    van den Beucken, J J J P; Walboomers, X F; Leeuwenburgh, S C G; Vos, M R J; Sommerdijk, N A J M; Nolte, R J M; Jansen, J A

    2007-07-01

    This study describes the effect of multilayered DNA coatings on (i) the formation of mineralized depositions from simulated body fluids (SBF); and (ii) osteoblast-like cell behavior with and without pretreatment in SBF. DNA coatings were generated using electrostatic self-assembly, with poly-d-lysine or poly(allylamine hydrochloride) as cationic polyelectrolytes, on titanium substrates. Coated substrates and non-coated controls were immersed in SBF with various compositions. The deposition of calcium phosphate was enhanced on multilayered DNA coatings as compared with non-coated controls, and was dependent on the type of cationic polyelectrolyte used in the build-up of the DNA coatings. Further analysis showed that the depositions consisted of carbonated apatite. Non-pretreated DNA coatings were found to have no effect on osteoblast-like cell behavior compared with titanium controls. On the other hand, SBF-pretreatment of DNA coatings affected the differentiation of osteoblast-like cells through an increased deposition of osteocalcin. The results of this study are indicative of the bone-bonding capacities of DNA coatings. Nevertheless, future animal experiments are required to provide conclusive evidence for the bioactivity of DNA coatings.

  17. Biomimetically Ornamented Rapid Prototyping Fabrication of an Apatite-Collagen-Polycaprolactone Composite Construct with Nano-Micro-Macro Hierarchical Structure for Large Bone Defect Treatment.

    PubMed

    Wang, Jinbing; Wu, Dingyu; Zhang, Zhanzhao; Li, Jun; Shen, Yi; Wang, Zhenxing; Li, Yu; Zhang, Zhi-Yong; Sun, Jian

    2015-12-02

    Biomaterial-based bone graft substitute with favorable mechanical and biological properties could be used as an alternative to autograft for large defect treatment. Here, an apatite-collagen-polycaprolactone (Ap-Col-PCL) composite construct was developed with unique nano-micro-macro hierarchical architectures by combining rapid prototyping (RP) fabrication technology and a 3D functionalization strategy. Macroporous PCL framework was fabricated using RP technology, then functionalized by collagen incorporation and biomimetic deposition. Ap-Col-PCL composite construct was characterized with hierarchical architectures of a nanoscale (∼100 nm thickness and ∼1 μm length) platelike apatite coating on the microporous (126 ± 18 μm) collagen networks, which homogeneously filled the macroporous (∼1000 μm) PCL frameworks and possessed a favorable hydrophilic property and compressive modulus (68.75 ± 3.39 MPa) similar to that of cancellous bone. Moreover, in vitro cell culture assay and in vivo critical-sized bone defect implantation demonstrated that the Ap-Col-PCL construct could not only significantly increase the cell adhesion capability (2.0-fold) and promote faster cell proliferation but also successfully bridge the segmental long bone defect within 12 weeks with much more bone regeneration (5.2-fold), better osteointegration (7.2-fold), and a faster new bone deposition rate (2.9-fold). Our study demonstrated that biomimetically ornamented Ap-Col-PCL constructs exhibit a favorable mechanical property, more bone tissue ingrowth, and better osteointegration capability as an effective bone graft substitute for critical-sized bone defect treatment; meanwhile, it can also harness the advantages of RP technology, in particular, facilitating the customization of the shape and size of implants according to medical images during clinical application.

  18. Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales

    NASA Astrophysics Data System (ADS)

    Gerin, Chloé; Gautheron, Cécile; Oliviero, Erwan; Bachelet, Cyril; Mbongo Djimbi, Duval; Seydoux-Guillaume, Anne-Magali; Tassan-Got, Laurent; Sarda, Philippe; Roques, Jérôme; Garrido, Frédérico

    2017-01-01

    Helium diffusion in U-Th-rich minerals, especially apatite, is considered as strongly impacted by damage, even at low U-Th content. To get direct evidence and better understand the impact of damage on He diffusion, we conducted a study on vacancy damage in apatite, at nanometric to atomic scales, using different methodologies. Firstly, damage was created on apatite crystals by He implantation at different He fluences ranging from 2 × 1015 to 1 × 1017 He/cm2, corresponding to atomic displacement ranging from 12 to more than 100% of the total structure in the first 200 nm below the surface. Transmission Electron Microscopy (TEM) was used to image the damage structure, for the lowest He fluence. TEM images present no visible damage zone at nano-scale, implying that the created damage corresponds well to Frenkel defects (vacancies and interstitials). Secondly, diffusion experiments were performed on those samples by mapping He concentration vs. depth profiles using Elastic Recoil Detection Analysis (ERDA). After measurement of implanted-He profiles and He concentrations, the samples were heated in order to diffuse the implanted profile during 15-45 h at temperatures from 145 to 250 °C. The obtained He vs. depth heated profiles and He concentrations reveal the impact of damage on He diffusivity. The results can only be explained by a model where diffusion depends on damage dose, taking into account He trapping in vacancies and damage interconnectivity at higher damage dose. Thirdly, Density Functional Theory (DFT) calculations were performed to simulate a vacancy in a F-apatite crystal. The structure becomes slightly deformed by the vacancy and the insertion energy of a He atom in the vacancy is lower than for an usual insertion site. Accordingly, the additional energy for a He atom to jump out of the vacancy is ΔEa ≈ 30-40 kJ/mol, in good agreement with published estimates. This calculation thus shows that small modifications of the structure due to the presence

  19. Human Dental Pulp Cells Responses to Apatite Precipitation from Dicalcium Silicates

    PubMed Central

    Lai, Wei-Yun; Chen, Yi-Wen; Kao, Chia-Tze; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You

    2015-01-01

    Unraveling the mechanisms behind the processes of cell attachment and the enhanced proliferation that occurs as a response to the presence of calcium silicate-based materials needs to be better understood so as to expand the applications of silicate-based materials. Ions in the environment may influence apatite precipitation and affect silicate ion release from silicate-based materials. Thus, the involvement of apatite precipitate in the regulation of cell behavior of human dental pulp cells (hDPCs) is also investigated in the present study, along with an investigation of the specific role of cell morphology and osteocalcin protein expression cultured on calcium silicate (CS) with different Dulbecco’s modified Eagle’s medium (DMEM). The microstructure and component of CS cement immersion in DMEM and P-free DMEM are analyzed. In addition, when hDPCs are cultured on CS with two DMEMs, we evaluate fibronectin (FN) and collagen type I (COL) secretion during the cell attachment stage. The facilitation of cell adhesion on CS has been confirmed and observed both by scanning with an electron microscope and using immunofluorescence imaging. The results indicate that CS is completely covered by an apatite layer with tiny spherical shapes on the surface in the DMEM, but not in the P-free DMEM. Compared to the P-free DMEM, the lower Ca ion in the DMEM may be attributed to the formation of the apatite on the surfaces of specimens as a result of consumption of the Ca ion from the DMEM. Similarly, the lower Si ion in the CS-soaked DMEM is attributed to the shielding effect of the apatite layer. The P-free DMEM group releases more Si ion increased COL and FN secretion, which promotes cell attachment more effectively than DMEM. This study provides new and important clues regarding the major effects of Si-induced cell behavior as well as the precipitated apatite-inhibited hDPC behavior on these materials. PMID:28793451

  20. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions.

  1. LABORATORY REPORT ON THE REDUCTION AND STABILIZATION (IMMOBILIZATION) OF PERTECHNETATE TO TECHNETIUM DIOXIDE USING TIN(II)APATITE

    SciTech Connect

    DUNCAN JB; HAGERTY K; MOORE WP; RHODES RN; JOHNSON JM; MOORE RC

    2012-06-01

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mo bile +7 state under acidic or oxygenated conditions within the tested period oftime (6 weeks). Previous work (RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine) indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table A shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit. The loaded sample (200 mg of Sn(II)apatite loaded with O.311 mg of Tc-99) was subjected to different molarities of nitric acid to determine if the Sn(II)apatite would release the sequestered technetium. The acid was allowed to contact for 1 minute with gentle shaking ('1st wash'); the aqueous solution was then filtered, and the filtrate was analyzed for Tc-99. Table B shows the results ofthe nitric acid exposure. Another portion of acid was added, shaken for a minute, and filtered ('2nd wash'). The technetium-loaded Sn(II)apatite

  2. Local structure investigation of oxide ion and proton defects in Ge-apatites by pair distribution function analysis.

    PubMed

    Malavasi, Lorenzo; Orera, Alodia; Slater, Peter R; Panchmatia, Pooja M; Islam, M Saiful; Siewenie, Joan

    2011-01-07

    In this communication we provide a direct insight into the local structure and defects of oxygen excess Ge-apatites, in both dry and deuterated states, by means of pair distribution function analysis.

  3. Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR.

    PubMed

    Kolmas, Joanna; Slósarczyk, Anna; Wojtowicz, Andrzej; Kolodziejski, Waclaw

    2007-10-01

    Specific surface areas of apatites in whole human mineralized tissues were estimated from (31)P MAS NMR linewidths: 77 m(2)g(-1) for enamel and 94 m(2)g(-1) for dentin, dental cementum and cortical bone.

  4. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    NASA Astrophysics Data System (ADS)

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.

    2016-04-01

    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  5. Utility of North Carolina Apatite as a Waste Minimization, Soil Treatment, and Waste Encapsulation Technology for Lead Contamination

    DTIC Science & Technology

    1995-04-01

    for calcium. Lanthanides , - actinides and heavy metals are all known to form insoluble, stable precipitates m the presence of apatites ’ In fact... precipitation of metals into insoluble minerals are constituents in geologic or synthetic compounds. These are referred to as hydroxyapatites (HA) and have...reactivity of the apatite (dissolution in water) is a primary function of the other components such as fluoride , carbonate, and substitution of metals

  6. Phosphate-induced metal stabilization: Use of apatite and bone char for the removal of soluble radionuclides in authentic and simulated DOE groundwater

    SciTech Connect

    Bostick, W.D.; Jarabek, R.J.; Conca, J.L.

    1999-07-01

    The apatite group of minerals is a family of calcium phosphate phases. Apatite is the principal component of bone tissue, and it also occurs naturally as mineral deposits in the geosphere. Bone char is calcined (coked) animal bone, containing activated carbon as well as calcium phosphate mineral phases. Apatite II{trademark} is a more reactive form of apatite, supplied by UFA Ventures, Inc., at a cost of approximately 1/4 that of commercial bone char. Apatite is shown to be effective for the removal of select heavy metal impurities in groundwater. Previous investigations have demonstrated that apatite is an effective medium for the stabilization of soluble lead, cadmium, and zinc from mine waste leachate by the formation of highly insoluble precipitate phases. The performance of bone char and apatite II are compared with other candidate sorption media (including granular activated carbon and anion exchange resin) for the removal of soluble uranyl ion in synthetic DOE Site groundwater supplemented with varying levels of interfering nitrate ion. Apatite II has a greater affinity for U(VI), especially in the presence of nitrate ion, as evidenced by a larger value for the conditional distribution coefficient (Kd) in batch test experiments. Contact of uranyl nitrate solution with apatite II is shown to produce highly insoluble mineral phases of the autunite group (calcium uranyl phosphate hydrates). Apatite II is also demonstrated to be moderately effective for the removal of soluble radioactive isotopes of strontium, but not cesium, when these ions are supplemented into authentic DOE Site groundwater.

  7. Determination of the oxidation state of uranium in apatite and phosphorite deposits

    USGS Publications Warehouse

    Clarke, R.S.; Altschuler, Z.S.

    1958-01-01

    Geological and mineralogical evidence indicate that the uranium present in apatite may proxy for calcium in the mineral structure as U(IV). An experimental investigation was conducted and chemical evidence was obtained that establishes the presence of U(IV) in apatite. The following analytical procedure was developed for the determination of U(IV). Carbonatefluorapatite is dissolved in 1.5 M orthophosphoric acid at a temperature of 5??C or slightly below and fluorapatite is dissolved in cold 1.2 M hydrochloric acid (approximately 5??C) containing 1.5 g of hydroxylamine hydrochloride per 100 ml. Uranium(IV) is precipitated by cupferron using titanium as a carrier. The uranium in the precipitate is separated by use of the ethyl acetate extraction procedure and determined fluorimetrically. The validity and the limitations of the method have been established by spike experiments. ?? 1958.

