Science.gov

Sample records for magnet residual gas

  1. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  2. Residual gas analysis device

    DOEpatents

    Thornberg, Steven M [Peralta, NM

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  3. Deuterium Gas Analysis by Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shukla, R.; Das, R.; Shyam, A.; Rao, A. D. P.

    2012-11-01

    Hydrogen gas is generated by electrolysis method in a compact hydrogen generator. A simple procedure reduces handling and storage of hydrogen cylinders for laboratory applications. In such a system, we are producing deuterium gas from heavy water by electrolysis method. After production of the deuterium gas, we have checked the purity level of the outgoing deuterium from the electrolyser. The test was carried out in a high vacuum system in which one residual gas analyser (RGA) was mounted. The deuterium gas was inserted by one manual gas leak valve in to the vacuum system. In this study, the effect of the emission current of the RGA on the detection of the deuterium was performed. In this paper, we will discuss the detail analysis of the deuterium gas and the effect of the emission current on the partial pressure measurement.

  4. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  5. RESIDUAL RISK ASSESSMENT: MAGNETIC TAPE ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Magnetic Tape Manufacturing source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Magnetic Tape Manufacturing source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  6. Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography-mass spectrometry.

    PubMed

    Deng, Xiaojuan; Guo, Qianjin; Chen, Xiaoping; Xue, Tao; Wang, Hui; Yao, Pei

    2014-02-15

    In this work, amine-functionalised magnetic nanoparticles and multiwalled carbon nanotubes (MNPs/MWCNTs) composites were synthesised by a simple method and applied as an adsorbent for rapid clean-up of acetonitrile extracts of tea samples prior to analysing eight pesticide residues by gas chromatography-mass spectrometry. Several parameters affecting the sampling and treatment efficiency were investigated, including extraction solvent, sonication time, weight ratio of MWCNTs to MNPs in the composites, amount of adsorbent, clean-up time and washing solution. Under the optimised conditions, the recoveries obtained for each pesticide ranged from 72.5% to 109.1% with relative standard deviations lower than 12.6%. Limit of quantification ranged from 0.02 to 0.08 mg kg⁻¹. The established method was successfully applied to the analysis of pesticide residues in real tea samples. The results indicated that the use of MNPs/MWCNTs composites allowed the simple and expeditious clean-up of complex tea samples for subsequent determination of pesticide residues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Process for treatment of residual gas

    SciTech Connect

    Nolden, K.

    1980-01-01

    A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

  8. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  9. Characteristics and performance of several mass spectrometer residual gas analyzers

    NASA Technical Reports Server (NTRS)

    Hultzman, W. W.

    1974-01-01

    The operation and properties of various mass-spectrometer residual gas analyzers for use in vacuum measurements were analyzed in terms of efficiencies of ion extraction, ion separation and transmission, and ion collection. Types of instruments studied were magnetic sector, omegatron, quadrupole, and monopole. Experimental results presented include absolute sensitivity to argon, relative sensitivity to 10 gases, and cracking patterns for these gases. It is shown that the properties are strongly dependent on instrument range, resolution, and the particular voltages, currents, or field intensities used to control the instrument.

  10. Utility pump truck; Residual gas problems reduced with innovative equipment

    SciTech Connect

    Not Available

    1988-04-01

    Residual natural gas trapped in the ground after the repair of a distribution-system leak can be a headache for utility employees and customers. The pump truck, a unique approach to removing residual gas, is described in this paper. Natural gas is lighter than air and naturally tends to rise upward and dissipate in the atmosphere. However, pavement, buildings or soil conditions around a leaking pipe often cause gas to be trapped in the ground. In addition to removing trapped gas, the pump truck is used to help pinpoint leaks where the source is difficult to locate because of soil conditions.

  11. Limitations of a residual gas ionization beam profile monitor for the SSC Collider

    SciTech Connect

    Meinke, R.; Nexsen, W.; Tsyganov, E.; Zinchenko, A.

    1992-11-01

    A residual gas ionization beam profile monitor for the superconducting Super Collider is considered in detail using the Monte Carlo simulation code. It is shown that a good spatial resolution could be obtained using a combination of strong electrical and magnetic fields.

  12. Graphic Three-Axes Presentation of Residual Gas Analyser Data

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth R.; Levi, Alejandro G.

    1996-01-01

    Residual gas analyzers (RGA) are commonly used to measure the composition of residual gases in thermal-vacuum test chambers. Measurements from RGAs are often used to identify and quantify outgassing contaminants from a test article during thermal-vacuum testing. RGA data is typically displayed as snapshots in time, showing instantaneous concentrations of ions from ionized residual gas molecules at different atomic masses. A method was devised by the authors to present RGA data in a three-axis format, plotting atomic mass unit (AMU), ion concentration as a function of AMU, and time, to provide a clear graphic visualization ot trends in gas concentration changes and to initiate a valuable analytical tool to interpret test article outgassing rates during thermal-vacuum testing.

  13. Evaluation of chlorine dioxide gas residues on selected food produce.

    PubMed

    Trinetta, Valentina; Vaidya, Nirupama; Linton, Richard; Morgan, Mark

    2011-01-01

    In recent years, the consumption of fresh fruits and vegetables has greatly increased, and so has its association with contamination of several foodborne pathogens (Listeria, Salmonella, and Escherichia coli). Hence, there is a need to investigate effective sanitizer systems for produce decontamination. Chlorine dioxide (ClO(2)), a strong oxidizing gas with broad spectrum and sanitizing properties, has previously been studied for use on selected fruits and vegetables. ClO(2) gas treatments show great potential for surface pathogen reduction; however its use from a residue safety standpoint has yet to be assessed. Thus, the objective of this study was to evaluate residues of ClO(2), chlorite, chlorate, and chloride on selected fresh produce surfaces after treatment with ClO(2) gas. A rinse procedure was used and water samples were analyzed by N, N-diethyl-p-phenylenediamine and ion chromatography method (300.0). Seven different foods--tomatoes, oranges, apples, strawberries, lettuce, alfalfa sprouts, and cantaloupe--were analyzed after ClO(2) treatment for surface residues. Very low residues were detectable for all the food products except lettuce and alfalfa sprouts, where the measured concentrations were significantly higher. Chlorine dioxide technology leaves minimal to no detectable chemical residues in several food products, thus result in no significant risks to consumers. Practical Application: Potential for chlorine dioxide gas treatments as an effective pathogen inactivation technology to produce with minimal risk for consumers.

  14. Program for computing partial pressures from residual gas analyzer data

    NASA Technical Reports Server (NTRS)

    Easton, D. S.; Giles, C. A.; Merriman, S. H.; Clausing, R. E.

    1971-01-01

    A computer program for determining the partial pressures of various gases from residual-gas-analyzer data is given. The analysis of the ion currents of 18 m/e spectrometer peaks allows the determination of 12 gases simultaneously. Comparison is made to ion-gage readings along with certain other control information. The output data are presented in both tabular and graphical form.

  15. Graphic Three-Axes Presentation of Residual Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth R.; Levi, Alejandro G.

    1997-01-01

    Residual gas analyzers (RGA) are commonly used to measure the composition of residual gases in thermal-vacuum test chambers. Measurements from RGA's are often used to identify and quantify outgassing contaminants from a test article during thermal-vacuum testing. RGA data is typically displayed as snapshots in time, showing instantaneous concentrations of ions from ionized residual gas molecules at different atomic masses. This ion concentration information can be interpreted to be representative of the composition of the residual gas in the chamber at the instant of analysis. Typically, test personnel are most interested in tracking the time history of changes in the composition of chamber residual gas to determine the relative cleanliness and the clean-up rate of the test article under vacuum. However, displays of instantaneous RGA data cannot provide test personnel with the preferred time history information. In order to gain an understanding of gas composition trends, a series of plots of individual data snapshots must be analyzed. This analysis is cumbersome and still does not provide a very satisfactory view of residual gas composition trends. A method was devised by the authors to present RCA data in a three-axis format, plotting Atomic Mass Unit (AMU), the Ionization Signal Response (ISR) as amps/torr as a function of AMU, and Time, to provide a clear graphic visualization of trends of changes in ISR with respect to time and AMU (representative of residual gas composition). This graphic visualization method provides a valuable analytical tool to interpret test article outgassing rates during thermal vacuum tests. Raw RGA data was extracted from a series of delimited ASCII files and then converted to a data array in a spreadsheet. Consequently, using the 3-D plotting functionality provided by the spreadsheet program, 3-D plots were produced. After devising the data format conversion process, the authors began developing a program to provide real-time 3-D

  16. Accumulative effect of food residues on intestinal gas production.

    PubMed

    Mego, M; Accarino, A; Malagelada, J-R; Guarner, F; Azpiroz, F

    2015-11-01

    As mean transit time in the colon is longer than the interval between meals, several consecutive meal loads accumulate, and contribute to colonic biomass. Our aim was to determine the summation effect of fermentable food residues on intestinal gas production. In eight healthy subjects, the volume of endogenous intestinal gas produced in the intestine over a 4-h period was measured by means of a wash-out technique, using an exogenous gas infusion into the jejunum (24 mL/min) and collection of the effluent via a rectal Foley catheter. The exogenous gas infused was labeled (5% SF6 ) to calculate the proportion of endogenous intestinal gas evacuated. In each subject, four experiments were performed ≥1 week apart combining a 1-day high- or low-flatulogenic diet with a test meal or fast. Basal conditions: on the low-flatulogenic diet, intestinal gas production during fasting over the 4-h study period was 609 ± 63 mL. Effect of diet: during fasting, intestinal gas production on the high-flatulogenic diet was 370 ± 146 mL greater than on the low-flatulogenic diet (p = 0.040). Effect of test meal: on the low-flatulogenic diet, intestinal gas production after the test meal was 681 ± 114 mL greater than during fasting (p = 0.001); a similar effect was observed on the high-flatulogenic diet (599 ± 174 mL more intestinal gas production after the test meal than during fasting; p = 0.021). Our data demonstrate temporal summation effects of food residues on intestinal gas production. Hence, intestinal gas production depends on pre-existing and on recent colonic loads of fermentable foodstuffs. © 2015 John Wiley & Sons Ltd.

  17. Chloroxyanion Residue Quantification in Cantaloupes Treated with Chlorine Dioxide Gas.

    PubMed

    Kaur, Simran; Smith, David J; Morgan, Mark T

    2015-09-01

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/liter for 10 min results in a significant reduction (P < 0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6- and 4.3-log reduction of Escherichia coli O157:H7 and Listeria monocytogenes, respectively. However, this treatment could result in the presence of chloroxyanion residues, such as chloride (Cl(-)), chlorite (ClO2(-)), chlorate (ClO3(-)), and perchlorate (ClO4(-)), which, apart from chloride, are a toxicity concern. Radiolabeled chlorine dioxide ((36)ClO2) gas was used to describe the identity and distribution of chloroxyanion residues in or on cantaloupe subsequent to fumigation with ClO2 gas at a mean concentration of 5.1 ± 0.7 mg/liter for 10 min. Each treated cantaloupe was separated into rind, flesh, and mixed (rind and flesh) sections, which were blended and centrifuged to give the corresponding sera fractions. Radioactivity detected, ratio of radioactivity to mass of chlorite in initial ClO2 gas generation reaction, and distribution of chloroxyanions in serum samples were used to calculate residue concentrations in flesh, rind, and mixed samples. Anions detected on the cantaloupe were Cl(-) (∼ 90%) and ClO3(-) (∼ 10%), located primarily in the rind (19.3 ± 8.0 μg of Cl(-)/g of rind and 4.8 ± 2.3 μg of ClO3(-)/g of rind, n = 6). Cantaloupe flesh (∼ 200 g) directly exposed to(36)ClO2 gas treatment showed the presence of only Cl(-) residues (8.1 ± 1.0 μg of Cl(-)/g of flesh, n = 3). Results indicate chloroxyanion residues Cl(-) and ClO3(-) are only present on the rind of whole cantaloupes treated with ClO2 gas. However during cutting, residues may be transferred to the fruit flesh. Because Cl(-) is not toxic, only ClO3(-) would be a toxicity concern, but the levels transferred from rind to flesh are very low. In the case of fruit flesh directly exposed to ClO2 gas, only nontoxic Cl(-) was detected. This

  18. Detecting gas molecules via atomic magnetization.

    PubMed

    Choi, Heechae; Lee, Minho; Kim, Seungchul; Lee, Kwang-Ryeol; Chung, Yong-Chae

    2014-09-14

    Adsorptions of gas molecules were found to alter the directions and magnitudes of magnetic moments of transition metal (Co, Fe) atoms adsorbed on graphene. Using first-principles calculations, we demonstrated that magnetism of surface atoms can be used to identify the kind of existing gas molecules via spin-reorientation and/or demagnetizations caused by the reconfigurations of 3d electron energy levels of Co and Fe. We suggest for the first time that magnetic properties of transition metal-embedded nanostructures can be used in highly selective gas-sensing applications.

  19. Minimizing Residual Pressure within a Windowless Gas Target System - JENSA

    NASA Astrophysics Data System (ADS)

    Gomez, Orlando; Browne, Justin; Kontos, Antonios; Montes, Fernando; Jensa Collaboration

    2015-04-01

    Nuclear reactions between light gases and radioactive isotope beams are essential to address open questions in nuclear structure and astrophysics. Pure light gas targets are critical for the measurements of proton- and alpha-induced reactions. J _ et E _ xperiments in N _ uclear S _ tructure and A _ strophysics (JENSA) is the world's most dense (~ 1019 atoms/cm2) windowless gas target system. Most of the gas flow is localized; however, escaping gas creates a pressure gradient which degrades experimental measurements and contaminates the beam line. JENSA contains a differential pumping system to maintain a vacuum. The previous design configuration was not optimized for experiments (pressure measurements 70 cm downstream from the jet were ~ 10-3 torr; optimal is less than 10-4 torr). We have altered the current differential pumping system to minimize the residual pressure profile. Several configurations of two gas-receiving catchers were tested, and the most efficient ones identified using Enhanced Pirani and Cold Cathode gauges. We have determined the 30 mm outer and 20 mm inner gas-receiving cones minimize JENSA central chamber pressure to 200 millitorr at 16,000 torr of discharge pressure. Altering the tubing configuration has additionally lowered the pressure 70 cm downstream to 10-5 torr. The new residual pressure allows operation of JENSA with planned expansion of a recoil mass separator SECAR.

  20. Venous gas embolism - Time course of residual pulmonary intravascular bubbles

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Luehr, S.; Katz, J.

    1989-01-01

    A study was carried out to determine the time course of residual pulmonary intravascular bubbles after embolization with known amounts of venous air, using an N2O challenge technique. Attention was also given to the length of time that the venous gas emboli remained as discrete bubbles in the lungs with 100 percent oxygen ventilation. The data indicate that venous gas emboli can remain in the pulmonary vasculature as discrete bubbles for periods lasting up to 43 + or - 10.8 min in dogs ventilated with oxygen and nitrogen. With 100 percent oxygen ventilation, these values are reduced significantly to 19 + or - 2.5 min.

  1. Method and apparatus for removing residual hydrogen from a purified gas

    SciTech Connect

    Briesacher, J.L.; Applegarth, C.H.; Lorimer, D.H.

    1993-08-24

    A method is described for removing residual hydrogen from a purified gas comprising the steps of: (a) heating an impure gas; (b) contacting the heated impure gas with an impurity sorbing material to produce a purified gas having trace amounts of residual hydrogen; (c) cooling the purified gas to a temperature less than about 100 C; and (d) contacting the cooled purified gas with a hydrogen sorbing material to at least partially remove said residual hydrogen.

  2. The effect of magnetic flutter on residual flow

    SciTech Connect

    Terry, P. W.; Pueschel, M. J.; Carmody, D.; Nevins, W. M.

    2013-11-15

    The hypothesis that stochastic magnetic fields disrupt zonal flows associated with ion temperature gradient turbulence saturation is investigated analytically with a residual flow calculation in the presence of magnetic flutter. The calculation starts from the time-asymptotic zero-beta residual flow of Rosenbluth and Hinton [Phys. Rev. Lett. 80, 724 (1998)] with the sudden application of an externally imposed, fixed magnetic field perturbation. The short-time electron response from radial charge loss due to magnetic flutter is calculated from the appropriate gyrokinetic equation. The potential evolution has quadratic behavior, with a zero crossing at finite time. The crossing time and its parametric dependencies are compared with numerical results from a gyrokinetic simulation of residual flow in the presence of magnetic flutter. The numerical and analytical results are in good agreement and support the hypothesis that the high-beta runaway of numerical simulations is a result of the disabling of zonal flows by finite-beta charge losses associated with magnetic flutter.

  3. The effect of magnetic flutter on residual flow

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Pueschel, M. J.; Carmody, D.; Nevins, W. M.

    2013-11-01

    The hypothesis that stochastic magnetic fields disrupt zonal flows associated with ion temperature gradient turbulence saturation is investigated analytically with a residual flow calculation in the presence of magnetic flutter. The calculation starts from the time-asymptotic zero-beta residual flow of Rosenbluth and Hinton [Phys. Rev. Lett. 80, 724 (1998)] with the sudden application of an externally imposed, fixed magnetic field perturbation. The short-time electron response from radial charge loss due to magnetic flutter is calculated from the appropriate gyrokinetic equation. The potential evolution has quadratic behavior, with a zero crossing at finite time. The crossing time and its parametric dependencies are compared with numerical results from a gyrokinetic simulation of residual flow in the presence of magnetic flutter. The numerical and analytical results are in good agreement and support the hypothesis that the high-beta runaway of numerical simulations is a result of the disabling of zonal flows by finite-beta charge losses associated with magnetic flutter.

  4. Residual magnetism holds solenoid armature in desired position

    NASA Technical Reports Server (NTRS)

    Crawford, R. P.

    1967-01-01

    Holding solenoid uses residual magnetism to hold its armature in a desired position after excitation current is removed from the coil. Although no electrical power or mechanical devices are used, the solenoid has a low tolerance to armature displacement from the equilibrium position.

  5. Description of the prototype diagnostic residual gas analyzer for ITER.

    PubMed

    Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C

    2014-11-01

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  6. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  7. Tag gas capsule with magnetic piercing device

    DOEpatents

    Nelson, Ira V.

    1976-06-22

    An apparatus for introducing a tag (i.e., identifying) gas into a tubular nuclear fuel element. A sealed capsule containing the tag gas is placed in the plenum in the fuel tube between the fuel and the end cap. A ferromagnetic punch having a penetrating point is slidably mounted in the plenum. By external electro-magnets, the punch may be caused to penetrate a thin rupturable end wall of the capsule and release the tag gas into the fuel element. Preferably the punch is slidably mounted within the capsule, which is in turn loaded as a sealed unit into the fuel element.

  8. Coarse-fine residual gravity cancellation system with magnetic levitation

    NASA Technical Reports Server (NTRS)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  9. Neutron-Mirror Neutron Oscillations in a Residual Gas Environment

    NASA Astrophysics Data System (ADS)

    Varriano, Louis; Kamyshkov, Yuri

    2017-01-01

    A precise measurement of the neutron lifetime is important for calculating the rate at which nucleosynthesis occurred after the Big Bang. The history of neutron lifetime measurements has demonstrated impressive continuous improvement in experimental technique and in accuracy. However, two most precise recent measurements performed by different techniques differ by about 3 standard deviations. This difference of 9.2 seconds can possibly be resolved by future experiments, but it may also be evidence of a mirror matter effect present in these experiments. Both mirror matter, a candidate for dark matter, and ordinary matter can have similar properties and self-interactions but will interact only gravitationally with each other, in accordance with observational evidence of dark matter. Three separate experiments have been performed in the last decade to detect the possibility of neutron-mirror neutron oscillations. This work provides a formalism for understanding the interaction of the residual gas in an experiment with ultra-cold neutrons. This residual gas effect was previously considered negligible but can have a significant impact on the probability of neutron-mirror neutron transition.

  10. Magnetic bearing systems for gas turbine engines

    SciTech Connect

    Iannello, V.

    1995-12-31

    As the thrust-to-weight ratio for next generation gas turbine engines is increased, engine designers are requiring lower weight, higher temperature lubrication systems. Magnetic bearing systems are under development to meet these needs. This paper describes some of the advanced features of these systems.

  11. Residual gas saturation effects on hydraulic conductivity of coarse sand

    NASA Astrophysics Data System (ADS)

    Princ, Tomas; Reis Fideles, Helena Maria; Snehota, Michal; Sacha, Jan; Cislerova, Milena

    2017-04-01

    The aim of the first part of this study was to experimentally determine the relationship between gas residual saturation (Sgr) and actual hydraulic conductivity (K) of coarse sand. Sgr indicates the ratio of entrapped air volume to pore volume of the sample. The value of residual gas saturation value determined in experiments exhibits temporal variability (due to history of wetting and drying, due to redistribution, air dissolution etc.), but many two-phase models assume value of Sgr to be constant. The K(Sgr) relationship was determined in series of constant head infiltration-outflow experiments. The first runs was performed on fully saturated sample. After the first infiltration run and then after each subsequent infiltration run, sample was drained under tension on a sand tank. Sgr was determined gravimetrically before each infiltration run. The value of K was determined using a Darcy's law from measured steady state flux and each measurement then provided one value of K(Sgr). Several relative hydraulic conductivity models were tested to fit the measured points. In the second part of this study the aim was to compare hydraulic conductivities predicted from the retention curves by Mualem - van Genuchten model and measured K(Sgr). The performance of both concepts was tested in numerical simulation of the complex infiltration-outflow experiment using TOUGH2 multiphase model (Pruess et al., 2012). TOUGH2 model considers Sgr as a point, below which gas phase becomes immobile, but its content still can be reduced by dissolution into water. The simulated infiltration-outflow experiment was previously conducted on a compacted sample composed of fine, medium coarse and coarse sand (Sněhota et al., 2015). The data of water content distribution during various stages of the experiment were determined by means of neutron tomography. The Levenberg-Marquardt algorithm was used for parameter optimization. Four parameters (permeability and residual gas saturation of fine and

  12. Magnetic separation as a plutonium residue enrichment process

    SciTech Connect

    Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

    1989-01-01

    We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

  13. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  14. Residual-gas-ionization beam profile monitors in RHIC

    SciTech Connect

    Connolly, R.; Fite, J.; Jao, S.; Trabocchi, C.

    2010-05-02

    Four ionization profile monitors (IPMs) are in RHIC to measure vertical and horizontal beam profiles in the two rings. These work by measuring the distribution of electrons produced by beam ionization of residual gas. During the last two years both the collection accuracy and signal/noise ratio have been improved. An electron source is mounted across the beam pipe from the collector to monitor microchannel plate (MCP) aging and the signal electrons are gated to reduce MCP aging and to allow charge replenishment between single-turn measurements. Software changes permit simultaneous measurements of any number of individual bunches in the ring. This has been used to measure emittance growth rates on six bunches of varying intensities in a single store. Also the software supports FFT analysis of turn-by-turn profiles of a single bunch at injection to detect dipole and quadrupole oscillations.

  15. Study of Residual Gas Analyser (RGA) Response towards Known Leaks

    NASA Astrophysics Data System (ADS)

    Pathan, Firozkhan S.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Raval, Dilip C.; Thankey, Prashant L.; Manthena, Himabindu; Yuvakiran, Paravastu; Dhanani, Kalpesh R.

    2012-11-01

    Helium leak testing is the most versatile form of weld qualification test for any vacuum application. Almost every ultra-high vacuum (UHV) system utilizes this technique for insuring leak tightness for the weld joints as well as demountable joints. During UHV system under operational condition with many other integrated components, in-situ developed leaks identification becomes one of the prime aspect for maintaining the health of such system and for continuing the experiments onwards. Since online utilization of leak detector (LD) has many practical limitations, residual gas analyser (RGA) can be used as a potential instrument for online leak detection. For this purpose, a co-relation for a given leak rate between Leak Detector and RGA is experimentally established. This paper describes the experimental aspect and the relationship between leak detector and RGA.

  16. Residual stress characterization with an ultrasonic/magnetic technique

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Heyman, J. S.

    1984-01-01

    A potentially useful new technique for residual stress characterization in ferromagnetic material is described. The unique feature of this technique is the measurement of small changes in ultrasonic wave velocity by the application of external dc magnetic field in the material under various stress conditions. It was found, in steel, that the fractional change in the natural velocity Delta W/W of waves propagating along the external field direction is affected by the uniaxial stress applied in the same axis. External compression lowers the slope of the Delta W/W curve in the low field region, while external tension generally does the opposite. For most cases, the slope in this region falls below zero under external compression. The result of measurements in specimens with residual stress shows exactly the same tendency.

  17. Prognosis of residual coal gas capacity made by the `Express' method

    NASA Astrophysics Data System (ADS)

    Prokop, Pavel; Zapletal, Pavel; Pěgřímek, Ivo

    2011-04-01

    An easy, reliable, and inexpensive method, called `Express' method, was described to determine the residual gas capacity of deep mines using results from an air and gas balance. Air and gas balances are common elements of mine management and must be performed periodically. Using the process described here to obtain balance results, it is straightforward to obtain the residual gas capacity, which is an important parameter for decision-making in current mine operations. After a mine is closed, the residual gas capacity becomes a dominant factor used to select methods to protect against gas emissions from the closed underground area or perhaps to provide information for the use of gas reserves. The proposed `Express' method is a much simpler method to obtain the residual gas capacity than other procedures used for this purpose to date.

  18. Residual Gas Effects on Detached Solidification in Microgravity

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Ramakrishnan; Kota, Arun; Anand, Gaurav

    2004-01-01

    Our long term goal has been to make detached solidification reproducible, which requires a full understanding of the mechanisms underlying it. Our Moving Meniscus Model of steady-state detachment predicts that it depends strongly on the surface tension of the melt and the advancing contact angle with the ampoule wall. Thus, the objective of the current project was to determine the influence of residual gases on the surface tension and contact angle of molten semiconductors on typical ampoule materials. Our focus was on the influence of oxygen on indium antimonide on clean silica ("quartz"). The research was performed by three chemical engineering graduate students, the third of whom will complete his research in the summer of 2005. Originally, we had planned to use a sealed silica cell containing a zirconia electrochemical element to control the oxygen partial pressure. However, zirconia requires an operating temperature above the 530 C melting point of InSb and is difficult to form a gas-tight seal with silica. Thus, we decided instead to flow an oxygen-containing gas through the cell. A special apparatus was designed, built and perfected. A piece of InSb was placed on a horizontal silica plate in a quartz cell. High purity argon, helium or hydrogen-containing gas is passed continuously through the cell while the oxygen concentration in the effluent gas is measured. The shape of the resulting drop was used to determine contact angle and surface tension of Ga-doped and high purity InSb. Oxygen appeared to decrease the contact angle, and definitely did not increase it. The following section gives the background for the research. Section 2 summarizes the results obtained on Ga-doped InSb with relatively high oxygen concentrations. Section 3 describes recent improvements made to the apparatus and methods of analysis. Section 4 gives recent results for high-purity InSb at low oxygen concentrations. Final results will be obtained only this summer (2005). Each section

  19. Evaluating the influence of residual stresses on the magnetic properties of electrical steel

    SciTech Connect

    Korzunin, G.S.; Chistyakov, V.K.

    1995-04-01

    The method described for evaluating the influence of residual stresses on the magnetic properties of coiled cold-rolled electrical steel consists in measuring the ratio of the magnetic characteristics that are and are not sensitive to the effect of residual stresses. The evaluation is made from the value of the ratio, using the correlations between its value and the magnetic characteristics studied.

  20. Infrared thermography to detect residual ceramic in gas turbine blades

    NASA Astrophysics Data System (ADS)

    Meola, C.; Carlomagno, G. M.; di Foggia, M.; Natale, O.

    2008-06-01

    A serious problem in the production of gas turbine blades is the detection of residual ceramic cores inside the cooling passages; in fact, the presence of even small ceramic pieces affects turbine performance and may cause difficulties in successive manufacturing. Therefore, it is important to have a non-destructive technique that must be capable of detecting tiny ceramic fragments in a fast and easy way. In this perspective, the suitability of infrared thermography was investigated within cooperation between the University of Naples and the Europea Microfusioni Aerospaziali S.p.A. (EMA). Several blades of three different types were inspected revealing that in many cases infrared thermography can discover small ceramic fragments which were missed by X-ray inspection. In addition, infrared thermography allows gaining of information about other types of anomalies (e.g., surface defects) during the same testing step (by eventually changing the test parameters) and then saving time and money. The obtained results look promising in view of introducing infrared thermography among industrial instrumentation as an alternative to, or integrated with, the most currently utilized non-destructive techniques.

  1. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    USDA-ARS?s Scientific Manuscript database

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  2. Injection, flow, and mixing of CO2 in porous media with residual gas.

    SciTech Connect

    Oldenburg, C.M.; Doughty, C.A.

    2010-09-01

    Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

  3. Residual Gas Effects on Detached Solidification in Microgravity

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.; Wilcox, William R.; Ramakrishnan, Suresh; Kota, Arun

    2003-01-01

    Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long-term goal is to make such detached solidification reproducible, which requires a full understanding of the mechanisms underlying it. Our Moving Meniscus Model of steady-state detachment predicts that it depends strongly on the surface tension of the melt and the advancing contact angle with the ampoule wall. Detached solidification is more likely when the contact angle for the melt on the ampoule wall is high, i.e. non-wetting. It has been claimed that impurities increase the contact angle. The objective of the current project is to determine the influence of residual gases on the surface tension and contact angle of molten semiconductors on typical ampoule materials. We are focusing on determining the influence of oxygen on the contact angle of molten InSb on clean silica ('quartz'), including the advancing and retreating contact angles in addition to the usual equilibrium contact angle. We have created a gas flow system that allows us to control the oxygen partial pressure over a sessile drop of InSb on a horizontal quartz surface. The cell is slowly tilted while videotaping to reveal the contact angles on the two sides of the drop just prior to it rolling down the surface. Thus far, we have learned the following: (1) Molten InSb readily forms an oxide layer in the presence of the trace amounts of oxygen found in high purity argon; (2) This oxide contains a substantial amount of Ga, which presumably is a trace contaminant that is not detectable in the starting material; (3) The addition of 10% hydrogen to the argon gas is sufficient to reduce the oxide and produce a clean drop; (4) An infrared filter must precede the video camera in order to produce a sharp image of the drop for later image analysis; (5) Tilting the surface on which the drop rests causes the two sides

  4. Central peaking of magnetized gas discharges

    SciTech Connect

    Chen, Francis F.; Curreli, Davide

    2013-05-15

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T{sub e}, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

  5. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  6. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  7. Chloroxyanion Residues in Cantaloupe and Tomatoes after Chlorine Dioxide Gas Sanitation.

    PubMed

    Smith, D J; Ernst, W; Herges, G R

    2015-11-04

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but little data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tomato and cantaloupe treatment with chlorine dioxide gas. Treatments delivered 50 mg of chlorine dioxide gas per kg of tomato (2-h treatment) and 100 mg of gas per kg of cantaloupe (6-h treatment) in sealed, darkened containers. Chlorate residues in tomato and cantaloupe edible flesh homogenates were less than the LC-MS/MS limit of quantitation (60 and 30 ng/g respectively), but were 1319 ± 247 ng/g in rind + edible flesh of cantaloupe. Perchlorate residues in all fractions of chlorine dioxide-treated tomatoes and cantaloupe were not different (P > 0.05) than perchlorate residues in similar fractions of untreated tomatoes and cantaloupe. Data from this study suggest that chlorine dioxide sanitation of edible vegetables and melons can be conducted without the formation of unwanted residues in edible fractions.

  8. Residue formations of phosphorus hydride polymers and phosphorus oxyacids during phosphine gas fumigations of stored products.

    PubMed

    Flora, Jason W; Byers, Loran E; Plunkett, Susan E; Faustini, Daryl L

    2006-01-11

    With the extent of international usage and the critical role phosphine gas (PH3) plays in commercial pest control, identification of the residual components deposited during fumigation is mandatory. It has been postulated that these infrequent residues are primarily composed of phosphoric acid or reduced forms of phosphoric acid [hypophosphorous acid (H3PO2) and phosphorous acid (H3PO3)], due to the oxidative degradation of phosphine. Using environmental scanning electron microscopy, gas phase Fourier transform infrared spectroscopy, and X-ray fluorescence spectroscopy, the structural elucidation and formation mechanism of the yellow amorphous polyhydric phosphorus polymers (P(x)H(y)) that occur in addition to the lower oxyacids of phosphorus in residues deposited during PH3 fumigations of select tobacco commodities are explored. This research determined that nitric oxide gas (or nitrogen dioxide) initiates residue formation of phosphorus hydride polymers and phosphorus oxyacids during PH3 fumigations of stored products.

  9. Characteristics and performance study of mass spectrometer residual gas analyzers

    NASA Technical Reports Server (NTRS)

    Hultzman, W. W.

    1975-01-01

    Types of instruments studied were magnetic sector, omegatron, quadrupole, and monopole. Experimental results obtained included absolute sensitivity to argon, relative sensitivity to ten gases (hydrogen, helium, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, krypton, and xenon), and cracking patterns for these gases.

  10. Chloroxyanion residue quantification in cantaloupes treated with chlorine dioxide gas

    USDA-ARS?s Scientific Manuscript database

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/L for 10 minutes, results in a significant reduction (p<0.05) in initial microflora, an increase in shelf life without any alteration in color, and a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monoc...

  11. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  12. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  13. LASNEX simulations of supernova-residual gas shocks on the Nova laser

    NASA Astrophysics Data System (ADS)

    Estabrook, Kent; Remington, Bruce; Glendinning, Gail; Alley, W. E.; Munro, D. H.; Suter, L. J.; Harte, J. H.; Zimmerman, G. B.; Bailey, D. S.; Kane, Jave; Wallace, Russel; London, R. A.; Rubenchik, A. M.; Drake, R. Paul; McCray, R.

    1997-11-01

    We simulate an astrophysical supernova collision with the residual gas from the initial red or blue giant on the LLNL Nova laser which produces x rays in a hohlraum as a driver[1]. Two dimensional LASNEX simulations follow the Tr ~220 eV x ray ablation and acceleration of 200 microns of C_8H_7Br1 across a 150 micron gap into SiO2 foam (mass density .04). The C_8H_7Br1 collides with the SiO2 at ~ 10^7 cm/sec and drives forward and reverse shocks[2]. We initiate Rayleigh-Taylor and Richtmyer-Meshkov instabilities with 50-100 micron wavelength, 1 micron amplitude perturbations or with random noise and investigate magnetic fields[3]. We compare experimental x ray back lighted streaks to computer generated streaks. Related papers by Bruce Remington, Gail Glendinning, Paul Drake and Jave Kane are at this meeting. [1] B.A.Remington et al. PRL 67, 3259 (1991). [2] B.A.Remington et al. Phys.Plasmas 4, 1994 (1997). [3] K.Mima, T.Tajima and J.N.Leboeuf PRL 41, 1715 (1978). Auspices U.S.D.O.E. by LLNL Contract W-7405-ENG-48

  14. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Chapman, S; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; Stracka, S; So, C; Thompson, R I; Turner, M; van der Werf, D P; Wurtele, J S; Zhmoginov, A

    2013-06-01

    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

  15. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Chapman, S.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Stracka, S.; So, C.; Thompson, R. I.; Turner, M.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A.

    2013-06-01

    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

  16. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.

    PubMed

    Song, Geum-Ju; Seo, Yong-Chil; Pudasainee, Deepak; Kim, In-Tae

    2010-07-01

    An attempt has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35-40%), acetylene (13-20%), ethylene (3-4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg(-1) and the concentrations of toxic gases, such as NO(x), HCl and HF, were below the regulatory emissions limit. Gas chromatography-mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 microm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Effect and mechanism of coking residual ammonia water treating by flue gas.

    PubMed

    Cheng, Z J; Yin, G J; Yang, L Q; Wang, W; Cheng, D D

    2001-04-01

    The treatment of coking residual ammonia water has been a big difficult problem at home and abroad, and there is no breakthrough research achievement in the past. The invention patent "The method of treating all coking wastewater or treating coking residual ammonia water by flue gas" has been successfully used in Huaian Steel Works for high concentration and organic industry wastewater treatment. Not only can it realize the wastewater zero discharge, but also the wastewater treatment has an effect of de-sulfur and de-nitrogen for flue gas. So that the flue gas exhaust can meet the requirement of emission standard. The mass transfer and heat transfer, fly ash absorption and coagulation, acid and alkali neutralization reaction, catalysis oxidation and reduction reaction in flue gas would be the major factors.

  18. Case history of magnetic bearing supported hot gas turboexpander

    SciTech Connect

    Destombes, Y.; Allaire, P.E.

    1995-12-31

    A very significant advantage for the use of magnetic bearings in hot gas and cryogenic expanders is that the bearing operating temperature can be much higher or lower than for conventional oil lubricated fluid film or rolling element bearings. This has lead to the increasing development of industrial expanders which are magnetic bearing supported and rather complex bearing oil supply sealing arrangements can be eliminated. As advances in magnetic bearing technology and understanding occur, the design and performance of the magnetic bearings continues to improve. The purpose of this paper is to describe some characteristics of industrial magnetic bearing supported turboexpanders, both hot gas and cryogenic, and present a particular hot gas expander application. This paper discusses the basic principles of operation of the magnetic bearings including the bearing radial and thrust bearings, sensors, control system, and dynamic characteristics. The governing equations are given for upper quadrant radial bearing designs. Design equations relevant to bearing design will be presented to assist potential users of magnetic bearings in understanding their operation. The paper also presents a practical application of magnetic bearings to a hot gas turbogenerator. The bearings support a turbine wheel which converts the exhaust gas energy of a blast furnace into electrical power through a synchronous 6 MW generator. The magnetic bearing allowed the rotor to be constructed as a single shaft machine. The turbine wheel is directly connected to the generator rotor. The unit has been successfully operated for a 8 year period and now has in excess of 70,000 hours in a steel plant in Europe. It has some unique features: (1) it is the heaviest magnetic bearing supported rotor in industrial operation at 8 tons, (2) it has very high unbalance acceptance, (3) it has a special rotor mounted auxiliary bearing design, and (4) only the upper quadrant of the bearing is employed in the unit.

  19. T2-Shortening of 3He Gas by Magnetic Microspheres

    SciTech Connect

    Minard, Kevin R; Timchalk, Chuck; Corley, Rick A

    2005-03-01

    In the interconnected pores of a material like the lung the transverse relaxation time (T2) for 3He gas is shortened by the deposition of magnetic microspheres and rapid molecular diffusion through induced field distortions. Here, this unique relaxation process is described theoretically and predicted T2-shortening is validated using pressurized 3He gas in a foam model of lung tissue. Results demonstrate that – 1) significant T2-shortening is induced by microsphere deposition, 2) shortened T2’s are accurately predicted, and 3) measured relaxation times are exploitable for quantifying the local volume fraction of magnetic microspheres deposited in gas-filled spaces.

  20. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  1. Gas chromatographic determination of pesticide residues in white mustard.

    PubMed

    Słowik-Borowiec, Magdalena; Szpyrka, Ewa; Walorczyk, Stanisław

    2015-04-15

    A new analytical method employing gas chromatography coupled to electron capture and nitrogen phosphorus detection (GC-ECD/NPD) has been developed and validated for the screening and quantification of 51 pesticides in a matrix of high chlorophyll content - white mustard (Sinapis alba L.). For preparation of the sample extract, the citrate buffered QuEChERS procedure was followed. However certain changes were made to adapt the method to our needs and available laboratory resources. The sample size was reduced to 5 g, 10 mL water was added and exchange of solvent before GC analysis was done. The samples spiked with the target pesticides at the concentration level 0.01 mg/kg and a higher level (depending on the compound) yielded average recoveries in the range of 70-120% with relative standard deviations (RSDs) 0-19% except for HCB, S-metolachlor and teflubenzuron, and displayed very good linearity (R(2)>0.99) for nearly all the analytes. Limit of quantification was 0.01 mg/kg for the majority of the analytes. The expanded measurement uncertainties were estimated employing a "top-down" empirical model as being between 6% and 32% and yielding an average value of 18% (coverage factor k=2, confidence level 95%).

  2. The characteristics of gravity and magnetic fields and the distribution of tight sandstone gas in the eastern Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Bingqiang; Zhang, Huaan; Zhang, Chunguan; Xu, Haihong; Yan, Yunkui

    2016-04-01

    In order to perform gas exploration and determine the distribution pattern of gas in the Yanchang Oil Field in the eastern part of the North Shaanxi Slope, Ordos Basin, China, gravity and magnetic survey data were systemically collated, processed and interpreted in combination with the drilling data and recent seismic data. The genesis of gravity and magnetic anomalies and the relationship between the characteristics of the gravity and magnetic fields and known gas distribution were explored in order to predict the favourable exploration targets for gas. Gravity anomalies resulted both from the lateral variation in density of the basement rock and lateral lithologic transformation in the sedimentary cover. The regional magnetic anomalies were mainly caused by the basement metamorphic rocks and the residual magnetic anomalies may reflect the amount and general location of the volcanic materials in the overlying strata. The residual gravity and magnetic anomalies generated by high-density sandstone and high content of volcanics in the gas reservoir of the upper Paleozoic distorted and deformed the anomaly curves when they were stacked onto the primary background anomaly. The gas wells were generally found to be located in the anomaly gradient zones, or the distorted part of contour lines, and the flanks of high and low anomalies, or the transitional zones between anomaly highs and lows. The characteristics of gravity and magnetic fields provide significant information that can be used for guidance when exploring the distribution of gas. Based on these characteristics, five favourable areas for gas exploration were identified; these are quasi-equally spaced like a strip extending from the southeast to the northwest.

  3. The magnetic field of Mars - Implications from gas dynamic modeling

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Spreiter, J. R.; Stahara, S. S.

    1984-01-01

    On January 21, 1972, the Mars 3 spacecraft observed a variation in the magnetic field during its periapsis passage over the dayside of Mars that was suggestive of entry into a Martian magnetosphere. Original data and trajectory of the spacecraft have been obtained (Dolginov, 1983) and an attempt is made to simulate the observed variation of the magnetic field by using a gas dynamic simulation. In the gas dynamic model a flow field is generated and this flow field is used to carry the interplanetary magnetic field through the Martian magnetosheath. The independence of the flow field and magnetic field calculation makes it possible to converge rapidly on an IMF orientation that would result in a magnetic variation similar to that observed by Mars 3. There appears to be no need to invoke an entry into a Martian magnetosphere to explain these observations.

  4. A Three Dimensional Beam Profile Monitor Based on Residual Gas Ionization

    SciTech Connect

    Lewis, T.A.; Shapira, D.

    1998-11-04

    A three-dimensional beam profile monitor based on tracking the ionization of the residual gas molecules in the evacuated beam pipe is described. Tracking in position and time of the ions and electrons produced in the ionization enables simultaneous position sampling in three dimensions. Special features which make it possible to sample very low beam currents were employed.

  5. [Determination of nitenpyram residue in cabbage and soil using gas chromatography].

    PubMed

    Zhang, Guiqun; Nie, Siqiao; Long, Liping; Zeng, Dongqiang; Chen, Jiuxing; Yang, Hui; Chen, Linglong

    2010-11-01

    An analytical method for the determination of nitenpyram residue in cabbage and soil using gas chromatography was established. The nitenpyram residue was extracted from cabbage and soil with acetone-water (4 : 1, v/v), cleaned up by a Florisil column, and then detected by gas chromatography-electron capture detection (GC-ECD). At the spiked level range from 0.02 to 2.00 mg/kg, the average recoveries of nitenpyram were 88.73%-94.3% and 90.82%-96.27% with the relative standard deviations (RSDs) of 3.09%-7.39% and 2.01%-4.92% in cabbage and soil, respectively. The limit of detection of nitenpyram was 0.02 mg/kg. The method is fast, sensitive, simple, reproducible and practical for the determination of nitenpyram residue in environmental systems.

  6. Residual Gas in Closed Systems: Development of Gas in Silica Ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    The amounts and composition of residual gases formed in sealed silica glass ampoules were investigated. The effect of the silica brand, outgassing and annealing conditions, system geometry, and a presence of graphite were determined and discussed.

  7. Residual magnetism in an MRI suite after field-rampdown: what are the issues and experiences?

    PubMed

    Sammet, Steffen; Koch, Regina Maria; Aguila, Francisco; Knopp, Michael Vinzenz

    2010-05-01

    To investigate residual magnetization at different locations in the MRI suite at several time points prior, during and after field-rampdown with the goal to determine if the MRI suites could be reused in a clinical environment after the field-rampdown of MR scanners of different field strengths. Residual magnetism was measured with two gaussmeters in the MRI suites of an 8 Tesla (T) and a 0.7T whole body magnet at several time points prior, during and after field-rampdown. Residual magnetism, in the MRI suite after controlled rampdown of an 8T superconducting magnet, was not significantly elevated compared with magnetic fields in the environment. Through 40 days, no significant changes in magnetism could be seen compared with initial measurements directly after rampdown, as both gaussmeters consistently measured. Similar findings were also observed after the quenched shutdown of a 0.7T system but a remanence was observed. A controlled rampdown of even an ultrahigh field MR system does not lead to retained magnetic contamination, while forced quenched rampdown of a mid-field system revealed temporary remanence. There is no need to degauss an MRI suite when an appropriate steel composition has been used in the iron shield. Copyright 2010 Wiley-Liss, Inc.

  8. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  9. Barkhausen noise-magnetizing voltage sweep measurement in evaluation of residual stress in hardened components

    NASA Astrophysics Data System (ADS)

    Santa-aho, Suvi; Sorsa, Aki; Hakanen, Merja; Leiviskä, Kauko; Vippola, Minnamari; Lepistö, Toivo

    2014-08-01

    In this study, Barkhausen noise (BN) magnetizing voltage sweep (MVS) measurement is used to evaluate non-destructively the surface residual stress state of hardened components. A new computational feature, where the maximum slope of the sweep is divided by the corresponding magnetizing voltage, is introduced. The results show that this feature has a linear relationship with the residual stress state of the samples. The determination of residual stresses during online production of components is a highly recognized task because tensile stresses may be detrimental to the component. In this study, two sets of hardened samples are used in the analysis. A linear relationship is observed in each sample set indicating that the new feature is applicable in assessment of surface residual stresses of the components.

  10. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    PubMed

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  11. Low temperature magnetic characterisation of fire ash residues

    NASA Astrophysics Data System (ADS)

    Peters, C.; Thompson, R.; Harrison, A.; Church, M. J.

    Fire ash is ideally suited to mineral magnetic studies. Both modern (generated by controlled burning experiments) and archaeological ash deposits have been studied, with the aim of identifying and quantifying fuel types used in prehistory. Low temperature magnetic measurements were carried out on the ash samples using an MPMS 2 SQUID magnetometer. The low temperature thermo-remanence cooling curves of the modern ash display differences between fuel sources. Wood and well-humified peat ash display an increase in remanence with cooling probably related to a high superparamagnetic component, consistent with room temperature frequency dependent susceptibilities of over 7%. In comparison fibrous-upper peat and peat turf display an unusual decrease in remanence, possibly due to an isotropic point of grains larger than superparamagnetic in size. The differences have been successfully utilised in unmixing calculations to quantify fuel components within four archaeological deposits from the Northern and Western Isles of Scotland.

  12. In-orbit offline estimation of the residual magnetic dipole biases of the POPSAT-HIP1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Seriani, S.; Brama, Y. L.; Gallina, P.; Manzoni, G.

    2016-05-01

    The nanosatellite POPSAT-HIP1 is a Cubesat-class spacecraft launched on the 19th of June 2014 to test cold-gas based micro-thrusters; it is, as of April 2015, in a low Earth orbit at around 600 km of altitude and is equipped, notably, with a magnetometer. In order to increment the performance of the attitude control of nanosatellites like POPSAT, it is extremely useful to determine the main biases that act on the magnetometer while in orbit, for example those generated by the residual magnetic moment of the satellite itself and those originating from the transmitter. Thus, we present a methodology to perform an in-orbit offline estimation of the magnetometer bias caused by the residual magnetic moment of the satellite (we refer to this as the residual magnetic dipole bias, or RMDB). The method is based on a genetic algorithm coupled with a simplex algorithm, and provides the bias RMDB vector as output, requiring solely the magnetometer readings. This is exploited to compute the transmitter magnetic dipole bias (TMDB), by comparing the computed RMDB with the transmitter operating and idling. An experimental investigation is carried out by acquiring the magnetometer outputs in different phases of the spacecraft life (stabilized, maneuvering, free tumble). Results show remarkable accuracy with an RMDB orientation error between 3.6 ° and 6.2 ° , and a module error around 7 % . TMDB values show similar coherence values. Finally, we note some drawbacks of the methodologies, as well as some possible improvements, e.g. precise transmitter operations logging. In general, however, the methodology proves to be quite effective even with sparse and noisy data, and promises to be incisive in the improvement of attitude control systems.

  13. Single-ring magnetic cusp low gas pressure ion source

    DOEpatents

    Bacon, Frank M.; Brainard, John P.; O'Hagan, James B.; Walko, Robert J.

    1985-01-01

    A single-ring magnetic cusp low gas pressure ion source designed for use in a sealed, nonpumped neutron generator utilizes a cathode and an anode, three electrically floating electrodes (a reflector behind the cathode, a heat shield around the anode, and an aperture plate), together with a single ring-cusp magnetic field, to establish and energy-filtering mechanism for producing atomic-hydrogen ions.

  14. Magnetically Regulated Gas Accretion in High-Redshift Galactic Disks

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval

    2009-09-01

    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes ~10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute ~1/3 of the pressure to distances of ~3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  15. Residual gas analysis of a dc plasma for carbon nanofiber growth

    SciTech Connect

    Cruden, Brett A.; Cassell, Alan M.; Hash, David B.; Meyyappan, M.

    2004-11-01

    We report the analysis of a plasma enhanced chemical vapor deposition process for carbon nanofiber growth. A direct current (dc) plasma is employed with a mixture of acetylene and ammonia. Residual gas analysis is performed on the downstream plasma effluent to determine degrees of precursor dissociation and high molecular weight species formation. Results are correlated to growth quality obtained in the plasma as a function of dc voltage/power, gas mixture, and pressure. Behaviors in plasma chemistry are understood through application of a zero-dimensional model.

  16. An Overview of Magnetic Bearing Technology for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.

    2004-01-01

    The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.

  17. The effect of residual gas scattering on Ga ion beam patterning of graphene

    SciTech Connect

    Thissen, Nick F. W. E-mail: a.a.bol@tue.nl; Vervuurt, R. H. J.; Weber, J. W.; Kessels, W. M. M.; Bol, A. A. E-mail: a.a.bol@tue.nl; Mulders, J. J. L.

    2015-11-23

    The patterning of graphene by a 30 kV Ga{sup +} focused ion beam (FIB) is studied by in-situ and ex-situ Raman spectroscopy. It is found that the graphene surrounding the patterned target area can be damaged at remarkably large distances of more than 10 μm. We show that scattering of the Ga ions in the residual gas of the vacuum system is the main cause of the large range of lateral damage, as the size and shape of the tail of the ion beam were strongly dependent on the system background pressure. The range of the damage was therefore greatly reduced by working at low pressures and limiting the total amount of ions used. This makes FIB patterning a feasible alternative to electron beam lithography as long as residual gas scattering is taken into account.

