NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi
2017-05-01
A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.
Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor
NASA Astrophysics Data System (ADS)
Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun
2018-05-01
Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.
NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo
2015-05-01
This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.
A variable-mode stator consequent pole memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lyu, Shukang; Lin, Heyun; Zhu, Z. Q.
2018-05-01
In this paper, a variable-mode concept is proposed for the speed range extension of a stator-consequent-pole memory machine (SCPMM). An integrated permanent magnet (PM) and electrically excited control scheme is utilized to simplify the flux-weakening control instead of relatively complicated continuous PM magnetization control. Due to the nature of memory machine, the magnetization state of low coercive force (LCF) magnets can be easily changed by applying either a positive or negative current pulse. Therefore, the number of PM poles may be changed to satisfy the specific performance requirement under different speed ranges, i.e. the machine with all PM poles can offer high torque output while that with half PM poles provides wide constant power range. In addition, the SCPMM with non-magnetized PMs can be considered as a dual-three phase electrically excited reluctance machine, which can be fed by an open-winding based dual inverters that provide direct current (DC) bias excitation to further extend the speed range. The effectiveness of the proposed variable-mode operation for extending its operating region and improving the system reliability is verified by both finite element analysis (FEA) and experiments.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei
2014-05-01
This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.
Fourier decomposition of segmented magnets with radial magnetization in surface-mounted PM machines
NASA Astrophysics Data System (ADS)
Tiang, Tow Leong; Ishak, Dahaman; Lim, Chee Peng
2017-11-01
This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent agreement has been achieved.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo
2017-05-01
Since permanent magnets (PM) are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM) owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC) material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM). The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM) is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Tolbert, Leon M; Lee, Seong T
2007-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air gap flux. The PM in the rotor prevents magnetic flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce.more » A high-strength machine is thus obtained. The air gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Lee, Seong T; Tolbert, Leon M
2008-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air-gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air-gap flux. The PM in the rotor prevents magnetic-flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce. A high-strength machinemore » is thus obtained. The air-gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
High speed operation of permanent magnet machines
NASA Astrophysics Data System (ADS)
El-Refaie, Ayman M.
This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been investigated. A 6kW, 36slot/30pole prototype SPM machine has been designed and built. Experimental measurements have been used to verify the analytical and FEA results. These test results have demonstrated that wide constant-power speed range can be achieved. Other important machine features such as the near-sinusoidal back-emf, high efficiency, and low cogging torque have also been demonstrated.
NASA Astrophysics Data System (ADS)
Guo, Liyan; Xia, Changliang; Wang, Huimin; Wang, Zhiqiang; Shi, Tingna
2018-05-01
As is well known, the armature current will be ahead of the back electromotive force (back-EMF) under load condition of the interior permanent magnet (PM) machine. This kind of advanced armature current will produce a demagnetizing field, which may make irreversible demagnetization appeared in PMs easily. To estimate the working points of PMs more accurately and take demagnetization under consideration in the early design stage of a machine, an improved equivalent magnetic network model is established in this paper. Each PM under each magnetic pole is segmented, and the networks in the rotor pole shoe are refined, which makes a more precise model of the flux path in the rotor pole shoe possible. The working point of each PM under each magnetic pole can be calculated accurately by the established improved equivalent magnetic network model. Meanwhile, the calculated results are compared with those calculated by FEM. And the effects of d-axis component and q-axis component of armature current, air-gap length and flux barrier size on working points of PMs are analyzed by the improved equivalent magnetic network model.
Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiles, R.H.
2005-10-07
In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap fluxmore » density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.« less
Hall effect sensors embedded within two-pole toothless stator assembly
NASA Technical Reports Server (NTRS)
Denk, Joseph (Inventor); Grant, Richard J. (Inventor)
1994-01-01
A two-pole toothless PM machine employs Hall effect sensors to indicate the position of the machine's rotor relative to power windings in the machine's stator. The Hall effect sensors are located in the main magnetic air gap underneath the power windings. The main magnetic air gap is defined by an outer magnetic surface of the rotor and an inner surface of the stator's flux collector ring.
NASA Astrophysics Data System (ADS)
Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.
2017-08-01
Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.
Design improvement of permanent magnet flux switching motor with dual rotor structure
NASA Astrophysics Data System (ADS)
Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.
2017-08-01
This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.
A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine
NASA Astrophysics Data System (ADS)
Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping
2017-05-01
A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
Influence of magnet eddy current on magnetization characteristics of variable flux memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang
2018-05-01
In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.
Design and Analysis of Linear Fault-Tolerant Permanent-Magnet Vernier Machines
Xu, Liang; Liu, Guohai; Du, Yi; Liu, Hu
2014-01-01
This paper proposes a new linear fault-tolerant permanent-magnet (PM) vernier (LFTPMV) machine, which can offer high thrust by using the magnetic gear effect. Both PMs and windings of the proposed machine are on short mover, while the long stator is only manufactured from iron. Hence, the proposed machine is very suitable for long stroke system applications. The key of this machine is that the magnetizer splits the two movers with modular and complementary structures. Hence, the proposed machine offers improved symmetrical and sinusoidal back electromotive force waveform and reduced detent force. Furthermore, owing to the complementary structure, the proposed machine possesses favorable fault-tolerant capability, namely, independent phases. In particular, differing from the existing fault-tolerant machines, the proposed machine offers fault tolerance without sacrificing thrust density. This is because neither fault-tolerant teeth nor the flux-barriers are adopted. The electromagnetic characteristics of the proposed machine are analyzed using the time-stepping finite-element method, which verifies the effectiveness of the theoretical analysis. PMID:24982959
Design and analysis of linear fault-tolerant permanent-magnet vernier machines.
Xu, Liang; Ji, Jinghua; Liu, Guohai; Du, Yi; Liu, Hu
2014-01-01
This paper proposes a new linear fault-tolerant permanent-magnet (PM) vernier (LFTPMV) machine, which can offer high thrust by using the magnetic gear effect. Both PMs and windings of the proposed machine are on short mover, while the long stator is only manufactured from iron. Hence, the proposed machine is very suitable for long stroke system applications. The key of this machine is that the magnetizer splits the two movers with modular and complementary structures. Hence, the proposed machine offers improved symmetrical and sinusoidal back electromotive force waveform and reduced detent force. Furthermore, owing to the complementary structure, the proposed machine possesses favorable fault-tolerant capability, namely, independent phases. In particular, differing from the existing fault-tolerant machines, the proposed machine offers fault tolerance without sacrificing thrust density. This is because neither fault-tolerant teeth nor the flux-barriers are adopted. The electromagnetic characteristics of the proposed machine are analyzed using the time-stepping finite-element method, which verifies the effectiveness of the theoretical analysis.
NASA Astrophysics Data System (ADS)
Jabbari, Ali
2018-01-01
Surface inset permanent magnet DC machine can be used as an alternative in automation systems due to their high efficiency and robustness. Magnet segmentation is a common technique in order to mitigate pulsating torque components in permanent magnet machines. An accurate computation of air-gap magnetic field distribution is necessary in order to calculate machine performance. An exact analytical method for magnetic vector potential calculation in surface inset permanent magnet machines considering magnet segmentation has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in polar coordinate by using sub-domain method. One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated through FEM method.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong
2017-05-01
The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.
Direct control of air gap flux in permanent magnet machines
Hsu, John S.
2000-01-01
A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.
Hybrid excited claw pole generator with skewed and non-skewed permanent magnets
NASA Astrophysics Data System (ADS)
Wardach, Marcin
2017-12-01
This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.
A Double-Sided Linear Primary Permanent Magnet Vernier Machine
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250
A double-sided linear primary permanent magnet vernier machine.
Du, Yi; Zou, Chunhua; Liu, Xianxing
2015-01-01
The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.
Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Z.; Ahmed, A.; Husain, I.
2015-04-02
A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achievedmore » comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.« less
NASA Astrophysics Data System (ADS)
Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed
2015-05-01
This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.
Modeling and Analysis of High Torque Density Transverse Flux Machines for Direct-Drive Applications
NASA Astrophysics Data System (ADS)
Hasan, Iftekhar
Commercially available permanent magnet synchronous machines (PMSM) typically use rare-earth-based permanent magnets (PM). However, volatility and uncertainty associated with the supply and cost of rare-earth magnets have caused a push for increased research into the development of non-rare-earth based PM machines and reluctance machines. Compared to other PMSM topologies, the Transverse Flux Machine (TFM) is a promising candidate to get higher torque densities at low speed for direct-drive applications, using non-rare-earth based PMs. The TFMs can be designed with a very small pole pitch which allows them to attain higher force density than conventional radial flux machines (RFM) and axial flux machines (AFM). This dissertation presents the modeling, electromagnetic design, vibration analysis, and prototype development of a novel non-rare-earth based PM-TFM for a direct-drive wind turbine application. The proposed TFM addresses the issues of low power factor, cogging torque, and torque ripple during the electromagnetic design phase. An improved Magnetic Equivalent Circuit (MEC) based analytical model was developed as an alternative to the time-consuming 3D Finite Element Analysis (FEA) for faster electromagnetic analysis of the TFM. The accuracy and reliability of the MEC model were verified, both with 3D-FEA and experimental results. The improved MEC model was integrated with a Particle Swarm Optimization (PSO) algorithm to further enhance the capability of the analytical tool for performing rigorous optimization of performance-sensitive machine design parameters to extract the highest torque density for rated speed. A novel concept of integrating the rotary transformer within the proposed TFM design was explored to completely eliminate the use of magnets from the TFM. While keeping the same machine envelope, and without changing the stator or rotor cores, the primary and secondary of a rotary transformer were embedded into the double-sided TFM. The proposed structure allowed for improved flux-weakening capabilities of the TFM for wide speed operations. The electromagnetic design feature of stator pole shaping was used to address the issue of cogging torque and torque ripple in 3-phase TFM. The slant-pole tooth-face in the stator showed significant improvements in cogging torque and torque ripple performance during the 3-phase FEA analysis of the TFM. A detailed structural analysis for the proposed TFM was done prior to the prototype development to validate the structural integrity of the TFM design at rated and maximum speed operation. Vibration performance of the TFM was investigated to determine the structural performance of the TFM under resonance. The prototype for the proposed TFM was developed at the Alternative Energy Laboratory of the University of Akron. The working prototype is a testament to the feasibility of developing and implementing the novel TFM design proposed in this research. Experiments were performed to validate the 3D-FEA electromagnetic and vibration performance result.
Hsu, John S.
2010-05-18
A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.
Design and analysis of a direct-drive wind power generator with ultra-high torque density
NASA Astrophysics Data System (ADS)
Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong
2015-05-01
In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.
NASA Astrophysics Data System (ADS)
Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.
2017-08-01
The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.
Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi
2015-09-02
This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared tomore » finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.« less
A Comprehensive Review of Permanent Magnet Transverse Flux Machines for Direct Drive Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Husain, Tausif; Hasan, Iftekhar
The use of direct drive machines in renewable and industrial applications are increasing at a rapid rate. Transverse flux machines (TFM) are ideally suited for direct drive applications due to their high torque density. In this paper, a comprehensive review of the permanent magnet (PM) TFMs for direct drive applications is presented. The paper introduces TFMs and their operating principle and then reviews the different type of TFMs proposed in the literature. The TFMs are categorized according to the number of stator sides, types of stator cores and magnet arrangement in the rotor. The review covers different design topologies, materialsmore » used for manufacturing, structural and thermal analysis, modeling and design optimization and cogging torque minimization in TFMs. The paper also reviews various applications and comparisons for TFMs that have been presented in the literature.« less
Novel design configurations for permanent magnet wind generators
NASA Astrophysics Data System (ADS)
Chen, Yicheng
2004-12-01
The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the advantages of better performance, reduced size and weight, fewer parts and lower cost.
Investigation of fault modes in permanent magnet synchronous machines for traction applications
NASA Astrophysics Data System (ADS)
Choi, Gilsu
Over the past few decades, electric motor drives have been more widely adopted to power the transportation sector to reduce our dependence on foreign oil and carbon emissions. Permanent magnet synchronous machines (PMSMs) are popular in many applications in the aerospace and automotive industries that require high power density and high efficiency. However, the presence of magnets that cannot be turned off in the event of a fault has always been an issue that hinders adoption of PMSMs in these demanding applications. This work investigates the design and analysis of PMSMs for automotive traction applications with particular emphasis on fault-mode operation caused by faults appearing at the terminals of the machine. New models and analytical techniques are introduced for evaluating the steady-state and dynamic response of PMSM drives to various fault conditions. Attention is focused on modeling the PMSM drive including nonlinear magnetic behavior under several different fault conditions, evaluating the risks of irreversible demagnetization caused by the large fault currents, as well as developing fault mitigation techniques in terms of both the fault currents and demagnetization risks. Of the major classes of machine terminal faults that can occur in PMSMs, short-circuit (SC) faults produce much more dangerous fault currents than open-circuit faults. The impact of different PMSM topologies and parameters on their responses to symmetrical and asymmetrical short-circuit (SSC & ASC) faults has been investigated. A detailed investigation on both the SSC and ASC faults is presented including both closed-form and numerical analysis. The demagnetization characteristics caused by high fault-mode stator currents (i.e., armature reaction) for different types of PMSMs are investigated. A thorough analysis and comparison of the relative demagnetization vulnerability for different types of PMSMs is presented. This analysis includes design guidelines and recommendations for minimizing the demagnetization risks while examining corresponding trade-offs. Two PM machines have been tested to validate the predicted fault currents and braking torque as well as demagnetization risks in PMSM drives. The generality and scalability of key results have also been demonstrated by analyzing several PM machines with a variety of stator, rotor, and winding configurations for various power ratings.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.
NASA Astrophysics Data System (ADS)
Shin, Kyung-Hun; Park, Hyung-Il; Kim, Kwan-Ho; Jang, Seok-Myeong; Choi, Jang-Young
2017-05-01
The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM) because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region) is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.
Design and analysis of a novel doubly salient permanent- magnet generator
NASA Astrophysics Data System (ADS)
Sarlioglu, Bulent
Improvements in permanent magnets and power electronics technologies have made it possible to devise different configurations of electrical machines which were not previously possible to implement. In this dissertation, a novel Doubly Salient Permanent Magnet (DSPM) generator has been designed, analyzed, and tested. The DSPM generator has four stator poles and six rotor poles. Two high density permanent magnets are located in the stator yoke. Since there are no windings or permanent magnets in the rotor, the DSPM generator has several advantages: the rotor has low inertia, no copper loss, no PM attachments, no brushes, and no slip rings. This type of rotor can be manufactured easily, and can be run at very high speeds as in the case of a switched reluctance machine. Compared to induction and switched reluctance machines, the DSPM generator can produce more power from the same geometry. Moreover, the efficiency of the DSPM generator is higher, since there is no copper loss associated with excitation of the machine. Another advantage of the DSPM generator is that the output AC voltage can easily be rectified by a diode bridge rectifier, while in the case of the switched reluctance machine one needs to use active semiconductor switches for power generation. If greater utilization and control of power production capability are desired, the AC output of the DSPM generator can be rectified using an active converter. In this dissertation, a novel doubly salient permanent magnet generator is introduced. First, the theory of the DSPM generator is given. Later, this novel generator is investigated using conventional magnetic circuits, nonlinear finite element analysis, and simulations with first order approximations and nonlinear modeling. It is compared with other generators. Static and no-load testing of the prototype DSPM generator are presented, and generator performance is evaluated with various power electronic circuits.
Using Phun to Study ``Perpetual Motion'' Machines
NASA Astrophysics Data System (ADS)
Koreš, Jaroslav
2012-05-01
The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th- century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over the centuries numerous proposals for PM have been made, involving ever more elements of modern science in their construction. It is possible to test a variety of PM machines in the classroom using a program called Phun2 or its commercial version Algodoo.3 The programs are designed to simulate physical processes and we can easily simulate mechanical machines using them. They provide an intuitive graphical environment controlled with a mouse; a programming language is not needed. This paper describes simulations of four different (supposed) PM machines.4
Machinability of hypereutectic silicon-aluminum alloys
NASA Astrophysics Data System (ADS)
Tanaka, T.; Akasawa, T.
1999-08-01
The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.
Brushless machine having ferromagnetic side plates and side magnets
Hsu, John S
2012-10-23
An apparatus is provided having a cylindrical stator and a rotor that is spaced from a stator to define an annular primary air gap that receives AC flux from the stator. The rotor has a plurality of longitudinal pole portions disposed parallel to the axis of rotation and alternating in polarity around a circumference of the rotor. Each longitudinal pole portion includes portions of permanent magnet (PM) material and at least one of the longitudinal pole portions has a first end and an opposing second end and a side magnet is disposed adjacent the first end and a side pole is disposed adjacent the second end.
A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui
2012-04-01
The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.
Using Phun to Study "Perpetual Motion" Machines
ERIC Educational Resources Information Center
Kores, Jaroslav
2012-01-01
The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th-century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over…
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
Rotor apparatus for high strength undiffused brushless electric machine
Hsu, John S [Oak Ridge, TN
2006-01-24
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). Improvements of a laminated rotor, an end pole structure, and an arrangement of the PM elements for providing an arrangement of the flux paths from the auxiliary field coil assemblies are also disclosed.
Hsu, John S [Oak Ridge, TN
2005-12-06
A method and apparatus in which a rotor (11) and a stator (17) define a radial air gap (20) for receiving AC flux and at least one, and preferably two, DC excitation assemblies (23, 24) are positioned at opposite ends of the rotor (20) to define secondary air gaps (21, 22). Portions of PM material (14a, 14b) are provided as boundaries separating the rotor pole portions (12a, 12b) of opposite polarity from other portions of the rotor (11) and from each other to define PM poles (12a, 12b) for conveying the DC flux to or from the primary air gap (20) and for inhibiting flux from leaking from the pole portions prior to reaching the primary air gap (20). The portions of PM material (14a, 14b) are spaced from each other so as to include reluctance poles (15) of ferromagnetic material between the PM poles (12a, 12b) to interact with the AC flux in the primary-air gap (20).
Design and analysis of an unconventional permanent magnet linear machine for energy harvesting
NASA Astrophysics Data System (ADS)
Zeng, Peng
This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof-of-concept unconventional permanent magnet (PM) linear generator is prototyped and tested to verify the simulation results of the FEA model. For the coil windings of 33, 66 and 165 turns, the output power of the machine is tested to have the output power of 65.6 mW, 189.1 mW, and 497.7 mW respectively with the maximum power density of 2.486 mW/cm3.
Study on optimal design of 210kW traction IPMSM considering thermal demagnetization characteristics
NASA Astrophysics Data System (ADS)
Kim, Young Hyun; Lee, Seong Soo; Cheon, Byung Chul; Lee, Jung Ho
2018-04-01
This study analyses the permanent magnet (PM) used in the rotor of an interior permanent magnet synchronous motor (IPMSM) used for driving an electric railway vehicle (ERV) in the context of controllable shape, temperature, and external magnetic field. The positioning of the inserted magnets is a degree of freedom in the design of such machines. This paper describes a preliminary analysis using parametric finite-element method performed with the aim of achieving an effective design. Next, features of the experimental design, based on methods such as the central-composition method, Box-Behnken and Taguchi method, are explored to optimise the shape of the high power density. The results are used to produce an optimal design for IPMSMs, with design errors minimized using Maxwell 2D, a commercial program. Furthermore, the demagnetization process is analysed based on the magnetization and demagnetization theory for PM materials in computer simulation. The result of the analysis can be used to calculate the magnetization and demagnetization phenomenon according to the input B-H curve. This paper presents the conditions for demagnetization by the external magnetic field in the driving and stopped states, and proposes a simulation method that can analyse demagnetization phenomena according to each condition and design the IPMSM that maximizes efficiency and torque characteristics. Finally, operational characteristics are analysed in terms of the operation patterns of railway vehicles, and control conditions are deduced to achieve maximum efficiency in all sections. This was experimentally verified.
Method and radial gap machine for high strength undiffused brushless operation
Hsu, John S.
2006-10-31
A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.
Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés
2014-05-01
A combined magnetic-chemical study of 15 daily, simultaneous PM10-PM2.5-PM1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM10. Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM1, one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM1. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Gongbo; Li, Shanshan; Knibbs, Luke D; Hamm, N A S; Cao, Wei; Li, Tiantian; Guo, Jianping; Ren, Hongyan; Abramson, Michael J; Guo, Yuming
2018-09-15
Machine learning algorithms have very high predictive ability. However, no study has used machine learning to estimate historical concentrations of PM 2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) at daily time scale in China at a national level. To estimate daily concentrations of PM 2.5 across China during 2005-2016. Daily ground-level PM 2.5 data were obtained from 1479 stations across China during 2014-2016. Data on aerosol optical depth (AOD), meteorological conditions and other predictors were downloaded. A random forests model (non-parametric machine learning algorithms) and two traditional regression models were developed to estimate ground-level PM 2.5 concentrations. The best-fit model was then utilized to estimate the daily concentrations of PM 2.5 across China with a resolution of 0.1° (≈10 km) during 2005-2016. The daily random forests model showed much higher predictive accuracy than the other two traditional regression models, explaining the majority of spatial variability in daily PM 2.5 [10-fold cross-validation (CV) R 2 = 83%, root mean squared prediction error (RMSE) = 28.1 μg/m 3 ]. At the monthly and annual time-scale, the explained variability of average PM 2.5 increased up to 86% (RMSE = 10.7 μg/m 3 and 6.9 μg/m 3 , respectively). Taking advantage of a novel application of modeling framework and the most recent ground-level PM 2.5 observations, the machine learning method showed higher predictive ability than previous studies. Random forests approach can be used to estimate historical exposure to PM 2.5 in China with high accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, F.; Nehl, T.W.
1998-09-01
Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite elementmore » method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.« less
2013-05-01
an 18 inch gap diameter has roughly a 2 foot outer diameter 2 “ Brushless Permanent...require PMs include wound rotor DC (brush and brushless ), Variable or Switched reluctance (VR or SR) machines and squirrel cage induction motors...Trades have identified Brushless DC PM and SR machines are of primary interest. Both motors can use sensorless commutation methods. A VR resolver can
High strength undiffused brushless machine and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S
2009-04-14
A method and apparatus in which a rotor (11) and a stator (17) define a radial air gap (20) for receiving AC flux and at least one DC excitation coil (23, 24) positioned near the stator end turn to produce DC flux in axial air gaps (21, 22) additive to the AC flux. Side magnets (16) and flux-guiding magnets (14) are provided as boundaries separating the side poles (12a, 12b) of opposite polarity from other portions of the rotor (11) and from each other to define PM poles (12a, 12b) for conveying the DC flux to or from the primarymore » air gap (20) and for inhibiting flux from leaking from said pole portions prior to reaching the primary air gap (20). Side magnets (16), side poles (12a and 12b), flux-guiding magnets (14), ferromagnetic end plates (11c), non-magnetic end plates (12c), and ring bands (37) are optionally provided for performance improvement.« less
Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Tokars, Roger P.
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.
High Strength P/M Gears for Vehicle Transmissions - Phase 2
2008-08-15
and while it was considered amenable to standard work material transfer ("blue steel" chutes for example) from other P/M processing equipment, no...depend of the machine design but should be kept to a minimum in order to minimize part transfer times. Position control of the linear axis is...Establish design of ausform gear finishing machine for P/M gears: The "Focus" part identified in phase I (New Process Planet gear P/N 17864, component
NASA Astrophysics Data System (ADS)
Zhan, Yu; Luo, Yuzhou; Deng, Xunfei; Chen, Huajin; Grieneisen, Michael L.; Shen, Xueyou; Zhu, Lizhong; Zhang, Minghua
2017-04-01
A high degree of uncertainty associated with the emission inventory for China tends to degrade the performance of chemical transport models in predicting PM2.5 concentrations especially on a daily basis. In this study a novel machine learning algorithm, Geographically-Weighted Gradient Boosting Machine (GW-GBM), was developed by improving GBM through building spatial smoothing kernels to weigh the loss function. This modification addressed the spatial nonstationarity of the relationships between PM2.5 concentrations and predictor variables such as aerosol optical depth (AOD) and meteorological conditions. GW-GBM also overcame the estimation bias of PM2.5 concentrations due to missing AOD retrievals, and thus potentially improved subsequent exposure analyses. GW-GBM showed good performance in predicting daily PM2.5 concentrations (R2 = 0.76, RMSE = 23.0 μg/m3) even with partially missing AOD data, which was better than the original GBM model (R2 = 0.71, RMSE = 25.3 μg/m3). On the basis of the continuous spatiotemporal prediction of PM2.5 concentrations, it was predicted that 95% of the population lived in areas where the estimated annual mean PM2.5 concentration was higher than 35 μg/m3, and 45% of the population was exposed to PM2.5 >75 μg/m3 for over 100 days in 2014. GW-GBM accurately predicted continuous daily PM2.5 concentrations in China for assessing acute human health effects.
Two-machine flow shop scheduling integrated with preventive maintenance planning
NASA Astrophysics Data System (ADS)
Wang, Shijin; Liu, Ming
2016-02-01
This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.
Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining
NASA Astrophysics Data System (ADS)
Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.
2018-04-01
Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.
Magnetic signature of daily sampled urban atmospheric particles
NASA Astrophysics Data System (ADS)
Muxworthy, Adrian R.; Matzka, Jürgen; Davila, Alfonso Fernández; Petersen, Nikolai
The magnetic signature of two sets of daily sampled particulate matter (PM) collected in Munich, Germany, were examined and compared to variations in other pollution data and meteorological data using principal component analysis. The magnetic signature arising from the magnetic minerals in the PM was examined using a fast and highly sensitive magnetic remanence measurement. The longest data set studied was 160 days, significantly longer than that of similar magnetic PM studies improving the statistical robustness. It was found that the variations in the mass-dependent magnetic parameters displayed a complicated relationship governed by both the meteorological conditions and the PM loading rate, whereas mineralogy/grain-size-dependent magnetic parameters displayed little variation. A six-fold increase in the number of vehicles passing the sampling locations only doubled the magnetic remanence of the samples, suggesting that the measured magnetic signature is in addition strongly influenced by dispersion rates. At both localities the saturation isothermal remanent magnetisation (SIRM) was found to be strongly correlated with the PM mass, and it is suggested that measuring SIRM as a proxy for PM monitoring is a viable alternative to magnetic susceptibility when the samples are magnetically too weak. The signal was found to be dominated by magnetite-like grains less than 100 nm in diameter which is thought to be derived primarily from vehicles. Such small grains are known to be particularly dangerous to humans. There was also evidence to suggest from magnetic stability parameters that the magnetite-like grains were covered with an oxidised rim. The concentration of magnetic PM was in the range of 0.3-0.5% by mass.
NASA Astrophysics Data System (ADS)
Sagnotti, Leonardo; Macrı, Patrizia; Egli, Ramon; Mondino, Manlio
2006-12-01
Environmental problems linked to the concentration of atmospheric particulate matter with dimensions less than 10 μm (PM10) in urban settings have stimulated a variety of scientific researches. This study reports a systematic analysis of the magnetic properties of PM10 samples collected by six automatic stations installed for air quality monitoring through the Latium Region (Italy). We measured the low-field magnetic susceptibility of daily air filters collected during the period July 2004 to July 2005. For each station, we derived an empirical linear correlation linking magnetic susceptibility to the concentration of PM10 produced by local sources (i.e., in absence of significant inputs of exogenous dust). An experimental approach is suggested for estimating the percentage of nonmagnetic PM10 transported from natural far-sided sources (i.e., dust from North Africa and marine aerosols). Moreover, we carried out a variety of additional magnetic measurements to investigate the magnetic mineralogy of selected air filters spanning representative periods. The results indicate that the magnetic fraction of PM10 is composed by a mixture of low-coercivity, magnetite-like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural and anthropogenic sources. The natural component of PM10 has a characteristic magnetic signature that is indistinguishable from that of eolian dust. The anthropogenic PM10 fraction is mostly originated from circulating vehicles and is a mixture of prevailing fine superparamagnetic particles and subordinate large multidomain grains; the former are more directly related to exhaust, whereas the latter may be associated to abrasion of metallic parts.
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, J.S.; Burress, T.A.; Lee, S.T.
2007-10-31
The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seenmore » by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further extend the constant power speed range of the drive system and adjust the field for power factor and efficiency gains. Lower core losses at low torque regions, especially at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs, preventing damage to the motor. For a high-speed motor operating at 16,000-revolutions per minute (rpm), mechanical stress is a challenge. Bridges that link the rotor punching segments together must be thickened for mechanical integrity; consequently, increased rotor flux leakage significantly lowers motor performance. This barrier can be overcome by BFE to ensure sufficient rotor flux when needed.« less
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
Study and review of permanent magnets for electric vehicle propulsion motors
NASA Technical Reports Server (NTRS)
Strnat, K. J.
1983-01-01
A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.
Ren, Zhoupeng; Zhu, Jun; Gao, Yanfang; Yin, Qian; Hu, Maogui; Dai, Li; Deng, Changfei; Yi, Lin; Deng, Kui; Wang, Yanping; Li, Xiaohong; Wang, Jinfeng
2018-07-15
Previous research suggested an association between maternal exposure to ambient air pollutants and risk of congenital heart defects (CHDs), though the effects of particulate matter ≤10μm in aerodynamic diameter (PM 10 ) on CHDs are inconsistent. We used two machine learning models (i.e., random forest (RF) and gradient boosting (GB)) to investigate the non-linear effects of PM 10 exposure during the critical time window, weeks 3-8 in pregnancy, on risk of CHDs. From 2009 through 2012, we carried out a population-based birth cohort study on 39,053 live-born infants in Beijing. RF and GB models were used to calculate odds ratios for CHDs associated with increase in PM 10 exposure, adjusting for maternal and perinatal characteristics. Maternal exposure to PM 10 was identified as the primary risk factor for CHDs in all machine learning models. We observed a clear non-linear effect of maternal exposure to PM 10 on CHDs risk. Compared to 40μgm -3 , the following odds ratios resulted: 1) 92μgm -3 [RF: 1.16 (95% CI: 1.06, 1.28); GB: 1.26 (95% CI: 1.17, 1.35)]; 2) 111μgm -3 [RF: 1.04 (95% CI: 0.96, 1.14); GB: 1.04 (95% CI: 0.99, 1.08)]; 3) 124μgm -3 [RF: 1.01 (95% CI: 0.94, 1.10); GB: 0.98 (95% CI: 0.93, 1.02)]; 4) 190μgm -3 [RF: 1.29 (95% CI: 1.14, 1.44); GB: 1.71 (95% CI: 1.04, 2.17)]. Overall, both machine models showed an association between maternal exposure to ambient PM 10 and CHDs in Beijing, highlighting the need for non-linear methods to investigate dose-response relationships. Copyright © 2018 Elsevier B.V. All rights reserved.