  8. Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin

    2013-07-01

    The effect of disodium EDTA, as an additive, on the crystallization of struvite and carbonate apatite was studied. The growth of struvite crystals and carbonate apatite occurred in the solution of artificial urine at 37 °C and at the condition emulating real urinary tract infection. The results demonstrate that the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). The struvite crystal mean and median diameters were found to decrease in the presence of disodium EDTA but the crystal morphology and habit remain almost unchanged. Disodium EDTA has demonstrated its potential to be further investigated in the presence of bacteria and in vivo conditions.

  9. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon.

    PubMed

    Flowers, R M; Farley, K A

    2012-12-21

    The Grand Canyon is one of the most dramatic features on Earth, yet when and why it was carved have been controversial topics for more than 150 years. Here, we present apatite (4)He/(3)He thermochronometry data from the Grand Canyon basement that tightly constrain the near-surface cooling history associated with canyon incision. (4)He/(3)He spectra for eastern Grand Canyon apatites of differing He date, radiation damage, and U-Th zonation yield a self-consistent cooling history that substantially validates the He diffusion kinetic model applied here. Similar data for the western Grand Canyon provide evidence that it was excavated to within a few hundred meters of modern depths by ~70 million years ago (Ma), in contrast to the conventional model in which the entire canyon was carved since 5 to 6 Ma.

  10. Electrospun Nanostructured Fibers of Collagen-Biomimetic Apatite on Titanium Alloy

    PubMed Central

    Iafisco, Michele; Foltran, Ismaela; Sabbatini, Simona; Tosi, Giorgio; Roveri, Norberto

    2012-01-01

    Titanium and its alloys are currently the mainly used materials to manufacture orthopaedic implants due to their excellent mechanical properties and corrosion resistance. Although these materials are bioinert, the improvement of biological properties (e.g., bone implant contact) can be obtained by the application of a material that mimics the bone extracellular matrix. To this aim, this work describes a new method to produce nanostructured collagen-apatite composites on titanium alloy substrate, by combining electrospinning and biomimetic mineralization. The characterization results showed that the obtained mineralized scaffolds have morphological, structural, and chemical compositional features similar to natural bone extracellular matrix. Finally, the topographic distribution of the chemical composition in the mineralized matrix evaluated by Fourier Transform Infrared microspectroscopy demonstrated that the apatite nanocrystals cover the collagen fibers assembled by the electrospinning. PMID:22400013

  11. [A study on the formation of apatite crystallized with gel method].

    PubMed

    Endo, T; Amano, N; Yoshida, M; Murakami, H; Kosuge, N; Ohmi, Y; Kameda, A

    1989-10-01

    About apatite produced with a silicahydro gel method using calcium nitrate (group I) or calcium chloride (group II) and a gelatin gel method by use of calcium nitrate (group III) or calcium chloride (group IV), the formative volume as well as the formative condition of a periodic-layered precipitate (Liesegang ring), the pH measurement, calculation of Ca/P ratio, an estimation of the chlorine ion, morphological observation with a scanning electron microscope, qualitative analyses by X-ray diffraction (identification, crystallite size, lattice imperfections, lattice constants) and the composition analysis by infrared absorption spectroscopy were carried out to elucidate the formation of apatite using the gel method. The result showed that there were no distinct differences between group I-II and group III-IV, and it is suggested that it is possible to form satisfact fluorapatite with a gel method using calcium chloride as well as calcium nitrate.

  12. Synthesis of hexagonal lanthanum germanate apatites through site selective isovalent doping with yttrium

    SciTech Connect

    Kendrick, E.; Slater, P.R.

    2008-08-04

    Apatite-type lanthanum silicates/germanates have been attracting considerable interest as a new class of oxide ion conductors, whose conductivity is mediated by oxide ion interstitials. For the germanates, it has been shown that, depending on composition, the cell can be either hexagonal or triclinic, with evidence for reduced low-temperature conductivities for the latter, attributed to increased defect trapping in this lower symmetry cell. In this paper we show that site selective doping of Y into the triclinic apatite-type oxide ion conductors, La{sub 9.33+z}(GeO{sub 4}){sub 6}O{sub 2+3z/2} (0.33 {<=} z {<=} 0.67) results in a hexagonal lattice for the complete series with correspondingly enhanced low-temperature conductivity.

  13. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith

    NASA Astrophysics Data System (ADS)

    Streck, Martin J.; Dilles, John H.

    1998-06-01

    Uniformly sulfur-rich cores abruptly zoned to sulfur-poor rims (˜1 to <0.2 wt% SO3) in apatite from the Yerington batholith, Nevada, indicate that early magma that is crystal poor, oxidizing, and sulfate rich evolved to sulfate-poor magma via crystallization of anhydrite, a mineral observed in magmas from Pinatubo and El Chichón. We predict that the characteristic zonation to sulfur-poor rims of apatite in the Yerington batholith is common in other oxidized, hydrous, calc-alkaline magmas, and can be used to track cryptic anhydrite saturation as well as to monitor sulfur evolution. Sulfate-rich arc magmas such as Yerington magmas may crystallize to produce hydrothermal fluids rich in chlorine, copper, and sulfur and porphyry copper ores.

  14. Incorporation of uranium into a biomimetic apatite: physicochemical and biological aspects.

    PubMed

    Chatelain, Grégory; Bourgeois, Damien; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude; Meyer, Daniel

    2015-04-01

    Bone is the main target organ for the storage of several toxic metals, including uranium. But the mode of action of uranium on bones remains poorly understood. To better assess the impact of uranium on bone cells, synthetic biomimetic apatites encompassing a controlled amount of uranium were prepared and analyzed. This study revealed the physicochemical impact of uranium on apatite mineralization: the presence of the metal induces a loss of crystallinity and a lower mineralization rate. The prepared samples were then used as substrates for bone cell culture. Osteoblasts were not sensitive to the presence of uranium in the support, whereas previous results showed a deleterious effect of uranium introduced into a cell culture solution. This work should therefore have some original prospects within the context of toxicological studies concerning the effect of metallic cations on bone cell systems.

  15. Carbonate loss from two magnesium-substituted carbonated apatites prepared by different synthesis techniques

    SciTech Connect

    Barinov, S.M. . E-mail: barinov_s@mail.ru; Rau, J.V.; Fadeeva, I.V.; Cesaro, S. Nunziante; Ferro, D.; Trionfetti, G.; Komlev, V.S.; Bibikov, V.Yu.

    2006-03-09

    This study was aimed at the investigation of the thermal stability of Mg-substituted carbonated apatites over the wide temperature range. Two different apatites were studied, which were prepared by either precipitation from aqueous solution or by solid-liquid interaction. The following methods were employed: FTIR spectroscopy of the condensed gas phase to evaluate the CO and CO{sub 2} release with increasing temperature, FTIR of the solid residue after heating, XRD analysis, thermogravimetry and scanning electron microscopy. Decomposition behavior was shown to depend significantly on the synthesis method. Wet-synthesized powders are significantly less thermally stable compared with those prepared by solid-liquid interaction. Intensive release of carbon oxides from the former was observed at 300 deg. C, whereas the latter powder was relatively stable up to temperature about 1000 deg. C.

  16. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    NASA Astrophysics Data System (ADS)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  17. Fast synthesis of La-substituted apatite by the dry mechanochemical method and analysis of its structure

    NASA Astrophysics Data System (ADS)

    Bulina, Natalia V.; Chaikina, Marina V.; Prosanov, Igor Yu.; Dudina, Dina V.; Solovyov, Leonid A.

    2017-08-01

    Compared to pure apatite, La-substituted apatites have improved thermal, mechanical and biological characteristics. In this article, a fast synthesis of La-substituted apatites by a dry mechanochemical method is presented. Structural studies by X-ray diffraction and Fourier transform infrared spectroscopy indicated the formation of a single-phase nanosized product after 30 min of high-energy ball milling of the reaction mixtures. The dry mechanochemical method is technologically attractive for the preparation of La-substituted apatites, as it allows reducing the processing time down to half an hour and does not require prolonged high-temperature annealing normally used in the synthesis practice of the substituted apatite. As the mechanochemically synthesized samples are nanosized, it is difficult to determine the details of their crystal structure by the Rietveld refinement method. Therefore, a series of the mechanochemically synthesized samples with different concentrations of lanthanum were annealed at 1000 оС for 5 h. It was found that the annealed powders are microcrystalline La-substituted apatites Ca10-xLax(PO4)6Ox(OH)2-x, where 0 ≤ x ≤2. In their structure, the Ca2+ ions are replaced by the La3+ ions localized near the Ca2 sites, and the ОН- groups are replaced by the О2- ions in the hexagonal channels.

  18. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    SciTech Connect

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsur¬face sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  19. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.

    PubMed

    Daitou, Fumikazu; Maruta, Michito; Kawachi, Giichiro; Tsuru, Kanji; Matsuya, Shigeki; Terada, Yoshihiro; Ishikawa, Kunio

    2010-05-01

    In this study, we investigated a novel method for fabrication of carbonate apatite block without ionic movement between precursor and solution by using precursor that includes all constituent ions of carbonate apatite. A powder mixture prepared from dicalcium phosphate anhydrous and calcite at appropriate Ca/P ratios (1.5, 1.67, and 1.8) was used as starting material. For preparation of specimens, the slurry made from the powder mixture and distilled water was packed in a split stainless steel mold and heat - treated, ranging from 60 degrees C to 100 degrees C up to 48 hours at 100% humidity. It appeared that carbonate apatite could be obtained above 70 degrees C and monophasic carbonate apatite could be obtained from the powder mixture at Ca/P ratio of 1.67. Carbonate content of the specimen was about 5-7%. Diametral tensile strength of the carbonate apatite blocks slightly decreased with increasing treatment temperature. The decrease in diametral tensile strength is thought to be related to the crystal size of the carbonate apatite formed.

  20. An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals.

    PubMed

    Dybowska, Agnieszka; Manning, David A C; Collins, Matthew J; Wess, Timothy; Woodgate, Stephen; Valsami-Jones, Eugenia

    2009-04-01

    Metal removal from contaminated effluents was examined following reaction with natural apatites of biological and geological origin or a synthetic hydroxylapatite (HAP). Mammalian meat and bone meal (MBM), a by-product from meat industry, was the biological apatite source. The effect of incineration on metal removal capacity of MBM and HAP was also examined. The reactivity of apatites for all tested metals (Pb, Cd, Cu and Zn) followed the general order: synthetic > biological > mineral. For all apatites tested, Pb was removed best and preferentially from multi-metal solutions. MBM and HAP (0.5 g solid) removed Pb completely from both highly concentrated single metal solutions (50 ml, 1000 mg/L Pb) and from multi-metal solutions (50 ml) with 100 mg/L each of Cd, Cu and Zn in addition to Pb. The incineration of MBM (725 degrees C and 850 degrees C) reduced significantly its capacity for removal of Zn (by 47%, from 56 mg/g to 9 mg/g) and Cd (by 38%, from 53 mg/g to 13 mg/g) in particular and to a lesser extent for Cu (by 14%, from 61 mg/g to 46 mg/g) while the removal of Pb was not affected (100 mg/g). The same pattern was observed for incinerated HAP. SEM and XRD analysis indicated that HAP reacted with the metals by precipitation of pure metal phosphates--Pb hydroxylapatite, Zn phosphate (hopeite), a Cd phosphate (identified only by ED-SEM) and Cu phosphate (libenthenite).

  1. pH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content.