  18. Pesticide residue analysis of vegetables by gas chromatography with electron-capture detection.

    PubMed

    Fenoll, José; Hellín, Pilar; Martínez, Carmen M; Flores, Pilar

    2007-01-01

    A new and original analytical method was developed for the routine analysis of 28 multiclass pesticide residues in vegetables (green pepper, red pepper, and tomato). The extraction was performed with acetone, and the pesticides were partitioned into ethyl acetate-cyclohexane (1 + 1, v/v). Residue levels in vegetables were determined by gas chromatography (GC) with electron-capture detection. Residue identities were confirmed by GC coupled with mass spectrometry in the selected ion monitoring mode. The average recoveries in pepper and tomato obtained for all analytes studied were 67.3 and 123.1%, respectively, with relative standard deviation between 1.8 and 7.0%. The detection limit for the pesticides studied varied from 0.1 to 2.6 microg/kg. The proposed method was applied to the analysis of these compounds in vegetables grown in experimental greenhouses.

  19. Magnetic coupling in the disks around young gas giant planets

    SciTech Connect

    Turner, N. J.; Lee, Man Hoi; Sano, T. E-mail: mhlee@hku.hk

    2014-03-01

    We examine the conditions under which the disks of gas and dust orbiting young gas giant planets are sufficiently conducting to experience turbulence driven by the magneto-rotational instability. By modeling the ionization and conductivity in the disk around proto-Jupiter, we find that turbulence is possible if the X-rays emitted near the Sun reach the planet's vicinity and either (1) the gas surface densities are in the range of the minimum-mass models constructed by augmenting Jupiter's satellites to solar composition, while dust is depleted from the disk atmosphere, or (2) the surface densities are much less, and in the range of gas-starved models fed with material from the solar nebula, but not so low that ambipolar diffusion decouples the neutral gas from the plasma. The results lend support to both minimum-mass and gas-starved models of the protojovian disk. (1) The dusty minimum-mass models have internal conductivities low enough to prevent angular momentum transfer by magnetic forces, as required for the material to remain in place while the satellites form. (2) The gas-starved models have magnetically active surface layers and a decoupled interior 'dead zone'. Similar active layers in the solar nebula yield accretion stresses in the range assumed in constructing the circumjovian gas-starved models. Our results also point to aspects of both classes of models that can be further developed. Non-turbulent minimum-mass models will lose dust from their atmospheres by settling, enabling gas to accrete through a thin surface layer. For the gas-starved models it is crucial to learn whether enough stellar X-ray and ultraviolet photons reach the circumjovian disk. Additionally, the stress-to-pressure ratio ought to increase with distance from the planet, likely leading to episodic accretion outbursts.

  20. Magnetic Coupling in the Disks around Young Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Turner, N. J.; Lee, Man Hoi; Sano, T.

    2014-03-01

    We examine the conditions under which the disks of gas and dust orbiting young gas giant planets are sufficiently conducting to experience turbulence driven by the magneto-rotational instability. By modeling the ionization and conductivity in the disk around proto-Jupiter, we find that turbulence is possible if the X-rays emitted near the Sun reach the planet's vicinity and either (1) the gas surface densities are in the range of the minimum-mass models constructed by augmenting Jupiter's satellites to solar composition, while dust is depleted from the disk atmosphere, or (2) the surface densities are much less, and in the range of gas-starved models fed with material from the solar nebula, but not so low that ambipolar diffusion decouples the neutral gas from the plasma. The results lend support to both minimum-mass and gas-starved models of the protojovian disk. (1) The dusty minimum-mass models have internal conductivities low enough to prevent angular momentum transfer by magnetic forces, as required for the material to remain in place while the satellites form. (2) The gas-starved models have magnetically active surface layers and a decoupled interior "dead zone." Similar active layers in the solar nebula yield accretion stresses in the range assumed in constructing the circumjovian gas-starved models. Our results also point to aspects of both classes of models that can be further developed. Non-turbulent minimum-mass models will lose dust from their atmospheres by settling, enabling gas to accrete through a thin surface layer. For the gas-starved models it is crucial to learn whether enough stellar X-ray and ultraviolet photons reach the circumjovian disk. Additionally, the stress-to-pressure ratio ought to increase with distance from the planet, likely leading to episodic accretion outbursts.

  1. Residual entropy and waterlike anomalies in the repulsive one dimensional lattice gas

    SciTech Connect

    Silva, Fernando Barbosa V. da; Oliveira, Fernando Albuquerque; Barbosa, Marco Aurélio A.

    2015-04-14

    The thermodynamics and kinetics of the one dimensional lattice gas with repulsive interaction are investigated using transfer matrix technique and Monte Carlo simulations. This simple model is shown to exhibit waterlike anomalies in density, thermal expansion coefficient, and self-diffusion. An unified description for the thermodynamic anomalies in this model is achieved based on the ground state residual entropy which appears in the model due to mixing entropy in a ground state phase transition.

  2. Conversion of forest residues to a methane-rich gas. Phase completion report

    SciTech Connect

    Not Available

    1986-03-01

    This report describes the progress made to investigate the use of various catalysts and methods of incorporation for the gasification of forest residue materials. Catalyst effectiveness was determined by measuring the gasification rate directly in a differential reactor that utilized approximately one gram samples and by gasifying approximately 10 to 20 gram samples in a batch-solids fluid bed (BSFB) to determine the effect of catalysts on product gas composition. 2 refs., 24 figs., 12 tabs.

  3. Speciation, characterization, and mobility of As, Se, and Hg in flue gas desulphurization residues

    SciTech Connect

    Souhail R. Al-Abed; Gautham Jegadeesan; Kirk G. Scheckel; Thabet Tolaymat

    2008-03-01

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se), and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue. With increasing reuse of the FGD residues in beneficial applications, it is important to determine metal speciation and mobility to understand the environmental impact of its reuse. In this paper, we report the solid phase speciation of As, Se, and Hg in FGD residues using X-ray absorption spectroscopy (XAS), X-ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The SCE results combined with XRF data indicated a strong possibility of As association with iron oxides, whereas Se was distributed among all geochemical phases. Hg appeared to be mainly distributed in the strong-complexed phase. XRF images also suggested a strong association of Hg with Fe oxide materials within FGD residues. XAS analysis indicated that As existed in its oxidized state (As(V)), whereas Se and Hg was observed in primarily reduced states as selenite (Se(IV)) and Hg(I), respectively. The results from the SCE and variable pH leaching tests indicated that the labile fractions of As, Se, and Hg were fairly low and thus suggestive of their stability in the FGD residues. However, the presence of a fine fraction enriched in metal content in the FGD residue suggested that size fractionation is important in assessing the environmental risks associated with their reuse. 34 refs., 3 figs., 4 tabs.

  4. Speciation, characterization, and mobility of As, Se, and Hg in flue gas desulphurization residues.

    PubMed

    Al-Abed, Souhail R; Jegadeesan, Gautham; Scheckel, Kirk G; Tolaymat, Thabet

    2008-03-01

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se), and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue. With increasing reuse of the FGD residues in beneficial applications, it is important to determine metal speciation and mobilityto understand the environmental impact of its reuse. In this paper, we report the solid phase speciation of As, Se, and Hg in FGD residues using X-ray absorption spectroscopy (XAS), X-ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The SCE results combined with XRF data indicated a strong possibility of As association with iron oxides, whereas Se was distributed among all geochemical phases. Hg appeared to be mainly distributed in the strong-complexed phase. XRF images also suggested a strong association of Hg with Fe oxide materials within FGD residues. XAS analysis indicated that As existed in its oxidized state (As(V)), whereas Se and Hg was observed in primarily reduced states as selenite (Se(IV)) and Hg(I), respectively. The results from the SCE and variable pH leaching tests indicated that the labile fractions of As, Se, and Hg were fairly low and thus suggestive of their stability in the FGD residues. However, the presence of a fine fraction enriched in metal content in the FGD residue suggested that size fractionation is important in assessing the environmental risks associated with their reuse.

  5. Speciation, Characterization and Mobility of As, Se and Hg in Flue Gas Desulphurization Residues

    SciTech Connect

    Al-Abed, S.R.; Jegadeesan, G.; Scheckel, K.G.; Tolaymat, T.

    2008-06-23

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se), and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue. With increasing reuse of the FGD residues in beneficial applications, it is important to determine metal speciation and mobility to understand the environmental impact of its reuse. In this paper, we report the solid phase speciation of As, Se, and Hg in FGD residues using X-ray absorption spectroscopy (XAS), X-ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The SCE results combined with XRF data indicated a strong possibility of As association with iron oxides, whereas Se was distributed among all geochemical phases. Hg appeared to be mainly distributed in the strong-complexed phase. XRF images also suggested a strong association of Hg with Fe oxide materials within FGD residues. XAS analysis indicated that As existed in its oxidized state (As(V)), whereas Se and Hg was observed in primarily reduced states as selenite (Se(IV)) and Hg(I), respectively. The results from the SCE and variable pH leaching tests indicated that the labile fractions of As, Se, and Hg were fairly low and thus suggestive of their stability in the FGD residues. However, the presence of a fine fraction enriched in metal content in the FGD residue suggested that size fractionation is important in assessing the environmental risks associated with their reuse.

  6. Gas-Phase Oxidation of Neutral Basic Residues in Polypeptide Cations by Periodate.

    PubMed

    Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A

    2016-12-01

    The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O](+), [M - H](+), and [M - H - NH3](+), is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O](+) species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein. Graphical Abstract ᅟ.

  7. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  8. Gas chromatography-mass spectrometry determination of phosphine residues in stored products and processed foods.

    PubMed

    Norman, K N; Leonard, K

    2000-09-01

    A gas chromatography-mass spectrometry (GC-MS) method was used for the quantitative confirmation of phosphine residues in stored products and processed foods. An established extraction technique was utilized for the preparation of headspace samples, which were analyzed by GC-MS and gas chromatography-nitrogen-phosphorus detection (GC-NPD). Wheat, oats, maize, white rice, brown rice, cornflakes, tortilla cornchips, groundnuts, and raisins were validated, showing excellent agreement between detectors when spiked at levels equivalent to 0.001 and 0.01 mg/kg phosphine and for samples containing incurred residues. The GC-MS method was reproducible and accurate when compared to the GC-NPD method and allowed five samples to be quantified in a working day. Subambient GC-MS oven temperatures were most suitable for phosphine residues ranging from 0.001 to 0.005 mg/kg, and a GC oven temperature of 100 degrees C was appropriate for residues >0.005 mg/kg. The method was sufficiently robust to be evaluated for other similar commodities as the need arises.

  9. Oxidation of Methionine Residues in Polypeptide Ions Via Gas-Phase Ion/Ion Chemistry

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; McLuckey, Scott A.

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M + H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to `label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  10. Oxidation of Methionine Residues in Polypeptide Ions via Gas-Phase Ion/Ion Chemistry

    PubMed Central

    Pilo, Alice L.; McLuckey, Scott A.

    2014-01-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach to varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M+H+O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side-chain. In the case of methionine containing peptides, the [M+H+O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M+H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to ‘label’ methionine residues in polypeptides in the gas-phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications. PMID:24671696

  11. Gas-Phase Oxidation of Neutral Basic Residues in Polypeptide Cations by Periodate

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; Bu, Jiexun; McLuckey, Scott A.

    2016-12-01

    The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.

  12. [Determination of residual solvents in 7-amino-3-chloro cephalosporanic acid by gas chromatography].

    PubMed

    Ma, Li; Yao, Tong-wei

    2011-01-01

    To develop a gas chromatography method for determination of residual solvents in 7-amino-3-chloro cephalosporanic acid (7-ACCA). The residual levels of acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine and toluene in 7-ACCA were measured by gas chromatography using Agilent INNOWAX capillary column (30 m × 0.32 mm,0.5 μm). The initial column temperature was 70° maintained for 6 min and then raised (10°C/min) to 160°C for 1 min. Nitrogen gas was used as carrier and FID as detector. The flow of carrier was 1.0 ml/min, the temperature of injection port and detector was 200°C and 250°C, respectively. The limits of detection for acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine, toluene in 7-ACCA were 2.5 μg/ml, 1.5 μg/ml, 15 μg/ml, 2.5 μg/ml, 2.5 μg/ml, 2.5 μg/ml and 11 μg/ml, respectively. Only acetone was detected in the sample, and was less than the limits of Ch.P. The method can effectively detect the residual solvents in 7-ACCA.

  13. Self-similar dynamics of a magnetized polytropic gas

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Gang; Lou, Yu-Qing

    2007-10-01

    In broad astrophysical contexts of large-scale gravitational collapses and outflows and as a basis for various further astrophysical applications, we formulate and investigate a theoretical problem of self-similar magnetohydrodynamics (MHD) for a non-rotating polytropic gas of quasi-spherical symmetry permeated by a completely random magnetic field. Within this framework, we derive two coupled nonlinear MHD ordinary differential equations (ODEs), examine properties of the magnetosonic critical curve, obtain various asymptotic and global semi-complete similarity MHD solutions, and qualify the applicability of our results. Unique to a magnetized gas cloud, a novel asymptotic MHD solution for a collapsing core is established. Physically, the similarity MHD inflow towards the central dense core proceeds in characteristic manners before the gas material eventually encounters a strong radiating MHD shock upon impact onto the central compact object. Sufficiently far away from the central core region enshrouded by such an MHD shock, we derive regular asymptotic behaviours. We study asymptotic solution behaviours in the vicinity of the magnetosonic critical curve and determine smooth MHD eigensolutions across this curve. Numerically, we construct global semi-complete similarity MHD solutions that cross the magnetosonic critical curve zero, one, and two times. For comparison, counterpart solutions in the case of an isothermal unmagnetized and magnetized gas flows are demonstrated in the present MHD framework at nearly isothermal and weakly magnetized conditions. For a polytropic index γ=1.25 or a strong magnetic field, different solution behaviours emerge. With a strong magnetic field, there exist semi-complete similarity solutions crossing the magnetosonic critical curve only once, and the MHD counterpart of expansion-wave collapse solution disappears. Also in the polytropic case of γ=1.25, we no longer observe the trend in the speed-density phase diagram of finding

  14. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  15. [Simultaneous determination of seven residual solvents in bovis calculus artifactus by headspace gas chromatography].

    PubMed

    Chi, Shuyao; Wu, Dike; Sun, Jinhong; Ye, Ruhan; Wang, Xiaoyan

    2014-05-01

    A headspace gas chromatography (HS-GC) method was developed for the simultaneous determination of seven residual solvents (petroleum ether (60-90 degrees C), acetone, ethyl acetate, methanol, methylene chloride, ethanol and butyl acetate) in bovis calculus artifactus. The DB-WAX capillary column and flame ionization detector (FID) were used for the separation and detection of the residual solvents, and the internal standard method was used for the quantification. The chromatographic conditions, such as equilibrium temperature and equilibrium time, were optimized. Under the optimized conditions, all of the seven residual solvents showed good linear relationships with good correlation coefficients (not less than 0.999 3) in the prescribed concentration range. At three spiked levels, the recoveries for the seven residual solvents were 94.7%-105.2% with the relative standard deviations (RSDs) less than 3.5%. The limits of detection (LODs) of the method were 0.43-5.23 mg/L, and the limits of quantification (LOQs) were 1.25-16.67 mg/L. The method is simple, rapid, sensitive and accurate, and is suitable for the simultaneous determination of the seven residual solvents in bovis calculus artifactus.

  16. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  17. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.

    PubMed

    Hao, Hongying; Sun, Dandan; Xu, Yanyan; Liu, Ping; Zhang, Guoying; Sun, Yaqiu; Gao, Dongzhao

    2016-01-15

    Uniform hematite (α-Fe2O3) nanoplates exposing {001} plane as basal planes have been prepared by a facile solvothermal method under the assistance of sodium acetate. The morphological evolution of the nanoplates was studied by adjusting the reaction parameters including the solvent and the amount of sodium acetate. The results indicated that both the adequate nucleation/growth rate and selective adsorption of alcohol molecules and acetate anions contribute to the formation of the plate-like morphology. In addition, the size of the nanoplates can be adjusted from ca. 180nm to 740nm by changing the reaction parameters. Three nanoplate samples with different size were selected to investigate the gas sensing performance, photocatalytic and magnetic properties. As gas sensing materials, all the α-Fe2O3 nanoplates exhibited high gas sensitivity and stability toward n-butanol. When applied as photocatalyst, the α-Fe2O3 nanoplates show high photodegradation efficiency towards RhB. Both the gas sensing performance and the photocatalytic property of the products exhibit obvious size-dependent effect. Magnetic measurements reveal that the plate-like α-Fe2O3 particles possess good room temperature magnetic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Nonequilibrium quantum magnetism in a dipolar lattice gas.

    PubMed

    de Paz, A; Sharma, A; Chotia, A; Maréchal, E; Huckans, J H; Pedri, P; Santos, L; Gorceix, O; Vernac, L; Laburthe-Tolra, B

    2013-11-01

    We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites.

  19. Technical assessment of synthetic natural gas (SNG) production from agriculture residuals

    NASA Astrophysics Data System (ADS)

    Song, Guohui; Feng, Fei; Xiao, Jun; Shen, Laihong

    2013-08-01

    This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus software. The process performances, i.e., CH4 content in SNG, higher heating value and yield of SNG, exergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Improving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy efficiencies. Due to the effects of CO2 removal efficiency, there are two optimization objectives for the SNG production process: (I) to maximize CH4 content in SNG, or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk > wheat straw > rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture residual-based SNG could be between 555×108 ˜ 611×108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.

  20. Quantification of residual solvents in antibody drug conjugates using gas chromatography.

    PubMed

    Medley, Colin D; Kay, Jacob; Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P

    2014-11-19

    The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  1. Experience with risk-based residual soil concentration limits for oil and gas NORM

    SciTech Connect

    Rogers, V.; Bernhardt, D.

    1995-12-31

    The allowable residual concentration of radium in the soils is one of the important parameters in remediating sites contaminated with naturally-occurring radioactive materials (NORM). While generally applicable standards of residual radium concentrations in NORM have promulgated in a few states, several options of risk-based soil radium cleanup criteria have been developed for specific projects. The cleanup criteria for unrestricted release are generally consistent with residual concentrations contained in state regulation, i.e., 5 to 30 pCi/g. However, the radium concentration limits for various options for conditional release or use of the sites are much higher. Unrestricted use conditions include a reclaimer that builds a dwelling on site and then lives in it, uses water from an onsite well, and grows a garden for some of his food. For oil and gas NORM in this scenario, indoor radon and external gamma radiation pathways are most restricted. The stipulations of conditional release or restricted use can significantly reduce the potential impact from disposed NORM, so that residual radon concentrations can increase up to a few hundred pCi/g.

  2. Natural Gas Residual Fluids: Sources, Endpoints, and Organic Chemical Composition after Centralized Waste Treatment in Pennsylvania.

    PubMed

    Getzinger, Gordon J; O'Connor, Megan P; Hoelzer, Kathrin; Drollette, Brian D; Karatum, Osman; Deshusses, Marc A; Ferguson, P Lee; Elsner, Martin; Plata, Desiree L

    2015-07-21

    Volumes of natural gas extraction-derived wastewaters have increased sharply over the past decade, but the ultimate fate of those waste streams is poorly characterized. Here, we sought to (a) quantify natural gas residual fluid sources and endpoints to bound the scope of potential waste stream impacts and (b) describe the organic pollutants discharged to surface waters following treatment, a route of likely ecological exposure. Our findings indicate that centralized waste treatment facilities (CWTF) received 9.5% (8.5 × 10(8) L) of natural gas residual fluids in 2013, with some facilities discharging all effluent to surface waters. In dry months, discharged water volumes were on the order of the receiving body flows for some plants, indicating that surface waters can become waste-dominated in summer. As disclosed organic compounds used in high volume hydraulic fracturing (HVHF) vary greatly in physicochemical properties, we deployed a suite of analytical techniques to characterize CWTF effluents, covering 90.5% of disclosed compounds. Results revealed that, of nearly 1000 disclosed organic compounds used in HVHF, only petroleum distillates and alcohol polyethoxylates were present. Few analytes targeted by regulatory agencies (e.g., benzene or toluene) were observed, highlighting the need for expanded and improved monitoring efforts at CWTFs.

  3. Determination of residual epichlorohydrin in sevelamer hydrochloride by static headspace gas chromatography with flame ionization detection.

    PubMed

    Karthikeyan, Kaliaperumal; Arularasu, Govindasamy T; Devaraj, Perumalsamy; Pillai, Karnam Chandrasekara

    2010-01-01

    A sensitive static headspace gas chromatographic method was developed and validated for the determination of residual epichlorohydrin (ECH) in sevelamer hydrochloride (SVH) drug substance. This method utilized a Phenomenex Zebron ZB-WAX GC column, helium as carrier gas with flame ionization detection. The critical experimental parameters, such as, headspace vial incubation time and incubation temperature were studied and optimized. The method was validated as per United States Pharmacopoeia (USP) and International Conference on Harmonization (ICH) guidelines in terms of detection limit (DL), quantitation limit (QL), linearity, precision, accuracy, specificity and robustness. A linear range from 0.30 to 10 Îg/mL was obtained with the coefficient of determination (r(2)) 0.999. The DL and QL of ECH were 0.09 Îg/mL and 0.30 Îg/mL, respectively. The recovery obtained for ECH was between 91.7 and 96.6%. Also, the specificity of the method was proved through gas chromatography mass spectrometry (GC-MS). This method was applied successfully to determine the content of residual ECH in SVH bulk drug.

  4. Effect of argon gas pressure on residual stress, microstructure evolution and electrical resistivity of beryllium films

    NASA Astrophysics Data System (ADS)

    Luo, Bing-Chi; Li, Kai; Zhang, Ji-Qiang; Luo, Jiang-Shan; Wu, Wei-Dong; Tang, Yong-Jian

    2016-02-01

    The residual stress in beryllium films fabricated on K9 substrates by using magnetron sputtering deposition is measured by using a curvature method and is theoretically estimated by using the Nix and Clemens (NC) model. The experimental results indicate that the 1.3-μm-thick film is always in a tensile state for pressure variations in the range from 0.4 to 1.2 Pa. When the sputtering gas pressure is increased, the average stress increases at first, after which it decreases by a remarkable amount. The observed descending trend of the tensile stress when the sputtering gas pressure is beyond 0.6 Pa is mainly attributed to the grain size in the film being larger than that in the film when the pressure is below 0.6 Pa. The maximal residual stress of 552 MPa at a sputtering gas pressure of 0.6 Pa is close to the tensile strength (550 MPa) of the corresponding beryllium bulk material and is about 8 times smaller than that calculated by using the N-C model. In addition, the surface morphologies of the as-fabricated films reveal fibrous grains while the cross-sectional morphologies are characterized by a coarsening of columnar grains. The measured electric resistivity of each film strongly depends on its porosity and the sizes of its grains.

  5. Determination of Residual Epichlorohydrin in Sevelamer Hydrochloride by Static Headspace Gas Chromatography with Flame Ionization Detection

    PubMed Central

    Karthikeyan, Kaliaperumal; Arularasu, Govindasamy T.; Devaraj, Perumalsamy; Pillai, Karnam Chandrasekara

    2010-01-01

    A sensitive static headspace gas chromatographic method was developed and validated for the determination of residual epichlorohydrin (ECH) in sevelamer hydrochloride (SVH) drug substance. This method utilized a Phenomenex Zebron ZB-WAX GC column, helium as carrier gas with flame ionization detection. The critical experimental parameters, such as, headspace vial incubation time and incubation temperature were studied and optimized. The method was validated as per United States Pharmacopoeia (USP) and International Conference on Harmonization (ICH) guidelines in terms of detection limit (DL), quantitation limit (QL), linearity, precision, accuracy, specificity and robustness. A linear range from 0.30 to 10 μg/mL was obtained with the coefficient of determination (r2) 0.999. The DL and QL of ECH were 0.09 μg/mL and 0.30 μg/mL, respectively. The recovery obtained for ECH was between 91.7 and 96.6%. Also, the specificity of the method was proved through gas chromatography mass spectrometry (GC-MS). This method was applied successfully to determine the content of residual ECH in SVH bulk drug. PMID:21179319

  6. [Determination of buprofezin, methamidophos, acephate, and triazophos residues in Chinese tea samples by gas chromatography].

    PubMed

    Zhang, Shuiba; Yi, Jun; Ye, Jianglei; Zheng, Wenhui; Cai, Xueqin; Gong, Zhenbin

    2004-03-01

    A method has been developed for the simultaneous determination of buprofezin, methamidophos, acephate and triazophos residues in Chinese tea samples. The pesticide residues were extracted from tea samples with a mixture of ethyl acetate and n-hexane (50:50, v/v) at 45 degrees C. The extracts were subsequently treated with a column packed with 40 mg of active carbon by gradient elution with ethyl acetate and n-hexane. Buprofenzin and the three organophosphorus pesticides were analyzed by gas chromatography using a DB-210 capillary column and a nitrogen-phosphorus detector. The recoveries for spiked standards were 73.4%-96.9%. The relative standard deviations were all within 4.63%. The limits of quantitation (3sigma) in the tea samples were about 7.0-12.0 microg/kg.

  7. Determination of pyrethroid residues in tobacco and cigarette smoke by capillary gas chromatography.

    PubMed

    Cai, Jibao; Liu, Baizhan; Zhu, Xiaolan; Su, Qingde

    2002-07-26

    The extraction of fenpropathrin, cyhalothrin, cypermethrin, fenvalerate and deltamethrin from tobacco (Nicotina tobaccum) and cigarette smoke condensate with acetone, followed by partition of resulting acetone mixture with petroleum ether, was investigated and found suitable for capillary gas chromatography (GC) residue analysis. Florisil column clean-up was found to provide clean-up procedure for tobacco and cigarette smoke condensate permitting analysis to < or = 0.01 microgram.g-1 for most of the pyrethroids by GC with a 63Ni electron capture detector (GC-ECD). Quantitative determination was obtained by the method of external standards. Cigarettes made from flue-cured tobacco spiked with different amounts of pyrethroids were used and the pyrethroid levels in mainstream smoke were determined. For all the pyrethroid residues, 1.51-15.50% were transferred from tobacco into cigarette smoke.

  8. Determination of residual styrene monomer in polystyrene granules by gas chromatography-mass spectrometry.

    PubMed

    Garrigós, M C; Marín, M L; Cantó, A; Sánchez, A

    2004-12-24

    Polystyrene is widely used in formulations intended for children use. The main problem with this plastic is the residual styrene, which can migrate from the product, and therefore, be in contact with children. The acute toxicity of styrene is well known, raising the need of an efficient and fast method of analysis for this compound. Several extraction methods have been evaluated and compared for the determination of residual styrene monomer in polystyrene granules used in toys: supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), Soxhlet extraction, headspace emission and dissolution-precipitation. The analyte was subsequently detected by gas chromatography (GC) with MS detection. The results indicated that the most efficient method was dissolution-precipitation giving even higher extraction efficiency than SFE. For validating the method, PS samples spiked with known quantities of styrene at three concentration levels were prepared to calculate the extraction recovery. The founded validation data proved the suitability of the proposed method.

  9. Superconductivity of the magnetized electron gas of a quantum cylinder

    SciTech Connect

    Eminov, P. A. Sezonov, Yu. I.

    2008-10-15

    A microscopic theory of superconductivity is developed for the magnetized electron gas on a cylindrical surface. The Gibbs free energy is calculated for the superconducting system. A gap equation is derived that determines the critical temperature as a function of the quantum-cylinder dimensions and the Aharonov-Bohm parameter. It is shown that the gap not only exhibits Aharonov-Bohm oscillations, but also oscillates with varying curvature of the cylindrical surface.

  10. Comparison of Postoperative Pain and Residual Gas Between Restrictive and Liberal Fluid Therapy in Patients Undergoing Laparoscopic Cholecystectomy.

    PubMed

    Yao, Lei; Wang, Yulan; Du, Boxiang; Song, Jie; Ji, Fuhai

    2017-09-07

    Different fluid regimens are used in the clinical management of perioperative fluid therapy, but there still is the argument about which fluid regimen is better for patients. This study was mainly designed to compare different fluid regimens on postoperative pain and residual gas in patients undergoing laparoscopic cholecystectomy. A total of 100 patients were equally randomized to receive restrictive fluid infusion (n=50) with lactated Ringer (LR) solution 5 mL/kg/h or liberal fluid infusion (n=50), with 30 mL/kg/h lactated Ringer solution. Postoperative pain was evaluated at 1, 6, and 24 hours after surgery using a visual analog scale (VAS). Postoperative subdiaphragmatic residual gas was monitored by x-ray at 24 hours after surgery. Patients in the restrictive group had significantly higher VAS pain scores at 6 hours after surgery than those in the liberal group (P=0.009). The incidence of subdiaphragmatic residual gas in the restrictive group was higher than in the liberal group (P=0.045). Patients who had residual gas had higher VAS pain scores than those with no residual gas in the restrictive group at 6 hours after surgery (P=0.02). Patients undergoing laparoscopic cholecystectomy with restrictive fluid therapy may suffer more severe postoperative pain than those receiving liberal fluid therapy. It suggests that the higher incidence of subdiaphragmatic residual gas may have occurred with restrictive fluid therapy.

  11. A magnonic gas sensor based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Matatagui, D.; Kolokoltsev, O. V.; Qureshi, N.; Mejía-Uriarte, E. V.; Saniger, J. M.

    2015-05-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  12. A magnonic gas sensor based on magnetic nanoparticles.

    PubMed

    Matatagui, D; Kolokoltsev, O V; Qureshi, N; Mejía-Uriarte, E V; Saniger, J M

    2015-06-07

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  13. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.

    2017-02-01

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ˜10 Myr. Using high-resolution 4.7 μm spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10-20 to 10-18 W m-2). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency’s scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  15. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    PubMed

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  16. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  17. Parallel magnetic resonance imaging of gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Mueller, Christoph; Penn, Alexander; Pruessmann, Klaas P.

    2015-03-01

    Gas-liquids flows are commonly encountered in nature and industry. Experimental measurements of gas-liquid flows are challenging since such systems can be visually opaque and highly dynamic. Here we report the implementation of advanced magnetic resonance imaging (MRI) strategies allowing us to probe the dynamics (voidage and velocity measurements) of gas-liquid flows with ultra-fast acquisition speeds. Specifically, parallel MRI which exploits the spatial encoding capabilities of multiple receiver coils was implemented. To this end a tailored, 16 channels MR receive array was constructed and employed in the MR acquisition. A magnetic susceptibility matched gas-liquid system was set-up and used to probe the motion, splitting and coalescence of bubbles. The temporal and spatial resolution of our acquired data was 5 ms and 3.5 mm x 3.5 mm, respectively. The total field of view was 200 mm x 200 mm. We will conclude with an outlook of further possible advances in MRI that have the potential to reduce substantially the acquisition time, providing flexible gains in temporal and spatial resolution.

  18. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  19. [Determination of residual organic solvents in flunixin meglumine raw material by headspace gas chromatography].

    PubMed

    Hu, Huilian

    2012-01-01

    A method for the determination of five kinds of residual organic solvents in flunixin meglumine raw material was developed by headspace gas chromatography. An HP-FFAP capillary column (30 m x 0.32 mm x 1.0 microm), a flame ionization detector and the external standard method were used for the separation and quantitative analysis. The effects of equilibrium temperature and equilibrium time on the determination of residual organic solvents were investigated. The good results were obtained in the equilibrium temperature of 90 degrees C and equilibrium time of 30 min. The standard curves were linear in the range of 0.40-7.93 mg/L (r = 0.999 8) for ethyl acetate, 7.32-146.48 mg/L (r = 0.999 6) for methanol, 4.53-90.61 mg/L (r = 0.999 9) for isopropanol, 3.62-72.32 mg/L (r = 0.999 8) for ethanol and 2.31-46.24 mg/L (r = 0.999 6) for acetonitrile. The recoveries for the five residual organic solvents were between 95.96% and 100.31% with relative standard deviations (RSDs) (n = 6) of 1.97%-3.28%. The detection limits of ethyl acetate, methanol, isopropanol, ethanol and acetonitrile were 0.08, 0.9, 0.2, 0.4 and 0.3 mg/L, respectively. The proposed method was successfully applied to analyze the residual organic solvents in the real sample of flunixin meglumine raw material. The results showed that only isopropanol and ethanol were found in the sample with the contents of 177.44 microg/g and 69.32 microg/g, respectively. The method is rapid, sensitive and accurate for the content determination of residual solvents in flunixin meglumine raw material.

  20. Pyrolysis of ramie residue: kinetic study and fuel gas produced in a cyclone furnace.

    PubMed

    Cheng, Gong; Zhang, Leguan; He, Piwen; Yan, Feng; Xiao, Bo; Xu, Tao; Jiang, Chengcheng; Zhang, Yanli; Guo, Dabin

    2011-02-01

    The thermal decomposition behavior of ramie residue (RR) and the characteristics of fuel gas produced in a cyclone furnace were studied. The pyrolysis kinetics was investigated using thermogravimetric analysis (TGA) at heating rates of 5-20°C/min. The results showed that RR mainly decomposed between 250 and 390°C, and the apparent activation energy ranged from 200 to 258 kJ/mol. In the cyclone furnace, fast pyrolysis, partial combustion and gasification occurred almost simultaneously, and the thermal energy was supplied by partial combustion of RR powder at the hypo stoichiometric amount of air. Higher effect of equivalence ratio (ER) led to higher reaction temperature and fewer contents of tar and char, but too high ER lowered fuel gas content and degraded fuel gas quality. Over the ranges of the experimental conditions, the gas yield varied between 1.07 and 2.08 N m(3)/kg and the LHV was between 3350 and 4798 kJ/Nm(3).

  1. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  2. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  3. Magnetized direct current microdischarge I. Effect of the gas pressure

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2017-03-01

    Following Paschen's law, electrical breakdown of gaps with small pd, where p is the gas pressure and d is the interelectrode gap, requires extremely high voltages. This means that the breakdown voltage for low-pressure microdischarges is of the order of a few kilovolts. This makes impractical the generation of low-pressure dc microdischarges. The application of dc magnetic field confines electrons in the cathode-anode gap. This leads to the significant decrease in the breakdown voltage because each electron experiences many collisions during its diffusion toward the anode. However, as was obtained experimentally, magnetized low-pressure microdischarges experience numerous instabilities whose nature is still not completely understood. In the present paper, we study the influence of the magnetic field on the low-pressure microdischarges. We use the self-consistent one-dimensional Particle-in-Cell Monte Carlo collisions model, which takes into account the electron magnetization while ions remain unmagnetized. We obtain striations in the discharge. We show that these striations appear in both homogeneous and non-homogeneous magnetic fields. We find simple expression for the instability growth rate, which shows that the instability results from ionization processes.

  4. Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits.

    PubMed

    Zhao, Xiangsheng; Kong, Weijun; Wei, Jianhe; Yang, Meihua

    2014-11-01

    A simple, rapid and effective gas chromatography-flame photometric detection method was established for simultaneous multi-component determination of 31 organophosphorus pesticides (OPPs) residues in Alpinia oxyphylla, which is widely consumed as a traditional medicine and food in China. Sample preparation was completed in a single step without any clean-up procedure. All pesticides expressed good linear relationships between 0.004 and 1.0 μg/mL with correlation coefficients higher than 0.9973. The method gave satisfactory recoveries for most pesticides. The limits of detection varied from 1 to 10 ng/mL, and the limits of quantification (LOQs) were between 4 and 30 ng/mL. The proposed method was successfully applied to 55 commercial samples purchased from five different areas. Five pesticide residues were detected in four (7.27%) samples. The positive samples were confirmed by gas chromatography with tandem mass spectrometry (GC-MS/MS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Numerical studies of the behavior of ionized residual gas in an energy recovering linac

    NASA Astrophysics Data System (ADS)

    Pöplau, Gisela; van Rienen, Ursula; Meseck, Atoosa

    2015-04-01

    Next generation light sources such as energy recovering linacs (ERLs) are highly sensitive to instabilities due to ionized residual gas, which must be mitigated for successful operation. Vacuum pumps are insufficient for removal of the ions, as the ions are trapped by the beam's electrical potential. Two effective measures are (i) introducing clearing gaps in the bunch train, and (ii) installing clearing electrodes which pull out the trapped ions from the electrical potential of the beam. In this paper, we present numerical studies on the behavior of ion clouds that interact with bunch trains in an ERL taking into account the effects of the clearing gaps and clearing electrodes. We present simulations with different compositions of the residual gas. Simulations are done using the MOEVE PIC Tracking software package developed at Rostock University, which has been upgraded to include the behavior of ion clouds in the environment of additional electromagnetic fields, such as generated by clearing electrodes. The simulations use the parameters of the Berlin Energy Recovery Linac Project (bERLinPro) to allow for the deduction of appropriate measures for bERLinPro 's design and operation.

  6. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    SciTech Connect

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J. E-mail: naomi.mcclure-griffiths@csiro.au E-mail: benjamir@uww.edu

    2013-11-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m{sup –2} which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.

  7. The Yale Gas-Filled Split Pole Magnetic Separator

    NASA Astrophysics Data System (ADS)

    Cata-Danil, G.; Beausang, C. W.; Casten, R. F.; Chen, A.; Chubrich, N.; Cooper, J. R.; Krücken, R.; Liu, B.; Novak, J. R.; Visser, D.; Zamfir, N. V.

    1998-10-01

    Design and construction of a gas-filled recoil separator is underway at the Wright Nuclear Structure Laboratory at Yale University. By filling the magnetic field region of the existing Enge Split-Pole magnet with N2 or He2 gases in the 1 to 15 mbar pressure range a gradual focussing of discrete charge states has been measured. The incident ions were ^16O and ^35,37Cl with 49 MeV and 95 MeV energies, respectively. The process is understood as a result of coalescing of trajectories of different charge states around a trajectory defined by the mean charge state (q¯) of the ion in gas. Because q¯ depends on the atomic number Z and is roughly proportional with the ion velocity, the average magnetic rigidity (B¯ρ=Av/q¯) is almost independent of the velocity distribution of the incident ions. The ion trajectories will be therefore be mainly determined by the mass number A and the atomic number Z of the ion. Monte Carlo simulations with the code RAYTRACE closely reproduce the experimental behavior. We plan to use the Yale Mass Separator (YaMS) for nuclear structure studies in conjunction with high efficency gamma detectors (clover detectors) for enhancing weak reaction channels and fission background reduction. Work supported by the US-DOE under contract numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  8. High-Temperature Magnetic Bearings for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in

  9. DID THE INFANT R136 AND NGC 3603 CLUSTERS UNDERGO RESIDUAL GAS EXPULSION?

    SciTech Connect

    Banerjee, Sambaran; Kroupa, Pavel E-mail: pavel@astro.uni-bonn.de

    2013-02-10

    Based on kinematic data observed for very young, massive clusters that appear to be in dynamical equilibrium, it has recently been argued that such young systems are examples of where the early residual gas expulsion did not happen or had no dynamical effect. The intriguing scenario of a star cluster forming through a single starburst has thereby been challenged. Choosing the case of the R136 cluster of the Large Magellanic Cloud, the most cited one in this context, we perform direct N-body computations that mimic the early evolution of this cluster including the gas-removal phase (on a thermal timescale). Our calculations show that under plausible initial conditions which are consistent with observational data, a large fraction (>60%) of a gas-expelled, expanding R136-like cluster is bound to regain dynamical equilibrium by its current age. Therefore, the recent measurements of velocity dispersion in the inner regions of R136, which indicate that the cluster is in dynamical equilibrium, are consistent with an earlier substantial gas expulsion of R136 followed by a rapid re-virialization (in Almost-Equal-To 1 Myr). Additionally, we find that the less massive Galactic NGC 3603 Young Cluster (NYC), with a substantially longer re-virialization time, is likely to be found to have deviated from dynamical equilibrium at its present age ( Almost-Equal-To 1 Myr). The recently obtained stellar proper motions in the central part of the NYC indeed suggest this and are consistent with the computed models. This work significantly extends previous models of the Orion Nebula Cluster which already demonstrated that the re-virialization time of young post-gas-expulsion clusters decreases with increasing pre-expulsion density.

  10. Gastric gas and fluid emptying assessed by magnetic resonance imaging.

    PubMed

    Ploutz-Snyder, L; Foley, J; Ploutz-Snyder, R; Kanaley, J; Sagendorf, K; Meyer, R

    1999-02-01

    Magnetic resonance imaging (MRI) was used to characterize the volumes and rates of gastric emptying of both liquid and gas following the ingestion of beverages of varying carbonation and carbohydrate levels. Eight subjects drank 800 ml each of four test beverages in a counterbalanced order: water, a non-carbonated carbohydrate-electrolyte solution (NC), a lightly carbonated carbohydrate-electrolyte solution (PC), and a carbonated cola (CC). T2-weighted, echoplanar images (25-30 contiguous slices, 1 cm thick, 256 x 128 matrix, TE = 80, 40 cm FOV) of the abdomen were collected at minutes 3,110, 20, 30, 45, and 60 following beverage ingestion. Images were analyzed for gas and liquid volumes. Water and NC emptied the most rapidly, with half times of 21(3) and 31(3) min, respectively [mean (SE)]. PC emptied significantly slower [47 (6) min] and CC slower yet [107 (8) min]. The carbonation content of the beverage accounted for 84% of the variation in emptying time, whereas carbohydrate content did not account for any significant variation. The gastric gas volume of the CC was higher at 2 min post-ingestion compared with all other drinks; however, the rate of emptying of the gas was the same among all beverages. Significantly greater total gastric volumes (gas+ liquid) were associated with the ingestion of CC, and accordingly produced a greater severity of gastric distress, as evaluated with a gastric distress inventory. The high gastric gas volumes (approximately 600 ml) after ingestion of CC suggested a potential source of error in body composition using standard hydrostatic weighing methods. This prediction was tested in nine additional subjects. Ingestion of 800 ml of CC prior to hydrostatic weighing resulted in a 0.7% underestimate of body density and thus an 11% overestimate of percentage body fat compared to measurements made before beverage consumption.

  11. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  12. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  13. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Astrophysics Data System (ADS)

    Hibner, David; Rosado, Lewis

    1992-05-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  14. Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Noack, Sarah R; Smernik, Ronald J; McBeath, Therese M; Armstrong, Roger D; McLaughlin, Mike J

    2014-08-01

    At physiological maturity, nutrients in crop residues can be released to the soil where they are incorporated into different labile and non-labile pools while the remainder is retained within the residue itself. The chemical speciation of phosphorus (P) in crop residues is an important determinant of the fate of this P. In this study, we used chemical fractionation and (31)P nuclear magnetic resonance (NMR) spectroscopy, first separately and then together, to evaluate the P speciation of mature oat (Avena sativa) residue. Two water extracts (one employing shaking and the other sonication) and two acid extracts (0.2N perchloric acid and 10% trichloroacetic acid) of these residues contained similar concentrations of orthophosphate (molybdate-reactive P determined by colorimetry) as NaOH-EDTA extracts of whole plant material subsequently analysed by solution (31)P NMR spectroscopy. However, solution (31)P NMR analysis of the extracts and residues isolated during the water/acid extractions indicated that this similarity resulted from a fortuitous coincidence as the orthophosphate concentration in the water/acid extracts was increased by the hydrolysis of pyrophosphate and organic P forms while at the same time there was incomplete extraction of orthophosphate. Confirmation of this was the absence of pyrophosphate in both water and acid fractions (it was detected in the whole plant material) and the finding that speciation of organic P in the fractions differed from that in the whole plant material. Evidence for incomplete extraction of orthophosphate was the finding that most of the residual P in the crop residues following water/acid extractions was detected as orthophosphate using (31)P NMR. Two methods for isolating and quantifying phospholipid P were also tested, based on solubility in ethanol:ether and ethanol:ether:chloroform. While these methods were selective and appeared to extract only phospholipid P, they did not extract all phospholipid P, as some was

  15. Magnetic resonance imaging evaluation of residual tumors in breast cancer after neoadjuvant chemotherapy: surgical implications.

    PubMed

    Zhou, Juan; Li, Gongjie; Sheng, Fugeng; Qiao, Penggang; Zhang, Hongtao; Xing, Xudong

    2016-05-01

    Magnetic resonance imaging (MRI) can be used to guide breast cancer surgery with breast conservation for large tumors with a substantially reduced size after neoadjuvant chemotherapy (NAC). To evaluate the value of dynamic contrast-enhanced MRI (DCE-MRI) for measuring residual tumor size and enhancement patterns following preoperative NAC. Eighty-nine patients with breast cancer underwent breast DCE-MRI; 38 patients (39 lesions) were treated with NAC and examined for residual disease following therapy. Two patients were excluded because surgery had been performed >2 weeks after the final MR examination. Thus, we correlated the DCE-MRI results of 36 patients (37 lesions) with postoperative histopathological findings. Residual disease was confirmed by more enhancement compared to normal glandular tissue at the initial tumor site. Residual tumor size on DCE-MRI was compared with postoperative pathology findings. Tumor enhancement patterns on DCE-MRI were analyzed and correlated with pathological classification. MRI revealed 34 cases of residual tumors, with two false positives and one false negative. Pathological and MR measurements were correlated (r = 0.793). The correlation of mass enhancement size (r = 0.87, n = 14) with pathology and DCE-MRI was higher than for non-mass-like enhancement (NME) (r = 0.735, n = 23). The distribution of pathologic classification was significantly different between different MRI enhancement patterns (P = 0.006). Mass enhancement had higher cellularity than NME. MRI is useful for evaluating residual carcinoma following NAC. Mass enhancement with higher cellularity after NAC can be evaluated more accurately, which is suitable for evaluating lumpectomy. However, other approaches are required for NME, which has lower cellularity. © The Foundation Acta Radiologica 2015.

  16. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  17. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H]4+ ions exhibit two major conformer types with collision cross sections of 418 Å2 and 446 Å2; the [M + 3H]3+ ions also yield two different conformer types having collision cross sections of 340 Å2 and 367 Å2. Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H]3+ ions show faster HDX rate contributions compared with [M + 4H]4+ ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H]4+ ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  18. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  19. [Determination of residual epichlorohydrin and sym-dichloroisopropyl alcohol in cationic etherified reagent by gas chromatography].

    PubMed

    Zhou, Weiyi; Fan, Guoliang; Jiang, Dongfeng

    2004-11-01

    A method for the determination of the residual epichlorohydrin and sym-dichloroisopropyl alcohol in cationic etherified reagent by gas chromatography has been established. Methyl benzoate, which has high extraction efficiency for the two components, was used as extractant. With an HP-5 capillary column, the two components were baseline separated and they eluted before the extractant. The linear ranges achieved were 5 - 590 mg/kg for epichlorohydrin and 21 - 480 mg/kg for sym-dichloroisopropyl alcohol. The limits of detection were 1.2 mg/kg for epichlorohydrin and 2.2 mg/kg for sym-dichloroisopropyl alcohol. Recoveries for epichlorohydrin were 95.93% - 103.42% with relative standard deviations of 2.4% - 10.6% and those for sym-dichloroisopropyl alcohol were 98.54% - 107.40% with relative standard deviations of 6.6% -11.1%. The method is simple, fast, and convenient.

  20. [Determination of organophosphorous pesticide residues in red wine by solid phase microextraction-gas chromatography].

    PubMed

    Hu, Yuan; Liu, Wenmin; Zhou, Yanming; Guan, Yafeng

    2006-05-01

    A method for the determination of 12 organophosphorus pesticide residues (OPs) in red wine by fiber solid phase microextraction (SPME) coupled with gas chromatography (GC) was developed and validated. The SPME phase was prepared by sol-gel technology of physical incorporation. The extraction conditions were optimized with the results of stirring rate of 1,250 r/min, NaCl mass concentration of 150 g/L, and extraction time of 30 min. With the sample volume of 25 mL, the relative standard deviations (RSD) of peak areas for most of OPs were below 5%, and the detection limits of OPs were in the range of 5 ng/L-0.38 microg/L. It can be seen from the results that this method has the potential to analyze OPs in other beverages and soft drinking materials.

  1. Design, fabrication, assembly and delivery of a laboratory prototype of a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S.; Torney, F. L.; Roehrig, J. R.

    1972-01-01

    The design, development, and testing of a wide mass range residual gas analyzer which will be one component of an integrated real time contamination monitor system are described. The instrument has been developed and tested to the laboratory prototype phase, demonstrating the performance that can be expected from a flight instrument of similar design. The instrument's analyzer is of the quadrupole type and a cold cathode ion source is employed as the ionizer. The associated electronics supply all necessary operating and mass sweep voltages for the ionizer, analyzer and electron multiplier ion detector. The instrument features a very fast linear electrometer with automatic range changing. The full mass range of 2 to 300 amu is automatically and repetitively scanned every sixty seconds and suitable telemetry outputs are provided for intensity and mass identification as well as a digital identification of the electrometer range.

  2. Determination of residual 1,3-dichloro-2-propanol in protein hydrolysates by capillary gas chromatography.

    PubMed

    Van Rillaer, W; Beernaert, H

    1989-04-01

    This study describes a method for the quantitative determination of residual 1,3-dichloro-2-propanol in protein hydrolysates. The method is based on a continuous micro-steam distillation solvent extraction technique. The quantitative determination is performed by electron-capture gas chromatography using an "on column" injector and a fused silica capillary CP wax 52 CB column. The absolute detection limit for 1,3-dichloro-2-propanol in soy sauces is 10 pg and recoveries of 75.8% and 82.7% with a standard deviation of 4.0% and 2.5% are obtained for samples fortified in the range of 1 mg/kg and 0.1 mg/kg respectively.

  3. Spatial association analysis between hydrocarbon fields and sedimentary residual magnetic anomalies using Weights of Evidence: An example from the Triassic Province of Algeria

    NASA Astrophysics Data System (ADS)

    Allek, Karim; Boubaya, Djamel; Bouguern, Abderrahmane; Hamoudi, Mohamed

    2016-12-01

    The presence of near-surface magnetic anomalies over oil and gas accumulations and their contribution to exploration remain somewhat controversial despite encouraging results and an improved understanding of genetic links between hydrocarbon seepage-induced alterations and near-surface magnetic minerals. This controversy is likely to remain since the cause of shallow-sourced sedimentary magnetic anomalies may well be microseepage related, but could also result from other sources such as cultural features and detrital magnetite. The definite way of discriminating between them remains a challenge. In this paper we examine means to deal with this particular purpose using a Bayesian technique known as 'Weights-of-Evidence'. The technique is implemented in GIS to explore spatial associations between known hydrocarbon fields within the central Triassic province of Algeria and sedimentary residual magnetic anomalies. We use the results to show possible application of the method to the recognition of some characteristics (amplitude and width) of anomalies assumed to be induced by hydrocarbon microseepages. Our results reveal strong spatial association with certain typical class of anomalies, confirming therefore hypothesis that hydrocarbon microseepages may result in detectable magnetic anomalies. It is possible to use the anomalies occurring outside the known gas and oil fields to make informed decisions in the selection of new targets for more detailed hydrocarbon exploration.