Workshop on Aerospace Materials for Extreme Environments
2009-12-01
Materials for Titanium Alloys Machining Ukraine Volodymyr Filipov Influence of Lattice Parameter Mismatch between Fibers and Matrix on Structure and...on your own 1:00 pm Alina Ievdokymova ZrBi2-Based Tool Materials for Titanium Alloys Machining 1:30 pm Donna Ballard and Don Weaver Processing of...C.K. Gren, T.P. Hanusa, "Deposition of Alumina From Dimethylaluminum Isopropoxide " Ken Sandhage D. Lipke, Y. Zhang, Y. Liu, B. Church, and K
Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai
2013-10-01
Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jones, S; Richardson, N; Bennett, M; Hoon, S R
2015-01-01
The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of atmospheric particulate matter (PM) on health and the environment. PM within the airport environment may be derived from a range of sources. To date, however, the identification of individual sources of airport derived PM has remained elusive but constitutes a research priority for the aviation industry.The aim of this research was to identify distinctive and characteristic fingerprints of atmospheric PM derived from various sources in an airport environment through the use of environmental magnetic measurements. PM samples from aircraft engine emissions, brake wear and tire wear residues have been obtained from a range of different aircraft and engine types. Samples have been analyzed utilizing a range of magnetic mineral properties indicative of magnetic mineralogy and grain size. Results indicate that the dusts from the three 'aircraft' sources, (i.e. engines, brakes and tires) display distinctive magnetic mineral characteristics which may serve as 'magnetic fingerprints' for these sources. Magnetic measurements of runway dusts collected at different locations on the runway surface also show contrasting magnetic characteristics which, when compared with those of the aircraft-derived samples, suggest that they may relate to different sources characteristic of aircraft emissions at various stages of the take-off/landing cycle. The findings suggest that magnetic measurements could have wider applicability for the differentiation and identification of PM within the airport environment.
NASA Astrophysics Data System (ADS)
Park, Seohui; Im, Jungho
2017-04-01
Atmospheric aerosols are strongly associated with adverse human health effects. In particular, particulate matter less than 10 micrometers and 2.5 micrometers (i.e., PM10 and PM2.5, respectively) can cause cardiovascular and lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). Air quality including PM has typically been monitored using station-based in-situ measurements over the world. However, in situ measurements do not provide spatial continuity over large areas. An alternative approach is to use satellite remote sensing as it provides data over vast areas at high temporal resolution. The literature shows that PM concentrations are related with Aerosol Optical Depth (AOD) that is derived from satellite observations, but it is still difficult to identify PM concentrations directly from AOD. Some studies used statistical approaches for estimating PM concentrations from AOD while some others combined numerical models and satellite-derived AOD. In this study, satellite-derived products were used to estimate ground PM concentrations based on machine learning over South Korea. Satellite-derived products include AOD from Geostationary Ocean Color Imager (GOCI), precipitation from Tropical Rainfall Measuring Mission (TRMM), soil moisture from AMSR-2, elevation from Shuttle Radar Topography Mission (SRTM), and land cover, land surface temperature and normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS). PM concentrations data were collected from 318 stations. A statistical ordinary least squares (OLS) approach was also tested and compared with the machine learning approach (i.e., random forest). PM concentration was estimated during spring season (from March to May) in 2015 that typically shows high concentration of PM. The randomly selected 80% of data were used for model calibration and the remaining 20% were used for validation. The developed models were further tested for prediction of PM concentration. Results show that the estimation of PM10 was better than that of PM2.5 for both approaches. The performance of machine learning random forest was better (R2=0.53 and RMSE=17.74µm/m3 for PM10; R2=0.36 and RMSE=26.17 µm/m3 for PM2.5) than the statistical OLS approach (R2=0.13 and RMSE=23.66µm/m3 for PM10; R2=0.09 and RMSE=27.74 µm/m3 for PM2.5). However, both approaches did not fully model the entire dynamic range of PM concentrations, especially for very high concentrations, resulting in moderate underestimation.
Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Chengshan
2017-12-01
Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu
2010-12-01
The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.
Numerical study of dynamo action at low magnetic Prandtl numbers.
Ponty, Y; Mininni, P D; Montgomery, D C; Pinton, J-F; Politano, H; Pouquet, A
2005-04-29
We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.
FEM analysis of an single stator dual PM rotors axial synchronous machine
NASA Astrophysics Data System (ADS)
Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.
2017-01-01
The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.
Transition to Turbulent Dynamo Saturation
NASA Astrophysics Data System (ADS)
Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros
2017-11-01
While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2 ×10-5. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm ≃10-3 , which explains why it has been overlooked by numerical studies so far.
El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI
2012-07-17
An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.
NASA Astrophysics Data System (ADS)
Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup
2003-05-01
This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.
A Parallel Vector Machine for the PM Programming Language
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2016-04-01
PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.
Phase diagram of the chiral magnet Cr1 /3NbS2 in a magnetic field
NASA Astrophysics Data System (ADS)
Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.
2016-03-01
We construct the phase diagram of the chiral magnet Cr1 /3NbS2 in a dc magnetic field (Hdc) using ac magnetic susceptibility measurements. At Hdc=0 , the ac response at the transition from the helical magnetic (HM) state to the paramagnetic (PM) state consists of a giant third-order harmonic component (M3 ω) and a first-order harmonic component (M1 ω). By applying Hdc perpendicular to the c axis, the HM state is transformed to the chiral soliton lattice (CSL) state, which is a superlattice tuned by Hdc. The above giant M3 ω is markedly suppressed at small Hdc. The CSL state is found to consist of CSL-1, with dominant helical texture and a poor ferromagnetic array, and CSL-2, with a large ferromagnetic array. The transition between CSL-1 and the PM state causes a linear magnetic response, the dominant component of which is the in-phase M1 ω. With increasing temperature, CSL-2 is transformed into the forced ferromagnetic (FFM) state, and ultimately the PM state is reached. The transition between CSL-2 and the FFM state consists of a large M3 ω and large out-of-phase M1 ω as well as in-phase M1 ω. The transition between the FMM and PM states also yields a linear magnetic response, like the CSL-1-PM-state transition. Five typical magnetic dynamics in the transitions among the HM state, CSL-1, CSL-2, FFM state, and PM state were identified according to the equivalent dynamical motion equation of a nonlinear spring model.
Squara, Fabien; Chik, William W; Benhayon, Daniel; Maeda, Shingo; Latcu, Decebal Gabriel; Lacaze-Gadonneix, Jonathan; Tibi, Thierry; Thomas, Olivier; Cooper, Joshua M; Duthoit, Guillaume
2014-08-01
Pacemaker (PM) interrogation requires correct manufacturer identification. However, an unidentified PM is a frequent occurrence, requiring time-consuming steps to identify the device. The purpose of this study was to develop and validate a novel algorithm for PM manufacturer identification, using the ECG response to magnet application. Data on the magnet responses of all recent PM models (≤15 years) from the 5 major manufacturers were collected. An algorithm based on the ECG response to magnet application to identify the PM manufacturer was subsequently developed. Patients undergoing ECG during magnet application in various clinical situations were prospectively recruited in 7 centers. The algorithm was applied in the analysis of every ECG by a cardiologist blinded to PM information. A second blinded cardiologist analyzed a sample of randomly selected ECGs in order to assess the reproducibility of the results. A total of 250 ECGs were analyzed during magnet application. The algorithm led to the correct single manufacturer choice in 242 ECGs (96.8%), whereas 7 (2.8%) could only be narrowed to either 1 of 2 manufacturer possibilities. Only 2 (0.4%) incorrect manufacturer identifications occurred. The algorithm identified Medtronic and Sorin Group PMs with 100% sensitivity and specificity, Biotronik PMs with 100% sensitivity and 99.5% specificity, and St. Jude and Boston Scientific PMs with 92% sensitivity and 100% specificity. The results were reproducible between the 2 blinded cardiologists with 92% concordant findings. Unknown PM manufacturers can be accurately identified by analyzing the ECG magnet response using this newly developed algorithm. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Ex-vivo perfusion machines in kidney transplantation. The significance of the resistivity index.
Elec, Florin Ioan; Lucan, Ciprian; Ghervan, Liviu; Munteanu, Valentin; Moga, Silviu; Suciu, Mihai; Enache, Dan; Elec, Alina; Munteanu, Adriana; Barbos, Adrian; Iacob, Gheorghita; Lucan, Mihai
2014-01-01
With a growing shortage of organs for transplantation, finding ways of increasing the donor organ pool remains of utmost importance. Perfusion machines (PM) have been proven to enhance the potential for kidney transplants to function sooner, last longer, giving patients the opportunity for a better life quality. The aim of this study is to evaluate the relation between the resistance index provided by the PM, the postoperative resistance index measured by Doppler ultrasound and the initial graft outcome. Between January 2012-December 2012, clinical data obtained from 82 consecutive renal transplants from brain death donors (BDD) which underwent PM maintenance were analyzed in a transversal study. Prior transplantation we recorded the solution temperature, filtration rate and the resistance index provided by PM. After the surgical intervention, each patient had standard follow-up. Doppler ultrasound resistivity index (RI) was recorded on the first postoperative day. Out of 115 renal transplants, 98 (85.21%) were performed with grafts from BDD. The PM was used for 82 renal grafts. The Doppler resistance index in relation to the resistance index shows a highly statistical correlation by linear regression (R=0.813, p<0.0001). Primary graft function was recorded in 74 patients (90.24%) and it was highly statistically significant correlated with the resistance index measured by PM. Out of 8 patients with primary non-function, 6 patients recovered with normal graft function at one year. The resistivity index recorded by the life-port machine is correlated with the vascular resistivity index measured by Doppler ultrasound and thus it may predicts the primary graft outcome.
48 CFR 6105.502 - Request for decision [Rule 502].
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Include— (A) The name, address, telephone number, facsimile machine number, and e-mail address, if available, of the official making the request; (B) The name, address, telephone number, facsimile machine... Clerk's facsimile machine number is: (202) 606-0019. The Board's working hours are 8:00 a.m. to 4:30 p.m...
48 CFR 6105.502 - Request for decision [Rule 502].
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Include— (A) The name, address, telephone number, facsimile machine number, and e-mail address, if available, of the official making the request; (B) The name, address, telephone number, facsimile machine... Clerk's facsimile machine number is: (202) 606-0019. The Board's working hours are 8:00 a.m. to 4:30 p.m...
48 CFR 6104.402 - Filing claims [Rule 402].
Code of Federal Regulations, 2010 CFR
2010-10-01
... number, and facsimile machine number, if available, of the claimant; (ii) The name, address, telephone number, and facsimile machine number, if available, of the agency employee who denied the claim; (iii) A... Clerk's facsimile machine number is: (202) 606-0019. The Board's working hours are 8:00 a.m. to 4:30 p.m...
Application of a high-energy-density permanent magnet material in underwater systems
NASA Astrophysics Data System (ADS)
Cho, C. P.; Egan, C.; Krol, W. P.
1996-06-01
This paper addresses the application of high-energy-density permanent magnet (PM) technology to (1) the brushless, axial-field PM motor and (2) the integrated electric motor/pump system for under-water applications. Finite-element analysis and lumped parameter magnetic circuit analysis were used to calculate motor parameters and performance characteristics and to conduct tradeoff studies. Compact, efficient, reliable, and quiet underwater systems are attainable with the development of high-energy-density PM material, power electronic devices, and power integrated-circuit technology.
NASA Astrophysics Data System (ADS)
Prevond, L.; Ben Ahmed, A.; Multon, B.; Lucidarme, J.
1997-06-01
This paper presents a predetermination method of Permanent Magnet (P.M.) multicellular flux switching machines. The non-linear characteristic of the ferromagnetic material is integrated in this method which combines analytical and numerical calculus. This study permits to make a fast parametrical analysis to define optimal parameters of a flux switching cell such as magnetic shear stress and flux concentration factor as function of magnetomotive force. The demagnetisation limit is introduced by a finite element calculus applied. The comparison of the theoritical results and experimental one gives a good correlation. Cet article présente une méthode de prédétermination des caractéristiques de machines multicellulaires (bobinage global) à commutation de flux (aimants permanents) en tenant compte de la non linéarité des matériaux ferromagnétiques. Cette méthode allie le calcul numérique par éléments finis et le calcul analytique. Cette étude nous a permis, d'une part, d'effectuer une analyse paramétrique intrinsèque et, d'autre part, de définir les paramètres optimaux de la cellule à commutation de flux. La notion de désaimantation est introduite en calculant le champ démagnétisant dans l'aimant. Les calculs effectués, dans le cas d'un actionneur linéaire à cômmutation de flux, montrent une bonne corrélation avec les essais directs.
Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel
NASA Astrophysics Data System (ADS)
Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.
2018-04-01
Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.
Stability and instability of hydromagnetic Taylor-Couette flows
NASA Astrophysics Data System (ADS)
Rüdiger, Günther; Gellert, Marcus; Hollerbach, Rainer; Schultz, Manfred; Stefani, Frank
2018-04-01
Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed questions about the stability of Taylor-Couette flows of conducting material under the influence of large-scale magnetic fields. These and many new questions can now be answered numerically where the nonlinear simulations even provide the instability-induced values of several transport coefficients. The cylindrical containers are axially unbounded and penetrated by magnetic background fields with axial and/or azimuthal components. The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown to be substantial. The potential flow subject to axial fields becomes unstable against axisymmetric perturbations for a certain supercritical value of the averaged Reynolds number Rm bar =√{ Re ṡ Rm } (with Re the Reynolds number of rotation, Rm its magnetic Reynolds number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm at an optimal value of the magnetic field. Among the considered instabilities of azimuthal fields, those of the Chandrasekhar-type, where the background field and the background flow have identical radial profiles, are particularly interesting. They are unstable against nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1 the onset of the instability scales with Re while it scales with Rm bar for Pm ≫ 1. Even superrotation can be destabilized by azimuthal and current-free magnetic fields; this recently discovered nonaxisymmetric instability is of a double-diffusive character, thus excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞. The presented results allow the construction of several new experiments with liquid metals as the conducting fluid. Some of them are described here and their results will be discussed together with relevant diversifications of the magnetic instability theory including nonlinear numerical studies of the kinetic and magnetic energies, the azimuthal spectra and the influence of the Hall effect.
Mantovani, Luciana; Tribaudino, Mario; Solzi, Massimo; Barraco, Vera; De Munari, Eriberto; Pironi, Claudia
2018-08-01
In this work, both PM 10 filters and leaves have been collected, on a daily basis, over a period of five months and compared systematically. Filters were taken from an air-quality monitoring station and leaves from two Tilia cordata trees, both located near the railway station of Parma. SEM-EDS analysis on the surface and across the leaves shows that magnetic particles are almost entirely made of magnetite, and that they are found invariably on the leaves surface. The saturation isothermal magnetic remanence (SIRM) shows that for both filters and leaves the magnetic fraction mainly consists of a low coercivity, magnetite-like phase. The magnetic signals of filter and leaves and atmospheric PM concentrations are compared. The correlation is better for filters, mostly with parameters related to vehicular pollution, and improved for both filters and leaves once data were averaged on a 10 days basis. Filters and leaves equally show an increase in magnetic signal during the fall-winter period together with PM 10 content. The comparison between leaves and filters shows that: 1) leaves give a qualitative picture, and in our case they could be used as environmental proxies after averaging the results over multiple days; 2) the correlation with PM 10 is weaker, indicating that there is a PM 10 contribution from non-magnetic particles, like calcite and clay minerals, pollen and spores; 3) multidomain particles contribution from filters indicates a strong relation with vehicular polluters, suggesting the important role of larger particles; 4) magnetization from leaves and filters are weakly related, due to the different sampling lapse. Copyright © 2018 Elsevier Ltd. All rights reserved.
Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.
2014-01-01
NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance using hardware-in-the-loop (HIL).
Transition to Turbulent Dynamo Saturation.
Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros
2017-11-17
While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2×10^{-5}. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm≃10^{-3}, which explains why it has been overlooked by numerical studies so far.
NASA Astrophysics Data System (ADS)
Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.
2018-02-01
The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.
Analysis and design of asymmetrical reluctance machine
NASA Astrophysics Data System (ADS)
Harianto, Cahya A.
Over the past few decades the induction machine has been chosen for many applications due to its structural simplicity and low manufacturing cost. However, modest torque density and control challenges have motivated researchers to find alternative machines. The permanent magnet synchronous machine has been viewed as one of the alternatives because it features higher torque density for a given loss than the induction machine. However, the assembly and permanent magnet material cost, along with safety under fault conditions, have been concerns for this class of machine. An alternative machine type, namely the asymmetrical reluctance machine, is proposed in this work. Since the proposed machine is of the reluctance machine type, it possesses desirable feature, such as near absence of rotor losses, low assembly cost, low no-load rotational losses, modest torque ripple, and rather benign fault conditions. Through theoretical analysis performed herein, it is shown that this machine has a higher torque density for a given loss than typical reluctance machines, although not as high as the permanent magnet machines. Thus, the asymmetrical reluctance machine is a viable and advantageous machine alternative where the use of permanent magnet machines are undesirable.
Ex-vivo perfusion machines in kidney transplantation. The significance of the resistivity index
ELEC, FLORIN IOAN; LUCAN, CIPRIAN; GHERVAN, LIVIU; MUNTEANU, VALENTIN; MOGA, SILVIU; SUCIU, MIHAI; ENACHE, DAN; ELEC, ALINA; MUNTEANU, ADRIANA; BARBOS, ADRIAN; IACOB, GHEORGHITA; LUCAN, MIHAI
2014-01-01
Introduction With a growing shortage of organs for transplantation, finding ways of increasing the donor organ pool remains of utmost importance. Perfusion machines (PM) have been proven to enhance the potential for kidney transplants to function sooner, last longer, giving patients the opportunity for a better life quality. Objective The aim of this study is to evaluate the relation between the resistance index provided by the PM, the postoperative resistance index measured by Doppler ultrasound and the initial graft outcome. Material and method Between January 2012-December 2012, clinical data obtained from 82 consecutive renal transplants from brain death donors (BDD) which underwent PM maintenance were analyzed in a transversal study. Prior transplantation we recorded the solution temperature, filtration rate and the resistance index provided by PM. After the surgical intervention, each patient had standard follow-up. Doppler ultrasound resistivity index (RI) was recorded on the first postoperative day. Results Out of 115 renal transplants, 98 (85.21%) were performed with grafts from BDD. The PM was used for 82 renal grafts. The Doppler resistance index in relation to the resistance index shows a highly statistical correlation by linear regression (R=0.813, p<0.0001). Primary graft function was recorded in 74 patients (90.24%) and it was highly statistically significant correlated with the resistance index measured by PM. Out of 8 patients with primary non-function, 6 patients recovered with normal graft function at one year. Conclusion The resistivity index recorded by the life-port machine is correlated with the vascular resistivity index measured by Doppler ultrasound and thus it may predicts the primary graft outcome. PMID:26527992
NASA Astrophysics Data System (ADS)
Gündoğdu, Tayfun; Kömürgöz, Güven
2012-08-01
Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demerdash, N.A.; Nehl, T.W.; Nyamusa, T.A.
1985-08-01
Effects of high momentary overloads on the samarium-cobalt and strontium-ferrite permanent magnets and the magnetic field in electronically commutated brushless dc machines, as well as their impact on the associated machine parameters were studied. The effect of overload on the machine parameters, and subsequently on the machine system performance was also investigated. This was accomplished through the combined use of finite element analysis of the magnetic field in such machines, perturbation of the magnetic energies to determine machine inductances, and dynamic simulation of the performance of brushless dc machines, when energized from voltage source inverters. These effects were investigated throughmore » application of the above methods to two equivalent 15 hp brushless dc motors, one of which was built with samarium-cobalt magnets, while the other was built with strontium- ferrite magnets. For momentary overloads as high as 4.5 p.u. magnet flux reductions of 29% and 42% of the no load flux were obtained in the samarium-cobalt and strontiumferrite machines, respectively. Corresponding reductions in the line to line armature inductances of 52% and 46% of the no load values were reported for the samarium-cobalt and strontium-ferrite cases, respectively. The overload affected the profiles and magnitudes of armature induced back emfs. Subsequently, the effects of overload on machine parameters were found to have significant impact on the performance of the machine systems, where findings indicate that the samarium-cobalt unit is more suited for higher overload duties than the strontium-ferrite machine.« less
2005-01-24
Phase Resistance 6 3.5 Required Turns Per Coil 6 3.6 Flux Per Pole Calculation 7 3.7 Slot Area 7 3.8 Stator Core Volume 8...PM) B - Conventional wound radial field C – Conventional surface PM rotor (developed by Gene Aha) D - PM flux squeezing radial field (developed...permanent magnet pole arc and the soft iron poles between the magnets are critical in the design to achieve the balance between the Reluctance and the
Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter.
Maher, Barbara A; Ahmed, Imad A M; Davison, Brian; Karloukovski, Vassil; Clarke, Robert
2013-12-03
Exposure to airborne particulate pollution is associated with premature mortality and a range of inflammatory illnesses, linked to toxic components within the particulate matter (PM) assemblage. The effectiveness of trees in reducing urban PM10 concentrations is intensely debated. Modeling studies indicate PM10 reductions from as low as 1% to as high as ~60%. Empirical data, especially at the local scale, are rare. Here, we use conventional PM10 monitoring along with novel, inexpensive magnetic measurements of television screen swabs to measure changes in PM10 concentrations inside a row of roadside houses, after temporarily installing a curbside line of young birch trees. Independently, the two approaches identify >50% reductions in measured PM levels inside those houses screened by the temporary tree line. Electron microscopy analyses show that leaf-captured PM is concentrated in agglomerations around leaf hairs and within the leaf microtopography. Iron-rich, ultrafine, spherical particles, probably combustion-derived, are abundant, form a particular hazard to health, and likely contribute much of the measured magnetic remanences. Leaf magnetic measurements show that PM capture occurs on both the road-proximal and -distal sides of the trees. The efficacy of roadside trees for mitigation of PM health hazard might be seriously underestimated in some current atmospheric models.
Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
Qu, Ronghai; Lipo, Thomas A.
2005-08-02
The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.
Lawrence Livermore National Laboratory ULTRA-350 Test Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, D J; Wulff, T A; Carlisle, K
2001-04-10
LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less
Lawrence Livermore National Laboratory ULTRA-350 Test Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, D J; Wulff, T A; Carlisle, K
2001-04-10
LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less
NASA Astrophysics Data System (ADS)
Zhou, Yanru; Zhao, Yuxiang; Tian, Hui; Zhang, Dengwei; Huang, Tengchao; Miao, Lijun; Shu, Xiaowu; Che, Shuangliang; Liu, Cheng
2016-12-01
In an axial magnetic field (AMF), which is vertical to the plane of the fiber coil, a polarization-maintaining fiber optic gyro (PM-FOG) appears as an axial magnetic error. This error is linearly related to the intensity of an AMF, the radius of the fiber coil, and the light wavelength, and also influenced by the distribution of fiber twist. When a PM-FOG is manufactured completely, this error only appears a linear correlation with the AMF. A real-time compensation model is established to eliminate the error, and the experimental results show that the axial magnetic error of the PM-FOG is decreased from 5.83 to 0.09 deg/h in 12G AMF with 18-dB suppression.
NASA Astrophysics Data System (ADS)
Lei, Meizhen; Wang, Liqiang
2018-01-01
To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.
NASA Technical Reports Server (NTRS)
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
NASA Astrophysics Data System (ADS)
Vezzola, Laura C.; Muttoni, Giovanni; Merlini, Marco; Rotiroti, Nicola; Pagliardini, Luca; Hirt, Ann M.; Pelfini, Manuela
2017-08-01
High levels of air particulate matter (PM) have been positively correlated with respiratory diseases. In this study, we performed a biomonitoring investigation using samples of bark obtained from trees in a selected study area in the city of Milan (northern Italy). Here, we analyse the magnetic and mineralogical properties of the outer and inner barks of 147 trees, finding that magnetite is the prevalent magnetic mineral. The relative concentration of magnetite is estimated in the samples using saturation isothermal remanent magnetization (SIRM) and hysteresis parameters. We also make a first-order estimate of absolute magnetite concentration from the SIRM. The spatial distribution of the measured magnetic parameters is evaluated as a function of the distance to the main sources of magnetic PM in the study area, for example, roads and tram stops. These results are compared with data from a substantially pollution-free control site in the Central Italian Alps. Magnetic susceptibility, SIRM and magnetite concentration are found to be the highest in the outer tree barks for samples that are closest to roads and especially tram stops. In contrast, the inner bark samples are weakly magnetic and are not correlated to the distance from magnetite PM sources. The results illustrate that trees play an important role acting as a sink for airborne PM in urban areas.
NASA Astrophysics Data System (ADS)
Dong, Zhihua; Schönecker, Stephan; Chen, Dengfu; Li, Wei; Long, Mujun; Vitos, Levente
2017-11-01
We propose a first-principles framework for longitudinal spin fluctuations (LSFs) in disordered paramagnetic (PM) multicomponent alloy systems and apply it to investigate the influence of LSFs on the temperature dependence of two elastic constants of PM austenitic stainless steel Fe15Cr15Ni. The magnetic model considers individual fluctuating moments in a static PM medium with first-principles-derived LSF energetics in conjunction with describing chemical disorder and randomness of the transverse magnetic component in the single-site alloy formalism and disordered local moment (DLM) picture. A temperature-sensitive mean magnetic moment is adopted to accurately represent the LSF state in the elastic-constant calculations. We make evident that magnetic interactions between an LSF impurity and the PM medium are weak in the present steel alloy. This allows gaining accurate LSF energetics and mean magnetic moments already through a perturbation from the static DLM moments instead of a tedious self-consistent procedure. We find that LSFs systematically lower the cubic shear elastic constants c' and c44 by ˜6 GPa in the temperature interval 300-1600 K, whereas the predominant mechanism for the softening of both elastic constants with temperature is the magneto-volume coupling due to thermal lattice expansion. We find that non-negligible local magnetic moments of Cr and Ni are thermally induced by LSFs, but they exert only a small influence on the elastic properties. The proposed framework exhibits high flexibility in accurately accounting for finite-temperature magnetism and its impact on the mechanical properties of PM multicomponent alloys.
A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage
NASA Astrophysics Data System (ADS)
Matustomo, Shinya; Noguchi, So; Yamashita, Hideo; Tanimoto, Shigeya
The permanent magnet motors (PM motors) are widely used in electrical machinery, such as air conditioner, refrigerator and so on. In recent years, from the point of view of energy saving, it is necessary to improve the efficiency of PM motor by optimization. However, in the efficiency optimization of PM motor, many design variables and many restrictions are required. In this paper, the efficiency optimization of PM motor with many design variables was performed by using the voltage driven finite element analysis with the rotating simulation of the motor and the genetic algorithm.
NASA Astrophysics Data System (ADS)
Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János
2013-04-01
Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the first, indicating that a sizable part of the magnetic grains is coming from nearby capitals rather than from more distant sources. We found no correlation between magnetic susceptibility and toxic metals. On the other hand the weaker vehicle traffic during week-ends, especially on Sundays is evident in the total susceptibilities, although it is also seen as a tendency in the mass of the pollutants and in the mass susceptibilities. While the generally used mass susceptibility seems to be useful as an indication for the heaviness of vehicle traffic in the area of the studied monitoring stations, it is a total failure for expressing correctly seasonal variations. The reason is that much more non-magnetic than magnetic pollutants are produced during heating season, especially by household heating with coal and wood. The consequence is that in the total susceptibility the higher production of the magnetic particles during heating season is evident, while in the mass susceptibility the trend is opposite, i.e. the magnetic pollution seems to be less intensive during heating season than otherwise. Acknowledgement: This work was financially supported by the Hungarian Scientific Research Fund (project no. OTKA K 75395).
1990-04-01
DTIC i.LE COPY RADC-TR-90-25 Final Technical Report April 1990 MACHINE LEARNING The MITRE Corporation Melissa P. Chase Cs) CTIC ’- CT E 71 IN 2 11990...S. FUNDING NUMBERS MACHINE LEARNING C - F19628-89-C-0001 PE - 62702F PR - MOlE S. AUTHO(S) TA - 79 Melissa P. Chase WUT - 80 S. PERFORMING...341.280.5500 pm I " Aw Sig rill Ia 2110-01 SECTION 1 INTRODUCTION 1.1 BACKGROUND Research in machine learning has taken two directions in the problem of
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
Analysis of a new PM motor design for a rotary dynamic blood Pump.
Xu, L; Wang, F; Fu, M; Medvedev, A; Smith, W A; Golding, L A
1997-01-01
The permanent magnet (PM) motor for a rotary dynamic blood pump requires high power density to coordinate the motor size with the limited pump space and high efficiency to reduce the size and weight of the associated batteries. The motor also serves as a passive axial magnetic thrust bearing, a reacting hydraulic force, and provides a stabilizing force for the radial journal bearing. This article presents analysis of a new PM motor for the blood pump application. High power density is achieved by using the Halbach magnetic array, and high efficiency is accomplished by optimizing the rotor magnet assembly and the stator slots/windings. While both radial and axial forces are greatly enhanced, pulsating components of the torque and force are also significantly reduced.
Magnet management in electric machines
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang
2017-03-21
A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Experimental Investigation – Magnetic Assisted Electro Discharge Machining
NASA Astrophysics Data System (ADS)
Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali
2018-04-01
Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.
Performance analysis of a new radial-axial flux machine with SMC cores and ferrite magnets
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo
2017-05-01
Soft magnetic composite (SMC) is a popular material in designing of new 3D flux electrical machines nowadays for it has the merits of isotropic magnetic characteristic, low eddy current loss and high design flexibility over the electric steel. The axial flux machine (AFM) with the extended stator tooth tip both in the radial and circumferential direction is a good example, which has been investigated in the last years. Based on the 3D flux AFM and radial flux machine, this paper proposes a new radial-axial flux machine (RAFM) with SMC cores and ferrite magnets, which has very high torque density though the low cost low magnetic energy ferrite magnet is utilized. Moreover, the cost of RAFM is quite low since the manufacturing cost can be reduced by using the SMC cores and the material cost will be decreased due to the adoption of the ferrite magnets. The 3D finite element method (FEM) is used to calculate the magnetic flux density distribution and electromagnetic parameters. For the core loss calculation, the rotational core loss computation method is used based on the experiment results from previous 3D magnetic tester.