    PubMed

    Rodríguez-Ruiz, Isaac; Delgado-López, José Manuel; Durán-Olivencia, Miguel A; Iafisco, Michele; Tampieri, Anna; Colangelo, Donato; Prat, Maria; Gómez-Morales, Jaime

    2013-07-02

    In this work, the efficiency of bioinspired citrate-functionalized nanocrystalline apatites as nanocarriers for delivery of doxorubicin (DOXO) has been assessed. The nanoparticles were synthesized by thermal decomplexing of metastable calcium/citrate/phosphate solutions both in the absence (Ap) and in the presence (cAp) of carbonate ions. The presence of citrate and carbonate ions in the solution allowed us to tailor the size, shape, carbonate content, and surface chemistry of the nanoparticles. The drug-loading efficiency of the two types of apatite was evaluated by means of the adsorption isotherms, which were found to fit a Langmuir-Freundlich behavior. A model describing the interaction between apatite surface and DOXO is proposed from adsorption isotherms and ζ-potential measurements. DOXO is adsorbed as a dimer by means of a positively charged amino group that electrostatically interacts with negatively charged surface groups of nanoparticles. The drug-release profiles were explored at pHs 7.4 and 5.0, mimicking the physiological pH in the blood circulation and the more acidic pH in the endosome-lysosome intracellular compartment, respectively. After 7 days at pH 7.4, cAp-DOXO released around 42% less drug than Ap-DOXO. However, at acidic pH, both nanoassemblies released similar amounts of DOXO. In vitro assays analyzed by confocal microscopy showed that both drug-loaded apatites were internalized within GTL-16 human carcinoma cells and could release DOXO, which accumulated in the nucleus in short times and exerted cytotoxic activity with the same efficiency. cAp are thus expected to be a more promising nanocarrier for experiments in vivo, in situations where intravenous injection of nanoparticles are required to reach the targeted tumor, after circulating in the bloodstream.

  2. An Injectable Apatite Permeable Reactive Barrier for In Situ 90Sr Immobilization

    SciTech Connect

    Vermeul, Vincent R.; Szecsody, James E.; Fritz, Brad G.; Williams, Mark D.; Moore, Robert C.; Fruchter, Jonathan S.

    2014-04-16

    An injectable permeable reactive barrier (PRB) technology was developed to sequester 90Sr in groundwater through the in situ formation of calcium-phosphate mineral phases, specifically apatite that incorporates 90Sr into the chemical structure. An integrated, multi-scale development and testing approach was used that included laboratory bench-scale experiments, an initial pilot-scale field test, and the emplacement and evaluation of a 300-ft-long treatability-test-scale PRB. Standard groundwater wells were used for emplacement of the treatment zone, allowing treatment of contaminants too deep below ground surface for trench-and-fill type PRB technologies. The apatite amendment formulation uses two separate precursor solutions, one containing a Ca-citrate complex and the other a Na-phosphate solution, to form apatite precipitate in situ. Citrate is needed to keep calcium in solution long enough to achieve a more uniform and areally extensive distribution of precipitate formation. In the summer of 2008, the apatite PRB technology was applied as a 91-m (300-ft) -long permeable reactive barrier on the downgradient edge of a 90Sr plume beneath the Hanford Site in Washington State. The technology was deployed to reduce 90Sr flux discharging to the Columbia River. Performance assessment monitoring data collected to date indicate the barrier is meeting performance objectives. The average reduction in 90Sr concentrations at four downgradient compliance monitoring locations was 95% relative to the high end of the baseline range approximately 1 year after treatment, and continues to meet remedial objectives more than 4 years after treatment.

  3. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  4. Interfaces in graded coatings on titanium-based implants

    PubMed Central

    Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.; Gremillard, L.; Saiz, E.; Tomsia, A. P.

    2013-01-01

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na2O-K2O-P2O5 system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (>60 wt % SiO2) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti5Si3 layer. A surface layer containing a mixture of a low-silica glass (~53 wt % SiO2) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions. PMID:18384170

  5. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation

    PubMed Central

    Fredholm, Yann C.; Karpukhina, Natalia; Brauer, Delia S.; Jones, Julian R.; Law, Robert V.; Hill, Robert G.

    2012-01-01

    Bioactive glasses are able to bond to bone through the formation of hydroxy-carbonate apatite in body fluids while strontium (Sr)-releasing bioactive glasses are of interest for patients suffering from osteoporosis, as Sr was shown to increase bone formation both in vitro and in vivo. A melt-derived glass series (SiO2–P2O5–CaO–Na2O) with 0–100% of calcium (Ca) replaced by Sr on a molar base was prepared. pH change, ion release and apatite formation during immersion of glass powder in simulated body fluid and Tris buffer at 37°C over up to 8 h were investigated and showed that substituting Sr for Ca increased glass dissolution and ion release, an effect owing to an expansion of the glass network caused by the larger ionic radius of Sr ions compared with Ca. Sr release increased linearly with Sr substitution, and apatite formation was enhanced significantly in the fully Sr-substituted glass, which allowed for enhanced osteoblast attachment as well as proliferation and control of osteoblast and osteoclast activity as shown previously. Studying the composition–structure–property relationship in bioactive glasses enables us to successfully design next-generation biomaterials that combine the bone regenerative properties of bioactive glasses with the release of therapeutically active Sr ions. PMID:21993007

  6. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max).

    PubMed

    Liu, Ruiqiang; Lal, Rattan

    2014-07-14

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 ± 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  7. Fabrication and Characterization of Biomimetic Collagen-Apatite Scaffolds with Tunable Structures for Bone Tissue Engineering

    PubMed Central

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-01-01

    The objective of the current study is to prepare a biomimetic collagen-apatite (Col-Ap) scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in a range 0–54 wt% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, bone forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. PMID:23567944

  8. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    NASA Astrophysics Data System (ADS)

    Liu, Ruiqiang; Lal, Rattan

    2014-07-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 +/- 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  9. Influence of fluoride in poly(d,l-lactide)/apatite composites on bone formation.

    PubMed

    Luo, X; Barbieri, D; Passanisi, G; Yuan, H; de Bruijn, J D

    2015-05-01

    The influence of fluoride in poly(d,l-lactide)/apatite composites on ectopic bone formation was evaluated in sheep. Nano-apatite powders with different replacement levels of OH groups by fluoride (F) (0% (F0), 50% (F50), 100% (F100), and excessive (F200)) were co-extruded with poly (d,l-lactide) at a weight ratio of 1:1. Fluoride release from the composites (CF0, CF50, CF100, and CF200) was evaluated in vitro and bone formation was assessed after intramuscular implantation in sheep. After 24 weeks in simulated physiological solution, CF0 and CF50 showed negligible fluoride release, whereas it was considerable from the CF100 and CF200 composites. Histology showed that the incidence of de novo bone formation decreased in implants with increasing fluoride content indicating a negative influence of fluoride on ectopic bone formation. Furthermore, a significant decrease in resorption of the high fluoride-content composites and a reduction in the number of multinucleated giant cells were seen. These results show that instead of promoting, the presence of fluoride in poly(d,l-lactide)/apatite composites seemed to suppresses their resorption and osteoinductive potential in non-osseous sites. © 2014 Wiley Periodicals, Inc.

  10. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Young asteroidal fluid activity revealed by absolute age from apatite in carbonaceous chondrite

    PubMed Central

    Zhang, Ai-Cheng; Li, Qiu-Li; Yurimoto, Hisayoshi; Sakamoto, Naoya; Li, Xian-Hua; Hu, Sen; Lin, Yang-Ting; Wang, Ru-Cheng

    2016-01-01

    Chondritic meteorites, consisting of the materials that have formed in the early solar system (ESS), have been affected by late thermal events and fluid activity to various degrees. Determining the timing of fluid activity in ESS is of fundamental importance for understanding the nature, formation, evolution and significance of fluid activity in ESS. Previous investigations have determined the relative ages of fluid activity with short-lived isotope systematics. Here we report an absolute 207Pb/206Pb isochron age (4,450±50 Ma) of apatite from Dar al Gani (DaG) 978, a type ∼3.5, ungrouped carbonaceous chondrite. The petrographic, mineralogical and geochemical features suggest that the apatite in DaG 978 should have formed during metamorphism in the presence of a fluid. Therefore, the apatite age represents an absolute age for fluid activity in an asteroidal setting. An impact event could have provided the heat to activate this young fluid activity in ESS. PMID:27682449

  12. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments.

    PubMed

    Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos

    2011-10-30

    Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers.

  13. Fluorescence microspectrography of zircon and apatite in Llano Uplift rocks, Texas

    SciTech Connect

    Goebel, V.W. . Dept. of Geology)

    1993-02-01

    Fluorescence investigations of common minerals under the microscope yield valuable mineralogic and petrologic information. They are best carried out in incident fluorescence light using polished sections of the sample materials which allows both qualitative and quantitative characterization. Results are complementary to traditional polarization optical and cathodoluminescence examinations. Observations of high light intensity grain colors, color variations, and distribution patterns may be made at total magnifications as high as 1,000x revealing details of luminophor distribution, fabric and growth patterns. Quantitative spectral analyses of fluorescence colors are for zircon and apatite grains from mostly granitic, Middle Proterozoic rocks of the Llano Uplift using a LEITZ MPV-SP spectrophotometer. Color analyses and color norm calculations were done with the SPECTRA computer program. Photo excitation (wave lengths 340--490 nm) produced characteristic fluorescence spectral for the recorded wave length range of 500--750 nm showing distinct differences between zircon and apatite, within each mineral population, and between rock types. Characteristic peaks correlate with the REE contents. Quantitative color plots on the CIE (1931) norm color diagram indicate for zircon saturated yellow-green colors between 550 and 575 nm and saturated yellow colors (575--585 nm) for apatite illustrating the possibility of a meaningful, quantitative fluorescence color characterization.

  14. Fission-track dating of apatite and zircon: An interlaboratory comparison

    USGS Publications Warehouse

    Naeser, C.W.; Zimmermann, R.A.; Cebula, G.T.

    1981-01-01

    Apatite and zircon separates from the Fish Canyon Tuff (K-Ar age, 27.9??0.7 Myr), San Juan Mtns., Colorado, have been given to over 50 laboratories for fission-track dating. Nineteen laboratories have reported fission-track ages that they have determined for apatites. Nine laboratories have reported their analysis of the zircons. The principal difference between the results reported by the laboratories reflects their choice of the decay constant. The laboratories which use a value of ??f ??? 7.0 ?? 10-17 yr-1 for the spontaneous-fission decay constant of 238U, report an average age for the apatite of 28.5??0.7 Myr, and those using ??f ??? = 8.4 ?? 10-17 yr-1 report an average age of 23.6??1.0 Myr. The average fission-track age for the zircons is 28.4??0.7 Myr. Only laboratories which use ??f ??? 7.0 ?? 10-17 yr-1 reported zircon data. ?? 1981.

  15. Synthesis and distribution of cations in substituted lead phosphate lacunar apatites

    SciTech Connect

    Hamdi, Besma; Feki, Hafed El; Savariault, Jean-Michel . E-mail: savariau@cemes.fr; Salah, Abdelhamid Ben

    2007-02-15

    Synthesis of apatites, Pb{sub 7.4}Bi{sub 0.3}Na{sub 2.3}(PO{sub 4}){sub 6} (I), Pb{sub 7.36}Bi{sub 0.32}Na{sub 2.08}Li{sub 0.24}(PO{sub 4}){sub 6} (II) and Pb{sub 5.78}Bi{sub 0.81}Ca{sub 0.60}Na{sub 2.81}(PO{sub 4}){sub 6} (III), with anion vacancy were carried out during solid state reactions. The three compounds of apatite-type structure crystallize in the hexagonal system, space group P6{sub 3}/m. In every compound, a preferential occupation of the (6h) site by Pb and Bi cations is shown revealing the influence of their lone electronic pair. The introduction of calcium increases the quantity of bismuth in these apatites. Alkaline metals occupy mainly the (4f) site. Infrared spectroscopy is correlated to the bonding scheme. A connection between the cations occupying (4f) sites and the c cell parameters is presented.

  16. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions.

    PubMed

    Chatelain, Grégory; Bourgeois, Damien; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude; Meyer, Daniel

    2014-02-01

    The classical simulated body fluids method cannot be employed to prepare biomimetic apatites encompassing metallic ions that lead to very stable phosphates. This is the case for heavy metals such as uranium, whose presence in bone mineral after contamination deserves toxicological study. We have demonstrated that existing methods, based on alternate dipping into calcium and phosphate ions solutions, can be adapted to achieve this aim. We have also especially studied the impact of the presence of carbonate ions in the medium as these are necessary to avoid hydrolysis of the contaminating metallic cations. Both the apatite-collagen complex method and a standard chemical (STD) method employing only mineral solutions lead to biomimetic apatites when calcium and carbonate ions are introduced simultaneously. The obtained materials were fully characterized and we established that the STD method tolerates the presence of carbonate ions much better, and this leads to homogeneous samples. Emphasis was set on the repeatability of the method to ensure the relevancy of further work performed on series of samples. Finally, osteoblasts cultured on these samples also proved a similar yield and standard-deviation in their adenosine triphosphate content when compared to commercially available substrates designed to study of such cell cultures.