  4. Bioenergy production via microbial conversion of residual oil to natural gas.

    PubMed

    Gieg, Lisa M; Duncan, Kathleen E; Suflita, Joseph M

    2008-05-01

    World requirements for fossil energy are expected to grow by more than 50% within the next 25 years, despite advances in alternative technologies. Since conventional production methods retrieve only about one-third of the oil in place, either large new fields or innovative strategies for recovering energy resources from existing fields are needed to meet the burgeoning demand. The anaerobic biodegradation of n-alkanes to methane gas has now been documented in a few studies, and it was speculated that this process might be useful for recovering energy from existing petroleum reservoirs. We found that residual oil entrained in a marginal sandstone reservoir core could be converted to methane, a key component of natural gas, by an oil-degrading methanogenic consortium. Methane production required inoculation, and rates ranged from 0.15 to 0.40 micromol/day/g core (or 11 to 31 micromol/day/g oil), with yields of up to 3 mmol CH(4)/g residual oil. Concomitant alterations in the hydrocarbon profile of the oil-bearing core revealed that alkanes were preferentially metabolized. The consortium was found to produce comparable amounts of methane in the absence or presence of sulfate as an alternate electron acceptor. Cloning and sequencing exercises revealed that the inoculum comprised sulfate-reducing, syntrophic, and fermentative bacteria acting in concert with aceticlastic and hydrogenotrophic methanogens. Collectively, the cells generated methane from a variety of petroliferous rocks. Such microbe-based methane production holds promise for producing a clean-burning and efficient form of energy from underutilized hydrocarbon-bearing resources.

  5. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.

    2013-03-01

    The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  6. Application of sedimentary carbohydrate residues in a study of organic facies and natural gas occurrences

    NASA Astrophysics Data System (ADS)

    Swain, F. M.

    Recent aquatic environments and resulting organic facies can be characterized by types and amounts of carbohydrate residues. Characteristics are based on source organisms, degree and type of degradation, and reactions with associated compounds in the mineral-kerogen-humus complex. Selected modern environments are typified by the following presently known carbohydrate suites: (1) deep sea, mid-Pacific, mid-Atlantic Oceans—glucose, galactose, furfurals, low total carbohydrates (TC); (2) deep gulf, Gulf of California—glu, gal, xylose, mannose, furfurals, moderate to high TC; (3) continental shelf, eastern North America—glu, xyl, gal, furfurals, high TC; (5) oligotrophic lake, Minnesota—furfurals, low TC; (6) eutrophic lake, Minnesota—glu, xyl, arabinose, gal, rhamnose, man, ribose, furfurals, glucuronic acid, high TC; (7) bog, Minnesota—glu, ara, xyl, gal, man, rib, very high TC. Polysaccharides are rare to absent in modern deep sea deposits but have been found in Lower Quaternary and younger deep gulf sediments. Cellulose, alpha- and beta-amylose and laminaran are common in shallow marine and lacustrine sediments. Methane, derived from both terrestrial and aquatic higher plant residues is high in yield in freshwater marshes and bogs and in eutrophic lake sediments, moderate in salt-water marshes and estuaries and relatively low in offshore marine sediments. Nitrogen and carbon dioxide are the commonest non-hydrocarbon gases. In many samples studied, xylans appear to predominate over other plant polysaccharide as methane sources. Carbohydrate residues in ancient rocks, based on examples from North America, show a tentative, but as yet poorly investigated, relationship to environmental organic facies and should prove to be useful in natural gas exploration.

  7. [Determination of residual cyclohexanone in disposable infusion set by gas chromatography].

    PubMed

    Zhang, Li; Wen, Yan; He, Tao; Wang, Minzhu; Xu, Pinghua

    2014-09-01

    An effective GC method was established for contents determination of the residual solvent of cyclohexanone in infusion sets for single use. The cyclohexanone in infusion sets for single use products were extracted with circular pump, using ethylalcohol as the extraction solven, then the extract followed by analysis of gas chromatography-tandem mass spectrometry. The method was simple, rapid, sensitive and accurate, Cyclohexanone showed good linearity in the range of (5.5-190.9) μg/mL, the correlation coefficient was 0.999 0, the detection limit (S/N = 3) was 0.133 μg/mL and limits of quantitation (S/N = 10) was 1.33 μg/mL. The spiked average recoveries ranged from 98% to 99%. The relative standard deviations (RSDs) of the method ranged from 1.03% to 1.98%. The method was simple, fast, sensitive and accurate, and may serve as a mass control method for residual cyclohexanone in disposable infusion sets for single use.

  8. Magnetic resonance imaging (MRI) evaluation of residual breast tissue following mastectomy and reconstruction with silicone implants.

    PubMed

    Zippel, Douglas; Tsehmaister-Abitbol, Vered; Rundstein, Arie; Shalmon, Anat; Zbar, Andrew; Nardini, Gil; Novikov, Ilya; Sklair-Levy, Miri

    2015-01-01

    We present our use of magnetic resonance (MR) measurement to determine the amount of residual breast tissue (RBT) following total mastectomy with reconstruction. Breast MR images of 45 women who underwent surgery between January and November 2011 were reviewed. The cohort included therapeutic and prophylactic mastectomies. RBT was evaluated at four points with a digital caliper assessing T2-weighted and T1-weighted images. Patients undergoing mastectomy for carcinoma tended to have less RBT than in prophylactic surgery. Greater age and recent surgery both correlated with larger RBT. Variable thickness of RBT is demonstrable following mastectomy and implant reconstruction using MR imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Proton spin-echo magnetometer: a novel approach for magnetic field measurement in residual field gradient

    NASA Astrophysics Data System (ADS)

    Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon Kyu; Kim, Kiwoong

    2015-08-01

    We demonstrate a proton spin echo magnetometer, in which the interrogation time is not limited by T2* and can be prolonged to T2. Therefore, even under a severe field gradient, the precision of the measurement does not degrade. We devised a phase linearization method that enables accurate estimation of the precession frequency from a spin-echo train. With proton spins in deoxygenated tetramethylsilane and a superconducting quantum interference device-detected NMR system at KRISS, an average field of around 5 μT was measured with an uncertainty of 0.42 nT in the presence of a field gradient of 12.8 μT m-1. This implies that our system tolerated a 25% variation in magnetic field over the sample area. The proton spin-echo magnetometer will be useful in measuring magnetic fields without compensating for residual field gradients.

  10. Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage

    NASA Astrophysics Data System (ADS)

    Yao, Kai; Shen, Kai; Wang, Zheng-Dao; Wang, Yue-Sheng

    2014-03-01

    In this study, 3D finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. The contour maps of tangential and normal RMF gradients are given, and the 3D effect is discussed. The results show that the tangential peak-peak amplitude and normal peak-vale amplitude are remarkably different in 2D and 3D simulations, but the tangential peak-peak width and normal peak-vale width are similar. Moreover, some key points are capable of capturing the plastic-zone shape, especially when the lift-off is small enough. The present study suggests an effective defect identification method with Metal magnetic memory (MMM) technique.

  11. Compact permanent magnet H⁺ ECR ion source with pulse gas valve.

    PubMed

    Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M

    2016-02-01

    Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  12. Compact permanent magnet H+ ECR ion source with pulse gas valve

    NASA Astrophysics Data System (ADS)

    Iwashita, Y.; Tongu, H.; Fuwa, Y.; Ichikawa, M.

    2016-02-01

    Compact H+ ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  13. Magnetic Field Generation and Zonal Flows in the Gas Giants

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  14. Gas-liquid chromatographic and gas-liquid-mass spectometric determination of fenvalerate and permethrin residues in grasshoppers and duck tissue samples

    USGS Publications Warehouse

    Reichel, W.L.; Kolbe, E.J.; Stafford, C.J.

    1981-01-01

    A procedure is described for determining fenvalerate and permethrin residues in grasshoppers and duck tissues. Samples are Soxhlet-extracted with hexane and cleaned up by gel permeation chromatography with an in-line alumina column. Samples are analyzed by gas-liquid chromatography with electron capture detection, and confirmed by gas-liquid chromatography-mass spectrometry. The average recovery from fortified tissues was 97%.

  15. Magnetic Barkhausen Noise and Neutron Diffraction Techniques for the Study of Intergranular Residual Strains in Mild Steel

    SciTech Connect

    Hutanu, Roxana; Clapham, Lynann; Rogge, Ronald

    2004-02-26

    Intergranular residual stresses (IS) are microscopic residual stresses which have been found to accumulate along the <100> direction in steels. The <100> direction is also the magnetic easy axis direction in steel. This work involved Magnetic Barkhausen Noise (MBN) studies on steel samples, deformed uniaxially to increasing levels of strain. The MBN results indicated that a bulk magnetic easy axis was produced by the deformation process, and neutron diffraction experiments showed that this easy axis was correlated with the tensile strain in grains oriented in the <100> direction.

  16. Multi-residue determination of pesticides in vegetables by gas chromatography/ion trap mass spectrometry.

    PubMed

    Tao, C-J; Hu, J-Y; Li, J-Z; Zheng, S-S; Liu, W; Li, C-J

    2009-01-01

    To monitor possible contamination of edible vegetables by common pesticides, an analytical method using gas chromatography combined with ion trap spectrometry (GC-IT/MS) was developed to measure simultaneously up to 39 pesticide residues, belonging to organophosphors, organochlorines, pyrethroids or carbamates classes, left on four kinds of popular vegetables. The procedure entails addition of acetone, dichloromethane, and sodium chloride to a small amount of vegetable, then the mixture was shaken intensively and centrifuged for phase separation. An aliquot of the organic layer was cleanup using solid-phase extraction (SPE) cartridges filled with graphitized carbon black (GCB) in combination with acidic aluminum oxide. Gas chromatography with ion trap mass spectrometer was then used for qualitative and quantitative determination of the pesticides. The GCB combination with acidic aluminum oxide was found more suitable than florisil, aluminum oxide and silicon dioxide for sample cleanup with recoveries above 70% for most pesticides in removing the majority of co-extracted matrices. Variation coefficients of the repeatability typically smaller than 20% have been achieved for a wide range of the investigated pesticides. A set of critical instrument parameters for the GC-IT/MS Varian system in the MS mode was established. Based on optimization work conducted in this study, the 39 pesticides were separated successively with the limits of detection between 0.02 and 0.1 mg/kg.

  17. Capillary gas chromatographic assay of residual methenamine hippurate in equipment cleaning validation swabs.

    PubMed

    Mirza, T; George, R C; Bodenmiller, J R; Belanich, S A

    1998-02-01

    A capillary gas chromatographic method is described for the determination of methenamine hippurate residue in swabs collected from manufacturing equipment surfaces. Any residual methenamine hippurate remaining on process equipment after cleaning is removed by swabbing with one wet polyester Absorbond swab (4" x 4") pre-moistened with water followed by a dry Absorbond swab. The residual methenamine hippurate is chromatographed on a 30 x 0.32 mm (i.d.) Supelcowax-10 capillary column of 0.25-micron film thickness. The amount of residual methenamine hippurate is determined by comparing the ratio of methenamine hippurate peak area response to that of p-cresol (internal standard) obtained for the sample to a linear calibration curve obtained for a series of standard solutions. The method is demonstrated to be sufficiently linear, accurate, precise, sensitive and rugged for the determination of low levels of methenamine hippurate on equipment surfaces. Using this method, the mean recovery of methenamine hippurate from spiked Absorbond swab samples contained in high density polyethylene bottles was 105.2%, with a relative standard deviation (RSD) of +/- 7.1% (n = 25). The mean recoveries of methenamine hippurate from spiked test plates for '180 Grit' Stainless Steel, Teflon and WARCO White (neoprene and PVC) gasket material were 77.2, 96.1 and 50.6%, with RSDs of +/- 9.4 (n = 25), +/- 4.3 (n = 25) and +/- 36% (n = 20), respectively. Recovery correction factors have been incorporated into the method. The method was successfully applied to the assay of actual equipment cleaning validation swab samples. Stability studies demonstrate that methenamine hippurate is not very stable on the equipment surfaces or in the swabs. It is recommended that the surfaces be swabbed immediately after cleaning and the swabs analyzed within 24 h after sample collection. The results demonstrate that in order to fully validate the cleaning procedures, it is not only necessary to investigate the

  18. Magnetic graphene as modified quick, easy, cheap, effective, rugged and safe adsorbent for the determination of organochlorine pesticide residues in tobacco.

    PubMed

    Luo, Yan-Bo; Li, Xue; Jiang, Xing-Yi; Cai, Bao-Dong; Zhu, Feng-Peng; Zhang, Hong-Fei; Chen, Zai-Gen; Pang, Yong-Qiang; Feng, Yu-Qi

    2015-08-07

    In this study, magnetic graphene was used as modified quick, easy, cheap, effective, rugged and safe (QuEChERS) adsorbent for the determination of organochlorine pesticide (OCPs) residues in tobacco. To achieve the optimum conditions of modified QuEChERS procedure toward target analytes, several parameters affecting the clean-up efficiency including the amount of the adsorbent and clean-up time were investigated. Under the optimized conditions, a method for the determination of 26 OCPs residues in tobacco was established by coupling the modified QuEChERS procedure to on-line gel permeation chromatography-gas chromatography-tandem mass spectrometry (on-line GPC-GC-MS(2)). The limits of detection of proposed method for 26 OCPs residues ranged from 0.01275 to 3.150ng/g. And good linearities of the proposed method were obtained with coefficients of determination (R(2)) greater than 0.9985 for all target analytes. Good reproducibility of method was obtained as intra- and inter-day precisions, the relative standard deviations were less than 11.1 and 15.0%, respectively. The apparent recoveries were in the range of 64-126% at different concentrations for real samples. Compared with the reported methods for the determination of OCPs residues in tobacco, the proposed method has the advantages of simple to operate, low cost and high clean-up ability. Finally, the method was successfully applied to the analysis of OCPs residues in real samples.

  19. Structure and magnetic response of a residual metal catalyst in highly purified single walled carbon nanotubes.

    PubMed

    Bittova, Barbara Pacakova; Kalbac, Martin; Kubickova, Simona; Mantlikova, Alice; Mangold, Stephen; Vejpravova, Jana

    2013-04-28

    This article presents methods for detailed physical analysis of partial steps leading to the removal of residual metal catalyst nanoparticles (NPs) from single walled carbon nanotubes (SWCNTs) and options for detecting negligible amounts of metal in samples possessing diamagnetic response. Based on the previous knowledge of the composition, structure and magnetic properties of NPs included in the commercial HiPco_raw and HiPco_SP SWCNTs, the properties of remaining NPs after the multi-step purification (oxidation followed by mild acid treatment) and annealing both under static and dynamic vacuum have been investigated. Thermogravimetry, X-ray diffraction, static and dynamic magnetic property measurements and the Extended X-ray Absorption Fine Structure (EXAFS) experiments have been performed. The data provide information about the nature of the residual NPs in purified SWCNTs, which is crucial for further understanding of the purification processes and their improvement. It has been demonstrated that even if all macroscopic methods indicate a high purity of the treated sample, a non-negligible amount of the metal may still be present and the metal content has to be examined using local and element sensitive probes such as EXAFS.

  20. Residual Separation of Magnetic Fields Using a Cellular Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Albora, A. M.; Özmen, A.; Uçan, O. N.

    - In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.

  1. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues.

    PubMed

    Miao, Shan Shan; Wu, Mei Sheng; Zuo, Hai Gen; Jiang, Chen; Jin, She Feng; Lu, Yi Chen; Yang, Hong

    2015-04-15

    Sulfonylurea herbicides are widely used at lower dosage for controlling broad-leaf weeds and some grasses in cereals and economic crops. It is important to develop a highly efficient and selective pretreatment method for analyzing sulfonylurea herbicide residues in environments and samples from agricultural products based on magnetic molecularly imprinted polymers (MIPs). The MIPs were prepared by a surface molecular imprinting technique especially using the vinyl-modified Fe3O4@SiO2 nanoparticle as the supporting matrix, bensulfuron-methyl (BSM) as the template molecule, methacrylic acid (MAA) as a functional monomer, trimethylolpropane trimethacrylate (TRIM) as a cross-linker, and azodiisobutyronitrile (AIBN) as an initiator. The MIPs show high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance toward BSM with the adsorption capacity reaching up to 37.32 mg g(-1). Furthermore, the MIPs also showed cross-selectivity for herbicides triasulfuron (TS), prosulfuron (PS), and pyrazosulfuron-ethyl (PSE). The MIP solid phase extraction (SPE) column was easier to operate, regenerate, and retrieve compared to those of C18 SPE column. The developed method showed highly selective separation and enrichment of sulfonylurea herbicide residues, which enable its application in the pretreatment of multisulfonylurea herbicide residues.

  2. Assessment of organochlorine pesticide residues in Indian flue-cured tobacco with gas chromatography-single quadrupole mass spectrometer.

    PubMed

    Ghosh, Rakesh Kumar; Khan, Zareen S; Rao, C V N; Banerjee, Kaushik; Reddy, D Damodar; Murthy, T G K; Johnson, Nalli; Ray, Deb Prasad

    2014-08-01

    Presence of pesticide residues in tobacco increases health risk of both active and passive smokers, apart from the imminent potential health problems associated with it. Thus, monitoring of pesticide residue is an important issue in terms of formulating stringent policies, enabling global trade and safeguarding the consumer's safety. In this study, a gas chromatography-single quadrupole mass spectrometry (GC-MS) method based upon quantifier-qualifier ions (m/z) ratio was employed for detecting and assessing ten organochlorine pesticide residues (α-HCH, β-HCH, γ-HCH, δ-HCH, 2,4-DDT, 4,4-DDT, endrin, α-endosulfan, β-endosulfan and endosulfan sulphate) in 152 flue-cured (FC) tobacco leave samples from two major tobacco growing states, Karnataka and Andhra Pradesh, of India. In the majority of samples, pesticide residue levels were below the limit of quantification (LOQ). In few samples, pesticide residues were detected and they found to comply with the guidance residue levels (GRL) specifications of the Cooperation Center for Scientific Research Relative to Tobacco (CORESTA). Detection of the phase out pesticides like DDT/HCH might be due to transfer of persistent residues from the environmental components to the plant. This is the first report on these ten organochlorine pesticide residues in Indian FC tobacco.

  3. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength.

  4. Understanding the residual patterns of timing solutions of radio pulsars with a model of magnetic field oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Xu-Dong; Zhang, Shuang-Nan; Yi, Shu-Xu; Xie, Yi; Fu, Jian-Ning

    2016-06-01

    We explain some phenomena existing generally in the timing residuals: amplitude and sign of the second derivative of a pulsar's spin-frequency (ddot{ν }), some sophisticated residual patterns, which also change with the time span of data segments. The sample is taken from Hobbs et al., in which the pulsar's spin-frequency and its first derivative have been subtracted from the timing solution fitting. We first classify the timing residual patterns into different types based on the sign of ddot{ν }. Then we use the magnetic field oscillation model developed in our group to fit successfully the different kinds of timing residuals with the Markov Chain Monte Carlo method. Finally, we simulate the spin evolution over 20 years for a pulsar with typical parameters and analyse the data with the conventional timing solution fitting. By choosing different segments of the simulated data, we find that most of the observed residual patterns can be reproduced successfully. This is the first time that the observed residual patterns are fitted by a model and reproduced by simulations with very few parameters. From the distribution of the different residual patterns in the P-dot{P} diagram, we argue that (1) a single magnetic field oscillation mode exists commonly in all pulsars throughout their lifetimes; (2) there may be a transition period over the lifetimes of pulsars, in which multiple magnetic field oscillation modes exist.

  5. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria.

    PubMed

    Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla; Evershed, Richard P

    2008-03-07

    A combination of gas chromatographic (GC) and mass spectrometric (MS) techniques, including direct exposure-MS (DE-MS), high-temperature GC-MS (HTGC-MS) and GC-MS of neutral and acid fractions, was employed to study the composition and recognise origin of the organic materials used to manufacture balm residues surviving in a series of glass unguentaria recovered from excavations of a Roman villa (Villa B) in the ancient town of Oplontis (Naples, Italy). DE-MS provided comprehensive 'fingerprint' information on the solvent soluble components of the contents of the unguentaria, while GC-MS analyses provided detailed molecular compositions, highlighting the presence of a wide range of compound classes including mid- and long-chain fatty acids, long-chain hydroxy-acids, n-alkanols, alkandiols, n-alkanes, long-chain monoesters, phytosterols and diterpenoid acids. Characteristic biomarkers and their distributions indicate the presence of beeswax, Pinaceae resin and another wax, as the main organic constituents of all of the preparations examined. In particular, the occurrence of phytosterols and long-chain monoesters, in which the acyl moiety was not exclusively palmitic acid, suggested the presence of a second waxy-lipid constituent of plant origin. The results are consistent with beeswax being used in the preparation of the cosmetics preserved in the unguentaria, while the other lipids are most likely the residue of some as yet unidentified plant extract(s), possibly deriving from the cuticular waxes of flowers and/or leaves. The composition of the extracts are consistent with the ancient practices of maceration and/or "enfleurage", in which lipid-based materials, such as beeswax, animal fat or vegetables oils, were used to extract aromatic and fragrant substances from resin, flowers, spices and scented wood, in order to produce unguents and balms.

  6. A magnetically shielded room with ultra low residual field and gradient

    SciTech Connect

    Altarev, I.; Chesnevskaya, S.; Gutsmiedl, E.; Kuchler, F.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B.; Babcock, E.; Beck, D.; Sharma, S.; Burghoff, M.; Fan, I.; and others

    2014-07-15

    A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

  7. A magnetically shielded room with ultra low residual field and gradient

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Babcock, E.; Beck, D.; Burghoff, M.; Chesnevskaya, S.; Chupp, T.; Degenkolb, S.; Fan, I.; Fierlinger, P.; Frei, A.; Gutsmiedl, E.; Knappe-Grüneberg, S.; Kuchler, F.; Lauer, T.; Link, P.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Schläpfer, U.; Schnabel, A.; Sharma, S.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B.; Trahms, L.; Voigt, J.; Zechlau, T.

    2014-07-01

    A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

  8. A magnetically shielded room with ultra low residual field and gradient.

    PubMed

    Altarev, I; Babcock, E; Beck, D; Burghoff, M; Chesnevskaya, S; Chupp, T; Degenkolb, S; Fan, I; Fierlinger, P; Frei, A; Gutsmiedl, E; Knappe-Grüneberg, S; Kuchler, F; Lauer, T; Link, P; Lins, T; Marino, M; McAndrew, J; Niessen, B; Paul, S; Petzoldt, G; Schläpfer, U; Schnabel, A; Sharma, S; Singh, J; Stoepler, R; Stuiber, S; Sturm, M; Taubenheim, B; Trahms, L; Voigt, J; Zechlau, T

    2014-07-01

    A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

  9. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues

    PubMed Central

    2014-01-01

    Background Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed. It is believed that along with biodiesel from algae, the high protein de-oiled algal residue may become an alternative feed supplement option in the future. This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species, Thalassiosira weissflogii, Selenarstrum capricornutum, Scenedesmus sp., and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean (Glycine max) meal and alfalfa (Medicago sativa) hay. Results With the exception of T. weissflogii, algal residue had higher concentrations of Cu, Zn, and Mn and lower concentration of Ca, Mg, and K than soybean meal and alfalfa hay. The algal residue CP (crude protein) concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues. In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%. The gas production curve, interpreted with a dual pool logistic model, confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay, and the fermenting rate of the fractions was also low. Conclusions Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen. PMID:25093078

  10. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues.

    PubMed

    Han, Kun Jun; McCormick, Michael E

    2014-01-01

    Algae are widely recognized for their high oil content and for exponentially accumulating biomass with particular potential to provide single cell protein for human consumption or animal feed. It is believed that along with biodiesel from algae, the high protein de-oiled algal residue may become an alternative feed supplement option in the future. This study was conducted to investigate de-oiled algal residue obtained from the common Chlorella species, Thalassiosira weissflogii, Selenarstrum capricornutum, Scenedesmus sp., and Scenedesmus dimorphus for assessment as potential feed supplements for ruminants by comparing with soybean (Glycine max) meal and alfalfa (Medicago sativa) hay. With the exception of T. weissflogii, algal residue had higher concentrations of Cu, Zn, and Mn and lower concentration of Ca, Mg, and K than soybean meal and alfalfa hay. The algal residue CP (crude protein) concentrations ranged from 140 to 445 g/kg DM and varied among the de-oiled residues. In vitro rumen fermentation gas accumulation curves indicated that algal biomass degradation potential was less than that of soybean meal or alfalfa hay by up to 41.7%. The gas production curve, interpreted with a dual pool logistic model, confirmed that the fraction sizes for fast fermenting and slow fermenting of de-oiled algal residues were smaller than those in soybean meal and alfalfa hay, and the fermenting rate of the fractions was also low. Inferior in vitro rumen gas accumulation from the five de-oiled algal residues suggests that these algal byproducts are less degradable in the rumen.

  11. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  12. Residual Gas Analysis of Samples Formed from the UV Irradiation of Astrophysical Ice Analogs

    NASA Astrophysics Data System (ADS)

    Materese, C. K.; Nuevo, M.; Sandford, S. A.

    2011-05-01

    The formation of complex organics, including nucleic acids, amino acids, sugars, and other molecules of prebiotic interest, in an interstellar environment is an important field of modern astrochemistry research. In a typical experiment, we perform a controlled deposition of a known mixture of gas onto a cold finger while irradiating the sample to simulate the conditions of cold interstellar grains (Bernstein et al., 1995, 2002; Muñoz Caro et al., 2002; Nuevo et al., 2008, 2009, 2010). After the deposition is complete, the sample is warmed and recovered for analysis. Our traditional analysis methods have made extensive use of HPLC with UV-visible detection, GC-MS, and IR spectroscopy when appropriate. While these techniques provide significant insight into the photo-processing of our ices, they invariably lead to the loss of some volatiles during the warm-up, which may be of interest. In order to learn more about the volatiles lost during the warm-up we have installed a residual gas analyzer (RGA) mass spec device on one of our vacuum systems. With this tool, we can perform controlled warm-ups of our samples and monitor the composition of outgassing volatiles as a function of temperature change. Knowledge of the composition of these volatiles could prove invaluable in two ways. First, we may observe important chemical species, which we are unable to detect with our other methods because they are either lost during the warm-up, or cannot be detected using our GC-MS protocol. Second, even compounds which are mundane in and of themselves, may provide important clues about the type of chemistry occurring within the rest of the ice. We are currently using the RGA to study the formation of pyrimidine-based nucleobases from in interstellar ice analogs. In the future we will expand our studies to purines-based nucleic acids, amino acids, and other prebiotic organics.

  13. Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique

    NASA Astrophysics Data System (ADS)

    Fuke, K.; Tona, M.; Fujihara, A.; Sakurai, M.; Ishikawa, H.

    2012-08-01

    Nuclear magnetic resonance (NMR) technique is a well-established powerful tool to study the physical and chemical properties of a wide range of materials. However, presently, NMR applications are essentially limited to materials in the condensed phase. Although magnetic resonance was originally demonstrated in gas phase molecular beam experiments, no application to gas phase molecular ions has yet been demonstrated. Here, we present a novel principle of NMR detection for gas phase ions based on a "magnetic resonance acceleration" technique and describe the design and construction of an apparatus which we are developing. We also present an experimental technique and some results on the formation and manipulation of cold ion packets in a strong magnetic field, which are the key innovations to detect NMR signal using the present method. We expect this novel method to lead new realm for the study of mass-selected gas-phase ions with interesting applications in both fundamental and applied sciences.

  14. Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

    NASA Astrophysics Data System (ADS)

    Atif, Hussain; Xun, Gao; Qi, Li; Zuoqiang, Hao; Jingquan, Lin

    2017-01-01

    In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.

  15. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions.

    PubMed

    Li, Guoliang; Shen, Boxiong; Li, Yongwang; Zhao, Bin; Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min

    2015-11-15

    Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH4Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg(0) occurred on the surface of M6WN5 which was modified both microwave and 5wt.% NH4Cl loading, and exothermic chemisorption process was a dominant route for Hg(0) removal. Microwave activation improved pore properties and NH4Cl impregnation introduced good active sites for biochars. The presence of NO and O2 increased Hg(0) adsorption whereas H2O inhibited Hg(0) adsorption greatly. A converse effect of SO2 was observed on Hg(0) removal, namely, low concentration of SO2 promoted Hg(0) removal obviously whereas high concentration of SO2 suppressed Hg(0) removal. The Hg(0) removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg(0) to form HgCl2, and the active state of C−Cl(*) groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg(0) sorbent in flue gas when compared with other sorbents.

  16. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    PubMed

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study.

  17. Gas chromatographic determination of residual solvents in lubricating oils and waxes

    SciTech Connect

    De Andrade Bruening, I.M.R.

    1983-10-01

    A direct gas-liquid chromatographic analysis of residual solvents is described, using tert-butylbenzene as an internal standard. The lube oils and waxes were prevented from contaminating the chromatographic column by injecting the samples directly into a precolumn containing a silicone stationary phase. The samples of lube oils and waxes were injected directly into the chromatographic column containing another stationary phase, 1,2,3-tris(2-cyanoethoxy)propane. (The waxy samples were dissolved in a light neutral oil). With proper operating conditions, analysis time was 7 min. The procedure has been applied in the control of a lube oil dewaxing plant; the chromatographic column showed no sign of deterioration after 1 h when the precolumn was removed. Known amounts of toluene and methylethyl ketone were added to the solvent-free lubricating oils and wax, and these mixtures were analyzed to evaluate the accuracy of the procedure. Precision and accuracy of these data are comparable to those of methods previously described. 1 figure, 1 table.

  18. [Determination of antioxidant residues in polymer food package using gas chromatography].

    PubMed

    Xiong, Zhongqiang; Wang, Libing; Li, Ningtao; Yu, Yanjun; Jia, Xiaochuan

    2011-03-01

    A new method for the determination of antioxidants, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) and tertiary butylhydroquinone (TBHQ) in plastic food package by gas chromatography-electron capture detection (ECD) was developed. The antioxidants were extracted by cyclohexane with ultrasonic extraction, separated by an HP-50 + chromatographic column (30 m x 0.53 mm x 1 microm) and quantified by external standard method with an ECD detector. The average recoveries of antioxidants were 88% -93%, 92% - 101% and 83% -97% for BHT, BHA and TBHQ, respectively, at the spiking levels of 3.00 - 10.0 mg/kg. The corresponding relative standard deviations (RSDs, n = 5) were 2.01% - 2.89%, 2.11% - 3.19% and 2.99% - 4.02%, respectively. The limits of detection (S/N = 3) were 0.5, 0.5 and 0.8 mg/kg for BHT, BHA and TBHQ, respectively. The proposed method has been applied to the analysis of 5 kinds of polymer food package. The results indicated that all the above antioxidants were found in the practical polymer food package samples. Plastic food package contained BHT and BHA with the concentrations varying from 6.3 to 7.8 mg/kg and rubber food package contained all the three antioxidants with the concentrations varying from 9.3 to 28.4 mg/kg. This method is accurate, sensitive, highly reproducible and suitable for the analysis of residual antioxidants in polymer food package.

  19. Thermal desorption-Gas chromatographic methodology for the determination of residual solvents in mesoporous silica.

    PubMed

    Asfaw, Adissu Alemayehu; Wolfs, Kris; Schepdael, Ann Van; Adams, Erwin

    2017-06-02

    In this work, thermal desorption-gas chromatography-flame ionization detection (TD-GC-FID) was adapted to enable the determination of residual solvents (RS) in mesoporous silica (MPSi). MPSi is often utilized in various pharmaceutical formulations or drug delivery systems and the accurate determination of RS is an important part of pharmaceutical quality control. Seven commonly used solvents (methanol, ethanol, acetone, isopropanol, dichloromethane, tetrahydrofuran and hexafluoroisopropanol) were evaluated in combination with 3 types of MPSi having pore sizes of 2-3, 15 and 25nm. Validation results showed general recovery values >98% and good linearity over the concentration ranges studied. The limits of detection (LOD) and limits of quantification (LOQ) for the different solvents ranged from 0.03 to 0.08μg and from 0.1 to 0.2μg per tube, respectively. Verification of the accuracy of the TD method was investigated by using an alternative method based on complete dissolution of MPSi in hydrofluoric acid (HF) followed by full evaporation headspace-GC (HS-GC). The results obtained from both procedures were not statistically different (p>0.05) when applied to actual experimental drug samples consisting of itraconazole loaded on MPSi. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Exchange interaction and oscillations of the magnetization of the electron gas in a quantum cylinder

    SciTech Connect

    Eminov, P. A. Sezonov, Yu. I.; Al'pern, A. V.; Sal'nikov, N. V.

    2006-10-15

    The exchange energy of the electron gas on a cylindrical surface in a constant magnetic field has been calculated. Analytical formulas describing the contribution of the exchange interaction into oscillations of the magnetization of the electron gas in a quantum cylinder have been obtained. It is shown that the magnetic response of the system exhibits Aharonov-Bohm oscillations for both degenerate and Boltzmann electron gases.

  1. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  2. Characterization and comparative study of coal combustion residues from a primary and additional flue gas secondary desulfurization process

    SciTech Connect

    Gomes, S.; Francois, M.; Evrard, O.; Pellissier, C.

    1998-11-01

    An extensive characterization and comparative study was done on two flue gas desulfurization (FGD) residues derived from the same coal. LR residues (originated from Loire/Rhone in the south of Lyon, France) are obtained after a primary desulfurization process (SO{sub 2} is trapped by reaction with CaO at a temperature of about 1100 C), and LM residues (originating from La Maxe, near Metz in the east of France) are obtained after an additional secondary desulfurization process (SO{sub 2} is removed further by reaction with Ca(OH){sub 2} at a temperature of about 120 C). Various and complementary investigation methods were used to determine their chemical, physical, and mineralogical properties: x-ray fluorescence and diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetry analysis, granulometric distribution, pycnometric density, BET specific surface area and pH, conductivity measurements, and chemical analysis of their insoluble fraction. The FGD residues contain basically two main components: a silico-aluminous fly ash part and calcic FGD phases. In the LR residues the two components can be considered as independent, whereas they are linked in the LM residues because chemical reactions have occurred, leading to the formation of silico-calcic gel CSH, hydrated aluminate AFm, and AFt phases.

  3. MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK

    SciTech Connect

    Chen Yuanyuan; Liu Huigen; Zhao Gang; Zhou Jilin E-mail: zhoujl@nju.edu.cn

    2013-05-20

    According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonance (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.

  4. Mechanism for Exciting Planetary Inclination and Eccentricity through a Residual Gas Disk

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Yuan; Liu, Hui-Gen; Zhao, Gang; Zhou, Ji-Lin

    2013-05-01

    According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as ~39.°2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonance (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 MJ ) at 30 AU with an inclination of 6° to a massive disk (50 MJ ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20° of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.

  5. Gas-phase conjugation to arginine residues in polypeptide ions via N-hydroxysuccinimide ester-based reagent ions.

    PubMed

    McGee, William M; Mentinova, Marija; McLuckey, Scott A

    2012-07-18

    Gas-phase conjugation to unprotonated arginine side-chains via N-hydroxysuccinimide (NHS) esters is demonstrated through both charge reduction and charge inversion ion/ion reactions. The unprotonated guanidino group of arginine can serve as a strong nucleophile, resulting in the facile displacement of NHS from NHS esters with concomitant covalent modification of the arginine residue. This reactivity is analogous to that observed with unprotonated primary amines such as the N-terminus or ε-amino group of lysine. In solution, however, the arginine residues tend to be protonated at pH values low enough to prevent hydrolysis of NHS esters, which would render them relatively unreactive with NHS esters. This work demonstrates novel means for gas-phase conjugation to arginine side chains in polypeptide ions.

  6. Gas-Phase Conjugation to Arginine Residues in Polypeptide Ions via N-Hydroxysuccinimide Ester-based Reagent Ions

    PubMed Central

    McGee, William M.; Mentinova, Marija; McLuckey, Scott A.

    2012-01-01

    Gas-phase conjugation to unprotonated arginine side-chains via N-hydroxysuccinimide (NHS) esters is demonstrated through both charge reduction and charge inversion ion/ion reactions. The unprotonated guanidino group of arginine can serve as a strong nucleophile, resulting in the facile displacement of NHS from NHS esters with concomitant covalent modification of the arginine residue. This reactivity is analogous to that observed with unprotonated primary amines such as the N-terminus or ε-amino group of lysine. In solution, however, the arginine residues tend to be protonated at pH values low enough to prevent hydrolysis of NHS esters, which would render them relatively unreactive with NHS esters. This work demonstrates novel means for gas-phase conjugation to arginine side-chains in polypeptide ions. PMID:22769013

  7. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.

    PubMed

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.

  8. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  9. Magnetic "one-step" quick, easy, cheap, effective, rugged and safe method for the fast determination of pesticide residues in freshly squeezed juice.

    PubMed

    Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-06-12

    A "one-step" quick, easy, cheap, effective, rugged and safe (QuEChERS) method was proposed for pesticide residue analysis in freshly squeezed juice of fruits and vegetables. In this method, a new magnetic adsorbent prepared by simple physical blending was adopt, which could endow the sample mixture with magnetic separability. To achieve the best performance of the modified QuEChERS towards target analytes, the amounts of adsorbents were investigated. Under the optimized conditions, a simple, rapid and sensitive method for the determination of 11 pesticide residues in freshly squeezed juice was established by coupling modified QuEChERS to gas chromatography/mass spectrometry analysis. The limits of quantification of the proposed method for 11 pesticides ranged from 2.0 to 49.6ng/g. Good linearities (R value ≥0.9993) were achieved at different concentration ranges, and acceptable method reproducibility was obtained by evaluating intra- and inter-day precisions with the relative standard deviations being less than 8.5% and 13.5%, respectively. The recoveries were in the range of 70.3-114.1% at different concentrations for real samples. Compared with the traditional QuEChERS methods, extraction/partitioning and purification were integrated into one step in the proposed method, which thus was time-saving (within 3.5min) with keeping good clean-up performance.

  10. Quick, easy, cheap, effective, rugged and safe method with magnetic graphitized carbon black and primary secondary amine as adsorbent and its application in pesticide residue analysis.

    PubMed

    Zheng, Hao-Bo; Zhao, Qin; Mo, Jie-Zhen; Huang, Yun-Qing; Luo, Yan-Bo; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-07-26

    By using magnetic graphitized carbon black and primary secondary amine (GCB/PSA/MNPs) as adsorbent, a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was proposed for pesticide residue analysis in vegetables. The magnetic adsorbent was fabricated via simple co-mixing method based on an "aggregate warp" mechanism. To achieve the optimum conditions of modified QuEChERS toward target analytes, several parameters, including the composition of analyte protectants and the amount of the adsorbents were investigated. Under the optimized conditions, a simple, rapid and effective method for the determination of 10 pesticide residues in vegetables was established by coupling modified QuEChERS to gas chromatography/mass spectrometry analysis. The detection limits of the proposed method for 10 pesticides ranged from 0.39 to 8.6ng/g. Good linearity (R value≥0.990) was achieved at concentration levels of 10-200ng/g, and acceptable method reproducibility was found as intra- and inter-day precisions, yielding the relative standard deviations less than 10.7% and 13.4%, respectively. The recoveries were in the range of 69.9-125.0% at different concentrations for real samples. Compared with the reported methods for the determination of a large number of samples, the proposed method has the advantage of less time-consuming in clean-up procedure.

  11. Green house gas emissions from open field burning of agricultural residues in India.

    PubMed

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  12. Pesticide residue determination in vegetables from western China applying gas chromatography with mass spectrometry.

    PubMed

    Qin, Guofu; Zou, Keting; Li, Yongbo; Chen, Yan; He, Fengrui; Ding, Guirong

    2016-09-01

    In this study,an effort has been made to evaluate the pesticide residues in vegetables from western China. Fifty-one pesticides, including organophosphorus, organochlorine, carbamate and pyrethroid, were detected in 369 commonly used vegetables by GC-MS. Concentrations of organophosphorus pesticides were detected ranging from 0.0008 to 18.8200 mg/kg, among which organophosphorus pesticide concentrations exceeded their maximum residue levels (MRLs) in five samples. Carbamate and organochlorine pesticides were determined to have concentrations in the range of 0.0012-0.7928 mg/kg. The residual concentrations of carbamate pesticides in six samples and organochlorine pesticides in four samples exceeded their MRLs. The residual concentrations of five pyrethroid pesticides were within the range of 0.0016-6.0827 mg/kg and the pyrethroid residues in two samples exceeded their MRLs. The results revealed that pesticide residues in 70.73% of the vegetables samples were not detected, while in the rest of vegetables there were one or more pesticide residues and some even exceeded their MRLs, which would threaten the health of consumers. Our work provides significant information for the food safety regulations to control the excessive use of some pesticides on those kinds of vegetables from western China. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Magnetic Resonance Tumor Regression Grade and Residual Mucosal Abnormality as Predictors for Pathological Complete Response in Rectal Cancer Postneoadjuvant Chemoradiotherapy.

    PubMed

    Bhoday, Jemma; Smith, Fraser; Siddiqui, Muhammed R; Balyasnikova, Svetlana; Swift, Robert I; Perez, Rodrigo; Habr-Gama, Angelita; Brown, Gina

    2016-10-01

    Pathological complete response after chemoradiotherapy for rectal cancer occurs in 10% to 30% of patients. The best method to identify such patients remains unclear. Clinical assessment of residual mucosal abnormality is considered the most accurate method. In our institution, magnetic resonance tumor regression grade is performed as routine to assess response. The purpose of this study was to compare the sensitivity of magnetic tumor regression grade against residual mucosal abnormality in detecting patients with a pathological complete response. Magnetic tumor regression grade scores from reported posttreatment MRI scans were documented. Magnetic tumor regression grade 1 to 3 was defined as likely to predict complete or near complete response. Gross appearances of the mucosa were derived from histopathology reports and used as a surrogate for clinical assessment (previously validated). Final histopathological staging was used to determine response. The study was conducted at Royal Marsden National Health Service Trust, United Kingdom. A total of 143 patients with rectal adenocarcinoma, diagnosed between September 1, 2009, and September 1, 2013, who received neoadjuvant chemoradiotherapy before curative surgery were included. The sensitivity of magnetic tumor regression grade and residual mucosal abnormality in detecting patients with pathological complete response were measured : Eighteen patients had a pathological complete response. Seventeen were detected using magnetic resonance tumor regression grade 1 to 3, with sensitivity 94% (95% CI, 0.74-0.99), and 10 were detected using residual mucosal abnormality, with sensitivity 62% (95% CI, 0.38-0.81). There was no statistical difference between the false positive rates for either method. Magnetic tumor regression grade identified 10 times more patients with a pathological complete response (diagnostic OR = 10.2 (95% CI, 1.30-73.73)) compared with clinical assessment with RMA. Residual mucosal abnormality was used

  14. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  15. Conversion of forest residues to a methane-rich gas in a high-throughput gasifier

    NASA Astrophysics Data System (ADS)

    Feldman, H. F.; Paisley, M. A.; Folsom, D. W.; Kim, B. C.

    1981-10-01

    Results of the experimental work conducted thus far show that wood can be readily gasified in a steam environment into a hydrocarbon rich fuel gas that can be used as a replacement for petroleum based fuels or natural gas with minimal boiler retrofit. Further, this conversion can be achieved in a compact gasification reactor with heat supplied by a circulating entrained phase, thereby eliminating the need for an oxygen plant. Tars were found except at the lowest gasifier temperatures employed, and therefore heat recovery from the product gas should be much simpler than that from commercially available fixed bed gasification systems where product gas contains significant quantities of tar. The data generated were used in a preliminary conceptual design. Evaluation of this design shows that a medium Btu gas can be produced from wood at a cost competitive with natural gas or petroleum based fuels.

  16. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    PubMed

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  17. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.

    PubMed

    Martín-Alberca, Carlos; García-Ruiz, Carmen; Delémont, Olivier

    2015-07-14

    The detection and identification of ignitable liquid residues in fire debris can be meaningful in fire investigations. However, background pyrolysis products and weathering hinder the identification and classification steps. In addition to those processes, the acidification of the ignitable liquids before the combustion process could make those tasks even more difficult. Nevertheless, there are no systematic studies assessing the extraction, analysis and composition of acidified ignitable liquid residues obtained from fire debris. In this work, a methodology for the study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry is proposed. This methodology has been evaluated, first with simulated solutions (gasoline-sulphuric acid mixtures set on fire under controlled conditions), and then with analysis of samples from real fire debris obtained from 18 chemical ignition Molotov cocktails made with sulfuric acid and three different ignitable liquids (two types of gasoline and diesel fuel). In addition, the extensive modifications observed in chromatograms of acidified ignitable liquid residues regarding neat and weathered samples were studied. These alterations were produced by the combustion and acidification processes. As a consequence, tert-butylated compounds are proposed as diagnostic indicators for the identification of acidified gasoline in fire debris, even in strongly weathered samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Application of low-pressure gas chromatography/tandem mass spectrometry to the determination of pesticide residues in tropical fruits.

    PubMed

    Martínez Vidal, José Luis; Fernández Moreno, José Luis; Arrebola Liébanas, Francisco Javier; Garrido Frenich, Antonia

    2007-01-01

    A multiresidue method has been developed for determining pesticide residues in the tropical fruits kiwi, custard apple, and mango. The intended purpose of the method is for regulatory analyses of commodities for pesticides that have established maximum residue limits. A fast and simple extraction method with cyclohexane-ethyl acetate (1 + 1, v/v) and a high-speed homogenizer was optimized. Pressurized liquid extraction was evaluated as an alternative automated extraction technique. The pesticide residues were determined by using low-pressure gas chromatography coupled to tandem mass spectrometry. The proposed methodology was validated for each matrix. Pesticide recoveries ranged from 70 to 110%, with repeatability relative standard deviations of < or = 18% at spiking levels of 12 and 50 microg/kg. The limits of quantitation were in the range of 0.03-6.17 microg/kg, and the limits of detection were between 0.01 and 3.75 microg/kg. Mango can be selected as a representative matrix for calibration on the basis of the results of a potential matrix effect study. The method was successfully applied to the determination of pesticide residues in real samples in Spain.

  19. Conversion of forest residues to a methane-rich gas. Detailed economic feasibility study

    SciTech Connect

    Not Available

    1986-03-01

    An economic evaluation of the application of the multi-solid fluid reactor design to wood gasification was completed. The processing options examined include plant capacity, production of a high-Btu (1006 Btu/SCF HHV) gas versus an intermediate-Btu gas (379 Btu/SCF HHV), and operating pressure. 9 figs., 29 tabs.

  20. Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...

  1. Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...

  2. Detecting the gas bubbles in a liquid metal coolant by means of magnetic flowmeters

    NASA Astrophysics Data System (ADS)

    Mogilner, A. I.; Morozov, S. A.; Zakharov, S. O.; Uralets, A. Yu.

    Solution of some problems of control and diagnosis of circuits with a liquid-metal coolant (LMC) often requires the detection of gas bubbles penetrating the circulation loop. The sources of gas intake can be presented by failed fuel elements in reactor core, failed heat-exchange surfaces in sodium-water steam generators in the secondary circuits, gas capture by circulating coolant from gas circuits. Sometimes the gas is especially injected into circulating coolant to study the dynamics of accumulation and extraction of gas bubbles and to solve research problems related to simulations of emergency situations. The most commonly used methods for gas bubble detection include methods based on measuring coolant electric conductivity. A method for detecting gas bubbles in LMC, based on revealing the change of its electric conductivity is considered. Magnetic flowmeter is used as a detecting element of these changes. Approximate theory for describing spectral and energy noises in signals of a magnetic flowmeter, controlling the flow rate of LMC with gas bubbles is suggested. A new method for signal reading is suggested. Experimental results illustrating the possibility of using the method for measuring the rate of bubble movement and studying the dependence of gas bubble volume on the flow rate of injected gas are presented.

  3. Determination of malathion, coumaphos, and fluvalinate residues in honey by gas chromatography with nitrogen-phosphorus or electron capture detectors.

    PubMed

    Menkissoglu-Spiroudi, U; Diamantidis, G C; Georgiou, V E; Thrasyvoulou, A T

    2000-01-01

    A rapid, reliable, and inexpensive extraction method was developed to determine acaricide residues in honey by gas chromatography (GC) with nitrogen-phosphorus (NP) or electron capture (EC) detectors. Because of the high selectivity of the NP detector, no interfering peaks were present and no cleanup was necessary. A simple cleanup step is proposed for the GC-ECD analysis. Recoveries from spiked honey samples ranged from 79 to 94.4%, with coefficients of variation of 0.3-18.5%. The quantitation limit obtained was 0.015 mg/kg for malathion, 0.020 mg/kg for coumaphos, and 0.005 mg/kg for fluvalinate. The method was used to determine the disappearance of malathion and coumaphos residues from honey samples collected from beehives treated with these acaricides. The disappearance of both acaricides was rapid and followed a first-order model for the duration of the experiment.

  4. Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry.

    PubMed

    Zainudin, Badrul Hisyam; Salleh, Salsazali; Mohamed, Rahmat; Yap, Ken Choy; Muhamad, Halimah

    2015-04-01

    An efficient and rapid method for the analysis of pesticide residues in cocoa beans using gas and liquid chromatography-tandem mass spectrometry was developed, validated and applied to imported and domestic cocoa beans samples collected over 2 years from smallholders and Malaysian ports. The method was based on solvent extraction method and covers 26 pesticides (insecticides, fungicides, and herbicides) of different chemical classes. The recoveries for all pesticides at 10 and 50 μg/kg were in the range of 70-120% with relative standard deviations of less than 20%. Good selectivity and sensitivity were obtained with method limit of quantification of 10 μg/kg. The expanded uncertainty measurements were in the range of 4-25%. Finally, the proposed method was successfully applied for the routine analysis of pesticide residues in cocoa beans via a monitoring study where 10% of them was found positive for chlorpyrifos, ametryn and metalaxyl. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect

    Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  6. Impact of magnetic suspension stiffness on aeroelastic compressor rotor vibrations of gas pumping units

    NASA Astrophysics Data System (ADS)

    Mekhonoshina, E. V.; Modorskii, V. Ya.

    2016-10-01

    This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.

  7. DEPENDENCE OF THE SATURATION LEVEL OF MAGNETOROTATIONAL INSTABILITY ON GAS PRESSURE AND MAGNETIC PRANDTL NUMBER

    SciTech Connect

    Minoshima, Takashi; Hirose, Shigenobu; Sano, Takayoshi

    2015-07-20

    A large set of numerical simulations of MHD turbulence induced by the magnetorotational instability is presented. Revisiting the previous survey conducted by Sano et al., we investigate the gas pressure dependence of the saturation level. In ideal MHD simulations, the gas pressure dependence is found to be very sensitive to the choice of numerical scheme. This is because the numerical magnetic Prandtl number varies according to the scheme as well as the pressure, which considerably affects the results. The saturation level is more sensitive to the numerical magnetic Prandtl number than the pressure. In MHD simulations with explicit viscosity and resistivity, the saturation level increases with the physical magnetic Prandtl number, and it is almost independent of the gas pressure when the magnetic Prandtl number is constant. This is indicative of the incompressible turbulence saturated by the secondary tearing instability.

  8. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier.

    PubMed

    Seggiani, Maurizia; Puccini, Monica; Raggio, Giovanni; Vitolo, Sandra

    2012-10-01

    In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH(3), HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H(2)S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.