Woldańska-Okońska, Marta; Czernicki, Jan; Karasek, Michał
2013-03-01
The aim of this paper is to test the influence of long-term application of the low-frequency magnetic fields in magnetotherapy and magnetostimulation on cortisol secretion in men. Patients were divided into three groups: 16 men underwent magnetotherapy and 20 men (divided into two groups) underwent magnetostimulation. Magnetotherapy - 2 mT induction, 40 Hz, bipolar square wave, was applied for 20 min to lumbar area. Magnetostimulation (Viofor Jaroszyk, Paluszak, Sieroń (JPS) system, M2P2 program) was applied to 10 patients for 12 min each day. The third group (10 patients) underwent magnetostimulation (Viofor JPS system, M3P3) for 12 min each day using a different machine. All groups had 15 rounds of applications at approximately 10:00 a.m. with intermissions on the weekends. Blood serum was taken four times in a 24-hour period, before applications, the day after applications and a month later. Chemiluminescence micromethod was used to indicate hormone concentrations. Data was statistically analyzed with the analysis of variance (ANOVA) method. The statistically significant gains in the circadian cortisol profile at 4:00 p.m., be- fore and after application, were observed as a decrease in concentration during magnetotherapy. In magnetostimulation, with the M2P2 program, a significant increase in the cortisol concentration was observed in circadian profile at 12:00 p.m. one month after the last application. After magnetostimulation with the M3P3 program, a significant increase in concentration at 6:00 a.m. and a decrease in concentration at 12:00 p.m. were observed one month later. Statistically significant difference was demonstrated in the participants after the application of magnetotherapy and magnetostimulation with M3P3 program compared to the men submitted to magnetostimulation, with M2P2 program, at 4:00 p.m. after 15 applications. Biological hysteresis one month after magnetostimulation suggests long-term influence on the hypothalamo-hypophysial axis. The circadian curves of cortisol secretion a day after magnetotherapy and magnetostimulation with M3P3 program compared to magnetostimulation with M2P2 progam differs nearly by 100%, which proves that they show varied influence on cortisol secretion in men. All changes in the hormone concentration did not exceed the physiological standards of cortisol secretion, which suggests a regulating influence of magnetic fields on cortisol concentration rather than a strong stressogenic impact of magnetostimulation.
The work studies the effect of magnetic circuit saturation on the synchronous inductive reactance of the armature. A practical method is given for...calculating synchronized parameters in saturating synchronized machines with additional clearances and machines with superconducting excitation windings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test of one representative magnet wire coating machine for each group of identical or very similar... you complete the performance test of a representative magnet wire coating machine. The requirements in... operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that...
NASA Astrophysics Data System (ADS)
Tan, Yimin; Lin, Kejian; Zu, Jean W.
2018-05-01
Halbach permanent magnet (PM) array has attracted tremendous research attention in the development of electromagnetic generators for its unique properties. This paper has proposed a generalized analytical model for linear generators. The slotted stator pole-shifting and implementation of Halbach array have been combined for the first time. Initially, the magnetization components of the Halbach array have been determined using Fourier decomposition. Then, based on the magnetic scalar potential method, the magnetic field distribution has been derived employing specially treated boundary conditions. FEM analysis has been conducted to verify the analytical model. A slotted linear PM generator with Halbach PM has been constructed to validate the model and further improved using piece-wise springs to trigger full range reciprocating motion. A dynamic model has been developed to characterize the dynamic behavior of the slider. This analytical method provides an effective tool in development and optimization of Halbach PM generator. The experimental results indicate that piece-wise springs can be employed to improve generator performance under low excitation frequency.
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Motomura, Taisei; Ando, Akira; Kasashima, Yuji; Kikunaga, Kazuya; Uesugi, Fumihiko; Hara, Shiro
2014-10-01
A high density argon plasma produced in a compact helicon source is transported by a convergent magnetic field to the central region of a substrate located downstream of the source. The magnetic field converging near the source exit is applied by a solenoid and further converged by installing a permanent magnet (PM) behind the substrate, which is located downstream of the source exit. Then a higher plasma density above 5 × 1012 cm-3 can be obtained in 0.2 Pa argon near the substrate, compared with the case without the PM. As no noticeable changes in the radially integrated density near the substrate and the power transfer efficiency are detected when testing the source with and without the PM, it can be deduced that the convergent field provided by the PM plays a role in constricting the plasma rather than in improving the plasma production. Furthermore it is applied to physical ion etching of silicon and aluminum substrates; then high etching rates of 6.5 µm min-1 and 8 µm min-1 are obtained, respectively.
Micro-structured femtosecond laser assisted FBG hydrogen sensor.
Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong
2015-11-30
We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.
Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces
NASA Technical Reports Server (NTRS)
McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.
2004-01-01
A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
NASA Astrophysics Data System (ADS)
Pan, Bingyue
2018-02-01
In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.
NASA Astrophysics Data System (ADS)
Goryca, Zbigniew; Paduszyński, Kamil; Pakosz, Artur
2018-03-01
This paper presents the results of field calculations of cogging torque for a 12-pole torque motor with an 18-slot stator. A constant angular velocity magnet and the same size gap between n-1 magnets were assumed. In these conditions, the effect of change of the n-th gap between magnets on the cogging torque was tested. Due to considerable length of the machine the calculations were performed using a 2D model. The n-th gap for which the cogging torque assumed the lowest value was evaluated. The cogging torque of the machine with symmetrical magnetic circuit (the same size of gap between magnets) was compared to the one of the asymmetrical machine. With proper choice of asymmetry, the cogging torque for the machine decreased by four times.
An application of eddy current damping effect on single point diamond turning of titanium alloys
NASA Astrophysics Data System (ADS)
Yip, W. S.; To, S.
2017-11-01
Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance.
Plunian, Franck; Stepanov, Rodion
2010-10-01
A phenomenology of isotropic magnetohydrodynamic (MHD) turbulence subject to both rotation and applied magnetic field is presented. It is assumed that the triple correlation decay time is the shortest between the eddy turn-over time and the ones associated to the rotating frequency and the Alfvén wave period. For Pm=1 it leads to four kinds of piecewise spectra, depending on four parameters: injection rate of energy, magnetic diffusivity, rotation rate, and applied field. With a shell model of MHD turbulence (including rotation and applied magnetic field), spectra for Pm ≤ 1 are presented, together with the ratio between magnetic and viscous dissipations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@stanford.edu, E-mail: mordecai@amnh.org
2011-10-10
The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included,more » mean-field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean-field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Jeffrey S.; /KIPAC, Menlo Park; Low, Mordecai-Mark Mac
2012-02-14
The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included,more » mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.« less
48 CFR 6103.302 - Filing claims [Rule 302].
Code of Federal Regulations, 2014 CFR
2014-10-01
... machine number, and e-mail address, if available, of the claimant; (2) The Government bill of lading or... facsimile machine number is: (202) 606-0019. The Clerk's e-mail address for receipt of filings is: [email protected] The Board's working hours are 8:00 a.m. to 4:30 p.m., Eastern Time, on each day other...
48 CFR 6103.302 - Filing claims [Rule 302].
Code of Federal Regulations, 2012 CFR
2012-10-01
... machine number, and e-mail address, if available, of the claimant; (2) The Government bill of lading or... facsimile machine number is: (202) 606-0019. The Clerk's e-mail address for receipt of filings is: [email protected] The Board's working hours are 8:00 a.m. to 4:30 p.m., Eastern Time, on each day other...
Dovetail spoke internal permanent magnet machine
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-08-23
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.
Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming
2014-10-24
An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.
Rotating magnetizations in electrical machines: Measurements and modeling
NASA Astrophysics Data System (ADS)
Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay
2018-05-01
This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.
Eddy damping effect of additional conductors in superconducting levitation systems
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Fei; Gou, Xiao-Fan
2015-12-01
Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
A novel flux-switching permanent magnet machine with v-shaped magnets
NASA Astrophysics Data System (ADS)
Zhao, Guishu; Hua, Wei
2017-05-01
In this paper, firstly a novel 6-stator-coil/17-rotor-pole (6/17) flux-switching permanent magnet (FSPM) machine with V-shaped magnets, deduced from conventional 12/17 FSPM machines is proposed to achieve more symmetrical phase back-electromotive force (back-EMF), and smaller torque ripple by comparing with an existing 6/10 V-shaped FSPM machine. Then, to obtain larger electromagnetic torque, less torque ripple, and easier mechanical processing, two improved variants based on the original 6/17 V-shaped topology are proposed. For the first variant, the separate stator-core segments located on the stator yoke are connected into a united stator yoke, while for the second variant the stator core is a whole entity by adding magnetic bridges at the ends of permanent magnets (PMs). Consequently, the performances of the three 6/17 V-shaped FSPM machines, namely, the original one and the two variants, are conducted by finite element analysis (FEA). The results reveal that the first variant exhibits significantly larger torque and considerably improved torque per magnet volume, i.e., the magnet utilization ratio than the original one, and the second variant exhibits the smallest torque ripple, least total harmonic distribution (THD) of phase back-EMF, and easiest mechanical processing for manufacturing.
Baldacchini, Chiara; Castanheiro, Ana; Maghakyan, Nairuhi; Sgrigna, Gregorio; Verhelst, Jolien; Alonso, Rocío; Amorim, Jorge H; Bellan, Patrick; Bojović, Danijela Đunisijević; Breuste, Jürgen; Bühler, Oliver; Cântar, Ilie C; Cariñanos, Paloma; Carriero, Giulia; Churkina, Galina; Dinca, Lucian; Esposito, Raffaela; Gawroński, Stanisław W; Kern, Maren; Le Thiec, Didier; Moretti, Marco; Ningal, Tine; Rantzoudi, Eleni C; Sinjur, Iztok; Stojanova, Biljana; Aničić Urošević, Mira; Velikova, Violeta; Živojinović, Ivana; Sahakyan, Lilit; Calfapietra, Carlo; Samson, Roeland
2017-02-07
Particulate matter (PM) deposited on Platanus acerifolia tree leaves has been sampled in the urban areas of 28 European cities, over 20 countries, with the aim of testing leaf deposited particles as indicator of atmospheric PM concentration and composition. Leaves have been collected close to streets characterized by heavy traffic and within urban parks. Leaf surface density, dimensions, and elemental composition of leaf deposited particles have been compared with leaf magnetic content, and discussed in connection with air quality data. The PM quantity and size were mainly dependent on the regional background concentration of particles, while the percentage of iron-based particles emerged as a clear marker of traffic-related pollution in most of the sites. This indicates that Platanus acerifolia is highly suitable to be used in atmospheric PM monitoring studies and that morphological and elemental characteristics of leaf deposited particles, joined with the leaf magnetic content, may successfully allow urban PM source apportionment.
An economic passive sampling method to detect particulate pollutants using magnetic measurements.
Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming
2015-10-01
Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
OKeefe, Sean
2004-01-01
The images in this viewgraph presentation have the following captions: 1) EDU mirror after being sawed in half; 2) EDU Delivered to Axsys; 3) Be EDU Blank Received and Machining Started; 4) Loaded HIP can for flight PM segments 1 and 2; 5) Flight Blanks 1 and 2 Loaded into HIP Can at Brush-Wellman; 6) EDU in Machining at Axsys.
Self-Centering Reciprocating-Permanent-Magnet Machine
NASA Technical Reports Server (NTRS)
Bhate, Suresh; Vitale, Nick
1988-01-01
New design for monocoil reciprocating-permanent-magnet electric machine provides self-centering force. Linear permanent-magnet electrical motor includes outer stator, inner stator, and permanent-magnet plunger oscillateing axially between extreme left and right positions. Magnets arranged to produce centering force and allows use of only one coil of arbitrary axial length. Axial length of coil chosen to provide required efficiency and power output.
Low and room temperature magnetic features of the traffic related urban airborne PM
NASA Astrophysics Data System (ADS)
Winkler, A.; Sagnotti, L.
2012-04-01
We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.
Mobile machine hazardous working zone warning system
Schiffbauer, William H.; Ganoe, Carl W.
1999-01-01
A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.
Mobile machine hazardous working zone warning system
Schiffbauer, W.H.; Ganoe, C.W.
1999-08-17
A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.
Electric vehicle traction motors - The development of an advanced motor concept
NASA Technical Reports Server (NTRS)
Campbell, P.
1980-01-01
An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.
Multi-winding homopolar electric machine
Van Neste, Charles W
2012-10-16
A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.
System and method for heating ferrite magnet motors for low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less
System and method for heating ferrite magnet motors for low temperatures
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
2017-07-04
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-01-01
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-12-05
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.
Magnetoresistive DNA chips based on ac field focusing of magnetic labels
NASA Astrophysics Data System (ADS)
Ferreira, H. A.; Cardoso, F. A.; Ferreira, R.; Cardoso, S.; Freitas, P. P.
2006-04-01
A study was made on the sensitivity of a magnetoresistive DNA-chip platform being developed for cystic fibrosis diagnostics. The chip, comprised of an array of 2.5×80 μm2 U-shaped spin-valve sensors integrated within current line structures for magnetic label manipulation, enabled the detection at 30 Hz of 250 nm magnetic nanoparticles from 100 pM down to the pM range (or a target DNA concentration of 500 pM). It was observed that the sensor response increased linearly with label concentration. Noise spectra obtained for these sensors showed a thermal noise of 10-17 V2/Hz with a 1/f knee at 50 kHz at a 1 mA sense current, showing that lower detection limits are possible.
Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory
ERIC Educational Resources Information Center
Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel
2015-01-01
Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…
Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk
NASA Technical Reports Server (NTRS)
Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.
2010-01-01
A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.
Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian
2014-01-01
A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.
Conceptual Study of Permanent Magnet Machine Ship Propulsion Systems
1977-12-01
cycloconverter subsystem is designed using advanced thyristors and can be either water or air cooled. The machine-cycloconverter, many-phase or parallel...Turnb, Phase, Poles, Air Gap ................................. 3-9 3-5 Machine Characteristics Versus Number of Poles (large machine, 40 000 hp). Poles...cylindrical permanent magnet generator forces the power conditioner to provide for both frequency change and voltage control. The complexity of this dual
A tubular flux-switching permanent magnet machine
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.
2008-04-01
The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.
Integrated Inverter For Driving Multiple Electric Machines
Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN
2006-04-04
An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.
NASA Astrophysics Data System (ADS)
Brokamp, Cole; Jandarov, Roman; Rao, M. B.; LeMasters, Grace; Ryan, Patrick
2017-02-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment.
Brokamp, Cole; Jandarov, Roman; Rao, M B; LeMasters, Grace; Ryan, Patrick
2017-02-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment.
Brokamp, Cole; Jandarov, Roman; Rao, M.B.; LeMasters, Grace; Ryan, Patrick
2017-01-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment. PMID:28959135
Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R
2015-03-17
Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.
Laves phase UTi2 stabilized by hydrogen and its magnetic properties
NASA Astrophysics Data System (ADS)
Buturlim, V.; Havela, L.; Sowa, S.; Kim-Ngan, N.-. T. H.; Paukov, M.; Drozdenko, D.; Dopita, M.; Minarik, P.; Mašková, S.
2018-05-01
We describe basic magnetic properties of uranium-based hydrides UTi2Hx, reported in literature as a cubic Laves phase, although the UTi2 binary phase does not exist. Using a high-temperature hydrogenation, we successfully synthesized two types of such hydrides, presumably with different H concentrations, one with a smaller lattice parameter a = 850.3 pm, which is a paramagnet close to the verge of magnetic ordering, the other with a = 858.8 pm, with a ferromagnetic ground state and ordering temperature TC = 54 K.
NASA Astrophysics Data System (ADS)
Yang, Yong
2008-12-01
In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.
A Review on Parametric Analysis of Magnetic Abrasive Machining Process
NASA Astrophysics Data System (ADS)
Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish
2018-03-01
The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.
Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming
2014-01-01
An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
Liu, Zhijian; Li, Hao; Cao, Guoqing
2017-07-30
Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM 2.5 and PM 10 ), temperature, relative humidity, and CO₂ concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.
NASA Astrophysics Data System (ADS)
Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke
2018-02-01
Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.
Small-scale dynamo at low magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.
2012-12-01
The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.
Small-scale dynamo at low magnetic Prandtl numbers.
Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S
2012-12-01
The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.
Burlina, Philippe; Billings, Seth; Joshi, Neil
2017-01-01
Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220
Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima
2017-01-01
To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
High speed internal permanent magnet machine and method of manufacturing the same
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-09-13
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.
NASA Astrophysics Data System (ADS)
Petrovsky, E.; Kapicka, A.; Grison, H.; Kotlik, B.; Zboril, R.; Korbelova, Z.
2013-05-01
Magnetic properties of environmental samples are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can help in assessing concentration and grain-size distribution of these minerals. This information can be helpful in estimating, e.g., the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of particulate matter ( PM1, PM2.5, PM10 and TSP - total suspended particles), collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. Our results show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM analyses and magnetic data oriented on concentration and grain-size distribution of magnetite/maghemite particles. While PM concentrations are significantly higher in winter, differeces between concentration of Fe-oxides in summer and winter are not that significant. In both summer and winter, more FeO was in coarser PM10 than in the finer fractions. This is in good agreement with SEM observations. Grain-size sensitive parameters are different for summer and winter PMx samples, suggesting different source of PMx. It seems that domestic heating does not produce significant amount of FeO oxides in this site, its contribution during heating season compensates for the decay from natural sources (and/or agriculture) during summer. Our results prove the high sensitivity of magnetic methods in terms of concentration of ferrimagnetic Fe-oxides. However, their potential to discriminate unambiguously their origin is still questioned. This study is supported by the Czech Science Foundation through grant #P210/10/0554.; Fig. 1. Relative enhancement (determined as (Cheat/Cnon-heat) - 1) of atmospheric dust concentration and Fe-oxides content in heating and non-heating season.
On-line nuclear orientation of the deformed neutron-deficient Eu, Sm and Pm isotopes
NASA Astrophysics Data System (ADS)
Singleton, B. D. D.; Walker, P. M.; Bhagwat, A.; Al-Ghamdi, S. S.; Barham, C. G.; Grant, I. S.; Griffiths, A. G.; Rikovska, J.; Stone, N. J.
1992-11-01
Low-temperature nuclear orientation measurements made on-line at the SERC Daresbury Laboratory on142 m Eu,141 m Sm, and141Pm, with known magnetic dipole moments, have yielded the magnitude of the hyperfine fields of these isotopes in an iron host lattice. Thus measurements for the isotopes139, 138Eu,139 m Sm, and138Pm yielded values for the respective magnetic moments. Limits on the thermal relaxation times of Eu and Sm isotopes in Fe were also deduced. The results for138Eu appear to contradict the earlier πh11/2⊗νh11/2 ground-state configuration assignment.
Skeist, S. Merrill; Baker, Richard H.
2006-01-10
An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.
Jiang, Ru O-Ting; Cheng, Ka I-Chung; Acevedo-Bolton, Viviana; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M
2011-01-01
Despite California's 1994 statewide smoking ban, exposure to secondhand smoke (SHS) continues in California's Indian casinos. Few data are available on exposure to airborne fine particles (PM2.5) in casinos, especially on a statewide basis. We sought to measure PM2.5 concentrations in Indian casinos widely distributed across California, exploring differences due to casino size, separation of smoking and non-smoking areas, and area smoker density. A selection of 36 out of the 58 Indian casinos throughout California were each visited for 1–3 h on weekend or holiday evenings, using two or more concealed monitors to measure PM2.5 concentrations every 10 s. For each casino, the physical dimensions and the number of patrons and smokers were estimated. As a preliminary assessment of representativeness, we also measured eight casinos in Reno, NV. The average PM2.5 concentration for the smoking slot machine areas (63 μg/m3) was nine times as high as outdoors (7 μg/m3), whereas casino non-smoking restaurants (29 μg/m3) were four times as high. Levels in non-smoking slot machine areas varied: complete physical separation reduced concentrations almost to outdoor levels, but two other separation types had mean levels that were 13 and 29 μg/m3, respectively, higher than outdoors. Elevated PM2.5 concentrations in casinos can be attributed primarily to SHS. Average PM2.5 concentrations during 0.5–1 h visits to smoking areas exceeded 35 μg/m3 for 90% of the casino visits. PMID:20160761
Orava, Taryn; Manske, Steve; Hanning, Rhona
2016-12-27
As part of an evaluation of Ontario's School Food and Beverage Policy (P/PM 150) in a populous Ontario region, this research aimed to: 1) identify, describe and categorize beverages and snacks available for purchase in secondary school vending machines according to P/PM 150 standards; and 2) compare the number and percentage of beverages and snacks within P/PM 150 categories (Sell Most, Sell Less, Not Permitted) from Time I (2012/2013) to Time II (2014). Representatives from consenting secondary schools assisted researchers in completing a Food Environmental Scan checklist in Times I and II. Sourced nutritional content information (calories, fats, sodium, sugars, ingredients and % daily values) was used to categorize products. The number and percentage of products in P/PM 150 categories were compared between Times by paired t-tests. Of 26 secondary schools participating in total, 19 participated in both Time periods and were included in the study. There were 75 beverages identified (59 Time I, 45 Time II), mostly water, juices and milk-based beverages; and 132 types of snacks (87 Time I, 103 Time II), mostly grain-based snacks, vegetable/fruit chips, and baked goods. A majority of schools offered one or more Not Permitted beverages (47% Time I, 58% Time II) or snacks (74% Time I, 53% Time II). Significantly more schools met P/PM 150 standards for snacks (p = 0.02) but not beverages in Time II. Full P/PM 150 compliance was achieved by few schools, indicating that schools, school boards, public health, and food services need to continue to collaborate to ensure nutrient-poor products are not sold to students in school settings.
Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines
Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian
2014-01-01
A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis. PMID:25045729
Monocoil reciprocating permanent magnet electric machine with self-centering force
NASA Technical Reports Server (NTRS)
Bhate, Suresh K. (Inventor); Vitale, Nicholas G. (Inventor)
1989-01-01
A linear reciprocating machine has a tubular outer stator housing a coil, a plunger and an inner stator. The plunger has four axially spaced rings of radially magnetized permanent magnets which cooperate two at a time with the stator to complete first or second opposite magnetic paths. The four rings of magnets and the stators are arranged so that the stroke of the plunger is independent of the axial length of the coil.
Energy transfers in large-scale and small-scale dynamos
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra
2015-11-01
We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.
Magnetic properties and large reversible magnetocaloric effect in Er3Pd2
NASA Astrophysics Data System (ADS)
Maji, Bibekananda; Ray, Mayukh K.; Modak, M.; Mondal, S.; Suresh, K. G.; Banerjee, S.
2018-06-01
The magnetic properties and magnetocaloric effect (MCE) of binary intermetallic compound Er3Pd2 were studied. It exhibits a paramagnetic (PM) to antiferromagnetic (AFM) transition at Néel temperature (TN) = 10 K. A large reversible MCE was observed which is related to a second order magnetic transition from PM to AFM state. The values of maximum magnetic entropy change (- Δ SMmax) and adiabatic temperature change (Δ Tadmax) reach 8.9 J/kg-K and 2.9 K respectively for the field change of 50 kOe with no obvious hysteresis loss. The effective magnetic moment was determined to be 10.16 μB/Er3+, which is notably higher than that of free ion value of Er3+ (9.59 μB), suggests that Pd ions also have considerable amount of magnetic moments in this compound.
Design and Performance Improvement of AC Machines Sharing a Common Stator
NASA Astrophysics Data System (ADS)
Guo, Lusu
With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.
NASA Astrophysics Data System (ADS)
Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang
2017-05-01
This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.
NASA Astrophysics Data System (ADS)
Ciucur, Violeta
2015-02-01
Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.
NASA Astrophysics Data System (ADS)
Johnston, David C.
2017-03-01
The influence of uniaxial single-ion anisotropy -D Sz2 on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015), 10.1103/PhysRevB.91.064427], where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D >0 ) in applied field Hz=0 are calculated versus D and temperature T , including the ordered moment μ , the Néel temperature TN, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χ∥ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μz(Hz,D ,T ) is found, and the critical field Hc(D ,T ) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties TN(D ) and μ (D ,T ) . The high-field μz(Hz,D ,T ) is determined, together with the associated spin-flop field HSF(D ,T ) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which Hz-T phase diagrams are constructed. For fJ=-1 and -0.75 , where fJ=θp J/TN J and θp J and TN J are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz-T plane similar to previous results are obtained. However, for fJ=0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D ,T ) , the associated effective torque at low fields arising from the -D Sz2 term in the Hamiltonian, the high-field perpendicular magnetization μ⊥, and the perpendicular critical field Hc ⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D >0 , the TN(D ) and ordered moment μ (T ,D ) for collinear AFM ordering along the x axis with D <0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with -D Sz2 uniaxial anisotropy with either sign of D , Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.
NASA Astrophysics Data System (ADS)
Sagnotti, Leonardo; Winkler, Aldo
2012-11-01
The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles.
Zhu, Jing; Gan, Haiying; Wu, Jie; Ju, Huangxian
2018-04-17
A bipedal molecular machine powered surface programmatic chain reaction was designed for electrochemical signal amplification and highly sensitive electrochemical detection of protein. The bipedal molecular machine was built through aptamer-target specific recognition for the binding of one target protein with two DNA probes, which hybridized with surface-tethered hairpin DNA 1 (H1) via proximity effect to expose the prelocked toehold domain of H1 for the hybridization of ferrocene-labeled hairpin DNA 2 (H2-Fc). The toehold-mediated strand displacement reaction brought the electrochemical signal molecule Fc close to the electrode and meanwhile released the bipedal molecular machine to traverse the sensing surface by the surface programmatic chain reaction. Eventually, a large number of duplex structures of H1-H2 with ferrocene groups facing to the electrode were formed on the sensor surface to generate an amplified electrochemical signal. Using thrombin as a model target, this method showed a linear detection range from 2 pM to 20 nM with a detection limit of 0.76 pM. The proposed detection strategy was enzyme-free and allowed highly sensitive and selective detection of a variety of protein targets by using corresponding DNA-based affinity probes, showing potential application in bioanalysis.
Magnetic properties of atmospheric PMx in a small settlement during heating and non-heating season
NASA Astrophysics Data System (ADS)
Petrovsky, E.; Kotlik, B.; Zboril, R.; Kapicka, A.; Grison, H.
2012-04-01
Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10, collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. In our contribution we show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM analyses and magnetic data oriented on concentration and grain-size distribution of magnetite/maghemite particles. While concentration of Fe-oxides does not vary that much, significant seasonal differences were observed in composition and grain-size distribution, reflecting different sources of the dust particles.
Hybrid-secondary uncluttered permanent magnet machine and method
Hsu, John S.
2005-12-20
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S [Oak Ridge, TN
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Neural correlates of prospective memory impairments in schizophrenia.
Chen, Xing-jie; Wang, Ya; Wang, Yi; Yang, Tian-xiao; Zou, Lai-quan; Huang, Jia; Li, Feng-hua; Chen, An-tao; Wang, Wei-hong; Zheng, Han-feng; Cheung, Eric F C; Shum, David H K; Chan, Raymond C K
2016-02-01
Prospective memory (PM) refers to the ability to remember to carry out intended actions after a delay. PM impairments are common in schizophrenia patients and are thought to be related to their prefrontal cortex dysfunction; however, this has not yet been examined directly in the research literature. The current study aimed to examine abnormalities in brain activation during PM task performance in schizophrenia patients. Twenty-two schizophrenia patients and 25 matched healthy controls were scanned in a 3-T MRI machine while performing a PM task. The results showed that compared to the healthy controls, schizophrenia patients performed significantly worse on the PM task. Furthermore, they exhibited decreased brain activation in frontal cortex including the right superior frontal gyri (Brodmann area 10), and other related brain areas like the anterior cingulate gyrus, parietal and temporal cortex, including precuneus, and some subcortext, including parahippocampal gyrus and putamen. These findings confirm the involvement and importance of the prefrontal cortex in PM and show evidence of hypofrontality in schizophrenia patients while performing a PM task. PsycINFO Database Record (c) 2016 APA, all rights reserved.
Liu, Zhijian; Li, Hao; Cao, Guoqing
2017-01-01
Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10), temperature, relative humidity, and CO2 concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups. PMID:28758941
Telescoping magnetic ball bar test gage
Bryan, J.B.
1982-03-15
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.
Control coil arrangement for a rotating machine rotor
Shah, Manoj R.; Lewandowsk, Chad R.
2001-07-31
A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho
2017-05-01
This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.
Zhang, Jiangang; Zhang, Li; Li, Ruijin; Hu, Di; Ma, Nengxuan; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan
2015-03-07
A simple and rapid method that uses synthesized magnetic graphene composites as both an adsorbent for enrichment and as a matrix in MALDI-TOF MS analysis was developed for the detection of nitropolycyclic hydrocarbons (nitro-PAHs) in PM2.5 samples. Three nitro-PAHs were detected down to sub pg μL(-1) levels based on calculations from an instrumental signal-to-noise better than 3, which shows the feasibility of using the new materials in MALDI-TOF MS as a potential powerful analytical approach for the analysis of nitro-PAHs in PM2.5 samples.
Electric machine for hybrid motor vehicle
Hsu, John Sheungchun
2007-09-18
A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-09-02
In this paper a novel E-Core axial flux machine is proposed. The machine has a double stator-single rotor configuration with flux concentrating ferrite magnets, and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single phase and a three-phase version of the E-Core machine. Case study for a 1.1 kW, 400 rpm machine for both the single phase and three-phase axial flux machine is presented. The results are verifiedmore » through 3D finite element analysis.« less
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Lopez, V. A.; Gerstnecker, K.; Swilley, B.
2017-12-01
Today, it is very well known that small magnetic particles are very harmful to the health of humans. For the first time we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (pm) 60, pm=10, and pm= 2.5. In order to do a rock magnetic characterization we have preformed low field susceptibility versus temperature (k-T) experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of 4 different types of car engines using octane ratings of 85, 87 and 92. The Curie point determinations are very well defined and range from 292 °C through 393 °C to 660 °C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt ashes as well as on car engines and brake pads in question. The results of the experiments show ferro- and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain (SP_MD), multi-domain (MD) and pseudo-single domain (PSD) shown on the modified Day et al. diagram of Dunlop (2002). Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria (Jordanova et al., 2005). Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles that originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite like grains as published by Sagnotti and Winkler (2012).
Magnet reliability in the Fermilab Main Injector and implications for the ILC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartaglia, M.A.; Blowers, J.; Capista, D.
2007-08-01
The International Linear Collider reference design requires over 13000 magnets, of approximately 135 styles, which must operate with very high reliability. The Fermilab Main Injector represents a modern machine with many conventional magnet styles, each of significant quantity, that has now accumulated many hundreds of magnet-years of operation. We review here the performance of the magnets built for this machine, assess their reliability and categorize the failure modes, and discuss implications for reliability of similar magnet styles expected to be used at the ILC.
Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie
2016-04-01
In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Operation and design selection of high temperature superconducting magnetic bearings
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Floegel-Delor, U.; Riedel, T.; Rothfeld, R.; Wippich, D.; Goebel, B.