  17. Effect of strontium ions on the early formation of biomimetic apatite on single crystalline rutile

    NASA Astrophysics Data System (ADS)

    Lindahl, Carl; Engqvist, Håkan; Xia, Wei

    2013-02-01

    Single crystalline rutile is a good model to investigate the growth mechanism of hydroxyapatite on bioactive Ti surfaces. Previous studies have shown the difference on different crystalline rutile faces in the early stage and during the growth of HAp crystals from simulated body fluids. It is known that the biological apatite crystal is an ion-substituted apatite. Ion substitution will influence the HAp crystal growth and morphology. In the present study, the effect of strontium ions on the adsorption of Ca and phosphate ions on three different faces of single crystalline rutile substrates has been investigated. The ion adsorption is the crucial step in the nucleation of HAp crystals on specific surfaces. Single crystalline rutile surfaces ((1 1 0), (1 0 0) and (0 0 1)) were soaked in phosphate buffer solutions containing calcium and strontium ions for different time periods. The results showed that the adsorption of Sr, Ca and P is faster on the (1 1 0) surface than on the (1 0 0) and (0 0 1) surfaces. Almost same amount of Sr ion was adsorbed on the surfaces compared to the adsorption of Ca ion. Strontium ion influenced the biological apatite formation in the early stage in this study.

  18. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S

    NASA Astrophysics Data System (ADS)

    Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2010-11-01

    The formation of nanocrystals in biomineralization such as in bone occurs under the influence of organic molecules. Prompted by this fact, the effect of alizarin red S, a dye used in in vivo bone labeling methods, on bone-like carbonated apatite nanocrystal formation was investigated as a function of alizarin red S additive concentration. The obtained nanoparticles were investigated by powder X-ray diffraction (XRD), FTIR as well thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) while the kinetics of nanoparticle formation was investigated by in situ pH and synchrotron XRD measurements. Increasing alizarin red S concentration lead to amorphous particles over a threshold concentration and to smaller crystallites in a dose-dependent fashion. Alizarin red S induced a macroscopic lattice strain that scaled linearly with the alizarin red S concentration; this effect is reminiscent of that seen in biogenic calcium carbonates. TGA showed that the amorphous particles contained significantly more water than the crystalline samples and the DSC data showed that crystallization occurs after loss of most of the included organic material. The in situ studies showed that the formation of apatite goes via the very rapid formation of an amorphous precursor that after a certain nucleation time crystallizes into apatite. This nucleation time increased exponentially with alizarin red S concentration showing that this additive strongly stabilizes the amorphous precursor phase.

  19. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    PubMed Central

    Liu, Ruiqiang; Lal, Rattan

    2014-01-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 ± 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication. PMID:25023201

  20. ROLE OF INTERSTITIAL APATITE PLAQUE IN PATHOGENESIS OF THE COMMON CALCIUM OXALATE STONE

    PubMed Central

    Evan, Andrew P.; Lingeman, James E.; Coe, Fredric L.; Worcester, Elaine M.

    2008-01-01

    Using intraoperative papillary biopsy material from kidneys of idiopathic calcium oxalate, intestinal bypass for obesity, brushite, cystine, and distal renal tubular acidosis stone formers during percutaneous nephrolithotomy, we have determined that idiopathic calcium oxalate stone formers appear to be the special case, though the most commonly encountered one, in which stones form external to the kidney and by processes that do not involve the epithelial compartments. It is in this one group of patients that we find not only abundant interstitial plaque, but also strong evidence that the plaque is essential to stone formation. The initial site of plaque formation is always in the papillary tip, and must be in the basement membrane of the thin loop of Henle. With time plaque spreads throughout the papilla tip to the urothelium, which under conditions we do not understand, is denuded and thereby exposes the apatite deposits to the urine. It is on this exposed apatite that a stone forms as an overgrowth, first of amorphous apatite and then layers of calcium oxalate. This process generates an attached stone fixed to the side of a papilla, allowing the ever-changing urine to dictate stone growth and composition. PMID:18359392

  1. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  2. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  3. Nanostructured Coatings

    NASA Astrophysics Data System (ADS)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  4. Optimization of the time efficient calcium phosphate coating on electrospun poly(d,l-lactide).

    PubMed

    Luickx, Nathalie; Van Den Vreken, Natasja; Segaert, Jonas; Declercq, Heidi; Cornelissen, Maria; Verbeeck, Ronald

    2015-08-01

    The coating of fibrous polyester constructs with a layer of bioactive calcium phosphate (CP) is efficient to improve the potential use as bone tissue engineering scaffold. In this study, a fast procedure for the coating of electrospun poly(d,l-lactide) (PDLLA) fibers with a CP layer was optimized. The fiber surface was activated by immersion in demineralized water under ultrasonication. The resulting reactive groups served as nucleation points for CP precipitation, induced by alternate dipping of the samples in Ca(2+) and PO4 (3-) rich solutions. Variations in the conditions of the alternate dipping procedure, in particular the number of cycles, concentration and immersion time of both solutions, not only affected the degree of surface mineralization but also the type of deposited CP. For the current experimental conditions, in about 30 minutes either a slightly carbonated calcium deficient apatite (CDAp; Ca10-x-y (PO4 )6-x-y (HPO4 )y (CO3 )x (OH)2-x-y ) or a combination of apatite and dicalcium phosphate dihydrate (DCPD; CaHPO4 .2H2 O) was formed. The cell viability, adhesion, and proliferation of MC3T3-E1 cells on untreated samples were compared with samples coated with either an adequate amount of CDAp, an excess of CDAp or an excess of a combination of apatite and DCDP. After 7 days of culture the number of attached cells was significantly higher on all CP coated samples compared to the untreated PDLLA. In particular, the samples coated with an adequate amount of CDAp showed an exceedingly enhanced cell response with similar cell morphologies as the ones found on the positive control.

  5. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  6. Phosphorylation-dependent mineral type specificity for apatite-binding peptide sequences

    PubMed Central

    Addison, William N.; Miller, Sharon J.; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H.; McKee, Marc D.

    2010-01-01

    Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation – a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of peptide VTKHLNQISQSY (pVTK) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled pVTK peptide did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues

  7. A taxonomy of apatite frameworks for the crystal chemical design of fuel cell electrolytes

    SciTech Connect

    Pramana, Stevin S.; Klooster, Wim T.; White, Timothy J.

    2008-08-15

    Apatite framework taxonomy succinctly rationalises the crystallographic modifications of this structural family as a function of chemical composition. Taking the neutral apatite [La{sub 8}Sr{sub 2}][(GeO{sub 4}){sub 6}]O{sub 2} as a prototype electrolyte, this classification scheme correctly predicted that 'excess' oxygen in La{sub 9}SrGe{sub 6}O{sub 26.5} is tenanted in the framework as [La{sub 9}Sr][(GeO{sub 4}){sub 5.5}(GeO{sub 5}){sub 0.5}]O{sub 2}, rather than the presumptive tunnel location of [La{sub 9}Sr][(GeO{sub 4}){sub 6}]O{sub 2.5}. The implication of this approach is that in addition to the three known apatite genera-A{sub 10}(BO{sub 3}){sub 6}X{sub 2}, A{sub 10}(BO{sub 4}){sub 6}X{sub 2}, A{sub 10}(BO{sub 5}){sub 6}X{sub 2}-hybrid electrolytes of the types A{sub 10}(BO{sub 3}/BO{sub 4}/BO{sub 5}){sub 6}X{sub 2} can be designed, with potentially superior low-temperature ion conduction, mediated by the introduction of oxygen to the framework reservoir. - Graphical abstract: Apatite framework taxonomy succinctly rationalises the crystallographic modifications of this structural family as a function of chemical composition. Neutron diffraction identified that the excess oxygen in La{sub 9}SrGe{sub 6}O{sub 26.5} is tenanted in the framework as [La{sub 9}Sr][(GeO{sub 4}){sub 5.5}(GeO{sub 5}){sub 0.5}]O{sub 2}. The implication of this approach is that in addition to the three known apatite genera-A{sub 10}(BO{sub 3}){sub 6}X{sub 2}, A{sub 10}(BO{sub 4}){sub 6}X{sub 2}, A{sub 10}(BO{sub 5}){sub 6}X{sub 2}-hybrid electrolytes of the types A{sub 10}(BO{sub 3}/BO{sub 4}/BO{sub 5}){sub 6}X{sub 2} can be designed.

  8. Using Apatite to Model Chlorine Contents of High SiO2 Magmas: An Enhanced Methodological Approach

    NASA Astrophysics Data System (ADS)

    Flesch, R.; Webster, J. D.; Nadeau, P. A.

    2015-12-01

    Hydrothermal experiments were conducted on high-silica (73-75 wt% SiO2), fluid-saturated melts at 844-862°C and ca. 50 MPa using crushed glass of the Los Posos rhyolite. Water and salts including NaCl, KCl, Ca(OH)2, and CaHPO4 and HCl were added proportionally to the experiments to restrict the variability of the aluminosity of the melt. The Durango apatite, which contains 3.53 wt% F and 0.41% Cl, was added as "seeds"<5µm in diameter to stimulate apatite growth during the experiments. Samples were loaded into gold capsules and run in cold-seal pressure vessels for durations of 286-1008 hours. Temperature was cycled at ±20˚C to promote apatite crystallization. Electron microprobe analyses of run-product glasses and embedded apatite grains support calculation of a range of partition coefficients ( = wt% Cl in apatite/wt% Cl in melt) of 4.7 to 15.9. The mole fraction of Cl in experimental apatites, or XCl, ranges from 0.19 to 0.56, while XF ranges from 0.08 to 0.63. The computed values for XOH range from 0.24 to 0.38. We find that normalizing XCl to XOH of apatites dramatically improves the precision when using apatite compositions to model Cl contents of melts. We compare our Los Posos rhyolite experiments with published data on 50 MPa rhyodacite experiments and find that Cl partitioning is significantly different in each system. Given the importance of chlorine in fluid equilibria, ore transport, and magma evolution, applications of apatite as a proxy for Cl contents in melts are unbounded. It is found that in order to accurately use the volatile composition of natural and synthetic apatites to calculate the volatile composition of melts in felsic systems, several chemical factors, including wt% SiO2 and the aluminosity/alkalinity of melts, should be incorporated as parameters to enhance relevant modeling. This allows geochemists to place better constraints on processes associated with crystallizing Cl-bearing magmatic systems.

  9. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Tang, Qian; Sun, Weidong; Xu, Li; Zhai, Wei; Liang, Jinlong; Liang, Yeheng; Shen, Kun; Zhang, Zeming; Zhou, Bing; Wang, Fangyue

    2007-06-01

    We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ˜30-150 μm and widths of ˜10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO 2-rich hydrous fluids formed during

  10. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    NASA Astrophysics Data System (ADS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  11. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  12. A multilayer approach to fabricate bioactive glass coatings on Ti alloys

    SciTech Connect

    Gomez-Vega, J.M.; Saiz, E.; Tomsia, A.P.; Marshall, G.W.; Marshall, S.J.

    1998-12-01

    Glasses in the system Si-Ca-Na-Mg-P-K-O with thermal expansion coefficients close to that of Ti6Al4V were used to coat the titanium alloy by a simple enameling technique. Firings were done in air at temperatures between 800 and 840 C and times up to 1 minute. Graded compositions were obtained by firing multilayered glass coatings. Hydroxyapatite (HA) particles were mixed with the glass powder and the mixture was placed on the outer surface of the coatings to render them more bioactive. Coatings with excellent adhesion to the substrate and able to form apatite when immersed in a simulated body fluid (SBF) can be fabricated by this methodology.

  13. Plio-Quaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite [U-Th]/He analyses

    NASA Astrophysics Data System (ADS)

    Blythe, A. E.; Burbank, D. W.; Carter, A.; Schmidt, K.; Putkonen, J.