  9. Influence of demagnetization coil configuration on residual field in an extremely magnetically shielded room: Model and measurements

    NASA Astrophysics Data System (ADS)

    Knappe-Grueneberg, Silvia; Schnabel, Allard; Wuebbeler, Gerd; Burghoff, Martin

    2008-04-01

    The Berlin magnetically shielded room 2 (BMSR-2) features a magnetic residual field below 500pT and a field gradient level less than 0.5pT/mm, which are needed for very sensitive human biomagnetic recordings or low field NMR. Nevertheless, below 15Hz, signals are compromised by an additional noise contribution due to vibration forced sensor movements in the field gradient. Due to extreme shielding, the residual field and its homogeneity are determined mainly by the demagnetization results of the mumetal shells. Eight different demagnetization coil configurations can be realized, each results in a characteristic field pattern. The spatial dc flux density inside BMSR-2 is measured with a movable superconducting quantum interference device system with an accuracy better than 50pT. Residual field and field distribution of the current-driven coils fit well to an air-core coil model, if the high permeable core and the return lines outside of the shells are neglected. Finally, we homogenize the residual field by selecting a proper coil configuration.

  10. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue.

    PubMed

    Li, Hao; Mahyoub, Samah Awadh Ali; Liao, Wenjie; Xia, Shuqian; Zhao, Hechuan; Guo, Mengya; Ma, Peisheng

    2017-01-01

    The magnetic biochars were easily fabricated by thermal pyrolysis of Fe(NO3)3 and distillation residue derived from rice straw pyrolysis oil at 400, 600 and 800°C. The effects of pyrolysis temperature on characteristics of magnetic biochars as well as adsorption capacity for aromatic contaminants (i.e., anisole, phenol and guaiacol) were investigated carefully. The degree of carbonization of magnetic biochars become higher as pyrolysis temperature increasing. The magnetic biochar reached the largest surface area and pore volume at the pyrolysis temperature of 600°C due to pores blocking in biochar during pyrolysis at 800°C. Based on batch adsorption experiments, the used adsorbent could be magnetically separated and the adsorption capacity of anisole on magnetic biochars was stronger than that of phenol and guaiacol. The properties of magnetic biochar, including surface area, pore volume, aromaticity, grapheme-like-structure and iron oxide (γ-Fe2O3) particles, showed pronounced effects on the adsorption performance of aromatic contaminants.

  11. Extraction of thymol, eucalyptol, menthol, and camphor residues from honey and beeswax. Determination by gas chromatography with flame ionization detection.

    PubMed

    Nozal, M J; Bernal, J L; Jiménez, J J; González, M J; Higes, M

    2002-04-19

    A gas chromatographic method to determine thymol, eucalyptol (cineole), menthol and camphor residues in honey and beeswax is proposed. To isolate the compounds, three methods involving liquid-liquid extraction with methylene chloride, distillation, or solid-phase extraction on octadecylsilica cartridges can be used. The GC separation is carried out on a 60 m x 0.53 mm Stabilwax DA capillary column, using a flame ionization detector. The method is applied to the analysis of natural honey and also honey and beeswax samples from beehives treated with the above compounds.

  12. Determination of chloramphenicol residue in fish and shrimp tissues by gas chromatography with a microcell electron capture detector.

    PubMed

    Ding, Shuangyang; Shen, Jianzhong; Zhang, Suxia; Jiang, Haiyang; Sun, Zhiwen

    2005-01-01

    A gas chromatography method with microcell electron capture detection was developed for the determination of chloramphenicol residue in fish and shrimp muscle tissues. The tissue samples were extracted with ethyl acetate, defatted with hexane, and derivatized with Sylon BFT [N,O-bis (trimethylsilyl) trifluoroacetamide-trimethylchlorosilane (99 + 1)]. The limit of detection was 0.04 ng/g and the limit of quantitation 0.1 ng/g. Average recoveries were 70.8-90.8% for fish and 69.9-86.3% for shrimp, respectively. The method was validated for the determination of practical samples.

  13. [Determination of 47 organophosphorus pesticide residues in drinking water by membrane extraction-gas chromatography-PFPD].

    PubMed

    Yang, Yuan; Gao, Ling; Sun, Hao; Luo, Xiaofei; Lu, Dan

    2012-03-01

    To establish a method for the rapid determination of organophosphorus pesticide residues in drinking water by membrane extraction-gas chromatography. The pesticides were extracted from 1000 ml water sample with the activation of the C18 solid disk membrane. Then the extract was eluted by ethyl acetate, dehydrated by anhydrous sodium sulfate, nitrogen at least in 1 ml, set the volume to 1 ml. The volume was 2 microl for injection by gas chromatography. The spiked recoveries were between 81.8%-122.8%, the RSD were 2.67%-24%, the detection limits of different organophosphorus pesticides were 0.006-0.35 microg/L and the LLOQ were 0.022-1.2 microg/L. The method is simple, rapid, sensitive, repeatable, reliable and suitable for determination of trace organophosphorus pesticide in water.

  14. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    SciTech Connect

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  15. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  16. Hot gas and magnetic arms of NGC 6946: Indications for reconnection heating?

    NASA Astrophysics Data System (ADS)

    Weżgowiec, M.; Ehle, M.; Beck, R.

    2016-01-01

    Context. The grand-design face-on spiral galaxy NGC 6946 is remarkable because of its high star formation activity, the massive northern spiral arm, and the magnetic arms, which are observed in polarized radio synchrotron emission and are located between the optical arms and possibly are magnetic reconnection regions. Aims: We used electron densities and temperatures in star-forming (active) and less active regions and compared them to findings from the analysis of the radio data to study the energy budget of NGC 6946. The hot gas above the magnetic arms between the optical arms might suggest gas heating by reconnection. We also study the population of point sources in NGC 6946, including the origin of the puzzling ultra-luminous emission complex MF16. Methods: X-ray observations of NGC 6946 performed with XMM-Newton were used to study the emission from X-ray point sources and diffuse hot gas, including the magnetic arms and the halo. Spectral fitting of the diffuse X-ray emission allowed us to derive temperatures of the hot gas. With assumptions about the emission volume, this allowed us to estimate gas densities, masses, and cooling times. Results: To explain the X-ray emission from the spiral arms of NGC 6946 two-temperature plasma models are needed to account for the disk and halo emission. The interarm regions show only one thermal component. We observe that the temperature of the hot gas in and above the magnetic arm regions increases slightly when compared to the average temperatures in the areas in and above the spiral arms. For the southwestern part of the disk, which is depolarized in the radio range by Faraday rotation, we find more efficient mixing of disk and halo gas. Conclusions: We propose magnetic reconnection in the magnetic arm regions of NGC 6946 as the possible cause of the additional heating of the gas and ordering of the magnetic fields. In the southwestern part of the galactic disk we observed indications of a possible faster outflow of the

  17. Design and construction of a magnetic resonance compatible multi-injector gas jet delivery system

    NASA Astrophysics Data System (ADS)

    Megias-Alguacil, David; Keller, Thierry; Lutz, Kai; Barlow, Ashley P.; Ettlin, Dominik A.

    2008-01-01

    We present the design, construction, and performance of a novel multi-injector gas jet delivery capable of operating in a magnetic resonance imaging environment. This apparatus is computer controlled and built with two separate pneumatic circuits enabling gas jet applications at variable sites through four independently activated injectors. Gas jet delivery is fully controllable in terms of pressure, flow rate, gas temperature, application time, and duration of interstimulus interval. We characterized these parameters, considering effects such as pressure drop by flow transport, transient effects, and delays in activation. The system offers new possibilities for use in various biomedical contexts such as, e.g., quantitative sensory testing or dental hypersensitivity assessment.

  18. Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Popov, K. G.; Clark, J. W.; Zverev, M. V.; Khodel, V. A.

    2012-08-01

    An explanation of the paradoxical behavior of the residual resistivity ρ0 of the heavy-fermion metal CeCoIn5 in magnetic fields and under pressure is developed. The source of this behavior is identified as a flattening of the single-particle spectrum, which exerts profound effects on the specific heat, thermal-expansion coefficient, and magnetic susceptibility in the normal state, the specific-heat jump at the point of superconducting phase transition, and other properties of strongly correlated electron systems in solids. It is shown that application of a magnetic field or pressure to a system possessing a flat band leads to a strong suppression of ρ0. Analysis of its measured thermodynamic and transport properties yields direct evidence for the presence of a flat band in CeCoIn5.

  19. Novel magnetic method for the detection of residual curvature in electrical steel

    NASA Astrophysics Data System (ADS)

    Hall, J. P.; Moses, A. J.; Irons, T.; Snell, D.

    2003-01-01

    A method to detect residual curvature in electrical steel strip is described. A single C-core yoke, carrying primary and secondary windings, placed on strip containing a stress gradient to measure the vector product of current and voltage (loss in stress-free material), yields differences in measurements on opposite surfaces which are dependent on the degree of residual curvature.

  20. Investigations of dipeptide structures containing pyrrolysine as N-terminal residues: a DFT study in gas and aqueous phase.

    PubMed

    Das, Gunajyoti

    2013-04-01

    A set of six dipeptides containing pyrrolysine invariably at their N-terminal positions is studied in gas and aqueous phase using a polarizable continuum model (PCM). The molecular geometries of the dipeptides are fully optimized at B3LYP/6-31++G(d,p) level of theory and a second derivative (frequency) analysis confirms that all the optimized geometries are true minima. The effects of solvation and identity of the varying C-terminal residue on the energetics, structural features of the peptide planes, values of the ψ and ϕ dihedrals, geometry around the α-carbon atoms and theoretically predicted vibrational spectra of the dipeptides are thoroughly analyzed. Solvation effects are found to modify the gas phase conformation of the dipeptides around ψ dihedrals while the identity of the varying C-terminal residue affect the values of ϕ, planarity of the peptide planes and geometry around the α-carbon atoms. The presence or absence of three types of intramolecular H-bonds, namely O...H-N, N...H-N and O...H-C that leave noticeable signatures in the IR spectra, play crucial roles in influencing the geometry of the peptide planes and in determining the energetics of the dipeptides.

  1. Development and Validation of a Gas Chromatography Method for Quality Control of Residual Solvents in Azilsartan Bulk Drugs.

    PubMed

    Guan, Jin; Min, Jie; Yan, Feng; Xu, Wen-Ya; Shi, Shuang; Wang, Si-Lin

    2017-04-01

    A new gas chromatographic method for the simultaneous determination of six organic residual solvents (acetonitrile, tetrahydrofuran, ethanol, acetone, 2-propanol and ethyl acetate) in azilsartan bulk drug is described. The chromatographic determination was achieved on an OV-624 capillary column employing programmed temperature within 21 min. The validation was carried out according to International Conference on Harmonization validation guidelines. The method was shown to be specific (no interference in the blank solution), sensitive (Limit of detection can achieve 1.5 μg/mL), precise (relative standard deviation of repeatability and intermediate precision ≤5.0%), linear (r≥ 0.999), accurate (recoveries range from 98.8% to 107.8%) and robust (carrier gas flow from 2.7 to 3.3 mL/min, initial oven temperature from 35°C to 45°C, temperature ramping rate from 19°C/min to 21°C/min, final oven temperature from 145°C to 155°C, injector temperature from 190°C to 210°C and detector temperature from 240°C to 260°C did not significantly affect the system suitability, test parameters and peak areas). This extensively validated method has been applied to the determination of residual solvents in real azilsartan bulk samples. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes.

    PubMed

    Bodénan, F; Deniard, Ph

    2003-05-01

    For the first time, a set of samples of European flue gas cleaning residues, mainly from the incineration of municipal solid waste (MSW), has undergone a mineralogical study. The residues are the result of the neutralization of acid flue gases by lime, the predominant method adopted in Europe, using dry and semi-dry washing processes. The study protocol combines physico-chemical analytical techniques (XRD, FTIR, DSC/TGA) and global chemical analysis enabling identification of the chemical composition of the main constituents, particularly chlorinated Ca-based phases, as well as establishment of modal distributions of the represented phases, both crystalline and amorphous. The samples are slightly hydrated and values vary for trapped Cl, S and even CO(2). The main crystalline phases are NaCl, KCl, CaSO(4), CaCO(3), Ca(OH)(2) and calcium hydroxychloride CaOHCl. CaOHCl is the main chlorine phase, regardless of the treatment process, filtration mode, and specific surface of the Ca-based sorbent. This phase develops during neutralization of HCl by excess lime present according to the reaction Ca(OH)(2)+HCl-->CaOHCl+H(2)O, to the detriment of a complete yield involving the two lime OH groups with formation of CaCl(2).2H(2)O. In addition, it seems that gas temperatures above 150 degrees C increase competition between lime-based neutralization of HCl, SO(2) acid flue gases and CO(2) trapping, thus reducing washing efficiency.

  3. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    SciTech Connect

    Seggiani, Maurizia; Puccini, Monica; Raggio, Giovanni

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  4. Helium gas bubble trapped in liquid helium in high magnetic field

    SciTech Connect

    Bai, H. Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-31

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T{sup 2}/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  5. Structure of dipeptides having N-terminal selenocysteine residues: a DFT study in gas and aqueous phase.

    PubMed

    Mandal, Shilpi; Das, Gunajyoti

    2013-06-01

    Over the last few decades, dipeptides as well as their analogues have served as important model systems for the computational studies concerning the structure of protein and energetics of protein folding. Here, we present a density functional structural study on a set of seven dipeptides having N-terminal selenocysteine residues (the component in the C-terminus is varied with seven different combinations viz. Ala, Phe, Glu, Thr, Asn, Arg and Sec) in gas and simulated aqueous phase using a polarizable continuum model (PCM). The molecular geometries of the dipeptides are fully optimized at B3LYP/6-311++G(d,p) level and subsequent frequency calculations confirm them as true minima. The effects of solvation and identity of the varying C-terminal residue on the energetics, structural features of the peptide planes, values of the ψ and ф dihedrals, geometry around the α-carbon atoms and theoretically predicted vibrational spectra of the dipeptides are investigated. Two types of intramolecular H-bonds, namely N…H-N and O…H-C, are found to play important roles in influencing the planarity of the peptide planes and geometry around the α-carbon atoms of the dipeptides. The identity of the varying C-terminal residue influences the values of ф, planarity of the peptide planes and geometry around the C₇ α-carbon atoms while the solvation effects are evident on the values of bond lengths and bond angles of the amide planes.

  6. Solid phase microextraction and gas chromatography-mass spectrometry methods for residual solvent assessment in seized cocaine and heroin.

    PubMed

    Cabarcos, Pamela; Herbello-Hermelo, Paloma; Álvarez-Freire, Iván; Moreda-Piñeiro, Antonio; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar

    2016-09-01

    A simple sample pre-treatment method based on solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized and validated for the assessment of 15 residual solvents (2-propanol, 2-methylpentane, 3-methylpentane, acetone, ethyl acetate, benzene, hexane, methylcyclohexane, methylcyclopentane, m-xylene, propyl acetate, toluene, 1,2,4-trimethylbenzene, dichloromethane, and ethylbenzene) in seized illicit cocaine and heroin. DMSO and DMF as sample diluents were found to offer the best residual solvent transference to the head space for further adsorption onto the SPME fiber, and the developed method therefore showed high sensitivity and analytical recovery. Variables affecting SPME were fully evaluated by applying an experimental design approach. Best conditions were found when using an equilibration time of 5 min at 70 °C and headspace sampling of residual solvents at the same temperature for 15 min. Method validation, performed within the requirements of international guidelines, showed excellent sensitivity, as well as intra- and inter-day precision and accuracy. The proposed methodology was applied to 96 cocaine samples and 14 heroin samples seized in Galicia (northwestern Spain) within 2013 and 2014.

  7. Gas chromatographic evaluation of pesticide residue contents in nectarines after non-toxic washing treatments.

    PubMed

    Pugliese, P; Moltó, J C; Damiani, P; Marín, R; Cossignani, L; Mañes, J

    2004-10-01

    Washing with aqueous solutions of citric acid, ethanol, glycerol, hydrogen peroxide, potassium permanganate, sodium metabisulfite, sodium laurylsulfate (SLS), sodium hypochlorite, and urea is evaluated for pesticide residue reduction in nectarines and compared with simple tap water washing. Residues of pesticides commonly utilized in nectarines (chlorpyrifos, fenarimol, iprodione, malathion, methidathion, myclobutanil, parathion and pirimicarb) are extracted with ethyl acetate and anhydrous sodium sulfate, extract is concentred and analyzed by GC with nitrogen-phosphorus detection. The formation of possible toxic by-products (chlorpyrifos oxon, malaoxon, methidaoxon and paraoxon methyl) is studied by GC-MS. No toxic by-products are identified in the extracts of the washed samples for the washing-time and concentrations studied, but high levels of sodium hypochlorite, hydrogen peroxide and potassium permanganate form oxons from the organophosphorus pesticides. Ethanol, glycerol and SLS solutions removed near the 50% of the pesticide residues. The other solutions were not more effective than tap water washing. The amount of pesticide removed by washings is related to its water solubility and octanol-water partition coefficient.

  8. Validation of a QuEChERS-based gas chromatographic method for analysis of pesticide residues in Cassia angustifolia (senna).

    PubMed

    Tripathy, Vandana; Saha, Ajoy; Patel, Dilipkumar J; Basak, B B; Shah, Paresh G; Kumar, Jitendra

    2016-08-02

    A simple multi-residue method based on modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was established for the determination of 17 organochlorine (OC), 15 organophosphorous (OP) and 7 synthetic pyrethroid (SP) pesticides in an economically important medicinal plant of India, Senna (Cassia angustifolia), by gas chromatography coupled to electron capture and flame thermionic detectors (GC/ECD/FTD) and confirmation of residues was done on gas chromatograph coupled with mass spectrometry (GC-MS). The developed method was validated by testing the following parameters: linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect, accuracy-precision and measurement uncertainty; the validation study clearly demonstrated the suitability of the method for its intended application. All pesticides showed good linearity in the range 0.01-1.0 μg mL(-1) for OCs and OPs and 0.05-2.5 μg mL(-1) for SPs with correlation coefficients higher than 0.98. The method gave good recoveries for most of the pesticides (70-120%) with intra-day and inter-day precision < 20% in most of the cases. The limits of detection varied from 0.003 to 0.03 mg kg(-1), and the LOQs were determined as 0.01-0.049 mg kg(-1). The expanded uncertainties were <30%, which was distinctively less than a maximum default value of ±50%. The proposed method was successfully applied to determine pesticide residues in 12 commercial market samples obtained from different locations in India.

  9. Integration of magnetic bearings in the design of advanced gas turbine engines

    SciTech Connect

    Storace, A.F.; Sood, D.; Lyons, J.P.; Preston, M.A.

    1995-10-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust-to-weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies and the test hardware currently in place for verifying the performance of advanced magnetic actuators, power electronics, and digital controls. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load-carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  10. Magnetic field induced motion behavior of gas bubbles in liquid

    PubMed Central

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  11. Magnetic field induced motion behavior of gas bubbles in liquid

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-02-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields.

  12. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency

  13. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    PubMed Central

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  14. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    PubMed

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  15. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Zhang, Zhifeng; Zhai, Yusheng; Su, Yuling; Zhou, Fanghua; Qu, Yanchen; Zhao, Weijiang

    2016-08-01

    Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

  16. Solutions for the equilibrium of static isothermal gas clouds with poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Baureis, P.; Ebert, R.; Schmitz, F.

    1989-11-01

    A family of semi-analytical solutions for the equilibrium of magnetic self-gravitating gas clouds is presented. The configurations are isothermal and axially symmetric; the frozen-in magnetic field is poloidal. Formulating the equilibrium equations of such gas clouds in spherical polar coordinates, a separation of these equations provides simple representative solutions. The radial part of the density distribution is given by the characteristic inverse square of the radial coordinate. The angular parts are governed by a system of nonlinear ordinary differential equations which is solved numerically. The nonmagnetic limit is the isothermal gas sphere with infinite central density. With increasing field strength the configurations flatten. Besides the isothermal sound velocity the value of the magnetic field in the midplane is a free continuous parameter. In the limit of extremely strong fields a thin disk forms. The existence of bounded solutions is discussed, and the models are compared with configurations presented by other authors.

  17. Residue placement and rate, crop species, and nitrogen fertilization effects on soil greenhouse gas emissions

    USDA-ARS?s Scientific Manuscript database

    High variability due to soil heterogeneity and climatic conditions challenge measurement of greenhouse gas (GHG) emissions as influenced by management practices in the field. To reduce this variability, we examined the effect of management practices on CO2, N2O, and CH4 fluxes and soil temperature a...

  18. Sloshing of the Magnetized Cool Gas in the Cores of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    ZuHone, J. A.; Markevitch, M.; Lee, D.

    2011-01-01

    X-ray observations of many clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as "cold fronts". In relaxed clusters with cool cores, these edges have been interpreted as evidence for the "sloshing" of the core gas in the cluster's gravitational potential. The smoothness of these edges has been interpreted as evidence for the stabilizing effect of magnetic fields "draped" around the front surfaces. To check this hypothesis, we perform high-resolution magnetohydrodynamics simulations of magnetized gas sloshing in galaxy clusters initiated by encounters with subclusters. We go beyond previous works on the simulation of cold fronts in a magnetized intracluster medium by simulating their formation in realistic, idealized mergers with high resolution ((Delta)x approx. 2 kpc). Our simulations sample a parameter space of plausible initial magnetic field strengths and field configurations. In the simulations, we observe strong velocity shears associated with the cold fronts amplifying the magnetic field along the cold front surfaces, increasing the magnetic field strength in these layers by up to an order of magnitude, and boosting the magnetic pressure up to near-equipartition with thermal pressure in some cases. In these layers, the magnetic field becomes strong enough to stabilize the cold fronts against Kelvin-Helmholtz instabilities, resulting in sharp, smooth fronts as those seen in observations of real clusters. These magnetic fields also result in strong suppression of mixing of high and low-entropy gas in the cluster, seen in our simulations of mergers in the absence of a magnetic field. As a result, the heating of the core due to sloshing is very modest and is unable to stave off a cooling catastrophe.

  19. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence

  20. On the equation of state for an electron gas in an intense magnetic field

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Tsiang, E.

    1976-01-01

    In this paper we derive the equation of state for a relativistic electron gas imbedded in a static homogeneous magnetic field of arbitrary strength. The derivation is based on the evaluation of the energy-momentum tensor and the use of Dirac's equation for such a problem. Contrary to a derivation presented several years ago, the present derivation is completely gauge-invariant. We also show how to recover, in an exact manner, the perfect gas law for the case of weak magnetic fields.

  1. Pyrolysis Gas as a Renewable Reducing Agent for the Recycling of Zinc- and Lead-Bearing Residues: A Status Report

    NASA Astrophysics Data System (ADS)

    Pichler, C.; Antrekowitsch, J.

    2017-04-01

    The topic "Zero Waste" has been in existence for several years in the industry, and the metallurgical industry has also made efforts to reduce the amounts of residues occurring and have started several investigations to cut down on metallurgical by-products which have to be landfilled. Especially, the additional costs for CO2 emissions in different metallurgical steps have led to investigations into alternative carbon carriers. Charcoal has been identified to serve as an ideal substitute due its CO2-neutrality. For the applications of this renewable carbon carrier in metallurgical processes, charcoal production by means of a carbonization process needs to be optimized. As a by-product during the heating of agricultural wastes or wood by excluding air, pyrolysis gas occurs. Due to the existence of combustible compounds in this gas, an application as a reduction agent instead of fossil carbon carriers in metallurgy is possible. Based on the prevention of dumping metallurgical by-products, an investigation has been developed to treat zinc- and lead-containing materials. To realize this, a dedicated process concept has been designed and developed. As the main focuses, the usage of the pyrolysis gas from charcoal production for the Waelz kiln process and the recycling of zinc- and lead-containing Waelz slag, resulting from the processing of steel mill dust in a vertical retort, have to be mentioned. Within this research, the process concept was executed from laboratory-scale up to pilot-scale testing, described in this article.

  2. Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.

    PubMed

    Corbett, James J; Winebrake, James J

    2008-04-01

    Worldwide concerns about sulfur oxide (SOx) emissions from ships are motivating the replacement of marine residual oil (RO) with cleaner, lower-sulfur fuels, such as marine gas oil (MGO) and marine diesel oil (MDO). Vessel operators can use MGO and MDO directly or blended with RO to achieve environmental and economic objectives. Although expected to be much cleaner in terms of criteria pollutants, these fuels require additional energy in the upstream stages of the fuel cycle (i.e., fuel processing and refining), and thus raise questions about the net impacts on greenhouse gas emissions (primarily carbon dioxide [CO2]) because of production and use. This paper applies the Total Energy and Environmental Analysis for Marine Systems (TEAMS) model to conduct a total fuel cycle analysis of RO, MGO, MDO, and associated blends for a typical container ship. MGO and MDO blends achieve significant (70-85%) SOx emissions reductions compared with RO across a range of fuel quality and refining efficiency assumptions. We estimate CO2 increases of less than 1% using best estimates of fuel quality and refinery efficiency parameters and demonstrate how these results vary based on parameter assumptions. Our analysis suggests that product refining efficiency influences the CO2 tradeoff more than differences in the physical and energy parameters of the alternative fuels, suggesting that modest increases in CO2 could be offset by efficiency improvements at some refineries. Our results help resolve conflicting estimates of greenhouse gas tradeoffs associated with fuel switching and other emissions control policies.

  3. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    PubMed

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  4. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  5. Combined NMR analysis of huge residual dipolar couplings and pseudocontact shifts in terbium(III)-phthalocyaninato single molecule magnets.

    PubMed

    Damjanovic, Marko; Katoh, Keiichi; Yamashita, Masahiro; Enders, Markus

    2013-09-25

    Several small paramagnetic complexes combine large hyperfine NMR shifts with large magnetic anisotropies. The latter are a prerequisite for single molecule magnet (SMM) behavior. We choose the SMM tris(octabutoxyphthalocyaninato) diterbium (1) for a high resolution NMR study where we combined for the first time a comprehensive (1)H and (13)C chemical shift analysis of a SMM with the evaluation of large residual dipolar couplings (RDCs). The latter are a consequence of partial alignment of SMM 1 in the strong magnetic field of the NMR spectrometer. To the best of our knowledge RDCs in SMMs have never been reported before. We measured RDCs between -78 and +99 Hz for the (13)C-(1)H vectors of CH bonds and up to -109 Hz for (1)H-(1)H vectors of geminal hydrogen atoms (magnetic field of 14.09 T, temperature 295 K). Considerable negative Fermi contact shifts (up to -60 ppm) were determined for (13)C atoms at the phthalocyaninato core. Paramagnetic (13)C NMR shifts of the butoxy chains as well as all (1)H NMR chemical shifts are a result of pseudocontact shifts (pcs), and therefore it is easily possible to determine the positions of the respective nuclei in solution. Measurements of CH and HH vectors by RDC analysis are in accordance with the geometry as determined by the pseudocontact shifts, but in addition to that, RDCs give information about internal mobility. The axial component of the magnetic susceptibility tensor has been determined independently by pcs and by RDC.

  6. [Rapid determination of ethephon residues in concentrated pineapple juice by head-space gas chromatography].

    PubMed

    Chu, X G; Yong, W; Cai, H X; Pan, J W

    2001-05-01

    The method developed is based on the special property that ethephon can be easily decomposed into ethene in alkaline solution by heating. Certain amount of concentrated KOH solution was added to the sample and heated at 70 degrees C. Then, 1 mL of the gas above the sample was injected into a gas chromatograph by head-space sampler for the determination of the target compound with external standard quantitation method. The detection limit was 0.025 mg/kg and the fortified recoveries of ethephon in concentrated pineapple juice (60 +/- 1) Brix at the range of 0.1 mg/kg-10 mg/kg were 92%-98% (n = 8, for each level). The relative standard deviations were 3.99%-7.94%.

  7. Conversion of forest residues to a methane-rich gas: Interim Report

    SciTech Connect

    Feldmann, H.G.; Paisley, M.A.; Appelbaum, H.R.

    1986-03-01

    A process is being developed that produces a fuel gas with a heating value of 500 Btu/SCF from diverse forms of biomass, including shredded bark, wood chips, and sawdust. The system uses a high throughput, non-oxygen gasifier that employs sand circulation to supply process heat. Results obtained with a 10-inch I.D. gasifier are presented and compared with those in a 6-inch I.D. reactor. Feed rates up to 12 tons/day (dry) have been achieved corresponding to a specific wood throughput of 2000 lbs/ft/sup 2/-hr. Gas compositions in the two reactors are in excellent agreement and performance in the larger reactor, as measured by carbon conversion, is significantly improved. Cost projections comparing this process with direct combustion are presented that indicate gasification technology should have very significant cost advantages for both generation of plant steam and cogeneration of electricity. 5 refs., 14 figs., 5 tabs.

  8. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  9. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Astrophysics Data System (ADS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-05-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  10. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas

    NASA Astrophysics Data System (ADS)

    Pichler, C.; Antrekowitsch, J.

    2015-09-01

    Efforts in the metallurgical industry for an approximation to the zero waste concept has led to many different investigations. Together with the greenhouse effect, CO2 emissions have caused additional costs for different process steps in the industry. For this reason, alternative carbon carriers have been sought, and charcoal was found to be an ideal substitute, due to its CO2 neutrality. In order to use it in the metallurgical industry, an optimization of the charcoal production through a carbonization process must be carried out. Beside the charcoal, pyrolysis gas also occurs during the heating of wood or agricultural wastes under the exclusion of air. Because of combustible compounds in this gas, it is possible to use it as a reduction agent instead of fossil carbon carriers. Together with the idea of preventing landfilling of metallurgical by-products, an investigation was carried out to treat zinc- and lead-containing materials. For this issue a special process concept was designed and developed. The main aspect was to recycle the zinc- and lead-containing Waelz slag, which results from the processing of steel mill dusts, in a vertical retort. Two different sizes of facilities were constructed to perform the reaction system of the solid Waelz slag with the gaseous reduction agent of pyrolysis gas.

  11. Magnetic properties of Japan Sea sediments in areas which host shallow gas hydrates and in relation to the the amount of gas hydrate

    NASA Astrophysics Data System (ADS)

    Shimono, T.; Matsumoto, R.

    2016-12-01

    Shallow gas hydrate is known to occur as massive nodular aggregates in subsurface and/or shallow marine sediments (e.g. Matsumoto et al. 2009). We conducted a rock magnetic study of marine core sediments to clarify the relationship between shallow gas hydrate and the surrounding sediments. The core samples were taken from around Oki area and offshore Joetsu, the eastern margin of Japan Sea, during PS15 cruise in 2015. We mainly report magnetic susceptibility measurement of whole-round core samples. From the onboard measurements, the magnetic susceptibilities of gas hydrates indicated diamagnetic mineral like water or ice ( -0.9 x 10-5 vol. SI). Moreover, we introduce a method to assess the amount of gas hydrate present within marine sediments using magnetic susceptibility and rock magnetic analyses. This study was conducted under the commission from AIST as a part of the methane hydrate research project of METI (the Ministry of Economy, Trade and Industry, Japan).

  12. Advanced neutral gas diagnostics for magnetic confinement devices

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; Kremeyer, T.; Schlisio, G.; Marquardt, M.; Pedersen, T. S.; Schmitz, O.; Mackie, B.; Maisano-Brown, J.; the W7-X team

    2017-09-01

    For the study of particle exhaust in nuclear fusion devices the neutral pressure must be measured in strong magnetic fields. We describe as an example the neutral pressure gauges in the Wendelstein 7-X stellarator. Two types are used: hot cathode ionization gauges (or ASDEX pressure gauges) and Penning gauges. We show some results from the first experimental campaign. The main problems were runtime effects and the failure of some ASDEX pressure gauges. To improve the reliability we integrated a new LaB6 electron emitter into the ASDEX pressure gauges. In addition, a special Penning gauge without permanent magnets was developed in order to operate Penning gauges near the plasma edge. These new pressure gauges will be used in the upcoming campaign of Wendelstein 7-X.

  13. Magnetically controlled deposition of metals using gas plasma. Final report

    SciTech Connect

    1998-04-02

    This is the first phase of a project that has the objective to develop a method of spraying materials on a substrate in a controlled manner to eliminate the waste and hazardous material generation inherent in present plating processes. The project is considering plasma spraying of metal on a substrate using magneto-hydrodynamics to control the plasma/metal stream. The process being developed is considering the use of commercially available plasma torches to generate the plasma/metal stream. The plasma stream is collimated, and directed using magnetic forces to the extent required for precise control of the deposition material. The project will be completed in phases. Phase one of the project, the subject of this grant, is the development of an analytical model that can be used to determine the feasibility of the process and to design a laboratory scale demonstration unit. The contracted time is complete, and the research is still continuing. This report provides the results obtained to date. As the model and calculations are completed those results will also be provided. This report contains the results of the computer code that have been completed to date. Results from a ASMEE Benchmark problem, flow over a backward step with heat transfer, Couette flow with magnetic forces, free jet flow are presented along with several other check calculations that are representative of the cases that were calculated in the course of the development process. The final cases that define a velocity field in the exit of a plasma spray torch with and without a magnetic field are in process. A separate program (SPRAY) has been developed that can track the plating material to the substrate and describe the distribution of the material on the substrate. When the jet calculations are complete SPRAY will be used to compare the distribution of material on the substrate with and without the effect of the magnetic focus.

  14. Regenerative characteristics of magnetic or gas Stirling refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yan, Z.

    A general criterion to distinguish whether a Stirling refrigeration cycle possesses the condition of perfect regeneration is given. It is proven using the criterion that a Stirling refrigeration cycle using a simple paramagnetic or ferromagnetic material as the working substance possesses the condition of perfect regeneration, as does a Stirling refrigeration cycle using an ideal or van der Waals gas as the working substance. However, a Stirling refrigeration cycle using a gas which is described by the Redlich-Kwong, Beattie-Bridgeman, Benedict-Webb-Rubin, Dieterici, Berthelot, or Martin-Hou equation as the working substance does not possess the condition of perfect regeneration and its coefficient of performance is always smaller than that of the Carnot refrigeration cycle for the same temperature range. Moreover, the effect of non-perfect regeneration on the level of refrigeration and the coefficient of performance of a Stirling refrigeration cycle is expounded using a strict equation of state.

  15. A complete theory for the magnetism of an ideal gas of electrons

    SciTech Connect

    Biswas, Shyamal; Jana, Debnarayan; Sen, Swati

    2013-05-15

    We have explored Pauli paramagnetism, Landau diamagnetism, and de Haas-van Alphen effect in a single framework, and unified these three effects for all temperatures as well as for all strengths of magnetic field. Our result goes beyond Pauli-Landau result on the magnetism of the 3-D ideal gas of electrons, and is able to describe crossover of the de Haas-van Alphen oscillation to the saturation of magnetization. We also have obtained a novel asymptotic series expansion for the low temperature properties of the system.

  16. Start up results from a specialized flue gas cleaning facility in a power station using refinery residues

    SciTech Connect

    Beiers, H.G.; Gilgen, R.; Weiler, H.

    1998-07-01

    In eastern Germany STEAG--the biggest German IPP--has erected a power plant consisting of three combustion lines burning oil distillation residues from the new Mider refinery to provide the refinery with power, steam, water and compressed air. Each of the three flue gas cleaning lines consists of a high dust SCR-system, quench, wet electrostatic precipitator, scrubber, steam reheater and ID-fan. Common systems are the storage and handling of the absorbent, the gypsum dewatering and the waste water treatment. The installed high dust SCR system attains the expected NO{sub x}-reduction efficiency and an excellent NO{sub x} outlet distribution and low ammonia slip. After commissioning problems occurred with the wet ESP in all three lines due to improper function of the upstream quenches. Modifications of the quench system have been made which assure a temperature of the flue gas after quench near saturation temperature and correct functioning of the quench and wet ESP. To reduce pressure loss of the absorber concurrent spray nozzles were installed. Strong vibrations of the absorber tower, the connected pipes and the steel structure along with an insufficient SO{sub x} removal efficiency at high inlet concentration were observed. After changing the concurrent operation of the spray nozzles to counter current operation the vibrations of the absorber tower became smaller and the removal efficiency achieved the guaranteed value. Problems arose in the waste water treatment plant caused by the high solid concentration of up to 1,000 g/l in the thickener. By diluting the settled sludge with overflow water from the thickener the problems in the waste water treatment plant could be minimized to an acceptable degree. Despite these problems the flue gas cleaning system is in continuous operation and the emission values of flue gas and waste water meet the required standards.

  17. Coercivity of Nd(Dy) - Fe - B bonded magnets made from the inert-gas-atomized powders

    NASA Astrophysics Data System (ADS)

    Hu, Jifan; Pan, Ching-Yan; Wang, Yi-Zhong; Lai, Wu-Yan; Hu, Bo-Ping; Wang, Zhenxi; Sellers, C. H.

    1996-07-01

    The coercivity behaviour of bonded magnets made from sieved inert-gas-atomized Nd(Dy) - Fe - B powders has been investigated. For magnets with particle sizes 0953-8984/8/27/019/img10, the coercivity is controlled by a nucleation mechanism as in the sintered magnet. For the magnet with particle sizes of 0953-8984/8/27/019/img11, the hardening mechanism is mainly controlled by nucleation as in the sintered magnet but the hardening mechanism of domain wall pinning or the nucleation of a single domain, which usually appears in melt-spun materials, may also be involved. The coercivity behaviour of bonded magnets made from gas-atomized powders seems to be between those of the sintered and melt-spun magnets depending on the particle size. Meanwhile it has been found that the demagnetizing field of bonded magnets made from the inert-gas-atomized powders is very small.

  18. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    SciTech Connect

    Mccrady, Rodney C; Ito, Takeyasu; Cooper, Martin D; Alexander, Saunders

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  19. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  20. Friction Consolidation of Gas-Atomized Fe-Si Powders for Soft Magnetic Applications

    SciTech Connect

    Jiang, Xiujuan; Whalen, Scott A.; Darsell, Jens T.; Mathaudhu, Suveen; Overman, Nicole R.

    2017-01-01

    Soft magnetic materials are often limited in scalability due to conventional processes that do not retain beneficial microstructures, and their associated physical properties, during densification. In this work, friction consolidation (FC) has been studied to fabricate Fe-Si soft magnetic materials from gas-atomized powder precursors. Fe-Si powder is consolidated using variable pressure and tool rotation speed in an effort to evaluate this unique densification approach for potential improvements in magnetic properties. FC, due to the high shear deformation involved, is shown to result in uniform gradual grain structure refinement across the consolidated workpiece from the center nearest the tool to the edge. Magnetic properties along different orientations indicate little, if any, textural orientation in the refined grain structure. The effect of annealing on the magnetic properties is evaluated and shown to decrease coercivity. FC processing was able to retain the magnetization of the original gas-atomized powders but further process optimization is needed to reach the optimal coercivity for the soft magnetic materials applications.

  1. Gas-liquid chromatographic determination of 3-trifluoromethyl-4-nitrophenol residues in fish

    USGS Publications Warehouse

    Allen, J.L.; Sills, J.B.

    1974-01-01

    A procedure for the determination of 3-mftuormethyl-4-nitrophenol (TFM) in fish tissues is described. Homogenized tissues are extracted with hexane-ethyl ether; the extract is cleaned up by partitioning the TFM from the extracting solvent into O.IN NaOB, acidifying the aqueous solution, and partitioning again with hexaneethyl ether. The TFM is methylated with diazomethane and analyzed by gas-liquid chromatography, using electron capture detection. Recoveries ranged from 75 to 1000/., from fish muscles that were spiked with 0.01-2.00 JA#g TFM/g.

  2. Estimation of residual stress in cold rolled iron-disks using magnetic and ultrasonic methods and neutron diffraction technique

    SciTech Connect

    Aksenov, V.L.; Balagurov, A.M.; Taran, Yu.V.; Bokuchava, G.D.; Schreiber, J.

    1995-12-31

    Variation of internal stress states in cold rolled sheet metal can essentially influence the result of forming processes. Therefore it is important to control the forming process by a practicable in line testing method. For this purpose magnetic and ultrasonic nondestructive methods are available. However, it is necessary to calibrate these techniques. This paper describes a first step of such a calibration procedure making use of the neutron diffraction method. On the basis of the diffraction results an assessment of the magnetic and ultrasonic methods for the estimation of residual stress in the cold rolled iron-disks was made. Reasonable measuring concepts for practical applications to forming processes with cold rolled sheet metal are discussed.

  3. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  4. Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration.

    PubMed

    Shi, Lin; Xu, Peizhi; Xie, Kaizhi; Tang, Shuanhu; Li, Yongli

    2011-09-15

    A modified flue gas desulphurization residue (MFGDR) was prepared and its effects on sorghum growth and acidic soil amelioration were evaluated in this paper. The MFGDR was prepared by calcining a mixture of dry/semi-dry flue gas desulphurization (FGD) residue from a coal-fired power plant, sorted potash feldspar and/or limestone powder. The available nutrients from the MFGDR were determined with 4.91 wt% K(+), 1.15 wt% Mg(2+), 22.4 wt% Ca(2+), 7.01 wt% Si(4+) and 2.07 wt% SO(4)(2-)-S in 0.1 mol L(-1) citric acid solution. Its pH value was held at 9.60 displaying slightly alkaline. The results of sorghum pot growth in both red and crimson acidic soil for 30 days indicated that adding the MFGDR at a dosage of 2 g kg(-1) in total soil weight would increase the growth rate of biomass by 24.3-149% (wet weight basis) and 47.3-157% (dry weight), the stem length and thickness increase by 5.75-22.1% and 4.76-30.9% in contrast with CK treatment for two test cuttings, respectively. The effect on sorghum growth was attributed to the increase of available nutrients, the enhancement of soil pH value and the reduction of aluminum toxicity in acidic soil due to the addition of the MFGDR. The experimental results also suggested that the MFGDR could be effectively used to ameliorate the acidic soil which is widely distributed throughout the southern China.

  5. [Determination of 99 pesticide residues in Paeoniae Radix Alba by gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Liu, Xiaoqin; Tong, Ling; Meng, Wenting; Sun, Guoxiang

    2015-08-01

    A method was established for the simultaneous determination of 99 pesticide residues with combination of solid-phase extraction technique ( SPE) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-QqQ-MS). The sample was extracted with ethyl acetate, and cleaned-up by an amino SPE column. The extract was determined by GC-MS/MS in multi-reaction monitoring (MRM) mode, and matrix-matched internal standard method was applied to quantify the pesticides. The results of all the 99 pesticides showed good linearity in the range of 0.001-0.25 mg/L, with correlation coefficients (r2) > 0.99. The limits of quantification (LOQs) were between 0.001-0.050 mg/kg. The recoveries were between 66.7% and 128.0% with RSD values typically lower than 18.3% at three spiked levels of 0.05, 0.10 and 0.20 mg/kg. This method has been applied to determine thirteen batches of commercially available samples, chlorpyriphos-ethyl and p,p'-DDE were detected in four batches of Paeoniae Radix Alba. The method is highly accurate, reliable and sensitive for monitoring the 99 pesticide residues in Paeoniae Radix Alba.

  6. Electronic Relaxation of the Phenylalanine Residue in Gas Phase Peptides: Role of the Neighbouring Amide Groups in the Photophysics

    NASA Astrophysics Data System (ADS)

    Loquais, Y.; Biswal, H. S.; Tardivel, B.; Brenner, V.; Mons, M.; Gloaguen, E.; Jouvet, C.; Broquier, M.; Malis, M.; Ljubic, I.; Doslic, N.

    2012-06-01

    Protein absorption in the near UV is mainly due to the presence of aromatic systems on the side chain of three residues: phenylalanine, tryptophan and tyrosine. It is generally expected that the photophysics of these UV chromophores depends on their immediate environment within the molecule and thus on the conformation of these flexible molecules. This property may in particular be used as an optical diagnostic of the conformational state of the peptide chain. The structure of peptide chains isolated in the gas phase can be characterized by UV and IR laser spectroscopy. These measurements allow us to distinguish the spectral contributions of the different conformers and thus provide us with an elegant way to address the issue of the conformational dependence on the photophysics. For this purpose, the dynamics of relaxation of the ππ* excited state of several peptides containing a phenylalanine residue have been studied using two-colour resonant two-photon ionization (2C-R2PI) in the ns time scale at CEA and ps at CLUPS and laser-induced fluorescence as well. The lifetime of the ππ* excited state is found to strongly depend on the conformation adopted by the molecule and on the excess energy in the excited state, with measured lifetimes ranging from 1 ns to 80 ns. W. Chin; F. Piuzzi; I. Dimicoli and M. Mons, Phys. Chem. Chem. Phys., 8, pp 1033-1048 (2006)

  7. Rapid method for the determination of multiple pyrethroid residues in fruits and vegetables by capillary column gas chromatography.

    PubMed

    Pang, G F; Fan, C L; Chao, Y Z; Zhao, T S

    1994-04-29

    A rapid and economical simplified multi-residue method is described for the determination of multiple pyrethroid insecticides in fruits and vegetables. The residues are extracted from crops with methanol and the crop co-extractives are removed by toluene partitioning and Florisil-charcoal minicolumn chromatography. The final extract is analysed by capillary column gas chromatography with electron-capture detection. The recoveries were determined by fortifying six different crops (apples, oranges, cabbages, pears, peppers and tomatoes) with eleven pyrethroids (Py-115, allethrin, biphenthrin, fenpropathrin, cyhalothrin, permethrin, cyfluthrin, flucythrinate, fluvalinate, fenvalerate and deltamethrin) at three levels, 0.01-0.07, 0.10-0.70 and 1.0-7.0 mg/kg. Three determinations were made at each level for each crop. Recoveries of the eleven pyrethroids ranged from 70.4 to 110.0% at the three different levels. The practical determination limit of the method was in the range 3.0-30.0 micrograms/kg for all the pyrethroid insecticides. The proposed method had major advantages that simplified steps were achieved for the extraction and the clean-up, the solvent consumption was reduced and the analysis time was shortened.

  8. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues.

    PubMed

    Fu, Peng; Yi, Weiming; Bai, Xueyuan; Li, Zhihe; Hu, Song; Xiang, Jun

    2011-09-01

    The gases and chars produced during fast pyrolysis of maize stalk, rice straw, cotton straw and rice husk at temperatures ranging from 600 to 1000°C were studied by Fourier transform infrared spectroscopy, non-dispersive infrared technique, thermal conductivity detection method, ultimate analysis, X-ray diffraction, helium density measurement and N(2) adsorption method. The gas yield increased by more than 80% from 600 to 1000°C, while the char and liquid yield decreased. The content of CO(2), CO and CH(4) accounted for more than 86%. The CO and CH(4) content increased with temperature, while the CO(2) content decreased. The hydroxyl, aliphatic CH, carbonyl, olefinic CC and ether groups were lost above 800°C. Carbon skeleton shrinkage increased by more than 23% when the temperature increased from 600 to 1000°C. Maximum porosity appeared at 900°C. This study revealed the relationships between gas composition/char properties and pyrolysis temperature under high heating rate conditions.

  9. Determination of benzene residues in recycled polyethylene terephthalate (PETE) by dynamic headspace-gas chromatography.

    PubMed

    Komolprasert, V; Hargraves, W A; Armstrong, D J

    1994-01-01

    A dynamic headspace-gas chromatography (HS/GC) method was developed to quantitate benzene in recycled PETE material derived from 21 PETE beverage bottles. The analytical system consisted of a purge-and-trap apparatus which was interfaced directly with a gas chromatograph/flame ionization detector. Cryofocusing and non-cryofocusing GC systems were used. The technique was applied to spiked PETE test samples which were prepared at various benzene concentrations ranging from 100 ppb to 117 ppm. The initial spiked benzene concentration in the PETE test samples was determined gravimetrically. The HS/GC technique was limited by the slow desorption rate of benzene from the PETE matrix; as a result, multipurges were performed at 60 degrees C. Regression analysis was done on the multipurge data to develop a desorption model which would predict the total amount of benzene in the PETE. The calculated results agreed with the experimental recoveries within +/- 10%. Recovery depended on the initial benzene level in the PETE and ranged from 70 to 90% after the first five purges.

  10. SLOSHING OF THE MAGNETIZED COOL GAS IN THE CORES OF GALAXY CLUSTERS

    SciTech Connect

    ZuHone, J. A.; Markevitch, M.

    2011-12-10

    X-ray observations of many clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as 'cold fronts'. In relaxed clusters with cool cores, these edges have been interpreted as evidence for the 'sloshing' of the core gas in the cluster's gravitational potential. The smoothness of these edges has been interpreted as evidence for the stabilizing effect of magnetic fields 'draped' around the front surfaces. To check this hypothesis, we perform high-resolution magnetohydrodynamics simulations of magnetized gas sloshing in galaxy clusters initiated by encounters with subclusters. We go beyond previous works on the simulation of cold fronts in a magnetized intracluster medium by simulating their formation in realistic, idealized mergers with high resolution ({Delta}x {approx} 2 kpc). Our simulations sample a parameter space of plausible initial magnetic field strengths and field configurations. In the simulations, we observe strong velocity shears associated with the cold fronts amplifying the magnetic field along the cold front surfaces, increasing the magnetic field strength in these layers by up to an order of magnitude, and boosting the magnetic pressure up to near-equipartition with thermal pressure in some cases. In these layers, the magnetic field becomes strong enough to stabilize the cold fronts against Kelvin-Helmholtz instabilities, resulting in sharp, smooth fronts as those seen in observations of real clusters. These magnetic fields also result in strong suppression of mixing of high- and low-entropy gases in the cluster, seen in our simulations of mergers in the absence of a magnetic field. As a result, the heating of the core due to sloshing is very modest and is unable to stave off a cooling catastrophe.

  11. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2017-03-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.

  12. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2016-12-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric uc(Lorentz) force density vanishes. However, a uc(Lorentz) surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use uc(Hooke's) law with a small-strain approximation, resulting in the uc(Lamé)-uc(Navier) equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by uc(Hiramatsu) and uc(Oka) (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the uc(Lorentz) tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the uc(Lorentz) tractions are illustrated and discussed.

  13. Two-dimensional electron gas magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Morelli, D. T.; Fuller, B. K.; Thrush, C. M.

    1990-07-01

    We describe the use of accumulation layers of electron charge in applications as magnetoresistive devices. We consider two such systems: an InGaAs/InP heterostructure in which we identify a two-dimensional electron gas from the observation of the quantum Hall effect, and InAs films, in which a strong surface accumulation of charge is inferred from depth profiling studies of the galvanomagnetic coefficients. Magnetoresistive devices fabricated from these materials exhibit outstanding field sensitivity and temperature stability due to the existence of electrons of relatively high density and mobility in the accumulation regions. We also model the magnetosensitivity of our devices.

  14. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.

  15. A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scott, E. H.

    1982-01-01

    The gravitational collapse of isothermal, nonrotating magnetic gas clouds have been calculated numerically, including the effects of ambipolar diffusion. The fractional ionization in the clouds is approximated by a power-law function of the gas density, f = K/n to the q-power, where K and q are adjustable parameters. Eleven numerical experiments were run, and the results indicate that the asymptotic character of collapse is determined mainly by the value of q and is largely independent of the other parameters characterizing a cloud (e.g., K, cloud mass). In particular, there is nearly a one-to-one correspondence between q and the slope, x, of the central magnetic field strength-gas density relationship. If q is no more than 0.8, a cloud collapses asymptotically, as though the magnetic field were 'frozen' to the neutral matter. The magnetic field strength at the center of a collapsing cloud is strongly amplified during collapse even for values of q of about 1, despite extremely low values of fractional ionization. A discussion of the theoretical basis for this unexpected behavior is given. Possible implications of our results for the problems of magnetic braking of rotating protostars and star formation in general are also presented.