2004-10-01
Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN2 for cooling down, and about 0.2 l LN2 h-1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings.
2011-01-01
Louis Chow, David Woodburn, Lei Zhou, Jared Bindl, Yang Hu, and Wendell Brokaw University of Central Florida JANUARY 2011 Interim Report...Magnet (PM) Motor % % Written in SI or MKS Unit System. % % Authors: % David Woodburn % Dr. Lei Zhou % Dr. Thomas X. Wu clear all...Initial phase winding resistance [ ohm ] id = 0; % Phase d current [A] iq = 0; % Phase q current [A] did_dt = 0
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
An investigation into magnetic electrolytic abrasive turning
NASA Astrophysics Data System (ADS)
Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.
2013-07-01
The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.
Method for providing slip energy control in permanent magnet electrical machines
Hsu, John S.
2006-11-14
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, David C.
Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular magnetization μ ⊥, and the perpendicular critical field H c⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D > 0, the T N(D) and ordered moment μ(T,D) for collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with –DS 2 z uniaxial anisotropy with either sign of D, Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.« less
Signorile, Joseph F; Rendos, Nicole K; Heredia Vargas, Hector H; Alipio, Taislaine C; Regis, Rebecca C; Eltoukhy, Moataz M; Nargund, Renu S; Romero, Matthew A
2017-02-01
Signorile, JF, Rendos, NK, Heredia Vargas, HH, Alipio, TC, Regis, RC, Eltoukhy, MM, Nargund, RS, and Romero, MA. Differences in muscle activation and kinematics between cable-based and selectorized weight training. J Strength Cond Res 31(2): 313-322, 2017-Cable resistance training machines are showing resurgent popularity and allow greater number of degrees of freedom than typical selectorized equipment. Given that specific kinetic chains are used during distinct activities of daily living (ADL), cable machines may provide more effective interventions for some ADL, whereas others may be best addressed using selectorized equipment. This study examined differences in activity levels (root mean square of the EMG [rmsEMG]) of 6 major muscles (pectoralis major, PM; anterior deltoid, AD; biceps brachii, BB; rectus abdominis, RA; external obliques, EO; and triceps brachii, TB) and kinematics of multiple joints between a cable and standard selectorized machines during the biceps curl, the chest press, and the overhead press performed at 1.5 seconds per contractile stage. Fifteen individuals (9 men, 6 women; mean age ± SD, 24.33 ± 4.88 years) participated. Machine order was randomized. Significant differences favoring cable training were seen for PM and AD during biceps curl; BB, AD, and EO for chest press; and BB and EO during overhead press (p ≤ 0.05). Greater starting and ending angles were seen for the elbow and shoulder joints during selectorized biceps curl, whereas hip and knee starting and ending angles were greater for cable machine during chest and overhead presses (p < 0.0001). Greater range of motion (ROM) favoring the cable machine was also evident (p < 0.0001). These results indicate that utilization patterns of selected muscles, joint angles, and ROMs can be varied because of machine application even when similar exercises are used, and therefore, these machines can be used selectively in training programs requiring specific motor or biomechanical patterns.
Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Giannakis, Dimitrios
2009-06-01
Free-surface Hartmann flow is the parallel flow of a viscous, electrically conducting, capillary fluid on a planar surface, subject to gravity and a flow- normal magnetic field. This type of flow arises in a variety of industrial and astrophysical contexts, including liquid-metal walls in fusion devices, heavy- ion accelerator targets, and surface layers of white dwarfs and neutron stars. Typically, the Reynolds number, Re >10 4 , is high, and the background magnetic field is strong ( Ha >100, where the Hartmann number, Ha , measures the square root of the ratio of electromagnetic to viscous forces). On the other hand, the magnetic Prandtl number, Pm (the ratio of viscous to magnetic diffusivity), of laboratory fluids is small (e.g., Pm <10 -4 for liquid metals), as is the case in a number of astrophysical models. When the background magnetic field is zero, free-surface Hartmann flow exhibits the so-called soft and hard instability modes; the former being a surface wave destabilized by viscous stresses acting on the free surface, whereas the latter is a shear mode destabilized by positive Reynolds stress associated with an internal critical layer. We study in detail the influence of the external magnetic field on these two instabilities, working in the regime Pm <10^-4. We also consider flows in the inductionless limit, Pr [arrow right]0, where magnetic field perturbations diffuse infinitely fast, and the sole MHD effect is a Lorentz force arising from currents induced by the perturbed fluid motion within the background magnetic field. We have developed a spectral Galerkin method to solve the coupled Orr- Sommerfeld and induction equations, which, in conjunction with suitable stress conditions at the free surface and continuity conditions for the magnetic field, govern the linear stability of free-surface Hartmann flow. Our scheme's discrete bases for the velocity and magnetic fields consist of linear combinations of Legendre polynomials, chosen according to the order of the Sobolev spaces of the continuous problem. The orthogonality properties of the bases solve the matrix-coefficient growth problem of the discrete stability operators, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p =3000 with p -independent roundoff error. We find that, because it is a critical-layer instability (moderately modified by the presence of the free surface), the hard mode exhibits similar behavior to the even unstable mode in the corresponding closed-channel flow, in terms of both the weak influence of Pm on its neutral-stability curve and the monotonic increase of its critical Reynolds number, Re c , with the Hartmann number. In contrast, the soft mode's stability properties exhibit the novel behavior of differing markedly between problems with small, but nonzero, Pm and their counterparts in the inductionless limit. Notably, the critical Reynolds number of the soft mode grows exponentially with Ha in inductionless problems, but when Pm is nonzero that growth is suppressed to either a sublinearly increasing, or a decreasing function of Ha (respectively when the lower wall is an electrical insulator or a perfect conductor). In the insulating-wall case, we also observe pairs of counter-propagating Alfvén waves, the upstream- propagating wave undergoing an instability at high Alfvén numbers. We attribute the observed Pm -sensitivity of the soft instability to the strong-field behavior of the participating inductionless mode, which, even though stabilized by the magnetic field, approaches neutral stability as Ha grows. This near-equilibrium is consistent with a balance between Lorentz and gravitational forces, and renders the mode susceptible to effects associated with the dynamical response of the magnetic field to the flow (which vanishes in the inductionless limit), even when the magnetic diffusivity is large. The boundary conditions play a major role in the magnetic field response to the flow, since they determine (i) the properties of the steady-state induced current, which couples magnetic perturbations to the velocity field, and (ii) the presence or not of magnetic modes in the spectrum (these modes are not part of the spectrum of conducting-wall problems), which interact with the hydrodynamic ones, including the soft mode. In general, our analysis indicates that the inductionless approximation must be used with caution when dealing with free-surface MHD.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance date specified in § 63.3883. For magnet wire coating operations you may, with approval, conduct a performance test of one representative magnet wire coating machine for each group of identical or very similar magnet wire coating machines. (2) You must develop and begin implementing the work practice plan required...
NASA Astrophysics Data System (ADS)
Tatchyn, Roman
1997-05-01
In recent years studies have been initiated on a new class of multipole field generators consisting of cuboid planar permanent magnet (PM) pieces arranged in bi-planar arrays of 2-fold rotational symmetry(R. Tatchyn, "Planar Permanent Magnet Multipoles: for Particle Accelerator and Storage Ring Applications ," IEEE Trans. Mag. 30, 5050(1994).)(T. Cremer, R. Tatchyn, "Planar Permanent Magnet Multipoles: Measurements and Configurations," in Proceedings of the 1995 Particle Accelerator Conference, IEEE Catalog No. 95CH35843, paper FAQ-20.). These structures, first introduced for Free Electron Laser (FEL) applications(R. Tatchyn, "Selected applications of planar permanent magnet multipoles in FEL insertion device design," NIM A341, 449(1994).), are based on reducing the rotational symmetry of conventional N-pole field generators from N-fold to 2-fold. One consequence of this reduction is a large higher-multipole content in a planar PM multipole's field at distances relatively close to the structure's axis, making it generally unsuitable for applications requiring a large high-quality field aperture. In this paper we outline an economical field-cancellation algorithm that can substantially decrease the harmonic content of a planar PM's field without breaking its biplanar geometry or 2-fold rotational symmetry. This will enable planar PM multipoles to be employed in a broader range of applications than heretofore possible, in particular as distributed focusing elements installed in insertion device gaps on synchrotron storage rings. This accomplishment is expected to remove the conventional restriction of an insertion device's length to the scale of the local focusing beta, enabling short-period, small-gap undulators to be installed and operated as high-brightness sources on lower-energy storage rings(R. Tatchyn, P. Csonka, A. Toor, "Perspectives on micropole undulators in synchrotron radiation technology," Rev. Sci. Instrum. 60(7), 1796(1989).). Operation as ordinary focusing elements in storage ring magnetic lattices, as well as the performance of other high-quality multipole applications, should also becomes possible with the realization of the proposed structures.
Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays
Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping
2017-01-01
The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation. PMID:29156577
Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays.
Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping
2017-11-18
The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system's redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.
Analysis of an adjustable field permanent magnet solenoid
NASA Astrophysics Data System (ADS)
Burris-Mog, T.; Burns, M.; Chavez, A.; Schillig, J.
2017-10-01
A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fields ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.
Analysis of an Adjustable Field Permanent Magnet Solenoid
Burris-Mog, Trevor John; Burns, Michael James; Chavez, Mark Anthony; ...
2017-07-12
A feasibility study has been performed on an adjustable-field permanent magnet (PM) solenoid concept in an effort to reduce the dependence that linear induction accelerators have on large direct current power supplies and associated cooling systems. The concept relies on the ability to reorient sections of the PMs and thus redirect their magnetization vector to either add to or subtract from the on-axis magnetic field. This study concentrated on the focal strengths and emittance growths for two different designs, both with 19 cm bore diameters extending 53 cm in length. The first design is expected to produce peak magnetic fieldsmore » ranging from 260 to 900 G (0.026 to 0.09 T) while the second design is expected to produce peak magnetic fields ranging from 580 to 2100 G (0.058 to 0.21 T). Finally, although the PM configuration generates a variable magnetic field and the torques acting on PMs within the assembly appear manageable, the emittance growth is larger than that of a DC solenoid.« less
A MEMS torsion magnetic sensor with reflective blazed grating integration
NASA Astrophysics Data System (ADS)
Long, Liang; Zhong, Shaolong
2016-07-01
A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT-1 and 5.7 pm μT-1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.
Johnston, David C.
2017-03-17
Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular magnetization μ ⊥, and the perpendicular critical field H c⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D > 0, the T N(D) and ordered moment μ(T,D) for collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with –DS 2 z uniaxial anisotropy with either sign of D, Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.« less
Telescoping magnetic ball bar test gage
Bryan, J.B.
1984-03-13
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.
Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland.
de Hoogh, Kees; Héritier, Harris; Stafoggia, Massimo; Künzli, Nino; Kloog, Itai
2018-02-01
Spatiotemporal resolved models were developed predicting daily fine particulate matter (PM 2.5 ) concentrations across Switzerland from 2003 to 2013. Relatively sparse PM 2.5 monitoring data was supplemented by imputing PM 2.5 concentrations at PM 10 sites, using PM 2.5 /PM 10 ratios at co-located sites. Daily PM 2.5 concentrations were first estimated at a 1 × 1km resolution across Switzerland, using Multiangle Implementation of Atmospheric Correction (MAIAC) spectral aerosol optical depth (AOD) data in combination with spatiotemporal predictor data in a four stage approach. Mixed effect models (1) were used to predict PM 2.5 in cells with AOD but without PM 2.5 measurements (2). A generalized additive mixed model with spatial smoothing was applied to generate grid cell predictions for those grid cells where AOD was missing (3). Finally, local PM 2.5 predictions were estimated at each monitoring site by regressing the residuals from the 1 × 1km estimate against local spatial and temporal variables using machine learning techniques (4) and adding them to the stage 3 global estimates. The global (1 km) and local (100 m) models explained on average 73% of the total,71% of the spatial and 75% of the temporal variation (all cross validated) globally and on average 89% (total) 95% (spatial) and 88% (temporal) of the variation locally in measured PM 2.5 concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.
2008-01-01
For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new, PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating in high latitude ionosphere, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters is approximately 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.
Toward a new < 250 °C pyrrhotite-magnetite geothermometer for claystones
NASA Astrophysics Data System (ADS)
Aubourg, Charles; Pozzi, Jean-Pierre
2010-05-01
We investigate the effects of burial and moderate experimental heating on claystones from three regions with different degrees of maturation: immature (burial temperature ˜ 40 °C) of Bure Callovo-Oxfordian claystones in the Basin of Paris (France); early mature (burial temperature ˜ 85 °C) of Opalinus Lower Dogger claystones from the Mont Terri anticline in front of the Jura fold belt (Switzerland); and mature to overmature (burial temperature < 170 °C) of Chartreuse Callovian-Oxfordian claystones from Chartreuse Sub-Alpine chains. To have information about the nature of the magnetic assemblage, we perform low-temperature (10 K-300 K) investigation of an isothermal remanent magnetization. In a first set of laboratory heating experiments, we aim to impart a chemical remanent magnetization (CRM) at 95 °C for several weeks in Bure and Opalinus claystones. Thermal demagnetization of the CRM reveals that magnetite is formed by heating the Opalinus claystones while an assemblage of magnetite and iron sulphide is formed in Bure claystones. Further, we document the appearance of a magnetic transition at ˜ 35 K in Bure claystones after heating. We name this transition the P-transition and we propose that it is related to the formation of fine-grained pyrrhotite (Fe 7S 8). The P-transition is also detected in early mature to mature Opalinus and Chartreuse claystones. We conduct additional experimental heating of natural Opalinus claystones. One set of experiments is referred to as short-term heating (1 h) from 100 °C to 200 °C. It is dedicated to an investigation of the effect of short-lived heating processes in geology. A second set of heating experiments is designed to approach burial conditions using a gold capsule. In burial-like experiments, we heated Opalinus claystones from 150 °C to 250 °C for several weeks under a pressure of 100 MPa. In both experiments, we observe a correlative diminution of the pyrrhotite signature at 35 K with increasing temperature. We interpret this trend as the appearance of magnetite. We derive a parameter PM from the warming curve of a saturated isothermal remanent magnetization acquired at 10 K (ZFC). We report on a consistent evolution of PM with temperature in the range of 40 °C to 250 °C, including natural samples, heated samples at 95 °C, and burial-like heated samples. PM first increases between ˜ 40 °C up to ˜ 85 °C, implying that pyrrhotite gradually dominates the magnetic assemblage at low temperature. For temperatures above 85 °C, PM decreases up to 250 °C, implying that the formation of magnetite gradually overshadows the magnetic input of pyrrhotite. PM values obtained from mature to overmature claystones from the Chartreuse are lower than the PM values obtained from the burial-like heated Opalinus claystones, suggesting that the formation of magnetite is driven by kinetics. The continuous trend of the PM parameter suggests that the magnetic properties of pyrrhotite-magnetite claystones can be used to infer paleo-temperatures and we propose to name this geothermometer MagEval.
Environmental magnetism and magnetic mapping of urban metallic pollution (Paris, France)
NASA Astrophysics Data System (ADS)
Isambert, Aude; Franke, Christine; Macouin, Mélina; Rousse, Sonia; Philip, Aurélio; de Villeneuve, Sybille Henry
2017-04-01
Airborne pollution in dense urban areas is nowadays a subject of major concern. Fine particulate pollution events are ever more frequent and represent not only an environmental and health but also a real economic issue. In urban atmosphere, the so-called PM2.5 (particulate matter < 2.5 μm in diameter) and ultrafine fractions (< 100 nm) due to combustion, causes many adverse health effects. Environmental magnetic studies of airborne PM collected on air filters or plants have demonstrated their potential to follow the metallic pollution and determine their sources (Sagnotti et al., 2012). In this study, we report on magnetic measurements of traffic-related airborne PM in the city of Paris, France. Two distinct environments were sampled and analyzed along the Seine River: the aquatic environment in studying fluvial bank and river bed sediments and the atmospheric environment by regarding magnetic particles trapped in adjacent tree barks (Platanus hispanica). About 50 sediment samples and 350 bark samples have been collected and analysed to determine their magnetic properties (susceptibility, hysteresis parameters, IRM, frequency-dependent susceptibility) and to estimate the presence and spatial concentration of superparamagnetic or multi-domain particles for each sample type. The bark results allow proposing a high spatial resolution mapping (< 50 m) of magnetic susceptibility and frequency dependent susceptibility on a 30 km long profile along the river. Variations in that profile may be linked to the atmospheric metallic pollution. In addition to that, the sampling of banks and riverbed sediments of the Seine allow a global estimation on the anthropogenic versus detrital and biologic input in the city of Paris. The first results presented here show a general increase of the concentration in magnetic particles from upstream to downstream Paris probably linked to urban pollutions as previously observed for suspended particulate matter (Franke et al. 2009; Kayvantash, 2016). Sagnotti, L., & Winkler, A. (2012). On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy. Atmospheric environment, 59, 131-140. Franke, C., Kissel, C., Robin, E., Bonté, P., & Lagroix, F. (2009). Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input. Geochemistry, Geophysics, Geosystems, 10(8). Kayvantash, D., 2016. Characterization of ferruginous particles in the Seine River using environmental magnetism, Ph.D. thesis, MINES ParisTech/LSCE, France.
A Novel Transverse Flux Machine for Vehicle Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal
2015-10-05
A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torquemore » density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.« less
Maslehaty, Homajoun; Petridis, Athanassios K; Barth, Harald; Doukas, Alexandros; Mehdorn, Hubertus Maximilian
2011-01-01
Spontaneous subarachnoid hemorrhage (SAH) without evidence of a bleeding source on the first digital subtraction angiogram (DSA) - also called SAH of unknown origin - is observed in up to 27% of all cases. Depending on the bleeding pattern on CT scanning, SAH can be differentiated into perimesencephalic (PM-SAH) and non-perimesencephalic SAH (NON-PM-SAH). The aim of our study was to investigate the effectiveness of magnetic resonance imaging (MRI) for detecting a bleeding source in SAH of unknown origin. We retrospectively reviewed 1,226 patients with spontaneous SAH between January 1991 and December 2008 in our department. DSA was performed in 1,068 patients, with negative results in 179 patients. Forty-seven patients were categorized as having PM-SAH and 132 patients as having NON-PM-SAH. MRI of the brain and the craniocervical region was performed within 72 h after diagnosis of SAH and demonstrated no bleeding sources in any of the PM-SAH and NON-PM-SAH patients (100% negative). In our experience MRI did not produce any additional benefit for detecting a bleeding source after SAH with a negative angiogram. The costs of this examination exceeded the clinical value. Despite our results MRI should be discussed on a case-by-case basis because rare bleeding sources are periodically diagnosed in cases of NON-PM-SAH.
NASA Astrophysics Data System (ADS)
Boilard, Patrick
Even though powder metallurgy (P/M) is a near net shape process, a large number of parts still require one or more machining operations during the course of their elaboration and/or their finishing. The main objectives of the work presented in this thesis are centered on the elaboration of blends with enhanced machinability, as well as helping with the definition and in the characterization of the machinability of P/M parts. Enhancing machinability can be done in various ways, through the use of machinability additives and by decreasing the amount of porosity of the parts. These different ways of enhancing machinability have been investigated thoroughly, by systematically planning and preparing series of samples in order to obtain valid and repeatable results leading to meaningful conclusions relevant to the P/M domain. Results obtained during the course of the work are divided into three main chapters: (1) the effect of machining parameters on machinability, (2) the effect of additives on machinability, and (3) the development and the characterization of high density parts obtained by liquid phase sintering. Regarding the effect of machining parameters on machinability, studies were performed on parameters such as rotating speed, feed, tool position and diameter of the tool. Optimal cutting parameters are found for drilling operations performed on a standard FC-0208 blend, for different machinability criteria. Moreover, study of material removal rates shows the sensitivity of the machinability criteria for different machining parameters and indicates that thrust force is more regular than tool wear and slope of the drillability curve in the characterization of machinability. The chapter discussing the effect of various additives on machinability reveals many interesting results. First, work carried out on MoS2 additions reveals the dissociation of this additive and the creation of metallic sulphides (namely CuxS sulphides) when copper is present. Results also show that it is possible to reduce the amount of MoS2 in the blend so as to lower the dimensional change and the cost (blend Mo8A), while enhancing machinability and keeping hardness values within the same range (70 HRB). Second, adding enstatite (MgO·SiO2) permits the observation of the mechanisms occurring with the use of this additive. It is found that the stability of enstatite limits the diffusion of graphite during sintering, leading to the presence of free graphite in the pores, thus enhancing machinability. Furthermore, a lower amount of graphite in the matrix leads to a lower hardness, which is also beneficial to machinability. It is also found that the presence of copper enhances the diffusion of graphite, through the formation of a liquid phase during sintering. With the objective of improving machinability by reaching higher densities, blends were developed for densification through liquid phase sintering. High density samples are obtained (>7.5 g/cm3) for blends prepared with Fe-C-P constituents, namely with 0.5%P and 2.4%C. By systematically studying the effect of different parameters, the importance of the chemical composition (mainly the carbon content) and the importance of the sintering cycle (particularly the cooling rate) are demonstrated. Moreover, various heat treatments studied illustrate the different microstructures achievable for this system, showing various amounts of cementite, pearlite and free graphite. Although the machinability is limited for samples containing large amounts of cementite, it can be greatly improved with very slow cooling, leading to graphitization of the carbon in presence of phosphorus. Adequate control of the sintering cycle on samples made from FGS1625 powder leads to the obtention of high density (≥7.0 g/cm 3) microstructures containing various amounts of pearlite, ferrite and free graphite. Obtaining ferritic microstructures with free graphite designed for very high machinability (tool wear <1.0%) or fine pearlitic microstructures with excellent mechanical properties (transverse rupture strength >1600 MPa) is therefore possible. These results show that improvement of machinability through higher densities is limited by microstructure. Indeed, for the studied samples, microstructure is dominant in the determination of machinability, far more important than density, judging by the influence of cementite or of the volume fraction of free graphite on machinability for example. (Abstract shortened by UMI.)
NodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniques
Filho, Geraldo P. R.; Ueyama, Jó; Villas, Leandro A.; Pinto, Alex R.; Gonçalves, Vinícius P.; Pessin, Gustavo; Pazzi, Richard W.; Braun, Torsten
2014-01-01
In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out. PMID:24399157
NASA Astrophysics Data System (ADS)
Luo, Hongyuan; Wang, Deyun; Yue, Chenqiang; Liu, Yanling; Guo, Haixiang
2018-03-01
In this paper, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10 concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real-world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.
Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland
2017-06-20
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Synthesis, structure, and magnetic properties of LaTMg and CeTMg (T = Pd, Pt, Au)
NASA Astrophysics Data System (ADS)
Gibson, B. J.; Das, A.; Kremer, R. K.; Hoffmann, R.-D.; Pöttgen, R.
2002-05-01
The title compounds were prepared from the elements by reactions in sealed tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. They crystallize with the ZrNiAl-type structure, space group P bar 6 2m. The structures of the cerium compounds were refined from single-crystal x-ray diffraction data: a = 767.3(1) pm, c = 410.37(4) pm, wR2 = 0.0324, 521 F2-values for CePdMg; a = 755.02(7) pm, c = 413.82(4) pm, wR2 = 0.0393, 514 F2-values for CePtMg; and a = 774.1(3) pm, c = 421.6(1) pm, wR2 = 0.0355, 395 F2-values for CeAuMg, with 14 variables for each refinement. The palladium compound shows a small homogeneity range: CePd1+xMg1-x. The structures contain two crystallographically different transition metal sites T1 and T2 which are located in tri-capped trigonal prisms: [T1 Mg6Ce3] and [T2 Ce6Mg3]. Magnetic susceptibility and heat capacity measurements reveal long-range magnetic ordering at 2.1(2) K for CePdMg, 3.6(2) K for CePtMg, and 2.0(2) K for CeAuMg. Curie-Weiss behaviour at higher temperatures shows that the cerium ions are in the 3+ oxidation state. The isotypic LaTMg compounds are Pauli paramagnetic down to lowest temperatures (T = 0.3 K). All the compounds, RETMg (RE = La, Ce; T = Pd, Pt, Au) show metallic behaviour.
Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field
NASA Astrophysics Data System (ADS)
Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng
2017-12-01
A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.
Bingham, N. S.; Lampen, P.; Phan, M. H.; ...
2012-08-16
Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less
NASA Astrophysics Data System (ADS)
Wang, R.; Demerdash, N. A.
1992-06-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
Exfoliated BN shell-based high-frequency magnetic core-shell materials.
Zhang, Wei; Patel, Ketan; Ren, Shenqiang
2017-09-14
The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.
Magnetic flux-load current interactions in ferrous conductors
NASA Astrophysics Data System (ADS)
Cannell, Michael J.; McConnell, Richard A.
1992-06-01
A modeling technique has been developed to account for interactions between load current and magnetic flux in an iron conductor. Such a conductor would be used in the active region of a normally conducting homopolar machine. This approach has been experimentally verified and its application to a real machine demonstrated. Additionally, measurements of the resistivity of steel under the combined effects of magnetic field and current have been conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, Leon M; Lee, Seong T
2010-01-01
This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less
Analytical Model-Based Design Optimization of a Transverse Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model
NASA Astrophysics Data System (ADS)
Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei
2012-04-01
A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Telescoping magnetic ball bar test gage
Bryan, James B.
1984-01-01
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out. Two gage balls (10, 12) are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit (14) and a rigid member (16, 18, 20, 22, 24). One gage ball (10) is secured by a magnetic socket knuckle assembly (34) which fixes its center with respect to the machine being tested. The other gage ball (12) is secured by another magnetic socket knuckle assembly (38) which is engaged or held by the machine in such manner that the center of that ball (12) is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball (10). As the moving ball (12) executes its trajectory, changes in the radial distance between the centers of the two balls (10, 12) caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly (50, 52, 54, 56, 58, 60) actuated by the parallel reed flexure unit (14). Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball (10) locations, thereby determining the accuracy of the machine.
Onset of oscillatory Rayleigh-Bénard magnetoconvection with rigid horizontal boundaries
NASA Astrophysics Data System (ADS)
Mondal, Hiya; Das, Alaka; Kumar, Krishna
2018-01-01
We present the results of linear stability analysis of oscillatory Rayleigh-Bénard magnetoconvection with rigid and thermally conducting boundaries. We have investigated two types of horizontal surfaces: (i) electrically conducting and (ii) boundaries which do not allow any outward current normal to the surface (magnetic vacuum conditions). For the case of electrically conducting boundaries, the critical Rayleigh number R ao(Q ,P r ,P m ) , the critical wave number ko(Q ,P r ,P m ) , and the frequency at the instability onset ω(Q ,P r ,P m ) increase as the Chandrasekhar number Q is raised for fixed non-zero values of thermal Prandtl Pr and magnetic Prandtl number Pm. For small values of Pr, the frequency of oscillation ω at the primary instability shows a rapid increase with Pm for very small values of Pm followed by a decrease at relatively larger values of Pm. In the limit of P r →0 , Rao and ko are found to be independent of Q. However, the frequency ω increases with Q, but decreases with Pm in this limit. The oscillatory instability is possible at the onset of magnetoconvection if and only if Chandrasekhar's criterion is valid (i.e., Pm > Pr) and Q is raised above a critical value Qc(P r ,P m ) such that the product P m *Qc≈91 for large Pm. For the stellar interior of an astrophysical body ( P m ≈10-4 and P r ≈10-8 ), the value of this product P m *Qc≈230 . The boundary conditions for magnetic vacuum change the critical values of Rayleigh number, wave number, and frequency of oscillation at the onset. The oscillatory magnetoconvection occurs in this case, if Q >Qc , where P m *Qc≈42 for large Pm. For steller interior, this value is approximately 64. A low-dimensional model is also constructed to study various patterns near the onset of oscillatory convection for rigid, thermally and electrically conducting boundaries. The model shows standing and drifting fluid patterns in addition to flow reversal close to the onset of magnetoconvection.
High efficiency magnetic bearings
NASA Technical Reports Server (NTRS)
Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.
1993-01-01
Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-08-24
In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitatingmore » simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.« less
Magnetic Properties of PMx Collected at Sites with Different Level of Air Pollution
NASA Astrophysics Data System (ADS)
Petrovsky, E.; Kotlik, B.; Kapicka, A.; Zboril, R.
2012-12-01
Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10 and total suspended matter (TSP), collected over 12-48 hours at sites with different level of air pollution: a small clean settlement in south Bohemia, industrial site close to steel works, industrial site close to open mine pit, urban and traffic site. In our contribution we will show typical differences in PMx properties. SEM observations will be complemented by magnetic measurements and Mossbauer spectroscopy. In all the ssampled sites, the SEM images clearly reveal spherules rich in iron oxides. Thermomagentic measurements (temperature dependence of magnetic susceptibility) prove that magnetite is the dominant magnetic phase in atmospheric dust in samples from all sites. Hysteresis loops and IRM acquisition curve could be reliably measured. Surprisingly, finer dust particles show smaller coercive force than the coarser ones. Mossbauer spectroscopy could be interpreted in terms of multi-domain magnetite only in the samples with PMx dominated by the steel works, where the content of magnetite was the highest. The results demonstrate that magnetic measurements are extremely sensitive to trace amount of ferrimagnetic iron oxides, which were in many cases below the sensitivity limit of Mossbauer spectroscopy. This study is supported by the Czech Science Foundation through grant #P210/10/0554.
NASA Astrophysics Data System (ADS)
Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.
2018-03-01
The phase diagram of a cubic chiral magnet MnSi with multiple Dzyaloshinskii-Moriya (DM) vectors as a function of temperature T and dc magnetic field Hdc was investigated using intensity mapping of the odd-harmonic responses of ac magnetization (M1 ω and M3 ω), and the responses at phase boundaries were evaluated according to a prescription [J. Phys. Soc. Jpn. 84, 104707 (2015), 10.7566/JPSJ.84.104707]. By evaluating M3 ω/M1 ω appearing at phase boundaries, the robustness of noncollinear spin texture in both the helimagnetic (HM) and the skyrmion lattice (SkL) phases of MnSi was discussed. The robustness of vortices-type solitonic texture SkL in MnSi is smaller than those of both the single DM HM and chiral soliton lattice phases of a monoaxial chiral magnet Cr1 /3NbS2 , and furthermore the robustness of the multiple DM HM phase in MnSi is smaller than that of its SkL. Through magnetic diagnostics over the wide T -Hdc range, we found a new paramagnetic (PM) region with ac magnetic hysteresis, where spin fluctuations have been observed via electrical magnetochiral effect. The anomalies observed in the previous ultrasonic attenuation measurement correspond to the peak positions of out-of-phase M1 ω. The appearance of a new PM region occurs at a characteristic magnetic field, above which indeed the SkL phase appears. It has us suppose that the new PM region could be a phase with spin fluctuation like the skyrmion gas phase.