    2007-06-01

    New apatite and zircon fission track and (U-Th)/He analyses serve to document the bedrock cooling history of the central Nepalese Himalaya near the Annapurna Range. We have obtained 82 apatite fission track (AFT), 7 zircon fission track (ZFT), and 7 apatite (U-Th)/He (AHe) ages from samples collected along the Marsyandi drainage, including eight vertical relief profiles from ridges on either side of the river averaging more than 2 km in elevation range. In addition, three profiles were sampled along ridge crests that also lie ˜2 km above the adjacent valleys, and a transect of >20 valley bottom samples spans from the Lesser Himalaya across the Greater Himalaya and into the Tethyan strata. As a consequence, these data provide one of the more comprehensive low-temperature thermochronologic studies within the Himalaya. Conversely, the youthfulness of this orogen is pushing the limits of these dating techniques. AFT ages range from >3.8 to 0 Ma, ZFT ages from 1.9 to 0.8 Ma, and AHe ages from 0.9 to 0.3 Ma. Most ridges have maximum ages of 1.3-0.8 Ma at 2 km above the valley bottom. Only one ridge crest (in the south central zone of the field area) yielded significantly older ZFT and AFT ages of ˜2 Ma; we infer that a splay of the Main Central Thrust separates this ridge from the rest of the Greater Himalaya. ZFT and AFT ages from a vertical transect along this ridge indicate exhumation rates of ˜1.5 km Myr-1 (r2 > 0.7) from ˜2 to 0.6-0.8 Ma, whereas AHe ages indicate a faster exhumation rate of ˜2.6 km Myr-1 (r2 = 0.9) over the last 0.8 Myr. Exhumation rates calculated for six of the remaining seven vertical profiles ranged from 1.5 to 12 km Myr-1 (all with low r2 values of <0.6) for the time period from ˜1.2 to 0.3 Ma, with no discernible patterns in south to north exhumation rates evident. The absence of a trend in exhumation rates, despite a strong spatial gradient in rainfall, argues against a correlation of long-term exhumation rates with modern patterns of

  14. Effect of hydrothermal treatment model on stability and bioactivity of microarc oxidized titania coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Jianhong; Shao, Jianmin; Han, Yong

    2014-06-01

    Different types of Sr-doped hydroxyapatite (Sr-HA) nanorod arrays were prepared on microarc oxidized (MAOed) TiO2 coatings after hydrothermal treatment (HT) for 24 h in the case of different HT models, namely the MAOed TiO2 coatings to be hanged up in the autoclave without touching the HT solution (termed as H-HT) and immersed in the HT solution (termed as I-HT). The MAO+H-HT (HT in the case of H-HT model) and MAO+I-HT (HT in the case of I-HT model) coatings are multilayered by nanorod-shaped Sr-HA as outer layer, Ca0.5Sr0.5TiO3 as middle layer and TiO2 as inner layer adjacent to Ti substrate. The Sr-HA nanorods on the coatings are randomly oriented, homogeneous and a similar mean diameter of 70 nm. However, the lateral spacing between the Sr-HA nanorods on MAO+H-HT coating is much smaller compared with those on MAO+I-HT coating. The effects of the HT models on the roughness, in vitro structure and bond strength stability and apatite inducing ability of the coatings were examined. AFM evaluation reveals that the coatings have a similar microscale roughness. The as-MAOed, MAO+H-HT and MAO+I-HT coatings exhibit long-term structure and adhesive strength stability as indicated by immersion tests in physiological saline solutions for 0-48 weeks, although their adhesive strengths decrease a little after immersion in physiological saline solutions, for example, to about 10.2%, 7.8% and 6.9% at 48 weeks, respectively. Furthermore, the MAO+H-HT coating can induce apatite formation after 12 h of SBF immersion due to the compacted Sr-HA nanorods layer, and the induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanorods.

  15. Biocorrosion of TiO2 nanoparticle coating of Ti-6Al-4V in DMEM under specific in vitro conditions

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-02-01

    A TiO2 nanoparticle coating was prepared on a biomedical Ti-6Al-4V alloy using "spin-coating" technique with a colloidal suspension of TiO2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO2. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti-6Al-4V shows a complete coverage by a Ca-phosphate layer in contrast to the non-coated Ti-6Al-4V alloy. Hence, the TiO2-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO2-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti-6Al-4V alloy is significant for at least 28 days of immersion in DMEM.

  16. Excellent stability of plasma-sprayed bioactive Ca 3ZrSi 2O 9 ceramic coating on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-05-01

    In this work, novel zirconium incorporated Ca-Si based ceramic powder Ca 3ZrSi 2O 9 was synthesized. The aim of this study was to fabricate Ca 3ZrSi 2O 9 coating onto Ti-6Al-4V substrate using atmospheric plasma-spraying technology and to evaluate its potential applications in the fields of orthopedics and dentistry. The phase composition, surface morphologies of the coating were examined by XRD and SEM, which revealed that the Ca 3ZrSi 2O 9 coating was composed of grains around 100 nm and amorphous phases. The bonding strength between the coating and the substrate was 28 ± 4 MPa, which is higher than that of traditional HA coating. The dissolution rate of the coating was assessed by monitoring the ions release and mass loss after immersion in the Tris-HCl buffer solution. The in vitro bioactivity of the coating was determined by observing the formation of apatite on its surface in simulated body fluids. It was found that the Ca 3ZrSi 2O 9 coating possessed both excellent chemical stability and good apatite-formation ability, suggesting its potential use as bone implants.

  17. Inter- and intra-crystal REE variations in apatite from the Bob Ingersoll pegmatite, Black Hills, South Dakota

    SciTech Connect

    Jolliff, B.L.; Papike, J.J.; Shearer, C.K. ); Shimizu, N. )

    1989-02-01

    Concentrations of rare earth elements (REE) have been measured on a suite of apatite crystals from an internally zoned granitic pegmatite enriched in Li, B, Be, F, Nb, Ta, Sn and U with a Cameca IMS 3f ion microprobe using energy filtering. An apatite specimen from the Tin Mountain pegmatite, analyzed previously by isotope dilution, was used as a standard. The chondrite-normalized pattern determined with the ion microprobe closely matches the pattern determined by isotope dilution, with maxima at Sm and Dy, and minima at Nd and Er. Apatite samples from the Bob Ingersoll pegmatite show a large range of REE patterns and concentrations. In one case, apatite crystals within millimeters show differences in REE concentrations and pattern shapes, including a switch from positive to negative Eu anomalies. These effects may be coupled with non-ideal partitioning of REE in a heterogeneous mixture of melt, aqueous fluid and crystals. REE concentrations in apatite samples from the different pegmatite zones indicate a large variation in outer zones, high concentrations near the pegmatite core, and very low concentration in the core. Patterns are flat to slightly inclined (Ce/Yb: 1 to 5), and most samples have positive Eu anomalies. The magnitude of positive Eu anomalies decreases with inward position in the pegmatite, possibly indicating a progressive increase in {line integral}O{sub 2}, and a sharp increase may be indicated by systematic Ce depletion in apatite from the pegmatite core. REE-specific volatile complexes may contribute to variations, including unusual kinks, observed in REE patterns of apatite from mineral assemblages in upper parts of the pegmatite.

  18. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.

    2008-12-01

    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  19. Facile preparation of apatite-type lanthanum silicate by a new water-based sol–gel process

    SciTech Connect

    Yamagata, Chieko; Elias, Daniel R.; Paiva, Mayara R.S.; Misso, Agatha M.; Castanho, Sonia R.H. Mello

    2013-06-01

    Highlights: ► We use a Na{sub 2}SiO{sub 3} waste solution as source of Si. ► We present a simple, rapid and low temperature method of lanthanum silicate apatite preparation. ► TEOS, a high cost reagent, was successfully substituted by a cheap price Na{sub 2}SiO{sub 3}, to obtain pure La{sub 9.56}(SiO{sub 4})6O{sub 2.33} lanthanum silicate apatite. - Abstract: In recent years, apatite-type lanthanum silicates ([Ln{sub 10−x}(XO{sub 4})6O{sub 3–1.5x}] (X = Si or Ge)) have been studied for use in SOFC (solid oxide fuel cells), at low temperature (600–800 °C), due to its ionic conductivity which is higher than that of YSZ (Yttrium Stabilized Zirconia) electrolyte. For this reason they are very promising materials as solid electrolyte for SOFCs. Synthesis of functional nanoparticles is a challenge in the nanotechnology. In this work, apatite-type lanthanum silicate nanoparticles were synthesized by a water-based sol–gel process, i.e., sol–gel technique followed by chemical precipitation of lanthanum hydroxide on the gel of the silica. Na{sub 2}SiO{sub 3} waste solution was used as silica source. Spherical aerogel silica was prepared by acid catalyzed reaction, followed by precipitation of lanthanum hydroxide to obtain the precursor of apatite-type lanthanum silicate. Powders of apatite-type lanthanum silicate achieved from the precursor were characterized by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area measurements (BET). The apatite phase was formed at 900 °C.

  20. Preparation and in vitro evaluation of a biomimetic nanoscale calcium phosphate coating on a polyethylene terephthalate artificial ligament

    PubMed Central

    CHEN, CHEN; LI, HONG; GUO, CHANGAN; CHEN, SHIYI

    2016-01-01

    In the present study, a polyethylene terephthalate (PET) artificial ligament was coated with an organic layer-by-layer (LBL) self-assembled template of chitosan and hyaluronic acid, and then incubated in a calcium phosphate (CaP) solution to prepare a biomimetic CaP coating. The surface characterization of the ligament was examined using scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The effects of CaP coatings on the osteogenic activity of MC3T3 E1 mouse osteoblastic cells were investigated by evaluating their attachment, proliferation and the relative expression levels of alkaline phosphatase. The results revealed that the organic LBL template on the PET artificial ligament was effective for CaP apatite formation. Following incubation for 72 h, numerous nanoscale CaP apatites were deposited on the PET ligament fibers. In addition, the results of the in vitro culture of MC3T3-E1 mouse osteoblastic cells demonstrated that the CaP coating had a good biocompatibility for cell proliferation and adhesion, and the CaP-coated group had a significantly higher alkaline phosphatase activity compared with the uncoated control group after seven days of cell culture. Collectively, these results demonstrated that the biomimetic nanoscale CaP-coated PET artificial ligaments have potential in bone-tissue engineering. PMID:27347053

  1. The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle

    NASA Astrophysics Data System (ADS)

    Konzett, Jürgen; Rhede, Dieter; Frost, Daniel J.

    2012-02-01

    High PT experiments were performed in the range 2.5-19 GPa and 800-1,500°C using a synthetic peridotite doped with trace elements and OH-apatite or with Cl-apatite + phlogopite. The aim of the study was (1) to investigate the stability and phase relations of apatite and its high PT breakdown products, (2) to study the compositional evolution with P and T of phosphate and coexisting silicate phases and (3) to measure the Cl-OH partitioning between apatite and coexisting calcic amphibole, phlogopite and K-richterite. Apatite is stable in a garnet-lherzolite assemblage in the range 2.5-8.7 GPa and 800-1,100°C. The high-P breakdown product of apatite is tuite γ-Ca3 (PO4)2, which is stable in the range 8-15 GPa and 1,100-1,300°C. Coexisting apatite and tuite were observed at 8 GPa/1,050°C and 8.7 GPa/1,000°C. MgO in apatite increases with P from 0.8 wt% at 2.5 GPa to 3.2 wt% at 8.7 GPa. Both apatite and tuite may contain significant Na, Sr and REE with a correlation indicating 2 Ca2+=Na+ + REE3+. Tuite has always higher Sr and REE and lower Fe and Mg than apatite. Phosphorus in the peridotite phases decreases in the order Pmelt ≫ Pgrt ≫ PMg2SiO4 > Pcpx > Popx. The phosphate-saturated P2O5 content of garnet increases from 0.07 wt% at 2.5 GPa to 1.5 wt% at 12.8 GPa. Due to the low bulk Na content of the peridotite, [8]Na[4]P[8]M2+ -1 [4]Si-1 only plays a minor role in controlling the phosphorus content of garnet. Instead, element correlations indicate a major contribution of [6]M2+[4]P[6]M3+ -1 [4]Si-1. Pyroxenes contain ~200-500 ppm P and olivine has 0.14-0.23 wt% P2O5 in the P range 4-8.7 GPa without correlation with P, T or XMg. At ≥12.7 GPa, all Mg2SiO4 polymorphs have <200 ppm P. Coexisting olivine and wadsleyite show an equal preference for phosphorus. In case of coexisting wadsleyite and ringwoodite, the latter fractionates phosphorus. Although garnet shows by far the highest phosphorus concentrations of any peridotite silicate phase, olivine is no less

  2. The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition.

    PubMed

    Yonggang, Yan; Wolke, J G C; Yubao, Li; Jansen, J A

    2007-06-01

    Ca-P coatings with different Ca/P ratio and composition were successfully prepared by RF magnetron sputtering deposition. The Ca/P ratio, phase composition, structure and morphological properties were characterized by XRD, FTIR, EDS and SEM analyses. All the as-sputtered coatings were amorphous and after IR-irradiation the coatings altered into a crystalline phase. The obtained coatings had a Ca/P ratio that varied from 0.55 to 2.10 and different phase compositions or mixtures of apatite, beta-pyrophosphate and beta-tricalciumphosphate structures were formed. Evidently, the phase compositions of the sputtered coatings are determined not only by the discharge power ratio of the hydroxylapatite and calcium pyrophosphate targets but also by the annealing temperature.