  16. The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas

    NASA Astrophysics Data System (ADS)

    Molina, F. Z.; Glover, S. C. O.; Federrath, C.; Klessen, R. S.

    2012-07-01

    It is widely accepted that supersonic, magnetized turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the rms Mach number ? in supersonic, isothermal, magnetized turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum equation for a single magnetized shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of ρ, B∝ρ1/2 and B∝ρ. We test the analytically derived density variance-Mach number relation with numerical simulations, and find that for B∝ρ1/2, the variance in the logarithmic density contrast, ?, fits very well to simulated data with turbulent forcing parameter b= 0.4, when the gas is super-Alfvénic. However, this result breaks down when the turbulence becomes trans-Alfvénic or sub-Alfvénic, because in this regime the turbulence becomes highly anisotropic. Our density variance-Mach number relations simplify to the purely hydrodynamic relation as the ratio of thermal to magnetic pressure β0→∞.

  17. A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scott, E. H.

    1982-01-01

    The gravitational collapse of isothermal, nonrotating magnetic gas clouds have been calculated numerically, including the effects of ambipolar diffusion. The fractional ionization in the clouds is approximated by a power-law function of the gas density, f = K/n to the q-power, where K and q are adjustable parameters. Eleven numerical experiments were run, and the results indicate that the asymptotic character of collapse is determined mainly by the value of q and is largely independent of the other parameters characterizing a cloud (e.g., K, cloud mass). In particular, there is nearly a one-to-one correspondence between q and the slope, x, of the central magnetic field strength-gas density relationship. If q is no more than 0.8, a cloud collapses asymptotically, as though the magnetic field were 'frozen' to the neutral matter. The magnetic field strength at the center of a collapsing cloud is strongly amplified during collapse even for values of q of about 1, despite extremely low values of fractional ionization. A discussion of the theoretical basis for this unexpected behavior is given. Possible implications of our results for the problems of magnetic braking of rotating protostars and star formation in general are also presented.

  18. Rock magnetism of gas hydrate-bearing rocks in the Nankai Trough, offshore SW Japan

    NASA Astrophysics Data System (ADS)

    Kars, M. A.; Kodama, K.

    2013-12-01

    For the last decade, focus on gas hydrates has been increasing because of their potential value as an energy resource and their possible impact on climate change. Convergent margins, such as the Cascadia Margin (offshore Oregon, USA) and the Nankai Trough (offshore SW Japan) are favorable locations for the formation of gas hydrates. High amplitude bottom simulating reflectors (BSR) are often considered to be indicators of the presence of gas hydrates. Rock magnetism has also appeared to be a suitable approach. Here we focus on gas hydrate-bearing rocks from hole C0008C drilled in 2008 during the IODP Expedition 316, part of the Nankai Trough Seismogenic Experiment Zone (NanTroSEIZE) drilling project. Site C0008 is located at the slope basin seaward of the splay fault. In hole C0008C, seven gas hydrates occurrences were identified by local Cl minima from ~70 to ~170 m CSF (core depth below seafloor). We conducted a high-resolution rock magnetic study from ~70 to ~110 m CSF in order to determine the nature, size and concentration of the magnetic minerals present in the cores. As a preliminary study, about 200 discrete samples were analyzed. In addition, comparison with geochemical data and scanning electron microscope observations were made.

  19. Direct synthesis of multifunctional heterostructured magnetic nanoparticles in gas phase

    NASA Astrophysics Data System (ADS)

    Xu, Yunhao

    Most applications of the nanotechnology require the nanoscale objects to have a controllable size, narrow size distribution, and to be in an assembled form if possible. An approach to go beyond the current performance of these nanoscale objects is to combine and couple different properties into one single object, making them multifunctional. To achieve these goals, we developed a bottom-up approach engaging a sputtering-gas-condensation technique to deposit nanoparticles with controlled size, size distribution, crystallographic phase and heterostructures. This technique is compatible to micro/nanoelectronic materials and devices fabrication processes. Three-dimensional assembly of nanoparticle-crystals is demonstrated by using the technique. A model is developed to explain the detailed nucleation, growth, phase separation processes based on the classic nucleation as well as kinetic processes. To combine and couple different properties into a single nanoparticle, a new method is developed to generate different heterostructures at single-particle level directly in gas phase. Sharp and clean interfaces were formed between the different components in the single nanoparticle. The control of the diffusion in nanoscale objects opens a door for the synthesis of heterostructures with high quality interfaces and desirable phases. The model-material systems of ferromagnetic metals and alloys (Fe, Co, and FeCo), noble metals (Ag and Au) and semiconductor element (Si) were demonstrated in the work, which have great potential in biomedical, spintronics and photonics applications. Other fields such as renewable energy devices can also benefit by adopting this novel approach in different material systems.

  20. New measurements of multilayer insulation at variable cold temperature and elevated residual gas pressure

    NASA Astrophysics Data System (ADS)

    Funke, Th; Haberstroh, Ch

    2015-12-01

    New MLI measurements at the TU Dresden flow type calorimeter have been carried out. Specimens of 20 layer double side aluminized polyester film were tested. A cylindrical cold surface of 0.9 m2 is held at the desired cold boundary temperature between approximately 30 K and 300 K. The heat transfer through the MLI is measured by recording the mass flow as well as the inlet and the outlet temperature of the cooling fluid. Measurements at varied cold boundary temperatures have been performed. Moreover the effect of an additional vacuum degradation - as it might occur by decreasing getter material performance in real systems at elevated temperatures - is studied by a controlled inlet of nitrogen gas. Thus the vacuum pressure was varied over a range of 10-7 mbar to 10-2 mbar. Different cold boundary temperatures between 35 K and 110 K were investigated. Test results for 20 layer MLI are presented.

  1. Tuning of magnetization dynamics in sputtered CoFeB thin film by gas pressure

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Huang, Qijun; Liao, Zhiqin; Li, Shandong; Ong, C. K.

    2012-04-01

    The influences of sputtering gas pressure on the high-frequency magnetization dynamics of as-sputtered CoFeB thin films are studied with permeability spectra based on the Landau-Lifshitz-Gilbert (LLG) equation. Results show that with the pressure increasing, both the anisotropy field and resonance frequency have minimums, while the initial permeability shows a maximum. The damping factor deceases monotonously with the pressure increasing, similar as with the coercivity. The high tunability of the damping factor indicates that controlling sputtering gas pressure could be an effective method in tuning the magnetization dynamics. All these dependences on gas pressure are suggested to be related to the inner stress of these sputtered films.

  2. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    PubMed

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  3. Modern residual gas analyser (RGA) Applications and developments in the operation of particle accelerators and experimental facilities

    NASA Astrophysics Data System (ADS)

    Shannon, S. P.; James, A. P.

    1991-08-01

    When designing a particle accelerator or storage ring the ultimate vacuum pressure is a prime consideration. This is because the better the vacuum, the fewer the number of collisions between the beam and the residual gas molecules, resulting in a longer beam lifetime—a significant criterion. The total pressure readings from BA gauges are useful for pressure distribution data, but an RGA is required to monitor the gas species. The data which RGA's provide is useful, not only to the vacuum scientist, but everyone connected with the construction and use of a synchrotron. It is usual to employ RGA diagnostics in the early stages of machine construction. A typical sequence of tests would be for leak checking, glow-discharge and bakeout monitoring, re-checking for leaks and for contamination (either hydrocarbons or cleaning solvent). When a machine is being commissioned, the RGA can monitor for water to vacuum leaks (water cooled absorbers). Later, when the machine is operational, the RGA can show, via the local surface outgassing, when radiation is hitting new surfaces or obstructions. This paper details how RGA diagnostics can be employed, the criteria used, and the extent of the value of the RGA. With today's new generation of microprocessor controlled RGA's it is possible to have simultaneous operation and data acquisition from a number of analysers without multiplexing. Multiplexing can, however, allow up to 64 analysers to be controlled from one RGA controller.

  4. Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup.

    PubMed

    Liu, Zhenzhen; Qi, Peipei; Wang, Xiangyun; Wang, Zhiwei; Xu, Xiahong; Chen, Wenxue; Wu, Liyu; Zhang, Hu; Wang, Qiang; Wang, Xinquan

    2017-09-01

    A facile, rapid sample pretreatment method was developed based on magnetic nanoparticles for multi-pesticides residue analysis of grains. Magnetite (Fe3O4) nanoparticles modified with 3-(N,N-diethylamino)propyltrimethoxysilane (Fe3O4-PSA) and commercial C18 were selected as the cleanup adsorbents to remove the target interferences of the matrix, such as fatty acids and non-polar compounds. Rice was used as the representative grain sample for method optimization. The amount of Fe3O4-PSA and C18 were systematically investigated for selecting the suitable purification conditions, and the simultaneous determination of 50 pesticides and 8 related metabolites in rice was established by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the method validation was performed including linearity, sensitivity, matrix effect, recovery and precision, which all satisfy the requirement for pesticides residue analysis. Compared to the conventional QuEChERS method with non-magnetic material as cleanup adsorbent, the present method can save 30% of the pretreatment time, giving the high throughput analysis possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of gas chromatography - electron ionization - full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis.

    PubMed

    Mol, Hans G J; Tienstra, Marc; Zomer, Paul

    2016-09-07

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS based residue analysis, including the resolving power (15,000 to 120,000 FWHM at m/z 200), scan rate, dynamic range, selectivity, sensitivity, analyte identification, and utility of existing EI-libraries, are assessed and discussed in detail. The optimum acquisition conditions in full scan mode (m/z 50-500) were a resolving power of 60,000 and an automatic-gain-control target value of 3E6. These conditions provided (i) an optimum mass accuracy: within 2 ppm over a wide concentration range, with/without matrix, enabling the use of ±5 ppm mass extraction windows (ii) adequate scan speed: minimum 12 scans/peak, (iii) an intra-scan dynamic range sufficient to achieve LOD/LOQs ≤0.5 pg in fruit/vegetable matrices (corresponding to ≤0.5 μg kg(-1)) for most pesticides. EI-Orbitrap spectra were consistent over a very wide concentration range (5 orders) with good match values against NIST (EI-quadrupole) spectra. The applicability for quantitative residue analysis was verified by validation of 54 pesticides in three matrices (tomato, leek, orange) at 10 and 50 μg/kg. The method involved a QuEChERS-based extraction with a solvent switch into iso-octane, and 1 μL hot splitless injection into the GC-HRMS system. A recovery between 70 and 120% and a repeatability RSD <10% was obtained in most cases. Linearity was demonstrated for the range ≤5-250 μg kg(-1). The pesticides could be identified according to the applicable EU criteria for GC-HRMS (SANTE/11945/2015). GC-EI-full scan Orbitrap HRMS was found to be highly suited for quantitative pesticide residue analysis. The potential of qualitative screening to extend the scope makes it an attractive alternative to GC

  6. Gastric residual volume by magnetic ressonance after intake of maltodextrin and glutamine: a randomized double-blind, crossover study.

    PubMed

    Brianez, Luigi R; Caporossi, Cervantes; de Moura, Yure W; Dias, Lorena A; Leal, Regis V; de Aguilar-Nascimento, José E

    2014-01-01

    The addition of glutamine in preoperative drinks may enhance the benefits of carbohydrate alone. To evaluate the gastric residual volume after the intake of a beverage containing carbohydrate plus glutamine. Eleven healthy volunteers (24-30 years-old) were randomized in a crossover fashion to intake 400 mL (4h before) and 200 mL (2h before) of a beverage containing either 12.5% maltodextrin (carbohydrate group) or 12.5% maltodextrin plus 15 g of glutamine (glutamine group) in two different moments 7 days apart. Magnetic ressonance was performed to measure the gastric residual volume (mL) 120 and 180 minutes after the last ingestion. Gastric residual volume similar to basal condition was found after 2h and 3h of the intake of beverages. There was no difference in the mean ±SD GRV (mL) found at 120 minutes (carbohydrate group: 22.9±16.6 and glutamine group: 19.7±10.7) and at 180 minutes (carbohydrate group: 21.5±24.1 and glutamine group: 15.1±10.1) between the two drinks. Gastric emptying is efficient, and occurs in up to two hours after the intake of a beverage containing either carbohydrate alone or carbohydrate associated with glutamine. The addition of glutamine to carbohydrate-enriched drink seems to be safe for the use up to 2h before an operation.

  7. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    SciTech Connect

    Vernieres, Jerome Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  8. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  9. Fuel-Specific Effect of Exhaust Gas Residuals on HCCI Combustion: A Modeling Study

    SciTech Connect

    Szybist, James P

    2008-01-01

    A modeling study was performed to investigate fuel-specific effects of exhaust gas recirculation (EGR) components on homogeneous charge compression ignition (HCCI) combustion at conditions relevant to the negative valve overlap (NVO) strategy using CHEMKIN-PRO. Four single-component fuels with well-established kinetic models were chosen: n-heptane, iso-octane, ethanol, and toluene. These fuels were chosen because they span a wide range of fuel chemistries, and produce a wide compositions range of complete stoichiometric products (CSP). The simulated engine conditions combined a typical spark ignition engine compression ratio (11.34) and high intake charge temperatures (500-550 K) that are relevant to NVO HCCI. It was found that over the conditions investigated, all the fuels had overlapping start of combustion (SOC) phasing, despite the wide range in octane number (RON = 0 to 120). The effect of the EGR components CO2 and H2O was to suppress the compression temperature because of their higher heat capacities, which retarded SOC. For a concentration of O2 higher than the stoichiometric amount, or excess O2, there was an effect of advancing SOC for n-heptane, iso-octane, and toluene, but SOC for ethanol was not advanced. Low temperature heat release (LTHR) for n-heptane was also found to be highly dependent on excess O2, and mild endothermic reaction was observed for cases when excess O2 was not present.

  10. Reduction of residual gas in a sputtering system by auxiliary sputter of rare-earth metal

    NASA Astrophysics Data System (ADS)

    Li, Dejie

    2002-01-01

    In film deposition by sputtering, the oxidation and nitrification of the sputtered material lead to degradation of film quality, particularly with respect to metal sulfide films. We propose to use auxiliary sputtering as a method to produce a fresh film of rare-earth metal, usually dysprosium (Dy), that absorbs the active gases in a sputtering system, greatly reducing the background pressure and protecting the film from oxidation and nitrification effectively. The influence of the auxiliary sputtering power consumption, sputtering time, and medium gas pressure on the background pressure in the vacuum chamber is investigated in detail. If the auxiliary sputtering power exceeds 120 W and the sputtering time is more than 4 min, the background pressure is only one fourth of the ultimate pressure pumped by an oil diffusion pump. The absorption activity of the sputtered Dy film continues at least an hour after completion of the auxiliary sputter. Applied to film deposition of Ti and ZnS, this technique has been proven to be effective. For the Ti film, the total content of N and O is reduced from 45% to 20% when the auxiliary sputtering power of Dy is 120 W, and the sputtering time is 20 min. In the case of ZnS, the content of O is reduced from 8% to 2%.

  11. Pre- and postoperative magnetic resonance imaging appearance of the normal residual pituitary gland following macroadenoma resection: Clinical implications

    PubMed Central

    Maio, Salvatore Di; Biswas, Arundhati; Vézina, Jean Lorrain; Hardy, Jules; Mohr, Gérard

    2012-01-01

    Background: To assess the relationship between the preoperative magnetic resonance imaging (MRI) appearance of the normal residual pituitary gland (NRPG) and pituitary functional outcome following transsphenoidal resection of pituitary macroadenomas. Methods: We retrospectively reviewed the medical records of 100 consecutive patients with a pituitary macroadenoma, who underwent transsphenoidal resection. The preoperative configuration of the displaced NRPG was stratified as superior, superolateral or lateral. The extent of postoperative restitution of the NRPG was divided into four groups: Group 1 — normal residual gland or almost normal; Group 2 — more than 50% restitution; Group 3 — less than 50% of the normal residual gland; and Group 4 — barely visible or absent residual gland. The pre- and postoperative NRPG appearance was correlated with pituitary functional status. Results: Preoperatively, the NRPG was identifiable in 79 patients, with extrasellar displacement in 53%. The displacement pattern was superior in 8%, superolateral in 32%, and lateral in 58% of the patients. If the NRPG was displaced laterally, the ipsilateral cavernous sinus was not invaded by the pituitary macroadenoma. Partial or complete pituitary function was lost in 6 / 23 (26.1%) patients with superior or superolateral displacement of the NRPG, compared to only 1 / 36 (2.8%) patients without superior displacement of the NRPG (P = 0.025). Progressive postoperative reconstitution of the NRPG was related to the preservation of the pituitary hormonal axis (Pearson Chi-Square P < 0.001). Conclusions: Progressive displacement of the NRPG preoperatively, and lack of restitution of the NRPG on postoperative MRI appeared to correlate with the postoperative pituitary functional loss. PMID:22754732

  12. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  13. Optical Pumping Spin Exchange {sup 3}He Gas Cells for Magnetic Resonance Imaging

    SciTech Connect

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-04

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.

  14. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    SciTech Connect

    Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.

  15. Determining magnetic phase transitions temperatures in working magnetocaloric coolers bodies and gas cryorefrigerators regenerators

    NASA Astrophysics Data System (ADS)

    Karagusov, V. I.; Mayankov, I. V.

    2017-08-01

    Due to magnetic phase transitions rare-earth materials possess unique properties near the Curie and Neel temperatures, such as the magneto-caloric effect, the abnormally high heat capacity, the magnetic susceptibility and permeability extremes. Using rare earth materials in gas cryogenic refrigerators regenerators increases the efficiency, reduces the power consumption and allows reaching helium temperatures. The magneto-caloric effect has also extreme values near the Curie and Neel temperatures. The paper presents theoretical and experimental methods allowing to determine magnetic phase transitions temperatures in a wide range of low temperature materials with a various rare-earth components content and expected thermophysical properties of a certain rare-earth materials composition at the temperatures based on starting pure metals characteristics. The results analysis has shown that magnetic phase transitions temperatures are a linear function of the components concentration. Moreover, heat capacity values and MCE also depend linearly on the starting components concentration, which simplifies calculations significantly.

  16. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    DOE PAGES

    Tang, W.; Zhou, L.; Kassen, A. G.; ...

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. Asmore » a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less

  17. Analysis of pesticide residues by fast gas chromatography in combination with negative chemical ionization mass spectrometry.

    PubMed

    Húsková, Renáta; Matisová, Eva; Hrouzková, Svetlana; Svorc, Lubomír

    2009-08-28

    A combination of fast GC with narrow-bore column and bench top quadrupole mass spectrometer (MS) detector in negative chemical ionization (NCI) mode (with methane as reagent gas) is set up and utilized for the ultratrace analysis of 25 selected pesticides. The observed pesticides, belonging to the endocrine disrupting chemicals (EDCs), were from different chemical classes. A comparative study with electron impact (EI) ionization was also carried out (both techniques in selected ion monitoring (SIM) mode). The programmed temperature vaporizer (PTV) injector in solvent vent mode and narrow-bore column (15mx0.15mm I.D.x0.15microm film of 5% diphenyl 95% dimethylsiloxane stationary phase) were used for effective and fast separation. Heptachlor (HPT) as internal standard (I.S.) was applied for the comparison of results obtained from absolute and normalized peak areas. Non-fatty food matrices were investigated. Fruit (apple - matrix-matched standards; orange, strawberry, plum - real samples) and vegetable (lettuce - real sample) extracts were prepared by a quick and effective QuEChERS sample preparation technique. Very good results were obtained for the characterization of fast GC-NCI-MS method analysing EDCs pesticides. Analyte response was linear from 0.01 to 150microgkg(-1) with the R(2) values in the range from 0.9936 to 1.0000 (calculated from absolute peak areas) and from 0.9956 to 1.0000 (calculated from peak areas normalized to HPT). Instrument limits of detection (LODs) and quantification (LOQs) were found at pgmL(-1) level and for the majority of analytes were up to three orders of magnitude lower for NCI compared to EI mode. In both ionization modes, repeatability of measurements expressed as relative standard deviation (RSDs) was less than 10% which is in very good agreement with the criterion of European Union.

  18. Invited Review Article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices

    DOE PAGES

    Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...

    2017-04-27

    Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less

  19. Recyclable Naturally Derived Magnetic Pyrrhotite for Elemental Mercury Recovery from Flue Gas.

    PubMed

    Liao, Yong; Chen, Dong; Zou, Sijie; Xiong, Shangchao; Xiao, Xin; Dang, Hao; Chen, Tianhu; Yang, Shijian

    2016-10-04

    Magnetic pyrrhotite, derived from the thermal treatment of natural pyrite, was developed as a recyclable sorbent to recover elemental mercury (Hg(0)) from the flue gas as a cobenefit of wet electrostatic precipitators (WESP). The performance of naturally derived pyrrhotite for Hg(0) capture from the flue gas was much better than those of other reported magnetic sorbents, for example Mn-Fe spinel and Mn-Fe-Ti spinel. The rate of pyrrhotite for gaseous Hg(0) capture at 60 °C was 0.28 μg g min(-1) and its capacity was 0.22 mg g(-1) with the breakthrough threshold of 4%. After the magnetic separation from the mixture collected by the WESP, the spent pyrrhotite can be thermally regenerated for recycle. The experiment of 5 cycles of Hg(0) capture and regeneration demonstrated that both the adsorption efficiency and the magnetization were not notably degraded. Meanwhile, the ultralow concentration of gaseous Hg(0) in the flue gas was concentrated to high concentrations of gaseous Hg(0) and Hg(2+) during the regeneration process, which facilitated the centralized control of mercury pollution. Therefore, the control of Hg(0) emission from coal-fired plants by the recyclable pyrrhotite was cost-effective and did not have secondary pollution.

  20. Effects of a Rotating Magnetic Field on Gas Transport During Detached Crystal Growth in Space

    NASA Technical Reports Server (NTRS)

    Walker, John S.; Volz, Martin P.; Szofran, Frank R.; Motakef, Shariar; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    During the detached Bridgman growth of semiconductor crystals, the melt has a short free surface which is detached from the ampoule wall near the crystal-melt interface, thus eliminating the crystal defects caused by contact with the ampoule wall. Recent modelling has indicated that initiation and continuation of detached growth depends on the rate of transport of dissolved gas from the crystal-melt interface, where gas is rejected into the melt, to the detached free surface, where evaporating gas maintains the pressure on the free surface. Here we use numerical modelling to investigate whether the application of a rotating magnetic field increases or decreases the transport of rejected gas to the detached free surface. Unfortunately the results show that a rotating magnetic field almost always decreases the evaporation rate at the detached free surface. The exception is an insignificant increase for a short period at the beginning of crystal growth for a few circumstances. The evaporation rate decreases as the strength of the rotating magnetic field is increased.

  1. Variability of matrix effects in liquid and gas chromatography - mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops

    USDA-ARS?s Scientific Manuscript database

    Gas and liquid chromatography (GC and LC) coupled to sophisticated mass spectrometry (MS) instruments are among the most powerful analytical tools currently available to monitor pesticide residues in food, among other applications. However, both GC-MS and LC-MS are susceptible to matrix effects whi...

  2. [Determination of four insecticide residues in honey and royal jelly by gas chromatography-negative chemical ionization mass spectrometry].

    PubMed

    Xia, Guanghui; Shen, Weijian; Yu, Keyao; Wu, Bin; Zhang, Rui; Shen, Chongyu; Zhao, Zengyun; Bian, Xiaohong; Xu, Jiyang

    2014-07-01

    A method was developed for the determination of four insecticide residues in honey and royal jelly by gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS). The honey and royal jelly samples were treated with different preparation methods as the result of the different components. The honey sample was extracted with ethyl acetate and cleaned up with primary second amine, and the royal jelly sample was extracted with acetonitrile-water (1:1, v/v), and cleaned up with a C18 solid-phase extraction column. Finally, the extracts of the honey and royal jelly were analyzed by GC-NCI/MS in selected ion monitoring (SIM) mode separately. External standard calibration method was used for quantification. The linearities of calibration curves of the four insecticides were good with the correlation coefficients greater than 0.99 in the range of 50-500 microg/L. The limits of the detection (LODs) of the four insecticides were in the range of 0.12- 5.0 microg/kg, and the limits of the quantification (LOQs) were in the range of 0.40-16.5 microg/kg. The recoveries of the four insecticides spiked in honey and royal jelly at three spiked levels (10, 15 and 20 microg/kg) were in the range of 78.2 -110.0%, and the relative standard deviations (RSDs) were all below 14%. The sensitivity and selectivity of this method were good with no interfering peaks. The proposed method is simple quick and effective to analyze the four insecticide residues in honey and royal jelly.

  3. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    PubMed

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N2O and CO2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  4. Determination of pesticide residues in animal origin baby foods by gas chromatography coupled with triple quadrupole mass spectrometry.

    PubMed

    Amendola, Graziella; Pelosi, Patrizia; Attard Barbini, Danilo

    2015-01-01

    A simple, fast and multiresidue method for the determination of pesticide residues in baby foods of animal origin has been developed in order to check the compliance with the Maximum Residue Levels (MRLs) set at a general value of 0.01 mg/kg by Commission Directive 2006/125/EC for infant foods. The main classes of organochlorine, organophosphorus and pyrethroid compounds have been considered, which are mainly fat soluble pesticides. The analytical procedure consists in the extraction of baby food samples by acetonitrile (ACN) followed by a clean up using C18 solid-phase extraction column eluted with ACN. The compounds were determined by gas chromatography-triple quadrupole mass spectrometry equipped with a Programmed Temperature Vaporizer (PTV) injection and a backflush system. In order to compensate for matrix effects PTV and matrix matched standard calibrations have been used. The method has been fully validated for 57 pesticides according to the Document SANCO/12571/2013. Accuracy and precision (repeatability) have been studied by recoveries at two spiking levels, the Limit of Quantitation (LOQ) (0.003-0.008 mg/kg) and 10 time greater (0.03-0.08 mg/kg), and the results were in the acceptable range of 70-120% with Relative Standards Deviations (RSD) ≤20%. Selectivity, linearity, LOQ and uncertainty of measurement were also determined for all the compounds. The method has been also applied for the analysis of 18 baby food animal origin samples, bought form the local market in Rome (Italy), and no pesticide in the scope of the method has been found above the MRL or the LOQ.

  5. The ultimate veal calf reference experiment: hormone residue analysis data obtained by gas and liquid chromatography tandem mass spectrometry.

    PubMed

    Nielen, Michel W F; Lasaroms, Johan J P; Essers, Martien L; Sanders, Marieke B; Heskamp, Henri H; Bovee, Toine F H; van Rhijn, J Hans; Groot, Maria J

    2007-03-14

    A lifetime controlled reference experiment has been performed using 42 veal calves, 21 males and 21 females which were fed and housed according to European regulations and common veterinary practice. During the experiment feed, water, urine and hair were sampled and feed intake and growth were monitored. Thus for the first time residue analysis data were obtained from guaranteed lifetime-untreated animals. The analysis was focused on the natural hormones estradiol and testosterone and their metabolites, on 17beta- and 17alpha-nortestosterone, on 17beta- and 17alpha-boldenone and androsta-1,4-diene-3,17-dione (ADD), and carried out by gas chromatography tandem mass spectrometry (GC/MS/MS), an estrogen bioassay and liquid chromatography (LC) MS/MS. Feed, water and hair samples were negative for the residues tested. Female calf urines showed occasionally low levels of 17alpha-estradiol and 17alpha-testosterone. On one particular sampling day male veal calf urines showed very high levels of 17alpha-testosterone (up to 1000 ng mL(-1)), accompanied by lower levels of estrone and 17beta-testosterone. Despite these extreme levels of natural testosterone, 17beta-boldenone was never detected in the same urine samples; even 17alpha-boldenone and ADD were only occasionally beyond CCalpha (maximum levels 2.7 ng mL(-1)). The data from this unique experiment provide a set of reference values for steroid hormones in calf urine and demonstrate that 17beta-boldenone is not a naturally occurring compound in urine samples.

  6. Effect of reactive gas (oxygen/chlorine/fluorine) etching on the magnetic flux of a high moment write pole material

    SciTech Connect

    Zhang Jinqiu; Liu Feng; Chen Lifan; Miloslavsky, Lena

    2010-05-15

    Effect of reactive gas (oxygen/chlorine/fluorine) etching on NiFe magnetic properties was investigated. Experimental data showed 40% magnetic property degradation for F-containing gas etching, 10% degradation for O-containing gas etching, and 5% degradation for Cl-containing gas etching processes. X-ray diffraction analysis indicated that the crystallographic orientation remained the same upon the reactive gas etching, which is due to the low ion energy in plasma etching process as opposed to ion milling process with high input energy. It is proposed that the reported magnetic property degradation was mainly caused by the nonmagnetic dead layer formation, rather than the changes in the crystallographic orientation. The dead layer was determined by the NiFe thickness dependence of remnant magnetic flux variations between pre-etched and postetched samples. The dead layer remained nearly constant for O-containing gas etching process with increasing plasma processing time. The nonmagnetic dead layer of {approx}40-50 A formed in O-containing etching gas was observed in transmission electron microscopy cross-sectional image and was in very good agreement with the calculated value based on magnetic flux measurements. Combined magnetic and physical characterizations suggest that the dead layer thickness saturates at the initial stage of the plasma etching and magnetic property remained unchanged with increasing etching duration upon formation of the dead layer.

  7. Effect of the axial magnetic field on a metallic gas-puff pinch implosion

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Frolova, V.; Yushkov, G. Yu.; Baksht, R. B.; Oreshkin, V. I.; Velikovich, A. L.

    2016-06-15

    The effect of an axial magnetic field B{sub z} on an imploding metallic gas-puff Z-pinch was studied using 2D time-gated visible self-emission imaging. Experiments were performed on the IMRI-5 generator (450 kA, 450 ns). The ambient field B{sub z} was varied from 0.15 to 1.35 T. It was found that the initial density profile of a metallic gas-puff Z-pinch can be approximated by a power law. Time-gated images showed that the magneto-Rayleigh–Taylor instabilities were suppressed during the run-in phase both without axial magnetic field and with axial magnetic field. Helical instability structures were detected during the stagnation phase for B{sub z} < 1.1 T. For B{sub z} = 1.35 T, the pinch plasma boundary was observed to be stable in both run-in and stagnation phases. When a magnetic field of 0.3 T was applied to the pinch, the soft x-ray energy was about twice that generated without axial magnetic field, mostly due to longer dwell time at stagnation.

  8. Does gasification and biochar amendment provide a viable solution to balance greenhouse gas emissions, energy requirements and orchard residue management?

    NASA Astrophysics Data System (ADS)

    Pereira, Engil; Suddick, Emma; Six, Johan

    2015-04-01

    By converting biomass residue to biochar, we can generate power cleanly and sequester carbon resulting in overall greenhouse gas (GHG) savings when compared to typical fossil fuel burning and waste disposal. This on-farm research study provides a long-term and high frequency assessment of GHG emissions from biochar amended-soils in an organic walnut orchard in the Central Valley of California, USA. We also estimated the GHG offsets from the conversion of walnut residue into energy through gasification at the on-site walnut processing plant. Soil fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were monitored over 29 months in a 3.6 ha walnut orchard following management and precipitation events. We compared four treatments: control, biochar, compost, and biochar combined with compost. Events involving resource inputs such as fertilization or cover crop mowing induced the largest N2O peaks with average 0.13 kg N2O-N ha-1 day-1, while precipitation events produced the highest CO2 fluxes in average 0.124 Mg CO2-C ha-1 day-1. Biochar alone decreased N2O fluxes in two out of 23 measured events, however, not with enough significant magnitude to modify annual or seasonal totals. This indicates that biochar-induced decreases in N2O fluxes may occasionally occur without significant changes in total emissions. Additionally, biochar alone or in combination with compost did not alter annual or seasonal cumulative CO2 emissions. For this particular study, the conversion of orchard waste into energy and C sequestration through biochar amendment offset 100.3 Mg CO2-Ceq year-1. Thus, given that biochar did not alter cumulative GHG emissions from soils, we conclude that, in the scenario of this study, the use of biochar as a strategy to decrease farm-level GHG emissions is obtained through the gasification of orchard residue into energy and through biochar C sequestration, and not as a tool to decrease soil CO2 and N2O emissions.

  9. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis.

    PubMed

    Scholz, Alexander-Wigbert; Wolf, Ursula; Fabel, Michael; Weiler, Norbert; Heussel, Claus P; Eberle, Balthasar; David, Matthias; Schreiber, Wolfgang G

    2009-05-01

    Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.

  10. [Determination of organochlorine pesticide residues in nine herbs by solid-phase extraction and capillary gas chromatography].

    PubMed

    Yan, Zheng; Feng, Di; Li, Shenjie; Zhao, Yakui; Yang, Hui

    2005-05-01

    The solid-phase extraction and capillary gas chromatography was introduced for determining 13 organochlorine pesticide residues including alpha-benzene hexachloride (BHC), betaBHC, gamma-BHC, delta-BHC, p,p'-dichloro-diphenyl-dichloroethylene (pp'-DDE), p,p'-dichloro-di-phenyl-dichloroethane (pp'-DDD), o,p'-dichloro-diphenyl-trichloroethane (op'-DDT), pp'-DDT, heptachlor (HEPT), aldrin, heptachlor epoxide (HCE), dieldrin and endrin in Scutellaria baicalensis, Salvia miltiorrhiza, Belamcanda chinensis, Paeoniae lactiflora, Angelica dahurica, Arisaema erubescens, Fructus arctii, Anemarrhena asphodeloides and Platycodon grandiflorum. The organochlorine pesticides were extracted from herbs with mixed solvents of acetone and n-hexane by ultrasonic and cleaned up by Florisil solid-phase extraction column. Then, the extract was separated by capillary column (30 m x 0.25 mm i.d. x 0.25 microm) and detected by electrochemical detector. The carrier gas was N2 (99.999%) with the flow rate of 1.4 mL/min. The split ratio was 1:2.2. The injector temperature was 220 degrees C and the detector temperature was 330 degrees C. The column temperature was increased by the rate of 20 degrees C/min from 100 degrees C to 190 degrees C (hold for 1. 0 min), then to 235 degrees C by the rate of 4 degrees C/min and hold for 7 min at 235 degrees C. The good linearities were obtained for 13 organochlorine pesticides. The detection limits were between 0.064-0.61 microg/L. The average recoveries were between 87.3%-102.3% and relative standard deviations of 1.3%-6.8%. The method is effective, fast and accurate.

  11. Determination of pentachlorophenol residue in meat and fish by gas chromatography-electron capture detection and gas chromatography-mass spectrometry with accelerated solvent extraction.

    PubMed

    Zhao, Dongmei

    2014-01-01

    A novel analytical method, using gas chromatography-electron capture detection (GC-ECD) and GC-mass spectrometry detection (MS), was developed for the qualitative and quantitative measurement of pentachlorophenol in meat and fish. The analyte was extracted by methanol-2% trichloroacetic acid (3/1, v/v) with accelerated solvent extraction (ASE). The eluted fraction was evaporated and derivatized with acetic anhydride-pyridine (1/1, v/v) for GC-ECD analysis and GC-MS confirmation. The parameters for extraction pressure, temperature and cycle of ASE, cleanup, derivatization and analysis procedure were optimized. The averaged decision limits and detection capability of the method were in the ranges of 0.25-0.41 and 0.49-1.01 µg/kg in the muscle and liver of swine and bovine and in the muscle of carp and finless eel, respectively. Spiked recoveries from levels of 0.5-2.0 µg/kg were found to be more than 71.1%, with relative standard deviation less than 14.7% in GC-ECD and GC-MS. This rapid and reliable method can be used for the characterization and quantification of residues of pentachlorophenol in animal and fish tissues.

  12. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    SciTech Connect

    Kekalo, I. B.; Mogil’nikov, P. S.

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  13. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.

    PubMed

    Milner, A A; Korobenko, A; Milner, V

    2017-06-16

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  14. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  15. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  16. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  17. Environmental Stress Testing of the Single Sample Cylinder: A Proven Consensus Standard for Internal Gas Analysis (IGA) or Residual Gas Analysis (RGA)

    NASA Technical Reports Server (NTRS)

    Schuessler, Philipp WH

    2010-01-01

    In August 2008, Schuessler Consulting was contracted by NASA GSFC in support of the NASA Electronic Parts and Packaging (NEPP) program to perform two separate studies on moisture laden air in a stainless steel cylinder that had been designed to become a consensus standard for Test Method 1018. This Test Method was originally released for hybrids under Mil. Std. 883 but was quickly utilized on other microelectronic devices under the auspice of Mil. Std. 750. The cylinder had subsequently been fabricated for the 750 community. It was back-filled with moist air and subsequently analyzed over a period of time under a previous NASA contract. It had been shown that moisture in the 4000 - 5000 ppm range could be analyzed rather precisely with a mass spectrometer, commonly referred to as a Residual Gas Analyzer (RGA). The scope of this study was to ascertain if the composition and precision varied as a function of thermal shock at sub-zero temperatures and whether there was consensus when the standard was submitted to other RGA units. It was demonstrated and published that the consensus standard would yield precise RGA data for moisture within +/- 1% when optimized for a given RGA unit. It has been subsequently shown in this study at Oneida Research Services, that sub-zero storage did not affect that precision when a well-defined protocol for the analysis was followed. The consensus standard was taken to a second facility for analysis where it was found that moisture adsorption on the transfer lines caused precision to drop to +/- 12%. The Single Sample Cylinder (SSC) is a one liter stainless steel cylinder with associated sampling valves and has considerable weight and volume. But this considerable size allows for approximately 300 gas samples of the same composition to be delivered to any RGA unit. Lastly, a smaller cylinder, approximately 75 cc, of a second consensus standard was fabricated and tested with a different mix of fixed gases where moisture was kept in the

  18. Rapid Determination of Dichlofluanid Residues in Vegetables Using Dispersive-SPE Sample Preparation Combined with Gas Chromatography–Mass Spectrometry

    PubMed Central

    Zhou, Xue; Cao, Shurui; Li, Xianliang; Xi, Cunxian; Ding, Xiaowen; Xu, Fen; Hu, Jiangtao; Chen, Zhiqiong

    2016-01-01

    A method for rapid determination of dichlofluanid residue in vegetables using dispersive solid-phase extraction (dispersive-SPE) sample preparation combined with gas chromatography–mass spectrometry (GC–MS) was developed. Samples were extracted with actone–ethyl acetate (1:1, V/V), and then detected by GC–MS with an external standard method after being purified by optimized primary secondary amine, graphitized carbon black and anhydrous magnesium sulphate (MgSO4). It turned out that dichlofluanid showed a good linearity (y = 2.7E + 5x− 2710.5) over the range of 0.02–2.00 mg/L with a correlation coefficient of 0.9994. The limit of detection was 0.13 μg/kg (S/N = 3) and the limit of quantification was 0.43 µg/kg (S/N = 10). The recoveries of the dichlofluanid were in the range of 73.3–106.7, 83.3–116.7 and 83.3∼106.7% with the spiked levels of 0.01, 0.02 and 0.05 mg/kg, and the relative standard deviations were in the range of 4.1–22.3%. Compared with the reported literature, the method is more simple, rapid, sensitive, reliable and can be applied to many vegetables. PMID:26921896

  19. Study of the Behaviors of Gunshot Residues from Spent Cartridges by Headspace Solid-Phase Microextraction-Gas Chromatographic Techniques.

    PubMed

    Chang, Kah Haw; Yew, Chong Hooi; Abdullah, Ahmad Fahmi Lim

    2015-07-01

    Gunshot residues, produced after shooting activity, have acquired their importance in analysis due to the notoriety of firearms-related crimes. In this study, solid-phase microextraction was performed to extract the headspace composition of spent cartridges using 85-μm polyacrylate fiber at 66°C for 21 min. Organic compounds, that is, naphthalene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, diphenylamine, and dibutyl phthalate were detected and analyzed by gas chromatography-flame ionization detection technique. Evaluation of chromatograms for diphenylamine, dibutyl phthalate, and naphthalene indicates the period after a gunshot was discharged, whether it was 1 days, 2-4 days, <5 days, 10 days, 20 days, or more than 30 days ago. This study revealed the potential effects of environmental factors such as occasional wind blow and direct sunlight on the estimation of time after spent cartridges were discharged. In conclusion, we proposed reliable alternative in analyzing the headspace composition of spent cartridges in a simulated crime scene.

  20. Determination of alkylphenolic residues in fresh fruits and vegetables by extractive steam distillation and gas chromatography-mass spectrometry.

    PubMed

    Yang, Deng-Kai; Ding, Wang-Hsien

    2005-09-23

    This study describes a simple and sensitive method for determining the alkylphenolic compounds, 4-tert-octylphenol (4-t-OP), 4-nonylphenol isomers (4-NPs), and their monoethoxylates (4-t-OP1EO and 4-NP1EOs), in fresh fruits and vegetables. The method involves extracting a sample by a modified Nielson-Kryger steam distillation extraction using n-hexane for 1 h. The alkylphenolic compounds were identified and quantitated by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. Various pH values and amounts of NaCl added to the sample solution were evaluated as extraction conditions. The quantitation limit of this method was less than 0.2 ng/g in 10 g (fresh weight) of sample. Recovery of alkylphenolic compounds in spiked samples exceeded 64% while R.S.D. ranged from 1.0 to 9.8%. Alkylphenolic residues were detected in fresh fruits and vegetables at concentrations of 4-NPs and 4-t-OP from n.d. to 16 ng/g and from n.d. to 4.8 ng/g (fresh weight), respectively. NP1EO and OP1EO were always below the quantitation limit.

  1. Study of Fuel Ratios on the Fusion Reactivity in an Inertial Electrostatic Confinement Device Using a Residual Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Krupakar Murali, S.; Santarius, John F.; Kulcinski, Gerald L.

    2009-09-01

    Gridded Inertial Electrostatic confinement (IEC) devices are of interest due to their flexibility in burning advanced fuels, their tuning ability of the applied voltage to the reaction cross-section. Although this device is not suitable for power production in its present form, it does have several near term applications. The number of applications of this device increases with increasing fusion reactivity. These devices are simple to operate but are inherently complicated to understand and an effort to incrementally understand the device to improve its operational efficiency is underway at University of Wisconsin, Madison. Of all the parameters under study we are focusing on the effects of flow rate and flow ratio on the fusion reactivity in the present paper. Experiments were conducted to understand the influence of fuel flow ratio on the fusion reactions. The residual gas analyzer (RGA) was used to study the impurity concentration as the flow ratio was changed. It was observed that the higher flow rate resulted in reduced impurity levels and hence an increase in fusion rate. Several different species of gases were detected, some of these molecules formed inside the RGA analyzer. The flow ratio scan revealed that the optimum mixture of D2 with 3He to be D2:3He::1:2 for maximum D-3He fusion rate.

  2. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  3. Vortex-assisted magnetic dispersive solid-phase microextraction for rapid screening and recognition of dicofol residues in tea products.

    PubMed

    Cheng, Xiaoling; Yan, Hongyuan; Wang, Xiaoling; Sun, Ning; Qiao, Xiaoqiang

    2014-11-01

    A simple and rapid vortex-assisted magnetic dispersive solid-phase microextraction (VAMDSME) method coupled with gas chromatography-electronic capture detection was developed for rapid screening and selective recognition of dicofol in tea products. The magnetic molecularly imprinted microspheres (mag-MIMs) synthesised by aqueous suspension polymerisation using dichlorodiphenyltrichloroethane (DDT) as a dummy template showed high selectivity and affinity to dicofol in aqueous solution and were successfully applied as special adsorbents of VAMDSME for rapid isolation of dicofol from complex tea matrix. Good linearity was obtained in a range of 0.2-160 ng g(-1) and the limit of detection based on a signal to noise ratio of 3 was 0.05 ng g(-1). The recoveries at three spiked levels ranged from 83.6% to 94.5% with the related standard deviations (RSD) ⩽ 5.0%. The VAMDSME-GC protocol, which took advantages of the selective adsorption of molecularly imprinted microspheres and rapid magnetic phase separation, as well as the short equilibrium time by vortex-assisted, could avoid the time-consuming procedures related to other traditional extraction methods.

  4. Electromagnetically induced transparency of 87Rb in a buffer gas cell with magnetic field

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Wang, Han-Mu; Zhang, Shan-Shan; Xin, Pei-Pei; Luo, Jun; Liu, Hong-Ping

    2017-05-01

    We have studied the phenomenon of electromagnetically induced transparency (EIT) of 87Rb vapor at room temperature in a magnetic field with an arbitrary angle to the laser propagation direction. Rather than exposing atoms to a parallelled or transverse magnetic field as usual, in our work, we apply a magnetic field (up to 45 Gauss) with an arbitrary angle to the laser propagation direction and the spectra become much more complex. More EIT dips are observed due to the Zeeman splitting on the D 2 line of 87Rb in a {{Λ }}-type configuration. With a 5 Torr N2 buffer gas in the thermal 2 cm vapor cell, the state {5}2{P}3/2 has a very short effective lifetime, corresponding to a large energy broadening, which removes the velocity selective optical pumping effect almost completely and keeps the high resolution EIT spectrum for the energy splitting of 87Rb in magnetic fields. The shifting of the EIT resonances with the strength of the applied magnetic field coincides well with the theory based on a full matrix Hamiltonian combined with a spectral decomposition method. Our work can be extended to measure the magnetic field vector in space. The effects of the detuning of the probe and coupling beams on the spectral lines are also investigated.

  5. Cold atom trap with zero residual magnetic field: the ac magneto-optical trap.

    PubMed

    Harvey, Matthew; Murray, Andrew James

    2008-10-24

    A novel atom trap is described using alternating current to generate the magnetic B field, together with high speed polarization switching of the damping laser field. This combination produces a trap as effective as a standard magneto-optical trap (MOT), with the advantage that the average B field is zero. No net current is hence induced in surrounding conductive elements, and the B field produced by the ac MOT is found to switch off >300 times faster than a conventional MOT. New experiments can hence be performed, including charged particle probing or detection of the cold target ensemble.

  6. Quantitative carbon-13 nuclear magnetic resonance spectroscopic study of mobile residues in bacteriorhodopsin

    SciTech Connect

    Bowers, J.L.; Oldfield, E.

    1988-07-12

    The authors have used quantitative carbon-13 nuclear magnetic resonance (NMR) spectroscopy to study the dynamic structure of the backbone of bacteriorhodopsin in the purple membrane of Halobacterium halobium R/sub 1/ and JW-3. NMR experiments were performed using an internal sucrose quantitation standard on purple membranes in which one of the following /sup 13/C'-labeled amino acids had been biosynthetically incorporated: glycine, isoleucine, lysine, phenylalanine, and valine. The results suggest that the C-terminus of the polypeptide chain backbone, and possibly one of the connecting loops, undergoes rapid, large angle fluctuations. The results are compared with previous NMR and fluorescence spectroscopic data obtained on bacteriorhodopsin.

  7. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  8. Spectroscopic issues in optical polarization of 3He gas for Magnetic Resonance Imaging of human lungs

    NASA Astrophysics Data System (ADS)

    Dohnalik, T.; Głowacz, B.; Olejniczak, Z.; Pałasz, T.; Suchanek, M.; Wojna, A.

    2013-10-01

    The Magnetic Resonance Imaging (MRI) of human lungs for diagnostic purposes became possible by using nuclear spin hyperpolarized noble gases, such as 3He. One of the methods to polarize 3He is the Metastability Exchange Optical Pumping (MEOP), which up to now has been performed at low pressure of about 1 mbar and in low magnetic field below 0.1 T (standard conditions). The equilibrium nuclear polarization can reach up to 80%, but it is dramatically reduced during the subsequent gas compression to the atmospheric pressure that is necessary for the lungs examination. Further polarization losses occur during the transportation of the gas to the hospital scanner. It was shown recently that up to 50% polarization can be obtained at elevated pressure exceeding 20 mbar, by using magnetic field higher than 0.1 T (nonstandard conditions). Therefore, following the construction of the low-field MEOP polarizer located in the lab, a dedicated portable unit was developed, which uses the magnetic field of the 1.5 T MR medical scanner and works in the continuous-flow regime. The first in Poland MRI images of human lungs in vivo were obtained on the upgraded to 3He resonance frequency Siemens Sonata medical scanner. An evident improvement in the image quality was achieved when using the new technique. The paper shows how spectroscopic measurements of 3He carried out in various experimental conditions led both to useful practical results and to significant progress in understanding fundamental processes taking place during MEOP.

  9. Magnetic gauge instrumentation on the LANL gas-driven two-stage gun

    SciTech Connect

    Alcon, R.R.; Sheffield, S.A.; Martinez, A.R.; Gustavsen, R.L.

    1997-11-01

    The LANL gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as equation of state and reaction experiments on other materials. The preferred method of measuring reaction phenomena involves the use of in-situ magnetic particle velocity gauges. In order to accommodate this type of gauging in the two-stage gun, it has a 50-mm-diameter launch tube. The authors have sued magnetic gauging on the 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on the gas-driven two-stage gun. They describe the method used, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To their knowledge, this is the first time magnetic gauging has been used on a two-stage gun.

  10. Changes to the LANL gas-driven two-stage gun: Magnetic gauge instrumentation, etc.

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Martinez, A.R.; Alcon, R.R.

    1996-12-31

    Our gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as other equation of state experiments on inert materials. Our preferred method of measuring initiation phenomena involves the use of magnetic particle velocity gauges. In order to accommodate this type of gauging in our two-stage gun, projectile velocity was sacrificed in favor of a larger experimental target area (obtained by using a 50 mm diameter launch tube). We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique to monitor reactive shock wave evolution. This technique has now been adapted to our gas-driven two-stage gun. We describe the method used, as well as some of the difficulties that arose while installing this technique. Several magnetic gauge experiments have been completed on plastic materials. Waveforms obtained in one experiment are given, along with the Hugoniot information that was obtained. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun. We have also made changes to the burst diaphragm package in the transition section to ensure that the petals do not break off during the opening process and to increase the burst pressure. This will also be discussed briefly.

  11. Generating Apparatus for Gas Heat Pump System using Sensorless-Controlled Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Toba, Akio; Fujita, Kouetsu; Maeda, Toshihiro; Kato, Tomohiko

    A unique generating system for Gas heat pump system (GHP) is presented. The GHP is an air-conditioning system, in which the compressors are driven by a gas engine. The proposed system is applied to the outside unit of GHP to feed the electrical equipments inside. The system utilizes a permanent magnet synchronous generator, which is connected to the gas engine, to realize high-efficiency and small-size. The generator is controlled by a converter with sensorless control technology to eliminate the position sensor. Another major topic is the “free-run startup" technique to start the converter when the generator is rotating. The system configuration and principles of the techniques are set forth, followed by experimental results which show that the system works properly and successfully.