Multifunctional metal-polymer nanoagglomerates from single-pass aerosol self-assembly
NASA Astrophysics Data System (ADS)
Byeon, Jeong Hoon
2016-08-01
In this study, gold (Au)-iron (Fe) nanoagglomerates were capped by a polymer mixture (PM) consisting of poly(lactide-co-glycolic acid), protamine sulfate, and poly-l-lysine via floating self-assembly in a single-pass aerosol configuration as multibiofunctional nanoplatforms. The Au-Fe nanoagglomerates were directly injected into PM droplets (PM dissolved in dichloromethane) in a collison atomizer and subsequently heat-treated to liberate the solvent from the droplets, resulting in the formation of PM-capped Au-Fe nanoagglomerates. Measured in vitro, the cytotoxicities of the nanoagglomerates (>98.5% cell viability) showed no significant differences compared with PM particles alone (>98.8%), thus implying that the nanoagglomerates are suitable for further testing of biofunctionalities. Measurements of gene delivery performance revealed that the incorporation of the Au-Fe nanoagglomerates enhanced the gene delivery performance (3.2 × 106 RLU mg-1) of the PM particles alone (2.1 × 106 RLU mg-1), which may have been caused by the PM structural change from a spherical to a hairy structure (i.e., the change followed the agglomerated backbone). Combining the X-ray-absorbing ability of Au and the magnetic property of Fe led to magnetic resonance (MR)-computed tomography (CT) contrast ability in a phantom; and the signal intensities [which reached 64 s-1 T2-relaxation in MR and 194 Hounsfield units (HUs) in CT at 6.0 mg mL-1] depended on particle concentration (0.5-6.0 mg mL-1).
Self-assembling fluidic machines
NASA Astrophysics Data System (ADS)
Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.
2004-03-01
This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.
A permanent-magnet rotor for a high-temperature superconducting bearing
NASA Astrophysics Data System (ADS)
Mulcahy, T. M.; Hull, J. R.; Uherka, K. L.; Abboud, R. G.; Wise, J. H.; Carnegie, D. W.
1995-06-01
Design, fabrication, and performance, of a 1/3-m dia., 10-kg flywheel rotor with only one bearing is discussed. To achieve low-loss energy storage, the rotor's segmented-ring permanent-magnet (PM) is optimized for levitation and circumferential homogeneity. The magnet's carbon composite bands enable practical energy storage.
Ion ejection from a permanent-magnet mini-helicon thruster
NASA Astrophysics Data System (ADS)
Chen, Francis F.
2014-09-01
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.
Ion ejection from a permanent-magnet mini-helicon thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Francis F.
2014-09-15
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant valuesmore » by applying to the endplate of the discharge a small voltage relative to spacecraft ground.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Johnston, David C.
2017-12-26
Here, a comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T, magnetic field H, and anisotropy field parameter h A1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,more » again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature T N, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and h A1. Phase diagrams at T=0 in the H z– h A1 plane and at T > 0 in the H z– T plane are constructed for spins S=1/2. For h A1=0, the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As h A1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in h A1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Furthermore, applications of the theory to extract h A1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.« less
Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material
NASA Astrophysics Data System (ADS)
Wongjom, Poramed; Pinitsoontorn, Supree
2018-03-01
Since the discovery of the spin Seebeck effect (SSE) in 2008, it has become one of the most active topics in the spin caloritronics research field. It opened up a new way to create the spin current by a combination of magnetic fields and heat. The SSE was observed in many kinds of materials including metallic, semiconductor, or insulating magnets, as well as non-magnetic materials. On the other hand, carbon-based materials have become one of the most exciting research areas recently due to its low cost, abundance and some exceptional functionalities. In this work, we have investigated the possibility of the SSE in bulk carbon materials for the first time. Thin platinum film (Pt), coated on the smoothened surface of the bulk carbon, was used as the spin detector via the inverse spin Hall effect (ISHE). The experiment for observing longitudinal SSE in the bulk carbon was set up by applying a magnetic field up to 30 kOe to the sample with the direction perpendicular to the applied temperature gradient. The induced voltage from the SSE was extracted. However, for conductive materials, e.g. carbon, the voltage signal under this set up could be a combination of the SSE and the anomalous Nernst effect (ANE). Therefore, two measurement configurations were carried out, i.e. the in-plane magnetization (IM), and the perpendicular-to-plane magnetization (PM). For the IM configuration, the SSE + ANE signals were detected where as the only ANE signal existed in the PM configuration. The results showed that there were the differences between the voltage signals from the IM and PM configurations implying the possibility of the SSE in the bulk carbon material. Moreover, it was found that the difference in the IM and PM signals was a function of the magnetic field strength, temperature difference, and measurement temperature. Although the magnitude of the possible SSE voltage in this experiment was rather low (less than 0.5 μV at 50 K), this research showed that potential of using low cost and abundant bulk carbon as spin current supplier or thermoelectric power generators.
NASA Astrophysics Data System (ADS)
Johnston, David C.
2017-12-01
A comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T , magnetic field H , and anisotropy field parameter hA 1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z -axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the x y plane, again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature TN, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the x y plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z -axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T ,H , and hA 1. Phase diagrams at T =0 in the Hz-hA 1 plane and at T >0 in the Hz-T plane are constructed for spins S =1 /2 . For hA 1=0 , the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As hA 1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in hA 1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Applications of the theory to extract hA 1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, David C.
Here, a comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T, magnetic field H, and anisotropy field parameter h A1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,more » again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature T N, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and h A1. Phase diagrams at T=0 in the H z– h A1 plane and at T > 0 in the H z– T plane are constructed for spins S=1/2. For h A1=0, the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As h A1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in h A1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Furthermore, applications of the theory to extract h A1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.« less
Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.
Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki
2016-09-01
To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.
Ohno-Matsui, Kyoko
Pathologic myopia (PM) is the only myopia that causes the loss of best-corrected visual acuity. The main reason for best-corrected visual acuity loss is complications specific to PM, such as myopic maculopathy, myopic traction maculopathy, and myopic optic neuropathy (or glaucoma). The meta-analyses of the PM study group (META-PM study) made a classification system for myopic maculopathy. On the basis of this study, PM has been defined as eyes having atrophic changes equal to or more severe than diffuse atrophy. Posterior staphyloma and eye deformity are important causes of developing vision-threatening complications. Posterior staphyloma is unique to PM, except for inferior staphyloma due to tilted disc syndrome. It is defined as an outpouching of the wall of the eye that has a radius of curvature that is less than the surrounding curvature of the wall of the eye. The mechanical load onto the important region for central vision (optic nerve and macula) is not comparable between eyes with and without posterior staphyloma. Three-dimensional magnetic resonance imaging is a powerful tool to analyze the entire shape of the eye. When ultra-widefield optical coherence tomography is available, it is expected to be a new tool that will surpass 3-dimensional magnetic resonance imaging. In the future, preventive therapies targeting staphyloma and eye deformity are expected before vision-threatening complications develop and it is too late for patients.
Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, G.J.
2001-10-29
Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency.more » This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.« less
NASA Astrophysics Data System (ADS)
Sudhakara, Dara; Prasanthi, Guvvala
2017-04-01
Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.
Magnetic analyses of powders from exhausted cabin air filters
NASA Astrophysics Data System (ADS)
Winkler, Aldo; Sagnotti, Leonardo
2013-04-01
The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.
Remagnetization effects due to lateral displacement above a PMG on bulk HTS magnet
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Ren, J. F.; Li, L. L.; Yang, X. F.; Ye, C. Q.; Wang, S. Y.
2012-12-01
For a high-Tc superconducting (HTS) maglev system with large force requirements, the use of magnetized bulk high-Tc superconductor magnets (MBSCMs) is a good candidate because of its strong flux pinning ability and corresponding high trapped flux. Different from the rare-earth permanent magnet (PM), the trapped flux of a MBSCM is sustained by the supercurrent produced by a magnetizing process, so the trapped flux is sensitive to variations of the supercurrent. The lateral displacement of a MBSCM above a PM guideway (PMG) will provide disturbance of the applied field and then alter the supercurrent as a process of remagnetization. Different magnetization histories will bring different remagnetization characteristics and consequently diverse levitation performances for a MBSCM during the lateral displacements. When the MBSCMs are applied into the HTS maglev system, the influence of lateral displacements on levitation performance should be taken into consideration. This article investigates the remagnetization characteristics of a MBSCM when it is subject to the lateral displacements above a PMG with different trapped magnetic flux and opposite magnetization polarities. Relevant analyses about the internal supercurrent configuration based on the critical state model are also included to better understand the remagnetization characteristic of a MBSCM.
Electromagnetic Signal Feedback Control for Proximity Detection Systems
NASA Astrophysics Data System (ADS)
Smith, Adam K.
Coal is the most abundant fossil fuel in the United States and remains an essential source of energy. While more than half of coal production comes from surface mining, nearly twice as many workers are employed by underground operations. One of the key pieces of equipment used in underground coal mining is the continuous mining machine. These large and powerful machines are operated in confined spaces by remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or pinned by a continuous mining machine. It is estimated that a majority of these accidents could have been prevented with the application of proximity detection systems. While proximity detection systems can significantly increase safety around a continuous mining machine, there are some system limitations. Commercially available proximity warning systems for continuous mining machines use magnetic field generators to detect workers and establish safe work areas around the machines. Several environmental factors, however, can influence and distort the magnetic fields. To minimize these effects, a control system has been developed using electromagnetic field strength and generator current to stabilize and control field drift induced by internal and external environmental factors. A laboratory test set-up was built using a ferrite-core magnetic field generator to produce a stable magnetic field. Previous work based on a field-invariant magnetic flux density model, which generically describes the electromagnetic field, is expanded upon. The analytically established transferable shell-based flux density distribution model is used to experimentally validate the control system. By controlling the current input to the ferrite-core generator, a more reliable and consistent magnetic field is produced. Implementation of this technology will improve accuracy and performance of existing commercial proximity detection systems. These research results will help reduce the risk of traumatic injuries and improve overall safety in the mining workplace.
Tuning the metamagnetism in a metallic helical antiferromagnet
NASA Astrophysics Data System (ADS)
Ma, S. C.; Liu, K.; Ma, C. C.; Ge, Q.; Zhang, J. T.; Hu, Y. F.; Liu, E. K.; Zhong, Z. C.
2017-12-01
The antiferromagnetic (AFM)-ferromagnetic (FM) conversion in martensite was observed in Mn/Ni-substitution upon FM elements, such as Fe or Co, in MnNiGe helical antiferromagnets. Here, we report an AFM-FM conversion and consequently a sharp magnetic-field-driven metamagnetic martensitic transformation from paramagnetic (PM) austenite to FM martensite in the Ni- and Mn-substituted MnNiGe alloys with indium, a non-magnetic and large-sized main group element. Accordingly, a giant magnetocaloric effect such that a twofold increase of the magnetic entropy change in MnNi0.92GeIn0.08 and even a nearly threefold increase in the Mn0.92NiGeIn0.08 alloy is obtained with respect to the MnNiGe0.95In0.05 alloy. The origin of AFM-FM conversion and resultantly sharp magnetic-field-induced PM-FM metamagnetic transformation is discussed based on the first-principles calculations and X-ray absorption spectroscopic results.
Vibration measurements and analyses for a magnet superconductor levitated system
NASA Astrophysics Data System (ADS)
Wen, Zheng; Liu, Yu; Yang, Wenjiang; Qiu, Ming
2007-12-01
Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position.
Hard permanent magnet development trends and their application to A.C. machines
NASA Technical Reports Server (NTRS)
Mildrum, H. F.
1981-01-01
The physical and magnetic properties of Mn-Al-C, Fe-Cr-Co, and RE-TM (rare earth-transition metal intermetallics) in polymer and soft metal bonded or sintered form are considered for ac circuit machine usage. The manufacturing processes for the magnetic materials are reviewed, and the mechanical and electrical properties of the magnetic materials are compared, with consideration given to the reference Alnico magnet. The Mn-Al-C magnets have the same magnetic properties and costs as Alnico units, operate well at low temperatures, but have poor high temperature performance. Fe-Cr-Co magnets also have comparable cost to Alnico magnets, and operate at high or low temperature, but are brittle, expensive, and contain Co. RE-Co magnets possess a high energy density, operate well in a wide temperature range, and are expensive. Recommendation for exploring the rare-earth alternatives are offered.
Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites
NASA Technical Reports Server (NTRS)
Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher
1992-01-01
The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt. percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt. percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Friction coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity in PM212/Au was not determined, it may be due to particle morphology differences between the gold and silver and their effect on powder metallurgy processing.
High ventricular lead impedance of a DDD pacemaker after cranial magnetic resonance imaging.
Baser, Kazim; Guray, Umit; Durukan, Mine; Demirkan, Burcu
2012-09-01
Management of electromagnetic interference in the form of magnetic resonance imaging (MRI) in patients with pacemakers (PMs) may be challenging. Serious consequences, especially in PM-dependent patients, may be encountered. Changes in device programming, asynchronous pacing, heating of the lead tip(s), and increased thresholds or even device dislocation may be experienced. We report of a patient with a DDD PM who underwent an emergent MRI, after which there was an increase in ventricular impedance as well as increased cardiac biomarkers. ©2011, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Permiakov, V.; Pulnikov, A.; Dupré, L.; De Wulf, M.; Melkebeek, J.
2003-05-01
In this article, the magnetic properties of nonoriented electrical steel under sinusoidal and distorted excitations are investigated for the whole range of unidirectional mechanical stresses. The distorted flux obtained from the tooth tip of 3 kW induction machine at no-load test was put into the measurement system. The total losses increase for compressive stress both under sinusoidal and distorted excitations. For tensile elastic stresses, the total losses first decrease and then increase in a very similar way for both excitations. In contrast, the difference between total losses under sinusoidal and distorted magnetic fluxes becomes smaller with increase of the plastic strain. This work is a serious step toward complete characterization of the magnetic properties of electrical steel in the teeth area of induction machines. A deeper insight of that problem can improve the design of induction machines and other electromagnetic devices.
Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method
Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing
2013-01-01
A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368
NASA Astrophysics Data System (ADS)
Moses, A. J.
1994-03-01
Flux rotating in the plane of laminations of amorphous materials or electrical steels can cause additional losses in electrical machines. To make full use of laboratory rotational magnetization studies, a better understanding of the nature of rotational flux in machine cores is needed. This paper highlights the need for careful laboratory simulation of the conditions which occur in actual machines. Single specimen tests must produce uniform flux over a given measuring region and output from field and flux sensors need careful analysis. Differences between thermal and flux sensing methods are shown as well as anomalies caused when the magnetisation direction is reversed in an anistropic specimen. Methods of overcoming these problems are proposed.
NASA Astrophysics Data System (ADS)
Pristup, A. G.; Toporkov, D. M.
2017-10-01
The results of the investigation of the cogging torque in permanent magnet synchronous machines, which is caused by the stator slotting and the rotor eccentricity, are presented in the paper. A new design of the machine has been developed in the course of the investigation, and the value of the cogging torque in this construction is less considerably compared to other constructions. In contrast to the available methods of the cogging torque reduction, the solution suggested not only decreases the level of the cogging torque but also has negligibly small influence on characteristics of the machine with the rotor eccentricity which is typical of the mass production and long-term usage.
Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine
NASA Astrophysics Data System (ADS)
de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis
2013-08-01
This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.
Method and system for controlling a permanent magnet machine during fault conditions
Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.
2004-05-25
Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.
Measurement and calculation of levitation forces between magnets and granular superconductors
NASA Technical Reports Server (NTRS)
Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.
1995-01-01
Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.
Automatic ball bar for a coordinate measuring machine
Jostlein, H.
1997-07-15
An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined. 5 figs.
Automatic ball bar for a coordinate measuring machine
Jostlein, Hans
1997-01-01
An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined.
Bound of dissipation on a plane Couette dynamo
NASA Astrophysics Data System (ADS)
Alboussière, Thierry
2009-06-01
Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely, the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in some cases, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number Pm fluids, the upper bound of energy dissipation is that of classical turbulence (i.e., proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below Pm-1 and follows a steeper evolution for magnetic Reynolds numbers above Pm-1 (i.e., proportional to the shear velocity to the power of 4) in the case of electrically insulating walls. However, the effect of wall conductance is crucial: for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.
Permanent-Magnet Meissner Bearing
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1994-01-01
Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.
Efficient forced vibration reanalysis method for rotating electric machines
NASA Astrophysics Data System (ADS)
Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo
2015-01-01
Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.
NASA Astrophysics Data System (ADS)
Laithwaite, E. R.; Kuznetsov, S. B.
1980-09-01
A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi
2015-08-24
This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solversmore » that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.« less
NASA Astrophysics Data System (ADS)
Asari, Ashraf; Guo, Youguang; Zhu, Jianguo
2017-08-01
Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.
New Cogging Torque Reduction Methods for Permanent Magnet Machine
NASA Astrophysics Data System (ADS)
Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.
2017-08-01
Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.
Study on magnetic force of electromagnetic levitation circular knitting machine
NASA Astrophysics Data System (ADS)
Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.
2018-06-01
The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.
[Research on Kalman interpolation prediction model based on micro-region PM2.5 concentration].
Wang, Wei; Zheng, Bin; Chen, Binlin; An, Yaoming; Jiang, Xiaoming; Li, Zhangyong
2018-02-01
In recent years, the pollution problem of particulate matter, especially PM2.5, is becoming more and more serious, which has attracted many people's attention from all over the world. In this paper, a Kalman prediction model combined with cubic spline interpolation is proposed, which is applied to predict the concentration of PM2.5 in the micro-regional environment of campus, and to realize interpolation simulation diagram of concentration of PM2.5 and simulate the spatial distribution of PM2.5. The experiment data are based on the environmental information monitoring system which has been set up by our laboratory. And the predicted and actual values of PM2.5 concentration data have been checked by the way of Wilcoxon signed-rank test. We find that the value of bilateral progressive significance probability was 0.527, which is much greater than the significant level α = 0.05. The mean absolute error (MEA) of Kalman prediction model was 1.8 μg/m 3 , the average relative error (MER) was 6%, and the correlation coefficient R was 0.87. Thus, the Kalman prediction model has a better effect on the prediction of concentration of PM2.5 than those of the back propagation (BP) prediction and support vector machine (SVM) prediction. In addition, with the combination of Kalman prediction model and the spline interpolation method, the spatial distribution and local pollution characteristics of PM2.5 can be simulated.
Performance characterization of a permanent-magnet helicon plasma thruster
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Charles, Christine; Boswell, Rod
2012-10-01
Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.
Tunable magnetic properties and magnetocaloric effect of off-stoichiometric LaMnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Tola, P. S.; Kim, H. S.; Kim, D. H.; Phan, T. L.; Rhyee, J. S.; Shon, W. H.; Yang, D. S.; Manh, D. H.; Lee, B. W.
2017-12-01
The crystal and electronic structures and the magnetic and magnetocaloric properties of off-stoichiometric LaMnO3 nanoparticles (NPs) with various particle sizes D = 20-100 nm were studied. The Rietveld refinement revealed that all NPs were crystallized in the rhombohedral structure, with varied structural parameters dependent on D. Magnetization (M) measurements indicated a considerable difference between zero-field-cooled and field-cooled magnetizations at temperatures below ferromagnetic-paramagnetic (FM-PM) phase transition, particularly for the samples with D = 25-40 nm. These results are ascribed to spin-glass-like behaviors and magnetic inhomogeneity. We also found the possibility of tuning the FM-PM phase transition temperature (TC) from 77 to 262 K, which is dependent on both D and W (the eg-electron bandwidth). Under an applied field of H = 50 kOe, the absolute maximum magnetic entropy change that achieved around TC can be improved from 4.02 J kg-1 K-1 for D = 40 nm to 6.36 Jṡ kg-1ṡ K-1 for D = 100 nm, corresponding to the relative-cooling-power values of 241-245 Jṡ kg-1. We also analyzed the data of M and magnetic entropy change based on theoretical models to further understand the magnetic property and phase-transition type of the NP samples.
Combined passive bearing element/generator motor
Post, Richard F.
2000-01-01
An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in amore » two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riordan, Seamus; Craver, Brandon; Kelleher, Aidan
The electric form factor of the neutron was determined from studies of the reaction \\rea{} in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. More than doubling themore » $Q^2$$-range over which it is known, we find \\GEn{}$$ = 0.0225 \\pm 0.0017 (stat) \\pm 0.0024 (syst)$, $$0.0200 \\pm 0.0023 \\pm 0.0018$$, and $$0.0142 \\pm 0.0019 \\pm 0.0013$$ for $Q^2$ = 1.72, 2.48, and 3.41~\\gevsq, respectively.« less
NASA Astrophysics Data System (ADS)
Xia, D.; Xia, Z.
2017-12-01
The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.
A linear helicon plasma device with controllable magnetic field gradient.
Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C
2012-06-01
Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.
Process capability improvement through DMAIC for aluminum alloy wheel machining
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra
2017-07-01
This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.
NASA Astrophysics Data System (ADS)
Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-06-01
We have investigated the structural and magnetic properties of Nd0.67Ba0.33MnO3 manganite and partial replacement of Mn with Fe and Cu compounds followed by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and vibrating sample magnetometer (VSM). The Rietveld refinement of XRD indicates orthorhombic crystal structure with I-mma space group for all the compounds and thus obtained lattice parameters confirm the presence of co-operative Jahn-Teller effect. XRD and XAS spectra results suggests the existence of Fe3+ in Fe-substituted compound where as a mixed state of Cu2+ and Cu3+ ions in the Cu-substituted compound. The ferromagnetic (FM) to paramagnetic (PM) transition and magnetic moment is found to decrease upon the substitution of Fe and Cu atoms because of the suppression of double exchange interaction. The theoretically obtained and experimentally determined values of effective PM moment and saturation magnetic moment confirms the presence of inhomogeneous magnetic states containing FM and antiferromagnetic clusters in all the studied compounds.
Reversible micromachining locator
Salzer, Leander J.; Foreman, Larry R.
1999-01-01
This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.
Electrical machines and assemblies including a yokeless stator with modular lamination stacks
Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose
2010-04-06
An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.
Electrical machines with superconducting windings. Part 3: Homopolar dc machines
NASA Astrophysics Data System (ADS)
Kullman, D.; Henninger, P.
1981-01-01
The losses in rotating liquid metal contacts and the problems in including liquid metals were theoretically and experimentally studied. These machines are shown realiable. For electric ship propulsion, they are a more efficient method of power transmission than mechanical gearboxes. However, weight reduction as compared to mechanical gearboxes can hardly be achieved with machines fully shielded by magnetic iron.
ERIC Educational Resources Information Center
Tkach, Jean A.; Chen, Xu; Freebairn, Lisa A.; Schmithorst, Vincent J.; Holland, Scott K.; Lewis, Barbara A.
2011-01-01
Speech sound disorders (SSD) are the largest group of communication disorders observed in children. One explanation for these disorders is that children with SSD fail to form stable phonological representations when acquiring the speech sound system of their language due to poor phonological memory (PM). The goal of this study was to examine PM in…
The Effects of Psoas Major and Lumbar Lordosis on Hip Flexion and Sprint Performance
ERIC Educational Resources Information Center
Copaver, Karine; Hertogh, Claude; Hue, Olivier
2012-01-01
In this study, we analyzed the correlations between hip flexion power, sprint performance, lumbar lordosis (LL) and the cross-sectional area (CSA) of the psoas muscle (PM). Ten young adults performed two sprint tests and isokinetic tests to determine hip flexion power. Magnetic resonance imaging was used to determine LL and PM CSA. There were…
Technology Development for Tapered-Wiggler Free-Electron Lasers
1984-04-01
3-12 . 3-8 Demagnetizing Field for Magnets in Assembled Wiggler, 3-14 the Contour Lines are of g H/M, where K (-B )0r is the Level of Magnetization . 3...of discrepancy may be due to demagnetization at the time of wiggler assembly. The demagnetizing a field for magnets in the presence of the entire... magnetization . The areas of £s0H/M -l- will suf fer Pm. some permanent demagnetization . This loss of magnetization is the reason %! for the slight rolloff
Miranda, Sofia Silveira de Castro; Alvarenga, Daniel; Rodrigues, João Carlos; Shinjo, Samuel Katsuyuki
2014-01-01
Although dermatomyositis (DM) and polymyositis (PM) share many clinical features in common, they have distinct pathophysiological and histological features. It is possible that these distinctions reflect also macroscopically, for example, in muscle alterations seen in magnetic resonance images (MRI). To compare simultaneously the MRI of various muscle compartments of the thighs of adult DM and PM. The present study is a cross-sectional that included, between 2010 and 2013, 11 newly diagnosed DM and 11 PM patients (Bohan and Peter's criteria, 1975), with clinical and laboratory activity. They were valued at RM thighs, T1 and T2 with fat suppression, 1.5 T MRI scanner sequences. The mean age at the time of MRI, the time between onset of symptoms and the realization of the MRI distribution of sex and drug therapy were comparable between the two groups (p>0.050). Concerning the MRI, muscle edema was significantly found in DM, and mainly in the proximal region of the muscles. The area of fat replacement was found predominantly in PM. The partial fat replacement area occurred mainly in the medial and distal region, whereas the total fat replacement area occurred mainly in the distal muscles. There was no area of muscle fibrosis. DM and PM have different characteristics on MRI muscles, alike pathophysiological and histological distinctions. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…
Compact Superconducting Power Systems for Airborne Applications (Postprint)
2009-01-01
rotating machin- ery such as motors and alternators, is to maximize the magnet- ic flux density. This can be achieved by using a higher current...future systems could be driven to much higher power ratios, since the initial machine configuration was a homopolar inductor alternator‡ (HIA). A... Homopolar inductor alternator is an electrically symmetrical synchro- nous generator with a field winding that has a fixed magnetic position in relation to
Design considerations for ultra-precision magnetic bearing supported slides
NASA Technical Reports Server (NTRS)
Slocum, Alexander H.; Eisenhaure, David B.
1993-01-01
Development plans for a prototype servocontrolled machine with 1 angstrom resolution of linear motion and 50 mm range of travel are described. Two such devices could then be combined to produce a two dimensional machine for probing large planar objects with atomic resolution, the Angstrom Resolution Measuring Machine (ARMM).
ERIC Educational Resources Information Center
Grunwald, Arnold
A project summary and 20 related papers are presented on the Argonne Braille Machine, a device which produces braille-equivalent information on magnetic tape rather than embossing dots on paper. The summary traces the machine's development while 10 papers cover such issues as user reactions, evaluation proposals, use and care of the machine, the…
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin
2018-06-15
The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.
Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B.
2008-12-01
Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
A linear helicon plasma device with controllable magnetic field gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.
2012-06-15
Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well asmore » its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.« less
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less
Non-Linear Meissner Effect in Mesoscopic Superconductors
1998-06-01
6525 ED Nijmegen, the Netherlands Abstract. Magnetization measurements on superconducting bulk samples and large radius cylinders had resulted in the...Phenomenological London’s theory that is found to be violated in recent magnetization measurements in superconducting mesoscopic discs that exhibit a...quantity. Recently Geim et al [1] used sub-micron Hall probes to detect the magnetization of thin (thickness down to d - 0.07 pm) single superconducting
Principle of Magnetodynamics for Composite Magnetic Pole
NASA Astrophysics Data System (ADS)
Animalu, Alexander
2014-03-01
It is shown in this paper that geometry provides the key to the new magnetodynamics principle of operation of the machine (invented by Dr. Ezekiel Izuogu) which has an unexpected feature of driving a motor with static magnetic field. Essentially, because an array of like magnetic poles of the machine is arranged in a half circular array of a cylindrical geometry, the array creates a non-pointlike magnet pole that may be represented by a ``magnetic current loop'' at the position of the pivot of the movable arm. As a result, in three-dimensional space, it is possible to characterize the symmetry of the stator magnetic field B and the magnetic current loop J as a cube-hexagon system by a 6-vector (J,B) (with J.B ≠0) comprising a 4x4 antisymmetric tensor analogous to the conventional electric and magnetic 6-vector (E,B) (with E.B ≠0) comprising the 4x4 antisymmetric tensor of classical electrodynamics The implications are discussed. Supported by International Centre for Basic Research, Abuja, Nigeria.
Random forest meteorological normalisation models for Swiss PM10 trend analysis
NASA Astrophysics Data System (ADS)
Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph
2018-05-01
Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.
NASA Astrophysics Data System (ADS)
Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.
2015-07-01
The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J. C.; Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, S.
2015-02-23
The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings aremore » involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.« less
Classification of sodium MRI data of cartilage using machine learning.
Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R
2015-11-01
To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.
The Levitation Characteristics of MGB2 Plates on Tracks of Permanent Magnets
NASA Astrophysics Data System (ADS)
Perini, E.; Bassani, E.; Giunchi, G.
2010-04-01
The bulk MgB2 can be manufactured in large plates by an innovative process: the reactive liquid Mg infiltration (Mg-RLI). According to this process it is possible to produce, even at lab scale, plates of 10÷20 cm in lateral dimensions. The superconducting material resulting is very dense and, even if it is in polycrystalline form, it levitates with respect to Permanent Magnets (PM), like the textured YBCO samples, up to 35 K. In order to control the levitation forces and stiffnesses of an MgB2 plate (10×10×1 cm3) moving with respect to a track of PM's (NdFeB bars arranged in 4 lines according to an Halbach disposition and separated by Iron flux concentrators), we have used an instrumented Cryogenic Levitation Apparatus (CLA). We have studied different kind of movements of the PM's track with respect to the MgB2 plate. First, we consider the vertical movement, assumed z direction, which describes the properly levitation characteristics. Secondly, we consider two kinds of lateral movements of the track, assumed x direction, with the long size of the magnets either perpendicular or parallel to the movement direction. The resulting configurations simulate the main movements that a superconducting levitating vehicle will do in a real track, either of axial or of guidance type. The levitation axial forces, measured in Field Cooling or Zero Field Cooling conditions, indicate that at the distance between superconducting plate and PM's of 4 mm it is possible to have an overall levitating pressure of 7 N/cm2.
Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.
Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar
2016-02-01
Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.
Statistical simulation of the magnetorotational dynamo.