  3. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy.

    PubMed

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials.

  4. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    PubMed

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface.

  5. Evidence for Differential Unroofing in the Adirondack Mountains, New York State, Determined by Apatite Fission-Track Thermochronology.

    PubMed

    Roden-Tice; Tice; Schofield

    2000-03-01

    Apatite fission-track ages of 168-83 Ma for 39 samples of Proterozoic crystalline rocks, three samples of Cambrian Potsdam sandstone, and one Cretaceous lamprophyre dike from the Adirondack Mountains in New York State indicate that unroofing in this region occurred from Late Jurassic through Early Cretaceous. Samples from the High Peaks section of the Adirondack massif yielded the oldest apatite fission-track ages (168-135 Ma), indicating that it was exhumed first. Unroofing along the northern, northwestern, and southwestern margins of the Adirondacks began slightly later, as shown by younger apatite fission-track ages (146-114 Ma) determined for these rocks. This delay in exhumation may have resulted from burial of the peripheral regions by sediment shed from the High Peaks. Apatite fission-track ages for samples from the southeastern Adirondacks are distinctly younger (112-83 Ma) than those determined for the rest of the Adirondack region. These younger apatite fission-track ages are from a section of the Adirondacks dissected by shear zones and post-Ordovician north-northeast-trending normal faults. Differential unroofing may have been accommodated by reactivation of the faults in a reverse sense of motion with maximum compressive stress, sigma1, oriented west-northwest. A change in the orientation of the post-Early Cretaceous paleostress field is supported by a change in the trend of Cretaceous lamprophyre dikes from east-west to west-northwest.

  6. Interaction between a bisphosphonate, tiludronate and nanocrystalline apatite: in vitro viability and proliferation of HOP and HBMSC cells.

    PubMed

    Pascaud, P; Bareille, R; Bourget, C; Amédée, J; Rey, C; Sarda, S

    2012-10-01

    Nanocrystalline apatites (NCA) are the inorganic components of mineralized tissues and they have been recently proposed as biomaterials for drug delivery systems. Bisphosphonates (BPs) are currently the reference drugs used to treat diseases involving bone disorders such as osteoporosis. Nevertheless, the interaction phenomena between BP molecules and apatite nanocrystals of bone are not well understood. Therefore, the adsorption characteristics have been examined and cellular activity of tiludronate molecules on NCA as models of bone mineral has been investigated. Adsorption experiments of tiludronate onto NCA were carried out and revealed a Langmuir-type adsorption isotherm. The uptake of tiludronate molecules is associated with a release of phosphate ions, indicating that the main reaction is an ion exchange process involving surface anions. The results evidence the strong affinity of BP molecules for the apatitic surface. The interactions of NCA-tiludronate associations with human osteoprogenitor cells and human bone marrow stromal cells do not reveal any cytotoxicity and evidence the activity of adsorbed tiludronate molecules. Moreover, an evolution of the physico-chemical characteristics of the apatitic substrate during biological study was observed, highlighting the existence of dynamic interactions. This work contributes to clarifying the reaction mechanisms between BPs and biomimetic apatites.

  7. Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates.

    PubMed

    Iafisco, Michele; Palazzo, Barbara; Martra, Gianmario; Margiotta, Nicola; Piccinonna, Sara; Natile, Giovanni; Gandin, Valentina; Marzano, Cristina; Roveri, Norberto

    2012-01-07

    In the present study two nanocrystalline apatites have been investigated as bone-specific drug delivery devices to be used for treatment of bone tumors either by local implantation or by injection. In order to assess how the Ca/P ratio can influence the adsorption and release of anticancer platinum-bisphosphonate complexes, two kinds of apatite nanocrystals having different Ca/P ratios but similar morphologies, degree of crystallinity, and surface areas have been synthesized and characterized. The two platinum-bisphosphonate complexes considered were the bis-{ethylenediamineplatinum(ii)}-2-amino-1-hydroxyethane-1,1-diyl-bisphosphonate and the bis-{ethylenediamineplatinum(ii)}medronate. The Ca/P ratio plays an important role in the adsorption as well as in the release of the two drugs. In fact, the apatite with a higher Ca/P ratio showed greater affinity for both platinum complexes. Also the chemical structure of the two Pt complexes appreciably affects their affinity towards as well as their release from the two kinds of apatites. In particular, the platinum complex whose bisphosphonate contains a free aminic group showed greater upload and smaller release. The cytotoxicity of the Pt complexes released from the apatite was tested against human cervical, colon, and lung cancer cells as well as against osteosarcoma cells. In agreement with previous work, the Pt complexes released were found to be more cytotoxic than the unmodified complexes.

  8. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Corfu, Fernando; Neubauer, Franz; Bernroider, Manfred; Prokofiev, Vsevolod; Honarmand, Maryam

    2014-02-01

    Iron oxide-apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U-Pb dating of monazite inclusions in the apatite indicates an age of 39.99 ± 0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide-apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic-hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.

  9. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  10. Apatite 4He/3He thermochronometry evidence for an ancient Grand Canyon, Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Farley, K. A.

    2012-12-01

    The very existence of Grand Canyon inspires questions about why canyons are carved, how drainage systems and landscapes evolve, and how these processes relate to the elevation gain of plateaus. Yet when and why Grand Canyon was carved have been extraordinarily controversial for more than 150 years. Over the last several decades, the dominant view for the origin of the canyon is one of rapid incision at 5-6 Ma, when detritus derived from the upstream reaches of the Colorado River system appeared in Grand Wash Trough at the Colorado River's western exit from the Colorado Plateau. The absence of such diagnostic deposits prior to 6 Ma has been used to argue that Grand Canyon was not yet excavated (e.g., Karlstrom et al., 2008). However, a variety of data hint at a more ancient age for part or all of the canyon, and it has been proposed that a smaller drainage basin in largely carbonate lithologies could explain the absence of pre-6 Ma Colorado River clastics in Grand Wash Trough even if a significant Grand Canyon were present. Most recently, apatite (U-Th)/He (AHe) thermochronometry data from western Grand Canyon were used to infer excavation of this area to within several hundred meters of its modern depth by ca. 70 Ma (Wernicke, 2011), an interpretation in direct conflict with the young canyon model. The unexpected implications of the initial Grand Canyon AHe work motivated the apatite 4He/3He and U-Th zonation study presented here. Apatite 4He/3He thermochronometry provides information about the spatial distribution of radiogenic 4He in an apatite crystal that can better constrain a sample's cooling history. A key premise of AHe and 4He/3He spectra interpretation is that the He kinetic model used is accurate. We first investigate whether differing 4He/3He spectra for apatites of variable AHe date, radiation damage, and U-Th zonation from eastern Grand Canyon yield mutually consistent thermal history results using the RDAAM kinetic model, which must be true if the

  11. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders.

    PubMed

    Visan, A; Stan, G E; Ristoscu, C; Popescu-Pelin, G; Sopronyi, M; Besleaga, C; Luculescu, C; Chifiriuc, M C; Hussien, M D; Marsan, O; Kergourlay, E; Grossin, D; Brouillet, F; Mihailescu, I N

    2016-09-10

    Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb2O5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations

    PubMed Central

    Ceci, Andrea; Kierans, Martin; Hillier, Stephen; Persiani, Anna Maria

    2015-01-01

    Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery. PMID:25979898

  14. Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae.

    PubMed

    Omelon, Sidney; Georgiou, John; Variola, Fabio; Dean, Mason N

    2014-09-01

    Elasmobranchs (e.g. sharks and rays), like all fishes, grow continuously throughout life. Unlike other vertebrates, their skeletons are primarily cartilaginous, comprising a hyaline cartilage-like core, stiffened by a thin outer array of mineralized, abutting and interconnected tiles called tesserae. Tesserae bear active mineralization fronts at all margins and the tesseral layer is thin enough to section without decalcifying, making this a tractable but largely unexamined system for investigating controlled apatite mineralization, while also offering a potential analog for endochondral ossification. The chemical mechanism for tesserae mineralization has not been described, but has been previously attributed to spherical precursors, and alkaline phosphatase (ALP) activity. Here, we use a variety of techniques to elucidate the involvement of phosphorus-containing precursors in the formation of tesserae at their mineralization fronts. Using Raman spectroscopy, fluorescence microscopy and histological methods, we demonstrate that ALP activity is located with inorganic phosphate polymers (polyP) at the tessera-uncalcified cartilage interface, suggesting a potential mechanism for regulated mineralization: inorganic phosphate (Pi) can be cleaved from polyP by ALP, thus making Pi locally available for apatite biomineralization. The application of exogenous ALP to tissue cross-sections resulted in the disappearance of polyP and the appearance of Pi in uncalcified cartilage adjacent to mineralization fronts. We propose that elasmobranch skeletal cells control apatite biomineralization by biochemically controlling polyP and ALP production, placement and activity. Previous identification of polyP and ALP shown previously in mammalian calcifying cartilage supports the hypothesis that this mechanism may be a general regulating feature in the mineralization of vertebrate skeletons.

  15. Asymmetric Exhumation Patterns Revealed through Apatite-Zircon Thermochronology of the Santa Lucia Range, Central California

    NASA Astrophysics Data System (ADS)

    Mere, A.; Steely, A.; Hourigan, J. K.

    2016-12-01

    Previous thermochronological analyses of crystalline bedrock in the central Santa Lucia range have yielded surprisingly rapid rates of surface uplift and bedrock extrusion despite lack of modern seismicity along nearby faults. We use 8 new apatite and zircon (U-Th)/He dates in order to better constrain the history of bedrock extrusion in response to the transpressional North American-Pacific plate boundary. Granitic samples were collected along coastal fault blocks bounded by the Palo Colorado (PCF), Sur-Nacimiento (SNF), and San Gregorio Hosgri faults (SGHF); as well as one sample from Salinian Basement >25km NE of the SGHF. Helium was extracted and analyzed using a quadrupole equipped multi-sample laser microfurnace and U/Th content was measured using high precision isotope-dilution ICP mass spectrometry. Rapid late Cretaceous unroofing is captured in Salinian basement zircon and apatite by the respective 67Ma and 63Ma dates. Zircon along coastal silvers proximal to PCF and SNF record 28-31Ma dates while zircon in close proximity to SGHF record ages as young as 6.5Ma. Apatite ages proximal to PCF and SNF range between 6-9Ma and are as young as 1.5Ma directly NE of the SGHF. These data reflect increased exhumation beginning as recently as the Miocene and additionally indicate rates of modern (<2Ma) uplift exceeding 1.3 mm/yr. These results indicate that stresses caused by the active plate boundary are accommodated by the SGHF and associated faults as vertical deformation despite low rates of modern seismicity. We suggest that the SGHF and nearby faults are more active, or behave differently, that previously acknowledged. The pattern of focused exhumation within narrow fault blocks appears to be related to underplating of low strength schist that is thought to be synchronous with late Cretaceous unroofing of Salinian basement.