  12. Recycling polymer residues to synthesize magnetic nanocomposites for dispersive micro-solid phase extraction.

    PubMed

    Ghambari, Hoda; Reyes-Gallardo, Emilia M; Lucena, Rafael; Saraji, Mohammad; Cárdenas, Soledad

    2017-08-01

    The ubiquitous presence of plastics, an obvious consequence of their usefulness and low price, has turned them into a problem of environmental and safety concern. The new plastic economy, an initiative recently launched by the World Economic Forum and Ellen MacArthur Foundation, with analytical support from McKinsey & Company, promotes a change in the use of plastic worldwide around three main pillars: redesign, reusing and recycling. Recycled plastics, with the aim of extending their life spam, can be used to synthesize materials for analytical purposes. In this article polystyrene (PS) trays, previously used for food packaging, are proposed as polymeric source for the synthesis of magnetic nanocomposites. The synthesis plays with the solubility of PS in different solvents in such a way that PS is gelated in the presence of cobalt ferrite nanoparticles which are finally embedded in the polymeric network. The extraction capability of the magnetic PS nanocomposite was evaluated using the determination of four parabens (methylparaben, ethylparaben, propylparaben and butylparaben) in water using liquid chromatography-tandem mass spectrometry as model analytical problem. Under the optimum conditions, limits of detection and quantification were in the range of 0.05-0.15 and 0.15-0.5ng/mL, respectively. The precisions, expressed as relative standard deviation (RSD), varied between 4.4% and 8.5% and the relative recoveries for analysis of the water samples were in the interval 81.2-104.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  14. Different Analytical Procedures for the Study of Organic Residues in Archeological Ceramic Samples with the Use of Gas Chromatography-mass Spectrometry.

    PubMed

    Kałużna-Czaplińska, Joanna; Rosiak, Angelina; Kwapińska, Marzena; Kwapiński, Witold

    2016-01-01

    The analysis of the composition of organic residues present in pottery is an important source of information for historians and archeologists. Chemical characterization of the materials provides information on diets, habits, technologies, and original use of the vessels. This review presents the problem of analytical studies of archeological materials with a special emphasis on organic residues. Current methods used in the determination of different organic compounds in archeological ceramics are presented. Particular attention is paid to the procedures of analysis of archeological ceramic samples used before gas chromatography-mass spectrometry. Advantages and disadvantages of different extraction methods and application of proper quality assurance/quality control procedures are discussed.

  15. Determination of o-phenylphenol, diphenylamine, and propargite pesticide residues in selected fruits and vegetables by gas chromatography/mass spectrometry.

    PubMed

    Yu, L; Schoen, R; Dunkin, A; Firman, M; Cushman, H; Fontanilla, A

    1997-01-01

    A simple and rapid method was developed to detect o-phenylphenol, diphenylamine, and propargite in selected fruits and vegetables. Gas chromatography/mass spectrometry in the selective-ion monitoring mode was used to identify and quantitate the 3 residues. Residues were extracted with acetonitrile and transferred to acetone. Limits of detection were 10, 8, and 15 ppb for o-phenylphenol, diphenylamine, and propargite, respectively. Recovery data were obtained by fortifying 4 matrixes (apples, oranges, canned peaches, and spinach) at 0.025-0.888 ppm. The method provides very good linearity data with low coefficients of variation.

  16. Liquid paraffin as new dilution medium for the analysis of high boiling point residual solvents with static headspace-gas chromatography.

    PubMed

    D'Autry, Ward; Zheng, Chao; Bugalama, John; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Wang, Bochu; Van Schepdael, Ann

    2011-07-15

    Residual solvents are volatile organic compounds which can be present in pharmaceutical substances. A generic static headspace-gas chromatography analysis method for the identification and control of residual solvents is described in the European Pharmacopoeia. Although this method is proved to be suitable for the majority of samples and residual solvents, the method may lack sensitivity for high boiling point residual solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide and benzyl alcohol. In this study, liquid paraffin was investigated as new dilution medium for the analysis of these residual solvents. The headspace-gas chromatography method was developed and optimized taking the official Pharmacopoeia method as a starting point. The optimized method was validated according to ICH criteria. It was found that the detection limits were below 1μg/vial for each compound, indicating a drastically increased sensitivity compared to the Pharmacopoeia method, which failed to detect the compounds at their respective limit concentrations. Linearity was evaluated based on the R(2) values, which were above 0.997 for all compounds, and inspection of residual plots. Instrument and method precision were examined by calculating the relative standard deviations (RSD) of repeated analyses within the linearity and accuracy experiments, respectively. It was found that all RSD values were below 10%. Accuracy was checked by a recovery experiment at three different levels. Mean recovery values were all in the range 95-105%. Finally, the optimized method was applied to residual DMSO analysis in four different Kollicoat(®) sample batches.

  17. Basic study on an energy conversion system using gas-liquid two-phase flows of magnetic fluid

    SciTech Connect

    Okubo, Masaaki; Ishimoto, Jun; Kamiyama, Schinichi.

    1994-12-31

    The mechanism of the pressure rise in a gas-liquid two-phase pipe flow of magnetic fluid under a nonuniform magnetic field is investigated in detail both theoretically and experimentally. First, governing equations of one-dimensional gas-liquid two-phase magnetic fluid flow are presented and numerically solved. Next, the pressure distribution in a nonuniform magnetic wild region is measured in the cases of two-phase flow, single-phase flow and the stationary state using a new experimental apparatus for the flow system. From the numerical measurement results, the magnitude of the pressure components which contribute to the total driving force is accurately estimated. These results on the pressure distribution will contribute to the development of the new energy conversion system using a gas-liquid two-phase magnetic fluid flow.

  18. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  19. Comparison of accelerator mass spectrometry with gas chromatography for the determination of pesticide residues in individual items in the diets of wild birds and mammals.

    PubMed

    Brown, Peter; Garner, Colin; Glass, Richard; Ridgway, Chris; Hart, Andy

    2004-06-16

    Methods to refine the assessment of exposure of wild birds and mammals to pesticides required measurement of pesticide residues in very small samples of their diets. Sample sizes were in the 1-100 mg range, and the target residue for measurement was 0.01 mg/kg. Gas chromatography-mass spectrometry (GC-MS) with large volume injection was compared with the use of an accelerator mass spectrometer (AMS) to measure residues of pesticide labeled at near-background levels with carbon-14. The GC-MS method was able to detect residues down to 0.1 ng per item of diet, and the AMS detected the radiolabel down to 1 mBq (0.06 disintegration per minute, 1 ng of pesticide at the specific activity used) per sample. The target residue level was achieved by the GC-MS method for samples down to 10 mg. The GC method appeared to be best suited to monitoring residues in field studies, and the AMS shows great potential for use in laboratory experiments concerning pesticide degradation.

  20. Detecting excitation and magnetization of individual dopants in a semiconductor two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Wiebe, Jens

    2011-03-01

    Magnetic atoms doped into a semiconductor are the building blocks for bottom up spintronic and quantum logic devices. They also provide model systems for the investigation of fundamental effects. In order to correlate the dopant's atomic structure with its magnetism magnetically sensitive techniques with atomic resolution are a prerequisite. Here, I show electrical excitation and read-out [ 1 ] of single magnetic dopant associated spins in a two-dimensional electron gas (2DEG) confined to a semiconductor surface [ 2 ] using spin-resolved scanning tunneling spectroscopy [ 3 ] . I will review our real-space study of the quantum Hall transition in the 2DEG [ 2 ] and of the magnetic properties of the dopants [ 1 ] . Finally, I will demonstrate that the dopant serves as an atomic scale probe for local magnetometry of the 2DEG. This work was done in collaboration with A. A. Khajetoorians, B. Chillian, S. Schuwalow, F. Lechermann, K. Hashimoto, C. Sohrmann, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, M. Morgenstern, and R. Wiesendanger. [ 1 ] A. A. Khajetoorians et al., Nature 467, 1084 (2010). [ 2 ] K. Hashimoto et al., Phys. Rev. Lett. 101, 256802 (2008). [ 3 ] J. Wiebe et al., Rev. Sci. Instrum. 75, 4871 (2004). We acknowledge financial support from ERC Advanced Grant ``FURORE'', by the DFG via SFB668 and GrK1286, and by the city of Hamburg via the cluster of excellence ``Nanospintronics''.

  1. High-Temperature Magnetic Bearings Being Developed for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.

    1998-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and cooperation with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, "more electric" engine. Finally, the Integrated High Performance Turbine Engine Technology (IHPTET) program, a joint Department of Defense/industry program, identified a need for a high-temperature (1200 F) magnetic bearing that could be demonstrated in their Phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator's circumference are a series of electrical wire coils which form a series of electric magnets that exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it centered in the cavity. The engine rotor, bearings, and casing form a flexible structure with many modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system.

  2. (18)F-Fluoroethyl-l-Thyrosine Positron Emission Tomography to Delineate Tumor Residuals After Glioblastoma Resection: A Comparison with Standard Postoperative Magnetic Resonance Imaging.

    PubMed

    Buchmann, Niels; Kläsner, Benjamin; Gempt, Jens; Bauer, Jan Stefan; Pyka, Thomas; Delbridge, Claire; Meyer, Bernhard; Krause, Bernd Joachim; Ringel, Florian

    2016-05-01

    Complete resection of contrast-enhancing tumor is an important prognostic factor in glioblastoma therapy. The current clinical standard for control of resection is magnetic resonance imaging (MRI). (18)F-Fluoroethyl-l-thyrosine (FET) is a positron emission tomography (PET) radiopharmaceutical applicable for widespread use because of its long half-life radionuclide. We assessed the sensitivity of postoperative MRI versus FET-PET to detect residual tumor and the impact of the time interval between resection and FET-PET. MRI and FET-PET were performed preoperatively and postoperatively in 62 patients undergoing 63 operations. FET-PET was performed in 43 cases within 72 hours after resection and in 20 cases >72 hours after resection. Detection and measurement of volume of residual tumors were compared. Correlations between residual tumor detection and timing of PET after resection and recurrence were examined. Complete resection was confirmed by both imaging modalities in 44% of cases, and residual tumor was detected consistently in 37% of cases. FET-PET detected residual tumor in 14% of cases in which MRI showed no residual tumor. MRI showed residual tumors in 5% of cases that were not identified by PET. Average PET-based residual tumor volume was higher than MRI-based volume (3.99 cm(3) vs. 1.59 cm(3)). Detection of and difference in volume of residual tumor were not correlated with timing of PET after resection or recurrence status. Postoperative FET-PET revealed residual tumor with higher sensitivity than MRI and showed larger tumor volumes. In this series, performing PET >72 hours after resection did not influence the results of PET. We recommend FET-PET as a helpful adjunct in addition to MRI for postoperative assessment of residual tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Removal of iron oxide particles in a gas stream by means of a magnetically stabilized granular filter

    SciTech Connect

    Rodriguez, J.M.; Macias-Machin, A.; Alvaro, A.; Sanchez, J.R.; Estevez, A.M.

    1999-01-01

    The present study deals with the influence of diverse operating variables such as gas velocity, height of the bed, magnetic field strength, and particle bounce on separation of fine dust particles (iron oxide) in magnetically stabilized granular filters (MSF). The collection results are more effective when the height of the MSF and dust sizes increase. Investigations concerning the magnetic field behavior have shown that the collection efficiency increases when the magnetic field also increases. And the increase of the magnetic field strength has shown that particle bounce significantly decreases and the adhesion probability of the MSF improves.

  4. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    PubMed Central

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-01-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis. PMID:26883080

  5. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    NASA Astrophysics Data System (ADS)

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-02-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis.

  6. [Determination of 16 phthalate acid ester residues in health wine by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Lu, Li; Gong, Xu; Feng, Youlong

    2014-11-01

    A method for the analysis of sixteen phthalate acid ester (PAE) residues in health wine was developed using gas chromatography-triple quadrupole mass spectrometry (GC-QQQ- MS). The health wine samples were extracted with n-hexane by liquid-liquid extraction method before analysis. The samples were detected by GC-QQQ-MS with electron impact source (EI) in selected ion monitoring (SIM) mode after extraction. The separation was performed on an HP-5MS capillary column (30 m x 0.25 mm x 0.25 μm) with temperature programming. The retention time and the fragment ion abundance ratio were used to judge the qualitative results, and the quantitation was performed with standard curve method of the characteristic ion chrom- atographic peak area-concentration. Eighty-one batches of health wine samples were detected using the method. The results showed that the method had good linear relationships with correlation coefficients (r2) not less than 0.995 9. The recoveries of fifteen PAEs ranged from 88.6% to 107. 3% except dimethyl phthalate (DMP) which was 52.3%-58.7% in all the three spiked levels with the relative standard deviations of 0.1%-6.8% (RSD, n = 6). The limits of detection were between 0.002 mg/L to 0.061 mg/L. The limits of quantification were between 0.005 mg/L and 0.202 mg/L. The method is accurate, sensitive, proprietary and suitable for the simultaneous determination of the sixteen phthalate acid esters in health wine.

  7. A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas.

    PubMed

    Wang, Chao-Qiang; Jin, Ji-Zhong; Lin, Xiao-Yan; Xiong, De-Ming; Mei, Xu-Dong

    2017-07-01

    Based on the requirement of national energy conservation and environmental protection, attention has been given to building an environment-friendly and resource-saving society. Shale gas oil-based drilling cutting pyrolysis residues (ODPRs) have been used as the main research object to developing new technology which can convert the residues into a harmless and recyclable material. Using the test data of ODPR, we analyze the development prospect in the building material industry and provide a scheme to utilize this particular solid-waste efficiently. Theoretically speaking, the ODPR resource utilization such as admixture of cement, making sintered brick, and non-fired brick, by the exploration and development of Fuling shale gas is feasible.

  8. Study of the influence of filler wire carbon and residual element content on the mechanical properties of mechanized gas-metal-arc-welds: Final report

    SciTech Connect

    Not Available

    1988-06-01

    The individual and interactive roles of carbon, oxygen, and nitrogen and residual or tramp elements such as titanium, chromium, copper, sulfur, phosphorus, aluminum, arsenic, tin, and antimony on weld metal mechanical properties in pipeline steels are poorly documented. Further, most of the research has been done with the submerged-arc process. Systematic studies of the microstructures and toughnesses of GMAW welds are limited. A better understanding of the effects of carbon and the residual elements on weld metal toughnesses is needed so that appropriate filler wires can be produced. Accordingly, the objective of this research program was to attempt to determine the reason for the variable toughness of mechanized gas-metal-arc (GMA) girth welds and to identify means of improving toughness levels, particularly CTOD test values. This report is available from the American Gas Association Order Processing Department, 1515 Wilson Boulevard, Arlington, VA 2209-2470 (703/841-8558). 5 refs., 36 figs., 9 tabs.

  9. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks - Part I: Stationary conditions

    NASA Astrophysics Data System (ADS)

    Reiss, H.

    2004-04-01

    This paper describes numerical simulations, using thermal networks, of shield temperatures and radiative and conductive heat losses of a super-insulated cryogenic storage tank operating at 77 K. Interactions between radiation and conductive heat transfer modes in the shields are investigated, by calculation of local shield temperatures. As a new method, fluid networks are introduced for calculation of stationary residual gas pressure distribution in the evacuated multilayer super-insulation. Output from the fluid network is coupled to the iterative thermal network calculations. Parameter tests concern thickness and emissivity of shields, degree of perforation, residual gas sources like desorption from radiation shields, spacers and container walls, and permeation from the inner container to the evacuated insulation space. Variations of either a conductive (thickness of Al-film on Mylar) or a radiative parameter (thermal emissivity) exert crosswise influences on the radiative or conductive heat losses of the tank, respectively.

  10. A new method of evaluating tight gas sands pore structure from nuclear magnetic resonance (NMR) logs

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; Mao, Zhi-qiang; Xie, Xiu-hong

    2016-04-01

    Tight gas sands always display such characteristics of ultra-low porosity, permeability, high irreducible water, low resistivity contrast, complicated pore structure and strong heterogeneity, these make that the conventional methods are invalid. Many effective gas bearing formations are considered as dry zones or water saturated layers, and cannot be identified and exploited. To improve tight gas sands evaluation, the best method is quantitative characterizing rock pore structure. The mercury injection capillary pressure (MICP) curves are advantageous in predicting formation pore structure. However, the MICP experimental measurements are limited due to the environment and economy factors, this leads formation pore structure cannot be consecutively evaluated. Nuclear magnetic resonance (NMR) logs are considered to be promising in evaluating rock pore structure. Generally, to consecutively quantitatively evaluate tight gas sands pore structure, the best method is constructing pseudo Pc curves from NMR logs. In this paper, based on the analysis of lab experimental results for 20 core samples, which were drilled from tight gas sandstone reservoirs of Sichuan basin, and simultaneously applied for lab MICP and NMR measurements, the relationships of piecewise power function between nuclear magnetic resonance (NMR) transverse relaxation T2 time and pore-throat radius Rc are established. A novel method, which is used to transform NMR reverse cumulative curve as pseudo capillary pressure (Pc) curve is proposed, and the corresponding model is established based on formation classification. By using this model, formation pseudo Pc curves can be consecutively synthesized. The pore throat radius distribution, and pore structure evaluation parameters, such as the average pore throat radius (Rm), the threshold pressure (Pd), the maximum pore throat radius (Rmax) and so on, can also be precisely extracted. After this method is extended into field applications, several tight gas

  11. Core/shell structured magnetic nanoparticles synthesized by inert gas condensation

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah

    In this work, it is our goal to investigate the structural and magnetic properties of core/shell magnetic nanoparticles synthesized by inert gas condensation technique. For that purpose, Fe/FeO, Fe/FeO/PMMA, Ni/NiO/CoO, and NiFe 2O4 have been chosen to study exchange bias phenomenon that is observed in these systems. Two sets (small and large) of Fe/FeO nanoparticles with different particle sizes, (6.0/1.5nm and 9.0/3.0nm) have been prepared and the magnetic properties in terms of temperature dependencies of exchange bias field (H EB, horizontal shift of the hysteresis loops) and magnetic viscosity were investigated. Small particles have shown superparamagnetic behavior above Blocking Temperature, TB and exhibited 1574+/-25Oe exchange bias whereas the large particles had 277+/-25Oe. It has been observed that HEB is inversely proportional with the particle size and exponentially decreases and vanishes as the temperature increases up to TB. Along with the horizontal shift, vertical shift of the hysteresis loops due to pinned interface spins has also been realized. Dispersion of 14nm Fe/FeO particles in a non-magnetic polymer PMMA in order to study interparticle interactions has revealed that the magnetic response is in general nonmonotonic as a function of particle concentration in the polymer. The nonmonotonic behavior is linked to the competition between the exchange and dipolar interactions one of which being dominant above/below a threshold concentration. In order to synthesize core/shell nanoparticles composed of different metal and metal oxides rather than metal and its native oxide forming the core/shell, two techniques, resistive evaporation and laser ablation, have been combined in our inert gas condensation system. Condensation of evaporated Ni and laser ablated CoO allowed us to prepare core/shell particles. Structural analyses have revealed that Ni/CoO nanoparticles with a thin (˜1nm) NiO intermediate layer in the form of Ni/NiO/CoO can only be formed

  12. A Novel Magnetic Graphene Oxide Composite Absorbent for Removing Trace Residues of Polybrominated Diphenyl Ethers in Water

    PubMed Central

    Gan, Ning; Zhang, Jiabing; Lin, Shaichai; Long, Nengbing; Li, Tianhua; Cao, Yuting

    2014-01-01

    The purpose of the study was to develop a facile method for the fabrication of a stable and reusable magnetic graphene composite absorbent to remove trace levels of polybrominated diphenyl ethers in water treatment. The poly cationic Fe3O4@PDDA (poly(diallyldimethyl ammonium chloride) (PDDA)) core-shell structured nanoparticles were first synthesized, and then, DNA was laid on the surface of graphene oxide (GOx) to prepare the polyanionic GOx@DNA composite. The above materials were then mixed together and adhered together through sol-gel technology. Thus, the Fe3O4@PDDA/GOx@DNA composite absorbent was prepared. Its performance was tested by disperse solid phase extraction and gas chromatography/mass spectrometric (GC/MS) for removing six kinds of indicative polybrominated diphenyl ethers (BDEs) in water samples. The removal percentages of several real samples for six kinds of BDEs (BDE17, BDE28, BDE 71, BDE 47, BDE 66, BDE 100) at the ng/mL order of magnitude were in the range of 88.2%–99.1%. The removal percentage still reached 80.0% when the adsorbent was reused at least 20 times. The results suggested that the magnetic absorbent can obviously remove trace levels of BDEs from large volumes of aqueous solutions in environmental pollution cleanup with high removal efficiency. PMID:28788175

  13. Calculated Hanle transmission and absorption spectra of the {sup 87}Rb D{sub 1} line with residual magnetic field for arbitrarily polarized light

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-09-15

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  14. Liquid-solid extraction coupled with magnetic solid-phase extraction for determination of pyrethroid residues in vegetable samples by ultra fast liquid chromatography.

    PubMed

    Jiang, Chunzhu; Sun, Ying; Yu, Xi; Gao, Yan; Zhang, Lei; Wang, Yuanpeng; Zhang, Hanqi; Song, Daqian

    2013-09-30

    In this study, liquid-solid extraction coupled with magnetic solid-phase extraction was successfully developed for the extraction of pyrethroid residues in vegetable samples. The analytes were determined by ultra fast liquid chromatography. The pyrethroids were extracted by liquid-solid extraction and then adsorbed onto magnetic adsorbent. Magnetic adsorbent, C18-functionalized ultrafine magnetic silica nanoparticles, was synthesized by chemical coprecipitation, silanization and alkylation. The analytes adsorbed onto the magnetic adsorbent can be simply and rapidly isolated from sample solution with a strong magnet on the bottom of the extraction vessel. The extraction parameters, such as liquid-solid extraction solvent, liquid-solid extraction time, the amount of magnetic adsorbent, magnetic solid-phase extraction time and magnetic solid-phase extraction desorption solvent, were optimized to improve the extraction efficiency. The analytical performances of this method, including linear range, detection limit, precision, and recovery were evaluated. The limits of detection for pyrethroid were between 0.63 and 1.2 ng g(-1). Recoveries obtained by analyzing the four spiked vegetable samples were between 76.0% and 99.5%. The results showed that the present method was a simple, accurate and high efficient approach for the determination of pyrethroids in the vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. GAS-PHASE FLAME SYNTHESIS AND PROPERTIES OF MAGNETIC IRON OXIDE NANOPARTICLES WITH REDUCED OXIDATION STATE

    PubMed Central

    Kumfer, Benjamin M; Shinoda, Kozo; Jeyadevan, Balachandran; Kennedy, Ian M

    2010-01-01

    Iron oxide nanoparticles of reduced oxidation state, mainly in the form of magnetite, have been synthesized utilizing a new continuous, gas-phase, nonpremixed flame method using hydrocarbon fuels. This method takes advantage of the characteristics of the inverse flame, which is produced by injection of oxidizer into a surrounding flow of fuel. Unlike traditional flame methods, this configuration allows for the iron particle formation to be maintained in a more reducing environment. The effects of flame temperature, oxygen-enrichment and fuel dilution (i.e. the stoichiometric mixture fraction), and fuel composition on particle size, Fe oxidation state, and magnetic properties are evaluated and discussed. The crystallite size, Fe(II) fraction, and saturation magnetization were all found to increase with flame temperature. Flames of methane and ethylene were used, and the use of ethylene resulted in particles containing metallic Fe(0), in addition to magnetite, while no Fe(0) was present in samples synthesized using methane. PMID:20228941

  16. Diffusion-mediated 129Xe gas depolarization in magnetic field gradients during continuous-flow optical pumping

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Branca, Rosa Tamara

    2016-12-01

    The production of large volumes of highly polarized noble gases like helium and xenon is vital to applications of magnetic resonance imaging and spectroscopy with hyperpolarized (HP) gas in humans. In the past ten years, 129Xe has become the gas of choice due to its lower cost, higher availability, relatively high tissue solubility, and wide range of chemical shift values. Though near unity levels of xenon polarization have been achieved in-cell using stopped-flow Spin Exchange Optical Pumping (SEOP), these levels are currently unmatched by continuous-flow SEOP methods. Among the various mechanisms that cause xenon relaxation, such as persistent and transient xenon dimers, wall collisions, and interactions with oxygen, relaxation due to diffusion in magnetic field gradients, caused by rapidly changing magnetic field strength and direction, is often ignored. However, during continuous-flow SEOP production, magnetic field gradients may not have a negligible contribution, especially considering that this methodology requires the combined use of magnets with very different characteristics (low field for spin exchange optical pumping and high field for the reduction of xenon depolarization in the solid state during the freeze out phase) that, when placed together, inevitably create magnetic field gradients along the gas-flow-path. Here, a combination of finite element analysis and Monte Carlo simulations is used to determine the effect of such magnetic field gradients on xenon gas polarization with applications to a specific, continuous-flow hyperpolarization system.

  17. Diffusion-mediated (129)Xe gas depolarization in magnetic field gradients during continuous-flow optical pumping.

    PubMed

    Burant, Alex; Branca, Rosa Tamara

    2016-12-01

    The production of large volumes of highly polarized noble gases like helium and xenon is vital to applications of magnetic resonance imaging and spectroscopy with hyperpolarized (HP) gas in humans. In the past ten years, (129)Xe has become the gas of choice due to its lower cost, higher availability, relatively high tissue solubility, and wide range of chemical shift values. Though near unity levels of xenon polarization have been achieved in-cell using stopped-flow Spin Exchange Optical Pumping (SEOP), these levels are currently unmatched by continuous-flow SEOP methods. Among the various mechanisms that cause xenon relaxation, such as persistent and transient xenon dimers, wall collisions, and interactions with oxygen, relaxation due to diffusion in magnetic field gradients, caused by rapidly changing magnetic field strength and direction, is often ignored. However, during continuous-flow SEOP production, magnetic field gradients may not have a negligible contribution, especially considering that this methodology requires the combined use of magnets with very different characteristics (low field for spin exchange optical pumping and high field for the reduction of xenon depolarization in the solid state during the freeze out phase) that, when placed together, inevitably create magnetic field gradients along the gas-flow-path. Here, a combination of finite element analysis and Monte Carlo simulations is used to determine the effect of such magnetic field gradients on xenon gas polarization with applications to a specific, continuous-flow hyperpolarization system.

  18. SPEAR 3 flight analysis: Grounding by neutral gas release, and magnetic field effects on current distribution

    NASA Astrophysics Data System (ADS)

    Mandell, M. J.; Jongeward, G. A.; Cooke, D. L.; Raitt, W. J.

    1998-01-01

    The Space Power Experiment Aboard Rockets (SPEAR) 3 experiment was launched on March 15, 1993, to test grounding devices for negative payloads. In this paper we review two aspects of the high-altitude flight data and compare them with preflight predictions. The SPEAR 3 neutral gas release experiment studied a grounding mechanism observed on previous flights during attitude control system (ACS) firings. Preflight calculations using Paschen law physics generalized to three dimensions predicted that the high rate gas release (about one order of magnitude below normal ACS) would reduce the rocket potential to within 200-300 V of plasma ground. The flight data is well fit by a value of -225V. Orientation relative to Earth's magnetic field had no effect on the floating potential or grounding operations but had a large effect on the portion of the current collected by the boom. We compare these flight measurements with preflight calculations made with the DynaPAC computer code.

  19. Surface photocurrent in an electron gas over liquid He subjected to a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2015-06-01

    The photogalvanic effect is studied in electron gas over the liquid He surface with the presence of quantizing magnetic field. The gas is affected by the weak alternating microwave electric field tilted towards the surface normal. Both linear and circular photogalvanic effects are studied. The current occurs via indirect phototransition with the participation of ripplons emission or absorption. The photogalvanic tensor has strong resonances at the microwave frequency ω approaching to the frequencies of transitions between size-quantized subbands. The resonances are symmetric or antisymmetric, depending on a tensor component. Other resonances appear at ω ≈ nω c , where n being integer and ω c is the cyclotron frequency. It is found that the latter resonances split to two peaks connected with emission or absorption of ripplons. The calculated photogalvanic coefficients are in accord with the experimental observed values.

  20. Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC)

    NASA Astrophysics Data System (ADS)

    Xing, Lijuan; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, George

    2017-01-01

    Iron nanoparticles (NPs) prepared by inert gas condensation were studied using high resolution transmission electron microscopy and Wulff construction shape analysis. The NP size and shape show strong dependence on the magnetic field above the target surface. The effect of the magnetic field could be tuned by adjusting the thickness of the protective backing plate positioned in-between the target and the magnetron head. With increasing backing plate thickness, the particle size decreases and the NP morphologies evolve from faceted to close-to-spherical polyhedral shapes. Moreover, with changes in size and shape, the particle structure also varies so that the NPs exhibit: (i) a core-shell structure for the faceted NPs with size ˜15-24 nm; (ii) a core-shell structure for the close-to-spherical NPs with size ˜8-15 nm; and (iii) a fully oxidized uniform structure for NPs with sizes less than ˜8 nm having a void in the center due to the Kirkendall effect. The decrease of NP size with the increasing backing plate thickness can be attributed to a reduced magnetic field strength above the iron target surface combined with a reduced magnetic field confinement. These results pave the way to drastically control the NP size and shape in a simple manner without any other adjustment of the aggregation volume within the deposition system.

  1. Magnetic monopole search by 130 m(2)sr He gas proportional counter

    NASA Technical Reports Server (NTRS)

    Hara, T.; Hayashida, N.; Honda, M.; Kamata, K.; Kobayashi, M.; Kondo, T.; Matsubara, Y.; Mori, M.; Ohno, Y.; Tanahashi, G.

    1985-01-01

    A search experiment for cosmic ray magnetic monopoles was performed by means of atomic induction mechanism by using He mixture gas proportional counters of the calorimeter (130 square meters sr) at the center of the Akeno air shower array. In 3,482 hours operation no monopole candidate was observed. The upper limit of the monopole flux is 1.44 x 10 to the minus 13th power cm-z, sec -1, sr-1 (90% C.L.) for the velocity faster than 7 x 0.0001 c.

  2. Electrically Detected Magnetic Resonance of Neutral Donors Interacting with a Two-Dimensional Electron Gas

    SciTech Connect

    Lo, C. C.; Lang, V.; George, R. E.; Morton, J. J. L.; Tyryshkin, A. M.; Lyon, A.; Bokor, J.; Schenkel, T.

    2011-04-20

    We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas (2DEG) resonance signal increases by two orders of magnitude from X- to W-band, while the donor resonance signals are enhanced by over one order of magnitude. Bolometric effects and spin-dependent scattering are inconsistent with the observations. We propose that polarization transfer from the donor to the 2DEG is the main mechanism giving rise to the spin resonance signals.

  3. Development of a Gas Filled Magnet spectrometer within the FIPPS project

    NASA Astrophysics Data System (ADS)

    Chebboubi, A.; Kessedjian, G.; Faust, H.; Blanc, A.; Jentschel, M.; Köster, U.; Materna, T.; Méplan, O.; Sage, C.; Serot, O.

    2016-06-01

    The Fission Product Prompt γ -ray Spectrometer, FIPPS, is under development to enable prompt γ -ray spectroscopy correlated with fission fragment identification. This will open new possibilities in the study of fission and of nuclear structure of neutron rich nuclei. FIPPS will consist of an array of γ and neutron detectors coupled with a fission fragment filter. The chosen solution for the filter is a Gas Filled Magnet (GFM). Both experimental and modeling work was performed in order to extract the key parameters of such a device and design the future GFM of the FIPPS project. Experiments performed with a GFM behind the LOHENGRIN spectrometer demonstrated the capability of additional beam purification.

  4. Use of the gas-filled-magnet technique for particle identification at low energies

    SciTech Connect

    Rehm, K.K.; Jiang, C.L.; Paul, M.

    1995-08-01

    Reaction studies of interest to astrophysics with radioactive ion beams will be done mainly in inverse reaction kinematics, i.e., heavy particles bombarding a hydrogen target. The low energy of the outgoing heavy reaction products makes particle identification with respect to mass and nuclear charge a major challenge. For the planned {sup 18}F(p,{alpha}) experiment one expects five different types of particles in the outgoing channels: {sup 18}F and {sup 18}O (from elastic scattering of {sup 18}F and {sup 18}O on {sup 12}C), {sup 15}O and {sup 15}N (from the {sup 18}F and {sup 18}O induced (p,{alpha}) reactions) and {sup 12}C recoils from the polypropylene target. While mass determination can be achieved easily by time-of-flight (TOF) measurements, a determination of the nuclear charge presents a challenge, especially if the energy of the particles is below 500 keV/u. We studied the gas-filled magnet technique for Z-identification of light ions between Z = 6-9. In a gas-filled magnet the particles move with an average charge state {bar q} which in one parameterization is given by {bar q} = Z ln(avZ{sup {alpha}})/ln(bZ{sup {beta}}) where Z is the nuclear charge of the ions and v their velocity. Introducing into the expression for the magnetic rigidity B{rho} = mv/{bar q} results in a Z dependence of B{rho} which is valid to very low velocities. As a magnet we used the Enge split-pole spectrograph which was filled with nitrogen gas at a pressure of 0.5 Torr. The particles were detected in the focal plane with a 50 x 10 cm{sup 2} parallel-grid-avalanche counter which measured TOF and magnetic rigidity. The mass and Z separation was tested with {sup 13}C and {sup 18}O beams at energies of about 600 keV/u and recoil particles ranging from {sup 12}C to {sup 19}F. The Z-separation obtained at these energies was {triangle}Z/Z = 0.28 which is sufficient to separate individual elements for Z < 10.

  5. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste.

    PubMed

    Van Caneghem, J; Vandecasteele, C

    2014-11-01

    This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC's combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Biochemical effects of manufactured gas plant residue following ingestion by B6C3F1 mice

    SciTech Connect

    Weyand, E.H.; Wu, Yun; Patel, S. ); Goldstein, L. )

    1994-01-01

    The toxic potential of manufactured gas plant residue (MGP) given in the diet to male and female B6C3F1 mice was evaluated. In addition, the bioavailability of chemical components of MGP were also investigated by monitoring polycyclic aromatic hydrocarbon (PAH) metabolites in urine and DNA adduct formation in forestomach and lung tissue. Basal gel diets containing 0.05, 0.25, 0.50% benzo[a]pyrene (BaP) were fed to animals for 94 and 185 d. Mice readily consumed adulterated diets without any evidence of acute toxicity. The total amount of MGP and BaP consumed by mice ranged from 118 to 2604 mg and from 12 to 29 mg, respectively. Male mice fed a control or BaP diet and female mice fed a 0.05% MGP diet had the highest body weight gains. Male and female mice fed a 0.50% MGP diet had the lowest body weight gains. the bioavailability of chemical components of MGP was evaluated by monitoring the urinary excretion of PAH metabolites by male mice fed a 0.25% MGP diet. 1-Hydroxypyrene was determined by high-performance liquid chromatography analysis to be the major fluorescent metabolite excreted by mice throughout the 185 d of diet administration. At necropsy, no chemical-related gross lesions were detected. In addition, no treatment-related microscopic lesions were evident in tissues obtained from animals fed a 0.50% MGP- or BaP-adulterated diet. The [sup 32]P-postlabeling assay was used to evaluate MGP- and BaP-induced DNA adduct formation in lung and forestomach tissue. The level of DNA adducts formed from the chemical components of MGP paralleled the amount of material ingested by animals. Lung DNA adduct levels were considerably higher than forestomach levels when mice ingested a 0.25% or 0.50% MGP diet. These studies demonstrate that the continuous ingestion of MGP or BaP for 185 d does not result in acute toxicity or chemical-related lesions at doses up to 0.50% MGP or 0.005% BaP. 36 refs., 3 figs., 4 tabs.

  7. Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher Michael

    The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron

  8. Helium exchange gas based variable temperature insert for cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Nadaf, A.; Kar, S.; Kumar, M.; Dutt, R. N.; Das, A.; Singh, F.; Posa, L.; Datta, T. S.; Sarangi, S. K.

    2017-02-01

    A cryocooler based variable temperature inserts (VTI) has been designed and developed for measurement of physical properties at low temperature and high magnetic field. The VTI, designed using the helium exchange gas principle, needs to be integrated in the warm bore of an existing 6 T cryogen free magnet system. The lowest temperature achieved at the sample is 5 K at 34.5 kPa (∼5 psi) gaseous helium environment in the sample space. The equilibrium temperature of the sample, at the vacuum condition, is 8.7 K. The cool-down time of the sample at vacuum environment is 9 hrs whereas it takes 7 hrs in presence of helium exchange gas. The temperature of the sample was varied up to 325 K. The stability of the temperature achieved is less than 50 mK. The cooling and heating curves has been studied to estimate time required for a complete cycle of experiment. This paper will briefly present the design and performance of VTI system in temperature range of 5-325 K.

  9. Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Concepcion, R. J.; Evans, M. T.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kroupp, E.; Kusse, B. R.; Maron, Y.; Novick, A. S.; Pikuz, S. A.; Qi, N.; Rondeau, G.; Rosenberg, E.; Schrafel, P. C.; Seyler, C. E.; Shelkovenko, T. C.

    2013-08-01

    This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.

  10. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    NASA Astrophysics Data System (ADS)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (<1 mm) single-slice images of the lung to be obtained with excellent temporal resolution (<1 s). Complete three-dimensional images of the lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (<20 s). This article provides an overview of the current methods used in HNG MR imaging with an emphasis on ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  11. Improvement of saturation magnetization of Fe nanoparticles by post-annealing in a hydrogen gas atmosphere

    SciTech Connect

    Kin, Masane Tanaka, Masaaki; Hayashi, Yasushi; Hasaegawa, Jun; Kura, Hiroaki; Ogawa, Tomoyuki

    2015-05-07

    Fe nanoparticles (NPs) were synthesized by the thermal decomposition of Fe(CO){sub 5} and then post-annealing in a hydrogen gas atmosphere to produce highly monodisperse Fe NPs with high saturation magnetization (M{sub s}). The as-synthesized pre-anneal Fe NPs had an expanded α-Fe structure and M{sub s} was only 39% of that for bulk Fe because of the low crystallinity and the inclusion of a surfactant. Post-annealing of the Fe NPs in a hydrogen gas atmosphere at 200 °C improved the crystallinity of the Fe NPs from an amorphous-like structure to a body centered cubic (bcc) structure without any lattice expansion. This result indicates that hydrogen gas plays a significant role in improvement of the crystallinity of Fe NPs. Accompanying the improvement in crystallinity, M{sub s} for the Fe NPs increased from 86 to 190 emu/g{sub net} at 300 K, the values of which include the weight of surfactant. This enhanced M{sub s} is almost the same as that of bulk Fe (218 emu/{sub Fe}). It was concluded that the crystallinity has a significant influence on the M{sub s} of the Fe NPs because long-range ordering of the lattice can maintain strong direct exchange interactions between Fe atoms.

  12. Ion temperature and gas pressure effects on the magnetized sheath dynamics during plasma immersion ion implantation

    SciTech Connect

    Khoram, M.; Ghomi, H. Navab Safa, N.

    2016-03-15

    Here, a collisional magnetized plasma with finite ion temperature is considered to examine the effects of the ion temperature and gas pressure on the plasma-sheath dynamics. We use the two-fluid model of plasma-sheath where the nonlinear equations of a dynamic sheath are solved using a full implicit scheme of finite difference method along with some convenient initial and boundary conditions at the plasma center and target. It is found that the ion temperature only has a significant effect on the characteristics of low voltage sheath, while the gas pressure (collision rate) seriously affects the dynamic characteristics of the low and high voltage plasma-sheath. One can see, increasing the ion temperature in low voltage plasma-sheath causes to increase the temporal curve of the ion dose and the ion impact energy on the target, reduces the temporal curve of the sheath width, and has no any effect on the temporal curve of the ion incident angle on the target. However, rising the gas pressure in low and high voltage plasma-sheath reduces all of these temporal curves.

  13. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  14. Cluster finds giant gas vortices at the edge of Earth's magnetic bubble

    NASA Astrophysics Data System (ADS)

    2004-08-01

    12 August 2004 ESA’s quartet of space-weather watchers, Cluster, has discovered vortices of ejected solar material high above the Earth. The superheated gases trapped in these structures are probably tunnelling their way into the Earth’s magnetic ‘bubble’, the magnetosphere. This discovery possibly solves a 17-year-mystery of how the magnetosphere is constantly topped up with electrified gases when it should be acting as a barrier. hi-res Size hi-res: 1446 Kb Credits: H. Hasegawa (Dartmouth College) Three-dimensional cut-away view of Earth's magnetosphere This figure shows a three-dimensional cut-away view of Earth' s magnetosphere. The curly features sketched on the boundary layer are the Kelvin-Helmholtz vortices discovered by Cluster. They originate where two adjacent flows travel with different speed. In this case, one of the flows is the heated gas inside the boundary layer of the magnetosphere, the other the solar wind just outside it. The arrows show the direction of the magnetic field, in red that associated with the solar wind and in green the one inside Earth’s magnetosphere. The white dashed arrow shows the trajectory followed by Cluster. High resolution version (JPG format) 1446 Kb High resolution version (TIFF format) 15 365 Kb hi-res Size hi-res: 22 Kb Credits: H. Hasegawa (Dartmouth College) Electrified gas varies across the vortices along Cluster’s trajectory This computer simulation shows how the density of the electrified gas is expected to vary across the vortices along Cluster’s trajectory (white dashed line). The density is lower inside the boundary layer (blue region) and higher outside, in the region dominated by the solar wind (shown in red). The density variations measured by the instruments on board Cluster match those predicted by this model. Low resolution version (JPG format) 22 Kb High resolution version (TIFF format) 3438 Kb The Earth’s magnetic field is our planet’s first line of defence against the bombardment of

  15. Radiation, Gas and Magnetic Fields: Understanding Accretion Disks with Real Physics

    NASA Astrophysics Data System (ADS)

    Tao, Ted

    2011-01-01

    This dissertation studies some of the fundamental physics ingredients that underlie the theory of astrophysical accretion disks. We begin by focusing on local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. Our analysis includes the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. We find that the two instabilities transition smoothly into each other at a characteristic wavelength that is approximately equal to the magnetic pressure scale height times the ratio of radiation to magnetic pressure gradient forces. The Parker instability exists for longer wavelengths, while photon bubbles exist for wavelengths shorter than the transition wavelength. We also consider the effects of finite gas pressure on the coupled instabilities. Finite gas pressure introduces an additional short wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at high wave numbers. Finally, our analytic infinite wavenumber perturbation calculation strongly suggest that magnetic pressure gradients do not modify the photon bubble growth rate in the asymptotic regime. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths. Next, we turn to the effects of local dissipation physics on the spectra and vertical structure of high luminosity stellar mass black hole X-ray binary accretion disks. More specifically, we present spectral calculations of non-LTE accretion

  16. Variation of Magnetic Fluctuation due to Gas Puffing in Edge Region of Reversed-Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2016-09-01

    We measured the variation of magnetic and electrostatic fluctuations observed during the gas puffing in the edge region of the toroidal pinch experiment-reversed experiment (TPE-RX) reversed-field pinch plasma. In the short period in which the electron density increased slowly just after the gas puffing, the confinement of fast electrons in the core region was maintained by the decrease in the fast radial magnetic fluctuation with the deepening of the reversal of the toroidal field. During the following period in which the electron density increased rapidly, the radial gradient of electron density decreased, and the loss of fast electrons from the core region increased owing to the increase in the toroidal and radial magnetic fluctuations in the high-frequency band, although the poloidal magnetic fluctuation decreased. Therefore, the confinement of fast electrons would be maintained by keeping the radial gradient of plasma thermal pressure with a moderate neutral particle supply of small quantity in a short time.

  17. Determination of residues of fipronil and its metabolites in cauliflower by using gas chromatography-tandem mass spectrometry.

    PubMed

    Duhan, Anil; Kumari, Beena; Duhan, Saroj

    2015-02-01

    Fipronil is a widely used insecticide with a well-described toxicological pathway. Recently it has been widely used in India to control vegetable pests. The present study has been carried out to observe the persistence pattern of fipronil and its metabolites-fipronil sulfone, fipronil sulfide, fipronil desulfinyl in cauliflower and soil so as to know the potential risk if any to consumers and environment. Fipronil was applied @ 56 g a.i. ha(-1). Samples of cauliflower and soil were collected periodically; processed using QuEChERS method and analyzed by GCMS/MS. In cauliflower, residues of fipronil and its metabolites reached below detectable level before 30 days of application whereas in soil about 95% of total fipronil residues got degraded within same time period. Washing and washing followed by cooking or boiling was found effective in reducing residues. A safe waiting period of 15 days is therefore suggested before consuming cauliflower.

  18. Gas

    MedlinePlus

    ... intestine. Certain foods may cause gas. Foods that produce gas in one person may not cause gas in another. You can reduce the amount of gas you have by Drinking lots of water and non-fizzy drinks Eating more slowly so you swallow less air ...

  19. Influence of gas injection location and magnetic perturbations on ICRF antenna performance in ASDEX Upgrade

    SciTech Connect

    Bobkov, V.; Bilato, R.; Dux, R.; Faugel, H.; Kallenbach, A.; Müller, H. W.; Potzel, S.; Pütterich, Th.; Suttrop, W.; Stepanov, I.; Noterdaeme, J.-M.; Jacquet, P.; Monakhov, I.; Czarnecka, A.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    In ASDEX Upgrade H-modes with H{sub 98}≈0.95, similar effect of the ICRF antenna loading improvement by local gas injection was observed as previously in L-modes. The antenna loading resistance R{sub a} between and during ELMs can increase by more than 25% after a switch-over from a deuterium rate of 7.5⋅10{sup 21} D/s injected from a toroidally remote location to the same amount of deuterium injected close to an antenna. However, in contrast to L-mode, this effect is small in H-mode when the valve downstream w.r.t. parallel plasma flows is used. In L-mode, a non-linearity of R{sub a} at P{sub ICRP}<30 kW is observed when using the gas valve integrated in antenna. Application of magnetic perturbations (MPs) in H-mode discharges leads to an increase of R{sub a}>30% with no effect of spectrum and phase of MPs on R{sub a} found so far. In the case ELMs are fully mitigated, the antenna loading is higher and steadier. In the case ELMs are not fully mitigated, the value of R{sub a} between ELMs is increased. Looking at the W source modification for the improved loading, the local gas injection is accompanied by decreased values of tungsten (W) influx Γ{sub W} from the limiters and its effective sputtering yield Y{sub w}, with the exception of the locations directly at the antenna gas valve. Application of MPs leads to increase of Γ{sub W} and Y{sub w} for some of the MP phases. With nitrogen seeding in the divertor, ICRF is routinely used to avoid impurity accumulation and that despite enhanced Γ{sub W} and Y{sub W} at the antenna limiters.

  20. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  1. Analytical formula for residual current density excited in the process of gas ionization by a few-cycle laser pulse in the low-intensity limit

    NASA Astrophysics Data System (ADS)

    Silaev, A. A.; Vvedenskii, N. V.

    2015-03-01

    This work is devoted to analytical study of excitation of the residual current density (RCD) in the process of gas ionization by a few-cycle laser pulse. The RCD remains in the laser-produced plasma after the passage of the laser pulse and is as an initial push leading to excitation of the plasma oscillations which can radiate terahertz waves. We derive simple closed-form analytical formula for RCD for relatively small peak intensity of few-cycle laser pulse, which corresponds to small final degree of ionization. The dependences of the RCD on laser pulse parameters are discussed.

  2. The Gas-Filled-Magnet at PRIME Lab: Increased Sensitivity of Cosmogenic Nuclide Measurements

    NASA Astrophysics Data System (ADS)

    Caffee, M. W.; Granger, D. E.; Woodruff, T. E.

    2015-12-01

    Abstract: Using accelerator mass spectrometry (AMS), radionuclides produced either by cosmic-ray interactions or by nucleogenic means can be measured. Typical isotopic abundance ratios range from 1 x 10-10 to 1 x 10-15. The routinely measured radionuclides are 10Be, 14C, 26Al, 36Cl, and 129I. Be-10, 26Al, and 36Cl have isobaric interferences that cannot be eliminated mass through mass analysis, but dE/dx techniques suppresses these isobars enough to allow successful measurements. There are compromises, the isobar for 26Al, 26Mg, precludes successful measurement of 26Al if AlO- is injected into the accelerator. Mg- doesn't form a stable negative ion so a 26Al measurement requires injection of 26Al-. But the Al- ion is formed inefficiently; secondary ion currents using Al- are ~ 10 times less than an AlO- secondary ion beam. Precision scales with count rate so precise measurement of the 26Al/Al for all but higher ratio samples is difficult. It has long been recognized that a gas-filled-magnet (GFM) could potentially improve the measurement of those radionuclides with intractable isobar interferences. A GFM works on the principle that each element of an isobar pair, e.g. 26Mg and 26Al, has a different average charge state as it traverses a gas (3-4 Torr of N2) contained within the vacuum jacket of a magnet. The magnet steers each species with its own momentum-to-charge ratio on its own distinct radius of curvature. The magnet can be tuned to allow the isotope of interest into a dE/dx detector; most of the isobar doesn't make it into the detector. Using the PRIME Lab GFM we are now able to routinely run 26Al with a precision that is comparable to that obtained with 10Be. We are also using the GFM for routine measurements of 10Be and 36Cl. Although the improvement for these nuclides is not as pronounced as it is for 26Al, the GFM has improved the detection sensitivity for both. Our 10Be background is now ~ 5 x 10-16 and for 36Cl we can now run the source more

  3. Size-controlled, magnetic, and core-shell nanoparticles synthesized by inert-gas condensation

    NASA Astrophysics Data System (ADS)

    Koten, Mark A.

    Interest in nanoparticles (2 to 100 nm in diameter) and clusters of atoms (0.5 to 2 nm in diameter) has heightened over the past two and a half decades on both fundamental and functional levels. Nanoparticles and clusters of atoms are an exciting branch of materials science because they do not behave like normal bulk matter, nor do they act like molecules. They can have shockingly different physical, chemical, optical, or magnetic properties from the same material at a larger scale. In the case of nanoparticles, the surface-to-volume ratio can change fundamental properties like melting temperature, binding energy, or electron affinity. The definitions of markers used to distinguish between metallic, semiconducting, and insulating bulk condensed matter, such as the band gap and polarizability, can even be blurred or confused on the nanoscale. Similarly, clusters of atoms can form in structures that are only stable at finite sizes, and do not translate to bulk condensed matter. Thermodynamics of finite systems changes dramatically in nanovolumes such as wires, rods, cubes, and spheres, which can lead to complex core-shell and onion-like nanostructures. Consequently, these changes in properties and structure have led to many new possibilities in the field of materials engineering. Inert-gas condensation (IGC) is a well-established method of producing nanoparticles that condense from the gas phase. Its first use dates back to the early 1990s, and it has been used to fabricate nanoparticles both commercially and in research and development for applications in magnetism, biomedicine, and catalysts. In this dissertation, IGC was used to produce a wide variety of nanoparticles. First, control over the size distributions of Cu nanoparticles and how it relates to the plasma properties inside the nucleation chamber was investigated. Next, the formation of phase pure WFe2 nanoparticles revealed that this Laves phase is ferromagnetic instead of non-magnetic. Finally, core

  4. Replicating magneto-inertial fusion compression by colliding a magnetized plasma jet with a heavy gas cloud

    NASA Astrophysics Data System (ADS)

    Greig, Amelia; Bellan, Paul; Li, Hui

    2016-10-01

    The Caltech plasma jet experiment is arranged to have a neutral gas cloud in the path of a magnetized plasma jet. When a hydrogen jet collides with an argon gas cloud, the jet is compressed as argon is much heavier than hydrogen. The compression is equivalent to the Magnetized Inertial Fusion situation of a heavy liner compressing a low-density, magnetized plasma, providing an inexpensive analog for non-destructive studies of the plasma compression physics. The strategy is to measure density, magnetic field and temperature in and around the compression region over a range of parameters both with and without the neutral gas cloud in the path of the jet, with the ultimate goal of determining an equation of state characterizing the observed behavior. Initial density and magnetic field measurements have been made and temperature measurements are about to begin. To complement the experimental measurements, 3D numerical MHD simulation is being performed based on a code used previously to model the magnetized plasma jet experiment. In addition, plans are underway to do modeling using a hybrid code.