Squire, J; Bhattacharjee, A
2015-02-27
Turbulence and dynamo induced by the magnetorotational instability (MRI) are analyzed using quasilinear statistical simulation methods. It is found that homogenous turbulence is unstable to a large-scale dynamo instability, which saturates to an inhomogenous equilibrium with a strong dependence on the magnetic Prandtl number (Pm). Despite its enormously reduced nonlinearity, the dependence of the angular momentum transport on Pm in the quasilinear model is qualitatively similar to that of nonlinear MRI turbulence. This demonstrates the importance of the large-scale dynamo and suggests how dramatically simplified models may be used to gain insight into the astrophysically relevant regimes of very low or high Pm.
NASA Astrophysics Data System (ADS)
Huang, Wentao; Hua, Wei; Yu, Feng
2017-05-01
Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.
NASA Astrophysics Data System (ADS)
Ni, X. Y.; Huang, H.; Du, W. P.
2017-02-01
The PM2.5 problem is proving to be a major public crisis and is of great public-concern requiring an urgent response. Information about, and prediction of PM2.5 from the perspective of atmospheric dynamic theory is still limited due to the complexity of the formation and development of PM2.5. In this paper, we attempted to realize the relevance analysis and short-term prediction of PM2.5 concentrations in Beijing, China, using multi-source data mining. A correlation analysis model of PM2.5 to physical data (meteorological data, including regional average rainfall, daily mean temperature, average relative humidity, average wind speed, maximum wind speed, and other pollutant concentration data, including CO, NO2, SO2, PM10) and social media data (microblog data) was proposed, based on the Multivariate Statistical Analysis method. The study found that during these factors, the value of average wind speed, the concentrations of CO, NO2, PM10, and the daily number of microblog entries with key words 'Beijing; Air pollution' show high mathematical correlation with PM2.5 concentrations. The correlation analysis was further studied based on a big data's machine learning model- Back Propagation Neural Network (hereinafter referred to as BPNN) model. It was found that the BPNN method performs better in correlation mining. Finally, an Autoregressive Integrated Moving Average (hereinafter referred to as ARIMA) Time Series model was applied in this paper to explore the prediction of PM2.5 in the short-term time series. The predicted results were in good agreement with the observed data. This study is useful for helping realize real-time monitoring, analysis and pre-warning of PM2.5 and it also helps to broaden the application of big data and the multi-source data mining methods.
Reversible micromachining locator
Salzer, L.J.; Foreman, L.R.
1999-08-31
This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.
Method and system for controlling a permanent magnet machine
Walters, James E.
2003-05-20
Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.
Near-road enhancement and solubility of fine and coarse ...
Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physical/chemical properties of PM in the near-road environment. To investigate the spatial profile and water solubility of elemental PM species near a major roadway, filter-based measurements of fine (PM2.5) and coarse (PM10-2.5) PM were simultaneously collected at multiple distances (10 m, 100 m, and 300 m) from Interstate I-96 in Detroit, Michigan during September–November 2010. Filters were extracted in water, followed by a hot acid extraction, and analyzed by magnetic sector field high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) to quantify water-soluble and acid-soluble trace elements for each PM size fraction. PM2.5 and PM10-2.5 species measured in the near-road samples included elements associated with traffic activity, local industrial sources, and regional pollution. Metals indicative of brake wear (Ba, Cu) were dramatically enriched near the roadway during downwind conditions (factor of 5 concentration increase), with the largest increase within 100 m of the roadway. Moderate near-roadway increases were observed for crustal elements and other traffic-related PM (Fe, Ca), and the lowest increases observed for regional PM species (S). Water solubility varied
Li, Yunling; Sun, Hui; Lai, Jiaping; Chang, Xiangyang; Zhang, Ping; Chen, Shili
2018-01-19
The authors describe a method for the determination of carbonyl pollutants adsorbed on ambient particulate matter (diameter < 2.5 μm; PM2.5). 2,4-Dinitrophenylhydrazine (DNPH) was used to derivatize carbonyl compounds. Magnetic molecularly imprinted polymers (MMIPs) selective for 2,4-DNPH were synthesized to remove excess of the derivatization reagent 2,4-DNPH. Micellar electrokinetic chromatography (MEKC) was then applied to the separation of DNPH-derivatized carbonyl compounds. The increased sensitivity of MEKC with UV detection and the sample cleanup resulted in drastically reduced sampling times (15 min) with detection limits ranging from 0.005-0.068 μg·m -3 for different carbonyls. The method was applied to continuous monitoring of carbonyl compounds on ambient PM 2.5 for two consecutive months. The concentrations and gas-to-particle ratios of carbonyls were determined, and a statistical method was used to evaluate the correlation among different carbonyls. It was observed that the total concentration of carbonyls, especially of multi-carbon carbonyls, increases with the level of air pollution. The level of isovaleraldehyde rises sharply and accounts for 37% of total carbonyls on days with extremely humid haze. The ratio of acetaldehyde to propionaldehyde (C2/C3) decreases with the duration and heaviness of haze conditions. Results indicate that anthropogenic emissions and the characteristics of the atmosphere (e.g. temperature, sunlight, and relative humidity) are the main factors that lead to abnormally high levels of isovaleraldehyde and other carbonyls in ambient PM 2.5. Graphical abstract Schematic of a method for the determination of carbonyl pollutants adsorbed on ambient fine particle of type PM2.5. Magnetic molecularly imprinted polymers (MMIPs) were synthesized to remove the excess derivatization reagent (2,4-DNPH) in air sample prior to CE separation.
Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.
Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng
2009-11-09
Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.
Permanent magnet energy conversion machine with magnet mounting arrangement
Hsu, John S.; Adams, Donald J.
1999-01-01
A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.
NASA Astrophysics Data System (ADS)
Harmening, Thomas; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer
2010-02-01
The stannide EuRuSn 3 was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled quartz glass sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data (LaRuSn 3 type, Pm3¯n, a = 976.0(1) pm, wR2 = 0.0399, 317 F2 values, and 13 variables). EuRuSn 3 shows modified Curie-Weiss behaviour in the temperature range 50-305 K with an experimental magnetic moment of 7.34(1) μB per formula unit. Thus, the europium atoms are not in a purely divalent state. Low field susceptibility measurement indicates a ferro- or ferrimagnetic ordering at TC = 11.2(2) K and magnetization measurements indicate EuRuSn 3 as a non-collinear ferro- or ferrimagnet. 151Eu Mössbauer spectroscopic measurements suggested one europium site to be static mixed valent with a Eu 2+/Eu 3+ ratio close to one and the other site purely divalent. This was supported by substituting the Eu 3+ atoms with Y 3+ in a sample with a composition of Eu 0.7Y 0.3RuSn 3 ( a = 971.24(8) pm, wR2 = 0.0485, 313 F2 values, 14 variables). The 119Sn Mössbauer spectra show a pronounced Gol'danskii-Karyagin effect in the paramagnetic range and a magnetic hyperfine field distribution at 4.2 K, due to the complex magnetic structure. The influence of the valence electron concentration on the europium valence was tested via Ru/Pd substitution. A EuRu 0.8Pd 0.2Sn 3 sample shows almost purely divalent europium.
Magnetic, Electrical and Dielectric Properties of LaMnO3+η Perovskite Manganite.
NASA Astrophysics Data System (ADS)
v, Punith Kumar; Dayal, Vijaylakshmi
The high pure polycrystalline LaMnO3+η perovskite manganite has been synthesized using conventional solid state reaction method. The studied sample crystallizes into orthorhombic O', phase indexed with Pbnm space group. The magnetization measurement exhibits that the studied sample shows paramagnetic (PM) to ferromagnetic (FM) phase transition at TC = 191.6K followed with a frustration due to antiferromagnetic (AFM) kind of spin ordering at low temperature, Tf = 85.8K. The electrical resistivity measurements carried out at 0 tesla and 8 tesla magnetic field exhibits insulating kind of behavior throughout the measured temperature range. The resistivity at 0 tesla exhibits low temperature FM insulator to high temperature PM insulator type phase transition at TC = 191.6K similarly as observed from magnetization measurement. The application of the magnetic field (8 tesla) shifts TC to higher temperature side and the charge transport follows Shklovskii Efros variable range hopping (SE VRH) mechanism. The temperature and frequency dependent dielectric permittivity studied for the sample exhibits relaxation process explained based on Debye +Maxwell-Wagner relaxation mechanism. Department of Atomic Energy-Board of Research in Nuclear Sciences, Government of INDIA.
A magnetic damper for first mode vibration reduction in multimass flexible rotors
NASA Technical Reports Server (NTRS)
Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.
1989-01-01
Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.
Noninterleaved round beam lattice for light sources
NASA Astrophysics Data System (ADS)
Agapov, Ilya; Brinkmann, Reinhard; Keil, Joachim; Wanzenberg, Rainer
2018-05-01
A conceptual design and performance of a round beam lattice for synchrotron light sources based on the phase space exchange principle and the noninterleaved sextupole distribution is presented. Optics design is performed for an approximately 30 pm emittance 6 GeV machine of 2300 m circumference which combines cells with and without straight sections for the insertion devices.
Assessment and analysis of noise levels in and around Ib river coalfield, Orissa, India.
Mohapatra, Haraprasad; Goswami, Shreerup
2012-05-01
Heavy earth moving machineries, different capacities of dumpers and loaders, blasting and drilling make the mining environment noisy. A study was carried out to assess the noise level in different opencast projects in and around Belpahar and Brajarajnagar areas of Ib river coalfield. Noise assessment was carried out in various residential, commercial and industrial places. The noise levels, especially L(eq) values of different wheel loaders, dumpers, shovel and crusher units were also assessed and were more than permissible limit (90dB) in some of their operating conditions. Sound ressure level measurements while drilling into coal and overburden at Lakhanpur opencast project yielded noise levels (L(eq)) of 81.33 to 96.2 dB. Thus, these L(eq) values of drilling machines in most of the operating conditions were above permissible limit. The average noise intensities (6 a.m.-10 p.m.: 51.6-60.875dB and 10 p.m.-6 a.m.: 42.6-49.8dB) and L(eq) values (6 a.m.-10 p.m.: 50.9-67.0dB and 10 p.m.-6 a.m.: 40.8-53.3dB) during both day and night time of the residential areas around the Ib river coalfield were in close proximity or beyond the permissible limit. The L(eq) values at some of the commercial and industrial places were beyond (6 a.m.-10 p.m.: 61.6-88.3 dB and 10 p.m.-6 a.m.: 55.4-64.8dB) permissible limit. However, in most of the cases, the L(max) noise values were more (6 a.m.-10 p.m.: 68.5-91.4 dB and 10 p.m.-6 a.m.: 69.3-76.4dB) than the permissible limit. Analysis of variance was also computed for heavy earth moving machineries in different operating conditions and also for different residential, commercial and industrial places to infer the level of significance. The difference of noise intensity produced by different wheel loaders at Lakhanpur and Lilari opencast projects, drilling machines at Lakhanpur opencast project, 50 tons capacity dumpers at various conditions of Ib river coalfield within the same operating condition was significant at both 5% and 1% levels of significance. Similarly, the variance of estimated noise level in residential places during day time and commercial and industrial places during day and night time was significant at both 5% and 1% levels of significance. Moreover, a preliminary survey adopting questionnaire method amongst the mine workers and local inhabitants was also carried out to evaluate their perception about the mining related noise.
Complex magnetic properties and large magnetocaloric effects in RCoGe (R=Tb, Dy) compounds
NASA Astrophysics Data System (ADS)
Zhang, Yan; Dong, Qiaoyan; Zheng, Xinqi; Liu, Yanli; Zuo, Shulan; Xiong, JieFu; Zhang, Bo; Zhao, Xin; Li, Rui; Liu, Dan; Hu, Feng-xia; Sun, Jirong; Zhao, Tongyun; Shen, Baogen
2018-05-01
Complicated magnetic phase transitions and Large magnetocaloric effects (MCEs) in RCoGe (R=Tb, Dy) compounds have been reported in this paper. Results show that the TbCoGe compounds have a magnetic phase transition from antiferromagnetic to paramagnetic (AFM-PM) at TN˜16 K, which is close to the value reported by neutron diffraction. The DyCoGe compound undergoes complicated phase changes from 2 K up to 300 K. The peak at 10 K displays a phase transition from antiferromagnetic to ferromagnetic (AFM-FM). In particular, a significant ferromagnetic to paramagnetic (FM-PM) phase transition was found at the temperature as high as 175 K and the cusp becomes more abrupt with the magnetic field increasing from 0.01 T to 0.1 T. The maximum value of magnetic entropy change of TbCoGe and DyCoGe compounds achieve 14.5 J/kg K and 11.5 J/kg K respectively for a field change of 0-5 T. Additionally, the correspondingly considerable refrigerant capacity value of 260 J/kg and 242 J/kg are also obtained respectively, suggesting that both TbCoGe and DyCoGe compounds could be considered as good candidates for low temperature magnetic refrigerant.
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federrath, Christoph; Schober, Jennifer; Bovino, Stefano
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/ηmore » = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.« less
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
Method and system for controlling start of a permanent magnet machine
Walters, James E.; Krefta, Ronald John
2003-10-28
Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.
Applications of high-temperature powder metal aluminum alloys to small gas turbines
NASA Technical Reports Server (NTRS)
Millan, P. P., Jr.
1982-01-01
A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.
Design and analysis of a field modulated magnetic screw for artificial heart
NASA Astrophysics Data System (ADS)
Ling, Zhijian; Ji, Jinghua; Wang, Fangqun; Bian, Fangfang
2017-05-01
This paper proposes a new electromechanical energy conversion system, called Field Modulated Magnetic Screw (FMMS) as a high force density linear actuator for artificial heart. This device is based on the concept of magnetic screw and linear magnetic gear. The proposed FMMS consists of three parts with the outer and inner carrying the radially magnetized helically permanent-magnet (PM), and the intermediate having a set of helically ferromagnetic pole pieces, which modulate the magnetic fields produced by the PMs. The configuration of the newly designed FMMS is presented and its electromagnetic performances are analyzed by using the finite-element analysis, verifying the advantages of the proposed structure.
Discrimination of particulate matter emission sources using stochastic methods
NASA Astrophysics Data System (ADS)
Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek
2016-12-01
Particulate matter (PM) is one of the criteria pollutants which has been determined as harmful to public health and the environment. For this reason the ability to recognize its emission sources is very important. There are a number of measurement methods which allow to characterize PM in terms of concentration, particles size distribution, and chemical composition. All these information are useful to establish a link between the dust found in the air, its emission sources and influence on human as well as the environment. However, the methods are typically quite sophisticated and not applicable outside laboratories. In this work, we considered PM emission source discrimination method which is based on continuous measurements of PM concentration with a relatively cheap instrument and stochastic analysis of the obtained data. The stochastic analysis is focused on the temporal variation of PM concentration and it involves two steps: (1) recognition of the category of distribution for the data i.e. stable or the domain of attraction of stable distribution and (2) finding best matching distribution out of Gaussian, stable and normal-inverse Gaussian (NIG). We examined six PM emission sources. They were associated with material processing in industrial environment, namely machining and welding aluminum, forged carbon steel and plastic with various tools. As shown by the obtained results, PM emission sources may be distinguished based on statistical distribution of PM concentration variations. Major factor responsible for the differences detectable with our method was the type of material processing and the tool applied. In case different materials were processed by the same tool the distinction of emission sources was difficult. For successful discrimination it was crucial to consider size-segregated mass fraction concentrations. In our opinion the presented approach is very promising. It deserves further study and development.
1987-03-01
compound promises to reduce weight of future permanent magnet motors by 20 to 30 percent; a similar reduction is expected in size (approximately 20...drive systems. The AC permanent magnet (brushless DC motor) is rapidly evolving and will replace most electrically excited machines. Permanent magnet motors using
Torque ripple reduction in electric machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi
An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machinemore » is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.« less
High-Performance Permanent Magnets for Energy-Efficient Devices
NASA Astrophysics Data System (ADS)
Hadjipanayis, George
2012-02-01
Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.
NASA Astrophysics Data System (ADS)
Qian, Li
2016-04-01
Increasing of particulates in the air in city became a serious problem , but in the Beijing area students rarely research such questions. The intelligent instrument of suspended particulate matter sampler which introduce from the institute of geology and geophysics, Chinese academy of sciences can be collected for all kinds of grain size of suspended matter in the air.We put them near schools,so the PM2.5 in the air near our shool can be collected. The method for analysis is the environmental magnetism, etc. Numerous studies have demonstrated rapid and non-destructive magnetic parameters measurement for rapid estimation of particulate sources of heavy metals and provides a very effective means. Environmental magnetism is a frontier science among earth science, environmental science and magnetism,which has been applied into many fields because it is capable of providing important information for studying the regional or global environmental changes and the impact of human activity on environment. Testing magnetic parameters of the particle can extract atmospheric particulate matter source, distribution, pollution level and dynamic change information. Measured the magnetic parameters of ARM, IRM, hysteresis loop , element composition, soil particle size of the soil, leaf, the river and dustfall samples and PM2.5 of the atmospheric dustfall samples on campus and the Beijing city.By means of environmental magnetism analysis of atmospheric pollutants category, amount, etc. Magnetic properties of pollutants may indicate the source of the pollutants, the nature of the analysis of pollutants, monitoring pollutant change over time.
Rats avoid high magnetic fields: dependence on an intact vestibular system
Houpt, Thomas A.; Cassell, Jennifer A.; Riccardi, Christina; DenBleyker, Megan D.; Hood, Alison; Smith, James C.
2009-01-01
Summary HOUPT, T.A., J.A. CASSELL, C. RICCARDI, M.D. DENBLEYKER, A. HOOD, AND J.C. SMITH. Rats avoid high magnetic fields: dependence on an intact vestibular system. PHYSIOL BEHAV 00(0)000-000, 2006. High strength static magnetic fields are thought to be benign and largely undetectable by mammals. As magnetic resonance imaging (MRI) machines increase in strength, however, potential aversive effects may become clinically relevant. Here we report that rats find entry into a 14.1 T magnet aversive, and that they can detect and avoid entry into the magnet at a point where the magnetic field is 2 T or lower. Rats were trained to climb a ladder through the bore of a 14.1 T superconducting magnet. After their first climb into 14.1 T, most rats refused to re-enter the magnet or climb past the 2 T field line. This result was confirmed in a resistive magnet in which the magnetic field was varied from 1 to 14 T. Detection and avoidance required the vestibular apparatus of the inner ear, because labyrinthectomized rats readily traversed the magnet. The inner ear is a novel site for magnetic field transduction in mammals, but perturbation of the vestibular apparatus would be consistent with human reports of vertigo and nausea around high strength MRI machines. PMID:17585969
2007-02-01
5d. PROJECT NUMBER Leo L. Cheng, Ph.D. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...Scott RM, Anthony DC, Gonzalez RG, Black PM. Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance...Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurg 2002;96: 1023–1031. 7
NASA Astrophysics Data System (ADS)
Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu
2017-05-01
Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.
Electro-dynamic machine, system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Wen; Ramanan, Varagur
One embodiment is a unique Vernier machine comprising a rotor and a stator. The rotor comprises a back portion and a plurality of permanent magnets. The stator comprises a plurality of ferromagnetic arm structures, a plurality of ferromagnetic pole structures extending from each of the ferromagnetic arm structures in a direction toward the permanent magnets, and a plurality of conductive windings disposed about respective ones of the plurality of ferromagnetic arm structures. The ferromagnetic pole structures are structured to collect magnetic flux from the permanent magnets. The ferromagnetic pole structures of each of said ferromagnetic arm structures are spaced apartmore » from one another according to a non-uniform pattern such that the ferromagnetic pole structures of a given ferromagnetic arm structure have substantially the same angular position relative to the permanent magnets radially opposite from the ferromagnetic pole structures of the given ferromagnetic arm structure.« less
Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI
Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar
2016-01-01
Abstract Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system. PMID:28458919
Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city
NASA Astrophysics Data System (ADS)
Kong, Shaofei; Lu, Bing; Bai, Zhipeng; Zhao, Xueyan; Chen, Li; Han, Bin; Li, Zhiyong; Ji, Yaqin; Xu, Yonghai; Liu, Yong; Jiang, Hua
2011-08-01
30 re-suspended dust samples were collected from building surfaces of an oilfield city, then re-suspended through PM 2.5, PM 10 and PM 100 inlets and analyzed for 10 metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb by inductively coupled plasma-mass spectroscopy. Metals concentrations in different fractions and locations were studied. Metals sources were identified by cluster and primary component analysis. The potential risk to human health was assessed by human exposure model. Results showed that Zn, Mn, Pb and Cu were higher in all the three fractions. V, Cr, Mn and Co ranged close to the background values of Chinese soil indicating that they were mainly from crustal materials. Concentrations of Zn, Mn, Pb, V, Cr, Ni, Co and Cd were higher in old district than that in new district for the three fractions. The PM 2.5/PM 10, PM 10/PM 100 and PM 2.5/PM 100 ratios were higher for Zn, Cd, Cu, Pb, Ni, As and Cr (all higher than 1.0), and lower for Co, Mn and V (all less than or close to 1.0) which meant that anthropologic sources associated metals were more easily accumulated in finer particles than metals from crustal materials. Spatial variations indicated that the ten metals peaked at surroundings near railway station, gas stations, industrial boilers and machine manufacturing plant implying the influence of local vehicle emission, fossil fuel combustion and industrial activities as well as crustal materials which was verified by cluster analysis and primary component analysis results. Ingestion of dust particles appeared to be the main route of exposure to re-suspended dust. Hazard Indexes of As were both highest for children and adult which could be a potential threat to human health for non-cancer effect and it also exhibited the highest values for cancer effect as 1.01E-06, 7.04E-07 and 7.21E-07 for PM 2.5, PM 10 and PM 100, respectively.
Permanent magnet machine with windings having strand transposition
Qu, Ronghai; Jansen, Patrick Lee
2009-04-21
This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.
NASA Technical Reports Server (NTRS)
Kuznetsov, Stephen; Marriott, Darin
2008-01-01
Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
NASA Astrophysics Data System (ADS)
Kiss, L. F.; Bakonyi, I.
2017-11-01
There have been extended studies on the appearance of ferromagnetism in transition-metal-metalloid (MD) glasses. In particular, the paramagnetic (PM) to ferromagnetic (FM) transition has been investigated on numerous (Ni100-xFex)-MD alloys upon the introduction of Fe where MD can represent a combination of various metalloid elements, while keeping the metal/metalloid ratio constant. It has been reported that adding a sufficient amount of Fe to a Pauli PM Ni-MD alloy matrix first induces a spin-glass (SG) state at low temperatures which goes over to a PM state at higher temperatures. Beyond a certain Fe content, xc, the SG state transforms to a FM state upon increasing the temperature. By plotting the characteristic transition temperatures as a function of the Fe content, a magnetic phase diagram can be constructed for each Ni-Fe-MD system which has a multicritical point (MCP) at xc. By using the reported magnetic phase diagrams of various Ni-Fe-MD alloy systems, it is shown that the critical Fe content, xc scales inversely with the density of states at the Fermi level, N(EF), of the parent Ni-MD matrix. This means that the higher the N(EF), the lower the critical Fe content to induce ferromagnetism in the Ni-MD matrix. This is then discussed in terms of the Stoner enhancement factor, S, which characterizes the tendency of the matrix to become ferromagnetic.
78 FR 55219 - Safety Zone; Flying Machine Competition, Chicago, IL
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... event has been scheduled by a commercial entity to take place from 11 a.m. until 4 p.m. on September 21... adversely alter the budget of any grant or loan recipients, and will not raise any novel legal or policy...-scene representative. 2. Impact on Small Entities The Regulatory Flexibility Act of 1980 (RFA), 5 U.S.C...
Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid
NASA Astrophysics Data System (ADS)
Yang, Dexing; Du, Lei; Xu, Zengqi; Jiang, Yajun; Xu, Jian; Wang, Meirong; Bai, Yang; Wang, Haiyan
2014-02-01
A magnetic field sensor based on a tilted fiber Bragg grating (TFBG) coated with magnetic fluid is proposed and demonstrated experimentally. The sensing element is made by injecting the magnetic fluid into a capillary tube which contains a TFBG. The resonant wavelengths of the cladding modes of TFBG shift by varying the magnetic field which is perpendicular to the axis of TFBG. The results indicate that the resonant wavelength shifts of the cladding modes show a nonlinear dependence on the magnetic field. As the magnetic field increases to 32 mT, the largest resonant wavelength shift reaches to 106 pm. Moreover, this sensor shows good repeatability when it is used for magnetic field sensing.
NASA Astrophysics Data System (ADS)
Schmidt, Jonathan; Chen, Liming; Botti, Silvana; Marques, Miguel A. L.
2018-06-01
We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB2C2 composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be ˜10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements.
3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores
Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus
2017-01-01
Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core. PMID:29257063
3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores.
Shilyashki, Georgi; Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus
2017-12-19
Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core.
Effects of pole flux distribution in a homopolar linear synchronous machine
NASA Astrophysics Data System (ADS)
Balchin, M. J.; Eastham, J. F.; Coles, P. C.
1994-05-01
Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.
Electronically commutated motors for vehicle applications
NASA Astrophysics Data System (ADS)
Echolds, E. F.
1980-02-01
Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.
Electronically commutated dc motors for electric vehicles
NASA Technical Reports Server (NTRS)
Maslowski, E. A.
1981-01-01
A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.
Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalzov, I. V.; Brown, B. P.; Schnack, D. D.
2011-03-15
The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMRODmore » code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.« less
Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers
NASA Technical Reports Server (NTRS)
Chen, Weibo; Jaeger, Michael D.
2013-01-01
A design of an Active Magnetic Regenerative Refrigeration (AMRR) system has been developed for space applications. It uses an innovative 3He cryogenic circulator to provide continuous remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. A critical component technology for this cooling system is a highly efficient active magnetic regenerator, which is a regenerative heat exchanger with its matrix material made of magnetic refrigerant gadolinium gallium garnet (GGG). Creare Inc. is developing a microchannel GGG regenerator with an anisotropic structured bed for high system thermal efficiency. The regenerator core consists of a stack of thin, single-crystal GGG disks alternating with thin polymer insulating layers. The insulating layers help minimize the axial conduction heat leak, since GGG has a very high thermal conductivity in the regenerator s operating temperature range. The GGG disks contain micro channels with width near 100 micrometers, which enhance the heat transfer between the circulating flow and the refrigerant bed. The unique flow configuration of the GGG plates ensures a uniform flow distribution across the plates. The main fabrication challenges for the regenerator are the machining of high-aspect-ratio microchannels in fragile, single-crystal GGG disks and fabrication and assembly of the GGG insulation layers. Feasibility demonstrations to date include use of an ultrashort- pulse laser to machine microchannels without producing unacceptable microcracking or deposition of recast material, as shown in the figure, and attachment of a thin insulation layer to a GGG disk without obstructing the flow paths. At the time of this reporting, efforts were focused on improving the laser machining process to increase machining speed and further reduce microcracking.
Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao
2017-07-24
We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).
Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves.
Nicolas, William J; Grison, Magali S; Trépout, Sylvain; Gaston, Amélia; Fouché, Mathieu; Cordelières, Fabrice P; Oparka, Karl; Tilsner, Jens; Brocard, Lysiane; Bayer, Emmanuelle M
2017-06-12
Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER-PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER-PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell-cell communication.
Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications
NASA Astrophysics Data System (ADS)
Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.
Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C
2008-09-30
A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.
Magnet design for a low-emittance storage ring
Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan
2014-01-01
The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980
NASA Astrophysics Data System (ADS)
Faraz, Ahmad; Ricote, Jesus; Jimenez, Ricardo; Maity, Tuhin; Schmidt, Michael; Deepak, Nitin; Roy, Saibal; Pemble, Martyn E.; Keeney, Lynette
2018-03-01
Here, we report the effect of A-site substitution of Tb at the expense of Bi on the ferroelectric and magnetic properties in m = 5 layered 2-D Aurivillius Bi6Ti3Fe2O18 thin films. The nominal stoichiometry of the prepared compound is Tb0.40Bi5.6Fe2Ti3O18, Tb0.90Bi5.1Fe2Ti3O18, and Bi6Ti3Fe2O18. Phase examination reveals that only 0.40 mol. % is successfully substituted forming Tb0.40Bi5.6Fe2Ti3O18 thin films. Lateral and vertical piezoresponse switching loops up to 200 °C reveal responses for Bi6Ti3Fe2O18, Tb substituted Tb0.40Bi5.6Fe2Ti3O18, and Tb0.90Bi5.1Fe2Ti3O18 thin films along the in-plane (±42.31 pm/V, 88 pm/V and ±134 pm/V, respectively) compared with the out-of-plane (±6.15 pm/V, 19.83 pm/V and ±37.52 pm/V, respectively). The macroscopic in-plane polarization loops reveal in-plane saturation (Ps) and remanence polarization (Pr) for Bi6Ti3Fe2O18 of ±26.16 μC/cm2 and ±22 μC/cm2, whereas, ±32.75 μC/cm2 and ±22.11 μC/cm2, ±40.30 μC/cm2 and ±28.5 μC/cm2 for Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 thin films, respectively. No ferromagnetic signatures were observed for Bi6Ti3Fe2O18 and Tb0.40Bi5.6Fe2Ti3O18. However, a weak response was observed for the Tb0.90Bi5.1Fe2Ti3O18 at 2 K. Microstructural analysis of Tb0.90Bi5.1Fe2Ti3O18 revealed that it contains 4 vol. % Fe:Tb rich areas forming FexTbyOz, which accounts for the observed magnetic moment. This study demonstrates the importance of thorough microstructural analysis when determining whether magnetic signatures can be reliably assigned to the single-phase system. We conclude that Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 samples are not multiferroic but demonstrate the potential for Fe-RAM applications.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang
2018-05-01
Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.
Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.; Berenc, T.; Sun, Y.
The Advanced Photon Source (APS) is pursuing an upgrade to the storage ring to a hybrid seven-bend-achromat design [1]. The nominal design provides a natural emittance of 67 pm [2]. By adding reverse dipole fields to several quadrupoles [3, 4] we can reduce the natural emittance to 41 pm while simultaneously providing more optimal beta functions in the insertion devices and increasing the dispersion function at the chromaticity sextupole magnets. The improved emittance results from a combination of increased energy loss per turn and a change in the damping partition. At the same time, the nonlinear dynamics performance is verymore » similar, thanks in part to increased dispersion in the sextupoles. This paper describes the properties, optimization, and performance of the new lattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, S.K.; Kim, H.S.; Kim, C.G.
1998-05-01
a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less
High Performance Magnetic Bearings for Aero Applications
NASA Technical Reports Server (NTRS)
Allaire, P. E.; Knospe, C. R.; Williams, R. D.; Lewis, D. W.; Barrett, L. E.; Maslen, E. H.; Humphris, R. R.