  16. A Bayesian approach to calibrating apatite fission track annealing models for laboratory and geological timescales

    NASA Astrophysics Data System (ADS)

    Stephenson, John; Gallagher, Kerry; Holmes, Chris

    2006-10-01

    We present a new approach for modelling annealing of fission tracks in apatite, aiming to address various problems with existing models. We cast the model in a fully Bayesian context, which allows us explicitly to deal with data and parameter uncertainties and correlations, and also to deal with the predictive uncertainties. We focus on a well-known annealing algorithm [Laslett, G.M., Green, P.F., Duddy, I.R., Gleadow. A.J.W., 1987. Thermal annealing of fission tracks in apatite. 2. A quantitative-analysis. Chem. Geol., 65 (1), 1-13], and build a hierachical Bayesian model to incorporate both laboratory and geological timescale data as direct constraints. Relative to the original model calibration, we find a better (in terms of likelihood) model conditioned just on the reported laboratory data. We then include the uncertainty on the temperatures recorded during the laboratory annealing experiments. We again find a better model, but the predictive uncertainty when extrapolated to geological timescales is increased due to the uncertainty on the laboratory temperatures. Finally, we explictly include a data set [Vrolijk, P., Donelick, R.A., Quenq, J., Cloos. M., 1992. Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson, R., Lancelet, Y. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 129, pp. 169-176] which provides low-temperature geological timescale constraints for the model calibration. When combined with the laboratory data, we find a model which satisfies both the low-temperature and high-temperature geological timescale benchmarks, although the fit to the original laboratory data is degraded. However, when extrapolated to geological timescales, this combined model significantly reduces the well-known rapid recent cooling artifact found in many published thermal models for geological samples.

  17. Apatite fission-track thermochronology of the central and southern Appalachian Basin

    SciTech Connect

    Roden, M.K.

    1989-01-01

    Samples were collected in west to east transects across the Appalachian Basin of Pennsylvania, Maryland, West Virginia, and Virginia. These samples locations were chosen to test the concept of increasing paleotemperature due to increasing burial from west to east across the Appalachian Basin and to detect any thermal anomalies that exist. Calculated time-temperature (tT) paths based on apatite fission-track apparent ages and confined track length distributions for samples from this study indicate that both the Pennsylvania and southern Appalachian had complex uplift and cooling histories. In Pennsylvania, the Tioga and Kalkberg ash bed samples from central Pennsylvania yield modelled tT paths that indicate early post-Alleghanian (285-270 Ma) cooling with uplift estimated at beginning at {approx}251 {plus minus} 25 Ma. Samples from the western Allegheny Plateau and Allegheny Front contain apatites which have reset to give fission-track ages and track lengths consistent with tT histories beginning at <200 Ma. In northeastern Pennsylvania on the Allegheny Plateau, the modelled tT paths show rapid cooling from temperatures in the range of 110{degree}-120{degree} C at 170-160 Ma. In the southern Appalachian Basin, calculated tT paths indicate that uplift in the northern section was immediately post-Alleghanian folding with uplift beginning first in the northwestern section on the Cumberland Plateau at {approx}226 {plus minus} 23 Ma and progressing to the eastern Valley and Ridge Province of Virginia at {approx}119 {plus minus} 12 Ma. The samples from southwestern Virginia yield a mean apatite fission-track apparent age of 175 {plus minus} 11 Ma which may be the result of a higher heat flow, higher paleogeothermal gradient during the Upper Jurassic-Early Cretaceous extension along the Atlantic Coast.

  18. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations.

    PubMed

    Ceci, Andrea; Kierans, Martin; Hillier, Stephen; Persiani, Anna Maria; Gadd, Geoffrey Michael

    2015-08-01

    Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery.

  19. The status of strontium in biological apatites: an XANES/EXAFS investigation.

    PubMed

    Bazin, Dominique; Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang Korng; Lioté, Frédéric; Rehr, John; Chappard, Christine; Rouzière, Stephan; Thiaudière, Dominique; Reguer, Solen; Daudon, Michel

    2014-01-01

    Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.

  20. Novel contributions on luminescent apatite-based colloids intended for medical imaging.

    PubMed

    Al-Kattan, Ahmed; Santran, Veronique; Dufour, Pascal; Dexpert-Ghys, Jeannette; Drouet, Christophe

    2014-01-01

    The setup of colloidal hybrid nanosystems based on biomimetic calcium phosphate apatites doped with europium ions has recently raised great interest in the pharmacological community, especially due to their bio-inspired character. This is especially relevant in relation with medical imaging for cancer diagnosis. Questions however remain in relation to a number of applicability aspects, some of which have been examined in this contribution. In a first part of this work, we explored further the luminescence properties of such colloidal nanoparticles. We pointed out, upon excitation of europium, the existence of some non-radiative de-excitation via the vibration of O-H oscillators located at the vicinity of the Eu(3+) luminescent centers. The replacement of Eu(3+) by Tb(3+) ions, less prone to non-radiative de-excitation, was then tested in a preliminary way and can be seen as a promising alternative. In a second part of this work, we inspected the possibility to store these colloids in a dry state while retaining a re-suspension ability preserving the nanometer size of the initial nanoparticles, and we propose a functional protocol involving the addition of glucose prior to freeze-drying. We finally showed for the first time, based on titrations of intracellular Ca(2+) and Eu(3+) ions, that folic acid-functionalized biomimetic apatite nanoparticles were able to target cancer cells that overexpress folate receptors on their membrane, which we point out here in the case of T-47-D breast carcinoma cells, as opposed to ZR-75-1 cells that do not express folate receptors. This contribution thus opens new exciting perspectives in the field of targeted cancer diagnosis, thus confirming the promise of biomimetic apatites-based colloidal formulations.

  1. RMSRo: A vitrinite reflectance model consistent with the temperature-apatite fission track system

    NASA Astrophysics Data System (ADS)

    Nielsen, Søren B.; Clausen, Ole R.; McGregor, Eoin D.

    2014-05-01

    Observed temperature, vitrinite reflectance and apatite fission tracks provide different but related information regarding temperature history. Their combined use in borehole heat flow determination as well as thermal and tectonic reconstruction requires a set of predictive models which are internally consistent. While the temperature-fission track system seems well-calibrated, several different vitrinite reflectance models exist. Although variability in vitrinite reflectance values is related to natural variations in the organic material such as; initial composition, depositional environment, degree of oxygenation etc., the most important factor affecting the construction of vitrinite reflectance models is bias in the geological temperature history of the samples used for calibration. Here we add to the vitrinite reflectance calibration data set of Suggate (1998) with more borehole data and construct a kinetic vitrinite reflectance model by minimizing the root mean square (RMS) distance between the calibration data set and model predictions. We validate this kinetic model on wells in the North Sea which have maximum temperature at the present day, and on two wells in the eastern North Sea, which have experience cooling since the early Eocene thermal maximum. The two latter wells have unusually high quality temperature, vitrinite reflectance and fission track data, and it appears that the independently derived RMSRo-model is consistent with the temperature-apatite fission track system. Keywords: vitrinite reflectance, basin analysis, thermal history, hydrocarbon exploration, apatite fission tracks Suggate, R.P., 1998. Relations between depth of burial, vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology, v. 21(1), January 1998, 5-32.

  2. Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon

    NASA Astrophysics Data System (ADS)

    Miles, A. J.; Graham, C. M.; Hawkesworth, C. J.; Gillespie, M. R.; Hinton, R. W.

    2013-07-01

    Accessory minerals contain a robust and accessible record of magma evolution. However, they may reflect relatively late-stage conditions in the history of the host magmas. In the normally zoned Criffell granitic pluton (Scotland), whole-rock (WR) compositions reflect open system assimilation and fractional crystallisation at depths of >11 km, whereas amphibole barometry and the absence of inherited zircon suggest that the observed mineral assemblages crystallised following emplacement of magmas with little or no crystal cargo at depths of 4-6 km. The crystallisation history is documented by large trace-element variations amongst apatite crystals from within individual samples: decreasing LREE and Th concentrations in apatite crystals from metaluminous samples reflect broadly synchronous crystallisation of allanite, whereas lower LREE and Th, and more negative Nd anomalies in apatites from peraluminous samples reflect the effects of monazite crystallisation. WR evolution is likely to have occurred within a deep crustal hot zone where H2O-rich (~6 wt%), low-viscosity magmas segregated and ascended adiabatically in a super-liquidus state, leading to resorption of most entrained crystals. Stalling, emplacement and crystallisation resulted from intersection with the H2O-saturated liquidus at ~4 km. H2O contents are as important as temperature in the development of super-liquidus magmas during ascent, blurring distinctions between apparently `hot' and `cold' granites. The trace-element contents of most accessory minerals are controlled by competitive crystallisation of other accessory minerals in small melt batches, consistent with the incremental assembly of large granitic plutons.

  3. Rare earth element distributions in recent and fossil apatite: implications for paleoceanography and stratigraphy

    SciTech Connect

    Wright, J.

    1985-01-01

    Rare earth element (REE) distributions in biogenic apatite were determined in over 200 samples from Cambrian to the Recent. Nondestructive instrumental neutron activation analysis techniques were adapted for analysis of low-mass microfossil samples. Tests for chemical contamination, interspecies, interlaboratory and interexperiment variations show that there is no fractionation of REE, so that ratios of rare earths are consistent throughout the entire group of samples. The REE signature of biogenic apatite is acquired after deposition but only at the sediment-water interface and is characteristic of the redox state of the environment of deposition. This original environmental signature is retained through subsequent burial and diagenesis. Cerium has been shown to be the rare earth element that is sensitive to oxidation-reduction variations in marine waters. This cerium variation is stated mathematically and called Ce/sub anom/. Comparison of Ce/sub anom/ in fish debris from different modern redox environments shows that values > -0.10 occur in fish debris deposited under reducing conditions, whereas Ce/sub anom/ values <-0.10 are obtained under oxidizing conditions. Paleoredox studies of Ce/sub anom/ of fossil apatite of conodonts, fish debris and inarticulate brachiopods indicate that significant shifts in the overall redox balance of seawater occurred in ancient oceans. Cambrian through Silurian seas were dominated by anoxia, followed by a gradual change to oxidizing conditions in the Devonian. Oceans remained generally oxidizing throughout the Carboniferous and Lower Permian. In the Upper Permian and Lower Triassic anoxic conditions were again prevalent. This was followed by a return to an oxidizing oceanic environment in the Upper Triassic.

  4. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments

    SciTech Connect

    Ruttenberg, K.C.; Berner, R.A. )

    1993-03-01

    Evidence for precipitation of authigenic carbonate fluorapatite (CFA) in Long Island Sound and Mississippi Delta sediments suggests that formation of CFA is not restricted to environments of active coastal upwelling. The authors present porewater data suggestive of CFA formation in both these areas. Application of a sequential leaching procedure, designed specifically to separate authigenic carbonate fluorapatite from other phosphorus-containing phases, including detrital apatite of igneous or metamorphic origin, provides strong supporting evidence for authigenic apatite formation in these sediments. The size of the authigenic apatite reservoir increases with depth, indicating continued formation of CFA during early diagenesis. This depth increase is mirrored by a decrease in solid-phase organic P at both sites, suggesting that CFA is forming at the expense of organic P. Mass balance considerations, application of diagenetic models to intersitital water nutrient data, and the saturation state of the interstitial water are consistent with this interpretation. Diagenetic redistribution of phosphorus among the different solid-phase reservoirs is observed at both sites, and results in near perfect retention of P by these sediments over the depth intervals sampled. Formation of CFA in continental margins which do not conform to the classically defined regions of phosphorite formation renders CFA a quantitatively more important sink than has previously been recognized. Including this reservoir as a newly identified sink for reactive P in the ocean, the residence time of P in the modern ocean must be revised downward. The implication for ancient oceans of CFA formation in continental margin sediments other than phosphorites is that phosphorite formation may be less a representation of episodicity in removal of reactive P from the oceans than of localized concentration of CFA in phosphatic sediments by secondary physical processes. 90 refs., 5 figs., 2 tabs.