  5. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel.

    PubMed

    Liao, Yong; Xiong, Shangchao; Dang, Hao; Xiao, Xin; Yang, Shijian; Wong, Po Keung

    2015-12-15

    A magnetic Fe-Ti-Mn spinel was developed to adsorb gaseous Hg(0) in our previous study. However, it is currently extremely restricted in the control of Hg(0) emission from the flue gas for at least three reasons: sorbent recovery, sorbent regeneration and the interference of the chemical composition in the flue gas. Therefore, the effect of SO2 and H2O on the adsorption of gaseous Hg(0) on the Fe-Ti-Mn spinel and the regeneration of spent Fe-Ti-Mn spinel were investigated in this study. Meanwhile, the procedure of the centralized control of Hg(0) emission from the flue gas by the magnetic Fe-Ti-Mn spinel has been analyzed for industrial application. The spent Fe-Ti-Mn spinel can be regenerated by water washing followed by the thermal treatment at 450 °C with no obvious decrease of its ability for Hg(0) capture. Meanwhile, gaseous Hg(0) in the flue gas can be remarkably concentrated during the regeneration, facilitating its safe disposal. Initial pilot test demonstrated that gaseous Hg(0) in the real flue gas can be concentrated at least 100 times by the Fe-Ti-Mn spinel. Therefore, Fe-Ti-Mn spinel was a novel magnetic regenerable sorbent, which can be used for the centralized control of Hg(0) emission from the flue gas.

  6. Magnetic solid-phase extraction based on carbon nanotubes for the determination of polyether antibiotics and s-triazine drug residues in animal food with LC-MS.

    PubMed

    Liu, Xiaoxing; Xie, Shuyu; Ni, Tengteng; Chen, Dongmei; Wang, Xu; Pan, Yuanhu; Wang, Yulian; Huang, Lingli; Cheng, Guyue; Qu, Wei; Liu, Zhenli; Tao, Yanfei; Yuan, Zonghui

    2017-04-12

    Carbon nanotubes-magnetic nanoparticles, comprising ferroferric oxide nanoparticles and carbon nanotubes, were prepared through a simple one-step synthesis method and subsequently applied to magnetic solid-phase extraction for the determination of polyether antibiotic and s-triazine drug residues in animal food coupled with liquid chromatography with tandem mass spectrometry. The nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The components within the nanocomposites endowed the material with high extraction performance and manipulative convenience. Compared with carbon nanotubes, the as-prepared carbon nanotubes-magnetic nanoparticles showed better extraction and separation efficiencies for polyether antibiotics and s-triazine drugs thanks to the contribution of the iron-containing magnetic nanoparticles. Various experimental parameters affecting the extraction efficiency had been investigated in detail. Under the optimal conditions, the good linearity ranging from 1 to 200 μg/kg for diclazuril, toltrazuril, toltrazuril sulfone, lasalocid, monensin, salinomycin, narasin, nanchangmycin and maduramicin, low limits of detection ranging from 1 to 5 μg/kg, and satisfactory spiked recoveries (77.1-91.2%, with the inter relative standard deviation values from 4.0 to 12.2%) were shown. It was confirmed that this novel method was an efficient pretreatment and enrichment procedure and could be successfully applied for extraction and determination of polyether and s-triazine drug residues in complex matrices. This article is protected by copyright. All rights reserved.

  7. Screening of the presence organophosphates and organochlorines pesticide residues in vegetables and fruits using gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Putri, Dillani; Aryana, Nurhani; Aristiawan, Yosi; Styarini, Dyah

    2017-01-01

    Pesticides is commonly used to improve the quality of agricultural product, especially in vegetables and fruits. Due to pesticide residues in the product become a concern to consumer health, monitoring and analysis of pesticide residues in agriculture product need to be established. The certified reference material (CRM) is often benefited to obtain accurate results in analysis. It is required as the quality control to improve quality assurance of the testing results. Unfortunately in Indonesia, the development of matrix CRM for the analysis of pesticide residues in vegetables and fruits is still limited. This study is aimed to determine the type of commodity and target analyte to be employed in the development of CRM for pesticides in vegetables and fruits. As the preliminary study, the screening of 11 commodities of fresh vegetables and fruits has been conducted to review the information about the presence of organophosphates (OPs) and organochlorines (OCs) in the sample. In this analysis, QuEChERS technique was used in the extraction process and the qualitative analysis was evaluated by using GC-MS. The results showed that strawberry and celery contain residues of pesticide chlorpyrifos. Further analysis of the commodity celery from seven different places has been conducted, resulting that from 3 of all 7 samples (43%) were positive containing chlorpyrifos. Therefore, the development of CRM for chlorpyrifos in celery will be our next research project.

  8. [Comparison of the performances of gas chromatography-quadrupole time of flight mass spectrometry and gas chromatography-tandem mass spectrometry in rapid screening and confirmation of 208 pesticide residues in fruits and vegetables].

    PubMed

    Cao, Xinyue; Pang, Guofang; Jin, Linghe; Kang, Jian; Hu, Xueyan; Chang, Qiaoying; Wang, Minglin; Fan, Chunlin

    2015-04-01

    The performances of gas chromatography-tandem mass spectrometry (GC-MS/MS) and gas chromatography quadrupole time of flight mass spectrometry (GC-QTOF/MS) for the determination of 208 pesticide residues in fruit and vegetable samples, including apple, orange, tomato and cucumber, were compared comprehensively. Based on the differences of the two instruments, their respective characteristics and scopes of application in the detection of the pesticide residues were presented, which provided the reference for the analysis of pesticide residues. The performance parameters of the two instruments, such as overall recoveries, precisions, limits of detection, linear ranges, identification points and matrix effects, were evaluated according to a designed experiment. At three spiked levels (5.0, 10.0 and 20.0 µg/kg), the average recoveries for the majority of pesticides (93.0%) ranged from 70% to 120% in the four matrices with relative standard deviations below 20%. The limits of detection for most of the pesticides by GC-MS/MS and GC-Q-TOF/MS were less than 5.0 µg/kg. Compared with GC-QTOF/MS, GC-MS/MS showed relatively lower limits of detection and wider linear ranges, and its performance was more satisfactory in accurate quantitative analysis due to its superior sensitivity. On the other hand, GC-QTOF/MS provided accurate mass measurement, which was proved to be an efficient analytical tool on the rapid screening and confirmation of a large number of pesticides and non-target compounds.

  9. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  10. Screening of the Coulomb field in a magnetized electron gas of a quantum cylinder

    SciTech Connect

    Eminov, P. A.

    2009-05-15

    The quantum theory is constructed for screening of the Coulomb field of a point charge in a magnetized electron gas of a quantum cylinder. The asymptotics of the screened potential are calculated for both degenerate and Boltzmann electron gases. It is demonstrated that, in the degenerate case, apart from the known quasi-classical monotonic part, the result contains the quantum oscillating part, which corresponds to Friedel oscillations. The Aharonov-Bohm oscillations of the screened Coulomb interaction of electrons on a cylindrical surface are described analytically. It is shown that the Friedel oscillations can be represented as a superposition of oscillations with different frequencies which are determined by the macroscopic properties of the nanotube.

  11. Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids

    NASA Astrophysics Data System (ADS)

    Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil

    2016-12-01

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.

  12. A study of the influence of charged residues on β-hairpin formation by nuclear magnetic resonance and molecular dynamics.

    PubMed

    Makowska, Joanna; Zmudzińska, Wioletta; Uber, Dorota; Chmurzyński, Lech

    2014-12-01

    Chain reversals are often nucleation sites in protein folding. The β-hairpins of FBP28 WW domain and IgG are stable and have been proved to initiate the folding and are, therefore, suitable for studying the influence of charged residues on β-hairpin conformation. In this paper, we carried out NMR examination of the conformations in solution of two fragments from the FPB28 protein (PDB code: 1E0L) (N-terminal part) namely KTADGKT-NH2 (1E0L 12-18, D7) and YKTADGKTY-NH2 (1E0L 11-19, D9), one from the B3 domain of the protein G (PDB code: 1IGD), namely DDATKT-NH2 (1IGD 51-56) (Dag1), and three variants of Dag1 peptide: DVATKT-NH2 (Dag2), OVATKT-NH2 (Dag3) and KVATKT-NH2 (Dag4), respectively, in which the original charged residue were replaced with non-polar residues or modified charged residues. It was found that both the D7 and D9 peptides form a large fraction bent conformations. However, no hydrophobic contacts between the terminal Tyr residues of D9 occur, which suggests that the presence of a pair of like-charged residues stabilizes chain reversal. Conversely, only the Dag1 and Dag2 peptides exhibit some chain reversal; replacing the second aspartic-acid residue with a valine and the first one with a basic residue results in a nearly extended conformation. These results suggest that basic residues farther away in sequence can result in stabilization of chain reversal owing to screening of the non-polar core. Conversely, smaller distance in sequence prohibits this screening, while the presence oppositely-charged residues can stabilize a turn because of salt-bridge formation.

  13. Magnetization in two-dimensional electron gas in a perpendicular magnetic field: The roles of edge states and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Zhang, Wei; Zhang, Ping

    2009-06-01

    We study the de Haas-van Alphen (dHvA) oscillations in the magnetization of a two-dimensional electron gas under the influence of the edge states and/or the Rashba spin-orbit interaction (SOI). The boundaries of the systems lift partially the degeneracies of Landau levels (LLs) and the resulting edge states lead to the changes in both the center and the amplitude of the sawtoothlike magnetization oscillation. The SOI mixes the spin-up and spin-down states of neighboring LLs into two unequally spaced energy branches. The inclusion of SOI changes the well-defined sawtooth pattern of the dHvA oscillations in the magnetization. The weaker the magnetic field is, the larger the change in the dHvA oscillations is due to the edge effect and/or the spin-orbit coupling. Some theoretical results are compared with the experimental data.

  14. Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes

    NASA Astrophysics Data System (ADS)

    Griener, M.; Schmitz, O.; Bald, K.; Bösser, D.; Cavedon, M.; De Marné, P.; Eich, T.; Fuchert, G.; Herrmann, A.; Kappatou, A.; Lunt, T.; Rohde, V.; Schweer, B.; Sochor, M.; Stroth, U.; Terra, A.; Wolfrum, E.

    2017-03-01

    In magnetically confined fusion plasmas controlled gas injection is crucial for plasma fuelling as well as for various diagnostic applications such as active spectroscopy. We present a new, versatile system for the injection of collimated thermal gas beams into a vacuum chamber. This system consists of a gas pressure chamber, sealed by a custom made piezo valve towards a small capillary for gas injection. The setup can directly be placed inside of the vacuum chamber of fusion devices as it is small and immune against high magnetic fields. This enables gas injection close to the plasma periphery with high duty cycles and fast switch on/off times ≲ 0.5 ms. In this work, we present the design details of this new injection system and a systematic characterization of the beam properties as well as the gas flowrates which can be accomplished. The thin and relatively short capillary yields a small divergence of the injected beam with a half opening angle of 20°. The gas box is designed for pre-fill pressures of 10 mbar up to 100 bars and makes a flowrate accessible from 1018 part/s up to 1023 part/s. It hence is a versatile system for both diagnostic as well as fuelling applications. The implementation of this system in ASDEX Upgrade will be described and its application for line ratio spectroscopy on helium will be demonstrated on a selected example.

  15. Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes.

    PubMed

    Griener, M; Schmitz, O; Bald, K; Bösser, D; Cavedon, M; De Marné, P; Eich, T; Fuchert, G; Herrmann, A; Kappatou, A; Lunt, T; Rohde, V; Schweer, B; Sochor, M; Stroth, U; Terra, A; Wolfrum, E

    2017-03-01

    In magnetically confined fusion plasmas controlled gas injection is crucial for plasma fuelling as well as for various diagnostic applications such as active spectroscopy. We present a new, versatile system for the injection of collimated thermal gas beams into a vacuum chamber. This system consists of a gas pressure chamber, sealed by a custom made piezo valve towards a small capillary for gas injection. The setup can directly be placed inside of the vacuum chamber of fusion devices as it is small and immune against high magnetic fields. This enables gas injection close to the plasma periphery with high duty cycles and fast switch on/off times ≲ 0.5 ms. In this work, we present the design details of this new injection system and a systematic characterization of the beam properties as well as the gas flowrates which can be accomplished. The thin and relatively short capillary yields a small divergence of the injected beam with a half opening angle of 20°. The gas box is designed for pre-fill pressures of 10 mbar up to 100 bars and makes a flowrate accessible from 10(18) part/s up to 10(23) part/s. It hence is a versatile system for both diagnostic as well as fuelling applications. The implementation of this system in ASDEX Upgrade will be described and its application for line ratio spectroscopy on helium will be demonstrated on a selected example.

  16. Hyphenation of gas chromatography to microcoil 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Grynbaum, Marc David; Kreidler, Diana; Rehbein, Jens; Purea, Armin; Schuler, Paul; Schaal, Walter; Czesla, Harri; Webb, Andrew; Schurig, Volker; Albert, Klaus

    2007-04-01

    Whereas the hyphenation of gas chromatography (GC) with mass spectrometry is of great importance, little is known about the coupling to nuclear magnetic resonance spectroscopy (NMR). The investigation of this technique is an attractive proposition because of the valuable information given by NMR on molecular structure. The experiments shown here are to our knowledge the first hyphenating capillary GC to microcoil NMR. In contrast to liquids, gases have rarely been investigated by NMR, mainly due to the experimental difficulties in handling gases and the low signal-to-noise-ratio (SNR) of the NMR signal obtained at atmospheric pressure. With advances in NMR sensitivity (higher magnetic fields and solenoidal microprobes), this limitation can be largely overcome. In this paper, we describe the use of a custom-built solenoidal NMR microprobe with an active volume of 2 microL for the NMR detection of several compounds at 400 MHz, first in a mixture, and then with full coupling to capillary GC to identify them separately. The injected amounts of each analyte in the hyphenated experiments are in the range of 15-50 micromol, resulting in reasonable SNR for sample masses of 1-2 microg.

  17. Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules.

    PubMed

    Hellmann, Robert; Vesovic, Velisa

    2015-12-07

    The viscomagnetic effect for two linear molecules, N2 and CO2, has been calculated in the dilute-gas limit directly from the most accurate ab initio intermolecular potential energy surfaces presently available. The calculations were performed by means of the classical trajectory method in the temperature range from 70 K to 3000 K for N2 and 100 K to 2000 K for CO2, and agreement with the available experimental data is exceptionally good. Above room temperature, where no experimental data are available, the calculations provide the first quantitative information on the magnitude and the behavior of the viscomagnetic effect for these gases. In the presence of a magnetic field, the viscosities of nitrogen and carbon dioxide decrease by at most 0.3% and 0.7%, respectively. The results demonstrate that the viscomagnetic effect is dominated by the contribution of the jj¯ polarization at all temperatures, which shows that the alignment of the rotational axes of the molecules in the presence of a magnetic field is primarily responsible for the viscomagnetic effect.

  18. The Conservation Equations for a Magnetically Confined Gas Core Nuclear Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.

    1994-07-01

    A very promising propulsion scheme that could meet the objectives of the Space Exploration Initiative (SEI) of sending manned missions to Mars in the early part of the next century is the open-cycle Gas Core (GCR) Nuclear Rocket. Preliminary assessments of the performance of such advice indicate that specific impulses of several thousand seconds, and thrusts of hundreds of kilonewtons are possible. These attractive propulsion parameters are obtained because the hydrogen propellant gets heated to very high temperatures by the energy radiated from a critical uranium core which is in the form of a plasma generated under very high pressure. Because of the relative motion between the propellant and the core, certain types of hydrodynamic instabilities can occur, and result in rapid escape of the fuel through the nozzle. One effective way of dealing with this instability is to place the system in an externally applied magnetic field. In this paper we formulate the appropriate conservation equations that describe the dynamics of GCR in the presence of magnetic fields, and indicate the role such fields play in the performance of the system.

  19. Numerical analysis of spin-orbit-coupled one-dimensional Fermi gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Y. H.

    2015-06-01

    Based on the density-matrix renormalization group and the infinite time-evolving block decimation methods we study the interacting spin-orbit-coupled 1D Fermi gas in a transverse magnetic field. We find that the system with an attractive interaction can have a polarized insulator phase, a superconducting (SC) phase, a Luther-Emery (LE) phase, and a band insulator phase as we vary the chemical potential and the strength of the magnetic field. Spin-orbit coupling (SOC) enhances the triplet pairing order at zero momentum in both the SC and the LE phase, which leads to an algebraically decaying correlation with the same exponent as that of the singlet pairing one. In contrast to the Fulde-Ferrell-Larkin-Ovchinnikov phase found in the spin imbalanced system without SOC, pairings at finite momentum in these two phases have larger exponents hence do not dictate the long-range behavior. We also test for the presence of Majorana fermions in this system. Unlike results from the mean-field study, we do not find positive evidence of Majorana fermions.

  20. Gas Sloshing in Abell 2204: Constraining the Properties of the Magnetized Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Chen, Huanqing; Jones, Christine; Andrade-Santos, Felipe; ZuHone, John A.; Li, Zhiyuan

    2017-03-01

    The rich galaxy cluster Abell 2204 exhibits edges in its X-ray surface brightness at ∼65 and 35 {kpc} west and east of its center, respectively. The presence of these edges, which were interpreted as sloshing cold fronts, implies that the intracluster medium (ICM) was recently disturbed. We analyze the properties of the ICM using multiple Chandra observations of Abell 2204. We find a density ratio of {n}{in}/{n}{out}=2.05+/- 0.05 and a temperature ratio of {T}{out}/{T}{in}=1.91+/- 0.27 (projected, or 1.87 ± 0.56 deprojected) across the western edge, and correspondingly {n}{in}/{n}{out}=1.96+/- 0.05 and {T}{out}/{T}{in}=1.45+/- 0.15 (projected, or 1.25 ± 0.26 deprojected) across the eastern edge. These values are typical of cold fronts in galaxy clusters. This, together with the spiral pattern observed in the cluster core, supports the sloshing scenario for Abell 2204. No Kelvin–Helmholtz eddies are observed along the cold front surfaces, indicating that they are effectively suppressed by some physical mechanism. We argue that the suppression is likely facilitated by the magnetic fields amplified in the sloshing motion and deduce from the measured gas properties that the magnetic field strength should be greater than 24 ± 6 μG and 32 ± 8 μG along the west and east cold fronts, respectively.

  1. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  2. Accretion of Gas onto Gap-opening Planets and Circumplanetary Flow Structure in Magnetized Turbulent Disks

    NASA Astrophysics Data System (ADS)

    Uribe, A. L.; Klahr, H.; Henning, Th.

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an α-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is αMHD = 10-3, we find the accretion rate onto the planet to be \\dot{M}\\approx 2\\times 10^{-6}M_{{J}}\\,yr^{-1} for a gap surface density of 12 g cm-2. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent α parameter.

  3. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai

    2015-07-01

    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.

  4. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.

    PubMed

    da Silva Vaz, Bruna; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has increased from 280 to 400 ppm in the last 10 years, and the coal-fired power plants are responsible for approximately 22 % of these emissions. The burning of fossil fuel also produces a great amount of solid waste that causes serious industrial and environmental problems. The biological processes become interesting alternative in combating pollution and developing new products. The objective of this study was to evaluate the CO2 biofixation potential of microalgae that were grown using gaseous effluents and solid residues of thermoelectric origin. The microalgae Chlorella fusca LEB 111 presented higher rate of CO2 biofixation (42.8 %) (p < 0.01) than did Spirulina sp. LEB 18. The values for the CO2 biofixation rates and the kinetic parameters of Spirulina and Chlorella cells grown using combustion gas did not differ significantly from those of cells grown using CO2 and a carbon source in the culture media. These microalgae could be grown using ash derived from coal combustion, using the minerals present in this residue as the source of the essential metals required for their growth and the CO2 derived from the combustion gas as their carbon source.

  5. Development and validation of a stability-indicating gas chromatographic method for quality control of residual solvents in blonanserin: a novel atypical antipsychotic agent.

    PubMed

    Peng, Ming; Liu, Jin; Lu, Dan; Yang, Yong-Jian

    2012-09-01

    Blonanserin is a novel atypical antipsychotic agent for the treatment of schizophrenia. Ethyl alcohol, isopropyl alcohol and toluene are utilized in the synthesis route of this bulk drug. A new validated gas chromatographic (GC) method for the simultaneous determination of residual solvents in blonanserin is described in this paper. Blonanserin was dissolved in N, N-dimethylformamide to make a sample solution that was directly injected into a DB-624 column. A postrun oven temperature at 240°C for approximately 2 h after the analysis cycle was performed to wash out blonanserin residue in the GC column. Quantitation was performed by external standard analyses and the validation was carried out according to International Conference on Harmonization validation guidelines Q2A and Q2B. The method was shown to be specific (no interference in the blank solution), linear (correlation coefficients ≥0.99998, n = 10), accurate (average recoveries between 94.1 and 101.7%), precise (intra-day and inter-day precision ≤2.6%), sensitive (limit of detection ≤0.2 ng, and limit of quantitation ≤0.7 ng), robust (small variations of carrier gas flow, initial oven temperature, temperature ramping rate, injector and detector temperatures did not significantly affect the system suitability test parameters and peak areas) and stable (reference standard and sample solutions were stable over 48 h). This extensively validated method is ready to be used for the quality control of blonanserin.

  6. Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography.

    PubMed

    Wang, Xilong; Qiao, Xuguang; Ma, Yue; Zhao, Tao; Xu, Zhixiang

    2013-04-24

    How to determine trace multipesticide residues in fruits is an important problem. This paper reports a molecularly imprinted polymer (MIP) that was prepared using 4-(dimethoxyphosphorothioylamino)butanoic acid as the template, acrylamide as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The novel imprinted polymer was characterized by static and kinetic adsorption experiments, and it exhibited good recognition ability and fast adsorption-desorption dynamicd toward trichlorfon, malathion, acephate, methamidophos, omethoate, dimethoate, phosphamidon, monocrotophos, and methyl parathion. Using this imprinted polymer as sorbent, matrix solid-phase dispersion coupled to gas chromatography for simultaneous determination of nine trace organophosphorus pesticide residues was first presented. Under the optimized conditions, the LOD (S/N = 3) of this method for the nine organophosphorus was 0.3-1.6 μg kg(-1); the RSD for three replicate extractions ranged from 1.2 to 4.8%. The apple and pear samples spiked with nine organophosphate pesticides at levels of 20 and 100 μg kg(-1) were determined according to this method with good recoveries ranging from 81 to 105%. Moreover, this developed method was successfully applied to the quantitative detection of the nine organophosphorus pesticide residues in orange samples.

  7. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography-flame photometric detector: Decline pattern and risk assessment.

    PubMed

    Malhat, Farag; Boulangé, Julien; Abdelraheem, Ehab; Abd Allah, Osama; Abd El-Hamid, Rania; Abd El-Salam, Shokr

    2017-08-15

    A simple and rapid gas chromatography with flame photometric detector (GC-FPD) determination method was developed to detect residue levels and investigate the dissipation pattern and safe use of fenitrothion in tomatoes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) using an ethyl acetate-based extraction, followed by a dispersive solid-phase extraction (d-SPE) with primary-secondary amine (PSA) and graphite carbon black (GCB) for clean up, was applied prior to GC-FPD analysis. The method showed satisfactory linearity, recovery and precision. The limits of detection (LOD) and quantification (LOQ) were 0.005 and 0.01mg/kg, respectively. The residue levels of fenitrothion were best described by first order kinetics with a half-life of 2.2days in tomatoes. The potential health risks posed by fenitrothion were not significant, based on supervised residue trial data. The current findings could provide guidance for safe and reasonable use of fenitrothion in tomatoes and prevent health problems to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of cyflumetofen residue in water, soil, and fruits by modified quick, easy, cheap, effective, rugged, and safe method coupled to gas chromatography/tandem mass spectrometry.

    PubMed

    Li, Minmin; Liu, Xingang; Dong, Fengshou; Xu, Jun; Qin, Dongmei; Zheng, Yongquan

    2012-10-01

    A new, highly sensitive, and selective method was developed for the determination of the cyflumetofen residue in water, soil, and fruits by using gas chromatography quadruple mass spectrometry. The target compound was extracted using acetonitrile and then cleaned up using dispersive solid-phase extraction with primary and secondary amine and graphitized carbon black, and optionally by a freezing-out cleanup step. The matrix-matched standards gave satisfactory recoveries and relative standard deviation values in different matrices at three fortified levels (0.05, 0.5, and 1.0 mg kg(-1) ). The overall average recoveries for this method in water, soil, and all fruits matrix at three fortified levels ranged from 76.3 to 101.5% with relative standard deviations in the range of 1.2-11.8% (n = 5). The calculated limits of detection and quantification were typically below 0.005 and 0.015 μg kg(-1), which were much lower than the maximum residue levels established by Japanese Positive List. This study provides a theoretical basis for China to draw up maximum residue level and analytical method for cyflumetofen acaricide in different fruits. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Emissions of PAHs from indoor crop residue burning in a typical rural stove: Emission factors, size distributions and gas-particle partitioning

    PubMed Central

    Shen, Guofeng; Wang, Wei; Yang, Yifeng; Ding, Junnan; Xue, Miao; Min, Yujia; Zhu, Chen; Shen, Huizhong; Li, Wei; Wang, Bin; Wang, Rong; Wang, Xilong; Tao, Shu; Russell, Armistead G.

    2011-01-01

    Indoor combustion of crop residues for cooking or heating is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in developing countries. However, data on PAH emission factors (EFs) for burning crop residues indoor, particularly those measured in field were scarce, leading to large uncertainties in the emission inventories. In this study, EFs of PAHs for nine commonly used crop residues burnt in a typical Chinese rural cooking stove were measured in simulated kitchen. The measured EFs of total PAHs averaged at 63 ± 37 mg/kg, ranging from 27 to 142 mg/kg, which were higher than those measured in chamber experiments, implying that the laboratory experiment based emission and risk assessment should be carefully reviewed. EFs of gaseous and particulate phase PAHs were 27 ± 13 and 35 ± 23 mg/kg, respectively. Composition profiles and isomer ratios of emitted PAHs were characterized. Stepwise regressions found that modified combustion efficiency and fuel moisture were the most important factors affecting the emissions. 80 ± 6 % of PAHs were associated with PM2.5 and the mass percentage of PAHs in fine particles increased as the molecular weight increased. For freshly emitted PAHs, absorption into organic carbon, rather than adsorption, dominated the gas-particle partitioning. PMID:21247097

  10. Residue analysis of acephate and its metabolite methamidophos in open field and greenhouse pakchoi (Brassica campestris L.) by gas chromatography-tandem mass spectrometry.

    PubMed

    Chuanjiang, Tao; Dahui, Li; Xinzhong, Zhang; Shanshan, Chen; Lijuan, Fu; Xiuying, Piao; Jie, Shi; Hui, Jiang; Chongjiu, Li; Jianzhong, Li

    2010-06-01

    To analyze the dynamic degradation and final residues of acephate and its metabolite methamidophos, field-experiments with pakchoi (Brassica campestris L.) in open field and greenhouse were carried out in Beijing, China in 2004 and 2005. The degradation dynamics and final residues were determined by gas chromatography (GC) equipped with a pulsed flame photometric detector and GC coupled to mass spectrometry (MS)/MS after acephate was applied on open field and green house pakchoi (B. campestris L.). The dynamic degradation results showed that the half-lives of acephate and methamidophos in open field pakchoi were 1.36 days with dynamic degradation equation C( t ) = 133.01e( - 0.5107t ), and 2.86 days with C( t ) = 6.5753e( - 0.2422t ), respectively. While the half-lives of acephate and methamidophos in the greenhouse were 1.07 days with C( t ) = 59.134e( - 0.4353t ) and 0.79 days with C( t ) = 0.2703e( - 0.2595t ), respectively. The final residue analysis demonstrated that >50% of total methamidophos were resulted from the degradation of acephate 7 and 18 days after it was applied on the greenhouse pakchoi, respectively. While in the open-field pakchoi, >90% of total methamidophos was found to be the metabolite of acephate.

  11. Determination of fungicide kresoxim-methyl residues in cucumber and soil by capillary gas chromatography with nitrogen-phosphorus detection.

    PubMed

    Li, Jian-Zhong; Wu, Xian; Hu, Ji-Ye

    2006-01-01

    The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9 x 10-12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg-1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg-1, fixed by EU) after 7 days for both treatments.

  12. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.

  13. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification

    NASA Astrophysics Data System (ADS)

    Asadullin, T. Ya; Galeev, I. G.

    2017-01-01

    In this paper the method of magnetic field application to control the gas discharge plasma effect on the various surfaces in processes of surface coating and modification is considered. The magnetic field directed perpendicular to the direction of electric current in the gas discharge plasma channel is capable to reject this plasma channel due to action of Lorentz force on the moving electrically charged particles [1,2]. The three-dimensional spatial structure of magnetic field is created by system of necessary quantity of the magnets located perpendicular to the direction of course of electric current in the gas-discharge plasma channel. The formation of necessary spatial distribution of magnetic field makes possible to obtain a required distribution of plasma parameters near the processed surfaces. This way of the plasma channel parameters spatial distribution management is the most suitable for application in processes of plasma impact on a surface of irregular shape and in cases when the selective impact of plasma on a part of a surface of a product is required. It is necessary to apply automated computer management of the process parameters [3] to the most effective plasma impact.

  14. Using Noble Gas Tracers to Estimate CO2 Saturation in the Field: Results from the 2014 CO2CRC Otway Repeat Residual Saturation Test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.

    2015-12-01

    Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the

  15. Residual stress and magnetic behavior of multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films

    NASA Astrophysics Data System (ADS)

    Sim, Chow Hong; Pan, Z. Z.; Wang, John

    2009-04-01

    Multiferroic composite thin films consisting of CoFe2O4 (CFO) and Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited through a combined route of rf magnetron sputtering and sol gel on Pt(111)/TiO2/SiO2/Si substrates. The coupling effects in the bilayered thin film were studied by looking at the relationships among the crystallite orientation, magnetic behavior, and the in-plane residual stress. Phase selective residual stress analysis conducted by using x-ray method demonstrated a close correlation between the stress imposed on the PZT layer and its texture. A change in the PZT layer orientation from (1¯11) to (010) with the increasing layer thickness was observed in the multiferroic thin film as the system changes from an interface energy minimizing texture to a strain energy density minimizing texture. The CFO phase in the multiferroic thin films was preferably oriented in the (111) orientation. However, there is a change in magnetization as well as coercivity of the multiferroic thin films when the top PZT layer was varied in thickness. A close correlation between the magnetization and the in-plane stress in the CFO bottom layer imposed by the PZT film thickness was observed.

  16. Determination of pesticide residues (> 0.5 microg/L) in soft drinks and sports drinks by gas chromatography with mass spectrometry: collaborative study.

    PubMed

    Miller, Kathleen D; Milne, Paul

    2008-01-01

    A collaborative study was conducted on a method for the measurement of 19 low-level pesticide residues in soft drinks and sports drinks by gas chromatography with mass spectrometry (GC/MS). The pesticide residues determined were 2,4'-dichlorodiphenyldichloroethylene (2,4'-DDE); 2,4'-dichlorodiphenyldichloroethane (2,4'-DDD); 4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE); 2,4'-dichlorodiphenyltrichloroethane (2,4'-DDT); 4,4'-dichlorodiphenyltrichloroethane (4,4'-DDT); 4,4'-dichlorodiphenyldichloroethane (4,4'-DDD); alpha-endosulfan; endosulfan-sulfate; dieldrin; aldrin; ethion; chlorpyrifos; beta-endosulfan; malathion; methyl-parathion; alpha-hexachlorocyclohexane (alpha-HCH); beta-HCH; delta-HCH; and gamma-HCH. Blind fortification solutions containing 4 different levels of pesticide residues (0, 0.1, 0.5, and 1.0 microg/L) were provided to 8 collaborating laboratories who used them to create test samples in 6 matrixes (also provided): 2 colas, a diet cola, a clear lemon-lime soft drink, an orange soft drink, and a sports drink. Reproducibility (RSDR) for all 19 pesticide residues in all matrixes ranged from 7 to 151% at the 0.1 microg/L level, 11 to 121% at 0.5 microg/L, and 14 to 67% at 1.0 microg/L. Repeatability (RSDr), applicable to the diet cola and the sports drink, ranged from 1 to 76% for the 19 pesticide residues at the 0.1 microg/L level, 9 to 38% at 0.5 microg/L, and 9 to 38% at 1.0 microg/L. Recoveries for the 19 pesticide residues in all matrixes ranged from 77 to 645% at the 0.1 microg/L level, 60 to 231% at 0.5 microg/L, and 61 to 146% at 1.0 microg/L. It is recommended that the method be accepted by AOAC as Official First Action with a limit of quantification (LOQ) equal to 0.5 microg/L for 4,4'-DDT; 2,4'-DDT; 2,4'-DDD; 4,4'-DDE; 4,4'-DDD; 2,4'-DDE; aldrin; dieldrin; alpha-endosulfan; endosulfan-sulfate; chlorpyrifos; and ethion, and an LOQ equal to 1.0 microg/L for beta-endosulfan; alpha-HCH; beta-HCH; delta-HCH; gamma-HCH; methyl-parathion; and

  17. Magnetic Flux Density from the Relative Circular Motion of Stars and Partially Ionized Gas in the Galaxy Mid-plane Vicinity

    NASA Astrophysics Data System (ADS)

    Jałocha, Joanna; Bratek, Łukasz; Pȩkala, Jan; Sikora, Szymon; Kutschera, Marek

    2016-12-01

    Observations suggest a slower stellar rotation relative to gas rotation in the outer part of the Milky Way Galaxy. This difference could be attributed to an interaction with the interstellar magnetic field. In a simple model, fields of order 10 μ {{G}} are then required, consistently with the observed values. This coincidence suggests a tool for estimating magnetic fields in spiral galaxies. A north-south asymmetry in the rotation of gas in the Galaxy could be of magnetic origin too.

  18. Using a magnetized plasma jet colliding with a heavy gas cloud to investigate MIF adiabatic heating and compression mechanisms

    NASA Astrophysics Data System (ADS)

    Bellan, Paul; Wongwaitayakornkul, Pakorn; Chai, Kil-Byoung; Greig, Amelia; Li, Hui

    2015-11-01

    Magnetized inertial fusion (MIF) is based on having an imploding liner adiabatically compress a magnetized plasma to the density and temperature required for thermonuclear fusion. The goal of the Caltech research program is to determine the scaling of the temperature and density increase when an actual experimental plasma is adiabatically compressed. The plasma parameters will be more modest than a fusion-grade configuration, but in compensation, the shot repetition rate will be much higher and the experiments will be non-destructive. The non-destructive feature results from having a high-speed magnetized plasma jet impact a localized heavy gas. From the point of view of an observer in the frame of the magnetized plasma jet, it will look as if the heavy gas is impacting and compressing the magnetized plasma and so, except for some geometrical differences, the configuration is equivalent to a liner impacting and compressing a stationary magnetized plasma. The experiment will be modeled by 3D numerical MHD and PIC codes. (as of approximately September 15).

  19. [Extraction and analysis of profenofos residue in tomato and cabbage by gas chromatography-flame photometric detector].

    PubMed

    Chen, Y J; Lu, Y H; Zhang, J; Liu, J; Wen, X M

    2001-05-01

    A quick and effective extraction and clean-up method of profenofos residue in tomato and cabbage is presented. Tomato and cabbage samples were homogenized with a mixture of acetone-hexane (1:1, V/V) using a mechanical homogenizer. The resultant homogenate was cleaned-up by adding active carbon and then filtered under reduced pressure. The filter cake was extracted twice with the same solvent mixture. The filtrates were combined and transferred into a separatory funnel. The organic layer was separated and evaporated to dryness using a rotary evaporator. The residue was dissolved in 2 mL of acetone and transferred into a small glass vial and then determined by GC on a 5% OV-101 Chromosorb W-HP column with flame photometric detector. The results showed that this analytical method can be used for an accurate determination of profenofos residues in tomato and cabbage. The minimum detectable concentration of profenofos in samples was 0.06 mg/kg. The recoveries of profenofos in tomato and cabbage were in the range of 96.2%-105.9% and 94.7%-102.3%, respectively. The relative standard deviations were in the range of 3.7%-4.9% and 3.7%-5.0%, respectively. The tomato and cabbage samples were collected 3 weeks after applying profenofos in the field, and the contents of profenofos were determined. The average contents of profenofos in tomato and cabbage were (13.8 +/- 0.8) mg/kg and (14.4 +/- 0.7) mg/kg, respectively.

  20. Long-term stability of pure standards and stock standard solutions for the determination of pesticide residues using gas chromatography.

    PubMed

    Avramides, Elizabeth J

    2005-07-08

    The regular replacement of pure standards used in pesticide residue analysis laboratories and frequent preparation of stock standard solutions, both required by many accreditation bodies, impose considerable demands on a laboratory's resources. In this study, pure standards for all but one (heptenophos) of 118 different pesticides amenable to analysis by GC, and stock standard solutions (1000 microg/ml) prepared from these in toluene, acetone or ethyl acetate have been shown to be stable at < or = -20 degrees C over long periods: 4-13 and 2-8 years, respectively, for pure standards and solutions. Suitable solvents, containers and handling procedures are essential to avoid evaporation from solutions.

  1. 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A.

    PubMed

    Tanokura, M

    1983-07-01

    The aromatic region of the NMR spectrum of bovine pancreatic ribonuclease A was analyzed in order to clarify the nature of the microenvironments surrounding the individual histidine, tyrosine, and phenylalanine residues and the interactions with inhibitors. The NMR titration curves of ring protons of six tyrosine and three phenylalanine residues as well as four histidine residues were determined at 37 degrees C between pH 1.5 and pH 11.5 under various conditions. The titration curves were analyzed on the basis of a scheme of a simple proton dissociation sequence and the most probable values were obtained for the macroscopic pK values and intrinsic chemical shifts. The microenvironments surrounding the residues and the effects of inhibitors are discussed on the basis of these results. Based on the titration curves of ring protons, the six tyrosine residues were classified into the following four groups: (1) titratable and different chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (2) titratable but similar chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (3) not titratable and different chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residues), and (4) not titratable and similar chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residue). The resonance signals of ring protons were tentatively assigned to tyrosine and phenylalanine residues. The NMR titration curves of His-48 ring protons were continuous in solution containing 0.2 M sodium acetate but were discontinuous in solution containing 0.3 M NaCl because the NMR signals disappeared at pH values between 5 and 6.5. The effects of addition of formate, acetate, propionate, and ethanol were investigated in order to elucidate the mechanism of the continuity of the titration curves of His-48 in the presence of acetate ion. The NMR signal of His-48 C(2) protons was observed at pH 6 in the presence of acetate and propionate ions

  2. High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Török, G.; Ceschini, G. F.; Tognarelli, L.; Füzesy, I.; Rosta, L.

    2004-07-01

    The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

  3. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  4. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying.

    PubMed

    Gutekunst, Madison Y; Vargas, Rodrigo; Seyfferth, Angelia L

    2017-09-01

    Incorporation of silica-rich rice husk residue into flooded paddy soil decreases arsenic uptake by rice. However, the impact of this practice on soil greenhouse gas (GHG) emissions and elemental cycling is unresolved particularly as amended soils experience recurrent flooding and drying cycles. We evaluated the impact of pre-incubated silica-rich rice residue incorporation to soils on pore water chemistry and soil GHG fluxes (i.e., CO2, CH4, N2O) over a flooding and drying cycle typical of flooded rice cultivation. Soils pre-incubated with rice husk had 4-fold higher pore water Si than control and 2-fold higher than soils pre-incubated with rice straw, whereas the pore water As and Fe concentrations in soils amended with pre-incubated straw and husk were unexpectedly similar (maximum ~0.85μM and ~450μM levels, respectively). Pre-incubation of residues did not affect Si but did affect the pore water levels of As and Fe compared to previous studies using fresh residues where straw amended soils had higher As and Fe in pore water. The global warming potential (GWP) of soil GHG emissions decreased in the order straw (612±76g CO2-eqm(-2))>husk (367±42gCO2-eqm(-2))>ashed husk=ashed straw (251±26 and 278±28gCO2-eqm(-2))>control (186±23gCO2-eqm(-2)). The GWP increase due to pre-incubated straw amendment was due to: a) larger N2O fluxes during re-flooding; b) smaller contributions from larger CH4 fluxes during flooded periods; and c) higher CH4 and CO2 fluxes at the onset of drainage. In contrast, the GWP of the husk amendment was dominated by CO2 and CH4 emissions during flooded and drainage periods, while ashed amendments increased CO2 emissions particularly during drainage. This experiment shows that ashed residues and husk addition minimizes GWP of flooded soils and enhances pore water Si compared to straw addition even after pre-incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Determination of multiclass pesticide residues in apple juice by gas chromatography-mass spectrometry with large-volume injection.

    PubMed

    Wang, Jian-Hua; Zhang, Yi-Bing; Wang, Xiu-Lin

    2006-10-01

    This study presents two GC-MS SIM methods, in combination with large-volume injection programmed-temperature vaporization (LVI-PTV) injection, for the determination of 141 pesticide residues in apple juice. The sample was extracted with ACN, and coextractives were removed with primary/secondary amine sorbent. ACN extract (20 microL) was injected into a PTV injection port in solvent vent mode, and the pesticides were determined by GC-MS using retention time locking software. Deuterium-labeled pesticides (surrogate standards) were used for analytical quality control. In the validation experiments, pesticides recoveries were found to be 70-121% with RSDs of 4.6-21% (n = 6).

  6. Monitoring pesticide residues in greenhouse tomato by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by gas-chromatography-mass spectrometry.

    PubMed

    Melo, Armindo; Cunha, Sara C; Mansilha, Catarina; Aguiar, Ana; Pinho, Olívia; Ferreira, Isabel M P L V O

    2012-12-01

    A multiclass and multiresidue method for pesticide analysis in tomato was validated. Extraction and pre-concentration of the pesticide residues from acetonitrile extracts was performed by using dispersive liquid-liquid microextraction (DLLME) technique, followed by gas chromatography-mass detection. DLLME was performed using carbon tetrachloride as extractive solvent and acetonitrile extract as dispersive solvent, in order to increase enrichment factor of the extraction procedure. Validation parameters indicated the suitability of the method for routine analyses of thirty pesticides in a large number of samples. In general, pesticide recoveries ranged between 70% and 110% and repeatability ranged between 1% and 20%. The proposed method was applied to the monitoring of pesticides in tomatoes grown during winter in greenhouses. Among the compounds considered in this work, cyprodinil was found in tomato at concentrations of 0.33mg/kg, other pesticides like azoxystrobin, fenhexanid, tolyfluanid, λ-cyhalothrin and trifloxystrobin were also detected, but, not quantified.

  7. A novel fully automated on-line coupled liquid chromatography-gas chromatography technique used for the determination of organochlorine pesticide residues in tobacco and tobacco products.

    PubMed

    Qi, Dawei; Fei, Ting; Sha, Yunfei; Wang, Leijun; Li, Gang; Wu, Da; Liu, Baizhan

    2014-12-29

    In this study, a novel fully automated on-line coupled liquid chromatography-gas chromatography (LC-GC) technique was reported and applied for the determination of organochlorine pesticide residues (OCPs) in tobacco and tobacco products. Using a switching valve to isolate the capillary pre-column and the analytical column during the solvent evaporation period, the LC solvent can be completely removed and prevented from reaching the GC column and the detector. The established method was used to determinate the OCPs in tobacco samples. By using Florisil SPE column and employing GPC technique, polarity impurities and large molecule impurities were removed. A dynamic range 1-100ng/mL was achieved with detection limits from 1.5 to 3.3μg/kg. The method exhibited good repeatability and recoveries. This technology may provide an alternative way for trace analysis of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect

    Lawrence J. Pekot; Ron Himes

    2004-05-31

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  9. Pesticide residue analysis of a dietary ingredient by gas chromatography/selected-ion monitoring mass spectrometry using neutral alumina solid-phase extraction cleanup.

    PubMed

    Jeong, Mijeong Lee; Zahn, Michael; Trinh, Thao; Brooke, Fay A; Ma, Wenwen

    2008-01-01

    A sample cleanup procedure has been developed to remove coextractives that interfere with pesticide residue analysis of a dietary ingredient (Product B), an extract consisting of Scutellaria baicalensis and Acacia catechu. Samples were extracted using 1% acetic acid in acetonitrile, followed by solid-phase extraction and analysis by capillary gas chromatography with mass spectrometry in the selective-ion monitoring mode. Neutral alumina (alumina N) was found to be the most effective sorbent to remove coextractives from Product B; other materials that were tested but failed to remove interference were graphitized carbon black/primary-secondary amine (PSA), octadecylsilane (C18), Florisil, Oasis MCX, and strong anion exchange-PSA. The method was specifically developed for Product B, which was spiked with 41 organochlorine and organophosphorus pesticides, and resulted in the recovery of 80 to 120% at U.S. Pharmacopeia limits (0.06 to 4 microg/g) for the majority of the pesticides.

  10. Evaluation of the QuEChERS Method and Gas Chromatography–Mass Spectrometry for the Analysis Pesticide Residues in Water and Sediment

    PubMed Central

    de Macedo, A. N.; Vicente, G. H. L.; Nogueira, A. R. A.

    2010-01-01

    A method for the determination of pesticide residues in water and sediment was developed using the QuEChERS method followed by gas chromatography – mass spectrometry. The method was validated in terms of accuracy, specificity, linearity, detection and quantification limits. The recovery percentages obtained for the pesticides in water at different concentrations ranged from 63 to 116%, with relative standard deviations below 12%. The corresponding results from the sediment ranged from 48 to 115% with relative standard deviations below 16%. The limits of detection for the pesticides in water and sediment were below 0.003 mg L−1 and 0.02 mg kg−1, respectively. PMID:21165598

  11. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi

    2016-12-01

    In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice.

  12. Leaching of the residue from the dry off-gas de-dusting and desulfurization process of an iron ore sinter plant

    NASA Astrophysics Data System (ADS)

    Lanzerstorfer, Christof; Xu, Qi; Neuhold, Robert

    2015-02-01

    The residue from a second-stage dry sinter plant off-gas cleaning process contains both the fine dust from the sinter plant and the sorbent used. Recycling of the material that is usually handled by landfills to the sinter plant feed is not possible because of its chloride content. Leaching of the chlorides allow the recycling of remaining solids. The saline leachate produced contains some heavy metals and must be treated before it is discharged into the sea. In laboratory experiments, leaching tests with the subsequent treatment of the leachate were conducted. After the process was optimized, all heavy-metal concentrations were below the permissible values. The optimum treatment conditions for heavy-metal precipitation were observed to be the filtration of the suspended solids followed by the dosing of liquid with lime milk (pH 10) and the subsequent precipitation using sodium sulfide.

  13. Non-linear Resistivity of a Two-Dimensional Electron Gas in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Vavilov, Maxim G.; Aleiner, Igor L.; Glazman, Leonid I.

    2007-03-01

    We develop a theory of nonlinear response to an electric field of a two-dimensional electron gas (2DEG) placed in a classically strong magnetic field. The latter leads to a non-linear current-voltage characteristic at a relatively weak electric field. The origin of the non-linearity is two-fold: the formation of a non-equilibrium electron distribution function, and the geometrical resonance in the inter-Landau-levels transitions rates. We find the dependence of the current-voltage characteristics on the electron relaxation rates in the 2DEG. Our results can be applied for analysis of measurements at low [1] and high [2,3] current densities. [1] J. Zhang, S. Vitkalov, A. A. Bykov, A. K. Kalagin and A. K. Bakarov, cond-mat/0607741. [2] C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons and J. L. Reno, Phys. Rev. Lett. 89, 076801 (2002). [3] W. Zhang, H. -S. Chiang, M. A. Zudov, L. N. Pfeiffer and K. W. West, cond-mat/0608727.

  14. Magnetic solid phase extraction and gas chromatography-mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons.

    PubMed

    Cai, Ying; Yan, Zhihong; NguyenVan, Manh; Wang, Lijia; Cai, Qingyun

    2015-08-07

    Fluorenyl functionalized superparamagnetic core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@Flu) were prepared and characterized by transmission electron microscope, X-ray diffraction and infrared spectroscopy. The MNPs having an average diameter of 200nm were then used as solid-phase extraction sorbent for the determination of 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in water samples designated by United States Environmental Protection Agency (U.S. EPA). The main influencing parameters, including sorbent amount, desorption solvent, sample volume and extraction time were optimized. Analyses were performed on gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) mode. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels. Limit of detection ranging from 0.5 to 4.0ng/L were obtained. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 13.1%. Finally, the proposed method was successfully applied for the determination of PAHs in water samples with the recoveries in the range of 96.0-106.7%.

  15. Current-Induced Cooling Phenomenon in a Two-Dimensional Electron Gas Under a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji

    2013-07-01

    We investigate the spatial distribution of temperature induced by a dc current in a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We numerically calculate the distributions of the electrostatic potential ϕ and the temperature T in a 2DEG enclosed in a square area surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal (left and right) boundaries (with ϕ left< ϕ right and T left= T right), using a pair of nonlinear Poisson equations (for ϕ and T) that fully take into account thermoelectric and thermomagnetic phenomena, including the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the vicinity of the left-bottom corner, the temperature becomes lower than the fixed boundary temperature, contrary to the naive expectation that the temperature is raised by the prevalent Joule heating effect. The cooling is attributed to the Ettingshausen effect at the bottom adiabatic boundary, which pumps up the heat away from the bottom boundary. In order to keep the adiabatic condition, downward temperature gradient, hence the cooled area, is developed near the boundary, with the resulting thermal diffusion compensating the upward heat current due to the Ettingshausen effect.

  16. Magnetic properties of the low-density two- and three- dimensional gas

    NASA Astrophysics Data System (ADS)

    Ceperley, David

    2004-03-01

    Path Integral Monte Carlo was used to calculate[1] defect energies and exchange frequencies in a clean 2d Wigner crystal. Agreement with WKB calculations is found at very low density, but the results show an enhanced increase with density near melting, perhaps diverging at melting. Remarkably, the exchange Hamiltonian closely resembles the measured exchanges in 2d 3He. Using the resulting multi-spin exchange model we find the spin Hamiltonian is a frustrated antiferromagnet, with a spin liquid ground state. We discuss evidence that long ring exchanges are a precursor to melting. To determine the state of spin polarization of the 3D electron gas at very low densities and zero temperature, Diffusion Quantum Monte Carlo was used to calculate[2] the energy versus spin polarization. We find a second order phase transition to a partially polarized phase at rs = 50 ± 2. The magnetic transition temperature is estimated using the Stoner model. [1] Bernu, B., L. Candido and D. M. Ceperley, Phys. Rev. Lett. 86, 870-873 (2001). [2] Zong, F. H, C. Lin and D. M. Ceperley, Phys. Rev. E 66, 036703:1-7 (2002).