1997-01-01
Several previous annual reports were written and numerous papers published on the topics for this grant. That work is not repeated here in this final report. Only the work completed in the final year of the grant is presented in this final report. This final year effort concentrated on power loss measurements in magnetic bearing rotors. The effect of rotor power losses in magnetic bearings are very important for many applications. In some cases, these losses must be minimized to maximize the length of time the rotating machine can operate on a fixed energy or power supply. Examples include aircraft gas turbine engines, space devices, or energy storage flywheels. In other applications, the heating caused by the magnetic bearing must be removed. Excessive heating can be a significant problem in machines as diverse as large compressors, electric motors, textile spindles, and artificial heart pumps.
NASA Astrophysics Data System (ADS)
Kedous-Lebouc, A.; Messal, O.; Youmssi, A.
2017-03-01
Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.
Schober, Jennifer; Schleicher, Dominik; Federrath, Christoph; Klessen, Ralf; Banerjee, Robi
2012-02-01
The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus it is expected to depend crucially on the nature of the turbulence. In this paper, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(ℓ)proportional ℓ([symbol see text])V}, where ℓ and v(ℓ) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_{crit}, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence ([symbol see text] = 1/3), we find that the critical magnetic Reynolds number is Rm(crit) (K) ≈ 110 and for Burgers turbulence ([symbol see text] = 1/2) Rm(crit)(B) ≈ 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Γ proportional Re((1-[symbol see text])/(1+[symbol see text])) in the limit of infinite magnetic Prandtl number. For decreasing magnetic Prandtl number (down to Pm >/~ 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB approximation, which becomes invalid for a magnetic Prandtl number of about unity.
1994-03-25
digits than SYSTEM.MAXDIGITS: C24113L..Y (14 tests) C35705L..Y (14 tests) C35706L..Y (14 tests) C35707L..Y (14 tests) 2-1 C35708L..Y (14 tests) C35802L...MACHINE CODETYPE : REGISTERTYPE MANTISSADOC : 31 A-2 MAX_- DIGITS : 15 MAX_-INT : 9223372036854775807 MAX_-INTPLUS_1 : 9223372036854775808 MIN_ INT...words. A libary task is formed when a task object is declared at the outermost level of a package. Library tasks ame created and activated during the
Electromagnetic machines with Nd-Fe-B magnets
NASA Astrophysics Data System (ADS)
Hanitsch, Rolf
1989-08-01
Permanent magnet motors are now becoming more accepted for general use in industrial fixed and variable speed drives. With the application of high-energy permanent magnets, such as Nd-Fe-B, the new motors offer higher efficiency and reduced size and weight compared with wound field energy converters of the same rating.
Beckerman, Bernardo S; Jerrett, Michael; Serre, Marc; Martin, Randall V; Lee, Seung-Jae; van Donkelaar, Aaron; Ross, Zev; Su, Jason; Burnett, Richard T
2013-07-02
Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which presents challenges to estimating exposures for health effects assessment. Here we created a model to predict ambient particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) across the contiguous United States to be applied to health effects modeling. We developed a hybrid approach combining a land use regression model (LUR) selected with a machine learning method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals. The PM2.5 data set included 104,172 monthly observations at 1464 monitoring locations with approximately 10% of locations reserved for cross-validation. LUR models were based on remote sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R(2) values for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote sensing is a strong predictor of ground-level concentrations. In the models including the BME interpolation of the residuals, cross-validated R(2) were 0.79 for both configurations; the model without remotely sensed data described more fine-scale variation than the model including remote sensing. Our results suggest that our modeling framework can predict ground-level concentrations of PM2.5 at multiple scales over the contiguous U.S.
Li, Weide; Kong, Demeng; Wu, Jinran
2017-01-01
Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality.
Wu, Jinran
2017-01-01
Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality. PMID:28932237
Guy, Alison; McGrogan, Damian; Inston, Nicholas; Ready, Andrew
2015-04-01
The logistics of deceased-donor renal transplants are largely affected by cold ischemia time. However, to attain successful outcomes, other issues must be considered. Extending cold ischemia time to accommodate these issues would be valuable. We investigated the role of hypothermic machine perfusion to extend cold ischaemia time. Deceased-donor kidneys were allocated to a storage method, depending on predicted time to operation. Kidneys to be transplanted from 8:00 AM to 8:00 PM in the transplant room remained in static cold storage. If predicted operating time was out of hours, the kidney was transferred to hypothermic machine perfusion and transplanted at the earliest opportunity on the dedicated transplant list. There were 74 kidneys transplanted from hypothermic machine perfusion and 101 kidneys from static cold storage. Median cold ischemia time was 23.85 hours in the hypothermic machine perfusion group, compared with 13 hours in the static cold storage group (P ≤ .0001). There were 20 kidneys (27%) from hypothermic machine perfusion that had delayed graft function, compared with 47 kidneys (47%) in the static cold storage group (P = .012). There were no other significant differences in graft or postoperative complications. This study demonstrated that improved early graft outcomes can be achieved following longer cold ischemia time by using hypothermic machine perfusion rather than static cold storage. This effect is likely multifactorial including the inherent effects of hypothermic machine perfusion, improved recipient preparation, and possibly better perioperative conditions.
A fast analytical undulator model for realistic high-energy FEL simulations
NASA Astrophysics Data System (ADS)
Tatchyn, R.; Cremer, T.
1997-02-01
A number of leading FEL simulation codes used for modeling gain in the ultralong undulators required for SASE saturation in the <100 Å range employ simplified analytical models both for field and error representations. Although it is recognized that both the practical and theoretical validity of such codes could be enhanced by incorporating realistic undulator field calculations, the computational cost of doing this can be prohibitive, especially for point-to-point integration of the equations of motion through each undulator period. In this paper we describe a simple analytical model suitable for modeling realistic permanent magnet (PM), hybrid/PM, and non-PM undulator structures, and discuss selected techniques for minimizing computation time.
Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland
NASA Astrophysics Data System (ADS)
Salo, Hanna; Mäkinen, Joni
2014-11-01
We provide the first detailed case study using Sphagnum papillosum moss bags for active magnetic monitoring of airborne industrial pollution in order to evaluate the actual role of various emission sources and the competence of current environmental protection actions relative to the air quality. The origin and spatial spreading of particulate matter (PM) based on magnetic, chemical, and SEM-EDX analyses was studied around the Industrial Park in Harjavalta, SW Finland. The data was collected during two 6-month sampling periods along 8 km transects in 2010-2011. The results support our hypothesis that the main emission source of PM is not the Cu-Ni smelter's pipe as presumed in previous chemical monitorings. We argue that the hot spot area within the severe impact pollution zone is related to slag processing and/or other unidentified industrial activity. At short distances various dust-providing sources outweigh the fly-ash load from the Cu-Ni smelter's pipe. Active magnetic monitoring by moss bags will help in planning environmental actions as well as in improvement of health conditions for industrial staff and town residents living next to the Industrial Park.
NASA Astrophysics Data System (ADS)
Xu, Xueping; Han, Qinkai; Chu, Fulei
2018-03-01
The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.
NASA Astrophysics Data System (ADS)
Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.
The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.
Variable-Force Eddy-Current Damper
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1986-01-01
Variable damping achieved without problems of containing viscous fluids. Eddy-current damping obtained by moving copper or aluminum conductors through magnetic fields. Position of magnet carrier determines amount of field engagement and, therefore, amount of damping. Three advantages of concept: Magnitudes of stiffness and damping continously varied from maximum to zero without bringing rotor or shaft to stop; used in rotating machines not having viscous fluids available such as lubricating oils; produces sizable damping forces in machines that pump liquid hydrogen at - 246 degrees C and liquid oxygen at - 183 degrees C and are compact in size.
Homopolar machine for reversible energy storage and transfer systems
Stillwagon, Roy E.
1978-01-01
A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.
Homopolar machine for reversible energy storage and transfer systems
Stillwagon, Roy E.
1981-01-01
A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.
An overview of rotating machine systems with high-temperature bulk superconductors
NASA Astrophysics Data System (ADS)
Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro
2012-10-01
The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.
NASA Technical Reports Server (NTRS)
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
NASA Astrophysics Data System (ADS)
Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki
Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.
Switching Circuit for Shop Vacuum System
NASA Technical Reports Server (NTRS)
Burley, R. K.
1987-01-01
No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.
Microwave mode shifting antenna system for regenerating particulate filters
Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA
2011-04-26
A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.
26 CFR 301.6721-1 - Failure to file correct information returns.
Code of Federal Regulations, 2011 CFR
2011-04-01
... file timely includes a failure to file in the required manner, for example, on magnetic media or in... they fall below the 250-threshold requirement) or on magnetic media or other machine-readable form. Filers who are required to file information returns on magnetic media and who file such information...
26 CFR 301.6721-1 - Failure to file correct information returns.
Code of Federal Regulations, 2010 CFR
2010-04-01
... file timely includes a failure to file in the required manner, for example, on magnetic media or in... they fall below the 250-threshold requirement) or on magnetic media or other machine-readable form. Filers who are required to file information returns on magnetic media and who file such information...
26 CFR 301.6721-1 - Failure to file correct information returns.
Code of Federal Regulations, 2012 CFR
2012-04-01
... file timely includes a failure to file in the required manner, for example, on magnetic media or in... they fall below the 250-threshold requirement) or on magnetic media or other machine-readable form. Filers who are required to file information returns on magnetic media and who file such information...
26 CFR 301.6721-1 - Failure to file correct information returns.
Code of Federal Regulations, 2013 CFR
2013-04-01
... file timely includes a failure to file in the required manner, for example, on magnetic media or in... they fall below the 250-threshold requirement) or on magnetic media or other machine-readable form. Filers who are required to file information returns on magnetic media and who file such information...
26 CFR 301.6721-1 - Failure to file correct information returns.
Code of Federal Regulations, 2014 CFR
2014-04-01
... file timely includes a failure to file in the required manner, for example, on magnetic media or in... they fall below the 250-threshold requirement) or on magnetic media or other machine-readable form. Filers who are required to file information returns on magnetic media and who file such information...
Axial flux machine, stator and fabrication method
Carl, Ralph James
2004-03-16
An axial flux machine comprises: a soft magnetic composite stator extension positioned in parallel with a rotor disk and having slots; soft magnetic composite pole pieces attached to the stator extension and facing a permanent magnet on the rotor disk, each comprising a protrusion situated within a respective one of the slots, each protrusion shaped so as to facilitate orientation of the respective pole piece with respect to the stator extension; electrical coils, each wrapped around a respective one of the pole pieces. In another embodiment the soft magnetic composite pole pieces each comprise a base portion around with the electrical coils are wound and a trapezoidal shield portion a plurality of heights with a first height in a first region being longer than a second height in a second region, the second region being closer to a pole-to-pole gap than the first region.
NASA Astrophysics Data System (ADS)
Elfgen, S.; Franck, D.; Hameyer, K.
2018-04-01
Magnetic measurements are indispensable for the characterization of soft magnetic material used e.g. in electrical machines. Characteristic values are used as quality control during production and for the parametrization of material models. Uncertainties and errors in the measurements are reflected directly in the parameters of the material models. This can result in over-dimensioning and inaccuracies in simulations for the design of electrical machines. Therefore, existing influencing factors in the characterization of soft magnetic materials are named and their resulting uncertainties contributions studied. The analysis of the resulting uncertainty contributions can serve the operator as additional selection criteria for different measuring sensors. The investigation is performed for measurements within and outside the currently prescribed standard, using a Single sheet tester and its impact on the identification of iron loss parameter is studied.
Park, Eunhee; Kang, Min Jae; Lee, Ahee; Chang, Won Hyuk; Shin, Yong-Il; Kim, Yun-Hee
2017-07-13
To confirm the interhemispheric modulation induced by low-frequency repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex, real-time regional cerebral blood flow (rCBF) was assessed using functional near-infrared spectroscopy (fNIRS) in the contralateral primary motor cortex (M1) and premotor cortex (PM). Ten right-handed healthy subjects completed two experimental sessions that were randomly arranged for real or sham rTMS session. In the real rTMS session, fNIRS data were acquired from the right M1 and PM area, while the motor hot spot of the left M1 was stimulated with 1Hz rTMS for 1200 pulses with two boosters. In the sham stimulation session, stimulation was delivered with a disconnected coil. During the real rTMS session, the concentration of oxyhemoglobin ([oxy-Hb]) in the right M1 increased continuously until the end of the stimulation. These changes lasted for 20min, while the right PM did not show a change in [oxy-Hb] concentration. On the other hand, the concentration of deoxy-hemoglobin ([deoxy-Hb]) decreased continuously in the right M1 and PM during the real rTMS stimulation, and this change lasted for 20min after the stimulation. The sham stimulation did not exhibit any significant change in both [oxy-Hb] and [deoxy-Hb] concentration during or after the stimulation. Application of 1Hz rTMS over M1 resulted in changes of rCBF in contralateral M1 and PM, which seemed to constitute a function of interhemispheric modulation of rTMS. The fNIRS data was able to detect this physiological change of neuromodulatory action of rTMS in real-time. Copyright © 2017. Published by Elsevier B.V.
Electromechanical converters for electric vehicles
NASA Astrophysics Data System (ADS)
Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.
2018-01-01
The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.
Permanent magnet edge-field quadrupole
Tatchyn, R.O.
1997-01-21
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.
Permanent magnet edge-field quadrupole
Tatchyn, Roman O.
1997-01-01
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Nanomodified composite magnetic materials and their molding technologies
NASA Astrophysics Data System (ADS)
Timoshkov, I.; Gao, Q.; Govor, G.; Sakova, A.; Timoshkov, V.; Vetcher, A.
2018-05-01
Advanced electro-magnetic machines and systems require new materials with improved properties. Heterogeneous 3D nanomodified soft magnetic materials could be efficiently applied. Multistage technology of iron particle surface nanomodification by sequential oxidation and Si-organic coatings will be reported. The thickness of layers is 0.5-5 nm. Compaction and annealing are the final steps of magnetic parts and components shaping. The soft magnetic composite material shows the features: resistivity is controlled by insulating coating thickness and equals up to ρ =10-4 Ωṡm for metallic state and ρ =104 Ωṡm for insulator state, maximum magnetic permeability is μm = 2500 and μm = 300 respectively, induction is up to Bm=2.1 T. These properties of composite soft magnetic material allow applying for transformers, throttles, stator-rotor of high-efficient and powerful electric machines in 10 kHz-1MGz frequency range. For microsystems and microcomponents application, good opportunity to improve their reliability is the use of nanocomposite materials. Electroplating technology of nanocomposite magnetic materials into the ultra-thick micromolds will be presented. Co-deposition of the soft magnetic alloys with inert hard nanoparticles allows obtaining materials with magnetic permeability up to μm=104, magnetic induction of Bs=(0.62-1.3) T. Such LIGA-like technology will be applied in MEMS to produce high reliable devices with advanced physical properties.
Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.
NASA Astrophysics Data System (ADS)
Maher, B.; Mitchell, R.
2009-05-01
Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B. A.
2009-04-01
Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road (Figure 1 c), with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low-temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. XARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 μm. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 μm, with a significant number of iron-rich spherules below 1 μm in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 - 2 m height.
Body weight lower limits of fetal postmortem MRI at 1.5 T.
Jawad, N; Sebire, N J; Wade, A; Taylor, A M; Chitty, L S; Arthurs, O J
2016-07-01
To evaluate the diagnostic yield of postmortem magnetic resonance imaging (PM-MRI) compared with conventional autopsy in fetuses of early gestational age and low body weight. Fetuses of < 31 weeks' gestation that underwent 1.5-T PM-MRI and conventional autopsy were included. The findings of PM-MRI and conventional autopsy were reported blinded to each other. The reports of conventional autopsy and PM-MRI for each organ system (cardiovascular, neurological, abdominal, non-cardiac thoracic and musculoskeletal) were classified as either diagnostic or non-diagnostic. The likelihood of a non-diagnostic examination by PM-MRI was calculated according to fetal gestational age and body weight. Full datasets were examined of 204 fetuses, with mean gestational age of 20.95 ± 3.82 weeks (range, 12.0-30.7 weeks) and body-weight range of 15.9-1872 g. Body weight was the most significant predictor of diagnostic yield of PM-MRI. There was 95% confidence that 90% of fetuses will show diagnostic images by PM-MRI for all five organ systems when fetal body weight is ≥ 535 g, but < 50% of fetuses will have all five systems diagnostic on PM-MRI when body weight is < 122 g. PM-MRI is highly likely to provide adequate diagnostic images for fetuses with a body weight > 500 g. Below this weight, the diagnostic yield of standard 1.5-T PM-MRI decreases significantly. These data should help inform parents and clinicians on the suitability of performing PM-MRI in fetuses with low body weight. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Magnetic Actuator Modelling for Rotating Machinery Analysis
NASA Astrophysics Data System (ADS)
Mendes, Ricardo Ugliara; de Castro, Hélio Fiori; Cavalca, Kátia Lucchesi; Ferreira, Luiz Otávio Saraiva
Rotating machines have a wide range of application such as airplanes, factories, laboratories and power plants. Lately, with computer aid design, shafts finite element models including bearings, discs, seals and couplings have been developed, allowing the prediction of the machine behavior. In order to keep confidence during operation, it is necessary to monitor these systems, trying to predict future failures. One of the most applied technique for this purpose is the modal analysis. It consists of applying a perturbation force into the system and then to measure its response. However, there is a difficulty that brings limitations to the excitation of systems with rotating shafts when using impact hammers or shakers, once due to friction, undesired tangential forces and noise can be present in the measurements. Therefore, the study of a non-contact technique of external excitation becomes of high interest. In this sense, the present work deals with the study and development of a finite element model for rotating machines using a magnetic actuator as an external excitation source. This work also brings numerical simulations where the magnetic actuator was used to obtain the frequency response function of the rotating system.
Processing NASA Earth Science Data on Nebula Cloud
NASA Technical Reports Server (NTRS)
Chen, Aijun; Pham, Long; Kempler, Steven
2012-01-01
Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.
Liu, Zhijian; Cheng, Kewei; Li, Hao; Cao, Guoqing; Wu, Di; Shi, Yunjie
2018-02-01
Indoor airborne culturable fungi exposure has been closely linked to occupants' health. However, conventional measurement of indoor airborne fungal concentration is complicated and usually requires around one week for fungi incubation in laboratory. To provide an ultra-fast solution, here, for the first time, a knowledge-based machine learning model is developed with the inputs of indoor air quality data for estimating the concentration of indoor airborne culturable fungi. To construct a database for statistical analysis and model training, 249 data groups of air quality indicators (concentration of indoor airborne culturable fungi, indoor/outdoor PM 2.5 and PM 10 concentrations, indoor temperature, indoor relative humidity, and indoor CO 2 concentration) were measured from 85 residential buildings of Baoding (China) during the period of 2016.11.15-2017.03.15. Our results show that artificial neural network (ANN) with one hidden layer has good prediction performances, compared to a support vector machine (SVM). With the tolerance of ± 30%, the prediction accuracy of the ANN model with ten hidden nodes can at highest reach 83.33% in the testing set. Most importantly, we here provide a quick method for estimating the concentration of indoor airborne fungi that can be applied to real-time evaluation.
Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka
2017-04-09
Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.
Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka
2017-01-01
Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776
NASA Astrophysics Data System (ADS)
Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.
2017-02-01
We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.
Perspectives for the high field approach in fusion research and advances within the Ignitor Program
NASA Astrophysics Data System (ADS)
Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.
2015-05-01
The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishizuka, N.; Kubo, Y.; Den, M.
We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutralmore » lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.« less
Magnetic design for the PediaFlow ventricular assist device.
Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E
2008-02-01
This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.
Energy: Machines, Science (Experimental): 5311.03.
ERIC Educational Resources Information Center
Castaldi, June P.
This unit of instruction was designed as an introductory course in energy involving six simple machines, electricity, magnetism, and motion. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an outline of the course content and suggests experiments, demonstrations, field trips, and…
NASA Astrophysics Data System (ADS)
Shames, A. I.; Auslender, M.; Rozenberg, E.; Gorodetsky, G.; Martin, C.; Maignan, A.
2005-05-01
X-band electron magnetic-resonance (EMR) measurements of polycrystalline CaMn1-yMoyO3 (0⩽y ⩽0.14) samples were performed at 120K⩽T⩽540K. The data obtained are compared with those of another electron-doped manganite system, CaMn1-xRuxO3 (0⩽x ⩽0.40). The observed anomalies of the EMR parameters correlate pretty well with the temperatures of antiferro-, ferromagneticlike, and orbital/charge-ordering transitions in these systems. However, a strong difference is observed between the resonant properties of Mo- and Ru doped series at both paramagnetic (PM) and magnetically ordered states. To describe such a difference, the energy-band diagrams, which comprise the deep impurity t2g-like states +eg-like conductive band for CaMn1-xRuxO3 and shallow impurity states+conductive band, both having eg-like symmetry, for CaMn1-yMoyO3, are proposed. Specific electrons' contribution to the EMR linewidth at PM temperatures is introduced for the considered systems.
Data on Support Vector Machines (SVM) model to forecast photovoltaic power.
Malvoni, M; De Giorgi, M G; Congedo, P M
2016-12-01
The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.
Net-Shape HIP Powder Metallurgy Components for Rocket Engines
NASA Technical Reports Server (NTRS)
Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve
2005-01-01
True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.
Sources and perceptions of indoor and ambient air pollution in rural Alaska.
Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony
2013-08-01
Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.
Axial Halbach Magnetic Bearings
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2008-01-01
Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.
Silicon Photomultiplier charaterization
NASA Astrophysics Data System (ADS)
Munoz, Leonel; Osornio, Leo; Para, Adam
2014-03-01
Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.
NASA Astrophysics Data System (ADS)
Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut
2017-02-01
The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing
2015-05-01
This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.
NASA Astrophysics Data System (ADS)
Ueno, Tetsuro; Hino, Hideitsu; Hashimoto, Ai; Takeichi, Yasuo; Sawada, Masahiro; Ono, Kanta
2018-01-01
Spectroscopy is a widely used experimental technique, and enhancing its efficiency can have a strong impact on materials research. We propose an adaptive design for spectroscopy experiments that uses a machine learning technique to improve efficiency. We examined X-ray magnetic circular dichroism (XMCD) spectroscopy for the applicability of a machine learning technique to spectroscopy. An XMCD spectrum was predicted by Gaussian process modelling with learning of an experimental spectrum using a limited number of observed data points. Adaptive sampling of data points with maximum variance of the predicted spectrum successfully reduced the total data points for the evaluation of magnetic moments while providing the required accuracy. The present method reduces the time and cost for XMCD spectroscopy and has potential applicability to various spectroscopies.
Net shape processing of alnico magnets by additive manufacturing
White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah; ...
2017-06-07
Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less
NASA Astrophysics Data System (ADS)
Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.
2018-04-01
Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.
Vine, Michelle M; Harrington, Daniel W; Butler, Alexandra; Patte, Karen; Godin, Katelyn; Leatherdale, Scott T
2017-04-20
We investigated the extent to which a sample of Ontario and Alberta secondary schools are being compliant with their respective provincial nutrition policies, in terms of the food and beverages sold in vending machines. This observational study used objective data on drinks and snacks from vending machines, collected over three years of the COMPASS study (2012/2013-2014/2015 school years). Drink (e.g., sugar-containing carbonated/non-carbonated soft drinks, sports drinks, etc.) and snack (e.g., chips, crackers, etc.) data were coded by number of units available, price, and location of vending machine(s) in the school. Univariate and bivariate analyses were undertaken using R version 3.2.3. In order to assess policy compliancy over time, nutritional information of products in vending machines was compared to nutrition standards set out in P/PM 150 in Ontario, and those set out in the Alberta Nutrition Guidelines for Children and Youth (2012) in Alberta. Results reveal a decline over time in the proportion of schools selling sugar-containing carbonated soft drinks (9% in 2012/2013 vs. 3% in 2014/2015), crackers (26% vs. 17%) and cake products (12% vs. 5%) in vending machines, and inconsistent changes in the proportion selling chips (53%, 67% and 65% over the three school years). Conversely, results highlight increases in the proportion of vending machines selling chocolate bars (7% vs. 13%) and cookies (21% vs. 40%) between the 2012/2013 and 2014/2015 school years. Nutritional standard policies were not adhered to in the majority of schools with respect to vending machines. There is a need for investment in formal monitoring and evaluation of school policies, and the provision of information and tools to support nutrition policy implementation.
Homopolar Transformer for Conversion of Electrical Energy
1998-10-13
electrical current Hows through a conductor situated in a magnetic field during rotation of the machine rotor. In L the case of a homopolar motor ...10, incorporated within a homopolar machine 12 corresponding for example to the motor or generator disclosed in U.S. Pat. No. 3,657,580 to Doyle. The...During operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator terminals 26 and 28 causes a current to flow
Prospective memory and working memory: asymmetrical effects during frontal lobe TMS stimulation.
Basso, Demis; Ferrari, Marcella; Palladino, Paola
2010-09-01
The role of working memory (WM) for the realization of an intended action (prospective memory, PM) has been debated in recent neuropsychological literature. The present study aimed to assess whether WM and PM share resources or are, alternatively, two distinct mechanisms. A verbal task was used, which manipulated the cognitive demand of both WM and PM dimensions on an event-based prospective task. Transcranial magnetic stimulation (TMS) was also employed to clarify the causal contribution of frontal areas previously related to WM, to the PM process. The prospective task required the participant to respond whenever a word appeared which had been presented before the beginning of the task. Two ongoing tasks were administered: an updating WM task (in two conditions of medium and high WM demands) and a lexical decision task (representing a low WM demand). In the first two experiments, higher PM demand affected WM only at higher loads, but the PM load effect was independent of WM, showing asymmetrical behavioural effects. In the third experiment, single pulse TMS was applied to left and right dorsolateral prefrontal cortices. When applied to the experimental sites, stimulation increased error rates of the PM task, while the effect was only marginal in the WM task. The effect was bilateral, since there was no difference between left and right stimulation sites. These findings demonstrated, from both behavioural and neurofunctional perspectives, that WM and PM processes are not based on the same memory system, but PM may require WM resources at high demand. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieme, C.L.H.; Kim, J.B.; Takayasu, M.
Critical current densities of multi-filamentary Nb{sub 3}Al wire made with the Jelly-Roll process (JR) and mono-core powder metallurgy process (PM) wire were measured as a function of temperature and magnetic field. The temperature dependence of the resistive critical field B{sub c2} was measured in PM wires. There is a significant difference between these resistive B{sub c2} values and the ones determined by Kramer plots. The field dependence of the critical current depends on the manufacturing method. In general, it follows a relationship that falls between pure Kramer and one where the pinning force is inversely proportional with B{sup 2}. Inmore » contrast with Nb{sub 3}Sn no maximum in the bulk pinning force is observed down to 3 T (0.15MxB{sub c2}).« less
Indirect rotor position sensing in real time for brushless permanent magnet motor drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertugrul, N.; Acarnley, P.P.
1998-07-01
This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PMmore » motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.« less
NASA Astrophysics Data System (ADS)
Levin, N.; Pugachev, V.; Dirba, J.; Lavrinovicha, L.
2013-04-01
The authors analyze the advantages and disadvantages of brushless synchronous electric machines with radially and non-radially mounted rectangular permanent magnets. The results show that the proposed nonradial mounting of permanent magnets considered in the paper, in several cases (e.g. multi-pole brushless generators with tooth windings of the armature) allows achievement of the following advantages: better technology of manufacturing the electric machine owing to simple packing of the stator winding in the stator open slots, which also increases the copper slot fillfactor; reduction in the mass-and-size of permanent magnets at least twice; significantly lower cost of the electric machine; and, finally, its greater specific power. Darbā tiek analizētas priekšrocības un trūkumi sinhronām bezkontaktu mašīnām ar radiāli un neradiāli novietotiem prizmatiskiem pastāvīgajiem magnētiem. Parādīts, ka vairākos gadījumos, piemēram, daudzpolu bezkontaktu sinhronajos ģeneratoros ar zobu tinumiem, neradiāls pastāvīgo magnētu izvietojums nodrošina vairākas priekšrocības: uzlabojas mašīnas izgatavošanas tehnoloģija, jo statora atvērtajās rievās vieglāk novietot tinumus un iespējams sasniegt augstāku rievas aizpildījuma koeficientu; samazinās pastāvīgo magnētu masa un izmaksas; palielinās mašīnas īpatnēja jauda.
Investigation of Combined Motor/Magnetic Bearings for Flywheel Energy Storage Systems
NASA Technical Reports Server (NTRS)
Hofmann, Heath
2003-01-01
Dr. Hofmann's work in the summer of 2003 consisted of two separate projects. In the first part of the summer, Dr. Hofmann prepared and collected information regarding rotor losses in synchronous machines; in particular, machines with low rotor losses operating in vacuum and supported by magnetic bearings, such as the motor/generator for flywheel energy storage systems. This work culminated in a presentation at NASA Glenn Research Center on this topic. In the second part, Dr. Hofmann investigated an approach to flywheel energy storage where the phases of the flywheel motor/generator are connected in parallel with the phases of an induction machine driving a mechanical actuator. With this approach, additional power electronics for driving the flywheel unit are not required. Simulations of the connection of a flywheel energy storage system to a model of an electromechanical actuator testbed at NASA Glenn were performed that validated the proposed approach. A proof-of-concept experiment using the D1 flywheel unit at NASA Glenn and a Sundstrand induction machine connected to a dynamometer was successfully conducted.
Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors
NASA Astrophysics Data System (ADS)
Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.
2016-01-01
We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.
X-Ray Simulator Theory Support
1993-11-01
the pulse power elements in existing and future DNA flash x-ray simulators, in particular DECADE. The pulse power for this machine is based on...usually requires usage at less than the radiation the longer the radiation pulse. full power . Energy delivered to the plasma load is converted into...on the Proto II generator sured with ap-i-n diode filtered with 25 pm ofaluminum; the TABLE 1. Nominal parameters for some pulse power generators used
2013-04-01
machine transitions. 2. We developed the TraceContract API for trace analysis in the Scala programming language. TraceContract combines a high-level...DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...awarded within the Software and Systems program . The original Pro- gram Manager was David Luginbuhl. Bob Bonneau took over as PM in March 2011. The award
Magnetic field direction differentially impacts the growth of different cell types.
Tian, Xiaofei; Wang, Dongmei; Zha, Meng; Yang, Xingxing; Ji, Xinmiao; Zhang, Lei; Zhang, Xin
2018-04-05
Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1-3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2-1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2-1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.
A Market Model for Evaluating Technologies That Impact Critical-Material Intensity
NASA Astrophysics Data System (ADS)
Iyer, Ananth V.; Vedantam, Aditya
2016-07-01
A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer's production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.