  5. SAXS study on the morphology of etched and un-etched ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Afra, B.; Rodriguez, M. D.; Mota-Santiago, P.; Muradoglu, S.; Hawley, A.; Kluth, P.

    2015-04-01

    Natural apatite samples were irradiated with 185 MeV Au and 2.3 GeV Bi ions to simulate fission tracks. The resulting track morphology was investigated using synchrotron small angle x-ray scattering (SAXS) measurements before and after chemical etching. We present preliminary results from the SAXS measurement showing the etching process is highly anisotropic yielding faceted etch pits with a 6-fold symmetry. The measurements are a first step in gaining new insights into the correlation between etched and unetched fission tracks and the use of SAXS as a tool for studying etched tracks.

  6. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    NASA Astrophysics Data System (ADS)

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.

    2015-12-01

    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  7. Nanofibrous glass tailored with apatite-fibronectin interface for bone cell stimulation.

    PubMed

    Kim, Hae-Won; Lee, Hae-Hyoung; Knowles, Jonathan C

    2008-06-01

    Exploring a material with smart and biomimetic interface has great potential in the biomaterials and tissue engineering field. This paper reports a novel nanofibrous bone matrix that was developed to retain a cell-stimulating and bone-mimetic biointerface. The bone mineral, apatite, and the cell adhesive protein, fibronectin (FN), were hybridized on the interface of a bioactive glass nanofibrous mesh, through the dissolution-and-reprecipitation process. The hybridized nanofibrous mesh showed significant improvement in the initial responses of the bone-derived cells. It is believed that this biomimetic and cell-stimulating nanofibrous mesh can be used as a potential bone regeneration matrix.

  8. Preparation of nanocrystalline bredigite powders with apatite-forming ability by a simple combustion method

    SciTech Connect

    Huang Xianghui; Chang Jiang

    2008-06-03

    Nanocrystalline bredigite (Ca{sub 7}MgSi{sub 4}O{sub 16}) powders were synthesized by a simple solution combustion method. Phase pure bredigite powders with particle sizes ranging from 234 to 463 nm could be obtained at a relatively low temperature of 650 deg. C. The apatite-forming ability of the bredigite powders was examined by soaking them in a stimulated body fluid. The compositional and morphological changes of the powders before and after soaking were analyzed by X-ray diffraction and scanning electron microscopy and the results showed that hydroxyapatite was formed after soaking for 4 days.

  9. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Zhou, Dali; Xue, Ming; Li, Guangda; Yang, Weizhong; Long, Qin; Ji, Li

    2008-11-01

    Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW/CS composite scaffold. The in vitro bioactivity of the AW/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the scaffold. The results showed that the compressive strength of AW GC scaffold was improved dramatically after being modified by CS, whereas the mineralization rate was delayed. MSCs can attach well on the surface of the composite scaffold.

  10. Thermodynamic Properties of Sulfatian Apatite: Constraints on the Behavior of Sulfur in Calc-Alkaline Magmas

    NASA Astrophysics Data System (ADS)

    Core, D.; Essene, E. J.; Luhr, J. F.; Kesler, S. E.

    2004-12-01

    The Gibbs free energy of hydroxyellestadite [Ca10(SiO4)3(SO4)3(OH)2] was estimated using mineral equilibria applied to analyzed assemblages from the experimental charges of Luhr (1990). The apatite analyses of Peng et al. (1997) were used in conjunction with new analyses of the oxides and silicates in this study. An ideal mixing model was employed for apatite combined with mixing models from MELTS (Ghiorso & Sack, 1994) and Gibbs free energy data from Robie & Hemingway (1995) for the other crystalline phases. The resultant equation of the Gibbs free energy vs. T for hydroxyellestadite is as follows: DG°T(elem) = [2.817(T - 273) - 11831]/1000 kJ/mol, T in K. The calculated entropy for hydroxyellestadite is 1944 J/mol.K at 1073 K and 2151 J/mol.K at 1227 K. Independent estimates of the entropy of hydroxyellestadite obtained with the method of Robinson & Haas (1983) are within 5% of these values. The thermodynamic data on hydroxyellestadite were used to calculate the locus of the reactions: 2Ca10(SiO4)3(SO4)3(OH)2 + 7S2 + 21O2 = 20CaSO4 + 6SiO2 + 2H2O 6Ca10(SiO4)3(SO4)3(OH)2 + 102SiO2 + 20Fe3O4 = 60CaFeSi2O6 + 6H2O + 9S2 + 37O2 2Ca10(SiO4)3(SO4)3(OH)2 + 10Mg2Si2O6 + 14SiO2 = 20CaMgSi2O6 + 2H2O + 3S2 + 9O2 in fO2-fS2 space at fixed P-T. Application of these equilibria to apatite zoned in sulfate from oxidized granitoids reflects a drop in fS2 by more than 1 log unit during its growth. The zoning is interpreted to represent the removal of a magmatic vapor phase during crystallization of these plutons. Removal of sulfur from magmas by hydrothermal fluids is important to the ore-forming process and to the production of acid sulfate aerosols during eruption of oxidized magmas. Preservation of sulfatian apatite may yield data on the sulfidation states of ancient flood basalts such as the Deccan Traps of India and the Parana basalts of Brazil to address the environmental impact of these giant eruptions.

  11. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  12. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability.

  13. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  14. Effect of solid/solution ratio on apatite formation from CaSiO3 ceramics in simulated body fluid.

    PubMed

    Iimori, Yusuke; Kameshima, Yoshikazu; Yasumori, Atsuo; Okada, Kiyoshi

    2004-11-01

    The effect of the solid/solution (S/S) ratio on apatite formation from CaSiO3 ceramics in simulated body fluid (SBF) was investigated. CaSiO3 ceramics with a Ca/Si ratio of 0.91 were prepared by sintering CaSiO3 powder coprecipitated from ethanol solutions of Ca(NO3)2. 4H2O and Si(OC2H5)4 using NH4OH as the precipitant. These ceramics were reacted with SBF at S/S ratios of 1.0, 2.5 and 8.3 mg/ml at 36.5 degrees C for various times. Formation of apatite was observed at all the S/S ratios after soaking for 1 day. The amount and microstructure of the apatite obtained at a S/S ratio of 8.3 mg/ml, however, differed largely from the product formed at the other two S/S ratios. The apatite formed at S/S = 8.3 mg/ml was of smaller particle size, formed in smaller amount and with less preferred orientation of the (001) of apatite crystals compared with those formed at S/S = 1.0 and 2.5 mg/ml. An increase of Ca and decrease of the P components occurred in the soaked SBF at S/S = 8.3 mg/ml, the changes being much more marked than with the other two S/S ratios. These differences in the concentration changes in SBF at different S/S ratios are attributed to the difference in the apatite formation from the CaSiO3 ceramics.

  15. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations.

    PubMed

    Iimori, Yusuke; Kameshima, Yoshikazu; Okada, Kiyoshi; Hayashi, Shigeo

    2005-01-01

    Apatite formation on CaSiO3 ceramics was investigated using two different simulated body fluids (SBF) proposed by Kokubo (1990) and Tas (2000) and three sample/SBF (S/S) ratios (1.0, 2.5 and 8.3 mg/ml) at 36.5 degrees C for 1-25 days. The CaSiO3 ceramic was prepared by firing coprecipitated gel with Ca/Si = 0.91 at 1400 degrees C. The bulk density was 2.14 g/cm3 and the relative density about 76%. The two SBF solutions contain different concentrations of HCO3- and Cl- ions, the concentrations of which are closer to human blood plasma in the Tas SBF formulation than in the Kokubo formulation. The pH values in the former solution are also more realistic. The CaSiO3 ceramics show apatite formation in SBF (Kokubo) after soaking for only 1 day at all S/S ratios whereas different phases were formed at each S/S ratio in SBF (Tas). The crystalline phases formed were mainly apatite at S/S = 1.0 mg/ml, carbonate-type apatite at 2.5 mg/ml and calcite at 8.3 mg/ml. At higher S/S ratios the increase in the Ca concentration became higher while the P concentration became lower in the reacted SBF. These changes in SBF concentrations and increasing pH occurred at higher S/S ratios, producing more favorable conditions in the SBF for the formation of carbonate bearing phases, finally leading to the formation of calcite instead of apatite in the higher HCO3- ion concentration SBF (Tas). Apatite is, however, formed in the lower HCO3- ion concentration SBF (Kokubo) even though the Ca and P concentrations change in a similar manner to SBF (Tas).

  16. Possible secondary apatite fission track age standard from altered volcanic ash beds in the middle Jurassic Carmel Formation, Southwestern Utah

    USGS Publications Warehouse

    Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.

    1993-01-01

    Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.

  17. Allanite and apatite from the Sulu UHP eclogites (CCSD): light rare earth elements and thorium carriers in subducted crust

    NASA Astrophysics Data System (ADS)

    Wang, R.; Wang, S.; Qiu, J.; Ni, P.

    2004-12-01

    Light rare earth elements (LREE) and Th are ones of important elements for the characterization of the components in subduction zones. Therefore, a profound understanding of the behaviour of these elements in subduction zone processes is only possible if we know in which phases LREE and Th are incorporated, how stable these phases are and how they interact with subduction zone liquids. Allanite and apatite are considered two accessory minerals incorporating important LREE and Th in subduction-zone rocks. Chinese Continental Scientific Drilling (CCSD) provides us an opportunity to make a systematic study on distribution of REE-bearing accessory minerals in the Sulu UHP eclogites. The rocks contain garnet, omphacite, quartz (probably pseudomorph after coesite), phengite and rutile. Accessory allanite and apatite often form aggregates. The following features can be taken for preliminarily characterizing the aggregates. (1) allanite grains are cored by apatite, and mantled by epidote; (2) micro-inclusions of thorite are found within the apatite core or allanite, or at the contact between them; (3) allanite transforms progressively to epidote; (4) epidote reveals zoned texture (e.g., lower right part in Fig. 1a), which is represented by variations in Fe and Al contents. Electron-microprobe analyses reveal that the apatite contains up to 1 wt%(LREE)2O3 and 0.5 wt% ThO2, particularly allanite incorporates not only LREE, but also as high as 2.1 wt% ThO2. The above observations indicate that there is a continuous transition from epidote to allanite, which is stabilized due to the presence of LREE, deriving possibly from the breakdown of primary LREE- and Th-bearing apatite in the course of UHP metamorphism. This work was financially supported by Chinese Ministry of Science and Technology (2003CB716507).

  18. Preparation and characterizations of bioglass ceramic cement/Ca-P coating on pure magnesium for biomedical applications.

    PubMed

    Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong

    2014-01-08

    Magnesium has been recently recognized as a biodegradable metal for bone substitute applications. In order to improve the biocompatibility and osteointegration of pure Mg, two kinds of coatings, i.e., the Ca-P coating and bioglass ceramic cement (BGCC)/Ca-P coating, were prepared on the pure Mg ribbons in the present work. The Ca-P coating was obtained by aqueous solution method. Subsequently, Ca-P coated Mg was immersed into the BGCC slurry, which was prepared by the mix of SiO2-CaO-P2O5 bioglass ceramic (BGC) powders and phosphate liquid with a liquid-to-solid ratio (L/S) of 1.6, to obtain BGCC/Ca-P coating by a dipping-pulling method. The microstructures, morphologies, and compositions of these coatings have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The effect of these coatings on the mineralization activity of pure Mg has been investigated. The results indicated that both the Ca-P coating and BGCC/Ca-P coating could promote the nucleation of osteoconductive minerals, i.e., bone-like apatite, and the hydroxyapatite (HA) layer formed on the surface of the BGCC/Ca-P coating is obviously more dense, thick, and stable than that formed on the Ca-P coating after immersion in SBF solution for 15 days. The potentiodynamic polarization test indicated that the corrosion current density of the BGCC/Ca-P coated Mg is obviously lower than that of the Ca-P coating and 10 times lower than that of uncoated Mg. These results demonstrated that the BGCC/Ca-P coating can increase significantly the corrosion resistance of Mg and introduce a high biocompatibility of the bone-Mg substrate interface. In summary, the newly developed BGCC/Ca-P coated Mg has a good potential for biomedical applications.

  19. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.

    2016-04-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role