  17. Multiresidue method for the analysis of more than 140 pesticide residues in fruits and vegetables by gas chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Fernández Moreno, José Luis; Garrido Frenich, A; Plaza Bolaños, Patricia; Martínez Vidal, José Luis

    2008-09-01

    A new multiresidue method has been developed and validated for the determination of more than 140 pesticide residues in cucumber and orange by gas chromatography coupled to triple quadrupole mass spectrometry (GC-QqQ-MS/MS) in a single run of 25.50 min. The triple quadrupole (QqQ) analyzer simultaneously operated in the selected reaction monitoring (SRM) and selected ion monitoring (SIM) modes, acquiring two or three transitions per compound. Samples were extracted by the application of a single-phase extraction of 10 g of sample with acetonitrile containing 1% of acetic acid, followed by a liquid-liquid partition formed by the addition of 4 g of MgSO(4) and 1 g of NaOAc. A dispersive solid-phase extraction (D-SPE) with primary secondary amine (PSA) was applied to clean up the extracts. A final concentration step was included in order to increase sensitivity in the instrumental analysis. The method was properly validated in each matrix in a wide dynamic range (10-400 microg kg(-1)): this work relies on a new quantification strategy by the use of two calibration curves to increase the dynamic range, which permitted reduction of sample dilutions and increase in sample throughput. Recovery was studied at three concentration levels (11.5, 50.0, and 150.0 microg kg(-1)), yielding values in the range 70-110% with precision values, expressed as relative standard deviation (RSD), lower than 20 and 25% for the intraday and interday precision, respectively. Limits of quantification (LOQs) were established at 10 microg kg(-1), the lowest maximum residue level (MRL) value set by the European Union in vegetables. The method was successfully applied to the analysis of pesticide residues in real samples from the southeastern Spain.

  18. Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Martins, Manoel L; Donato, Filipe F; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2013-09-01

    Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L(-1). Recovery assays presented mean recoveries between 70 and 120% for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated.

  19. Multiresidue determination of pyrethroid pesticide residues in pepper through a modified QuEChERS method and gas chromatography with electron capture detection.

    PubMed

    Zhang, Yuping; Hu, Deyu; Zeng, Song; Lu, Ping; Zhang, Kankan; Chen, Lingzhu; Song, Baoan

    2016-02-01

    This study developed and used a modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) method coupled with gas chromatography with electron capture detection to determine eight pyrethroid pesticide residues in green, red and dehydrated red peppers. Pyrethroids were extracted with acetonitrile, partitioned with sodium chloride and purified with primary secondary amino and graphitized carbon black in hexane. The QuEChERS extraction conditions were optimized, and the matrix effects that might influence recoveries were evaluated and minimized using matrix-matched calibration curves. Under the optimized conditions, the calibration curves for pyrethroid pesticides showed good linearities in the concentration range of 0.05-20 µg/mL with determination coefficients (R(2) ) >0.997. The limits of quantification of eight pyrethroids were 0.004-0.04 mg/kg for green and red pepper and 0.04-0.5 mg/kg for dehydrated red pepper. These values are below the suggested regulatory maximum residue limits. The mean recoveries ranged between 79.0 and 104%, and the relative standard deviations were <11%. The developed method was successfully applied to commercial samples. Some samples were found to contain pyrethroid pesticides with levels below the legal limits.

  20. Determination of coumaphos, chlorpyrifos and ethion residues in propolis tinctures by matrix solid-phase dispersion and gas chromatography coupled to flame photometric and mass spectrometric detection.

    PubMed

    Pérez-Parada, Andrés; Colazzo, Marcos; Besil, Natalia; Geis-Asteggiante, Lucía; Rey, Federico; Heinzen, Horacio

    2011-08-26

    A new analytical method has been developed and successfully evaluated in routine application for the quantitative analysis of a selected group of organophosphate pesticides (coumaphos, chlorpyrifos and ethion) which can be found at trace levels in propolis tinctures (ethanolic propolis extracts); a valuable commodity used as raw material in the food and pharmaceutical industries for which there have been few attempts for pesticide residue analysis reported in the literature. The proposed methodology is based on matrix solid phase dispersion (MSPD) using aluminum sulfate anh. a novel dispersant material and subsequent column chromatography clean-up in silica gel prior to gas chromatography (GC) with both flame photometric detector (FPD) and mass spectrometry (MS) detection used for the routine quantification and identification of the residues, respectively. The limits of detection, for coumaphos, chlorpyrifos and ethion were below 26.0 μg/kg in FPD and 1.43 μg/kg for MS detection. Mean recoveries were in the range of 85-123% with RSD values below 13%, which suggests that the proposed method is fit for the purpose of analyzing pesticides in propolis tinctures containing high concentration of polyphenolics. The method has been successfully applied in our laboratory for the last 2 year in the analysis of real propolis tinctures samples.

  1. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Wang, Shuo; Zhao, Peng; Min, Guang; Fang, Guozhen

    2007-09-21

    A reliable multi-residue method which was based on solid-phase extraction (SPE) with multi-walled carbon nanotubes (MWCNTs) as adsorbent was developed for determination and quantitation of 12 pesticides (carbofuran, iprobenfos, parathion-methyl, prometryn, fenitrothion, parathion-ethyl, isocarbofos, phenthoate, methidathion, endrin, ethion, methoxychlor) in surface water by gas chromatography-mass spectrometry (GC-MS). Parameters that might influence the extraction efficiency such as the eluent volume, the sample flow rate and the sample loading volume were optimized. The experimental results showed the excellent linearity of 12 pesticides (R(2)>0.99) over the range of 0.04-4 microg L(-1), and the precisions (RSD) were 3.1-15.1% under the optimal conditions. The detection limits of proposed method could reach 0.01-0.03 microg L(-1) based on the ratio of chromatographic signal to base line noise (S/N=3). Good recoveries achieved with spiked water samples were in the range of 82.0-103.7%. The results indicated that MWCNTs have good adsorbability to the 12 pesticides tested in this study. With less cost, less analytical time and less solvent-consuming, the developed multi-residue method could be used to determine multi-class pesticides in water simultaneously.

  2. Automated Multiplug Filtration Cleanup for Pesticide Residue Analyses in Kiwi Fruit (Actinidia chinensis) and Kiwi Juice by Gas Chromatography-Mass Spectrometry.

    PubMed

    Qin, Yuhong; Zhang, Jingru; He, Yining; Han, Yongtao; Zou, Nan; Li, Yanjie; Chen, Ronghua; Li, Xuesheng; Pan, Canping

    2016-08-10

    To reduce labor-consuming manual operation workload in the cleanup steps, an automated multiplug filtration cleanup (m-PFC) method for QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. It could control the volume and speed of pulling and pushing cycles accurately. In this study, m-PFC was based on multiwalled carbon nanotubes (MWCNTs) mixed with primary-secondary amines (PSA) and anhydrous magnesium sulfate (MgSO4) in a packed column for analysis of pesticide residues followed by gas chromatography-mass spectrometry (GC-MS) detection. It was validated by analyzing 33 pesticides in kiwi fruit and kiwi juice matrices spiked at two concentration levels of 10 and 100 μg/kg. Salts, sorbents, m-PFC procedure, 4 mL of automated pulling and pushing volume, 6 mL/min automated pulling speed, and 8 mL/min pushing speed were optimized for each matrix. After optimization, spike recoveries were within 71-120% and <20% RSD for all analytes in kiwi fruit and kiwi juice. Matrix-matched calibrations were performed with the coefficients of determination >0.99 between concentration levels of 10 and 1000 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples.

  3. Rapid multiplug filtration cleanup with multiple-walled carbon nanotubes and gas chromatography-triple-quadruple mass spectrometry detection for 186 pesticide residues in tomato and tomato products.

    PubMed

    Zhao, Pengyue; Huang, Baoyong; Li, Yanjie; Han, Yongtao; Zou, Nan; Gu, Kejia; Li, Xuesheng; Pan, Canping

    2014-04-30

    This study reports the development and validation of a novel rapid cleanup method based on multiple-walled carbon nanotubes in a packed column filtration procedure for analysis of pesticide residues followed by gas chromatography-triple-quadruple tandem mass spectrometry detection. The cleanup method was carried out by applying the streamlined procedure on a multiplug filtration cleanup column with syringes. The sorbent used for removing the interferences in the matrices is multiple-walled carbon nanotubes mixed with anhydrous magnesium sulfate. The proposed cleanup method is convenient and time-saving as it does not require any solvent evaporation, vortex, or centrifugation procedures. It was validated on 186 pesticides and 3 tomato product matrices spiked at two concentration levels of 10 and 100 μg kg(-1). Satisfactory recoveries and relative standard deviations are shown for most pesticides using the multiplug filtration cleanup method in tomato product samples. The developed method was successfully applied to the determination of pesticide residues in market samples.

  4. [Simultaneous determination of 103 pesticide residues in cabbages and apples using programmable temperature vaporizer-based large volume injection by gas chromatography-negative chemical ionization mass spectrometry].

    PubMed

    Dong, Jing; Pan, Yuxiang; Qin, Yaping; Lü, Jianxia; Yu, Qiongwei

    2010-07-01

    A gas chromatography-mass spectrometric (GC-MS) method has been established for the simultaneous determination of 103 pesticide residues in cabbages and apples using programmable temperature vaporizer-based large volume injection (PTV-LVI) and negative chemical ionization (NCI). It was found that much lower detection limits for the investigated pesticides can be obtained. Prior to GC-NCI/MS analysis, the optimized parameters of PTV-LVI were as follows: inlet temperature was set at 45 degrees C, split vent flow rate was 20 mL/min, evaporation time was 1 min and evaporation temperature was set at 60 degrees C. The volume of injection was 10 microL. Co-extractives were removed from the acetonitrile extracts using solid phase extraction with octadecyl (200 mg) and primary secondary amine (100 mg) sorbents. Matrix matched calibration solutions were used for all the analyses. To evaluate performance of the method, validation experiments were carried out in cabbages and apples at two spiking levels (5 and 10 microg/kg). The average recoveries ranged from 58.5% to 113.2%, and the relative standard deviations (RSDs, n = 6) were in the range of 3.3% - 14.5%. The limits of detection (S/N = 3) were less than 5 microg/kg for all the pesticides. The results show that this method is simple, rapid, sensitive and specific. It is appropriate for the simultaneous identification and quantification of the multi-residues in cabbages and apples.

  5. Multivariate study of parameters in the determination of pesticide residues in apple by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry using experimental factorial design.

    PubMed

    Abdulra'uf, Lukman Bola; Tan, Guan Huat

    2013-12-15

    Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Multiresidue Method for Determination of 183 Pesticide Residues in Leeks by Rapid Multiplug Filtration Cleanup and Gas Chromatography-Tandem Mass Spectrometry.

    PubMed

    Zou, Nan; Han, Yongtao; Li, Yanjie; Qin, Yuhong; Gu, Kejia; Zhang, Jingru; Pan, Canping; Li, Xuesheng

    2016-08-10

    This study reports the development of a novel multiplug filtration cleanup (m-PFC) procedure for analysis of pesticide residues in leek samples followed by gas chromatography-tandem mass spectrometry detection. The leek samples were initially purified following the dispersive solid-phase extraction with different sorbents to determine the most suitable proportioning of sorbent materials; then, the m-PFC method was carried out by applying the streamlined procedure with syringes. Average recoveries of most pesticides were in the range from 70.2 to 126.0% with the relative standard deviation < 20% with the m-PFC process. The limits of detection were 0.03-3.3 μg kg(-1). The limits of quantification were 0.1-10 μg kg(-1). The m-PFC process is convenient and time-efficient, taking just a few seconds per sample. Finally, the developed method was successfully applied to the determination of pesticide residues in market samples. In that analysis, 35 pesticides were detected in 29 samples, with values ranging from 2.0 to 9353.1 μg kg(-1).

  7. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; He, Ming; Wang, Dan; Zhang, Si-Lan

    2017-09-15

    The overall objective of this research project is to investigate the feasibility of incorporating oil-based drilling cuttings pyrolysis residues (ODPR) and fly ash serve as replacements for fine aggregates and cementitious materials in concrete. Mechanical and physical properties, detailed environmental performances, and microstructure analysis were carried out. Meanwhile, the early hydration process and hydrated products of ODPR concrete were analyzed with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that ODPR could not be categorize into hazardous wastes. ODPR had specific pozzolanic characteristic and the use of ODPR had certain influence on slump and compressive strength of concrete. The best workability and optimal compressive strength were achieved with the help of 35% ODPR. Environmental performance tests came to conclusion that ODPR as recycled aggregates and admixture for the preparation of concrete, from the technique perspective, were the substance of mere environmental contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simultaneous determination of three residual barbiturates in pork using accelerated solvent extraction and gas chromatography-mass spectrometry.

    PubMed

    Zhao, Haixiang; Wang, Liping; Qiu, Yueming; Zhou, Zhiqiang; Li, Xiang; Zhong, Weike

    2006-08-18

    A new method was developed for the rapid extraction and unequivocal determination of barbital, amobarbital and phenobarbital residues in pork. The isolation of the analytes from pork samples was accomplished by utilizing an accelerated solvent extractor ASE 300. The procedure was automatically carried out in series for fat removing and extraction, respectively with n-hexane and acetonitrile pressurized constantly at 10.3 MPa for 30 min. After evaporation, the extracts were cleaned up on a C(18) solid phase extraction (SPE) cartridge and the barbiturates were eluted with hexane-ethyl acetate (7:3), evaporated on a rotary evaporator and derivatized with CH(3)I. The methylated barbiturates were separated on a HP-5MS capillary column and detected with a mass detector. Electron impact ion source (EI) operating in time program-selected ion monitoring mode (SIM) was used for identification and external standard method was used for quantification. Good linearity was obtained in the range from 0.5 microg/kg to 25 microg/kg. Average recoveries of the three barbiturates spiked in pork ranged from 84.0% to 103.0%, with relative standard deviations from 1.6% to 12%. The limit of detection (LOD) was 0.5 microg/kg for the three barbiturates (S/N>or=3). The quantification limit (LOQ) was 1 microg/kg for the three barbiturates (S/N>or=10).

  9. Congener specific determination of toxaphene residues in fish liver oil using gas chromatography coupled to ion trap MS/MS.

    PubMed

    Bernardo, F J Guzmán; Fernández, M A; González, M J

    2005-10-01

    A new approach to the determination of six toxaphene congeners in edible stuff has been accomplished. The analytical procedure presented in this paper involves a single-step cleanup process prior to the analysis. A solution containing three (13)C labelled polychlorinated biphenyls was used as internal standard and tetrachloronaphtalene was used as injection standard. The analytical technique used was gas chromatography coupled to ion trap mass spectrometry detector in MS/MS mode. The parameters affecting the successive fragmentations were discussed and optimized. The limits of detection ranged from 2 to 49pg microl(-1). The toxaphene congeners were determined in two different fish liver oil pills sold in Spain as a supplementary vitamin support.

  10. Development and Application of Pyrolysis Gas Chromatography/Mass Spectrometry for the Analysis of Bound Trinitrotoluene Residues in Soil

    USGS Publications Warehouse

    Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.

    2004-01-01

    TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.

  11. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect

    Lawrence J. Pekot

    2004-06-30

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  12. Screening for pesticide residues in oil seeds using solid-phase dispersion extraction and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    PubMed

    Wang, Xiupin; Li, Peiwu; Zhang, Wen; Zhang, Qi; Ma, Fei; Yu, Li; Wang, Lin

    2012-07-01

    In this paper, we describe the development of an oil-absorbing matrix solid-phase dispersion extraction with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry suitable for screening of 68 pesticide residues (PRs) in peanut, soybean, rape seed, sesame, and sunflower seed. The 68 PRs include 27 kinds of organophosphorus, 23 organic chlorines, 11 synthetic pyrethroids, and 7 carbamates. Heptachlor epoxide was used as the internal standard. Aminopropyl silica was chosen as the dispersion sorbent of the oil-absorbing matrix solid-phase dispersion extraction and was applied to capture hydrophobic components from high oil samples. A 35-min orthogonal separation was performed by using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry with a nonpolar-polar column set. Identification of 68 PRs in the extract was finished by using the time-of-flight mass spectrometry in the assistance of an automated peak-find and spectral deconvolution software. A screening based on control design was introduced and explained. This screening method considerably reduced the cost for the quantitative and confirmatory analyses. The quality of present screening method was evaluated by the Document No. SANCO/10684/2009. The false positive rate and false negative rate provide a useful tool for the evaluation of screening performance.

  13. Study of the 30P({alpha},p){sup 33}S reaction using a gas-filled magnetic spectrograph

    SciTech Connect

    Figueira, J. M.; Deibel, C. M.; Fernandez Niello, J. O.; Greene, J.; Jiang, C. L.; Lee, H. Y.; Pardo, R. C.; Rehm, K. E.; Ugalde, C.; Zinkann, G.; Marley, S. T.; Patel, N.; Paul, M.

    2010-08-04

    We have developed a technique using a gas-filled magnetic spectrograph which enables us to study ({alpha},p) transfer reactions of astrophysical interest in inverse kinematics and by means of the time-inverse reactions. We present preliminary experimental results of the reaction {sup 30}P({alpha},p){sup 33}S which confirm that the technique permits the study of these kinds of transfer reactions.

  14. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  15. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    NASA Astrophysics Data System (ADS)

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2014-04-01

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  16. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  17. Antibody-integrated and functionalized graphite-encapsulated magnetic beads, produced using ammonia gas plasma technology, for capturing Salmonella.

    PubMed

    Sakudo, Akikazu; Chou, Han; Nagatsu, Masaaki

    2015-03-01

    Salmonella spp. is the single and most important causative agent of foodborne infections, especially involving foods such as eggs, milk and meat. To prevent infection, a reliable surveillance system is required that can quickly and sensitively detect Salmonella. Here, we describe the development of antibody-integrated magnetic beads that are functionalized by a novel strategy using ammonia gas plasma. Ammonia plasma, produced by a radio frequency (RF) power supply, was allowed to react with the surface of graphite-encapsulated magnetic beads, resulting in the introduction of amino groups. An anti-Salmonella antibody was then anchored by sulfide groups present on the protein surface to the amino groups of the magnetic beads via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The potential usefulness of these magnetic beads for capturing Salmonella was examined as follows. The beads were incubated with Salmonella in liquid medium and then separated from the supernatant by applying a magnetic field. After thorough washing, adsorption of Salmonella to the beads was confirmed by immunochromatography, polymerase chain reaction and a direct culture assay. Our findings indicate that the capture and concentration of Salmonella using the antibody-integrated magnetic beads was more efficient than commercial Dynabeads® anti-Salmonella, which are conventionally used for concentrating Salmonella from liquid cultures. We believe this novel bead technology will contribute to the enhanced detection of Salmonella.

  18. Composition, Electronic and Magnetic Investigation of the Encapsulated ZnFe2O4 Nanoparticles in Multiwall Carbon Nanotubes Containing Ni Residuals

    NASA Astrophysics Data System (ADS)

    Al Khabouri, Saja; Al Harthi, Salim; Maekawa, Toru; Nagaoka, Yutaka; Elzain, Mohamed E.; Al Hinai, Ashraf; Al-Rawas, AD; Gismelseed, AM; Yousif, Ali A.

    2015-06-01

    We report investigation on properties of multiwall carbon nanotubes (mCNTs) containing Ni residuals before and after encapsulation of zinc ferrite nanoparticles. The pristine tubes exhibit metallic character with a 0.3 eV reduction in the work function along with ferromagnetic behavior which is attributed to the Ni residuals incorporated during the preparation of tubes. Upon encapsulation of zinc ferrite nanoparticles, 0.5 eV shift in Fermi level position and a reduction in both the π band density of state along with a change in the hybridized sp2/sp3 ratio of the tubes from 2.04 to 1.39 are observed. As a result of the encapsulation, enhancement in the σ bands density of state and coating of the zinc ferrite nanoparticles by the internal layers of the CNTs in the direction along the tube axis is observed. Furthermore, Ni impurities inside the tubes are attracted to the encapsulated zinc ferrite nanoparticles, suggesting the possibility of using these particles as purifying agents for CNTs upon being synthesized using magnetic catalyst particles. Charge transfer from Ni/mCNTs to the ZnFe2O4 nanoparticles is evident via reduction of the density of states near the Fermi level and a 0.3 eV shift in the binding energy of C 1 s core level ionization. Furthermore, it is demonstrated that encapsulated zinc ferrite nanoparticles in mCNTs resulted in two interacting sub-systems featured by distinct blocking temperatures and enhanced magnetic properties; i.e., large coercivity of 501 Oe and saturation magnetization of 2.5 emu/g at 4 K.

  19. Composition, Electronic and Magnetic Investigation of the Encapsulated ZnFe2O 4 Nanoparticles in Multiwall Carbon Nanotubes Containing Ni Residuals.

    PubMed

    Al Khabouri, Saja; Al Harthi, Salim; Maekawa, Toru; Nagaoka, Yutaka; Elzain, Mohamed E; Al Hinai, Ashraf; Al-Rawas, A D; Gismelseed, A M; Yousif, Ali A

    2015-12-01

    We report investigation on properties of multiwall carbon nanotubes (mCNTs) containing Ni residuals before and after encapsulation of zinc ferrite nanoparticles. The pristine tubes exhibit metallic character with a 0.3 eV reduction in the work function along with ferromagnetic behavior which is attributed to the Ni residuals incorporated during the preparation of tubes. Upon encapsulation of zinc ferrite nanoparticles, 0.5 eV shift in Fermi level position and a reduction in both the π band density of state along with a change in the hybridized sp(2)/sp(3) ratio of the tubes from 2.04 to 1.39 are observed. As a result of the encapsulation, enhancement in the σ bands density of state and coating of the zinc ferrite nanoparticles by the internal layers of the CNTs in the direction along the tube axis is observed. Furthermore, Ni impurities inside the tubes are attracted to the encapsulated zinc ferrite nanoparticles, suggesting the possibility of using these particles as purifying agents for CNTs upon being synthesized using magnetic catalyst particles. Charge transfer from Ni/mCNTs to the ZnFe2O4 nanoparticles is evident via reduction of the density of states near the Fermi level and a 0.3 eV shift in the binding energy of C 1 s core level ionization. Furthermore, it is demonstrated that encapsulated zinc ferrite nanoparticles in mCNTs resulted in two interacting sub-systems featured by distinct blocking temperatures and enhanced magnetic properties; i.e., large coercivity of 501 Oe and saturation magnetization of 2.5 emu/g at 4 K.

  20. Proton nuclear magnetic resonance characterization of the aromatic residues in the variant-3 neurotoxin from Centruroides sculpturatus Ewing

    SciTech Connect

    Krishna, N.R.; Nettesheim, D.G.; Klevit, R.E.; Drobny, G.; Watt, D.D.; Bugg, C.E. )

    1989-02-21

    The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C{sup alpha}H, C{sup beta}H{prime}, H{double prime}, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.

  1. Residual Strahls in Solar Wind Electron Dropouts: Signatures of Magnetic Connection to the Sun, Disconnection, or Interchange Reconnection?

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Pagel, C.

    2008-01-01

    A recent assessment of suprathermal electron heat flux dropouts (HFDs) in the solar wind eliminated 90% as possible signatures of field lines disconnected from the Sun at both ends (Pagel et al., 2005b). The primary reason for elimination was the presence of a residual field-aligned strahl presumably signaling field lines connected to the Sun. Using high-time-resolution data from the Wind spacecraft, this paper tests whether the residual strahls were an artifact of averaging over pitch angle distributions (PADs) with and without strahls. An automated search for PADs without strahls (flat PADs) yields an occurrence rate of only 14% within HFDs, but a detailed case study shows that these flat PADs are imbedded within intervals of nearly flat PADs, that is, PADS with residual strahls that cannot be artifacts of averaging. An attractive alternative is that the residual strahls result from intermixing of originally back-scattered fluxes (haloes) of unequal intensities on field lines that have either disconnected or interchange reconnected at the Sun. A reevaluation of reported streaming of higher-energy electrons in HFDs suggests a similar cause. While the high-time-resolution data show high variability of PAD profiles within HFDs, this paper reopens the possibility that a substantial fraction signal disconnection or interchange reconnection. Estimated occurrence rates of fields having undergone these processes based upon published HFD rates are of the same order of magnitude as the surprisingly low values of 1-5% recently predicted by a model of a balanced heliospheric flux budget (Owens and Crooker, 2007).

  2. Gas Sloshing in the Rich Cluster A2204: Putting Constraints on the Properties of the Magnetized Hot Plasma

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Chen, Huanqing; Li, Zhiyuan; Andrade-Santos, Felipe; Zuhone, John

    2016-01-01

    We present results from our detailed analysis of the gas sloshing structures in the rich galaxy cluster Abell 2204, based on deep Chandra observations. We investigate the spiral structure in the X-ray surface brightness, which is a common signature of gas sloshing caused by an interaction with another nearby cluster. We identify discontinuities (edges) in the cluster surface brightness profiles in different directions from the cluster center. We measure the gas temperature, pressure and entropy across these surface brightness edges and find that the prominant surface brightness edges in the east and west are both typical "cold fronts", likely produced by gas sloshing. We use the results of our analysis to constrain the strength of the magnetic field in the cluster. We also use our measurements to provide an upper limit on the velocity of the cold gas beneath the front surface of the cold front. Finally we identify two subcluster candidates in the cluster outskirts, which may have been responsible for the gas sloshing.This research was supported by the Smithsonian Institution, Chandra Prime Contract NAS8-03060, Nanjing University, and the Massachusetts Institute for Technology.

  3. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    NASA Astrophysics Data System (ADS)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  4. Novel and rapid method for determination of organophosphorus pesticide residues in edible fungus using direct gas purge microsyringe extraction coupled on-line with gas chromatography-mass spectrometry.

    PubMed

    Nan, Jingxi; Wang, Juan; Piao, Xiangfan; Yang, Cui; Wu, Xue; Quinto, Maurizio; Li, Donghao

    2015-09-01

    In this work a new analytical method for a rapid and simultaneous determination of 28 organophosphorus pesticides (OPPs) residues in edible fungus using gas purge microsyringe extraction (GP-MSE), coupled with on-line gas chromatography-mass spectrometry (GP-MSE-GC-MS) has been developed and optimized. GP-MSE, a novel gas flow liquid-phase microextraction technique, has been then fruitfully used as innovative and one-step extraction procedure, allowing a direct injection into the gas chromatograph coupled with a mass spectrometry detector (GC-MS) system without any further cleaning step. Once optimized, the GP-MSE-GC-MS analysis procedure showed reproducibility values, resolutions, linear responses, detection and quantification limits that allowed to consider this method suitable for the analysis of the 28 OPPs in real samples. Furthermore, OPP recoveries and the relative standard deviations (RSDs) ranged from 85.26% to 100.21%, and from 1.6% to 6.9%, respectively. This procedure was then used for the analysis of real samples and the obtained results were compared with those of ultrasonic extraction-solid phase extraction. Among the 28 OPPs, 14 of them were found in Lentinus edodes and Enoki mushrooms fungus samples, with a total concentrations of 112.7 and 210.7 μg kg(-1), respectively. This work demonstrated then that GP-MSE-GC-MS provided a highly efficient, solvent-saving, accurate and sensitive quantitative analysis method for a rapid determination of OPPs in edible fungus. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. PARKER INSTABILITY IN A SELF-GRAVITATING MAGNETIZED GAS DISK. III. NONLINEAR DEVELOPMENT OF THE PARKER INSTABILITY

    SciTech Connect

    Lee, Sang Min; Hong, S. S. E-mail: ssrhong@gmail.com

    2011-06-20

    Using a total variation diminishing MHD code, we have simulated the nonlinear development of the Parker instability in an isothermal magnetized gas disk that is under the influence of self-gravity. Our objective is to investigate how the Jeans and Parker instabilities compete with the disruptive tendency of the convection in the nonlinear stage of evolution and to know whether the Parker-Jeans instability can be a mechanism for the formation of the larger scale structures in the Galaxy. When the perturbation wavelengths are larger than a Jeans critical wavelength, a cooperative action between the Parker and Jeans instabilities can suppress completely the disruptive behavior of the convective instability and lead the interstellar medium gas material into large-scale structures of high density, whose masses and sizes correspond to H I superclouds rather than to giant molecular clouds. The gas disk develops the vertical filamentary structures near the dense core instead of the chaotic sheet structures that are often seen from simulations of the classical Parker instability. The low-density filaments connect the dense part to the diffuse region far from the disk central plane. The filamentary structure is similar to galactic diffuse vertical structure. When the wavelength of the given perturbations is so short that the Jeans instability may not get triggered, the self-gravitating, magnetized gas disk seems to reach an equilibrium state different from the initial one.

  6. MSPD procedure for determining buprofezin, tetradifon, vinclozolin, and bifenthrin residues in propolis by gas chromatography-mass spectrometry.

    PubMed

    dos Santos, Thaíse Fernanda Santana; Aquino, Adriano; Dórea, Haroldo Silveira; Navickiene, Sandro

    2008-03-01

    A simple and effective extraction method based on matrix solid-phase dispersion (MSPD) was developed to determine bifenthrin, buprofezin, tetradifon, and vinclozolin in propolis using gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS, SIM). Different method conditions were evaluated, for example type of solid phase (C(18), alumina, silica, and Florisil), the amount of solid phase and eluent (n-hexane, dichloromethane, dichloromethane-n-hexane (8:2 and 1:1, v/v) and dichloromethane-ethyl acetate (9:1, 8:2 and 7:3, v/v)). The best results were obtained using 0.5 g propolis, 1.0 g silica as dispersant sorbent, 1.0 g Florisil as clean-up sorbent, and dichloromethane-ethyl acetate (9:1, v/v) as eluting solvent. The method was validated by analysis of propolis samples fortified at different concentration levels (0.25 to 1.0 mg kg(-1)). Average recoveries (four replicates) ranged from 67% to 175% with relative standard deviation between 5.6% and 12.1%. Detection and quantification limits ranged from 0.05 to 0.10 mg kg(-1) and 0.15 to 0.25 mg kg(-1) propolis, respectively.

  7. Pesticide residues in chicken eggs - A sample preparation methodology for analysis by gas and liquid chromatography/tandem mass spectrometry.

    PubMed

    Hildmann, Fanny; Gottert, Christina; Frenzel, Thomas; Kempe, Guenther; Speer, Karl

    2015-07-17

    A sample preparation method was developed for the analysis of chicken eggs to determine 97 GC and 81 LC amenable residues, including organophosphates, organochlorines, pyrethroids, triazoles, carboxyl-containing compounds, and the indicator PCBs. Hereby, considerations were given to the recoveries of the analytes, the method's suitability for routine analysis, and the assessment of the clean-up effect, for which a simple thin layer chromatography was implemented to visualize the most important lipid classes. The procedure consisted of (I) the extraction by matrix solid phase dispersion, and the clean-up by means of (II) small-scale gel permeation chromatography (GPC) and (III) two different solid phase extractions (SPE) for GC and LC amenable analytes, as well as (IV) the quantification using GC-MS/MS and LC-MS/MS. Cyclohexane/ethyl acetate was chosen as extraction solvent due to its suitability for extracting strong non-polar but also more polar analytes. The classical GPC was scaled down to ensure a 50% lower solvent consumption. The comprehensive investigation of conventional and modern zirconium-oxide-coated SPE materials resulted in the selection of octadecyl-modified silica (C18) combined with primary secondary amine using acetonitrile as elution solvent for GC amenable analytes and pure C18 in combination with acidified methanol for LC amenable pesticides. Compared to the currently established EN 1528 method the sample preparation proposed offered a higher sample throughput and a lower solvent consumption. Furthermore, for the first time the clean-up effectiveness of the sample preparation steps was documented as shown by means of thin-layer chromatography. The validation of chicken eggs proved the fulfillment of the quality control criteria for 164 of the 178 analytes tested, mostly at the lowest validated level of 5μg/kg for pesticides and 0.5μg/kg for the single indicator PCBs. However, the analysis of strongly polar analytes was still problematic

  8. Comparison of four extraction methods for the determination of fungicide residues in grapes through gas chromatography-mass spectrometry.

    PubMed

    Lagunas-Allué, L; Sanz-Asensio, J; Martínez-Soria, M T

    2012-12-28

    Four different methods for simultaneous extraction of vinclozolin, dichlofluanid, penconazole, captan, quinoxyfen, fluquinconazol, boscalid and pyraclostrobin from grapes were optimized and further tested. Microwave assisted extraction (MAE), matrix solid-phase dispersion (MSPD), solid-liquid extraction (SLE) and QuEChERS were compared in terms of their limits of detection and quantification and recoveries. For MAE, MSPD and ethyl acetate extraction, the optimal conditions were optimized by using experimental designs. The analysis was performed using gas chromatography-mass spectrometry in the selected ion monitoring mode (GC-MS, SIM). The proposed methods showed good sensitivity, limits of quantification were lower than MRLs and precision (expressed as relative standard deviation) ranged from 2.9 to 11.1%. The recoveries obtained from MAE, MSPD, SLE and QuEChERS were in the range 78-100%, 66-102%, 58-88% and 68-96%, respectively. In addition, the four methods were compared in two ways: by means of calibration curves obtained with 10 fortified samples in the studied range of concentrations and by the application of statistical tests such as Levene's test (to study variance homogeneity), ANOVA and Tukey's test (in case of Levene's test was satisfactory) for the assessment of the information obtained in the analysis of real samples. Both ways of comparison led to the same results: no differences between the four methods for the extraction of vinclozolin, dichofluanid, quinoxyfen, fluquinconazol and pyraclostrobin were found. However, there were differences for the analysis of captan, boscalid and penconazole. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations.

    PubMed

    Gerber, Iann C; Jolibois, Franck

    2015-05-14

    Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.

  10. Magnetic Resonance Imaging after Completion of Neoadjuvant Chemotherapy Can Accurately Discriminate between No Residual Carcinoma and Residual Ductal Carcinoma In Situ in Patients with Triple-Negative Breast Cancer.

    PubMed

    Park, Seho; Yoon, Jung Hyun; Sohn, Joohyuk; Park, Hyung Seok; Moon, Hee Jung; Kim, Min Jung; Kim, Eun-Kyung; Kim, Seung Il; Park, Byeong-Woo

    2016-01-01

    The accurate evaluation of favorable response to neoadjuvant chemotherapy (NCT) is critical to determine the extent of surgery. We investigated independent clinicopathological and radiological predictors to discriminate no residual carcinoma (ypT0) from residual ductal carcinoma in situ (ypTis) in breast cancer patients who received NCT. Parameters of 117 patients attaining pathological complete response (CR) in the breast after NCT between January 2010 and December 2013 were retrospectively evaluated by univariate and multivariate analyses. All patients underwent mammography, ultrasound, and magnetic resonance imaging (MRI) before and after NCT. There were 67 (57.3%) patients with ypT0. These patients were associated with hormone receptor-negative status, human epidermal growth factor receptor-2 (HER2)-negative tumors, and a higher likelihood of breast-conservation surgery. Baseline mammographic and MRI presentation of the main lesion, absence of associated microcalcifications, shape, posterior features, and absence of calcifications on ultrasound were significantly associated with ypT0. CR in mammography, ultrasound, or MRI after NCT was also related to ypT0. By multivariate analysis, independent predictors of ypT0 were the triple-negative subtype [Odds ratio (OR), 4.23; 95% confidence interval (CI), 1.11-16.09] and CR in MRI after NCT (OR, 5.23; 95% CI, 1.53-17.85). Stratified analysis by breast cancer subtype demonstrated that MRI well predicted ypT0 in all subtypes except the HER2-positive subtype. In particular, of 40 triple-negative subtypes, 22 showed CR in MRI and 21 (95.5%) were ypT0 after NCT. Among imaging modalities, breast MRI can potentially distinguish between ypT0 and ypTis after NCT, especially in patients with triple-negative breast cancer. This information can help clinicians evaluate tumor response to NCT and plan surgery for breast cancer patients of all subtypes except for those with HER2-enriched tumors after NCT.

  11. Rapid analysis of multiple pesticide residues in fruit-based baby food using programmed temperature vaporiser injection–low pressure gas chromatography–high-resolution time-of-flight mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A rapid method using programmed temperature vaporizer injection–low-pressure gas chromatography–high-resolution time-of-flight mass spectrometry (PTV–LP-GC–HRTOFMS) for the analysis of multiple pesticide residues in fruit-based baby food was developed. The fast and inexpensive buffered QuEChERS ext...

  12. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Analysis of 112 pesticide residues in vegetables using dispersive-solid phase extraction and gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Shi, Jiawei; Li, Jige; Wang, Yufei; Fan, Jianzhong

    2012-06-01

    A method was developed and validated for the simultaneous analysis of 112 pesticide residues in vegetables by gas chromatography coupled with triple quadrupole mass spectrometry (GC-QQQ-MS/MS). It is demonstrated that the optimized conditions could provide a more accurate quantitation and lower limit of quantification of the analysis by dispersive-solid phase extraction (D-SPE) cleanup. The samples were extracted with acetonitrile and toluene (8: 1, v/v), and cleaned up by D-SPE. To every 5 mL extraction solution, 0.8 g MgSO4, 0.05 g graphitized carbon black (GCB), 0.1 g ethylenediamine-N-propyl silyl (PSA) and 0.05 g C18 were added. The extracts were analyzed by GC-QQQ-MS/MS using internal standard method. The recoveries of the 112 pesticides at three spiked levels of 20, 50 and 200 microg/kg were ranged from 53.1% to 138.7%, and among which those of 86 pesticides were from 65.0% to 120.0%. The relative standard deviations (RSD) were less than 12%. The limits of quantifications (LOQs) (signal/noise at 10) were between 1.6 and 13.4 microg/kg. The vegetable samples collected from the market such as garlic chives, cucumber and purple cabbage were analyzed, and the residues of triazophos and fenpropathrin were detected in some of these samples. The method can be applied to the routine analysis for the determination of the 112 pesticides in vegetable samples.

  14. Fast analysis of multiple pesticide residues in apple juice using dispersive liquid-liquid microextraction and multidimensional gas chromatography-mass spectrometry.

    PubMed

    Cunha, S C; Fernandes, J O; Oliveira, M B P P

    2009-12-18

    A method for the rapid trace analysis of 24 residual pesticides in apple juice by multidimensional gas chromatography-mass spectrometry (MD-GC/MS) using dispersive liquid-liquid microextraction (DLLME) was developed and optimized. Several parameters of the extraction procedure such as type and volume of extraction solvent, type and volume of dispersive solvent and salt addition were evaluated to achieve the highest yield and to attain the lowest detection limits. The DLLME procedure optimized consists in the formation of a cloudy solution promoted by the fast addition to the sample (5 ml) of a mixture of carbon tetrachloride (extraction solvent, 100 microl) and acetone (dispersive solvent, 400 microl). The tiny droplets formed and dispersed among the aqueous sample solution are further joined and sedimented (85 microl) in the bottom of the conical test tube by centrifugation. Once extracted, all the 24 pesticides were directly injected and separated by a dual GC column system, comprising a short wide-bore DB-5 capillary column with low film thickness connected by a Deans switch system to a second chromatographic narrower column, with identical stationary phase. The instrumental setting used, in combination with carefully optimized operational fast GC and MS parameters, markedly decreased the retention times of the targeted analytes. The total chromatographic run was 8 min. Mean recoveries for apple juice spiked at three concentrations ranged from 60% to 105% and the intra-repeatability ranged from 1% to 21%. The limits of detection of the 24 pesticides ranged from 0.06 to 2.20 microg/L. In 2 of a total of 28 analysed samples were found residues of captan, although at levels below the maximum limit legal established.

  15. Dispersive liquid-liquid microextraction for the determination of organochlorine pesticides residues in honey by gas chromatography-electron capture and ion trap mass spectrometric detection.

    PubMed

    Zacharis, Constantinos K; Rotsias, Ilias; Zachariadis, Petros G; Zotos, Anastasios

    2012-10-01

    A simple dispersive liquid-liquid microextraction (DLLME) protocol for the determination of 15 organochlorine pesticides residues in honey is proposed. The selected pesticides were separated using gas chromatography and detected by electron capture (ECD) or ion trap mass spectrometry (GC-IT/MS). Several parameters affecting the extraction efficiency namely type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time and centrifugation speed were systematically investigated. The final DLLME protocol involved the addition of 750 μL acetonitrile (disperser) and 50 μL chloroform (extraction solvent) into a 5 mL aqueous honey solution followed by centrifugation. The sedimented organic phase (chloroform) were analysed directly by GC-IT/MS or evaporated and reconstituted in acetonitrile prior to the GC-ECD analysis. The analytical performance of the GC-ECD and GC-IT/MS methods was compared and discussed. Under the selected experimental conditions, the enrichment factors varied between of 36 and 114. The limits of detection (LOD) were in the range of 0.02-0.15 μg L(-1) (0.4-3 ng g(-1)) for GC-ECD and 0.01-0.2 μg L(-1) (0.2-4 ng g(-1)) for GC-IT/MS which is adequate to verify compliance of products to legal tolerances. The proposed method was applied to the analysis of the selected organochlorine pesticides residues in various honey samples obtained from Greek region. Mean recoveries were ranged from 75% to 119% while the precision was better than 20% in both methodologies.

  16. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Schwartz, Zeland; An, Yan; Konstantynova, Kateryna I; Jackson, Glen P

    2013-12-10

    The continuing rise in home and vehicular arson cases involving the use of ignitable liquids continues to be an area of concern for criminal and civil investigators. In this study, the compound-specific δ(13)C values of various components of four flammable household chemicals were measured using a single quadrupole mass spectrometer and an isotope ratio mass spectrometer as simultaneous detectors for a gas chromatograph. Whereas compound-specific carbon isotope ratios were able to discriminate between different sources of neat (pre-combustion) ignitable liquids, analyses of the post-combustion residues were problematic. Weathering caused by combustion resulted in a significant increase in the (13)C content of specific peaks relative to the neat liquids (i.e. less negative delta values) such that the isotopic comparison of pre- and post-combustion residues resulted in fractionation ranging from 0 to +10‰. Because of the current lack of understanding of isotopic fractionation during combustion, and because of problems encountered with co-elution in the more complex samples, compound-specific IRMS does not appear to be suitable for fire debris analysis. The comparison of non-combusted or non-weathered ignitable liquids is much more reliable, especially for relatively simple mixtures, and is best suited for exclusionary purposes until such time as a comprehensive database of samples is developed. Without a measure of the population variance, one cannot presently predict the false positive identification rate for the comparison of two ignitable liquids; i.e. the probability that two random ignitable liquid samples have indistinguishable isotope ratios.

  17. Validation of a multi-residue method to determine deltamethrin and alpha-cypermethrin in mosquito nets by gas chromatography with electron capture detection (GC-μECD)

    PubMed Central

    2013-01-01

    Background Nowadays long-lasting insecticidal mosquito nets (LNs) are frequently used around the world to protect people against malaria vectors. As they contain insecticide, laboratory control is needed to check whether the content of the active ingredient follows the conditions of the manufacturer and also if the active ingredient is still present after some time of use. For this purpose, an analytical method had to be developed. The fact that LNs include a range of polymers for the yarn and use coated or incorporated technologies for the active ingredient, it is a challenge to find only one analytical method determining the active ingredient in LNs, which takes into account both impregnation technologies. Some methods are provided by international organizations but are limited by the determination of only one pesticide per method. The aim of this study was to optimize a short time extraction method for deltamethrin and alpha-cypermethrin from coated and incorporated mosquito nets and also to detect both insecticides in one analytical run, using gas chromatography with electron capture detection (GC-μECD). Methods Based on the literature, the most suitable solvent and the adequate extraction process for the insecticides used for net making were identified and adapted for the new multi-residue method. Results The validation data of the multi-residue method to determine deltamethrin and alpha-cypermethrin in mosquito nets by GC-μECD are given. Depending on the concentration of the active ingredient spiked on the nets, the mean recovery for alpha-cypermethrin ranged between 86% and 107% with a relative standard deviation below 3.5%. For deltamethrin it ranged between 90% and 108% with a relative standard deviation also below 3.5%. The limit of detection is 0.009 g.a.i/kg of net (0.3 mg a.i./m2 of net) both for alpha-cypermethrin and deltamethrin. Conclusions Data obtained are excellent. A 30 minutes reflux extraction method with xylene was developed to determine

  18. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.

    PubMed

    Samouhos, Michail; Taxiarchou, Maria; Tsakiridis, Petros E; Potiriadis, Konstantinos

    2013-06-15

    The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.%Cfix), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe₂O₃ → Fe₃O₄ → FeO → Fe sequence. The dielectric constants [real (ε') and imaginary (ε″) permittivities] of red mud-lignite mixture were determined at 2.45 GHz, in the temperature range of 25-1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained.

  19. Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME.

    PubMed

    Ngarmkam, Worawan; Sirisathitkul, Chitnarong; Phalakornkule, Chantaraporn

    2011-03-01

    Magnetic separation combined with adsorption by activated carbon has been found to be a useful method for removing pollutants. In this paper, the use of palm shell as a source of activated carbon for the removal and recovery of oil from palm oil mill effluent (POME) is studied. In the first part of the study, the properties of samples of activated carbon prepared from palm shell under a variety of different conditions were characterized for their hydrophobicity, surface areas and pore size distribution. The most effective of the activated carbon samples was prepared by impregnation with ZnCl(2) followed by combined physical/chemical activation under carbon dioxide flow at 800 °C. Four grams of these samples adsorbed 90% of the oil from 50 mL POME. In the second part, the palm shell-based carbon samples were given magnetic properties by the technique of iron oxide deposition. Ninety-four percent of the activated carbon/iron oxide composite containing the adsorbed oil could be extracted from the POME by a magnetic bar of 0.15 T. Four grams of the composite can remove 85% of oil from 50 mL POME and a total of 67% of the initial oil can then be recovered by hexane extraction. Powder X-ray diffractometry showed the presence of magnetite and maghemite in the activated carbon/iron oxide composite.

  20. Magnetic Field Strength Dependence of Transverse Relaxation and Signal-to-Noise Ratio for Hyperpolarized Xenon-129 and Helium-3 Gas Magnetic Resonance Imaging of Lungs

    NASA Astrophysics Data System (ADS)

    Dominguez-Viqueira, William

    Magnetic resonance (MR) imaging with hyperpolarized noble gases (HNG), 3He or 129Xe, has become a promising approach for studying lung anatomy and function. Unlike conventional MR imaging, the magnetization in HNG MR is independent of the magnetic field strength. This means that no improvement in signal-to-noise ratio (SNR) is expected with increasing clinical field strength above ˜0.25T. Furthermore, it has been predicted that the SNR may decline at clinical field strength due to decreases in the apparent transverse relaxation time (T2*), caused by the increased magnetic susceptibility induced field gradients at the air-tissue interface. In this thesis the magnetic field strength dependence of T2* and SNR in HNG MR is investigated experimentally in rodent and human lungs. For rodent imaging, a novel broad-band (0.1-100MHz) variable field strength MR imaging system for rodents was built. This system permitted imaging of 129Xe, 3He and 1H at low magnetic field strengths (3-73.5mT) to experimentally investigate the field dependence of HNG imaging SNR in rodent lungs. In vivo 129Xe and 3He signals were acquired at 73.5mT and T 2* was estimated to be approximately 180+/-8 ms, in good agreement with previously reported values. At 73.5mT, image noise is dominated by losses originated from the radiofrequency (RF) coils. To address this issue, RF coils were built using different types of copper wire and compared in phantoms and in vivo in rat lungs using hyperpolarized 3He and 129Xe gas. An SNR improvement of up to 200% was obtained with Litz wire compared to conventional copper wire. This improvement demonstrated the feasibility of HNG lung imaging in rodents at 73.5mT with SNR comparable to that obtained at clinical field strengths. To verify the SNR field dependence in humans, hyperpolarized 3He lung imaging at two commonly used clinical field strengths (1.5T and 3T) was performed in the same volunteers and compared. No significant differences in SNR were obtained

  1. A comparison between digital radiography, computed tomography, and magnetic resonance in the detection of gunshot residues in burnt tissues and bone.

    PubMed

    Amadasi, Alberto; Borgonovo, Simone; Brandone, Alberto; Di Giancamillo, Mauro; Cattaneo, Cristina

    2014-05-01

    The radiological search for GSR is crucial in burnt material although it has been rarely tested. In this study, thirty-one bovine ribs were shot at near-contact range and burnt to calcination in an oven simulating a real combustion. Computed tomography (CT) and magnetic resonance (MR) were performed before and after carbonization and compared with former analyses with DR (digital radiography); thus comparing the assistance, the radiological methods can provide in the search for GSR in fresh and burnt bone. DR demonstrated the greatest ability in the detection of metallic residues, CT showed lower abilities, while MR showed a high sensitivity only in soft tissues. Thus, DR can be considered as the most sensitive method in the detection of GSR in charred bones, whereas CT and MR demonstrated much less reliability. Nonetheless, the MR ameliorates the analysis of gunshot wounds in other types of remains with large quantities of soft tissues.

  2. Trace gas emissions from combustion of peat, crop residue, biofuels, grasses, and other fuels: configuration and FTIR component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-04-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November~2012) a~large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 including the fuel properties, the nature of the burn simulations, the instrumentation employed, and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning and for several of these compounds it is the first time their emissions are reported for important fuel types. The main fuel types included: African grasses, Asian rice straw, cooking fires (open (3-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EF) and emission ratios (ER) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models.

  3. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing.

    PubMed

    Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo

    2017-03-16

    Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance.

  4. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    PubMed Central

    Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo

    2017-01-01

    Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance. PMID:28300790

  5. Determination of organophosphorus pesticides by gas chromatography with mass spectrometry using a large-volume injection technique after magnetic extraction.

    PubMed

    Nedaei, Maryam; Salehpour, Ali-Reza; Mozaffari, Shahla; Yousefi, Seyedeh Mahboobeh; Yousefi, Seyed Reza

    2014-09-01

    A fast and efficient method was developed for the extraction and determination of organophosphorus pesticides in water samples. Organophosphorus pesticides were extracted by solid-phase extraction using magnetic multi-walled carbon nanotubes and determined by gas chromatography with ion-trap mass spectrometry. Parameters affecting the extraction were investigated. Under optimum conditions of the method, 10 mg magnetic multi-walled carbon nanotubes were added into 10 mL sample. After 2 min, adsorbent particles settled at the bottom of test tube with a magnet. After removing aqueous supernatant, the analytes were desorbed with acetonitrile. Then, 70 μL of acetonitrile phase was injected into the gas chromatography and mass spectrometry system that had an ion-trap analyzer. To achieve high sensitivity, the large-volume-injection technique was used with a programmed temperature vaporization inlet, and the ion-trap mass spectrometer was operated in single ion storage mode. Under the best conditions, the enrichment factors and extraction recoveries were in the range of 113-124 and 74-103%, respectively. The limits of detection were between 3 and 15 ng/L, and the relative standard deviations were < 10%. This method was successfully used for the determination of organophosphorus pesticides in dam water, lagoon water, and river water samples with good reproducibility and recovery.

  6. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    SciTech Connect

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-15

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.