Förg, Katharina; Höppe, Henning A
2015-11-28
Lanthanide hydrogen-polyphosphates Ln[H(PO3)4] (Ln = Tb, Dy, Ho) were synthesised as colourless (Ln = Tb, Dy) and light pink (Ln = Ho) crystalline powders by reaction of Tb4O7/Dy2O3/Ho2O3 with H3PO3 at 380 °C. All compounds crystallise isotypically (P2(1)/c (no. 14), Z = 4, a(Tb) = 1368.24(4) pm, b(Tb) = 710.42(2) pm, c(Tb) = 965.79(3) pm, β(Tb) = 101.200(1)°, 3112 data, 160 parameters, wR2 = 0.062, a(Ho) = 1363.34(5) pm, b(Ho) = 709.24(3) pm, c(Ho) = 959.07(4) pm, β(Ho) = 101.055(1)°, 1607 data, 158 parameters, wR2 = 0.058). The crystal structure comprises two different infinite helical chains of corner-sharing phosphate tetrahedra. In-between these chains the lanthanide ions are located, coordinated by seven oxygen atoms belonging to four different polyphosphate chains. Vibrational, UV/Vis and fluorescence spectra of Ln[H(PO3)4] (Ln = Tb, Dy, Ho) as well as Dy[H(PO3)4]:Ln (Ln = Ce, Eu) and the magnetic and thermal behaviour of Tb[H(PO3)4] are reported.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
Deadman, J E; Infante-Rivard, C
2002-02-15
Exposures to extremely low frequency (ELF) magnetic fields have not been documented extensively in occupations besides the work environments of electric or telephone utilities. A 1980-1993 study of childhood acute lymphoblastic leukemia (ALL) in Québec, Canada, gathered detailed information about the occupations of 491 mothers of ALL cases and mothers of a similar number of healthy controls. This information was combined with published data on the intensities of ELF magnetic fields associated with sources or work environments to estimate ELF magnetic field exposures for a wide range of jobs commonly held by women. Estimated exposures for 61 job categories ranged from 0.03 to 0.68 microT; the 25th, 50th, and 75th percentiles were 0.135, 0.17, and 0.23 microT, respectively. By job category, the most highly exposed jobs (>0.23 microT) included bakery worker, cashier, cook and kitchen worker, electronics worker, residential and industrial sewing machine operator, and textile machine operator. By work environment, the most highly exposed job categories were electronics worker in an assembly plant (0.70 microT) and sewing machine operators in a textile factory (0.68 microT) and shoe factory (0.66 microT). These results provide new information on expected levels of exposure in a wide range of jobs commonly held by women.
A superconducting homopolar motor and generator—new approaches
NASA Astrophysics Data System (ADS)
Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D. B. T.; Guina, Ante
2016-03-01
Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor.
Documentation for the machine-readable version of the Cape Photographic Durchmusterung (CPD)
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1984-01-01
The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is described. The complete catalog is contained in the magnetic tape file, and corrections published in all errata have been made to the data. The machine version contains 454877 records, but only 454875 stars (two stars were later deleted, but their logical records are retained in the file so that the zone counts are not diiferent from the published catalog).
Documentation for the machine-readable version of the Cordoba Durchmusterung (CD)
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1984-01-01
The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is presented. The complete catalog is contained in the magnetic tape file, and corrections published in all corrigenda were made to the data. The machine version contains 613959 records, but only 613953 stars (six stars were later deleted, but their logical records are retained in the file so that the zone counts are not different from the published catalog).
Superconducting Coil Winding Machine Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogiec, J. M.; Kotelnikov, S.; Makulski, A.
The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.
Public Data Set: Radially Scanning Magnetic Probes to Study Local Helicity Injection Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richner, Nathan J; Bongard, Michael W; Fonck, Raymond J
This data set contains openly-documented, machine readable digital research data corresponding to figures published in N.J. Richner et al., 'Radially Scanning Magnetic Probes to Study Local Helicity Injection Dynamics,' accepted for publication in Rev. Sci. Instrum (2018).
NASA Astrophysics Data System (ADS)
Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.
2017-10-01
Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah
Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less
Condition monitoring of Electric Components
NASA Astrophysics Data System (ADS)
Zaman, Ishtiaque
A universal non-intrusive model of a flexible antenna array is presented in this paper to monitor and identify the failures in electric machines. This adjustable antenna is designed to serve the purpose of condition monitoring of a vast range of electrical components including Induction Motor (IM), Printed Circuit Board (PCB), Synchronous Reluctance Motor (SRM), Permanent Magnet Synchronous Machine (PMSM) etc. by capturing the low frequency magnetic field radiated around these machines. The basic design and specification of the proposed antenna array for low frequency components is portrayed first. The design of the antenna is adjustable to fit for an extensive variety of segments. Subsequent to distinguishing the design and specifications of the antenna, the ideal area of the most delicate stray field has been identified for healthy current streaming around the machineries. Following this, short circuit representing faulty situation has been introduced and compared with the healthy cases. Precision has been found recognizing the faults using this one generic model of Antenna and the results are presented for three different machines i.e. IM, SRM and PMSM. Finite element method has been used to design the antenna and detect the optimum location and faults in the machines. Finally, a 3D Printer is proposed to be employed to build the antenna as per the details tended to in this paper contingent upon the power segments.
Design of a line-VISAR interferometer system for the Sandia Z Machine
NASA Astrophysics Data System (ADS)
Galbraith, J.; Austin, K.; Baker, J.; Bettencourt, R.; Bliss, E.; Celeste, J.; Clancy, T.; Cohen, S.; Crosley, M.; Datte, P.; Fratanduono, D.; Frieders, G.; Hammer, J.; Jackson, J.; Johnson, D.; Jones, M.; Koen, D.; Lusk, J.; Martinez, A.; Massey, W.; McCarville, T.; McLean, H.; Raman, K.; Rodriguez, S.; Spencer, D.; Springer, P.; Wong, J.
2017-08-01
A joint team comprised of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) personnel is designing a line-VISAR (Velocity Interferometer System for Any Reflector) for the Sandia Z Machine, Z Line-VISAR. The diagnostic utilizes interferometry to assess current delivery as a function of radius during a magnetically-driven implosion. The Z Line-VISAR system is comprised of the following: a two-leg line-VISAR interferometer, an eight-channel Gated Optical Imager (GOI), and a fifty-meter transport beampath to/from the target of interest. The Z Machine presents unique optomechanical design challenges. The machine utilizes magnetically driven pulsed power to drive a target to elevated temperatures and pressures useful for high energy density science. Shock accelerations exceeding 30g and a strong electromagnetic pulse (EMP) are generated during the shot event as the machine discharges currents of over 25 million amps. Sensitive optical components must be protected from shock loading, and electrical equipment must be adequately shielded from the EMP. The optical design must accommodate temperature and humidity fluctuations in the facility as well as airborne hydrocarbons from the pulsed power components. We will describe the engineering design and concept of operations of the Z Line-VISAR system. Focus will be on optomechanical design.
Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro
2014-01-01
Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062
Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F
2015-09-16
Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.
West, Robert; Braver, Todd
2009-01-01
Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581
Three-dimensional analysis of tubular permanent magnet machines
NASA Astrophysics Data System (ADS)
Chai, J.; Wang, J.; Howe, D.
2006-04-01
This paper presents results from a three-dimensional finite element analysis of a tubular permanent magnet machine, and quantifies the influence of the laminated modules from which the stator core is assembled on the flux linkage and thrust force capability as well as on the self- and mutual inductances. The three-dimensional finite element (FE) model accounts for the nonlinear, anisotropic magnetization characteristic of the laminated stator structure, and for the voids which exist between the laminated modules. Predicted results are compared with those deduced from an axisymmetric FE model. It is shown that the emf and thrust force deduced from the three-dimensional model are significantly lower than those which are predicted from an axisymmetric field analysis, primarily as a consequence of the teeth and yoke being more highly saturated due to the presence of the voids in the laminated stator core.
FINAL REPORT. DOE Grant Award Number DE-SC0004062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiesa, Luisa
With the support of the DOE-OFES Early Career Award and the Tufts startup support the PI has developed experimental and analytical expertise on the electromechanical characterization of Low Temperature Superconductor (LTS) and High Temperature Superconductor (HTS) for high magnetic field applications. These superconducting wires and cables are used in fusion and high-energy physics magnet applications. In a short period of time, the PI has built a laboratory and research group with unique capabilities that include both experimental and numerical modeling effort to improve the design and performance of superconducting cables and magnets. All the projects in the PI’s laboratory exploremore » the fundamental electromechanical behavior of superconductors but the types of materials, geometries and operating conditions are chosen to be directly relevant to real machines, in particular fusion machines like ITER.« less
Method and apparatus for assembling permanent magnet rotors
Hsu, John S.; Adams, Donald J.
1999-01-01
A permanent magnet assembly (22) for assembly in large permanent magnet (PM) motors and generators includes a two-piece carrier (23, 24) that can be slid into a slot (13) in the rotor (10) and then secured in place using a set screw (37). The invention also provides an auxiliary carrier device (50) with guide rails (51) that line up with the teeth (12) of the rotor, so that a permanent magnet assembly (22) can be pushed first into a slot (13), and then down the slot (13) to its proper location. An auxiliary tool (50) is provided to move the permanent magnet assembly (22) into position in the slot (13) before it is secured in place. Methods of assembling and disassembling the magnet assemblies (22) in the rotor (10) are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherif, R., E-mail: cherifrim18@yahoo.fr; Hlil, E.K.; Ellouze, M.
2014-07-01
The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0, 0.1, 0.2 and 0.3) samples have been elaborated by the solid-state reaction method. X-ray powder diffraction shows that all the samples crystallize in a rhombohedric phase with R3{sup ¯}c space group. The variation of magnetization as a function of temperature and applied magnetic field was carried out. The samples for x=0 and 0.1 exhibit a FM–PM transition at the Curie temperature T{sub C}, however, for x=0.2 and 0.3 exhibit an AFM–PM one at the Neel temperature T{sub N}, when the temperature increases. A magneto-caloric effect has been calculated in terms ofmore » isothermal magnetic entropy change. A large magneto-caloric effect has been observed, the maximum entropy change, |ΔS{sub M}{sup max}|, reaches the highest value of 3.28 J/kgK under a magnetic field change of 5 T with an RCP value of 220 J/kg for La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}MnO{sub 3} composition, which will be an interesting compound for application materials working as magnetic refrigerants near room temperature. - Graphical abstract: Magnetic entropy change versus temperature and applied magnetic field for x=0.1 (a) and RCP versus applied magnetic field for x=0, 0.1 (b). - Highlights: • The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) polycrystalline samples were prepared by the solid state reaction method. • Crystalline and magnetic structures were investigated using DRX and magnetization measurements. • The magnetocaloric (MC) effect was estimated versus magnetic field and temperatures. • Compounds with x=0, 0.1 exhibit great potential for magnetic refrigeration at room temperature.« less
Low Emittance Tuning Studies for SuperB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liuzzo, Simone; /INFN, Pisa; Biagini, Maria
2012-07-06
SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specifymore » the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.« less
The revolution of personalized psychiatry: will technology make it happen sooner?
Perna, G; Grassi, M; Caldirola, D; Nemeroff, C B
2018-04-01
Personalized medicine (PM) aims to establish a new approach in clinical decision-making, based upon a patient's individual profile in order to tailor treatment to each patient's characteristics. Although this has become a focus of the discussion also in the psychiatric field, with evidence of its high potential coming from several proof-of-concept studies, nearly no tools have been developed by now that are ready to be applied in clinical practice. In this paper, we discuss recent technological advances that can make a shift toward a clinical application of the PM paradigm. We focus specifically on those technologies that allow both the collection of massive as much as real-time data, i.e., electronic medical records and smart wearable devices, and to achieve relevant predictions using these data, i.e. the application of machine learning techniques.
Early time studies of cylindrical liner implosions at 1 MA on COBRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atoyan, L., E-mail: la296@cornell.edu; Byvank, T., E-mail: la296@cornell.edu; Cahill, A. D., E-mail: la296@cornell.edu
Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner’s surface asmore » well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner’s surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.« less
Early time studies of cylindrical liner implosions at 1 MA on COBRA
NASA Astrophysics Data System (ADS)
Atoyan, L.; Byvank, T.; Cahill, A. D.; Hoyt, C. L.; de Grouchy, P. W. L.; Potter, W. M.; Kusse, B. R.; Hammer, D. A.
2014-12-01
Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner's surface as well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner's surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.
Epitaxial Garnets and Hexagonal Ferrites.
1983-12-01
operating at frequencies between 1 GHz and 25 GHz. 2. Investigate LPE growth of lithium ferrite with the objective of preparing low-loss, large area films ...and hexagonal ferrites when the series of contracts began in 1975. At that time the liquid phase epitaxy method for growth of magnetic garnet films ...principal interest in epitaxial garnets was for magnetic bubble memories. For this Uapplication the films had to be about 3pm thick with low defect density
BPMs with Precise Alignment for TTF2
NASA Astrophysics Data System (ADS)
Noelle, D.; Priebe, G.; Wendt, M.; Werner, M.
2004-11-01
Design and technology of the new, standardized BPM-system for the warm sections of the TESLA Test Facility phase II (TTF2) are presented. Stripline- and button-BPM pickups are read-out with an upgraded version of the AM/PM BPM-electronics of TTF1. The Stripline-BPMs are fixed inside the quadrupole magnets. A stretched wire measurement was used to calibrate the electrical axis of the BPM wrt. to the magnetic axis of the quadrupole.
Lai, J M; Wu, F Q; Zhou, Z X; Yuan, X Y; Su, G X; Li, S N; Yan, Y C; Zhu, J; Kang, M
2016-10-02
Objective: To evaluate the utility of magnetic resonance imaging (MRI) in diagnosis of juvenile dermatomyositis and polymyositis (JDM-PM) in children. Method: Fifty-four patients with JDM-PM in the active stage were enrolled in the study group. Twelve patients with benign acute childhood myositis and forty patients with juvenile idiopathic arthritis (JIA) complicated with myositis were enrolled as controls. MRI imaging of thighs was performed in all patients, fast spin echo T1WI, T2WI, and STIR were obtained in all patients.Muscle biopsy was performed in 41/54 patients with JDM-PM. We compared the value of MRI in diagnosis of JDM-PM with muscle biopsy, electromyography and serum aspartate transaminase (AST), alanine transaminase (ALT), creatine kinase (CK), isoenzyme of creatine kinase (CKMB), lactate dehydrogenase (LDH), hydroxybutyrate dehydrogenase (HBDH) levels. Continuous normally distributed variables were reported as means and continuous non-normally distributed variables as median. Chi-square test and Fisher exact test were used to test differences between MRI and other categorical variables. Result: A total of 54 patients were included. Twenty-seven patients were male and the others were female. Average age of the patients was (7.1±3.5) years (2-13 years); 45(83%) paitests were JDM cases and 9(17%) patients had JPM. All patients had MRI examination. Of the 54 patients, 53 had multiple myositis; 10 out of 50 (19%) patients received second MRI after treatment, 6 out of 10 patients had normal findings, 4 patients showed obviously improved images; 41 out of 54 patients underwent muscle biopsy; 22 out of 41 patients had inflammatory cells infiltration and muscle fiber degeneration. The results of the muscle enzyme tests are as follows: 27 (50%) patients had elevated AST, 24 (44%) patients had elevated ALT, 22 (41%) patients had elevated CK, 18(33%) patients had elevated CKMB, and LDH rose in 30 (56%) patients, HBDH rose in 28(52%) patients. These results suggested that muscle MRI was more sensitive than muscle biopsy and muscle enzyme tests in diagnosis of JDM-PM. Conclusion: Patients with JDM-PM showed diffuse patchy hyperintense signals on T2WI of their thighs. MRI may be a sensitive, reliable, and noninvasive tool for clinical diagnosis and theraputic evaluation of JDM-PM.
NASA Technical Reports Server (NTRS)
Bose, Bimal K.; Kim, Min-Huei
1995-01-01
The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Brown, Gerald V.
2017-01-01
It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).
Lightweight Aluminum/Nano composites for Automotive Drive Train Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.
2012-12-14
During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less
12. BUILDING 621, INTERIOR, GROUND FLOOR, LOOKING NORTHWEST AT SCREENING ...
12. BUILDING 621, INTERIOR, GROUND FLOOR, LOOKING NORTHWEST AT SCREENING MACHINE THAT REMOVES SHELL FRAGMENTS. METALLIC DUST REMOVED BY MAGNETIC SEPERATOR UNDERNEATH SCREEN. SAWDUST IS RETURNED TO SAWDUST HOPPER BY ELEVATOR. HOODS OVER SCREENING MACHINE AT WORKBENCH REMOVE FINE SAWDUST. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage
NASA Astrophysics Data System (ADS)
Severson, Eric Loren
The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of magnetic modeling, winding design, control, and power-electronic drive implementation. While these contributions are oriented towards facilitating more optimal flywheel designs, they will also be useful in applying the bearingless ac homopolar machine in other applications. Example designs are considered through finite element analysis and experimental validation is provided from a proof-of-concept prototype that has been designed and constructed as a part of this dissertation.
Structure and magnetic properties of RE{sub 2}CuIn{sub 3} (RE=Ce, Pr, Nd, Sm and Gd)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyvanchuk, Yuriy B.; Szytula, Andrzej; Zarzycki, Arkadiusz
2008-12-15
The ternary copper indides RE{sub 2}CuIn{sub 3}{identical_to}RECu{sub 0.5}In{sub 1.5} (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn{sub 2}-type structure, space group P6{sub 3}/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECu{sub x}In{sub 2-x}. Single crystal structure refinements were performed for five crystals: CeCu{sub 0.66}In{sub 1.34} (a=479.90(7) pm, c=768.12(15) pm), PrCu{sub 0.52}In{sub 1.48} (a=480.23(7) pm, c=759.23(15) pm), NdCu{sub 0.53}In{sub 1.47} (a=477.51(7) pm, c=756.37(15) pm), SmCu{sub 0.46}In{sub 1.54} (a=475.31(7) pm, c=744.77(15) pm), and GdCu{sub 0.33}In{sub 1.67}more » (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at T{sub N}=4.7 K for Pr{sub 2}CuIn{sub 3} and Nd{sub 2}CuIn{sub 3} and 15 K for Sm{sub 2}CuIn{sub 3}. Fitting of the susceptibility data of the samarium compound revealed an energy gap {delta}E=39.7(7) K between the ground and the first excited levels. - Graphical abstract: The CaIn{sub 2}-type structure of Sm{sub 2}CuIn{sub 3}.« less
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
A novel heat engine for magnetizing superconductors
NASA Astrophysics Data System (ADS)
Coombs, T. A.; Hong, Z.; Zhu, X.; Krabbes, G.
2008-03-01
The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20 Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71 Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the most efficient design of machine will therefore be one in which an in situ magnetizing fixture is included. The first three methods all require a solenoid which can be switched on and off. In the first method an applied magnetic field is required equal to the required magnetic field, whilst the second and third approaches require fields at least two times greater. The final method, however, offers significant advantages since it achieves the final required field by repeated applications of a small field and can utilize a permanent magnet (Coombs 2007 British Patent GB2431519 granted 2007-09-26). If we wish to pulse a field using, say, a 10 T magnet to magnetize a 30 mm × 10 mm sample then we can work out how big the solenoid needs to be. If it were possible to wind an appropriate coil using YBCO tape then, assuming an Ic of 70 A and a thickness of 100 µm, we would have 100 turns and 7000 A turns. This would produce a B field of approximately 7000/(20 × 10-3) × 4π × 10-7 = 0.4 T. To produce 10 T would require pulsing to 1400 A! An alternative calculation would be to assume a Jc of say 5 × 108A m-1 and a coil 1 cm2 in cross section. The field would then be 5 × 108 × 10-2 × (2 × 4π × 10-7) = 10 T. Clearly if the magnetization fixture is not to occupy more room than the puck itself then a very high activation current would be required and either constraint makes in situ magnetization a very difficult proposition. What is required for in situ magnetization is a magnetization method in which a relatively small field of the order of millitesla repeatedly applied is used to magnetize the superconductor. This paper describes a novel method for achieving this.
NASA Astrophysics Data System (ADS)
Kim, J.; Yoon, H.; Lee, M.
2012-12-01
The important factors of atmospheric particle matter (PM) are size, concentration, composition and toxicity which can considerably affect the possible human health problem, especially respiratory diseases, visibility reduction and climate change. PM2.5 and PM10 are complex mixture of ammonium sulfate, ammonium nitrate, organic carbon, inorganic carbon and inorganic constituents. Recently, most researches of source attribution and assessments of the relationship between health effects and particle concentrations have not taken advantage of the development in analytical tools measuring the detailed molecular structure and microstructure of particles and of the knowledge of particle formation mechanisms in combustion system. This study will combine variety analytical techniques that can provide structural and compositional information to determine the correlation between sources of hazardous material and physicochemical properties in aerosol particle. Inorganic metal can be rapidly quantifying to filter base using ED-XRF (Energy-dispersive X-ray fluorescence). Speciation and quantification of water soluble components applied HPLC-ICP-MS and LC-MS NMR (nuclear magnetic resonance). Afterward, we investigate metabolic transformations of atmospheric particle matter also using FE-TEM (Field Emission Transmission Electron Microscopy).
SiPM based readout system for PbWO4 crystals
NASA Astrophysics Data System (ADS)
Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.
2013-08-01
Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.
Cogging Torque Minimization in Transverse Flux Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
2017-02-16
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Magnetocaloric Effect in Layered Organic Conductor λ-(BETS)2FeCl4
NASA Astrophysics Data System (ADS)
Sugiura, Shiori; Shimada, Kazuo; Tajima, Naoya; Nishio, Yutaka; Terashima, Taichi; Isono, Takayuki; Kato, Reizo; Zhou, Biao; Uji, Shinya
2018-04-01
Magnetocaloric effect (MCE) and magnetic torque measurements have been carried out in the π-d system λ-(BETS)2FeCl4 [BETS = bis(ethylenedithio)tetraselenafulvalene], which shows an antiferromagnetic insulating (AFI) phase below ˜8.5 K. In the magnetic torque curve, a sharp structure at ˜1.2 T and a step at ˜10 T are observed at low temperatures, which are caused by the spin-flop (SF) transition and the transition from the AFI to paramagnetic metallic (PM) phase, respectively. The MCE, directly related to the magnetic entropy, shows a small sharp peak at the SF transition and a sharp dip at the AFI-PM transition. The overall feature above 3 K is qualitatively interpreted by a simple picture: antiferromagnetic (AF) π spins and paramagnetic 3d spins at the Fe sites. However, a broad dip in the MCE is additionally found at ˜5 T below ˜3 K, which is not explained by the above picture. The results are compared with those of κ-(BETS)2FeBr4, which shows an AF order of the 3d spins at the Fe sites.
Optimization of radial-type superconducting magnetic bearing using the Taguchi method
NASA Astrophysics Data System (ADS)
Ai, Liwang; Zhang, Guomin; Li, Wanjie; Liu, Guole; Liu, Qi
2018-07-01
It is important and complicated to model and optimize the levitation behavior of superconducting magnetic bearing (SMB). That is due to the nonlinear constitutive relationships of superconductor and ferromagnetic materials, the relative movement between the superconducting stator and PM rotor, and the multi-parameter (e.g., air-gap, critical current density, and remanent flux density, etc.) affecting the levitation behavior. In this paper, we present a theoretical calculation and optimization method of the levitation behavior for radial-type SMB. A simplified model of levitation force calculation is established using 2D finite element method with H-formulation. In the model, the boundary condition of superconducting stator is imposed by harmonic series expressions to describe the traveling magnetic field generated by the moving PM rotor. Also, experimental measurements of the levitation force are performed and validate the model method. A statistical method called Taguchi method is adopted to carry out an optimization of load capacity for SMB. Then the factor effects of six optimization parameters on the target characteristics are discussed and the optimum parameters combination is determined finally. The results show that the levitation behavior of SMB is greatly improved and the Taguchi method is suitable for optimizing the SMB.
A Fundamental Study of P/M Processed Elevated Temperature Aluminum Alloys.
1984-10-01
carried out on a SATEC model M3 creep testing machine. The creep extensometer was attached to a shoulder on the tensile specimen. 2 kil The complete matrix...Temperature Stress Es tOo5** t1.0 (OC) (MPa) (secŕ) (mins.) (mins.) 250 103.4 6.0 x 10-9 950.8 250 151.6 1.8 x 10-6 9.9 40.7 350 34.5 1.5 x 10 9 - - 350
Materiel Readiness Support Activity Automation Plan
1986-09-01
Hardwire leased lines Sytek RF broadband cable modems Digital phone switched service Medium Speed - up to 56k baud RF modems Digital phone service High...dialing 121 I iI Medium Speed - up to 56k baud RF modems - up to 56k baud sync modem $2070 plus installation - $25 per month maintenance - $1200 per...security is to disconnect net- work, modem , and hardwire access (that is, all external access to the machine) after 5 p.m. (normal business hours
Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation
NASA Astrophysics Data System (ADS)
Basaran, Sinan; Sivrioglu, Selim
2017-03-01
The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.
Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation
NASA Astrophysics Data System (ADS)
Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.
2015-09-01
Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
"CORKSCREW"-A DEVICE FOR CHANGING THE MAGNETIC MOMENT OF CHARGED PARTICLES IN A MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wingerson, R.C.
1961-05-01
A helical, current-carrying magnetic field source (the "corkscrew") is described; it perturbs an axial uniform magnetic field B/sub 0/ such that the transverse energy components (ET) of selected particles moving along the sxis are increased or decreased monotonically. It is noted that, since the corkscrew has no over-all effect on B/sub 0/, the change in ET must result from a change in the particle's magnetic moment. The use of pairs of these devices in magnetic mirror machines to trap particles is suggested. (T.F.H.)
Taghizadeh, Somayeh; Yang, Claus Chunli; R. Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan
2017-01-01
Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID3D and Quasar GRID3D phantoms were used to evaluate the effects of static magnetic field (B0) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions. PMID:29487771
Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan
2017-12-18
Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions.
Dynamical Tests in a Linear Superconducting Magnetic Bearing
NASA Astrophysics Data System (ADS)
Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.
The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.
Transient line starting analysis of the ultra-high speed PMSM
Cheng, Wenjie; Li, Wei; Xiao, ling; Li, Ming; Tian, Yongsheng; Sun, Yanhua; Yu, Lie
2017-01-01
Aiming at the ultra high speed permanent magnet synchronous motor (PMSM) supported by gas foil bearings (GFBs), this paper calculates the transient line starting of the motor. Firstly, the start effect of the rotor composed of cylindrical PM and stainless steel sleeve is studied. Then, in order to enhance the start torque, copper ring, nickel ring and copper squirrel-cage are introduced in the rotor and their start effect are analysed, respectively. It can be found that the rotor including nickel ring can be accelerated to set speed, but all the other rotors are failed due to the higher PM and braking torques. It can be concluded that some material owning slight large relative permeability can be applied in the rotor to reduce the PM field and contribute to start by using the line-start method. PMID:28105384
A HELICAL MAGNET DESIGN FOR RHIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WILLEN,E.; GUPTA,R.; JAIN,A.
1997-05-12
Helical dipole magnets are required in a project for the Relativistic Heavy Ion Collider (RHIC) to control and preserve the beam polarization in order to allow the collision of polarized proton beams. Specifications are for low current superconducting magnets with a 100 mm coil aperture and a 4 Tesla field in which the field rotates 360 degrees over a distance of 2.4 meters. A magnet meeting the requirements has been developed that uses a small diameter cable wound into helical grooves machined into a thick-walled aluminum cylinder.
Enhancement of runaway production by resonant magnetic perturbation on J-TEXT
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Huang, D. W.; Izzo, V. A.; Tong, R. H.; Jiang, Z. H.; Hu, Q. M.; Wei, Y. N.; Yan, W.; Rao, B.; Wang, S. Y.; Ma, T. K.; Li, S. C.; Yang, Z. J.; Ding, D. H.; Wang, Z. J.; Zhang, M.; Zhuang, G.; Pan, Y.; J-TEXT Team
2016-07-01
The suppression of runaways following disruptions is key for the safe operation of ITER. The massive gas injection (MGI) has been developed to mitigate heat loads, electromagnetic forces and runaway electrons (REs) during disruptions. However, MGI may not completely prevent the generation of REs during disruptions on ITER. Resonant magnetic perturbation (RMP) has been applied to suppress runaway generation during disruptions on several machines. It was found that strong RMP results in the enhancement of runaway production instead of runaway suppression on J-TEXT. The runaway current was about 50% pre-disruption plasma current in argon induced reference disruptions. With moderate RMP, the runway current decreased to below 30% pre-disruption plasma current. The runaway current plateaus reach 80% of the pre-disruptive current when strong RMP was applied. Strong RMP may induce large size magnetic islands that could confine more runaway seed during disruptions. This has important implications for runaway suppression on large machines.
Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino
2016-03-15
An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.
Rotor for a line start permanent magnet machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melfi, Mike; Schiferl, Rich; Umans, Stephen
A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distancemore » that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.« less
Magnetic properties and magnetocaloric effects in HoPd intermetallic
NASA Astrophysics Data System (ADS)
Zhao-Jun, Mo; Jun, Shen; Xin-Qiang, Gao; Yao, Liu; Jian-Feng, Wu; Bao-Gen, Shen; Ji-Rong, Sun
2015-03-01
A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the HoPd compound. Under the magnetic field change of and the refrigerant capacity RC for the compound are evaluated to be 20 J/(kg · K) and 342 J/kg, respectively. In particular, large (11.3 J/(kg · K)) and RC (142 J/kg) are achieved under a low magnetic field change of 0-2 T with no thermal hysteresis and magnetic hysteresis loss. The large reversible magnetocaloric effect (both the large -ΔSM and the high RC) indicates that HoPd is a promising material for magnetic refrigeration at low temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 11104337, 51271192, and 11274357) and the Knowledge Innovation Project of the Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish
2012-06-01
Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton.
This document outlines the use of machine-scorable open-ended questions for the evaluation of Physics 30 in Alberta. Contents include: (1) an introduction to the questions; (2) sample instruction sheet; (3) fifteen sample items; (4) item information including the key, difficulty, and source of each item; (5) solutions to items having multiple…
Beam Loss Monitoring for LHC Machine Protection
NASA Astrophysics Data System (ADS)
Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos
The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.
The critical evaluation of stellar data
NASA Technical Reports Server (NTRS)
Underhill, A. B.; Mead, J. M.; Nagy, T. A.
1977-01-01
The paper discusses the importance of evaluating a catalog of stellar data, whether it is an old catalog being made available in machine-readable form, or a new catalog written expressly in machine-readable form, and discusses some principles to be followed in the evaluation of such data. A procedure to be followed when checking out an astronomical catalog on magnetic tape is described. A cross index system which relates the different identification numbers of a star or other astronomical object as they appear in different catalogs in machine-readable form is described.